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Early and Middle Phase Clinical Trial Designs for Groups

Connor John Celum

(ABSTRACT)

This dissertation presents phase I and phase II trial designs for groups. In particular,

groups completely or partially ordered by dose sensitivity are considered. Groups are

completely or partially ordered when the groups can be completely or partially or-

dered by the probability of an adverse event for any given dose, respectively. A pair of

phase I clinical trials are presented in this dissertation: the Quasi-CRM Shift method

and the Group Averaged Bayesian Optimal Interval Design (GAB). The Quasi-CRM

Shift method is the first design for partially ordered groups considering ordinal tox-

icity, allowing clinicians to control for the frequency and severity of adverse events

during dose selection. GAB is the first model-assisted design for partially ordered

groups, a class of designs marked by their simplicity. Simulation studies show that

GAB performs as well as more complex model-based designs, demonstrating GAB

provides clinicians with a simple design that performs well. Large sample properties

show allocation under GAB tends to correct doses. Both the Quasi-CRM Shift and

GAB demonstrate that utilizing the group ordering leads to increased accuracy in

dose allocation during the trial and dose selection at the end of the trial. In addition

to the phase I designs, a pair of phase II designs are presented in this dissertation.

These designs consider a trial with multiple doses and two ordered groups. At the

end of the trial, doses are determined to be acceptable or unacceptable. The first

design is a single-stage design and maximizes power subject to a type I error con-

straint. The second design is a two-stage design with cutoffs determining if a dose
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continues onto the second stage for a group. This design minimizes the number of

unacceptable doses that continue onto the second stage while meeting power and

type I error requirements. Through the development of these designs, clinicians are

provided with multi-dose designs in the group framework, extending dose exploration

and optimization into phase II.
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Chapter 1

Introduction

1.1 Introduction

Oncology clinical trials typically have four phases. Phase I trials have the goals of

safety and dose-finding for subsequent phases. Phase II trials measure drug efficacy

and side effects. Phase III trials compare the new drug to the standard treatment.

Phase IV trials proceed if a drug is approved and monitors long-term effects. Phase

I and phase II designs will be the focus of this dissertation.

To provide an example of the first three phases of a clinical trial, consider trials for

the treatment Ado-trastuzumab emtansine, also known as T-DM1. T-DM1 was an

antibody-drug conjugate approved in 2014 for patients with “HER2-positive, unre-

sectable, locally advanced, or metastatic breast cancer” who had previously undergone

treatment with trastuzumab and a taxane (Dhillon 2014). First, a Phase I trial was

conducted to find the dose for subsequent phases. This trial considered 0.3, 0.6, 1.2,

2.4, 3.6, and 4.8 mg/kg doses of T-DM1 every three weeks. The 3.6 mg/kg every

three weeks dose was selected for subsequent phases (Krop, Beeram, et al. 2010).

A Phase II study measured the efficacy of a 3.6 mg/kg dose of T-DMI every three

weeks. The endpoint objective response rate (ORR) was used, where ORR is the

percentage of patients with either a tumor shrinkage (known as a partial response) or

disappearance of all signs of cancer (known as a complete response) (National Can-
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cer Institute 2024). Based on an observed overall response rate of 34.5% (95% CI

of 26.1% to 43.9%), the drug showed sufficient efficacy to warrant a phase III trial

(Krop, P. LoRusso, et al. 2012). The T-DM1 efficacy was evaluated in the phase

III TH3RESA study (Dhillon 2014). In the TH3RESA study, T-DM1 significantly

prolonged the median progression-free survival (PFS) (by 2.15 months) compared to

the treatment of the physician’s choice, resulting in the approval of T-DM1 (Krop,

S.-B. Kim, et al. 2014). Here, PFS is a time-to-event endpoint, looking at the time

to disease progression.

In this chapter, we will introduce the phase I and phase II trial designs foundational

to the designs presented in this dissertation. The phase I designs presented will be

the Continual Reassessment Method (CRM) (O’Quigley, Pepe, and Fisher 1990) and

the Bayesian Optimal Interval Design (BOIN) (Liu and Y. Yuan 2015). The phase II

designs presented are the Multiple-dose Randomized Phase II Trial (MERIT) (Yang

et al. 2024) and Simon’s Two-Stage Design (Simon 1989).

After discussing phase I and phase II designs, trials with partially or completely

ordered groups will be discussed. Examples of trials with ordered groups will be

provided, along with an extensive literature review of designs for ordered groups.

Finally, we will introduce the goals and outline of this dissertation.

1.2 Phase I Trials

Phase I trials have the goal of finding the highest allowable dose, known as the

maximally tolerated dose (MTD). The MTD is the dose where the probability of a

sufficiently adverse event, known as a dose-limiting toxicity (DLT), is closest to a

target rate, called the target toxic rate, denoted by θ. In this paradigm, we assume
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toxicity and efficacy have a monotonic relationship with the dose levels. The target

toxicity rate can be understood as the toxicity rate deemed acceptable to achieve

more efficacy.

Figure 1.1: Phases of a clinical trial. (MD Anderson Cancer Center n.d.)

Phase I trial designs are adaptive, meaning the responses from the previous patients

are used for dose allocation to the next patient. At the end of the trial, a design

estimates the MTD. From this, the two goals of a clinical trial design are accurate

within-trial dose allocation and accurate end-of-trial dose selection. A brief descrip-

tion of the 3+3 design will be provided to overview the development of phase I trial

designs.

The 3+3 design is the most commonly used design due to its simplicity. According to

Paoletti, Ezzalfani, and Le Tourneau 2015, more than 95% of phase I trials use the

3+3 design. The 3+3 design, as provided in Figure 1.2, enrolls patients in cohorts of

three and de-escalates, escalates, or stays at the same dose level based on the number

of DLTs. Numerous papers, including M. R. Conaway and Petroni 2019 and Chiuzan

and Dehbi 2024, highlighted the inferior dose selection and dose allocation of the 3+3

compared to the CRM (O’Quigley, Pepe, and Fisher 1990) and BOIN (Liu and Y.

Yuan 2015) designs. This section will provide a literature review of the CRM and
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BOIN as these designs form the foundations of the phase I designs presented in this

dissertation.

Figure 1.2: 3+3 flowchart as provided in G. Kim et al. 2018

1.2.1 CRM

Before describing the CRM and BOIN, notation will be provided, allowing these

methods to be detailed. Let d1 < d2 < · · · < dK denote the doses present in the

trial. Let πk denote the DLT probability for dose dk. By the monotonic dose-toxicity

relationship, we have π1 ≤ π2 ≤ · · · ≤ πK . The DLT is the dose with DLT probability

closest to the toxicity target θ. That is, the dose dk′ , where k′ = argmink|πk − θ|.

The CRM is an effective model-based design ubiquitous in phase I design literature.

This design estimates a dose-toxicity curve using prior beliefs on the dose-toxicity re-

lationship and observed responses to update these beliefs. There are numerous varia-

tions of the CRM, including the one-stage Bayesian CRM, as presented in O’Quigley,

Pepe, and Fisher 1990, and the two-stage Maximum Likelihood CRM, as presented in

O’Quigley and Shen 1996. This dissertation considers the one-stage Bayesian CRM.
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The CRM begins by assuming a model of the form

πk = ψ(dk, a),

where a is a parameter continually updated by the data. In the Bayesian CRM, we

assign a prior distribution to a and update a using the posterior mean of a, which

will be denoted as â. As in Y. K. Cheung 2011, the normal prior, a ∼ N(0, σ2),

is considered. Details on the choice of prior variance, σ2, can be explored in Y. K.

Cheung 2011. The commonly used empiric dose-toxicity model will be utilized, so

that

ψ(dk, a) = p
exp(a)
k ,

where the values 0 < p1 < p2 < · · · < pK < 1 are prior values called the skeleton

values. The skeleton values can be understood as initial guesses at the dose-toxicity

relationship which are continually updated by the parameter a. Figure 1.3 illustrates

how the empirical model estimates the dose-toxicity curve based on initial skeleton

values and the parameter a. The R package “dfcrm” (K. Cheung 2019) provides

skeleton values that perform well. O’Quigley and Zohar 2010 finds the CRM robust

under reasonably spaced prior skeleton values and notes that two sets of skeletons

with equally spaced skeleton values give equivalent models.

Next, skeleton values and observed responses are used to guide allocation. Suppose

that n patients have been observed. For the kth patient, let xk denote the dose given

and yk indicate if a DLT was observed. Letting D denote the observed data, the
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Figure 1.3: Empirical model illustrated with a dotted line showing the DLT target,
θ = 0.3

likelihood under parameter a is

L(a|D) =
n∏

i=1

ψ(xk, a)
yk(1− ψ(xk, a))1−yk .

Let g(a) denote the prior distribution of a. Then, the posterior mean of a is obtained

as

â =

∫∞
−∞ ag(a)L(a|D)da∫∞
−∞ g(a)L(a|D)da

.

The next patient is assigned to the dose with the estimated DLT probability closest

to the toxicity target θ. That is, the dose given to patient n+ 1 is

xn+1 = argmindk
|ψ(dk, â)− θ|.
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Once all enrolled patients have been observed, the MTD is estimated as the dose that

would have been assigned next.

1.2.2 BOIN

In this subsection, we describe BOIN, a widely used model-assisted design. This de-

scription of BOIN is adapted from Celum and M. Conaway 2024, and Liu and Y.

Yuan 2015. BOIN is said to be model-assisted since the decision boundaries can be

enumerated before the trial and does not require reestimation of parameters, as is the

case in model-based designs, such as the CRM. The relative simplicity of the model-

assisted designs is attractive to clinicians seeking designs with predefined decision

boundaries. Statisticians debate whether model-assisted or model-based designs are

superior, a debate this dissertation will not engage. For a comprehensive overview

of model-assisted designs and a comparison between model-assisted and model-based

designs favoring model-assisted designs, see Y. Yuan, Lee, and Hilsenbeck 2019. Con-

versely, for a comparison more favorable to model-based designs, see Horton, Wages,

and M. R. Conaway 2017.

Different notation will be used to describe BOIN allocation. Let j denote the current

dose level. Then, at dose level j, let yj denote the number of DLTs, nj denote the

number of observations, and π̂j = yj
nj

denote the DLT rate. Using an interval (λe, λd),

the current dose level is updated as follows:

1. If π̂j ≤ λe and j is not the highest dose level, the current dose level is escalated

to j + 1

2. If π̂j ≥ λd and j is not the lowest dose level, the current dose level is de-escalated

to j − 1
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3. Otherwise, the current dose remains the same.

The interval-based allocation procedure is repeated until all patients have been ob-

served. At the end of the trial, the pooled adjacent violators algorithm (pava) (Brunk

et al. 1972) is used to estimate the MTD.

To obtain interval values, λe and λd, we consider toxicity thresholds θ1 and θ2. The

threshold θ1 is the highest toxicity probability deemed subtherapeutic, thus requiring

dose escalation. The threshold θ2 is the lowest toxicity probability deemed overly

toxic, thus requiring dose de-escalation. Liu and Y. Yuan 2015 recommends the

thresholds θ1 = 0.6θ and θ2 = 1.4θ.

Let πj denote the DLT probability at dose level j. Then three point hypotheses are

considered:

H0j : πj = θ,

H1j : πj = θ1,

H2j : πj = θ2

Prior probabilities are assigned to these hypotheses, letting p(Hij) denote the prior

probability for Hij, where i = 1, 2, 3. Let D, R, and E denote the decisions to

de-escalate, remain at the same dose, and escalate, respectively. The probability of
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making an incorrect decision is given by

α(λe, λd) = p(H0j)p(Rc|H0j) + p(H1j)p(Ec|H1j) + p(H2j)p(Dc|H2j)

= p(H0j)p(yj ≤ njλe or yj ≥ njλe|H0j) + p(H1j)p(yj > njλe|H1j)

+ p(H2j)p(yj < njλd|H2j)

= p(H0j){Bin(njλe;nj, θ) + 1− Bin(njλd − 1;nj, θ)}

+ p(H1j){1− Bin(njλ1j;nj, θ1)}+ p(H2j)Bin(njλ2j − 1;nj, θ2)

In the equation above, Bin(y, n, θ) denotes the Binomial CDF evaluated at y with n

trials and probability of success θ. Liu and Y. Yuan 2015 shows the optimal choices

for λe and λd that minimize error decision α(λe, λd) are given by

λe =
log

(
1−θ1
1−θ

)
+ 1

nj
log

(
p(H1j)

p(H0j)

)
log

(
θ(1−θ1)
θ1(1−θ)

) ,

λd =
log

(
1−θ2
1−θ

)
+ 1

nj
log

(
p(H0j)

p(H2j)

)
log

(
θ(1−θ2)
θ2(1−θ)

) .

If we assume equally likely priors, so p(Hij) =
1
3
, the boundaries simplify to

λe =
log

(
1−θ1
1−θ

)
log

(
θ(1−θ1)
θ1(1−θ)

) ,
λd =

log
(
1−θ2
1−θ

)
log

(
θ(1−θ2)
θ2(1−θ)

) .
Interval boundaries, (λe, λd), can be obtained using the function get.boundary from

the R package “BOIN” (Yan, Zhang, et al. 2020), allowing for easy implementation.

Dose-elimination rules for eliminating doses demonstrating excessive toxicity can be
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added for practical considerations. Let the DLT probability at dose level k, πk, have

a vague prior. For instance, we may consider πk ∼ Beta(1, 1) ≡ Unif(0, 1). After

observing a minimum number of patients at dose level j, dose levels j and above

are eliminated from the trial if P (πj > θ|nj, yj) > λ. In the original BOIN paper,

we require three patients be observed at a dose before considering dose elimination

and the cutoff, λ, is set to 0.95. Additionally, the trial is halted if the lowest dose

is eliminated. The site trialdesign provides tabulated decision boundaries, providing

a user-friendly interface for clinicians. Figure 1.4 provides the decision boundaries

when the target toxicity rate is θ = 0.3 and λ = 0.95. In Chapter 3, we first present

the Group Averaged BOIN (GAB) design without dose elimination and then discuss

GAB with dose elimination.

Figure 1.4: Decision boundaries from BOIN, as obtained from trialdesign.

https://www.trialdesign.org
https://www.trialdesign.org
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1.3 Phase II Trials

Phase II trials are generally used as a preliminary test of efficacy before proceeding

to a phase III trial. The MTD identified in phase I is often used in phase II. However,

this MTD-centric approach is currently being challenged, and phase II oncology trials

are seeing a paradigm shift. As will be discussed further in Section 4.1, the FDA is

interested in seeing dose-randomization being incorporated into phase II trials (Yang

et al. 2024; U.S. Food And Drug Administration 2024a).

In Chapter 4, we present two multi-dose designs for phase II trials with two ordered

groups. This provides clinicians with phase II multi-dose trial designs for groups after

completing a phase I trial with groups. The first design builds upon ideas from the

multi-dose randomized trial (MERIT), found in Yang et al. 2024. The second design

is a two-stage sequential design with similar objectives to the ubiquitous Simon’s Two-

Stage Design (Simon 1989). Literature reviews of MERIT and Simon’s Two-Stage

Design will be provided.

1.3.1 MERIT

MERIT is a simple to use design for a randomized multi-dose phase II clinical trials.

Similar to BOIN, decision boundaries can be obtained on the website trialdesign,

making this design accessible.

In this multi-dose trial, there are J doses under consideration, d1 < d2 < · · · < dJ .

Additionally, a total of n patients are observed at each dose, giving a total of J × n

patients in the trial. For a dose to be acceptable, it must be sufficiently safe and suf-

ficiently effective. Let θT0 denote the toxicity rate deemed overly toxic and θT1 denote

https://www.trialdesign.org
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the toxicity rate deemed safe. Let θE0 denote the efficacy rate deemed insufficient and

θE1 denote efficacy rate deemed sufficient. Let YT , YE denote the binary toxicity and

efficacy outcomes. Additionally, let πT,k = P (YT = 1|dk) and πE,k = P (YE = 1|dk)

denote the toxicity and efficacy probabilities at dose dk, respectively. A dose is ac-

ceptable if πE,k > θE0 and πT,k < θT0 .

After defining null and alternative toxicity and efficacy rates, the null hypothesis can

be stated as

H0 = All doses are unacceptable

and the alternative hypothesis can be stated as

H1 = At least one dose is acceptable.

A dose can be deemed unacceptable in three different ways, being unsafe and inef-

fective (θT0 , θE0), being unsafe and effective (θT0 , θE1), and being safe and ineffective

(θT1 , θE0). Additionally, there are many different ways to have at least one acceptable

dose. From this, H0 and H1 are composite hypotheses. Due to the composite nature

of H0 and H1, we consider the global type one error, denoted as α⋆, and the global

power, denote as β⋆. Global type I error is the maximum type I error over all possible

configurations (possibilities for parameters) in H0 and global power is the minimum

power over all configurations in H1.

At the end of the trial, let nT,k and nE,k denote the number of DLTs and efficacious

outcomes on dose dk, respectively. Cutoffs mT and mE are defined so that mT is

the highest allowable number of DLTs and mE is the minimum required efficacious

responses. Dose dk is deemed acceptable if nT,k ≤ mT and nE,k ≥ mE. Merritt selects
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the cutoffs to maximize global power under a global type I error constraint.

1.3.2 Simon’s Two-Stage Design

This section presents Simon’s Two-Stage Design (Simon 1989), a two-stage design for

phase II trials to determine if a drug is sufficiently effective. The two-stage design

presented in Chapter 4 will differ from Simon’s Two-Stage Design as it considers both

toxicity and efficacy endpoints, several doses, and two groups. However, we present

Simon’s Two-Stage Design to provide motivation for what will be called “Simon’s

Statistic” and to introduce two-stage designs.

Simon’s design considers a phase II trial with a single agent. We are interested in

accessing the efficacy of the agent in the trial to determine if the agent warrants a

phase III trial. Let p0 denote the unacceptable rate of efficacy and p1 denote the

acceptable rate of efficacy. From this, the null hypothesis is H0 : p ≤ p0 and the

alternative hypothesis is H1 : p ≥ p1. Let n1 denote the number of patients in the

first stage of the trial and n2 denote the number of patients in the second stage.

After observing the n1 patients in the first stage, the trial continues onto the second

stage if at least r1 responses are observed. If a trial continues onto the second phase,

the drug is deemed acceptable if the number of responses is at least r2. Letting

EN(p0) denote the expected number of patients observed under the null rate p0, the

goal of Simon’s design is to find the optimal design parameters that minimize EN(p0),

while meeting type I error and power constraints.
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1.4 Completely and Partially Ordered Groups

In this subsection, we provide a literature review of completely and partially ordered

groups. This literature review will cover previous trials with ordered groups and

discuss the current literature on phase I trials for ordered groups. Before this disser-

tation, no phase II trials existed for ordered groups. This literature review is adapted

from Celum, Horton, and M. Conaway 2024, and Celum and M. Conaway 2024.

Previous trials have stratified patients into heterogeneous groups. In these trials,

clinicians had complete or partial prior knowledge of the relative sensitivity of the

groups. If we have complete knowledge, the groups can be ordered by the probability

of a DLT for any given dose. If we have partial knowledge, some but not all groups

can be ordered by the probability of a DLT for any given dose.

Ramanathan et al. 2008; P. M. LoRusso et al. 2012; and Leal et al. 2011 provide

examples of trials where groups are completely ordered. Ramanathan et al. 2008 and

P. M. LoRusso et al. 2012 use liver health to stratify patients into four groups. Leal

et al. 2011 uses renal to health stratify patients into five groups.

Innocenti et al. 2014 provides an example of a trial where groups are partially or-

dered. This trial was interested in finding the MTD for Irinotecan and used UGT1A1

genotype to create groups. It is known that patients with genotype ∗28/∗28 are more

sensitive than those with genotypes ∗1/∗1 or ∗1/∗28. Prior to the trial, it was not

known if patients with genotype ∗1/∗1 or genotype ∗1/∗28 are more sensitive, creating

a partial ordering.

Previous designs have been proposed for finding group-specific MTDs when there

is a complete or partial ordering. Dose-finding designs for complete orderings in-

clude O’Quigley and Xavier Paoletti 2003; Zhilong Yuan and Rick Chappell 2004;
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Ivanova and K. Wang 2006; O’Quigley and Iasonos 2014; Wages, Read, and Petroni

2015; and M. R. Conaway and Wages 2017. O’Quigley and Xavier Paoletti 2003,

and O’Quigley and Iasonos 2014 add a “shift” parameter to modify the continual

reassessment method (CRM). Zhilong Yuan and Rick Chappell 2004, and Ivanova

and K. Wang 2006 use bivariate isotonic regression to locate group-specific doses.

Wages, Read, and Petroni 2015 designed an adaptive phase I/II design that considers

both efficacy and toxicity endpoints while stratifying patients into two ordered groups

based on genetic and clinical factors. Muller et al. 2020 implements this design in a

stereotactic body radiation therapy trial. M. R. Conaway and Wages 2017 consider

a collection of possible DLT probability orderings, subject to the group orderings,

and uses order-restricted methods from Hwang and Peddada 1994 to estimate DLT

probabilities.

Dose-finding methods for partial orderings include M. R. Conaway 2017a; M. R.

Conaway 2017b; Horton, Wages, and M. R. Conaway 2019; and Lin, Thall, and Y.

Yuan 2020. M. R. Conaway 2017a first “smooths” the observed DLT proportions to

agree with the partial ordering, then applies the CRM. M. R. Conaway 2017b first

applies the CRM independently to each group to obtain initial estimates. Second,

using the partial ordering and the order-restricted methods from Hwang and Peddada

1994, the initial estimates are adjusted. Horton, Wages, and M. R. Conaway 2019

considers all possible MTD configurations, called shifts, given the partial order. The

CRM is applied to the shifts and the shift with the highest likelihood is used to

estimate MTDs. Lin, Thall, and Y. Yuan 2020 designs a phase I/II trial for partially

or completely ordered subgroups using both efficacy and toxicity outcomes while

allowing outcomes to be delayed.
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1.5 Outline

In this dissertation, we contribute to the existing literature on phase I trials for groups

and create the first multi-dose phase II group designs. In particular, we create the

first design for partially or completely ordered groups using ordinal toxicity and the

first such model-assisted design.

This dissertation will be organized as follows. Chapter 2 will cover the Quasi-CRM

Shift method, as adapted from Celum, Horton, and M. Conaway 2024, the first design

for partially ordered groups using ordinal toxicity. Chapter 3 will cover the Group

Averaged BOIN design, the first model-assisted design for partially or completely

ordered groups, as adapted from Celum and M. Conaway 2024. Chapter 4 will cover

two multi-dose phase II designs for ordered groups. Chapter 5 will conclude and

discuss future research.
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Chapter 2

Quasi-CRM Shift

2.1 Introduction

This chapter is adapted from Celum, Horton, and M. Conaway 2024.

This chapter proposes a trial design for estimating group-specific maximally tolerated

doses (MTDs) when toxicity is ordinal. With an increased interest in personalized

medicine, it is important to use group information if groups are present. Phase I trials

often dichotomize toxicities as being dose-limiting toxicities (DLT) or not. This design

uses both toxicity severity and DLTs to guide dose allocation and MTD estimation.

Toxicities have grades 0 to 5, corresponding to toxicities: none, mild, moderate,

severe, life-threatening, or fatal (U.S. Department of Health and Human Services

2017); providing more information than binary toxicity. If a grade 5 toxicity occurs,

a safety review is often required to resume the trial (Yuan, Chappell, and Bailey

2007). As grade 5 toxicities can cause a trial to be halted, grade 5 toxicities will

not be considered. Depending on the protocol, DLTs are toxicities of grade 3 and

above, or toxicities of grade 4 and above (Yuan, Chappell, and Bailey 2007). Using

toxicity grades, we can both account for low-grade toxicities and differentiate a grade

3 DLT from a grade 4 DLT. Bekele and Thall 2004 designed a soft tissue sarcoma

phase I trial that accounts for toxicity type. In this trial, clinicians were interested in
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toxicity type as low-grade, non-DLTs inform us that a dose-limiting toxicity is likely

to occur at a higher dose. Additionally, differentiating DLT severity is informative

when a drug exhibits more severe toxicities, such as renal, as grade 4 renal toxicities

are irreversible (Yuan, Chappell, and Bailey 2007; Pan et al. 2014).

Several dose-finding designs have been created for ordinal toxicity. C. Wang, T. T.

Chen, and Tyan 2000 used toxicity grades to modify the CRM, making dose allocation

more conservative after observing a grade 4 toxicity. Yuan, Chappell, and Bailey 2007

assigned toxicity scores, (s0, s1, s2, s3, s4), to weight the severity of each toxicity grade.

The toxicity scores are called equivalent toxicity (ET) scores and are elicited from

clinicians. These scores are normalized so the scores are in the unit interval. These

normalized toxicity scores are plugged into a Bernoulli-likelihood. This likelihood

is called the quasi-Bernoulli likelihood since the responses in the unit interval but

are not Bernoulli (Papke and Wooldridge 1996). As the responses are evaluated

in a Bernoulli likelihood, the CRM can be utilized. This is called the Quasi-CRM.

Similar to Yuan, Chappell, and Bailey 2007, the designs in Van Meter, Garrett-Mayer,

and Bandyopadhyay 2012; Pan et al. 2014; and O’Connell, Wages, and Garrett-

Mayer 2023 estimate the MTD using graded toxicity. Van Meter, Garrett-Mayer, and

Bandyopadhyay 2012 extends the CRM to the ordinal toxicity using the continuation

ratio model. Pan et al. 2014 used the Quasi-CRM and Bayesian model selection to

select the best model from a collection of models. O’Connell, Wages, and Garrett-

Mayer 2023 found the MTD for drug combinations by combining the Quasi-CRM

with CRM partial ordering methods from Wages, M. R. Conaway, and O’Quigley

2011.

This is the first design for locating group-specific MTDs using ordinal toxicity. To

estimate group MTDs using ordinal toxicities, the shift method is combined with
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the Quasi-CRM. Chapter 2 will proceed as follows. Section 2.2 will provide the

framework for groups and ordinal toxicity. Section 2.3 will cover the proposed model

and allocation procedures. Section 2.4 will cover the simulations. Section 2.5 will

conclude and discuss future areas of research.

2.2 Groups and Ordinal Toxicity

Let g = 1, 2, . . . , G denote the group membership of a patient. Let d1 < d2 < · · · < dK

denote the doses in a trial. We use the partial ordering from the Intrinotecan trial

(Innocenti et al. 2014) with G = 3. Group 1 will refer to the patients with genotype
∗1/∗1, Group 2 will refer to the patients with genotype ∗1/∗28, and Group 3 will refer

to the patients with genotype ∗28/∗28. Group 3 is the most sensitive group and there

is not an a priori ordering between groups 1 and 2. Simulations will be conducted

for K = 4 and K = 6 dose levels. As in Yuan, Chappell, and Bailey 2007, toxicities

of grades 3 and 4 will be considered DLTs. Corresponding to the toxicity grades 0 to

4, there will be ET scores s0 to s4. We will use the ET scores from Yuan, Chappell,

and Bailey 2007, as provided below. Note the DLT cutoff and toxicity scores depend

on clinician preference and can differ from those presented in this chapter.

s0 = s1 = 0, s2 = 0.5, s3 = 1, s4 = 1.5.

Yuan, Chappell, and Bailey 2007 elicited these scores from clinician preferences. For

these clinicians, grade 1 toxicities are not concerning, two grade 2 toxicities are equiv-

alent to a grade 3 toxicity, and a grade 2 toxicity plus grade 3 toxicity is equivalent

to a grade 4 toxicity. Grade 3 toxicities are scored as 1 since these toxicities are the

DLT cutoff. Then, from the previous relationship, grade 2 toxicities are scored as 0.5
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and grade 4 toxicities as 1.5.

The ET score for the ith patient in group g is denoted as sig, where sig is the ET

score from the highest observed toxicity grade for this patient during the window of

observation. The expected ET score for group g at dose dk, is denoted as Sgk, where

Sgk = Eg(s|dk). Additionally, πgk denotes the DLT probability for group g at dose dk.

We define θT as the DLT target and θS as the ET target. Similar to Yuan, Chappell,

and Bailey 2007, we set the thresholds as θT = 0.33 and θS = 0.47. The ET target,

θS = 0.47, is obtained by considering the toxicity profile: 49% grades 0 or 1, 18%

grade 2, 23% grade 3, and 10% grade 4, giving the expected ET score:

S = 0.49× 0 + 0.18× 0.5 + 0.23× 1 + 0.10× 1.5 = 0.47

The ET MTD for group g can be defined as the dose with ET score closest to the

ET target; that is, dk with k = argmink |Sgk − θS|. The DLT MTD for group g can

be defined as the dose with DLT probability closest to the DLT target; that is, dk

with k = argmink |πgk − θT |. The DLT MTD and ET MTD need not be the same.

Simulations include examples when the DLT MTD is higher than the ET MTD and

when the ET MTD is higher than the DLT MTD. In this chapter, we will define the

MTD to be the minimum of the ET MTD and DLT MTD; thus, we control for the

DLT probability and total toxicity profile of a dose. That is, for a group g, the group

MTD is the dose dk, where

k = min
{

argmin
k

|Sgk − θS|, argmin
k

|πgk − θT |
}
. (2.1)

From this definition, dose allocation and estimation will be at least as conservative as

allocation and estimation using only DLT data. Suppose a group has the relationship
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Figure 2.1: DLT MTD and ET MTD Plot

between dose, expected ET score, and DLT probability as provided in Figure 2.1. In

Figure 2.1, horizontal red lines delineate the ET and DLT targets. From this, the

group-specific DLT MTD is dose level 3 and the group-specific ET MTD is dose level

2, resulting in a group-specific MTD of dose level 2, this being the minimum of the

two MTDs.

Now we normalize the ET scores, giving new scores between 0 and 1, allowing for

the application of the Quasi-CRM: s⋆i = si/s4, θ⋆S = θS/s4 = 0.31, and S⋆
gk = Sgk/s4.

After normalization we have s⋆i , θ⋆S, S⋆
gk ∈ [0, 1].

Let MTDg denote the MTD for group g. From the motivating example, MTD3 ≤

MTD1 and MTD3 ≤ MTD2 but it is not known if MTD1 ≤ MTD2 or MTD2 ≤
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MTD1. This relationship is illustrated in the diagram below.

MTD1

MTD3

MTD2

A reversal occurs when the estimated MTDs contradict the known group ordering.

From this relationship, reversals occur if M̂TD3 > M̂TD2 or M̂TD3 > M̂TD1. As

discussed in Horton, O’Quigley, and M. R. Conaway 2019, reversals occur when trials

are done independently for each group. Simulations will count the number of reversals

that occur in independent Quasi-CRM trials.

The proposed method will make use of the shift method and Quasi-CRM. The shift

method and CRM will be applied to the DLT data, and the shift method and Quasi-

CRM will be applied to the ET data.

2.3 Proposed Model and Allocation

For the proposed method, we consider the possible shifts in DLT MTD and ET MTD

for groups 3 and 1, and groups 2 and 1. These shifts will correspond to skeleton shifts,

giving a collection of DLT and ET models. The best-fitting models will be used for

allocation.

The skeleton is an initial guess at the DLT probabilities. Conceptually, the skeleton

shift between, say, groups 1 and 3 is how many dose levels you need to shift the
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skeleton of Group 3 up by in order to match the skeleton of Group 1. For instance, if

the shift is one, the skeleton value for Group 3 at dose level one will be equal to the

skeleton value for Group 1 at dose level two. For the given partial order, there will

be 2×K − 1 skeleton values for both the ET and DLT models. The value 2×K − 1

comes from considering when the skeleton shift between the most and least sensitive

group is K − 1. For this shift, the skeleton value for the most sensitive group, in this

case, Group 3, at dose level 1 is equal to the skeleton value for the least sensitive

group, in this case, groups 1 or 2, at dose level K. In this case, the most and least

sensitive groups would only have one skeleton value in common, requiring 2×K − 1

skeleton values. See Horton, Wages, and M. R. Conaway 2019 for details.

First, we consider a skeleton of size 2×K − 1 that will be used for the ET responses,

0 ≤ q1 ≤ q2 ≤ · · · ≤ q2×K−1 ≤ 1.

The ET shift skeleton was obtained using the “getprior” function from the R package

“dfcrm” (K. Cheung 2019). Getprior has the arguments halfwidth, target, nu, levels,

and model. Halfwidth controls the spread of the skeletons, with a larger halfwidth

making the skeleton more spread out. Target is the target toxicity rate, nu is the

prior MTD estimate, levels is the skeleton length, and “model” specifies the model

being used. We use the empirical model, which is of the form qexp(a).

In simulation studies, four and six-dose trials were considered. For the four-dose

case, the function arguments were getprior(halfwidth = 0.06, target = 0.31,

nu = 3, nlevel = 7, model = "empiric"). For the six-dose case, the function

arguments were getprior(halfwidth = 0.06, target = 0.31, nu = 4, nlevel

= 11, model = "empiric") (K. Cheung 2019). These parameters were chosen to
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mirror the shift model in Horton, Wages, and M. R. Conaway 2019.

Second, we consider a skeleton of size 2 × K − 1 that will be used for the DLT

responses,

0 ≤ p1 ≤ p2 ≤ · · · ≤ p2×K−1 ≤ 1.

Similarly, the DLT shift skeleton was obtained using the “getprior” function. For the

four-dose case, the function arguments were getprior(halfwidth = 0.06, target

= 0.33, nu = 3, nlevel = 7, model = "empiric"). For the six-dose case, the

function arguments were getprior(halfwidth = 0.06, target = 0.33, nu = 4,

nlevel = 11, model = "empiric").

Let ∆S
32 and ∆S

31 denote the ET skeleton shifts between groups 3 and 2 and between

groups 3 and 1, respectively. Let ∆T
32 and ∆T

31 denote the DLT skeleton shifts between

groups 3 and 2 and between groups 3 and 1, respectively. Then, ∆S
32,∆

S
31,∆

T
32,∆

T
31 ∈

{0, 1, . . . , K−1}. Corresponding to each pair of ET shifts, (∆S
32,∆

S
31), we get a Quasi-

CRM model, giving K × K = M Quasi-CRM models. Similarly, corresponding to

each pair of DLT shifts, (∆T
32,∆

T
31), we get a CRM model, giving K ×K =M CRM

models.

For an example of a model obtained from a shift, consider the ET model (∆S
32 =

2,∆S
31 = 1), when K = 4. We first consider the larger shift, ∆S

32 = 2. As the shift

between groups 3 and 2 is 2, the skeleton for Group 3 starts with q3. As the shift

between groups 3 and 1 is 1, the skeleton for Group 1 should be one behind the

skeleton for Group 3, so the starting skeleton value for Group 1 is q2. A similar

process would give the group skeletons for the DLT model (∆T
32 = 2,∆T

31 = 1). Tables

2.1 and 2.2 provide the group skeletons corresponding to these models. For further
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reference, Horton, Wages, and M. R. Conaway 2019 provides a table of the skeleton

shifts corresponding to the 4× 4 models for the four-dose scenario.

(∆S
3,2 = 2,∆S

3,1 = 1) Dose 1 Dose 2 Dose 3 Dose 4
Group 3 skeleton q3 q4 q5 q6
Group 2 skeleton q1 q2 q3 q4
Group 1 skeleton q2 q3 q4 q5

Table 2.1: ET skeleton shift example for shift (∆S
3,2 = 2,∆S

3,1 = 1).

(∆T
3,2 = 2,∆T

3,1 = 1) Dose 1 Dose 2 Dose 3 Dose 4
Group 3 skeleton p3 p4 p5 p6
Group 2 skeleton p1 p2 p3 p4
Group 1 skeleton p2 p3 p4 p5

Table 2.2: DLT skeleton shift example for shift (∆T
3,2 = 2,∆T

3,1 = 1).

MTD estimation will proceed as follows. First, the Quasi-CRM will select the model

that fits the ET data the best. This model will be used to estimate group ET MTDs.

Second, the CRM will select the model that fits the DLT data the best. This model

will be used to estimate the group DLT MTDs. The group MTD estimates will be the

minimum of the estimates for the group ET MTD and group DLT MTD. During the

trial, the next patient is allocated to their respective group-MTD estimate, with the

additional restriction of preventing doses from being skipped. Section 2.3.3 details

the allocation rules.

2.3.1 ET MTD

For model m, the (normalized) ET score response for group g, given dose dk, is

modeled as

Emg(s
⋆|dk, a) = ϕmg(dk, a), (2.2)
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where

ϕmg(dk, a) = (qmgk)
exp(a) .

We assume the parameter a has the prior N(0, 1.34).

Let xig denote the dose for the ith patient in group g, s⋆ig denote the (normalized)

ET response for the ith patient in group g, and ng denote the number of observed

patients in group g. For model, m, and ET data, DS, the Quasi-Bernoulli likelihood

(Papke and Wooldridge 1996) is

Lm(a|DS) =
3∏

g=1

ng∏
i=1

ϕmg(xig, a)
s⋆ig(1− ϕmg(xig, a))

1−s⋆ig . (2.3)

Let g(a) be the prior density function for a. Under model m, the posterior density

for a is

g(a|DS,m) =
g(a)Lm(a|DS)∫∞

−∞ g(a)Lm(a|DS)da
.

Now consider prior model probabilities for the ET models, {pS(1), pS(2), . . . , pS(M)}.

In simulations, the models have equal prior likelihoods, so pS(m) = 1
M

, for m =

1, 2, . . . ,M . Using the ET data, we obtain posterior model probabilities,

pS(m|DS) =
pS(m)pS(DS|m)∑M

m=1 pS(m)pS(DS|m))

=
pS(m)

∫∞
−∞ g(a)Lm(a|DS)da∑M

m=1 pS(m)
∫∞
−∞ g(a)Lm(a|DS)da

.



27

Let mS denote the model with the highest posterior probability, that is

mS = argmax
m

pS(m|DS).

Using model mS, we obtain the posterior mean for a,

âmS
=

∫ ∞

−∞
ag(a|DS,mS)da.

Using the posterior mean, the expected ET score for group g is estimated as: ϕmSg(dk, âmS
) =

(qmSgk)
exp(âmS). Thus, the ET MTD for group g is estimated as

xS(ng+1)g = argmin
dk

|ϕmSg(dk, âmS
)− θ⋆S| .

2.3.2 DLT MTD

Using the DLT shift skeleton and the DLT data, we repeated the same procedure and

obtain the estimates for the group-specific MTDs. We model the DLT response as

Emg(y|dk, b) = ψmg(dk, b), (2.4)

where

ψmg(dk, b) = (pmgk)
exp(b).

Similarly, a N(0, 1.34) prior is used for b.

As in the previous section, we select the DLT model with highest posterior likelihood.

Let mT denote the DLT model with the highest posterior likelihood and b̂T denote
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the posterior mean for b under model mT . The DLT MTD for group g is estimated

as

xT(ng+1)g = argmin
dk

∣∣∣ψmT g(dk, b̂mT
)− θT

∣∣∣ .
The estimated MTD for group g is the minimum of the two MTD estimates,

x(ng+1)g = min
{
xS(ng+1)g, x

T
(ng+1)g

}
.

2.3.3 Allocation Rules

Allocation is group-specific and does not allow doses to be skipped. If the next

patient is in Group 3, the sensitive group, the patient will be allocated the minimum

of the MTD estimate for Group 3, x(n3+1)3, and one dose higher than the highest

dose observed in Group 3. If the next patient is in groups 1 or 2, the patient will be

allocated the minimum of the group-specific MTD estimate, x(ng+1)g, and one dose

higher than the overall highest observed dose. Table 2.3 provides the allocation rules,

where dmax
g is the highest observed dose in group g, as denoted in Horton, Wages, and

M. R. Conaway 2019. By constraining Group 3 by dmax
3 +1, and constraining groups

1 and 2 by max{dmax
1 , dmax

2 , dmax
3 }+ 1, allocation follows the known group ordering.

Group Dose Allocation
1 min

{
max{dmax

1 , dmax
2 , dmax

3 }+ 1, x(n1+1)1

}
2 min

{
max{dmax

1 , dmax
2 , dmax

3 }+ 1, x(n2+1)2

}
3 min

{
dmax
3 + 1, x(n3+3)3

}
Table 2.3: Allocation rules for the proposed method with dmax

g denoting the highest
observed dose in group g and xng+1,g denoting the MTD estimate for group g.
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2.4 Simulations

The proposed method was compared to the shift method and the independent Quasi-

CRM group trials method. These methods will be called the DLT Shift and the

Independent Quasi-CRM. The empirical model, pexp(a), was used for all methods,

with a ∼ N(0, 1.34).

The DLT Shift method ignored the ET data and applied the shift method only to

the DLT data. The DLT skeletons used in the proposed method were used for the

DLT Shift method. The allocation rules in the proposed method that restricted dose

skipping based on group membership were applied.

For each group, the Independent Quasi-CRM method applied the CRM to the DLT

data to obtain the DLT MTD and the Quasi-CRM to the ET data to obtain the ET

MTD. The estimated group MTD was the minimum of the two MTD estimates. In

the independent group trials, dose escalation did not allow for the skipping of untried

doses. The “getprior” function computed the skeleton values with “halfwidth” set to

0.06. In the four and six-dose scenarios, “nu” was set as 3 and 4, respectively. The

reversal percentage was recorded for each scenario.

2.4.1 Scenarios

Simulations were run for trials with four and six-dose levels. There were 12 four-

dose scenarios and 12 six-dose scenarios. Appendix A provides the plots of these

scenarios. For the four-dose scenarios, trial sizes of 30, 45, and 72 were considered.

For the six-dose scenarios, trial sizes of 45, 69, and 108 were considered. Since the

six-dose scenarios have more dose options, the trial sizes were scaled accordingly.
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Patient group membership was randomly generated with an equal probability that

a patient belongs to a group while requiring each trial has at least one patient from

each group. The larger trial sizes are justified since the expected number of patients

in a group is a third of the trial size. For each scenario and trial size, 1000 trials

were simulated. Dose allocation and dose selection percentages were recorded. This

data and the R code used to generate this data is available in the online version

of Celum, Horton, and M. Conaway 2024. For each combination of trial size and

number of doses, the percentage of correct selection (PCS) and the percentage of

correct allocation (PCA) was averaged over all groups and scenarios. For group-

specific results, see sections 5 and 6 of supplementary materials in Celum, Horton, and

M. Conaway 2024. The number of reversals was recorded for the Independent Quasi-

CRM method. The proposed method does not allow for reversals and outperforms

the Independent Quasi-CRM in PCS and PCA. Additionally, the proposed method

uses the complete toxicity profile of a dose, accounting for low-grade and high-grade

toxicities, improving the DLT Shift. Additional analyses for overdose control and

model sensitivity were conducted. Analyses were run to test sensitivity to group

proportions, choice of ET scores, choice of prior standard deviation, and choice of

halfwidth. After running these analyses, we can conclude the proposed method is

robust.

2.4.2 Reversals

For each scenario and trial size, the percentage of reversals was recorded for the

Independent Quasi-CRM method. Note that the scenarios in the four-dose trials

differ from the scenarios in the six-dose trials. With this in mind, one should only

compare scenarios within a table and should not compare scenarios across the tables.
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Looking at Tables 2.4 and 2.5, we see that the number of reversals decrease as the

sample size increases. In the four-dose scenarios, the reversal percentage is highest in

scenarios 3 and 7, when the MTD is the same for all groups. In the six-dose scenarios,

the reversal percentage is highest in scenario 7, when groups 3 and 1 have the same

MTD. These tables show that it is more likely for a reversal to occur when the MTD

for Group 3 is closer to the MTDs for groups 1 and 2. These results are similar to

the results in Horton, O’Quigley, and M. R. Conaway 2019 for the DLT MTD.

Number of Doses Trial Size 1 2 3 4 5 6 7 8 9 10 11 12 AVG
4 30 28.4 39.8 49.2 23.8 1.4 33.2 51.6 25.4 20.4 27.4 28.4 25.3 29.5
4 45 25.3 37.5 43.7 20.7 0.1 31.2 51.0 20.9 16.5 25.2 25.2 19.7 26.4
4 72 18.6 30.8 42.3 11.7 0.0 29.7 43.7 13.1 9.8 17.9 22.5 14.8 21.2

Table 2.4: Reversal percentages for parallel Quasi-CRM trials for the four-dose sce-
narios. Standard Errors do not exceed 1.6%.

Number of Doses Trial Size 1 2 3 4 5 6 7 8 9 10 11 12 AVG
6 45 28.6 20.0 4.7 21.0 3.2 21.7 32.2 12.7 18.0 26.1 6.5 20.0 17.9
6 69 22.6 14.5 1.0 16.1 1.7 14.3 31.0 8.4 12.2 18.9 5.0 14.6 13.4
6 108 16.8 9.0 0.2 10.6 0.3 9.7 24.6 4.2 8.1 13.3 1.6 8.7 8.9

Table 2.5: Reversal percentages for parallel Quasi-CRM trials for the six-dose scenar-
ios. Standard Errors do not exceed 1.6%.

2.4.3 PCS and PCA

Table 2.6 provides the PCS and PCA, respectively. In this table, “Indep Quasi” is

the Independent Quasi-CRM method. The proposed method performs the best in all

trial size and dose number combinations. The DLT Shift method performs the worst

since this method does not use graded toxicity. The proposed method outperforms

the Independent Quasi-CRM method most when the trial sizes are small. When the

trial size is 30, the expected number of patients in a group is 10, making it difficult

to estimate the MTD for a specific group when performing trials independently. This
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challenge highlights the proposed method’s ability to use data from all 30 patients for

estimation, effectively giving a larger sample size than that of the independent trials.

PCS PCA
# Doses # Patients Proposed Indep Quasi DLT Shift Proposed Indep Quasi DLT Shift
4 30 46.9 43.5 28.8 39.9 36.4 29.1
4 45 51.8 48.5 29.9 42.7 39.5 29.0
4 72 57.4 55.4 31.4 47.1 44.3 29.5
6 45 44.2 42.4 27.1 37.0 34.6 26.5
6 69 49.3 48.3 27.7 40.4 38.4 26.9
6 108 55.6 54.8 28.7 44.7 43.1 27.5

Table 2.6: Percentage correct selection (PCS) and percentage correct allocation
(PCA) by number of doses, number of patients, and method. Standard Errors do
not 0.04%.

2.4.4 Sensitivity Analysis and Overdose Control

Additional analysis was performed for overdose control, toxicity rates, and model

sensitivity. Tables 2.7 and 2.8 provide statistics on toxicity rates and overdose control

for all six combinations of trial size and number of doses. Table 2.7 provides the DLT

percentages and average (normalized) ET scores for patients in the trial. Additionally,

Table 2.8 provides the percentage of patients allocated to doses above the MTD and

the percentage of selections above the MTD. From Table 2.7, the average observed ET

score approaches the normalized ET target of 0.313 quicker in the proposed method

than the Independent Quasi-CRM method. As the DLT Shift does not use toxicity

grades, the average ET score for this method is above the ET target while the DLT

rate approaches the DLT target of 0.33. It is important to note the primary goal

in the trial is to allocate patients to the MTD, not minimize the number of DLTs

and average ET score. Allocation results in Table 2.8 show the proposed method

and Independent Quasi-CRM have similar rates of allocations above the MTD, with
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the proposed method allocating slightly more patients to doses above the MTD when

the trial size is smaller. This discrepancy can be attributed to the proposed method

not requiring patients in groups 1 and 2 to start at the lowest dose if other groups

have been observed. Selection results in Table 2.8 shows the proposed method selects

doses above the MTD with the lowest frequency, highlighting the proposed method’s

ability to reduce overdose selection by sharing group information.

Average ET ×100 DLT Rate ×100
# Doses # Patients Proposed Indep Quasi DLT Shift Proposed Indep Quasi DLT Shift
4 30 29.5 28.8 34.0 24.5 23.8 29.0
4 45 29.8 29.2 34.7 24.8 24.1 29.7
4 72 29.9 29.7 35.3 24.9 24.7 30.3
6 45 30.8 30.0 35.9 25.9 25.2 31.2
6 69 31.1 30.7 36.6 26.1 25.7 31.7
6 108 31.3 31.0 37.0 26.2 26.0 32.1

Table 2.7: Average DLT rate and average (normalized) ET score for patients during
the trial. Note that the normalized ET target is 0.313 and the DLT target is 0.33.

Percent Allocation Above MTD Percent Selection Above MTD
# Doses # Patients Proposed Indep Quasi DLT Shift Proposed Indep Quasi DLT Shift
4 30 29.7 28.8 50.0 30.0 31.4 57.9
4 45 29.7 29.5 53.4 25.8 29.6 59.9
4 72 28.5 28.9 55.9 25.5 26.2 60.6
6 45 32.9 31.4 54.1 32.9 33.9 61.9
6 69 32.0 31.6 57.1 29.9 30.8 63.8
6 108 31.0 30.9 59.5 27.4 27.9 65.0

Table 2.8: Overdose Statistics: comparing percentage of patients allocated to doses
above the MTD and percentage of times a method selects a dose above the MTD at
the conclusion of the trial.

Tables 2.9 and 2.10 provide sensitivity analyses. For simplicity, these analyses were

conducted for two combinations, four doses with 45 patients and six doses with 69

patients. Table 2.9 tests sensitivity to group membership probabilities being equal

and sensitivity to the choice of ET scores. To test sensitivity to group probabilities,

simulations were conducted with the probabilities 0.46, 0.41, and 0.13, for groups 1

through 3, respectively. These group probabilities were chosen to match the group
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proportions in Innocenti et al. 2014. To test sensitivity to choice of ET score, a collec-

tion of 1000 ET scores were generated using the same procedure from the sensitivity

analysis in Yuan, Chappell, and Bailey 2007. ET scores were generated by first fixing

s0 = s1 = 0 and s3 = 1, then sampling s2 ∼ Unif(0.3, 0.7) and s4 ∼ Unif(1.2, 1.8).

When conducting 1,000 simulations for a given curve, each set of ET scores was used

once, each time adjusting the method under consideration for the ET scores in use and

computing statistics based on these scores. Table 2.9 shows the proposed method has

superior performance, regardless of group probabilities or ET scores. The proposed

method is the least affected by unequal group probabilities, with minimal change in

PCS.

Table 2.10 provides a sensitivity analysis for the standard deviation of priors a, b ∼

N(0, σ2), and the choice of halfwidth for the function getprior used to obtain skele-

tons. In simulations, we used σ =
√
1.34, and a halfwidth of 0.06. To test model

sensitivity, we compared results when σ =
√
2 and results when halfwidth = 0.05.

These results show the proposed method is not sensitive to the choice of standard

deviation and halfwidth.

PCS PCA
# Doses # Patients Change Proposed Indep Quasi DLT Shift Proposed Indep Quasi DLT Shift
4 45 None 51.8 48.5 29.9 42.7 39.5 29.0
4 45 Unequal Probabilities 51.5 47.5 31.0 43.4 40.5 31.8
4 45 Random Scores 47.9 45.8 31.0 39.8 37.1 29.1
6 69 None 49.3 48.3 27.7 40.4 38.4 26.9
6 69 Unequal Probabilities 49.7 47.4 29.2 41.2 39.0 29.0
6 69 Random Scores 47.4 46.1 29.2 39.0 36.7 27.3

Table 2.9: Percentage correct selection (PCS) and percentage correct allocation
(PCA) comparisons for simulations where ET Scores are randomly generated or group
probabilities are unequal. Making comparisons to results with equal group rates and
ET scores (0,.5,1,1.5).
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PCS PCA
# Doses # Patients Regular SD =

√
2 Halfwidth = 0.05 Regular SD =

√
2 Halfwidth = 0.05

4 45 51.8 51.5 50.4 42.7 42.4 42.0
6 69 49.3 49.3 49.2 40.4 40.4 39.8

Table 2.10: Percentage correct selection (PCS) and percentage correct allocation
(PCA) for the proposed method when varying SD and Halfwidth

2.4.5 General Group Sizes and Orders

This chapter considered G = 3 groups, with MTD1 ≥MTD3 and MTD2 ≥MTD3.

The proposed method can extend to any partial or complete order with any num-

ber of groups. Horton, O’Quigley, and M. R. Conaway 2019 applies the DLT shift

method to four different orderings with four groups. Since the DLT shift method can

be generalized for any number of groups and any partial or complete ordering, the

proposed method can be generalized likewise. We illustrate how to apply the pro-

posed method to three completely ordered groups. For other group orderings, refer

to Horton, O’Quigley, and M. R. Conaway 2019.

Consider the ordering: MTD1 ≥MTD2 ≥MTD3. Then, we have the ET shift ∆S
21 ∈

{0, 1, . . . , K − 1}. Now, if we are given the value of ∆S
21, then ∆S

32 ∈ {0, 1, . . . , (K −

1)−∆S
21}. The ET shift ∆S

32 is bounded by (K − 1)−∆21, as ∆S
31 = ∆S

32 +∆S
21, and

the shift between groups 1 and 3, ∆S
31, is bounded by K − 1. Therefore, if the ET

shift between groups 1 and 2 is ∆s
21 = k, then there are ((K − 1) − k) + 1 = K − k

options for ∆s
32. From this, you get K + (K − 1) + (K − 2) + · · · + 1 + 0 = K(K+1)

2

ET Models and, by following the same procedure with the DLT shifts, K(K+1)
2

DLT

Models.
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2.5 Conclusion

In this chapter, we proposed a phase-I trial design for locating group-specific MTDs

when toxicity is ordinal. This is the first design that considers using both group

information and ordered toxicity. The proposed method combines the Quasi-CRM

and the shift method. In the motivating example, there are three groups that at are

partially ordered by dose sensitivity. In this partial ordering, Group 3 is the most

sensitive and the order between groups 1 and 2 is unknown. A reversal occurs if the

estimated MTD for Group 3 is larger than the estimated MTD for either groups 1 or

2. In simulations, the proposed method was compared to Independent Quasi-CRM

trials and the shift method. The proposed method avoided reversals and performed

better than its competitors at allocating the group-specific MTDs to patients in the

trial and recommending the group-specific MTDs at the end of the trial.

Future areas of research include extending the proposed method to account for pa-

tients having multiple toxicities and considering time-to-event toxicity. For instance,

a patient could have been observed with both grade 2 and grade 3 toxicities. The

proposed method only considers the maximum observed toxicity, in this case, the

grade 3 toxicity. The proposed method could be extended to differentiate between

different types of toxicities, for instance, renal and hematological toxicities, using

methods from Monia Ezzalfani et al. 2013. In this paper, a “total toxicity profile”

is computed for each patient as a sum of ET scores over neurological, renal, and

hematological toxicities. While Monia Ezzalfani et al. 2013 used toxicity type to pro-

vide a more complete toxicity profile, this paper does not consider multiplicity of a

single toxicity type, only considering the maximum toxicity grade from each toxicity

type. For instance, the total toxicity profile would not differentiate a patient with
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two neurological toxicities of grades 2 and 3, from a patient with two neurological

toxicities of grade 3, only considering the maximum neurological toxicity (grade 3)

from both patients. Extending the proposed method to consider the multiplicity of

a single toxicity type is not straightforward. If multiple toxicities are considered for

each toxicity type, the total toxicity profile is no longer bounded. In comparison, the

total toxicity profile in Monia Ezzalfani et al. 2013 is bounded by the total toxicity

profile from a patient with grade four toxicities across all toxicity types. Bounding

the total toxicity profile is crucial since a bounded total toxicity profile can be nor-

malized in the unit interval, allowing the Quasi-Bernoulli likelihood, and thus the

Quasi-CRM, to be applied.

In the proposed method, as we use this highest observed toxicity in the window of ob-

servation, the last patient needs to be completely followed through this window before

the next patient is assigned to a dose. This requirement can be lifted by weighting

each observation by the amount of time observed over the window of observation, as

in the time-to-event continual reassessment method (TITE-CRM) from Y. K. Cheung

and Rick Chappell 2000.
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Chapter 3

A Model-Assisted Design for

Partially or Completely Ordered

Groups

3.1 Introduction

This chapter is adapted from Celum and M. Conaway 2024.

In this chapter, we propose a phase I trial design for locating group-specific MTDs.

Specifically, the proposed design is a model-assisted design for locating group-specific

MTDs under a complete or partial ordering. While model-based designs have been

proposed for estimating group-specific MTDs under a partial ordering, to the best

of our knowledge, a model-assisted design has not be proposed for this situation.

Model-assisted designs include the Bayesian optimal interval design (BOIN) (Liu and

Y. Yuan 2015), cumulative cohorts design (Ivanova, Flournoy, and Chung 2007), and

keyboard design (Yan, Mandrekar, and Y. Yuan 2017). Additionally, several exten-

sions of BOIN have been developed, including BOIN for toxicity grades, called gBOIN

(Mu et al. 2019); BOIN for a trade-off utility between toxicity and efficacy, called

U-BOIN (Zhou, Lee, and Y. Yuan 2019); and BOIN for drug combinations (Lin and
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Yin 2017). The proposed method will be called group averaged BOIN (GAB), as

we will use group averaging to modify the BOIN recommendations. Model-assisted

designs are often appealing to clinicians, as they are often simpler than model-based

designs. Previous dose allocation methods for partially ordered groups require com-

puting posterior probabilities or maximizing likelihoods. In comparison, allocation

under the proposed method can be implemented using a spreadsheet and calculated

by hand, providing clinicians with a method that is simple and easily understood.

Additionally, the proposed method performs similarly to the model-based designs for

partially ordered groups, thus, reducing the complexity with no performance cost.

Finally, the proposed method has almost sure convergence properties, making this

the first design for partially ordered groups with such results.

The rest of the chapter will be organized as follows. Section 3.2 covers the GAB for

two ordered groups. Section 3.3 covers the GAB for any partial order. Section 3.4

covers the asymptotic properties of GAB. Section 3.5 covers dose-elimination rules.

Section 3.6 covers the simulation studies, comparing GAB to OR-CRM and parallel

BOIN trials. Section 3.7 discusses future areas of research and concludes.

3.2 GAB for Two Groups

3.2.1 BOIN in Parallel

A naive approach for dose-finding in groups is conducting parallel trials for each group

using BOIN. This approach has the issue of possible reversals, when a more sensitive

group is assigned a higher dose than a less sensitive group. Horton, O’Quigley, and

M. R. Conaway 2019 investigates topic of reversals by computing the reversal per-
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centage for parallel CRM and BOIN trials. By adapting BOIN, GAB avoids reversals

and increases dose selection accuracy. Simulations studies show that by borrowing

information across groups, GAB allocates patients to the MTD more often within the

trial and selects the MTD more often at the end of the trial.

3.2.2 Notation

We will now consider GAB for two ordered groups and extend the notation in Section

1.2.2 by using g = 1, 2 to index the groups. For group g and dose level k, let ygk denote

the number of patients with a DLT, ngk the total number of patients, π̂gk = ygk/ngk

the DLT rate, and πgk the DLT probability. Group 1 is less sensitive than Group 2,

which means that π1k ≤ π2k, for all k. From this, at any dose, the probability of a

DLT is higher for Group 2 than for Group 1. The MTD for group g is the dose dk′ ,

where k′ = argmink|πgk − θ|.

3.2.3 Allocation Run-in

Allocation begins with a “run-in” stage until both groups have been observed. We

make no assumptions about the flow of the patients based on group membership. If

the first few patients are in Group 2, we proceed with standard BOIN allocation in

Group 2 until we need to allocate to a Group 1 patient. When the first patient in

Group 1 arrives, their assigned dose will be the current dose of Group 2. Conversely, if

the first few patients are in Group 1, we proceed with the standard BOIN allocation

in Group 1. When the first patient in Group 2 arrives, they will be assigned the

lowest dose. The run-in procedure uses the known group ordering to increase the

dose recommendation for Group 1 to the current dose for Group 2.



41

3.2.4 Allocation

After observing patients from both groups, GAB first applies BOIN and then, if nec-

essary, adjusts the current dose recommendations using pooled averages, making dose

recommendations agree with the group order. BOIN can cause the recommendation

to disagree with the known order in two ways: first, if Group 2 escalates above Group

1, and second, if Group 1 de-escalates below Group 2.

If Group 2 escalates above Group 1, GAB takes a pooled average at the dose Group

2 escalated from. Note that the dose Group 2 escalated from is the current Group

1 recommendation. If the pooled average is at or below λe, Group 1 escalates to

the current Group 2 recommendation; otherwise, Group 2 de-escalates to the current

Group 1 recommendation.

If Group 1 de-escalates below Group 2, GAB takes a pooled average at the dose Group

1 de-escalated from. Note that the dose Group 1 de-escalated from is the current

Group 2 recommendation. If the pooled average is below λd, Group 1 escalates to

the current Group 2 recommendation; otherwise, Group 2 de-escalates to the current

Group 1 recommendation. The algorithm is illustrated in Figure 3.1, where “Pooled”

is pooled the average, g is the group index from the last patient, and jg is the current

recommendation for group g.

3.2.5 Dose Selection

After all patients have been observed, the group-specific MTDs are estimated us-

ing bivariate isotonic regression. Before conducting the bivariate isotonic regression
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Compute DLT rate (π̂g,jg) for
groug g at the current dose level jg

Escalate to dose
level jg + 1

Stay at dose
level jg

De-escalate to
dose level jg − 1

Determine if an adjustment is needed

Compute
Pooled =
(y1,j2+y2,j2 )

(n1,j2
+n2,j2

)

Compute
Pooled =
(y1,j1+y2,j1 )

(n1,j1
+n2,j1

)

Adjustment
not needed

j1 escalates to j2 j2 de-escalates to j1 j1 escalates to j2 j2 de-escalates to j1

≤ λe

in (λe, λd)

≥ λd

j2 > j1&g = 1

j2 > j1&g = 2

Otherwise

< λd ≥ λd ≤ λe > λe

Figure 3.1: GAB Allocation Procedure

algorithm, the observed proportions are smoothed as

π̂s
g,k =

yg,k + αg,k

ng,k + αg,k + βg,k
,

where αg,k, βg,k are positive smoothing parameters. In simulations, we used the pa-

rameters αg,k = βg,k = 0.05. Additionally, we used the weights ngk + 1 for the pooled

averages used in bivariate isotonic regression. The R package “BOIN” (Yan, Zhang,
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et al. 2020) uses similar weights and smoothing parameters for the bivariate isotonic

regression step in BOIN for drug combinations. For a detailed discussion on bivari-

ate isotonic regression, see Dykstra and Robertson 1982, and to implement bivariate

isotonic regression, use the R package “Iso” (Turner 2020).

Let π̃gk denote the estimates after conducting bivariate isotonic regression. Let Ag

denote the admissible dose levels for group g, the doses that can be the MTD for

group g. As Group 2 is the sensitive group, the admissible dose levels are those with

Group 2 observations, that is, A2 = {k : n2k ̸= 0}. As Group 1 is the less sensitive

group, the admissible dose levels are those with an observation from either group,

that is, A1 = {k : n2k ̸= 0 or n1k ̸= 0}. Let k′g denote the MTD estimate for group

g, where k′g = argmink∈Ag
|π̃gk − θ|. If there are ties for π̃gk′g , as can be the case in

isotonic regression, if π̃gk′g < θ, the largest such k′g is selected, and if π̃gk′g > θ, the

smallest such k′g is selected.

3.3 General GAB

3.3.1 Notation and Group Bundles

In this section, we discuss GAB for any partial or complete order. Before introducing

generalized GAB, new notation will be introduced to generalize partial orders between

groups, allowing us to generalize GAB and prove convergence properties. We will

introduce “bundles” of groups to generalize all partial orders described in M. R.

Conaway 2017b; M. R. Conaway 2017a; Horton, Wages, and M. R. Conaway 2019;

and Horton, O’Quigley, and M. R. Conaway 2019.

We consider bundles of groups b = 1, 2, . . . B, and within bundle b, we have groups
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g = 1, 2, . . . , Gb. The tuple (b, g) denotes group g in bundle b. Groups within the same

bundle, say (b, g1) and (b, g2), do not have a prior ordering. That is, prior to the trial,

it is not known if π(b,g1),k ≥ π(b,g2),k or π(b,g1),k ≤ π(b,g2),k, where π(b,g),k denotes the

DLT probability at dose level k for group g in bundle b. Across bundles, the ordering

is known where groups from higher bundles are more sensitive. If b1 ≤ b2, then for

any g1 ∈ {1, 2, . . . , Gb1} and any g2 ∈ {1, 2, . . . , Gb2}, we have π(b1,g1),k ≤ π(b2,g2),k.

The grid below displays the layout of the bundles and groups where the different

bundles are given by the rows. Note that rows do not need to be the same length as

the amount of groups in each bundle can, and often do, differ.

(1, 1) (1, 2) · · · · · · (1, G1)

(2, 1) (2, 2) · · · (2, G2)

(3, 1) (3, 2) · · · · · · · · · (3, G3)

... ... . . . . . . . . . ...

(B, 1) (B, 2) · · · · · · (B,GB)

We consider the partial orders in Horton, O’Quigley, and M. R. Conaway 2019

to demonstrate how these partial orders fit into the bundle framework. Horton,

O’Quigley, and M. R. Conaway 2019 considered four orders: a complete order, loop

order, twig order, and simple tree. Table 3.1 displays these orders, with the sensitivity

level increasing from left to right, and converts these partial orders into the bundle

framework in the “Bundles/Groups” column. To illustrate how the partial orders fit

into the bundle framework, consider the loop ordering. As Group 1 is known to be

the least sensitive group, Group 1 is the only group in Bundle 1. Groups 2 and 3 are

known to be more sensitive than Group 1 and less sensitive than Group 4. Addition-

ally, there is no known ordering between these groups; consequently, both groups are
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in Bundle 2. Group 4 is known to be the most sensitive group; thus, Group 4 is in

Bundle 3.

Ordering Least Sensitive → Most Sensitive Bundles/Groups

Complete 1 2 3 4

1 = (1, 1)
2 = (2, 1)
3 = (3, 1)
4 = (4, 1)

Loop

3

1 4

2

1 = (1, 1)
2 = (2, 1) 3 = (2, 2)
4 = (3, 1)

Twig

3

1 2

4

1 = (1, 1)
2 = (2, 1)
3 = (3, 1) 4 = (4, 1)

Simple Tree

2

1 3

4

1 = (1, 1)
2 = (2, 1) 3 = (2, 2) 4 = (2, 3)

Table 3.1: Orders from Horton, O’Quigley, and M. R. Conaway 2019 converted to
the bundle/group format in the “Bundles/Groups” column.

3.3.2 Allocation Run-in

As in the two-group scenario, GAB begins allocation with a run-in stage. The first

patient in group g and bundle b will be assigned to the lowest dose if there have not
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been any observed patients in more sensitive groups; that is, groups in higher bundles.

If there are observations from groups in higher bundles, the first patient in (b, g) will

be assigned to the highest recommended dose for a group in a higher bundle. Suppose

the next patient is the first patient from group g in bundle b and let n(b′,g′) denote the

number of observed patients from group g′ in bundle b′. Let j(b′,g′) denote the current

recommendation for group g′ in bundle b′. Figure 3.2 provides the run-in procedure.

if n(b′,g′) = 0, ∀b′ > b, g′ ∈ {1, 2, . . . , Gb′} then
j(b,g) ← 1

else
j(b,g) ← max{j(b′,g′) : b′ > b, g′ ∈ {1, 2, . . . , Gb′}, n(b′,g′) ̸= 0}

end if

Figure 3.2: GAB Run-In

To illustrate this procedure, consider the loop ordering in Table 3.1. Suppose we have

observed patients in (1, 1), (2, 1), and (3, 1), giving

j(1,1) = 3

j(2,1) = 3 j(2,2) = −

j(3,1) = 2

, where “−” denotes that a group has not been observed. If the next patient is from

(2, 2), this patient would be assigned the dose level j(3,1) = 2.

3.3.3 Allocation

After all groups have observations, we proceed using BOIN and pooled averages to

adjust BOIN when necessary. Similar to the two-group case, there are two ways

that dose recommendations can contradict the known ordering. The first is when a

more sensitive group escalates above a less sensitive group, and the second is when a
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less sensitive group de-escalates below a more sensitive group. Letting (b, g) be the

bundle and group of the last observed patient, the first contradiction occurs when

j(b,g) > j(b′,g′), where b > b′, and the second when j(b,g) < j(b′,g′), where b < b′.

When the first contradiction occurs, GAB takes a pooled average at the previous dose

level for (b, g), this being j(b,g)− 1, pooling over (b, g) and all the less sensitive groups

currently at j(b,g) − 1. For bundle and group (b′, gb′), and dose level k, let y(b′,gb′ ),k

denote the number of DLTs and n(b′,gb′ ),k
denote the number of observed patients.

Thus,

Pooled =
y(b,g),j(b,g)−1 +

∑
b′<b

∑Gb′
gb′=1 I

(
j(b′,gb′ ) = j(b,g) − 1

)
y(b′,gb′ ),j(b,g)−1

n(b,g),j(b,g)−1 +
∑

b′<b

∑Gb′
gb′=1 I

(
j(b′,gb′ ) = j(b,g) − 1

)
n(b′,gb′ ),j(b,g)−1

. (3.1)

Dose recommendations are adjusted as follows:

1. If Pooled ≤ λe:

(a) j(b,g) stays at j(b,g)

(b) For all (b′, gb′), with b′ < b and j(b′,gb′ ) = j(b,g) − 1, escalate j(b′,gb′ ) to j(b,g).

2. If Pooled > λe:

(a) j(b,g) de-escalates to j(b,g) − 1

(b) Other dose recommendations remain the same.

When the second contradiction occurs, GAB takes a pooled average at the previous

dose level for (b, g), this being j(b,g) + 1, pooling over (b, g) and all the more sensitive
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groups currently at j(b,g) + 1. Thus,

Pooled =
y(b,g),j(b,g)+1 +

∑
b′>b

∑Gb′
gb′=1 I

(
j(b′,gb′ ) = j(b,g) + 1

)
y(b′,gb′ ),j(b,g)+1

n(b,g),j(b,g)+1 +
∑

b′>b

∑Gb′
gb′=1 I

(
j(b′,gb′ ) = j(b,g) + 1

)
n(b′,gb′ ),j(b,g)+1

. (3.2)

Dose recommendations are adjusted as follows:

1. If Pooled < λd:

(a) j(b,g) escalates back to j(b,g) + 1

(b) Other dose recommendations remain the same.

2. If Pooled ≥ λd:

(a) j(b,g) remains the same.

(b) For all (b′, gb′), with b′ > b and j(b′,gb′ ) = j(b,g) + 1, de-escalate j(b′,gb′ ) to

j(b,g).

Pooled corrects dose recommendations by using the known group ordering to deter-

mine if we should de-escalate or escalate. The algorithm is illustrated in Figure 3.3,

where (b, g) is the bundle and group index of the last patient and j(b,g) is the current

recommendation for group g in bundle b.

3.3.4 Dose Selection

After observing all patients, DLT estimates are obtained by applying bivariate isotonic

regression to the complete orders that are possible given the known partial order.

Estimates with the maximum likelihood are used for dose selection.

As in the two-group scenario, observed proportions are smoothed, so
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Compute DLT rate (π̂(b,g),j(b,g))
for group g in bundle b at
the current dose level j(b,g)

Escalate to dose
level j(b,g) + 1

Stay at dose
level j(b,g)

De-escalate to
dose level j(b,g) − 1

Determine if an adjustment is needed

Compute Pooled:
See Equation 3.2

Compute Pooled:
See Equation 3.1

Adjustment
not needed

j(b,g) escalates
to j(b,g) + 1

For all (b′, g′) with
b′ > b and j(b′,g′) >
j(b,g): j(b′,g′) de-
escalates to j(b,g)

For all (b′, g′) with
b′ < b and j(b′,g′) <

j(b,g): j(b′,g′)
escalates to j(b,g)

j(b,g) de-escalates
to j(b,g) − 1

≤ λe

in (λe, λd)

≥ λd

Exists (b′, g′) where b′ > b & j(b′,g′) > j(b,g)

Exists (b′, g′) where b′ < b & j(b′,g′) < j(b,g)

Otherwise

< λd ≥ λd ≤ λe > λe

Figure 3.3: General GAB Allocation Procedure

π̂s
(b,g),k =

y(b,g),k + α(b,g),k

n(b,g),k + α(b,g),k + β(b,g),k
.

We use the same smoothing parameters and weights used in the two-group scenario.

Now, we consider all possible complete orders from the known bundle structure.
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All complete orders can be obtained by considering all combinations of permutations

within each bundle. In general, as there are G1!×G2!×· · ·×Gb! different combinations

of permutations, there are M = G1! × G2! × · · · × Gb! different models. Let ρb be a

permutation on {1, 2, . . . , Gb}, permuting the groups within bundle b, and ρ−1
b (gb) be

the inverse image of ρb(gb). The M models can be obtained from all combinations,

(ρ1, ρ2, . . . , ρB), returning a complete order

π(1,ρ−1
1 (1)),k ≤ π(1,ρ−1

1 (2)),k ≤ · · · ≤ π(1,ρ−1
1 (G1)),k

≤ π(2,ρ−1
2 (1)),k ≤ · · · ≤ π(2,ρ−1

2 (G2)),k
≤ · · · ≤ π(B,ρ−1

B (1)),k ≤ · · · ≤ π(B,ρ−1
B (GB)),k.

From the loop ordering, there are two combinations of permutations, {(1), (1, 2), (1)}

and {(1), (2, 1), (1)}, giving the complete orders π(1,1),k ≤ π(2,1),k ≤ π(2,2),k ≤ π(3,1),k

and π(1,1),k ≤ π(2,2),k ≤ π(2,1),k ≤ π(3,1),k. In practice, it is simple to find all possible

models given the small number of groups.When considering the orders in Table 3.1,

we notice the simple tree has the most models, totaling 1!× 3! = 6 models.

Now, given a complete order obtained from (ρ1, ρ2, . . . , ρB), we apply bivariate isotonic

regression to the matrix order below.

π̂s
(1,ρ−1

1 (1)),1
π̂s
(1,ρ−1

1 (1)),2
. . . π̂s

(1,ρ−1
1 (1)),K

... ... . . . ...

π̂s
(1,ρ−1

1 (G1)),1
π̂s
(1,ρ−1

1 (G1)),2
. . . π̂s

(1,ρ−1
1 (G1)),K

π̂s
(2,ρ−1

2 (1)),1
π̂s
(2,ρ−1

2 (1)),2
. . . π̂s

(2,ρ−1
2 (1)),K

... ... . . . ...

π̂s
(2,ρ−1

2 (G2)),1
π̂s
(2,ρ−1

2 (G2)),2
. . . π̂s

(2,ρ−1
2 (G2)),K

... ... . . . ...

... ... . . . ...

π̂s
(B,ρ−1

B (1)),1
π̂s
(B,ρ−1

B (1)),2
. . . π̂s

(B,ρ−1
B (1)),K

... ... . . . ...

π̂s
(B,ρ−1

B (GB)),1
π̂s
(B,ρ−1

B (GB)),2
. . . π̂s

(B,ρ−1
B (GB)),K

(3.3)
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For the loop order, we apply bivariate isotonic regression to the matrices below.

π̂s
(1,1),1 π̂s

(1,1),2 . . . π̂s
(1,1),K

π̂s
(2,1),1 π̂s

(2,1),2 . . . π̂s
(2,1),K

π̂s
(2,2),1 π̂s

(2,2),2 . . . π̂s
(2,2),K

π̂s
(3,1),1 π̂s

(3,1),2 . . . π̂s
(3,1),K

π̂s
(1,1),1 π̂s

(1,1),2 . . . π̂s
(1,1),K

π̂s
(2,2),1 π̂s

(2,2),2 . . . π̂s
(2,2),K

π̂s
(2,1),1 π̂s

(2,1),2 . . . π̂s
(2,1),K

π̂s
(3,1),1 π̂s

(3,1),2 . . . π̂s
(3,1),K

Let m = 1, 2, . . . ,M denote the models obtained through the combinations of per-

mutations and π̃m
(b,gb),k

denote the estimates obtained from bivariate isotonic regres-

sion on model m. We select the model that maximizes the likelihood, letting m′ =

argmaxm L
(
π̃m
(b,gb),k

)
, where L

(
π̃m
(b,gb),k

)
is the likelihood evaluated over estimates

π̃m
(b,gb),k

.

Similar to the two-group scenario, the set of admissible dose levels for (b, g) is given

by

A(b,g) =
{
k : n(b′,gb′ ),k

̸= 0, for some (b′, gb′) where b′ > b, or n(b,g),k ̸= 0
}
. (3.4)

The MTD for (b, g) is estimated as the dose level k′(b,g), where k′(b,g) = argmink∈A(b,g)
|π̃m′

(b,gb),k
−

θ|. If there are ties for π̃m′

(b,gb),k
′
(b,g)

, if π̃m′

(b,gb),k
′
(b,g)

< θ, the largest such k′(b,g) is selected,

and if π̃m′

(b,gb),k
′
(b,g)

> θ, the smallest such k′(b,g) is selected.

3.4 Asymptotic Properties

This section covers the asymptotic allocation properties of the GAB design. As

allocation under BOIN has almost sure convergence properties, we would expect such
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properties from GAB. Theorem 3.1 restates the convergence properties of BOIN (Liu

and Y. Yuan 2015; Oron, Azriel, and Hoff 2011).

Theorem 3.1. Dose allocation using BOIN converges almost surely to a dose level

k, if πk ∈ (λe, λd), and k is the only dose level with πk ∈ [λe, λd]. If we have

λd ≤ π1, dose allocation will converge almost surely to dose level 1 and if we have

λe ≥ πK, dose allocation will converge almost surely to dose level K. If we have no

dose with DLT probability in (λe, λd) but θ ∈ [π1, πK ], then we will have almost sure

oscillation between the two doses straddling the interval. If there are multiple doses

with πk ∈ (λe, λd), we have almost sure convergence to one of these doses.

Lemma 3.2 is critical in proving almost sure convergence properties for GAB. This

lemma states that doses visited infinitely often have observed DLT proportions con-

verging to the true DLT probabilities. The proof of the lemma follows the same steps

as Lemma 1 in Oron, Azriel, and Hoff 2011.

Lemma 3.2. For all bundles and groups, (b, g), and doses dk, π̂(b,g),k
a.s.→ π(b,g),k, given

n(b,g),k →∞

Theorem 3.3 states that GAB has the same asymptotic properties as original BOIN,

making GAB the first dose-finding method for groups that can be shown to converge

almost surely. This theorem claims if a group has a unique dose with DLT probability

in [λe, λd], eventually these patients will only be allocated to this dose. Additionally,

if a group has several doses with DLT probability in [λe, λd], eventually, these patients

will only be allocated to one of these doses. As a result, GAB will eventually allocate

patients to an acceptable dose. Appendix B.1 provides proofs for Lemma 3.2 and

Theorem 3.3.
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Theorem 3.3. For any bundle and group, (b, g), GAB dose allocation converges

almost surely to a dose level k, if π(b,g),k ∈ (λe, λd) and k is the only dose level

with π(b,g),k ∈ [λe, λd]. If we have λd ≤ π(b,g),1 dose allocation will converge almost

surely to dose level 1 and if we have λe ≥ π(b,g),K dose allocation will converge almost

surely to dose level K. If we have no dose with DLT probability in (λe, λd) but

θ ∈ [π(b,g),1, π(b,g),K ], then we will have almost sure oscillation between the two doses

straddling the interval. If there are multiple doses with π(b,g),k ∈ (λe, λd), we have

almost sure convergence to one of these doses.

3.5 Practical Considerations

Similar to the original BOIN paper, we adapt our method for practical considerations.

In the package “BOIN” (Yan, Zhang, et al. 2020), dose elimination boundaries can

be enumerated before the trial. To limit the number of patients assigned to overly

toxic doses, GAB dose elimination rules pool toxicity rates and use dose elimination

boundaries, as in “BOIN”. Instead of using a uniform Beta(1,1) prior as in Liu and

Y. Yuan 2015, we use Jeffery’s prior, Beta(0.5,0.5), as in Lin and Yin 2017. This prior

corresponds to the information from one subject. Additionally, instead of using the

cutoff λ = 0.95, we use λ = 0.975. A higher cutoff is selected due to the between-group

dependency with dose elimination. For instance, if dose dk is eliminated for (b, g),

then dk would also be eliminated for all groups more sensitive than (b, g). That is, all

(b′, g′), where b′ > b. A sensitivity analysis is provided in Appendix B.5, analyzing

the results from using a uniform prior compared to Jeffery’s prior, and using λ = 0.95

compared to λ = 0.975. This sensitivity analysis shows that the proposed method is

robust.
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Let (b, g) denote the most recently observed group, with j(b,g) denoting the dose

level this group was observed at. Before eliminating j(b,g), we require that at least

three patients have been observed at j(b,g), that is n(b,g),j(b,g) ≥ 3. Then, assuming

π(b,g),j(b,g) ∼ Beta(0.5, 0.5), check if P (π(b,g),j(b,g) > θ|n(b,g),j(b,g) , y(b,g),j(b,g)) > λ. From

the Beta-Binomial model, π(b,g),j(b,g) |n(b,g),j(b,g) , y(b,g),j(b,g) ∼ Beta(0.5 + y(b,g),j(b,g) , 0.5 +

n(b,g),j(b,g) − y(b,g),j(b,g)). If the posterior probability exceeds this threshold, we then

consider the groups below (b, g). Let nPooled and yPooled denote the pooled number

of observations and number of DLTs at j(b,g) from (b, g) and more sensitive groups.

From this, nPooled = n(b,g),j(b,g) +
∑

b′>b

∑Gb′
gb′=1

n(b′,gb′ ),j(b,g)
and yPooled = y(b,g),j(b,g) +∑

b′>b

∑Gb′
gb′=1

y(b′,gb′ ),j(b,g) . If P (Beta(0.5 + ypooled, npooled − ypooled + 0.5) > θ) > λ, we

eliminate dose level j(b,g) from consideration in group (b, g) and all groups (b′, g′),

where b′ > b. If the lowest dose is eliminated from a group, this group is removed

from the study. In this adaption, we also require all doses in A(b,g) to be doses that

have not been eliminated. Before the trial, elimination boundaries can be tabulated.

For these boundaries, see Table 3.2 below.

Number of Patients Treated 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Elimination Boundary NA NA 3 3 3 4 4 5 5 5 6 6 6 6 7

Table 3.2: Dose elimination boundaries based on number of patients treated and
number of DLTs. We require at least 3 patients to have been observed, use the prior
Beta(0.5,0.5), and cutoff λ = 0.975.

In the supplementary materials of the online version of Celum and M. Conaway

2024, the R script “Boundaries.R” provides a function for calculating dose elimina-

tion boundaries, assisting in implementation. Additionally, Appendix B.4 provides

illustrative examples of trials conducted using the dose elimination rules. For the

remainder of this chapter, GAB-E and GAB will refer to the proposed method with

and without dose elimination, respectively.
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3.6 Simulations

This section evaluates the performance of GAB and GAB-E relative to parallel BOIN

trials and OR-CRM. We let P-BOIN-E and P-BOIN denote parallel BOIN trials with

and without dose elimination rules, respectively. OR-CRM from M. R. Conaway

2017b is a well performing model-based method for partially ordered groups. Thus,

our competitor methods are model-assisted designs not accounting for groups (P-

BOIN and P-BOIN-E), and a model-based design accounting for groups (OR-CRM).

Comparisons were drawn using simulations with two groups and three groups. In the

simulations with two groups, the groups were completely ordered. In the simulations

with three groups, three different orders were considered, as provided in Table 3.3. In

this table, we drop bundle/group notation for simplicity. The “Known” column states

the known DLT probability ordering across groups, while the “Unknown” column

states what DLT probability orderings are unknown across groups. For instance, in

the second ordering, we know that Group 1 is the least sensitive group while we do

not know the relative sensitivity of groups 2 and 3.

Ordering Known Unknown
1 π1,k ≤ π2,k ≤ π3,k Nothing
2 π1,k ≤ π2,k and π1,k ≤ π3,k π3,k ≤ π2,k or π2,k ≤ π3,k
3 π1,k ≤ π3,k and π2,k ≤ π3,k π1,k ≤ π2,k or π2,k ≤ π1,k

Table 3.3: Three Group Orders

3.6.1 Generating Family of Curves

Dose-toxicity curves were randomly generated to avoid selecting curves that favored

GAB. These curves were randomly generated using a method similar to that in M. R.
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Conaway 2017b; M. R. Conaway 2017a and two curves were generated for each possi-

ble MTD configuration. Four and six-dose trials were considered. Table 3.4 provides

the number of MTD configurations by number of groups, group ordering, and number

of doses. Additionally, Appendix B.2 provides complete tables of all four-dose MTD

configurations. Next, we will demonstrate how to generate curves for the three-group

scenarios.

Groups Ordering # Doses # Configurations # Curves
2 C 4 10 20
2 C 6 21 42
3 1 4 20 40
3 1 6 56 112
3 2,3 4 30 60
3 2,3 6 91 182

Table 3.4: Number of MTD configurations and curves by number of groups and group
ordering. A MTD configuration is a set of possible group-specific MTDs under the
group ordering.

Let (γ1, γ2, γ3) denote the configuration for which we are generating a curve. As in

Liu and Y. Yuan 2015, we generate three centers “close” to the DLT target, θ, which

we denote as (c1, c2, c3) = (Φ(ε1),Φ(ε2),Φ(ε3)), where ε ∼ N(z(θ), (0.05)2), Φ() is

standard normal CDF, and z() is the inverse of the standard normal CDF. Next,

centers are as sorted as (c[1], c[2], c[3]). As detailed below, sorted centers are assigned

to the group curves using the group ordering.

1. Order 1: (πγ1 , πγ2 , πγ3) = (c[1], c[2], c[3])

2. Order 2:

(a) If γ2 < γ3, then (π1,γ1 , π2,γ2 , π3,γ3) = (c[1], c[3], c[2]).

(b) If γ2 > γ3, then (π1,γ1 , π2,γ2 , π3,γ3) = (c[1], c[2], c[3]).
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(c) If γ2 = γ3, only generate two centers, and then (π1,γ1 , π2,γ2 , π3,γ3) = (c[1], c[2], c[2]).

3. Order 3:

(a) If γ1 < γ2, then (π1,γ1 , π2,γ2 , π3,γ3) = (c[2], c[1], c[3]).

(b) If γ1 > γ2, then (π1,γ1 , π2,γ2 , π3,γ3) = (c[1], c[2], c[3]).

(c) If γ1 = γ2, only generate two centers, and then (π1,γ1 , π2,γ2 , π3,γ3) = (c[1], c[1], c[2]).

Appendix B.3 illustrates how to generate centers. The algorithm for computing the

rest of the probabilities follows the algorithm found in M. R. Conaway 2017a and

M. R. Conaway 2017b. Three requirements are added to eliminate unreasonable

curves. First, the lowest DLT probability is not below 0.01. Second, DLT probabilities

within a group differ by at least 0.02 and 0.03 in the four-dose and six-dose scenarios,

respectively. Third, DLT probabilities within a group do not differ by more than

0.15. Readers interested in generating curves, see the R script “Generate_Curves.R”

in the online version of Celum and M. Conaway 2024.

Figures 3.4 and 3.5 plot a subset of representative curves, plotting six curves for each

scenario (partial order). For each scenario, K-means clustering was applied to the

collection of curves, using the cluster means as the representative curves in the plots.

K-means clustering provides curves with varied shapes and differing group separation.

3.6.2 Results

For each scenario, we ran 1000 simulations for each curve and considered three sample

sizes, with the sample size depending on the number of doses and patients. Group

membership was randomly generated with equal group probabilities while adding the

requirement that a trial has at least one patient from each group. The statistics
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Figure 3.4: K-Means Centers for the Four-Dose Curves, providing “Representative”
Curves. “Representatives” are provided for the two-group case and the three different
three-group orders.
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Figure 3.5: K-Means Centers for the Six-Dose Curves, providing “Representative”
Curves. “Representatives” are provided for the two-group case and the three different
three-group orders.
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PCS and AI, and PCA and Int were calculated for end-of-trial selection and within-

trial allocation, respectively. These statistics were averaged across the groups. The

statistic Int is the percentage of patients allocated to doses with DLT probabilities

in the interval (λe, λd), PCA/PCS is the percentage of times allocation/selection

occurred at the MTD, and AI is the accuracy index, as given in Y. K. Cheung 2011,

measuring accuracy using the entire selection distribution. The accuracy index is

given by AI = 1−K
∑K

k=1 ρg,k×Probability of selecting dose level k∑K
k=1 ρg,k

, where K denotes the number

of doses under consideration and ρg,k = |πg,k − θ| denotes the distance of the DLT

probability at dose level k for group g from the DLT target. Tables 3.5 and 3.6 provide

selection and allocation results, respectively. Both GAB and GAB-E significantly

outperformed P-BOIN and P-BOIN-E in both allocation and selection, demonstrating

the benefit of using pooled averages. GAB and OR-CRM performed similarly in

end-of-trial selection as GAB chose the correct dose more often and OR-CRM had a

higher AI more often. OR-CRM slightly outperformed GAB and GAB-E in allocation.

There is less of a discrepancy between these methods for the Int metric since GAB

and GAB-E allocate to doses within an interval, some of which may not be the MTD.

We see that GAB outperformed GAB-E in dose selection, possibly due to GAB-

E’s ability to terminate trials early. Conversely, GAB-E outperformed GAB in dose

allocation, possibly due to GAB-E eliminating overly toxic doses and narrowing down

the available doses. It is important to note that trials resulting in an early termination

did not contribute to the AI for GAB-E and P-BOIN-E. These trials could not be

used to compute the AI since the AI uses the distance of the selected dose from the

DLT target. Standard Errors are not included in the results below since, for each

row of results, there are several curves with 1,000 simulations per curve, making the

standard errors minuscule.
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Selection
PCS AI

Groups Scenario Doses Patients GAB GAB-E P-BOIN P-BOIN-E OR-CRM GAB GAB-E P-BOIN P-BOIN-E OR-CRM
2 C 4 30 50 47.8 45.9 44.2 49 45.8 44.3 39.3 38.4 43.8
2 C 4 50 55.3 52 52 49.6 55 53.1 50.8 48.3 46.8 52.5
2 C 4 70 59.7 55.7 56.7 52.8 59.8 58.1 55.8 54.3 51.3 58.5
2 C 6 40 41.3 40.1 38.6 37.1 41 52.1 51.9 46.6 46 52.9
2 C 6 60 45.9 44.3 43.6 42.1 45.6 58.1 57.4 53.8 53.3 58.9
2 C 6 80 50.4 47.3 48.1 45.7 49.6 62.6 60.9 59.2 57.9 62.9
3 1 4 40 52.2 50.4 46.6 44.8 52.6 48.3 47.5 37.8 36.7 48.1
3 1 4 60 56.8 54.2 51.4 49 57.1 53.9 52.5 45 43.6 53.9
3 1 4 80 60.4 57.2 55.3 52.6 60 57.9 56.3 50.2 48.8 57.2
3 1 6 60 44.1 42.6 39.6 37.9 42.6 55.7 54.9 47.4 46.5 55.7
3 1 6 80 47.6 45.5 43.2 41.3 45.8 59.6 58.8 52.5 51.5 59
3 1 6 100 50.3 47.6 46.4 43.8 48.3 62.5 61.2 56.4 55.2 61.9
3 2 4 40 50.5 48.8 46.4 44.7 50.3 45.2 44.4 38.5 37.4 44.9
3 2 4 60 54.8 52.4 51 48.9 55.1 51.3 50 45.6 44.5 51.5
3 2 4 80 58.6 55.1 55 51.9 58.7 55.9 53.7 50.8 49 56
3 2 6 60 43 41.5 39.8 38.1 41.3 53.1 52.3 47.2 46.3 53.1
3 2 6 80 46.7 44.5 43.5 41.6 45 57.4 56.4 52.4 51.4 57.4
3 2 6 100 49.7 47 46.8 44.3 47.7 60.8 59.3 56.4 55.2 60.4
3 3 4 40 49.5 47.6 45.5 43.6 50 45.5 44.8 38.6 37.4 45.5
3 3 4 60 53.9 51.2 50.2 47.8 54.5 51.4 50.2 45.8 44.4 51.8
3 3 4 80 57.1 54 53.7 50.6 57.9 55.4 54 50.6 48.8 56.4
3 3 6 60 43.1 41.4 39.9 38.2 42.6 53 52.4 47.6 47 54.2
3 3 6 80 46.6 44.5 43.7 41.6 46.1 57.3 56.5 52.9 52 58.4
3 3 6 100 49.5 47 46.8 44.2 48.9 60.6 59.6 56.8 55.7 61.4

Averages 50.71 48.32 47.07 44.9 50.19 54.8 53.6 48.9 47.71 54.85

Table 3.5: Percentage correct selection (PCS) and Accuracy Index (AI) by the number
of groups, scenario, number of doses, number of patients, and method.

Allocation
PCA Int

Groups Scenario Doses Patients GAB GAB-E P-BOIN P-BOIN-E OR-CRM GAB GAB-E P-BOIN P-BOIN-E OR-CRM
2 C 4 30 40.8 40.6 36.7 37.2 41.2 49.4 49.1 44.6 45.1 49.6
2 C 4 50 44.1 44.2 40.3 40.6 46.1 53 53.1 48.6 48.9 54.9
2 C 4 70 46.7 46.8 43.1 43.5 49.5 55.8 56 51.5 51.9 58.6
2 C 6 40 31.9 32.2 28.9 29.2 32.4 38.3 38.7 34.8 35.2 39.2
2 C 6 60 34.7 35.5 31.8 32.5 36 41.6 42.5 38.3 39.1 43.5
2 C 6 80 37.4 37.9 34.7 35.3 38.9 44.7 45.2 41.5 42.2 47
3 1 4 40 41.6 41.7 37.3 37.3 44.1 44 44.1 39.4 39.4 46.6
3 1 4 60 44.1 44.5 40.1 40.5 47.7 46.6 47 42.2 42.7 50.3
3 1 4 80 46.4 47.1 42.5 43.1 50 48.9 49.7 44.7 45.3 52.7
3 1 6 60 33 33.4 29.5 29.7 33.9 41.1 41.5 36.5 36.8 42.5
3 1 6 80 35.1 35.6 31.7 32.1 36.3 43.6 44.2 39.2 39.6 45.4
3 1 6 100 36.9 37.5 33.7 34.1 38.4 45.7 46.3 41.4 42 47.9
3 2 4 40 41.6 41.7 37 37.2 41.6 44.7 44.7 39.8 39.9 44.3
3 2 4 60 44.3 44.7 39.9 40.2 45.3 47.6 47.9 42.8 43.1 48.2
3 2 4 80 46.5 46.8 42.2 42.6 48.2 49.8 50.1 45.2 45.6 51.2
3 2 6 60 33 33.4 29.5 29.7 32.2 39.9 40.3 35.7 35.9 39
3 2 6 80 35.3 35.6 31.7 32.2 35 42.5 42.9 38.3 38.8 42.3
3 2 6 100 37.2 37.6 33.8 34.2 37.2 44.7 45.2 40.6 41.1 44.8
3 3 4 40 41.1 41.3 37 37.1 42.2 46.8 46.8 41.8 41.9 47.5
3 3 4 60 43.7 44 39.7 40.1 45.6 49.4 49.8 44.8 45.1 51.2
3 3 4 80 45.8 46.2 41.8 42.3 48.2 51.6 52.1 47 47.5 54
3 3 6 60 33.1 33.5 29.8 30.1 33.6 39.8 40.2 35.6 36 40.4
3 3 6 80 35.4 35.8 32 32.5 36.3 42.4 42.9 38.3 38.8 43.5
3 3 6 100 37.2 37.7 34 34.5 38.5 44.5 45.1 40.5 41.1 46

Averages 39.5 39.8 35.8 36.2 40.77 45.68 46.06 41.4 41.8 47.11

Table 3.6: Percentage correct allocation (PCA) and percentage of allocations to doses
with DLT probability in the interval (λe, λd) (Int) by the number of groups, scenario,
number of doses, number of patients, and method.
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3.6.3 Sensitivity Analysis

The eligible patient population may consist of groups of unequal proportions. In this

case, the probability the next patient belongs to a group differs across the groups,

resulting in unequal group probabilities. Additionally, cohorts of size three may be

used instead of enrolling one patient at a time. A sensitivity analysis analyzed how

the proposed method performed when group probabilities varied and when patients

enrolled in cohorts of three. Two-group simulations considered group probabilities

0.40 and 0.60, for groups 1 and 2, respectively. Three-group simulations considered

group probabilities 0.20, 0.40, and 0.40, for groups 1, 2, and 3, respectively. For

every single-cohort simulation, a three-cohort simulation was ran, with the number of

cohorts equal to the ceiling of # Patients in Single Cohort Simulation
3

. GAB proved robust to

differing group probabilities but performed worse in three-cohort trials compared to

single-cohort trials. This reduction is not surprising since three-cohort trials escalate

slower and try fewer doses. BOIN had a similar reduction in performance from single-

patient cohorts to three-patient cohorts. Appendix B.5 provides these results.

3.6.4 Convergence Rates

This subsection considers how quickly the probability of correct dose section and

allocation increases as a function of trial size. From Section 3.4, it is guaranteed

that dose allocation tends to the correct dose as sample size increases, however, it

is worthwhile to analyze how quickly performance improves relative to sample size.

We suspect that if the true DLT probabilities are spread out and no doses have DLT

probabilities near the boundary of the interval (λe = 0.157, λd = 0.238), then dose

allocation and selection would tend to the correct dose quicker relative to the case
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with a dose that has a DLT probability right outside of the interval. To analyze this,

we considered three different scenarios: (1) when no doses are just the interval, (2)

when one dose is right outside the interval, and (3) when two doses are right outside

the interval.

Scenario 1
Dose

Group 1 2 3 4
1 0.1 0.2 0.3 0.4
2 0.2 0.3 0.4 0.5

Scenario 2
Dose

Group 1 2 3 4
1 0.15 0.2 0.3 0.4
2 0.2 0.25 0.4 0.5

Scenario 3
Dose

Group 1 2 3 4
1 0.1 0.15 0.2 0.25
2 0.1 0.15 0.2 0.25

Table 3.7: DLT Probabilities by group and dose for three different scenarios.

Two statistics were considered in simulations: PCS and the probability (as a percent-

age) that the last patient in a group is allocated to their respective MTD, providing

metrics on selection and allocation. Trial sizes went up to 1,000 patients per group.

Figure 3.6 provides these results. Additionally, Figure 3.7 and Figure 3.8 provide

plots zooming for sample sizes no more than 200 per group and demonstrating the

differences in performance, respectively. As expected, the probability of correct allo-

cation and selection converges to one quickest in scenario 1, followed by scenario 2,

and scenario 3 converges the slowest. Additionally, we see the superior performance

of GAB when compared to parallel-BOIN, with the GAB method converging quicker

than parallel-BOIN trials.
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Figure 3.6: Percent Correct Selection (PCS) and probability (as a percentage) that
the last patient is allocated to the MTD by Group and Method.
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Figure 3.7: Plot of Percent Correct Selection (PCS) and probability (as a percentage)
that the last patient is allocated to the MTD by Group and Method. Plot is zoomed
into sample sizes between 0 and 200.
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Figure 3.8: Performance differences (between GAB and P-BOIN) for Percent Correct
Selection (PCS) and probability (as a percentage) that the last patient is allocated
to the MTD. The differences are provided for each group.
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3.7 Discussion

In this chapter, we proposed a model-assisted dose-finding design for partially or

completely ordered groups. The proposed method adapts BOIN by taking group

averages, giving the name “group averaged BOIN” (GAB). By taking group aver-

ages when necessary, GAB avoids reversals and outperforms parallel BOIN trials.

Additionally, GAB performs similarly to OR-CRM, a model-based design in M. R.

Conaway 2017b.

A future area of research is creating a model-assisted phase I/II design for partially

ordered groups that considers toxicity and efficacy endpoints. Previous phase I/II

designs for ordered groups include Wages, Read, and Petroni 2015 and Lin, Thall,

and Y. Yuan 2020, both being model-based designs. Developing a model-assisted

phase I/II design for partially ordered groups would provide clinicians with a simple

design that incorporates efficacy endpoints.

The proposed method can be extended to phase I trials considering graded toxicity.

Mu et al. 2019 provides an extension of BOIN for ordinal toxicity. Mu et al. 2019

modified BOIN by escalating, de-escalating, or staying at the same dose if the average

ET score at the current dose is below, above, or within some interval around the

toxicity target. Such rules could easily be extended to GAB.
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Chapter 4

Multi-Dose Phase Two Trial

Designs for Two Ordered Groups

4.1 Introduction

Phase II oncology paradigm is currently undergoing a monumental shift. Tradition-

ally, a phase I trial would be conducted to identify the MTD. Subsequently, a phase II

design would use the MTD from phase I. However, this paradigm is based on cytotoxic

therapies and may not be well suited for new targeted therapies and immunotherapies

as a higher dose may result in higher toxicity without any efficacious benefits (Shah

et al. 2021; Papachristos et al. 2023). Recognizing the need for a paradigm shift,

the FDA released “Project Optimus” (Murphy, Halford, and Symeonides 2023), an

initiative for improving dose selection and optimization.

One recommendation in Project Optimus is randomization to a range of doses (U.S.

Food And Drug Administration 2024b). The case of the drug Sotorasib, from the

pharmaceutical company Amgen, provides an example of the FDA emphasizing the

importance of dose-ranging. In phase I, patients received doses of 180, 360, 720, or

960 mg. The MTD was defined as the dose with 20% to 33% of patients experiencing

DLTs. The 960 mg dose was identified as the MTD. After the phase I trial, accelerated

approval was granted after significant signs of efficacy and due to the novelty of the
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drug. However, as a postmarking requirement, the FDA required Amgen to compare

the approved 960mg dose with a 240mg dose (Ratain, Tannock, and Lichter 2021;

Moon 2022). This requirement aligns with the FDA’s Oncology Center of Excellence

recommendation to consider randomized multi-dose trials (U.S. Food And Drug

Administration 2024a).

Yang et al. 2024 designed a multi-dose phase II clinical trial (MERIT) to determine

which doses are safe and effective. In this chapter, we present a traditional (single-

stage) and two-stage multi-dose phase II clinical trial design with patients stratified

by group. By considering multi-dose trial designs with groups, we build upon the

contributions of the MERIT design.

This chapter proposes a pair of multi-dose phase II designs for two ordered groups,

the first such designs for this type of trial. First, we design a traditional trial that

maximizes power while satisfying a type I error constraint. Second, we design a two-

stage trial that minimizes “global Simon’s statistic” while satisfying power and type

I error requirements. The name “global Simon’s statistic” comes from the ubiquitous

Simon’s Two-Stage Design, found in Simon 1989. This design minimizes the number

of patients tired under the null hypothesis while satisfying power and type I error

constraints. Our second design expands Simon’s framework to a multi-dose, two-

group design.

4.2 Notation

This section introduces the notation used to describe our designs. Let YE and YT

denote the binary efficacy and DLT outcomes, respectively. For group g, we consider

doses d1,g < d2,g < · · · < dKg ,g. Additionally, we require dK1,1 ≥ dK2,2 since the
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highest dose for the less sensitive group should be higher than the highest dose for

the more sensitive group. This chapter considers when the doses for groups 1 and 2

are the same, with doses d1 and d2. Although only two dose levels are considered,

the methods presented in this chapter can be generalized when the number of doses

exceeds two, and the doses are not the same in both groups. Appendix C.3 illustrates

how the proposed methods can be modified if the two groups have different doses.

We denote the DLT and efficacy probabilities as πT,g,k = P (YT = 1|dk, g) and πE,g,k =

P (YE = 1|dk, g), respectively.

Now, we consider the inequalities in DLT and ET probabilities that arise from the

group and dose ordering. As a result of the monotonicity of toxicity and efficacy

across doses, πT,g,1 ≤ πT,g,2 and πE,g,1 ≤ πE,g,2. As a result of the group ordering,

πT,1,k ≤ πT,2,k. Note that there is no a priori ordering for efficacy across groups.

Now, consider the null and alternative parameters for toxicity and efficacy. Let θT,0

denote the unacceptable toxicity rate and θT,1 denote the acceptable toxicity rate, so

θT,0 > θT,1. Let θE,0 denote the unacceptable efficacy rate and let θE,1 denote the

acceptable efficacy rate, so θE,0 < θE,1. Dose dk is deemed acceptable for group g if

πT,g,k < θT,0 and πE,g,k > θE,0. A dose can be deemed unacceptable in three ways:

having unacceptable toxicity and unacceptable efficacy, having unacceptable toxicity

and acceptable efficacy, and having acceptable toxicity and unacceptable efficacy.

The null hypothesis is that none of the doses are acceptable for any of the groups,

while the alternative hypothesis is that at least one of the doses is acceptable for at

least one of the groups. The null and alternative regions are high dimensional and

are detailed in the next section.
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4.3 Null and Alternative Regions

In this trial, there are two groups with multiple doses, making the null and alternative

regions high-dimensional. Also contributing to the high dimensionality of the regions

are the three different ways a dose can be unacceptable for a given group, as previously

discussed in Section 4.2. First, we state the null hypothesis as

H0 = All doses are unacceptable for all groups

and the alternative hypothesis as

H1 = At least one dose is acceptable for at least one group.

Note that several configurations compose the null region. Appendix C.1 provides an

algorithm for finding all possible configurations. Additionally, Appendix C.2 lists all

configurations in the null and alternative space. The next section defines global type

I error as the maximum type I error over all configurations in the null space and

defines global power as the minimum power over all configurations in the alternative

space.

4.4 Traditional Trial

This section proposes a traditional clinical trial design where each of the four arms

(2 groups × 2 doses) are observed with N patients per arm, giving a total of 4 ×N

patients. We create a design that maximizes power while constraining type 1 error.

At the end of the trial, the design will accept or reject the null hypothesis that there
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are no acceptable doses for either group. If rejected, the design determines which

dose/group pairs are acceptable.

For dose dk and group g, let xE,k,g and xT,k,g denote the number of efficacious outcomes

and DLTs at the end of the trial. First, as πT,k,g increases across groups and dose

levels, bivariate isotonic regression is applied to the matrix below.xT,1,1 xT,2,1

xT,1,2 xT,2,2


Let x̃T,k,g denote the “smoothed” value of xT,k,g obtained from bivariate isotonic re-

gression. Additionally, values πE,k,g increase across dose levels. From this, we per-

form isotonic regression on {xE,1,1, xE,2,1} and {xE,1,2, xE,2,2}. Let x̃E,k,g denote the

“smoothed” value of xE,k,g obtained from isotonic regression. Recall the functions

“biviso” and “pava” are available in the R package “Iso” (Turner 2020) for perform-

ing bivariate isotonic regression and isotonic regression. After obtaining smoothed

toxicity and efficacy values, dose dk is deemed acceptable for group g if x̃T,k,g ≤ mT

and x̃E,k,g ≥ mE. Here mT is the maximum allowable number of DLTs and mE is the

minimum number of efficacious outcomes required. Our goal is to find the cutoffs,

mE,mT ∈ {0, 1, 2, . . . , N}, which maximizes power while not exceeding a type I error

constraint.

First, we define global type I error and power similarly to Yang et al. 2024. Let C0

denote all configurations in the null space and C1 denote all configurations in the

alternative space. For a given c0 ∈ C0, let α(c0) = P (Reject H0|H0(c0)) denote the

type I error at the given configuration. Global type I error, denoted as α⋆, is the
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maximum type I error over all configurations in C0,

α⋆ = max
c0∈C0

α(c0).

Additionally, for a given c1 ∈ C1, power is defined as the probability H0 is rejected and

at least one of the doses deemed acceptable is actually acceptable. This definition,

which originates from Yang et al. 2024, not only considers how often H0 is correctly

rejected but also how accurately doses are selected. For a given configuration in the

alternative space, c1 ∈ C1, power is defined as

β(c1) = P (Reject H0 and at least one dose deemed acceptable is in fact acceptable|H1(c1)).

Global power, denoted as β⋆, is the minimum power over all configurations in C1,

β⋆ = min
c1∈C1

β(c1).

After defining global power and type I error, a procedure to find the optimal cutoffs,

mE and mT , will be provided.

4.4.1 Finding the Optimal Cutoffs for the Traditional Design

This section details the procedure for finding the optimal cutoffs for the traditional

design. To obtain optimal cutoffs, for each configuration, samples will be drawn from

multinomial distributions. To transform two binomial random variables (XE,k,g ∼

Bin(N, πE,k,g) and XT,k,g ∼ Bin(N, πT,k,g)) into a single multinomial distribution,

an association between XE,k,g and XT,k,g needs to be assumed. In this chapter, we

assume an odds ratio of two. Section 4.7 determines the impact of misspecifying the
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odds ratio. Now let Xk,g ∼ Multinomial(N, πk,g), denote the multinomial random

variable obtained from XE,k,g and XT,k,g. The vector of probabilities is given by

πk,g = (πk,g,11, πk,g,12, πk,g,21, πk,g,22), where

πk,g,11 = P (Toxicity and Efficacy|dk, g)

πk,g,12 = P (No Toxicity and Efficacy|dk, g)

πk,g,21 = P (Toxicity and No Efficacy|dk, g)

πk,g,22 = P (No Toxicity and No Efficacy|dk, g)

To relate the vector πk,g to the toxicity and efficacy probabilities, note that πE,k,g =

πk,g,11 + πk,g,12 and πT,,k,g = πk,g,11 + πk,g,21. Using this relationship and setting the

odds ratio to 2, the complete probability vector, πk,g = (πk,g,11, πk,g,12, πk,g,21, πk,g,22),

can be obtained. The odds ratio formula is provided below for reference.

Odds Ratio =
(πk,g,11/πk,g,21)

(πk,g,12/πk,g,22)

After transforming binomial distributions into multinomial distributions, several trials

are simulated to obtain the optimal cutoffs. Details are provided below.

1. Step 1: Approximate the distribution through samples:

(a) Start by taking several samples from all possible configurations in the null

space. That is, generate 1,000 samples for each configuration, c0, in the

null set of configurations, C0. In each sample, for all groups, there are N

patients on each dose, giving a total of 4×N patients.
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(b) Next, take several samples from all possible configurations in the alterna-

tive space. Similarly, generate 1,000 samples for each configuration, c1, in

the alternative set of configurations, C1.

2. Step 2: For all mE,mT ∈ {0, 1, . . . , N}, the following procedure is conducted:

(a) Determine the global type one error from cutoffs (mE,mT ). The type

one error at configuration c0 ∈ C0 using cutoffs (mE,mT ) is denoted as

α(mE,mT , c0). Additionally, the global type one error using these cutoffs

is denoted as α⋆(mE,mT ), where α⋆(mE,mT ) = maxc0∈C0 α(mE,mT , c0).

(b) Determine the global power using cutoffs (mE,mT ). The power at con-

figuration c1 ∈ C1 using cutoffs (mE,mT ) is denoted as β(mE,mT , c1).

Similarly, the global power using these cutoffs is denoted as β⋆(mE,mT ),

where β⋆(mE,mT ) = minc1∈C1 β(mE,mT , c1).

3. Step 3: Select (mE,mT ) which maximizes β⋆(mE,mT ), out of all (mE,mT )

satisfying α⋆(mE,mT ) ≤ α⋆.

4.5 Two-Stage Design

After providing a procedure to create a traditional design, a procedure for creating

a two-stage multi-dose design for two groups is provided. This design is motivated

by Simon’s Two-Stage design (Simon 1989) and minimizes the number of patients

observed at unacceptable doses in the second stage, subject to type I error and power

constraints. The maximum allowable type I error is denoted as α⋆ and the minimum

required global power is denoted as β⋆. Let n denote the number of patients observed

in each arm in the first stage. For a particular group, if a dose continues to the
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second stage, we observe an additional N − n patients on this dose. From this, for a

given dose, if a group has observations from both stages, there will be a total of N

patients. Let mE1 denote the minimum number of efficacious outcomes required for

a group to continue enrolling patients on a dose in the second stage. Additionally, let

mT1 denote the maximum number of DLTs allowed for a group to continue enrolling

patients on a dose in the second stage.

We define “Simon’s Statistic” at a configuration (can be in the null or alternative

region), c ∈ C, as the expected number of unacceptable dose and group pairs, (dk, g),

that continue onto the second stage. Simon’s Statistic at a given configuration, c ∈ C,

is denoted as s(c). Global Simon’s statistics, denoted as s⋆, is the maximum Simon’s

statistic over all configurations,

s⋆ = max
c∈C

s(c).

To find cutoffs (mE1,mT1,mE,mT ) that minimize s⋆, subject to global power con-

straint β⋆, and global type I error constraint α⋆, we follow a similar procedure to that

in Section 4.4.1. The details are provided below:

1. Step 1: Approximate the distribution through samples:

(a) Start by taking several samples from all possible configurations in the null

space. That is, generate 1,000 samples for each configuration, c0, in the

null set of configurations, C0. In each sample, both stages are simulated.

For each group and in each dose, there are n patients in the first stage and

N − n patients in the second stage.

(b) Next, we take several samples from all possible configurations in the al-

ternative space. Similarly, generate 1,000 samples for each configuration,
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c1, in the alternative set of configurations, C1.

2. Step 2: For all mE1,mT1 ∈ {0, 1, . . . , n} and all (mE,mT ) ∈ {mE1, . . . , N} ×

{mT1, . . . , N}, the following procedure is conducted:

(a) Determine the global type one error from cutoffs (mE1,mT1,mE,mT ). The

type one error at configuration c0 ∈ C0, using cutoffs (mE1,mT1, ,mE,mT ),

is denoted as α(mE1,mT1, ,mE,mT , c0). Additionally, the global type

one error using these cutoffs is denoted as α⋆(mE1,mT1,mE,mT ), where

α⋆(mE1,mT1,mE,mT ) = maxc0∈C0 α(mE1,mT1,mE,mT , c0).

(b) Determine the global power from cutoffs (mE1,mT1,mE,mT ). The power

at configuration c1 ∈ C1, using cutoffs (mE1,mT1,mE,mT ), is denoted

as β(mE1,mT1,mE,mT , c1). Similarly, the global power using these cut-

offs is denoted as β⋆(mE1,mT1,mE,mT ), where β⋆(mE1,mT1,mE,mT ) =

minc1∈C1 β(mE1,mT1,mE,mT , c1).

(c) Determine the global Simon’s Statistic from cutoffs (mE1,mT1,mE,mT ).

The Simon’s Statistic at configuration c ∈ C (C = C0 ∪C1), using cutoffs

(mE1,mT1, ,mE,mT ), is denoted as s(mE1,mT1, ,mE,mT , c). Similarly,

the global Simon’s Statistic using these cutoffs is denoted as s⋆(mE1,mT1, ,mE,mT ),

where s⋆(mE1,mT1, ,mE,mT ) = maxc∈C s(mE1,mT1, ,mE,mT , c).

3. Step 3: Select (mE1,mT1, ,mE,mT ) that minimizes s⋆(mE1,mT1, ,mE,mT ),

out of all (mE1,mT1, ,mE,mT ) satisfying α⋆(mE1,mT1, ,mE,mT ) ≤ α⋆ and

β⋆(mE1,mT1, ,mE,mT ) ≥ β⋆ .
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4.6 Simulations

In this section, simulations are run to obtain the cutoffs from both the traditional

and two-stage designs. Comparisons are made between MERIT and the traditional

design, showing ad hoc modifications of MERIT do not translate to the group design,

highlighting the necessity of the proposed traditional design. The null and alternative

toxicity rates are θT0 = 0.4 and θT1 = 0.2. Additionally, the null and alternative

efficacy rates are θE0 = 0.2 and θE1 = 0.4.

Initially, we compared the traditional design to MERIT for two doses, then drew

comparisons using an ad hoc modification of MERIT. First, Yang et al. 2024 provides

sample size calculations with α⋆ = 0.1, 0.2, 0.3 and β⋆ = 0.6, 0.7, 0.8 for trials with 2

doses. As there are multiple comparisons in the trial (coming from the groups), these

cutoffs will have an inflated global type I error if used in parallel for two groups. Our

simulations will show the degree of type I error inflation. Before illustrating the type

I error inflation, we provide the MERIT cutoffs in Table 4.1.

β⋆ α⋆ = 0.1 α⋆ = 0.2 α⋆ = 0.3
n mT mE n mT mE n mT mE

0.6 26 7 9 18 5 6 18 5 6
0.7 34 9 11 25 7 8 20 6 6
0.8 45 12 14 35 10 10 24 7 7

Table 4.1: Cutoffs From MERIT (Yang et al. 2024))

Using the nine combinations of n and α⋆ from Table 4.1, we obtain the cutoffs for

the traditional two-group design presented in this chapter. Note that the proposed

traditional design is not presented as a sample size calculator but could be modified

accordingly. As our design correctly calculates the type I error, it will be more

conservative than two-dose MERIT, giving a lower power. Global type I error and

global power results from two-dose MERIT are provided in Table 4.2. These statistics,
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along with the decision boundaries, (mT ,mE), for the two-group traditional design are

provided in Table 4.3. These tables show that the traditional design presented in this

chapter properly considers the high dimensional configuration of the null space and

prevents the global type one error from exceeding the specified cutoff. Additionally,

Table 4.2 shows it is improper to use the MERIT design for two groups as the type

I error will be inflated.

α⋆ = 0.1 α⋆ = 0.2 α⋆ = 0.3
n mT mE α⋆ β⋆ n mT mE α⋆ β⋆ n mT mE α⋆ β⋆

26 7 9 0.213 0.603 18 5 6 0.375 0.617 18 5 6 0.375 0.617
34 9 11 0.18 0.709 25 7 8 0.343 0.706 20 6 6 0.539 0.765
45 12 14 0.14 0.79 35 10 10 0.374 0.843 24 7 7 0.481 0.793

Table 4.2: Type 1 Error, Power, cutoffs From MERIT for two doses

α⋆ = 0.1 α⋆ = 0.2 α⋆ = 0.3
n mT mE α⋆ β⋆ n mT mE α⋆ β⋆ n mT mE α⋆ β⋆

26 6 10 0.06 0.309 18 4 7 0.096 0.267 18 4 6 0.201 0.399
34 8 12 0.059 0.463 25 6 8 0.197 0.53 20 5 7 0.19 0.471
45 12 15 0.095 0.718 35 9 11 0.158 0.701 24 6 8 0.187 0.541

Table 4.3: Cutoffs, Type 1 Error, and Power from the proposed traditional design

An ad hoc attempt to reign in the type I error for MERIT in parallel is considering the

four-dose MERIT cutoffs. The intuition behind this adjustment is there are essentially

four arms in the trial with two groups and two doses, so one might consider the cutoffs

from four-dose MERIT with the hope this adjustment would correct the inflated type

I error. To obtain the cutoffs from the MERIT four-dose sample size calculator using

α⋆ = 0.1, 0.2, 0.3 and β⋆ = 0.6, 0.7, 0.8, the MERIT application was used from the

website trialdesign. These cutoffs are provided in Table 4.4.

Similarly, we obtained the cutoffs for the proposed traditional design using these nine

combinations of n and α⋆. Global type I error and global power were obtained for

both methods. Results from four-dose MERIT and the proposed traditional design

https://www.trialdesign.org
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β⋆ α⋆ = 0.1 α⋆ = 0.2 α⋆ = 0.3
n mT mE n mT mE n mT mE

0.6 29 8 10 21 6 7 19 5 6
0.7 37 10 12 28 8 9 26 8 8
0.8 48 13 15 38 11 11 27 8 8

Table 4.4: Cutoffs From MERIT with 4 doses (trialdesign)

are provided in Table 4.5 and Table 4.6, respectively. These results show the ad

hoc adjustment does not “fix” MERIT and, as a result, the design can not be used

in parallel for groups. This adjustment of MERIT is not sufficient as the single-

group four-dose structure is fundamentally different than the two-group and two-dose

structure, with a lower dimensionality. Due to the differing structure, type I error is

inflated using four-dose MERIT cutoffs.

α⋆ = 0.1 α⋆ = 0.2 α⋆ = 0.3
n α⋆ β⋆ n α⋆ β⋆ n α⋆ β⋆

29 0.207 0.633 21 0.362 0.645 19 0.38 0.643
37 0.174 0.735 28 0.306 0.725 26 0.461 0.789
48 0.13 0.809 38 0.34 0.857 27 0.445 0.81

Table 4.5: Type 1 Error and Power From MERIT four doses

α⋆ = 0.1 α⋆ = 0.2 α⋆ = 0.3
n mT mE α⋆ β⋆ n mT mE α⋆ β⋆ n mT mE α⋆ β⋆

29 8 10 0.207 0.633 21 6 7 0.362 0.645 19 5 6 0.38 0.643
37 10 12 0.174 0.735 28 8 9 0.306 0.725 26 8 8 0.461 0.789
48 13 15 0.13 0.809 38 11 11 0.34 0.857 27 8 8 0.445 0.81

Table 4.6: Type 1 Error, Power, cutoffs From MERIT four doses

Finally, we consider simulations using the two-stage design presented in this chap-

ter. The two-stage design finds the optimal cutoffs, (mE1,mT1,mE,mT ), that min-

imizes the global Simon’s Statistic, s⋆, while ensuring the global type I error is be-

low α⋆ and the global power is above β⋆. We consider when α⋆ = 0.2, 0.3 and

β⋆ = 0.4, 0.5, 0.6, 0.7. Additionally, for each pair (α⋆, β⋆), we consider six pairs of

https://www.trialdesign.org
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(n,N), these pairs being (7, 15), (10, 20), (15, 30), (20, 40) and (30, 60). For several

combinations of sample sizes (n,N), and global type I error and power requirements

(α⋆, β⋆), there does not exist cutoffs (mE1,mT1,mE,mT ) satisfying type I error and

power requirements. If this is the case, the row will be filled with “NA’s”. For these

results, see Table 4.7 through Table 4.14.

Lastly, we considered the effects of intern sample size on the global Simon’s Statistics.

Simulations were considered with N = 30, while the interim sample size, n, varied

from 12 to 18. In these simulations, the maximum allowable global type I error α⋆ was

0.3, and the minimum required global power β⋆ was 0.6. Table 4.15 provides these

simulations and shows s⋆ generally decreases as the interim sample size increases. It

follows more stringent boundaries can be drawn if the intern sample size is larger

since we have more confidence in our results with larger n. However, it is important

to note that as n increases, more patients will be observed in the first stage, meaning

more patients will be observed on unacceptable doses in the first stage. This illus-

trates the trade-off between having the interim stage later and having more patients

observed on unacceptable doses in the first stage but having more confident decisions

when removing doses, compared to having the interim stage earlier and having fewer

patients observed on unacceptable doses in the first stage but having less confidence

when removing doses.

Using the previous paragraph as motivation, note that at a configuration c, the

number of patients expected to be observed at an unacceptable dose is equal to

N(c)×n+s(c)×(N−n), where N(c) is the number of unacceptable doses under config-

uration c. From this, when looking at the maximum value of N(c)×n+s(c)×(N−n)

over all configurations, we consider EN⋆ = 4× n+ s⋆ × (N − n), as s⋆ is maximized

under configurations when all four doses are unacceptable. Table 4.16 shows when
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n = 14, the number of patients at unacceptable doses is minimized. In addition, we

explore the optimal interim size n for minimizing EN⋆, based on total trial size, type

I error constraint, and power constraint. Table 4.17 provides these results for various

choices of N,α⋆, and β⋆. There does not seem to be a general relationship between

the optimal interim size (n) and total trial size (N), so we recommend trying various

values of n if attempting to minimize EN⋆.

4.7 Sensitivity Analysis

This section considers the impact of misspecifying the odds ratio, as defined as the

ratio of 1) the odds of experiencing an efficacious outcome if a DLT occurred and

2) the odds of experiencing an efficacious outcome if a DLT did not occur. An odds

ratio below 1 means the odds of experiencing an efficacy decrease given a DLT. An

odds ratio of 1 means the odds of experiencing an efficacious outcome are the same,

regardless of if a DLT occurred. Finally, an odds ratio greater than 1 signifies the

odds of experiencing an efficacious outcome increase given a DLT.

Previously, optimal cutoffs were obtained under the assumption of an odds ratio of

2. This choice of odds ratio matches that of the sequential design in M. R. Conaway

and Petroni 1995, which was selected based on results from previous trials. Similar to

M. R. Conaway and Petroni 1995, we assess the impact of odds ratio misspecification

on power and type I error. The optimal cutoffs for a traditional (single-stage) design

that controls global type I error, α⋆, at 0.2 with 25 patients per group and drug

combination is mT = 7 and mE = 9. Table 4.18 shows the impact on power and

type 1 error from using these cutoffs when the odds ratio differs from 2. From these

results, underestimating the odds ratio leads to a more conservative design, while
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α⋆ = 0.2, β⋆ = 0.4
n N mT1 mE1 mT mE s α⋆ β⋆

7 15 NA NA NA NA NA NA NA
10 20 4 3 5 7 2.021 0.168 0.406
15 30 4 5 7 9 0.455 0.105 0.417
20 40 6 7 10 13 0.398 0.056 0.426
25 50 7 9 13 16 0.211 0.051 0.417
30 60 7 10 14 18 0.101 0.017 0.422

Table 4.7: Cutoffs and stats for two-stage design when maximum global type I error
is α⋆ = 0.2 and minimum global power is β⋆ = 0.4

α⋆ = 0.2, β⋆ = 0.5
n N mT1 mE1 mT mE s α⋆ β⋆

7 15 NA NA NA NA NA NA NA
10 20 NA NA NA NA NA NA NA
15 30 5 5 8 9 0.886 0.158 0.542
20 40 5 6 10 11 0.448 0.147 0.525
25 50 7 8 12 15 0.349 0.053 0.548
30 60 8 10 14 18 0.175 0.023 0.513

Table 4.8: Cutoffs and stats for two-stage design when maximum global type I error
is α⋆ = 0.2 and minimum global power is β⋆ = 0.5

α⋆ = 0.2, β⋆ = 0.6
n N mT1 mE1 mT mE s α⋆ β⋆

7 15 NA NA NA NA NA NA NA
10 20 NA NA NA NA NA NA NA
15 30 5 4 8 9 1.287 0.195 0.623
20 40 6 6 10 11 0.652 0.169 0.656
25 50 7 8 14 15 0.349 0.099 0.601
30 60 9 10 15 18 0.309 0.04 0.608

Table 4.9: Cutoffs and stats for two-stage design when maximum global type I error
is α⋆ = 0.2 and minimum global power is β⋆ = 0.6
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α⋆ = 0.2, β⋆ = 0.7
n N mT1 mE1 mT mE s α⋆ β⋆

7 15 NA NA NA NA NA NA NA
10 20 NA NA NA NA NA NA NA
15 30 NA NA NA NA NA NA NA
20 40 6 6 11 11 0.652 0.182 0.702
25 50 7 7 14 14 0.596 0.138 0.716
30 60 9 9 15 17 0.477 0.072 0.724

Table 4.10: Cutoffs and stats for two-stage design when maximum global type I error
is α⋆ = 0.2 and minimum global power is β⋆ = 0.7

α⋆ = 0.3, β⋆ = 0.4
n N mT1 mE1 mT mE s α⋆ β⋆

7 15 3 2 4 5 2.313 0.298 0.453
10 20 3 3 5 6 1.018 0.245 0.497
15 30 4 5 7 9 0.455 0.105 0.417
20 40 6 7 10 13 0.398 0.056 0.426
25 50 7 9 13 16 0.211 0.051 0.417
30 60 7 10 14 18 0.101 0.017 0.422

Table 4.11: Cutoffs and stats for two-stage design when maximum global type I error
is α⋆ = 0.3 and minimum global power is β⋆ = 0.4

α⋆ = 0.3, β⋆ = 0.5
n N mT1 mE1 mT mE s α⋆ β⋆

7 15 NA NA NA NA NA NA NA
10 20 4 3 5 6 2.021 0.266 0.543
15 30 5 5 8 9 0.886 0.158 0.542
20 40 5 6 10 11 0.448 0.147 0.525
25 50 7 8 12 15 0.349 0.053 0.548
30 60 8 10 14 18 0.175 0.023 0.513

Table 4.12: Cutoffs and stats for two-stage design when maximum global type I error
is α⋆ = 0.3 and minimum global power is β⋆ = 0.5
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α⋆ = 0.3, β⋆ = 0.6
n N mT1 mE1 mT mE s α⋆ β⋆

7 15 NA NA NA NA NA NA NA
10 20 NA NA NA NA NA NA NA
15 30 5 4 8 9 1.287 0.195 0.623
20 40 6 6 10 11 0.652 0.169 0.656
25 50 7 8 14 15 0.349 0.099 0.601
30 60 9 10 15 18 0.309 0.04 0.608

Table 4.13: Cutoffs and stats for two-stage design when maximum global type I error
is α⋆ = 0.3 and minimum global power is β⋆ = 0.6

α⋆ = 0.3, β⋆ = 0.7
n N mT1 mE1 mT mE s α⋆ β⋆

7 15 NA NA NA NA NA NA NA
10 20 NA NA NA NA NA NA NA
15 30 7 3 8 9 3.271 0.246 0.703
20 40 6 6 11 11 0.652 0.182 0.702
25 50 7 7 13 13 0.596 0.208 0.724
30 60 9 9 15 17 0.477 0.072 0.724

Table 4.14: Cutoffs and stats for two-stage design when maximum global type I error
is α⋆ = 0.3 and minimum global power is β⋆ = 0.7

α⋆ = 0.3, β⋆ = 0.6
n N mT1 mE1 mT mE s⋆ α⋆ β⋆

10 30 5 1 8 10 3.64 0.153 0.604
11 30 6 2 8 10 3.681 0.168 0.627
12 30 6 2 8 10 3.518 0.155 0.611
13 30 7 3 8 10 3.618 0.156 0.625
14 30 5 4 8 9 1.454 0.188 0.611
15 30 5 4 8 9 1.287 0.195 0.623
16 30 7 5 8 9 2.482 0.193 0.611
17 30 6 5 8 9 1.268 0.195 0.608
18 30 6 5 8 9 1.109 0.2 0.644
19 30 6 6 8 9 0.704 0.17 0.602
20 30 6 6 8 9 0.671 0.181 0.639

Table 4.15: Comparison with Different Interim Sample Sizes
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α⋆ = 0.3, β⋆ = 0.6
n N s⋆ EN⋆

10 30 3.64 112.8
11 30 3.681 113.939
12 30 3.518 111.324
13 30 3.618 113.506
14 30 1.454 79.264
15 30 1.287 79.305
16 30 2.482 98.748
17 30 1.268 84.484
18 30 1.109 85.308
19 30 0.704 83.744
20 30 0.671 86.71

Table 4.16: Minimizing the number of patients at unacceptable doses

Two Stage Parameters Optimal n and EN⋆

N α⋆ β⋆ n EN⋆

15 0.3 0.4 9 42.354
20 0.3 0.5 11 53.774
30 0.3 0.6 14 79.264
40 0.2 0.6 13 75.706

Table 4.17: Optimal intern size n, by N,α⋆, and β⋆
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overestimating the odds ratio leads to a more aggressive odds ratio. Overall, the

impact on type 1 error is minimal, and the cutoff of α⋆ = 0.2 is not greatly exceeded

when underestimating the odds ratio. These results mirror that of M. R. Conaway

and Petroni 1995, and we recommend clinicians specify a range of possible odds ratios

when designing a phase II trial.

n = 25,mT = 7,mE = 9
Odds ratio, θ 0.25 0.5 1.0 2.0 4.0 8.0 16.0

Global Type 1 Error, α⋆ 0.2552 0.2349 0.2161 0.1893 0.1658 0.1407 0.1125
Global Power, β⋆ 0.5745 0.5687 0.5591 0.5491 0.5421 0.5351 0.527

Table 4.18: Sensitivity Analysis from varying true odds ratio while using cutoffs when
odds ratio is 2.0 and α⋆ = 0.2

4.8 Discussion

This chapter proposed a pair of phase II designs for trials with multiple doses and

two ordered groups. The first design maximizes power subject to a type I error

requirement. The second design minimizes the number of patients on unacceptable

doses, subject to power and type I error requirements.

The designs presented in this chapter are the first multiple doses designs for ordered

groups, allowing a clinician to explore the dose-efficacy relationship in phase II, after

conducting a phase I group trial. Exploring the dose-efficacy relationship in phase II

aligns with the recommendation of Project Optimus to randomize patients to a range

of doses in phase II. By introducing a multi-dose phase II trial for groups, clinicians

can determine if a drug warrants a more expensive phase III trial and, if so, dial in

the correct group-specific dose.

A future area of research includes creating a multi-dose group design that is more
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flexible than the two-stage design presented in this chapter. The two-stage design

presented in this chapter determines if a dose moves onto the second stage, a binary

choice. However, one could consider allowing a dose to continue onto the second

stage while allowing more or fewer patients to be administered the dose, based on

the observations in the previous stage. One could conceive of creating such a design

by assigning a prior distribution and using the posterior probability that a dose is

acceptable for a given group to guide allocation in the second stage.
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Chapter 5

Discussion and Future Areas of

Research

5.1 Summary of Methods Proposed

In this dissertation, we discussed the different stages of clinical trials, provided ex-

amples of clinical trials with heterogeneous groups, and proposed phase I and phase

II clinical trial designs. Phase I designs have the goal of locating the highest tol-

erable dose, known as the MTD. Phase II designs seek to determine if a drug is

sufficiently effective and safe to warrant a more expensive phase III trial. Previous

trials separated patients into heterogeneous groups completely or partially ordered

by the probability of a DLT. In this chapter, we provide a brief recapitulation of each

chapter and discuss future research topics.

Chapter 2, as adapted from Celum, Horton, and M. Conaway 2024, presented the

Quasi-CRM Shift design, the first phase I group design using toxicity grades, which

score the severity of an adverse event. Through the development of this design,

clinicians can control for DLT severity and frequency, as well as control for adverse

events that are not dose-limiting, when conducting a phase I group trial. Simulation

studies showed this design significantly outperformed the ad-hoc method for using

toxicity grades in a group trial, namely doing a parallel Quasi-CRM trial for each
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group, this being the only competitor method before the creation of the Quasi-CRM

Shift design. Additionally, performing parallel trials for heterogeneous groups is a

fundamentally flawed method due to the problem of reversals (Horton, O’Quigley,

and M. R. Conaway 2019), when the estimated MTD for a more sensitive group is

higher than the estimated MTD of a less sensitive group.

Chapter 3, as adapted from Celum and M. Conaway 2024, presented the first model-

assisted design for partially ordered groups (called GAB), developed the “bundles”

framework to classify all partial orders in previous papers on partially ordered groups

in phase I (Horton, Wages, and M. R. Conaway 2019; Horton, O’Quigley, and M. R.

Conaway 2019; M. R. Conaway 2017a; M. R. Conaway 2017b), and proved conver-

gence results. Before Celum and M. Conaway 2024, previous designs phase I designs

for partially ordered groups utilized the CRM (O’Quigley, Pepe, and Fisher 1990),

falling into the category of model-based designs, a class of designs requiring compu-

tational tools to update parameters after observing each patient. In contrast, GAB

is a model-assisted design, meaning that decision boundaries can be laid out at the

beginning of the trial, providing clinicians with a simple-to-use alternative in the

group framework. GAB is based on BOIN (Liu and Y. Yuan 2015), and pools group

information, when necessary, to keep allocation consistent with the group ordering.

Simulation studies showed that GAB performs similarly to the more complex model-

based design found in M. R. Conaway 2017b, thus providing simplicity without a loss

in performance.

Chapter 4 presented the first multi-dose phase II group designs. In the dose-optimization

initiative called Project Optimus (U.S. Food And Drug Administration 2024b), the

FDA recommended dose randomization in a phase II trial to explore the dose-efficacy

relationship which may plateau, as in the case of target therapies and immunother-
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apies. To this end, Yang et al. 2024 designed the first multi-dose phase II design,

determining which doses are sufficiently safe and effective. In Chapter 4, we ex-

tend the framework built by Yang et al. 2024 and design two multi-dose designs for

groups, the first such designs, allowing clinicians to conduct a phase II group trial

after a phase I group trial. The first design maximizes power while satisfying a type

I error constraint. The second design minimizes the number of patients on unac-

ceptable doses, while stratifying type I error and power requirements, similar to the

objectives of Simon 1989.

5.2 Future Research

Each chapter discussed future areas of research, which will be briefly recapped, before

discussing an additional future area of research. Chapter 2 discussed extending the

Quasi-CRM Shift method to account for toxicity frequency as the model accounts

only for the most severe toxicity observed from a patient, not how many toxic events

a patient experienced. Such a modification would allow clinicians to account for

persistent low-grade toxicities. Chapter 3 discussed creating the first model-assisted

design for a phase I/II group trial, accounting for toxicity and efficacy. This design

would be useful for clinicians preferring model-assisted designs and wanting to con-

duct a group trial that combines phases I and II, using both efficacy and toxicity.

Chapter 4 discussed creating a more flexible two-stage design, allowing allocation in

the second stage to be adaptive through using Bayesian methods, basing allocation

on the probability a dose is acceptable.

Another future research topic is modifying model-based phase I group designs and

GAB (a model-assisted design), to consider time to DLT. After such modifications



92

are made, simulations could compare the modified methods to see if the model-based

or model-assisted designs perform better. In the phase I designs presented in this

dissertation, patients are assigned doses one at a time, and the current patient is

followed through before assigning a dose to the next patient. Depending on the

protocol, patients may be followed for 3 months or longer. As a result, these phase I

trials have a long duration. However, through modeling time to DLT, the CRM and

BOIN, these designs being the basis for the partially ordered group designs, can be

modified so a patient does not need to be followed through for the entire follow-up

duration before assigning a dose to the next patient, substantially shortening the trial

duration.

In the time-to-event continual reassessment method (TITE-CRM), as presented in

Y. K. Cheung and Rick Chappell 2000, the likelihood function is adjusted by weighting

each observation by the amount of time a patient is observed over the length of the

follow-up window. For instance, if a patient has been observed for 2 months, while

the follow-up window is 3 months, that patient’s observation is weighted by 2/3 in the

likelihood function. Y. K. Cheung and Rick Chappell 2000 noted through using the

TITE-CRM, a trial taking up to 12 years using the CRM can be reduced to a trial

duration of 2-4 years using the TITE-CRM. The CRM-based designs for partially

ordered groups can be modified using the TITE-CRM, allowing for shortened trials.

The time-to-event Bayesian optimal interval design (TITE-BOIN), as presented in

Y. Yuan, Lin, et al. 2018, modifies BOIN to allow the next patient to be allocated to

a dose before the last patient is observed for the full follow-up time. Conceptually,

BOIN is modified by imputing DLT rates based on the number of DLTs observed, trial

duration, and length of time the patients have been followed up. It is assumed time

to DLT follows a uniform distribution, while simulation studies show this assumption
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does not need to be correct. The resulting method is still model-based and decision

boundaries can be outlined before the trial. The TITE-BOIN and TITE-CRM identify

the MTD a similar percentage of the time. One could conceive of a way to adapt

GAB using the TITE-BOIN, allowing trials to be sped up. It would be interesting to

compare the time-to-event modified GAB and a time-to-event modified model-based

design to evaluate relative performance.
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Appendix A

Appendix for Chapter 2

Figure A.1: Four-dose ET and DLT curves, with the ET scores/DLT probabilities by
dose level.
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Figure A.2: Six-dose ET and DLT curves, with the ET scores/DLT probabilities by
dose level.
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Appendix B

Appendix for Chapter 3

B.1 | Proofs

The following proofs will use a similar notation to that in Oron, Azriel, and Hoff 2011.

Let Ω consist of triples (Y, (b, g), dk), where Y is the binary DLT outcome, (b, g) is

the bundle and group index, and dk is the dose. For the ith patient, let Ti denote the

administered dose, (Bi, Gi) the group and bundle, and Yi the DLT outcome. Note

that Ti is a random variable since the responses from the previous patients determine

the dose given to the ith patient. We have that Y (((b, g), dk)) ∼ Bern(π(b,g),k). Let

Ω∞
GAB denote all possible infinite sequences of triples under the design of GAB along

with the requirement n(b,g) →∞, for all (b, g).

We define the random set

S(b,g) := {k : n(b,g),k →∞ as n→∞}. (B.1)

Here, S(b,g) is the random set that gives the dose levels that appear infinitely often

for (b, g). It follows that S(b,g) ̸= ∅ since n(b,g) →∞, for all (b, g).
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B.1.1 | Lemma 1

First, decompose π̂(b,g),k as

π̂(b,g),k = π(b,g),k +
1

n(b,g),k

n∑
i=1

I[Ti = dk&(Bi, Gi) = (b, g)](π(b,g),k − Yi).

Then, define the random variable

Mn =
n∑

i=1

I[Ti = dk&(Bi, Gi) = (b, g)](π(b,g),k − Yi).

We can show Mn is a square integrable (E(M2
n) <∞) martingale with filtration

Fn = σ(Y1, T1, (B1, G1), . . . , Yn, Tn, (Bn, Gn)).

To show Mn is a martingale, we note

Mn+1 = I[Tn+1 = dk&(Bn+1, Gn+1) = (b, g)](π(b,g),k − Yn+1) +Mn,

giving

E(Mn+1|Fn) = E(I[Tn+1 = dk&(Bn+1, Gn+1) = (b, g)](π(b,g),k − Yn+1)|Fn) +Mn.

Given Fn, the indicator found in the expectation is no longer random and, thus, can

be pulled out of the expectation, giving

E(Mn+1|Fn) = (I[Tn+1 = dk&(Bn+1, Gn+1) = (b, g)])E((π(b,g),k − Yn+1)|Fn) +Mn.
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If I[Tn+1 = dk&(Bn+1, Gn+1) = (b, g)] = 1, then Yn+1 ∼ Bern(π(b,g),k), giving

(I[Tn+1 = dk&(Bn+1, Gn+1) = (b, g)])E((π(b,g),k − Yn+1)|Fn) = 0.

We have now shown E(Mn+1|Fn) =Mn, giving us that Mn is a martingale.

We will now find the quadratic variation of Mn, denote as < M >n, and show

< M >n→ ∞, allowing us to apply the strong law of martingales (see Shiryaev

1996). By definition,

< M >n =
n∑

j=1

E((∆Mj)
2|Fj−1),

where ∆Mj =Mj −Mj−1. Expanding (∆Mj)
2 gives

(∆Mj)
2 =

(
I[Tj = dk&(Bj , Gj) = (b, g)](π(b,g),k − Yj)

)2
= I[Tj = dk&(Bj , Gj) = (b, g)](π(b,g),k − Yj)

2.

As before, given Fj−1, we know the value of I[Tj = dk&(Bj , Gj) = (b, g)], giving

E
(
(∆Mj)

2|Fj−1

)
= I[Tj = dk&(Bj , Gj) = (b, g)]E

(
(π(b,g),k − Yj)

2|Fj−1

)
.

If I [Tj = dk&(Bj , Gj) = (b, g)] = 0, then E((∆Mj)
2|Fj−1) = 0. Conversely, if I[Tj =

dk&(Bj , Gj) = (b, g)] = 1, then Yj ∼ Bern(π(b,g),k) and E((π(b,g),k−Yj)2|Fj−1) = π(b,g),k(1−

π(b,g),k). This gives

E((∆Mj)
2|Fj−1) = I[Tj = dk&(Bj , Gj) = (b, g)]π(b,g),k(1− π(b,g),k),
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implying

< M >n = π(b,g),k(1− π(b,g),k)n(b,g),k ∝ n(b,g),k

By our assumption, n(b,g),k →∞ as n→∞, so < M >n→∞ as n→∞. From the strong

law of Martingales

Mn

π(b,g),k(1− π(b,g),k)n(b,g),k
=

Mn

< Mn >

a.s.→ 0,

thus

1

n(b,g),k

n∑
i=1

I[Ti = dk&Gi = g](π(b,g),k − Yi) =
Mn

n(b,g),k

a.s.→ 0.

This shows that π̂(b,g),k
a.s.→ π(b,g),k, given n(b,g),k →∞.

B.1.2 | Theorem 2

Remark B.1. The result will be proven when we have a unique k, for each (b, g), with

π(b,g),k ∈ (λe, λd), and no other π(b,g),k ∈ [λe, λd]. The logic for the proof in this unique

case will extend to the other cases. For clarity, for (b, g), the unique dose level with DLT

probability in (λe, λd) will be denoted as k(b,g).

Strong induction will be applied to the bundle index, first proving the result for bundle one,

and then using induction to prove the result for the remaining bundles. First, note that

S(1,g) is connected, that is, S(1,g) can only consist of consecutive dose levels. The reason

we could not have, say, S(1,g) = {1, 3} is that after visiting level 3, (1, g) must visit level

2 before visiting level 1, requiring 2 ∈ S(1,g). From connectedness, S(1,g) can be listed as

consecutive values, S(1,g)
1 , . . . , S

(1,g)
2 , where S

(1,g)
1 and S

(1,g)
2 are the minimum and maximum

values, respectively, in S(1,g). Now consider any g1 ∈ {1, 2, . . . , G1} and partition Ω∞
GAB into
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events:

1. A: S(1,g1) = k(1,g1)

2. B: S(1,g1)
1 < S

(1,g1)
2 and k(1,g1) ∈ S(1,g1)

3. C: k(1,g1) ̸∈ S(1,g1)

Showing allocation for (1, g1) converges almost surely to k(1,g) is equivalent to showing

P (A) = 1. Thus, we will show P (B) = P (C) = 0. We partition C as

C = {S(1,g1)
2 < k(1,g1)} ∪ {S

(1,g1)
1 > k(1,g1)},

and first prove P ({S(1,g1)
2 < k(1,g1)} = 0. Assume, without loss of generality, that k(1,g1) ̸= 1,

since otherwise P ({S(1,g1)
2 < k(1,g1)} = 0. The event {S(1,g1)

2 < k(1,g1)} is further partitioned

as

{S(1,g1)
2 < k(1,g1)} =

⋃
k⋆:k⋆<k(1,g1)

{S(1,g1)
2 = k⋆}.

From the partition above, it is sufficient to show P ({S(1,g1)
2 = k⋆}) = 0, for any k⋆ < k(1,g1).

To this end, consider any infinite sequence, ω ∈ {S(1,g1)
2 = k⋆}. As k⋆ ∈ S(1,g1), from Lemma

3.2, π̂(1,g1),k⋆ → π(1,g1),k⋆ , almost surely (a.s). Then, as π(1,g1),k⋆ < λe, eventually it will

always be the case π̂(1,g1),k⋆ < λe. As it is eventually always the case that π̂(1,g1),k⋆ < λe and

(1, g1) visits k⋆ infinitely often, (1, g1) must escalate from k⋆ infinitely often. After escalating

from k⋆, the next patient in (1, g1) would be treated at k⋆ + 1 or a higher dose, since other

groups cannot bring down the recommended dose for (1, g1). This implies that an infinite

number of (1, g1) patients are observed at doses higher than k⋆, contradicting k⋆ = S
(1,g1)
2 .

Thus, the only way for this to occur is if π̂(1,g1),k ̸→ π(1,g1),k, giving P ({S(1,g1)
2 = k⋆}) = 0

Now we will show P ({S(1,g1)
1 > k(1,g1)}) = 0. We can assume that k(1,g1) ̸= K, otherwise
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the result follows automatically. The event {S(1,g1)
1 > k(1,g1)} can be partitioned as

{S(1,g1)
1 > k(1,g1)} =

⋃
k⋆:k⋆>k(1,g1)

{S(1,g1)
1 = k⋆}.

It is sufficient to show P ({S(1,g1)
1 = k⋆}) = 0, for any k⋆ > k(1,g1), and we consider any

infinite sequence ω ∈ {S(1,g1)
1 = k⋆}. Since k⋆ ∈ S(1,g1), (a.s) we eventually always have

π̂(1,g1),k⋆ > λd. At this point, whenever the last patient in (1, g1) is at k⋆, we will de-escalate

if we do not have any (b, gb) with j(b,gb) = k⋆, where b > 1. To simplify notation, for the

remainder of the bundle 1 proof, whenever b appears, take b > 1. If there are a finite

number to times when j(b,gb) = k⋆, for all b, (1, g1) will be observed at k⋆ − 1 an infinite

number of times, giving k⋆ − 1 ∈ S(1,g1), and contradicting k⋆ = S
(1,g1)
1 .

Now assume there exists some, or several, (b, gb) where j(b,gb) = k⋆ an infinite number of

times. Begin by noting there could some (b′, g′), b′ > 1, when j(b′,g′) = k⋆ an infinite number

of times but only a finite number of patients in (b′, g′) are actually observed at k⋆. For this to

occur, we would need a three-step cycle occurring infinitely often. First, a group from a lower

bundle would de-escalate from k⋆, causing j(b′,g′) = k⋆− 1. Second, a subsequent patient in

(b′, g′) would be observed at, or below k⋆ − 1. Third, the recommendation j(b′,g′) increases

to k⋆ after an observation at k⋆− 1 from (b′, g′) or from some group (b′′, g′′), where b′′ > b′.

If the first case occurs infinitely often, k⋆− 1 ∈ S(b′,g′), thus π̂(b′,g′),k⋆−1 → π(b′,g′),k⋆−1 (a.s).

Then, as π(b′,g′),k⋆−1 > π(1,g1),k⋆−1 > λe, (a.s) eventually we always have π̂(b′,g′),k⋆−1 > λe,

contradicting that for an infinite number of times j(b′,g′) increases to k⋆ after an observation

from (b′, g′) at k⋆ − 1. From this, the first case occurs with probability zero. Following the

same steps, it can be shown that with probability zero j(b′,g′) increases to k⋆ infinitely many

times after an observation from (b′′, g′′). Thus, the three-step cycle discussed occurs with

probability zero.

Now assume that the groups, (b, gb), with j(b,gb) = k⋆ infinitely often are observed at k⋆

infinitely often. From lemma 1, (a.s) eventually, we will always have Pooled > λd, implying
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j(1,g1) = k⋆ − 1 infinitely often. It is left to show that, with probability one, subsequent

patients in (1, g1) will be observed at k⋆ − 1. Suppose there are only a finite number of

times when (1, g1) patients are observed at k⋆ − 1 after j(b,g1) = k⋆ − 1. For this to be

the case, we would need some (b, gb) escalating j(1,g1) up from k⋆ − 1 an infinite number

of times, implying k⋆ − 1 ∈ S(b,gb). As k⋆ − 1 ∈ S(b,gb), (a.s) eventually we always have

π̂(b,gb),k⋆−1 > λe, making it impossible for (b, gb) to increase j(1,g1) from k⋆ − 1 to k⋆ an

infinite number of times. Now, if there are an infinite number of patients observed at k⋆−1

after j(b,g1) = k⋆ − 1, we have k⋆ − 1 ∈ S(1,g1), contradicting S
(1,g1)
1 = k⋆. This shows that

P (S
(1,g1)
1 = k⋆) = 0, for all k⋆ > k(1,g1). This concludes showing P (C) = 0

Next, we will show that P (B) = 0. If k(1,g1) ∈ S(1,g1), (a.s) eventually we will always

have π̂(1,g1),k(1,g1)
∈ (λe, λd) and the only way (1, g1) could move from k(1,g1) is if a group

from a higher bundle pushes the recommendation up. As S(1,g1) is connected, we would

then need k(1,g1) + 1 ∈ S(1,g1). If this were the case, there would be some (b, gb) escalating

j(1,g1) from k(1,g1) to k(1,g1) + 1 an infinite number of times. As b > 1, π(b′,g′),k(1,g1)
>

π(b,g),k(1,g1)
. Additionally, as k(b,gb) ∈ S(b,gb), (a.s) we eventually always have π̂(b,gb),k(b,gb)

>

λe, contradicting that (b, gb) moves (1, g1) from k(1,g1) an infinite number of times. This

shows that P (B) = 0.

We will now proceed using induction. Suppose for all 1 ≤ l < b, P (S(l,gl) = k(l,gl)) = 1, for

all gl. We will show that P (S(b,gb) = k(b,gb)) = 1.

Note sequences where S(l,gl) = k(l,gl), for all l < b and all gl, S(b,gb) is connected for all gb.

As a result, we can partition Ω∞
avg as:

1. A: S(b,gb) = k(b,gb) and S(l,gl) = k(l,gl), for all l < b and all gl

2. B: k(b,gb) ∈ S(b,gb), S(b,gb)
1 < S

(b,gb)
2 and S(l,gl) = k(l,gl), for all l < b and all gl

3. C: k(b,gb) ̸∈ S(b,gb), and S(l,gl) = k(l,gl), for all l < b and all gl

4. D: It is not the case that S(l,gl) = k(l,gl), for all l < b and all gl
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From our hypothesis, P (D) = 0, so we can assume S(l,gl) = k(l,gl), for all l < b and all gl.

We will now show P (C) = 0. Suppose that we have S
(b,gb)
2 = k⋆, where k⋆ < k(b,gb).

Eventually, we will always have π̂(b,gb),k⋆ < λe (a.s) and all groups in bundles less than b

will be a dose levels no lower than k(b,gb). This will cause (b, gb) to be observed at doses

above k⋆ infinitely often, contradicting k⋆ = S
(b,gb)
2 .

Suppose that we have k⋆ > k(b,gb), with k⋆ = S
(b,gb)
1 . Then, (a.s) π̂(b,gb),k⋆ → π(b,gb),k⋆ > λd.

The same logic from the bundle 1 proof will show that with probability 0 we will de-escalate

only finitely many times. Thus, we have that P (C) = 0.

We now consider B and show P (B) = 0. As k(b,gb) ∈ S(b,gb), (a.s) we will eventually always

have π̂(b,gb,k(b,gb)
∈ (λe, λd). Eventually groups in lower bundles will not push (b, gb) down

from k(b,gb) as such groups eventually stay at dose levels at or above k(b,gb). Then, only

way for (b, gb) to change from k(b,gb) is if a group from a higher bundle push it up. The

same logic in the bundle one proof shows this happens with probability 0. Thus P (B) = 0,

completing the proof.

B.2 | MTD Configuration

The tables in this section provide all possible configurations of MTDs amongst the groups in

four dose trials. The MTD configurations are the possible group-specific MTDs under the

known ordering. Table B.1 provides the MTD configurations when there are two completely

ordered groups. Tables B.2, B.3, and B.4 provide the MTD configurations when there are

three groups under orderings 1, 2, and 3, respectively.
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MTD Configurations
Group 1 MTD (γ1) Group 2 MTD (γ2)
1 1
2 1
2 2
3 1
3 2
3 3
4 1
4 2
4 3
4 4

Table B.1: MTD configurations with two ordered groups and four doses

MTD Configurations
Group 1 MTD (γ1) Group 2 MTD (γ2) Group 3 MTD (γ3)
1 1 1
2 1 1
2 2 1
2 2 2
3 1 1
3 2 1
3 2 2
3 3 1
3 3 2
3 3 3
4 1 1
4 2 1
4 2 2
4 3 1
4 3 2
4 3 3
4 4 1
4 4 2
4 4 3
4 4 4

Table B.2: MTD configurations with three ordered groups and four doses under Order
1 (complete ordering)
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MTD Configurations
Group 1 MTD (γ1) Group 2 MTD (γ2) Group 3 MTD (γ3)
1 1 1
2 1 1
2 2 1
2 2 2
2 1 2
3 1 1
3 2 1
3 2 2
3 3 1
3 3 2
3 3 3
3 1 2
3 1 3
3 2 3
4 1 1
4 2 1
4 2 2
4 3 1
4 3 2
4 3 3
4 4 1
4 4 2
4 4 3
4 4 4
4 1 2
4 1 3
4 2 3
4 1 4
4 2 4
4 3 4

Table B.3: MTD configurations with three ordered groups and four doses under Order
2 (Group 1 least sensitive)

B.3 | Generating Centers

In this section, we illustrate how centers are generated during the curve generation pro-

cedure. We will demonstrate how these curves are generated under the second three
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MTD Configurations
Group 1 MTD (γ1) Group 2 MTD (γ2) Group 3 MTD (γ3)
1 1 1
1 2 1
1 3 1
1 4 1
2 1 1
2 2 1
2 2 2
2 3 1
2 3 2
2 4 1
2 4 2
3 1 1
3 2 1
3 2 2
3 3 1
3 3 2
3 3 3
3 4 1
3 4 2
3 4 3
4 1 1
4 2 1
4 2 2
4 3 1
4 3 2
4 3 3
4 4 1
4 4 2
4 4 3
4 4 4

Table B.4: MTD configurations with three ordered groups and four doses under Order
3 (Group 3 most sensitive)

group ordering with four dose levels. Suppose the we have the MTD configuration (γ1 =

4, γ2 = 1, γ3 = 3). Let us generate three values (ε1, ε2, ε3), where ε ∼ N(z(θ), (0.05)2) =

N(z(0.2), (0.05)2) = N(−0.8416212, 0.0025). We obtain (ε1 = −0.8273356, ε2 = −0.8769697, ε3 =
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−0.8000005) and consequently (c1 = Φ(ε1), c2 = Φ(ε2), c3 = Φ(ε3)), where Φ is the stan-

dard normal CDF. From this, (c1 = 0.2040234, c2 = 0.1902515, c3 = 0.2118553). We now

sort the centers as (c[1] = 0.1902515, c[2] = 0.2040234, c[3] = 0.2118553). As we are in

order 2 with γ2 < γ3, then (π1,γ1 , π2,γ2 , π3,γ3) = (c[1], c[3], c[2]). Thus, (π1,4, π2,1, π3,3) =

(0.1902515, 0.2118553, 0.2040234)

B.4 | GAB Illustration

These supplementary materials provide illustrative examples of trials conducted using GAB-

E. By providing these examples, we aim to help clinicians understand the initial run-in

period, allocation decisions, and MTD estimation. The first example considers two ordered

groups with four dose levels while the second considers three partially ordered groups with

six dose levels. As in the main paper, we consider the DLT target rate of θ = 0.2, and the

escalation and de-escalation boundaries of λe = 0.157 and λd = 0.238, respectively.

The patient responses and current dose recommendations are enumerated sequentially. The

”Results” line states the group of the patient, the dose level received, and the patient

outcome. Additionally, this line provides the updated current dose levels for each group.

Comments are provided at several stages of the trials, stating how allocation decisions

are determined using the rules from GAB-E. Table B.16 provides the dose elimination

boundaries using the prior Beta(0.5, 0.5), eliminating a dose if the probability a dose is

excessively toxic is above 0.975. Note, this is the same as Table 3.2 in Chapter 3, and

is provided below for convenience. We require at least three patients to be observed at a

dose before eliminating it for a given group. After detailing the allocation procedure, we

illustrate how group MTDs are estimated at the conclusion of the trial. For additional

illustrative trials, see the R file Trial_Sims.R, which provides a function to generate worked

trials.
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B.4.1 Two Group Illustrative Example

First, we consider two ordered groups, where Group 1 is less sensitive than Group 2. The

illustrative trial will have a total of 20 patients. After detailing dose allocation, we walk

through MTD estimation.

Allocation

1. Results: Dose = 1, Group = 2, No DLT, j1 = NA, j2 = 2

Comment: The first patient in Group 2 is assigned to dose level 1 and a DLT is

not observed. Group 1 has not yet been observed, so we continue with standard

BOIN for Group 2. At the current dose level, dose level 1, the DLT rate for Group 2

is π̂2,1 = 0/1 ≤ 0.157, thus Group 2 escalates to dose level 2, so j2 = 2.

2. Results: Dose = 2, Group = 1, No DLT, j1 = 3, j2 = 2

Comment: If Group 2 precedes Group 1, the first patient in Group 1 is assigned

to the current Group 2 dose level, this being dose level 2. Thus, the first Group 1

patient is assigned to dose level 2. There is no DLT, so the current rate for Group 1

at dose level 2 is π̂1,2 = 0 ≤ 0.157. As a result, the current recommended dose level

for Group 1 is 3, so j1 = 3.

3. Results: Dose = 2, Group = 2, No DLT, j1 = 3, j2 = 3

Comment: Group 2 is treated at dose level 2 and a DLT is not observed. At the

current dose level, dose level 2, the DLT rate is π̂2,2 = 0/1 ≤ 0.157, thus Group 2

escalates to dose level 3, so j2 = 3.

4. Results: Dose = 3, Group = 2, No DLT, j1 = 4, j2 = 4
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Comment: Group 2 is treated at dose level 3 and a DLT is not observed. At the cur-

rent dose level, dose level 3, the DLT rate is π̂2,3 = 0/1 ≤ 0.157, thus Group 2 escalates

to dose level 4, so j2 = 4. However, we now have j1 < j2, as j1 = 3 and j2 = 4. Thus,

we consider a pooled average at the dose level Group 2 escalated from, this being dose

level 3. We obtain Pooled = (y1,3 + y2,3)/(n1,3 + n2,3) = (0 + 0)/(0 + 1) = 0 ≤ 0.157,

so Group 1 escalates to dose level 4, thus j1 = 4.

5. Results: Dose = 4, Group = 2, DLT, j1 = 4, j2 = 3

Comment: Group 2 is treated at dose level 4. There is a DLT, so the current DLT

rate for Group 2 at dose level 4 is π̂2,4 = 1/1 ≥ 0.238. The recommendation for

Group 2 decreases, so j2 = 3

6. Results: Dose = 4, Group = 1, No DLT, j1 = 4, j2 = 3

Comment: Group 1 is treated at dose level 4. There is no DLT, so the current

DLT rate for Group 1 at dose level 4 is π̂1,4 = 0/1 ≤ 0.157. As dose level 4 is the

highest dose level, Group 1 stays at dose level 4.

7. Results: Dose = 4, Group = 1, DLT, j1 = 3, j2 = 3

Comment: Group 1 is treated at dose level 4. There is a DLT, so the current DLT rate

for Group 1 at dose level 4 is π̂1,4 = 1/2 ≥ 0.238. As a result, Group 1 de-escalates a

dose level, so j1 = 3

8. Results: Dose = 3, Group = 1, No DLT, j1 = 4, j2 = 3

Comment: Group 1 is treated at dose level 3. There is no DLT, so the current

DLT rate for Group 1 at dose level 3 is π̂1,3 = 0/1 = 0 ≤ 0.157, so j1 = 4
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9. Results: Dose = 4, Group = 1, DLT, j1 = 3, j2 = 3

Comment: Group 1 is treated at dose level 4. There is a DLT, so the current DLT

rate for Group 1 at dose level 4 is π̂1,4 = 2/3 ≥ 0.238, so j1 = 3

10. Results: Dose = 3, Group = 1, No DLT, j1 = 4, j2 = 3

Comment: Group 1 is treated at dose level 3. There is no DLT, so the current

DLT rate for Group 1 at dose level 3 is π̂1,4 = 0/2 = 0 ≤ 0.157, so j1 = 4

11. Results: Dose = 4, Group = 1, DLT, j1 = 3, j2 = 3

Comment: Group 1 is treated at dose level 4. There is a DLT, so the current DLT

rate for Group 1 at dose level 4 is π̂1,4 = 3/4 ≥ 0.238, so j1 = 3. Additionally, using

Table B.16 and noting that n1,4 = 4 and y1,4 = 3, we consider eliminating dose level

4 from Group 1 since these values of n1,4 and y1,4 fall into the elimination boundary.

However, we note that Group 2 is more sensitive, thus, if we eliminate dose level 4

from Group 1, we would also eliminate dose level 4 from Group 2. As a result, we

consider nPooled = n1,4+n2,4 = 4+1 = 5 and yPooled = y1,4+ y2,4 = 3+1 = 4. Then,

using the Table B.16, we see that this combination of nPooled and yPooled fall into the

elimination boundary, so dose level 4 is eliminated from both groups.

12. Results: Dose = 3, Group = 1, No DLT, j1 = 3, j2 = 3

Comment: Group 1 is treated at dose level 3. There is no DLT, so the current

DLT rate for Group 1 at dose level 3 is π̂1,4 = 0/3 = 0 ≤ 0.157. However, we do not

escalate to dose 4 as this dose has been eliminated. As a result, Group 1 remains at

dose level 3.

13. Results: Dose = 3, Group = 1, DLT, j1 = 3, j2 = 3
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Comment: Group 1 is treated at dose level 3. There is a DLT, so the current

DLT rate for Group 1 at dose level 3 is π̂1,4 = 1/4 = 0.25 ≥ 0.238. From this

j1 = 2. However, we now have j1 < j2. As a result, we consider a pooled aver-

age at the dose level group 1 deescalated from, that is, dose level 3. From this,

Pooled = (y1,3 + y2,3)/(n1,3 + n2,3) = (1 + 0)/(1 + 4) = 1/5 = 0.2 < 0.238. Thus,

Group 1 returns to dose level 3 and j1 = 3

14. Results: Dose = 3, Group = 2, DLT, j1 = 3, j2 = 2

Comment: Group 2 is treated at dose level 3. There is a DLT, so the current DLT

rate for Group 2 at dose level 3 is π̂2,3 = 1/2 ≥ 0.238, so j2 = 2

15. Results: Dose = 3, Group = 1, No DLT, j1 = 3, j2 = 2

Comment: Group 1 is treated at dose level 3. There is a no DLT, so the current

DLT rate for Group 1 at dose level 3 is π̂1,4 = 1/5 = 0.2 ∈ (0.157, 0.0.238). As a

result, Group 1 stays at dose level 3. Note that we would not consider increasing j1

to dose level 4 since this dose level has been eliminated

16. Results: Dose = 2, Group = 2, No DLT, j1 = 3, j2 = 3

17. Results: Dose = 3, Group = 2, DLT, j1 = 3, j2 = 2

18. Results: Dose = 3, Group = 1, No DLT, j1 = 3, j2 = 2

19. Results: Dose = 2, Group = 2, No DLT, j1 = 3, j2 = 3

20. Results: Dose = 3, Group = 1, No DLT, j1 = 3, j2 = 3
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MTD Estimation

Now that the trial has concluded, we use bivariate isotonic regression to obtain the final

MTD estimates. First, we review the DLT observations, by group and dose level. The

number of observations, ng,k, by group and dose level, are provided in Table B.5.

ng,k Dose Level
Group 1 2 3 4

1 0 1 7 4
2 1 3 3 1

Table B.5: Number of Observations by Group and Dose Level

Next, the number of DLTs, yg,k, by group and dose level, are provided in Table B.6.

yg,k Dose Level
Group 1 2 3 4

1 0 0 1 3
2 0 0 2 1

Table B.6: Number of DLTs by Group and Dose Level

Next, we obtained the smoothed DLT proportions, π̂s
g,k, which will later be input into

the bivariate isotonic regression algorithm. The smoothed proportions are obtained as

π̂s
g,k =

yg,k+αg,k

ng,k+αg,k+βg,k
. In our analysis, we use smoothing parameters αg,k = βg,k = 0.05,

giving

π̂s
g,k =

yg,k + 0.05

ng,k + 0.1
.

Table B.7 provides the smoothed DLT proportions.

π̂s
g,k Dose Level

Group 1 2 3 4
1 0.5 0.04545455 0.1478873 0.7439024
2 0.04545455 0.01612903 0.6612903 0.9545455

Table B.7: Smoothed DLT Proportions by Group and Dose Level
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The last input needed for bivariate isotonic regression is a matrix of weights. We use the

weights ng,k +1, making the weights proportional to the number of observations at a given

dose level and group. Table B.8 provides these weights by group and dose level.

ng,k + 1 Dose Level
Group 1 2 3 4

1 1 2 8 5
2 2 4 4 2

Table B.8: Weights for Bivariate Isotonic Regression by Group and Dose Level

Finally, using the smoothed proportions in Table B.7 and weights in Table B.8, we conduct

bivariate isotonic regression. See Dykstra and Robertson 1982 for details on the bivariate

isotonic regression algorithm. The function ”biviso” function from the R package ”Iso” is

used to implement this algorithm (Turner 2020).

π̃g,k Dose Level
Group 1 2 3 4

1 0.08292604 0.08292604 0.1478873 0.7439024
2 0.08292604 0.08292604 0.6612903 0.9545455

Table B.9: DLT Probability Estimates from Bivariate Isotonic Regression

Finally, we consider the admissible dose levels for each group. The admissible dose levels

for Group 1, A1, are the dose levels with observations from either group that have not been

eliminated from Group 1. From this, A1 = {1, 2, 3}. The admissible dose levels for Group

2, A2, are the dose levels with observations from Group 2 that have not been eliminated

from Group 2. Thus, A2 = {1, 2, 3}.

The MTD estimate for Group 1 is admissible dose level with DLT estimate closest to

the target 0.2. Mathematically, the MTD estimate for Group 1 is given by, k′1, where

k′1 = argmink∈A1
|π̃1,k − 0.2| = 3. Similarly, we obtain that the MTD estimate for Group

2 is k′2, where k′2 = argmink∈A2
|π̃2,k − 0.2| = 2. At the end of the trial, dose level 2 is the

MTD estimate for Group 2 and dose level 3 is the MTD estimate for Group 1.
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B.4.2 Three Group Illustrative Example

Now we consider a worked example with three partially ordered groups. In this example,

Group 1 is the least sensitive group while the relative ordering of Groups 2 and 3 is unknown.

In the bundle framework, we have:

1 = (1, 1)

2 = (2, 1), 3 = (2, 2)

The illustrative trial will have a total of 35 patients. For the rest of this example, we will

use the bundle notation.

Allocation

1. Results: Dose = 1, Group = (1,1), No DLT, j(1,1) = 2, j(2,1) = NA, j(2,2) = NA

Comment: As we do not have any observations from either Groups (2, 1) or (2, 2),

the first patient from Group (1, 1) is assigned to dose level 1. No DLT is observed,

thus the DLT rate for Group (1, 1) at dose level 1 is π̂(1,1),1 = 0/1 ≤ 0.157. As a

result, Group (1, 1) escalates to dose level 2, so j(1,1) = 2.

2. Results: Dose = 1, Group = (2,2), No DLT, j(1,1) = 2, j(2,1) = NA, j(2,2) = 2

Comment: As Group (2, 2) is in the sensitive bundle, it cannot start at the cur-

rent dose level for Group (1, 1), thus the first patient in Group (2, 2) is assigned to

dose level 1. No DLT is observed, thus the DLT rate for Group (2, 2) at dose level 1

is π̂(2,2),1 = 0/1 ≤ 0.157. As a result, (2, 2) escalates to dose level 2, so j(2,2) = 2.

3. Results: Dose = 2, Group = (1,1), No DLT, j(1,1) = 3, j(2,1) = NA, j(2,2) = 2
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4. Results: Dose = 3, Group = (1,1), No DLT, j(1,1) = 4, j(2,1) = NA, j(2,2) = 2

5. Results: Dose = 1, Group = (2,1), No DLT, j(1,1) = 4, j(2,1) = 2, j(2,2) = 2

Comment: As Group (2, 1) is in the sensitive bundle, it starts at the lowest dose

level, thus the first patient in Group (2, 1) is assigned to dose level 1. No DLT is

observed, thus the DLT rate for Group (2, 1) at dose level 1 is π̂(2,1),1 = 0/1 ≤ 0.157.

As a result, Group (2, 1) escalates to dose level 2, so j(2,1) = 2.

6. Results: Dose = 2, Group = (2,2), No DLT, j(1,1) = 4, j(2,1) = 2, j(2,2) = 3

Comment: We observe Group (2, 2) at dose level 2. No DLT is observed, thus the

DLT rate for Group (2, 2) at dose level 2 is π̂(2,2),2 = 0/1 ≤ 0.157. As a result, Group

(2, 2) escalates to dose level 3, so j(2,2) = 3. Note that j(2,2) is not constrained by

j(2,1) as j(2,2) is only constrained by j(1,1), the current recommended dose for the less

sensitive group.

7. Results: Dose = 2, Group = (2,1), No DLT, j(1,1) = 4, j(2,1) = 3, j(2,2) = 3

8. Results: Dose = 4, Group = (1,1), No DLT, j(1,1) = 5, j(2,1) = 3, j(2,2) = 3

9. Results: Dose = 3, Group = (2,1), No DLT, j(1,1) = 5, j(2,1) = 4, j(2,2) = 3

10. Results: Dose = 4, Group = (2,1), DLT, j(1,1) = 5, j(2,1) = 3, j(2,2) = 3

11. Results: Dose = 3, Group = (2,2), No DLT, j(1,1) = 5, j(2,1) = 3, j(2,2) = 4

12. Results: Dose = 5, Group = (1,1), DLT, j(1,1) = 4, j(2,1) = 3, j(2,2) = 4

13. Results: Dose = 4, Group = (2,2), No DLT, j(1,1) = 5, j(2,1) = 3, j(2,2) = 5

Comment: We observed Group (2, 2) at dose level 4. No DLT is observed and

the current DLT rate for Group (2, 2) at dose level 4 is π̂(2,2),4 = 0/1 ≤ 0.157,
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thus Group (2, 2) escalates to dose level 5. However, we now have j(2,2) = 5 and

j(1,1) = 4, giving j(1,1) < j(2,2). As a result, we consider a pooled average at the

dose level Group (2, 2) escalated from, this being dose level 4. We have Pooled =

(y(1,1),4 + y(2,2),4)/(n(1,1),4 + n(2,2),4) = (0 + 0)/(1 + 1) = 0 ≤ 0.157, thus Group (1, 1)

also escalates to dose level 5, giving j(1,1) = 5

14. Results: Dose = 5, Group = (1,1), DLT, j(1,1) = 4, j(2,1) = 3, j(2,2) = 4

Comment: Group (1, 1) is treated at dose level 5. A DLT is observed and the current

DLT rate for Group (1, 1) at dose level 5 is π̂(1,1),5 = 2/2 = 1 ≥ 0.238, thus Group

(1, 1) de-escalates to dose level 4. However, we now have j(1,1) < j(2,2), so we consider

a pooled average at the dose level Group (1, 1) de-escalated from, this being dose level

5. We have Pooled = (y(1,1),5+y(2,2),5)/(n(1,1),5+n(2,2),5) = (2+0)/(2+0) = 1 ≥ 0.238,

so Group (2, 2) de-escalates to dose level 4.

15. Results: Dose = 4, Group = (1,1), No DLT, j(1,1) = 5, j(2,1) = 3, j(2,2) = 4

16. Results: Dose = 5, Group = (1,1), No DLT, j(1,1) = 4, j(2,1) = 3, j(2,2) = 4

17. Results: Dose = 3, Group = (2,1), No DLT, j(1,1) = 4, j(2,1) = 4, j(2,2) = 4

18. Results: Dose = 4, Group = (1,1), No DLT, j(1,1) = 5, j(2,1) = 4, j(2,2) = 4

19. Results: Dose = 4, Group = (2,2), No DLT, j(1,1) = 5, j(2,1) = 4, j(2,2) = 5

20. Results: Dose = 5, Group = (2,2), No DLT, j(1,1) = 5, j(2,1) = 4, j(2,2) = 5

Comment: Group (2, 2) is treated at dose level 5. A DLT is not observed. Thus,

the current DLT rate for Group (2, 2) at dose level 5 is π̂(2,2),5 = 0/1 = 0 ≤ 0.157,

from this Group (2, 2) escalates dose levels so j(2,2) = 6. However, as j(1,1) = 5,

we now have j(1,1) < j(2,2). As a result, we consider a pooled average at the

dose level Group (2, 2) escalated from, this being dose level 5. Then, Pooled =
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(y(1,1),5+y(2,2),5)/(n(1,1),5+n(2,2),5) = (2+0)/(3+1) = 0.5. As it is not the case that

Pooled ≤ 0.157, we return Group (2, 2) to dose level 5.

21. Results: Dose = 4, Group = (2,1), DLT, j(1,1) = 5, j(2,1) = 3, j(2,2) = 5

22. Results: Dose = 3, Group = (2,1), DLT, j(1,1) = 5, j(2,1) = 2, j(2,2) = 5

23. Results: Dose = 2, Group = (2,1), DLT, j(1,1) = 5, j(2,1) = 1, j(2,2) = 5

24. Results: Dose = 5, Group = (2,2), DLT, j(1,1) = 5, j(2,1) = 1, j(2,2) = 4

25. Results: Dose = 4, Group = (2,2), No DLT, j(1,1) = 5, j(2,1) = 1, j(2,2) = 5

26. Results: Dose = 5, Group = (2,2), DLT, j(1,1) = 5, j(2,1) = 1, j(2,2) = 4

27. Results: Dose = 1, Group = (2,1), No DLT, j(1,1) = 5, j(2,1) = 2, j(2,2) = 4

28. Results: Dose = 4, Group = (2,2), No DLT, j(1,1) = 5, j(2,1) = 2, j(2,2) = 5

29. Results: Dose = 5, Group = (1,1), DLT, j(1,1) = 4, j(2,1) = 2, j(2,2) = 4

Comment: Group (1, 1) is treated at dose level 5 and a DLT is observed. The current

DLT rate for Group (1, 1) at dose level 5 is π̂(1,1),5 = 3/4 ≥ 0.257, so Group (1, 1)

de-escalates. However, as j(1,1) = 4, we now have j(1,1) < j(2,2), so we consider a

pooled average at the dose level Group (1, 1) de-escalated from, this being dose level

5. Then, Pooled = (y(1,1),5 + y(2,2),5)/(n(1,1),5 + n(2,2),5) = (3 + 2)/(4 + 3) = 5/7.

As it is not the case that Pooled ≤ 0.257, Group (2, 2) also de-escalates to dose

level 4. Additionally, using Table B.16, noting n(1,1),5 = 4 and y(1,1),5 = 3, we

consider eliminating dose level 5, and all higher dose levels, from Group (1, 1). How-

ever, as Group (1, 1) is the least sensitive group, if we eliminate dose level 5 from

Group (1, 1), dose level 5 would be eliminated for both Groups (2, 1) and (2, 2).

As a result, we consider nPooled = n(1,1),5 + n(1,2),5 + n(2,1),5 = 4 + 0 + 3 = 7 and

yPooled = y(1,1),5+y(1,2),5+y(2,1),5 = 3+0+2 = 5. Using Table B.16, we see that this
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combination of nPooled and yPooled falls into the elimination boundary. Thus, dose

levels 5 and 6 are eliminated for all groups.

30. Results: Dose = 2, Group = (2,1), No DLT, j(1,1) = 4, j(2,1) = 1, j(2,2) = 4

31. Results: Dose = 4, Group = (1,1), No DLT, j(1,1) = 4, j(2,1) = 1, j(2,2) = 4

Comment: Note, the although the current DLT rate for Group (1, 1) at dose level 4

is π̂(1,1),4 = 0 ≤ 0.157, Group (1, 1) does not escalate to dose level 5 as this dose level

has been eliminated.

32. Results: Dose = 1, Group = (2,1), No DLT, j(1,1) = 4, j(2,1) = 2, j(2,2) = 4

33. Results: Dose = 2, Group = (2,1), DLT, j(1,1) = 4, j(2,1) = 1, j(2,2) = 4

34. Results: Dose = 1, Group = (2,1), No DLT, j(1,1) = 4, j(2,1) = 2, j(2,2) = 4

35. Results: Dose = 2, Group = (2,1), DLT, j(1,1) = 4, j(2,1) = 1, j(2,2) = 4

We observed Group (2, 1) at dose level 2 and a DLT was observed. The DLT rate for

Group (2, 1) at dose level 2 resulted in j(2,1) decreasing to dose level 1. Referencing

Table B.16, we note that n(2,1),2 = 5 and y(2,1),2 = 3, resulting in dose level 2, and

all higher dose levels, being eliminated for Group (2, 1). Dose elimination for Group

(2, 1) does not affect dose elimination for other groups as Group (2, 1) is in the sensi-

tive bundle, as a result, we do not need to ”pool” values before eliminating this dose

level.

MTD Estimation

As the trial has concluded, DLT estimates will be obtained by applying bivariate isotonic

regression to all possible complete orders given the known partial order. The DLT estimates

with the highest likelihood will be utilized for dose selection.
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First, we review the DLT observation, by group and dose level. The number of observation,

n(b,g),k, by Group and dose level are provided in Table B.10.

n(b,g),k Dose Level
Group 1 2 3 4 5 6
(1,1) 1 1 1 4 4 0
(2,1) 4 5 3 2 0 0
(2,2) 1 1 1 4 3 0

Table B.10: Number of Observations by Group and Dose Level

Next, the number of DLTs, y(b,g),k, by Group and dose level are provided in Table B.11.

y(b,g),k Dose Level
Group 1 2 3 4 5 6
(1,1) 0 0 0 0 3 0
(2,1) 0 3 1 2 0 0
(2,2) 0 0 0 0 2 0

Table B.11: Number of DLTs by Group and Dose Level

Next, smoothed proportions, π̂s
(b,g),k, are obtained as

π̂s
(b,g),k =

y(b,g),k + 0.05

n(b,g),k + 0.1
.

Table B.12 provides the smoothed DLT proportions by group and dose level.

π̂s
(b,g),k Dose Level

Group 1 2 3 4 5 6
(1,1) 0.04545455 0.04545455 0.04545455 0.01219512 0.7439024 0.5
(2,1) 0.01219512 0.5980392 0.3387097 0.9761905 0.5 0.5
(2,2) 0.04545455 0.04545455 0.04545455 0.01219512 0.6612903 0.5

Table B.12: Smoothed DLT Proportions by Group and Dose Level

Similar to the two group example, we will use the weights n(b,g),k + 1 for the bivariate

isotonic regression algorithm. These weights are provided in Table B.13.
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n(b,g),k + 1 Dose Level
Group 1 2 3 4 5 6
(1,1) 2 2 2 5 5 1
(2,1) 5 6 4 3 1 1
(2,2) 2 2 2 5 4 1

Table B.13: Number of Observations by Group and Dose Level

In our example there are two bundles, the first with one group and the second with two

groups. Thus, from permuting the two groups in bundle two, we obtain two complete orders:

π(1,1),k ≤π(2,1),k ≤ π(2,2),k

π(1,1),k ≤π(2,2),k ≤ π(2,1),k

Let m = 1 denote the model obtained from the first complete order and m = 2 denote

the model obtained from the second complete order. We will then apply bivariate isotonic

regression to regression to the two matrices below

π̂s
(1,1),1 π̂s

(1,1),2 π̂s
(1,1),3 π̂s

(1,1),4 π̂s
(1,1),5 π̂s

(1,1),6

π̂s
(2,1),1 π̂s

(2,1),2 π̂s
(2,1),3 π̂s

(2,1),4 π̂s
(2,1),5 π̂s

(2,1),6

π̂s
(2,2),1 π̂s

(2,2),2 π̂s
(2,2),3 π̂s

(2,2),4 π̂s
(2,2),5 π̂s

(2,2),6

π̂s
(1,1),1 π̂s

(1,1),2 π̂s
(1,1),3 π̂s

(1,1),4 π̂s
(1,1),5 π̂s

(1,1),6

π̂s
(2,2),1 π̂s

(2,2),2 π̂s
(2,2),3 π̂s

(2,2),4 π̂s
(2,2),5 π̂s

(2,2),6

π̂s
(2,1),1 π̂s

(2,1),2 π̂s
(2,1),3 π̂s

(2,1),4 π̂s
(2,1),5 π̂s

(2,1),6,

that is,
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0.0454 0.0454 0.0454 0.0121 0.744 0.5

0.0121 0.598 0.339 0.976 0.5 0.5

0.0454 0.0454 0.0454 0.0121 0.611 0.5

0.0454 0.0454 0.0454 0.0121 0.744 0.5

0.0454 0.0454 0.0454 0.0121 0.661 0.5

0.0121 0.598 0.339 0.976 0.5 0.5,

From applying bivariate isotonic regression to the first set of matrices, we obtain the DLT

estimates for model 1, as provided in Table B.14.

π̃m=1
(b,g),k Dose Level

Group 1 2 3 4 5 6
(1,1) 0.02169781 0.02697709 0.02697709 0.02697709 0.6434364 0.6434364
(2,1) 0.02169781 0.36606373 0.36606373 0.37369339 0.6434364 0.6434364
(2,2) 0.04545455 0.36606373 0.36606373 0.37369339 0.6434364 0.6434364

Table B.14: DLT Estimates by Group and Dose Level for Model 1

From applying bivariate isotonic regression to the second set of matrices, we obtain the

DLT estimates for model 2, as provided in Table B.15.

π̃m=2
(b,g),k Dose Level

Group 1 2 3 4 5 6
(1,1) 0.02697709 0.02697709 0.02697709 0.02697709 0.6695157 0.6695157
(2,2) 0.02697709 0.02697709 0.02697709 0.02697709 0.6695157 0.6695157
(2,1) 0.02697708 0.49430740 0.49430740 0.78571430 0.7857143 0.7857143

Table B.15: DLT Estimates by Group and Dose Level for Model 2

We then select the model m′, that maximizes the likelihood, so m′ = argmaxmL
(
π̃m
(b,g),k

)
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Here,

L
(
π̃m
(b,g),k

)
=

6∏
k=1

π̃m
(1,1),k

y(1,1),k(1− π̃m
(1,1),k)

n(1,1),k−y(1,1),k

×
6∏

k=1

π̃m
(2,1),k

y(2,1),k(1− π̃m
(2,1),k)

n(2,1),k−y(2,1),k

×
6∏

k=1

π̃m
(2,2),k

y(2,2),k(1− π̃m
(2,2),k)

n(2,2),k−y(2,2),k

We obtain that L
(
π̃m=1
(b,g),k

)
= 2.54×10−07 and L

(
π̃m=2
(b,g),k

)
= 2.16×10−05, thus we use DLT

estimates from model 2 for dose selection.

Now, let A(b,g) denote the admissible dose levels for Group (b, g). We obtain A(1,1) =

{1, 2, 3, 4}, A(2,1) = {1}, and A(2,2) = {1, 2, 3, 4}. We then select the admissible dose levels

with DLT estimates closest to 0.2. Thus, the MTD estimate for Group (1, 1) is 4, the MTD

estimate for Group (2, 1) is 1, and the MTD estimate for Group (2, 2) is 4.

B.4.3 Dose Elimination Boundaries

Number of Patients Treated 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Elimination Boundary NA NA 3 3 3 4 4 5 5 5 6 6 6 6 7

Table B.16: Dose elimination boundaries based on number of patients treated and
number of DLTS. For these boundaries we require that more than 3 patients have
been observed. Additionally, we use the prior Beta(0.5,0.5) and the cutoff λ = 0.975.

B.5 | Sensitivity Analysis

The following supplemental materials provide sensitivity analysis results. Tables B.17, B.18,

and B.19 look at model sensitivity to cohort size and unequal groups. The Cohorts column

states if the simulation considers single patient cohorts or cohorts of three. The Group
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Probs column provides the probability that the next patient belongs to Group 1, Group 2,

or Group 3. Table B.17 provides dose selection results, providing the statistics PCS and

AI. Table B.18 provides dose allocation results, providing the statistics PCA and Int. Table

B.19 provides early termination results, providing the percentage of trials in which a group

is terminated from the trial. Overall, these results show the proposed method is robust.

In Section 3.5, we consider adding dose-elimination rules. To add dose-elimination rules,

we assume π ∼ Beta(0.5, 0.5) and eliminate doses if the probability of excessive probability

exceeds λ = 0.975. In this sensitivity analysis, we test sensitivity to the prior Beta(0.5, 0.5)

(called Jeffery’s Prior) and the choice of the cutoff λ = 0.975. To test model sensitivity, we

also consider the results from using a Beta(1, 1) (equivalent to a Uniform) prior and using a

cutoff of λ = 0.95. In these simulations, for simplicity, we consider trials with single-patient

cohorts. Tables B.20 and B.21, provide selection and allocation results, respectively. These

results show the proposed method is robust to the choice of prior.

Selection

Cohorts PCS AI

G Scenario D Size Number Group Probs GAB PB GAB-E PB-E GAB PB GAB-E PB-E

2 C 4 1 30 (.5,.5) 50 45.9 47.8 44.2 45.8 39.3 44.3 38.4

2 C 4 1 30 (.4,.6) 49.9 45.8 47.5 43.6 45.7 39 44.1 37.6

2 C 4 3 10 (.5,.5) 47.2 44.3 46.2 43 41.1 35 41 34.4

2 C 4 1 50 (.5,.5) 55.3 52 52 49.6 53.1 48.3 50.8 46.8

2 C 4 1 50 (.4,.6) 55.5 52 52.2 48.9 53.3 48.2 51.4 46.4

2 C 4 3 17 (.5,.5) 54.4 50.9 52.5 49.5 51.6 46.4 50.3 45.7

2 C 4 1 70 (.5,.5) 59.7 56.7 55.7 52.8 58.1 54.3 55.8 51.3

2 C 4 1 70 (.4,.6) 59.6 56.6 55.7 53.5 57.9 54 55.9 52.3

2 C 4 3 24 (.5,.5) 59.2 56.6 56.5 54.3 57.6 53.9 56.2 52.6

2 C 6 1 40 (.5,.5) 41.3 38.6 40.1 37.1 52.1 46.6 51.9 46

2 C 6 1 40 (.4,.6) 41.6 38.8 39.9 37.2 52.1 46.3 51.4 45.8

2 C 6 3 14 (.5,.5) 38.1 35.5 37.1 34.7 47.7 41.7 47.2 41.1

2 C 6 1 60 (.5,.5) 45.9 43.6 44.3 42.1 58.1 53.8 57.4 53.3

2 C 6 1 60 (.4,.6) 46.5 43.9 44.5 42.5 58.2 53.7 57.2 53.2

2 C 6 3 20 (.5,.5) 43.5 41.1 42 39.6 55.1 50.2 54.4 49.3

2 C 6 1 80 (.5,.5) 50.4 48.1 47.3 45.7 62.6 59.2 60.9 57.9
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2 C 6 1 80 (.4,.6) 50.6 48.4 47.7 45.8 62.6 58.9 61 57.6

2 C 6 3 27 (.5,.5) 48.5 46.1 46.7 44.5 60.8 56.7 59.8 55.9

3 1 4 1 40 (.33,.33,.33) 52.2 46.6 50.4 44.8 48.3 37.8 47.5 36.7

3 1 4 1 40 (.2,.4,.4) 52.2 46.8 50.3 44.7 47.8 37.8 47.3 36.5

3 1 4 3 14 (.33,.33,.33) 50.1 44.3 48.9 43.3 46 35.4 45.3 34.7

3 1 4 1 60 (.33,.33,.33) 56.8 51.4 54.2 49 53.9 45 52.5 43.6

3 1 4 1 60 (.2,.4,.4) 56.5 51.4 54.2 48.6 53.4 44.7 52.5 43.5

3 1 4 3 20 (.33,.33,.33) 55.2 49.7 53.5 48.1 52.3 43 51.5 42.3

3 1 4 1 80 (.33,.33,.33) 60.4 55.3 57.2 52.6 57.9 50.2 56.3 48.8

3 1 4 1 80 (.2,.4,.4) 60.5 55.4 57.1 52.2 57.8 50.1 56.1 48.5

3 1 4 3 27 (.33,.33,.33) 59.4 54.1 57.2 52.2 57.2 49.1 56.1 48.3

3 1 6 1 60 (.33,.33,.33) 44.1 39.6 42.6 37.9 55.7 47.4 54.9 46.5

3 1 6 1 60 (.2,.4,.4) 44.3 39.5 42.6 37.5 55.3 46.2 54.6 45.5

3 1 6 3 20 (.33,.33,.33) 39.4 35 38.2 34.1 50.2 40.9 49.7 40.6

3 1 6 1 80 (.33,.33,.33) 47.6 43.2 45.5 41.3 59.6 52.5 58.8 51.5

3 1 6 1 80 (.2,.4,.4) 47.8 43 45.5 40.9 59.2 51.6 58.2 50.7

3 1 6 3 27 (.33,.33,.33) 44.1 39.6 42.5 38.2 56.2 48 55.5 47.5

3 1 6 1 100 (.33,.33,.33) 50.3 46.4 47.6 43.8 62.5 56.4 61.2 55.2

3 1 6 1 100 (.2,.4,.4) 50.5 46.2 47.7 43.7 62.2 55.6 61 54.8

3 1 6 3 34 (.33,.33,.33) 47.8 43.4 46 41.7 60.5 53.4 59.6 52.7

3 2 4 1 40 (.33,.33,.33) 50.5 46.4 48.8 44.7 45.2 38.5 44.4 37.4

3 2 4 1 40 (.2,.4,.4) 50.7 46.4 48.6 44.3 45.6 38.3 44.6 37.2

3 2 4 3 14 (.33,.33,.33) 47.8 43.5 46.6 42.4 41.1 33.8 40.4 33.3

3 2 4 1 60 (.33,.33,.33) 54.8 51 52.4 48.9 51.3 45.6 50 44.5

3 2 4 1 60 (.2,.4,.4) 55.2 51.1 52.4 48.4 51.6 45.4 50.3 44

3 2 4 3 20 (.33,.33,.33) 53 48.8 51.4 47.4 48.4 42.1 47.7 41.4

3 2 4 1 80 (.33,.33,.33) 58.6 55 55.1 51.9 55.9 50.8 53.7 49

3 2 4 1 80 (.2,.4,.4) 59 55 55.3 51.7 56.2 50.6 54.1 48.9

3 2 4 3 27 (.33,.33,.33) 57.3 53.5 55.4 51.7 54.2 48.8 53.3 47.8

3 2 6 1 60 (.33,.33,.33) 43 39.8 41.5 38.1 53.1 47.2 52.3 46.3

3 2 6 1 60 (.2,.4,.4) 43.6 39.6 41.7 37.9 53.3 46.2 52.4 45.5

3 2 6 3 20 (.33,.33,.33) 37.9 34.9 36.9 34 46.6 40.3 46.1 39.9

3 2 6 1 80 (.33,.33,.33) 46.7 43.5 44.5 41.6 57.4 52.4 56.4 51.4

3 2 6 1 80 (.2,.4,.4) 47.2 43.5 44.8 41.3 57.6 51.8 56.5 50.8

3 2 6 3 27 (.33,.33,.33) 42.9 39.7 41.4 38.2 53.3 47.7 52.6 47

3 2 6 1 100 (.33,.33,.33) 49.7 46.8 47 44.3 60.8 56.4 59.3 55.2

3 2 6 1 100 (.2,.4,.4) 50.2 46.7 47.4 44.1 60.9 55.8 59.5 54.6
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3 2 6 3 34 (.33,.33,.33) 46.7 43.7 45 41.9 57.9 53.1 57.1 52.3

3 3 4 1 40 (.33,.33,.33) 49.5 45.5 47.6 43.6 45.5 38.6 44.8 37.4

3 3 4 1 40 (.2,.4,.4) 49 45.4 47.3 43.6 44.5 37.8 44 37

3 3 4 3 14 (.33,.33,.33) 48.2 44.6 46.7 43.3 41.4 34.8 40.6 34.1

3 3 4 1 60 (.33,.33,.33) 53.9 50.2 51.2 47.8 51.4 45.8 50.2 44.4

3 3 4 1 60 (.2,.4,.4) 53.5 50.1 50.7 47.4 50.6 44.9 49.3 43.8

3 3 4 3 20 (.33,.33,.33) 52.8 49.3 51 47.7 48.5 42.7 47.7 41.9

3 3 4 1 80 (.33,.33,.33) 57.1 53.7 54 50.6 55.4 50.6 54 48.8

3 3 4 1 80 (.2,.4,.4) 56.8 53.7 53.4 50.5 54.7 49.9 53 48.6

3 3 4 3 27 (.33,.33,.33) 56.8 53.7 54.5 51.5 54.1 49 53.1 48.2

3 3 6 1 60 (.33,.33,.33) 43.1 39.9 41.4 38.2 53 47.6 52.4 47

3 3 6 1 60 (.2,.4,.4) 42.7 39.6 41 38 51.9 46.4 51.3 45.7

3 3 6 3 20 (.33,.33,.33) 38.5 35.8 37.4 34.8 47.6 42.1 47.1 41.7

3 3 6 1 80 (.33,.33,.33) 46.6 43.7 44.5 41.6 57.3 52.9 56.5 52

3 3 6 1 80 (.2,.4,.4) 46.3 43.4 43.9 41.2 56.3 51.8 55.4 50.9

3 3 6 3 27 (.33,.33,.33) 43.2 40.3 41.6 38.9 53.8 49.1 53.2 48.5

3 3 6 1 100 (.33,.33,.33) 49.5 46.8 47 44.2 60.6 56.8 59.6 55.7

3 3 6 1 100 (.2,.4,.4) 49 46.5 46.3 43.9 59.4 55.7 58.3 54.8

3 3 6 3 34 (.33,.33,.33) 46.7 44.2 45 42.5 58.2 54.2 57.5 53.5

Table B.17: Selection Results from Sensitivity Analysis: Percentage correct selection
(PCS) and Accuracy Index (AI) by the number of groups (G), scenario, number of
doses (D), cohort size, number of cohorts, Group Membership Probabilities (Group
Probs), and method.

Allocation

Cohorts PCA Int

G Scenario D Size Number Group Probs GAB PB GAB-E PB-E GAB PB GAB-E PB-E

2 C 4 1 30 (.5,.5) 40.8 36.7 40.6 37.2 49.4 44.6 49.1 45.1

2 C 4 1 30 (.4,.6) 40.6 36.4 40.5 36.5 49.2 44.1 49.1 44.3

2 C 4 3 10 (.5,.5) 37.6 34.5 37.6 34.5 44.8 40.7 44.9 40.8

2 C 4 1 50 (.5,.5) 44.1 40.3 44.2 40.6 53 48.6 53.1 48.9

2 C 4 1 50 (.4,.6) 43.9 40.1 44.2 40.4 52.9 48.3 53.1 48.6

2 C 4 3 17 (.5,.5) 42.4 39.3 42.6 39.6 50.5 46.6 50.7 46.8

2 C 4 1 70 (.5,.5) 46.7 43.1 46.8 43.5 55.8 51.5 56 51.9

2 C 4 1 70 (.4,.6) 46.6 43 47.1 43.7 55.8 51.4 56.3 52.1

2 C 4 3 24 (.5,.5) 45.5 42.5 45.7 42.8 54 50.2 54.4 50.5
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2 C 6 1 40 (.5,.5) 31.9 28.9 32.2 29.2 38.3 34.8 38.7 35.2

2 C 6 1 40 (.4,.6) 32 28.6 32.2 28.9 38.4 34.4 38.7 34.7

2 C 6 3 14 (.5,.5) 28 25.7 28.2 25.9 33 29.9 33.1 30

2 C 6 1 60 (.5,.5) 34.7 31.8 35.5 32.5 41.6 38.3 42.5 39.1

2 C 6 1 60 (.4,.6) 34.9 31.8 35.6 32.6 41.8 38.1 42.5 39

2 C 6 3 20 (.5,.5) 31.6 29.2 31.6 29.2 37.4 34.2 37.4 34.2

2 C 6 1 80 (.5,.5) 37.4 34.7 37.9 35.3 44.7 41.5 45.2 42.2

2 C 6 1 80 (.4,.6) 37.5 34.5 38.1 35.3 44.8 41.2 45.3 42

2 C 6 3 27 (.5,.5) 34.8 32.2 34.9 32.4 41.2 37.9 41.2 38.1

3 1 4 1 40 (.33,.33,.33) 41.6 37.3 41.7 37.3 44 39.4 44.1 39.4

3 1 4 1 40 (.2,.4,.4) 41.4 36.2 41.9 36.4 43.7 38.2 44.2 38.4

3 1 4 3 14 (.33,.33,.33) 39.4 34.4 39.6 34.4 41.5 36.1 41.6 36.1

3 1 4 1 60 (.33,.33,.33) 44.1 40.1 44.5 40.5 46.6 42.2 47 42.7

3 1 4 1 60 (.2,.4,.4) 44.1 39.4 44.7 40 46.4 41.5 47.1 42.1

3 1 4 3 20 (.33,.33,.33) 42.9 37.9 42.8 37.9 45.1 39.9 45.1 39.8

3 1 4 1 80 (.33,.33,.33) 46.4 42.5 47.1 43.1 48.9 44.7 49.7 45.3

3 1 4 1 80 (.2,.4,.4) 46.4 42 47.2 42.6 48.8 44.2 49.7 44.8

3 1 4 3 27 (.33,.33,.33) 45.7 41 45.6 41 48.1 43.1 48.1 43.1

3 1 6 1 60 (.33,.33,.33) 33 29.5 33.4 29.7 41.1 36.5 41.5 36.8

3 1 6 1 60 (.2,.4,.4) 33.1 28.6 33.7 28.9 41.1 35.4 41.8 35.8

3 1 6 3 20 (.33,.33,.33) 29.2 25.7 29.2 25.7 35.4 30.4 35.4 30.4

3 1 6 1 80 (.33,.33,.33) 35.1 31.7 35.6 32.1 43.6 39.2 44.2 39.6

3 1 6 1 80 (.2,.4,.4) 35.3 31 36 31.5 43.7 38.2 44.4 38.8

3 1 6 3 27 (.33,.33,.33) 32.1 28.4 32.1 28.5 39.1 34.1 39.1 34.2

3 1 6 1 100 (.33,.33,.33) 36.9 33.7 37.5 34.1 45.7 41.4 46.3 42

3 1 6 1 100 (.2,.4,.4) 37.1 33.1 37.9 33.7 45.8 40.7 46.7 41.4

3 1 6 3 34 (.33,.33,.33) 34.3 30.7 34.5 30.8 42 37.1 42.2 37.2

3 2 4 1 40 (.33,.33,.33) 41.6 37 41.7 37.2 44.7 39.8 44.7 39.9

3 2 4 1 40 (.2,.4,.4) 41.6 35.7 41.8 36 44.8 38.4 45 38.7

3 2 4 3 14 (.33,.33,.33) 37.5 33.3 37.5 33.3 39.4 35.1 39.4 35.1

3 2 4 1 60 (.33,.33,.33) 44.3 39.9 44.7 40.2 47.6 42.8 47.9 43.1

3 2 4 1 60 (.2,.4,.4) 44.5 39.2 44.9 39.5 47.9 42.1 48.2 42.4

3 2 4 3 20 (.33,.33,.33) 41.2 36.9 41.2 37 43.5 39.1 43.5 39.1

3 2 4 1 80 (.33,.33,.33) 46.5 42.2 46.8 42.6 49.8 45.2 50.1 45.6

3 2 4 1 80 (.2,.4,.4) 46.8 41.7 47.1 42.2 50.2 44.7 50.5 45.2

3 2 4 3 27 (.33,.33,.33) 44.3 40.2 44.4 40.3 46.9 42.6 47 42.6

3 2 6 1 60 (.33,.33,.33) 33 29.5 33.4 29.7 39.9 35.7 40.3 35.9
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3 2 6 1 60 (.2,.4,.4) 33.3 28.5 33.6 28.9 40.2 34.5 40.5 34.9

3 2 6 3 20 (.33,.33,.33) 27.8 25.3 27.9 25.4 32.6 29.3 32.6 29.4

3 2 6 1 80 (.33,.33,.33) 35.3 31.7 35.6 32.2 42.5 38.3 42.9 38.8

3 2 6 1 80 (.2,.4,.4) 35.6 31.1 36.1 31.6 42.8 37.4 43.3 38

3 2 6 3 27 (.33,.33,.33) 30.9 28.2 31 28.2 36.5 33 36.5 33

3 2 6 1 100 (.33,.33,.33) 37.2 33.8 37.6 34.2 44.7 40.6 45.2 41.1

3 2 6 1 100 (.2,.4,.4) 37.6 33.2 38.1 33.8 45 39.9 45.6 40.5

3 2 6 3 34 (.33,.33,.33) 33.4 30.5 33.5 30.6 39.6 35.9 39.7 36

3 3 4 1 40 (.33,.33,.33) 41.1 37 41.3 37.1 46.8 41.8 46.8 41.9

3 3 4 1 40 (.2,.4,.4) 40.5 36.3 40.9 36.7 46 41 46.3 41.3

3 3 4 3 14 (.33,.33,.33) 38.7 35.2 38.6 35.2 42.9 38.7 42.8 38.6

3 3 4 1 60 (.33,.33,.33) 43.7 39.7 44 40.1 49.4 44.8 49.8 45.1

3 3 4 1 60 (.2,.4,.4) 43.2 39.4 43.6 39.8 48.9 44.3 49.3 44.7

3 3 4 3 20 (.33,.33,.33) 41.9 38.5 41.8 38.4 46.6 42.4 46.5 42.4

3 3 4 1 80 (.33,.33,.33) 45.8 41.8 46.2 42.3 51.6 47 52.1 47.5

3 3 4 1 80 (.2,.4,.4) 45.3 41.6 45.8 42.2 51.1 46.7 51.7 47.3

3 3 4 3 27 (.33,.33,.33) 44.7 41.4 44.8 41.5 49.7 45.8 49.8 45.9

3 3 6 1 60 (.33,.33,.33) 33.1 29.8 33.5 30.1 39.8 35.6 40.2 36

3 3 6 1 60 (.2,.4,.4) 32.8 29.3 33.2 29.7 39.4 35 39.9 35.5

3 3 6 3 20 (.33,.33,.33) 29 26.5 29 26.6 33.5 30.2 33.5 30.3

3 3 6 1 80 (.33,.33,.33) 35.4 32 35.8 32.5 42.4 38.3 42.9 38.8

3 3 6 1 80 (.2,.4,.4) 35 31.7 35.5 32.1 42 37.7 42.5 38.2

3 3 6 3 27 (.33,.33,.33) 31.8 29.2 31.8 29.3 37.1 33.6 37.2 33.7

3 3 6 1 100 (.33,.33,.33) 37.2 34 37.7 34.5 44.5 40.5 45.1 41.1

3 3 6 1 100 (.2,.4,.4) 36.9 33.7 37.3 34.3 44.1 40 44.7 40.7

3 3 6 3 34 (.33,.33,.33) 34.1 31.4 34.2 31.7 40 36.5 40.1 36.7

Table B.18: Allocation Results from Sensitivity Analysis:
Percentage correct allocation (PCA) and percentage of allocations to doses with DLT
probability in the interval (λe, λd) (Int) by the number of groups (G), scenario, number
of doses (D), cohort size, number of cohorts, Group Membership Probabilities (Group
Probs), and method.

Terminated Early

Cohorts Group 1 Group 2 Group 3 Average

G Scenario D Size Number Group Probs GAB-E PB-E GAB-E PB-E GAB-E PB-E GAB-E PB-E

2 C 4 1 30 (.5,.5) 0.285 0.685 4.09 3.7 NA NA 2.188 2.193
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2 C 4 1 30 (.4,.6) 0.19 0.605 4.3 3.915 NA NA 2.245 2.26

2 C 4 3 10 (.5,.5) 0.305 0.375 2.295 2.065 NA NA 1.3 1.22

2 C 4 1 50 (.5,.5) 0.28 0.86 5.125 4.445 NA NA 2.703 2.653

2 C 4 1 50 (.4,.6) 0.265 0.76 5.51 5.11 NA NA 2.888 2.935

2 C 4 3 17 (.5,.5) 0.285 0.54 3.375 3.31 NA NA 1.83 1.925

2 C 4 1 70 (.5,.5) 0.34 0.865 6.17 5.55 NA NA 3.255 3.208

2 C 4 1 70 (.4,.6) 0.38 0.765 6.77 5.89 NA NA 3.575 3.328

2 C 4 3 24 (.5,.5) 0.385 0.59 4.315 3.92 NA NA 2.35 2.255

2 C 6 1 40 (.5,.5) 0.14 0.386 3.226 2.831 NA NA 1.683 1.608

2 C 6 1 40 (.4,.6) 0.121 0.369 3.45 3.086 NA NA 1.786 1.727

2 C 6 3 14 (.5,.5) 0.11 0.181 1.962 1.733 NA NA 1.036 0.957

2 C 6 1 60 (.5,.5) 0.152 0.462 3.881 3.314 NA NA 2.017 1.888

2 C 6 1 60 (.4,.6) 0.148 0.34 3.85 3.681 NA NA 1.999 2.011

2 C 6 3 20 (.5,.5) 0.138 0.31 2.621 2.376 NA NA 1.38 1.343

2 C 6 1 80 (.5,.5) 0.214 0.536 4.074 3.995 NA NA 2.144 2.265

2 C 6 1 80 (.4,.6) 0.14 0.421 4.443 4.238 NA NA 2.292 2.33

2 C 6 3 27 (.5,.5) 0.155 0.29 2.95 2.743 NA NA 1.552 1.517

3 1 4 1 40 (.33,.33,.33) 0.075 0.403 0.75 1.498 5.128 4.26 1.984 2.053

3 1 4 1 40 (.2,.4,.4) 0.058 0.298 0.733 1.653 5.703 4.905 2.164 2.285

3 1 4 3 14 (.33,.33,.33) 0.095 0.213 0.685 0.888 3.343 2.553 1.374 1.218

3 1 4 1 60 (.33,.33,.33) 0.128 0.515 0.883 1.793 6.405 5.393 2.472 2.567

3 1 4 1 60 (.2,.4,.4) 0.06 0.37 0.943 1.978 7.053 6 2.685 2.783

3 1 4 3 20 (.33,.33,.33) 0.118 0.29 0.645 1.118 4.08 3.56 1.614 1.656

3 1 4 1 80 (.33,.33,.33) 0.123 0.475 1.098 2.108 7.61 6.253 2.943 2.945

3 1 4 1 80 (.2,.4,.4) 0.07 0.435 1.168 2.213 8.11 6.7 3.116 3.116

3 1 4 3 27 (.33,.33,.33) 0.128 0.385 0.88 1.278 5.103 4.183 2.037 1.948

3 1 6 1 60 (.33,.33,.33) 0.035 0.15 0.476 1.089 4.819 4.116 1.776 1.785

3 1 6 1 60 (.2,.4,.4) 0.021 0.122 0.52 1.197 5.127 4.541 1.889 1.954

3 1 6 3 20 (.33,.33,.33) 0.035 0.102 0.388 0.684 3.063 2.639 1.162 1.142

3 1 6 1 80 (.33,.33,.33) 0.037 0.183 0.579 1.149 5.639 4.75 2.085 2.027

3 1 6 1 80 (.2,.4,.4) 0.015 0.153 0.584 1.361 5.854 5.316 2.151 2.276

3 1 6 3 27 (.33,.33,.33) 0.029 0.128 0.478 0.748 3.821 3.472 1.443 1.449

3 1 6 1 100 (.33,.33,.33) 0.038 0.186 0.675 1.413 6.229 5.529 2.314 2.376

3 1 6 1 100 (.2,.4,.4) 0.019 0.158 0.739 1.429 6.787 6.021 2.515 2.536

3 1 6 3 34 (.33,.33,.33) 0.046 0.109 0.556 0.901 4.354 3.912 1.652 1.64

3 2 4 1 40 (.33,.33,.33) 0.053 0.262 2.917 2.752 2.87 2.665 1.947 1.893

3 2 4 1 40 (.2,.4,.4) 0.025 0.223 3.218 3.182 3.152 3.123 2.132 2.176
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3 2 4 3 14 (.33,.33,.33) 0.055 0.135 1.822 1.693 1.723 1.732 1.2 1.187

3 2 4 1 60 (.33,.33,.33) 0.06 0.345 3.795 3.403 3.758 3.718 2.538 2.489

3 2 4 1 60 (.2,.4,.4) 0.033 0.243 3.793 3.763 4.055 3.813 2.627 2.607

3 2 4 3 20 (.33,.33,.33) 0.053 0.15 2.255 2.26 2.202 2.17 1.503 1.527

3 2 4 1 80 (.33,.33,.33) 0.063 0.333 4.303 4.243 4.215 4.012 2.861 2.863

3 2 4 1 80 (.2,.4,.4) 0.022 0.283 4.73 4.533 4.498 4.477 3.083 3.098

3 2 4 3 27 (.33,.33,.33) 0.087 0.213 2.863 2.855 2.942 2.765 1.964 1.944

3 2 6 1 60 (.33,.33,.33) 0.025 0.157 2.577 2.435 2.611 2.564 1.738 1.719

3 2 6 1 60 (.2,.4,.4) 0.009 0.121 2.688 2.684 2.958 2.865 1.885 1.89

3 2 6 3 20 (.33,.33,.33) 0.035 0.091 1.559 1.547 1.742 1.655 1.112 1.098

3 2 6 1 80 (.33,.33,.33) 0.036 0.152 2.938 2.758 3.055 2.982 2.01 1.964

3 2 6 1 80 (.2,.4,.4) 0.013 0.139 3.192 3.138 3.338 3.29 2.181 2.189

3 2 6 3 27 (.33,.33,.33) 0.04 0.096 1.926 1.948 2.146 2.074 1.371 1.373

3 2 6 1 100 (.33,.33,.33) 0.03 0.193 3.229 3.181 3.509 3.42 2.256 2.265

3 2 6 1 100 (.2,.4,.4) 0.015 0.152 3.408 3.395 3.79 3.692 2.405 2.413

3 2 6 3 34 (.33,.33,.33) 0.036 0.119 2.284 2.224 2.434 2.405 1.585 1.583

3 3 4 1 40 (.33,.33,.33) 0.325 1.105 0.397 1.048 5.69 4.747 2.137 2.3

3 3 4 1 40 (.2,.4,.4) 0.182 0.845 0.403 1.103 6.058 5.097 2.214 2.348

3 3 4 3 14 (.33,.33,.33) 0.27 0.668 0.332 0.542 3.47 2.81 1.357 1.34

3 3 4 1 60 (.33,.33,.33) 0.467 1.378 0.488 1.203 7.007 5.743 2.654 2.775

3 3 4 1 60 (.2,.4,.4) 0.237 1.018 0.495 1.315 7.405 6.48 2.712 2.938

3 3 4 3 20 (.33,.33,.33) 0.272 0.802 0.377 0.735 4.395 3.578 1.681 1.705

3 3 4 1 80 (.33,.33,.33) 0.495 1.408 0.545 1.418 8.203 6.725 3.081 3.184

3 3 4 1 80 (.2,.4,.4) 0.32 1.237 0.607 1.53 8.48 7.442 3.136 3.403

3 3 4 3 27 (.33,.33,.33) 0.365 0.97 0.503 0.915 5.547 4.71 2.138 2.198

3 3 6 1 60 (.33,.33,.33) 0.198 0.596 0.297 0.687 5.097 4.226 1.864 1.836

3 3 6 1 60 (.2,.4,.4) 0.112 0.507 0.302 0.736 5.33 4.663 1.914 1.968

3 3 6 3 20 (.33,.33,.33) 0.139 0.407 0.235 0.411 3.153 2.747 1.176 1.188

3 3 6 1 80 (.33,.33,.33) 0.201 0.735 0.328 0.824 5.782 4.842 2.104 2.134

3 3 6 1 80 (.2,.4,.4) 0.113 0.576 0.354 0.885 6.025 5.471 2.164 2.31

3 3 6 3 27 (.33,.33,.33) 0.159 0.431 0.286 0.513 3.887 3.425 1.444 1.457

3 3 6 1 100 (.33,.33,.33) 0.237 0.809 0.388 0.866 6.422 5.519 2.349 2.398

3 3 6 1 100 (.2,.4,.4) 0.146 0.625 0.405 0.921 6.829 6.051 2.46 2.532

3 3 6 3 34 (.33,.33,.33) 0.175 0.512 0.325 0.575 4.601 4.002 1.7 1.696
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Table B.19: Early Termination Results from Sensitivity Analysis:
Percentage of times each Group is removed from the trial early due to trial termination
rules by the number of groups (G), scenario, number of doses (D), cohort size, number
of cohorts, Group Membership Probabilities (Group Probs), and method.

Selection

PCS AI

G Scenario D Patients Jeff,0.975 Jeff,0.95 Unif,0.975 Jeff,0.975 Jeff,0.95 Unif,0.975

2 C 6 60 44.3 41.4 43.8 57.4 54.8 57.2

3 1 6 80 45.5 42.4 45.0 58.8 56.3 58.4

3 2 6 80 44.5 41.5 44.2 56.4 53.8 56.2

3 3 6 80 44.5 41.6 44.1 56.5 54.6 56.4

Table B.20: Selection Results from Prior Sensitivity Analysis:
Percentage correct selection (PCS) and Accuracy Index (AI) by the number of groups
(G), scenario, number of doses (D), number of patients, and choice of Prior/choice of
cutoff.

Allocation

PCA Int

G Scenario D Patients Jeff,0.975 Jeff,0.95 Unif,0.975 Jeff,0.975 Jeff,0.95 Unif,0.975

2 C 6 60 35.5 35.2 35.4 42.5 42.0 42.4

3 1 6 80 35.6 35.6 35.7 44.2 44.1 44.2

3 2 6 80 35.6 35.4 35.7 42.9 42.6 43.0

3 3 6 80 35.8 35.7 35.8 42.9 42.7 42.9

Table B.21: Allocation Results from Prior Sensitivity Analysis:
Percentage correct allocation (PCA) and percentage of allocations to doses with DLT
probability in the interval (λe, λd) (Int) by the number of groups (G), scenario, number
of doses (D), number of patients, and choice of Prior/choice of cutoff.
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Appendix C

Appendix for Chapter 4

C.1 | Finding all Configurations

To find all possible configurations, we consider the toxicity ordering amongst groups

and doses, as well as the efficacy ordering amongst doses. We start with the toxicity

and efficacy profile for Group 1 at dose level 1 and consider what that implies for

the possible toxicity and efficacy profiles for Group 1 at dose level 2. Next, given

the toxicity and efficacy profile for Group 1 at dose level 2, we consider the possible

toxicity and efficacy profiles for Group 2 at dose level 2. Finally, given toxicity and

efficacy profiles for Group 1 at dose level 1 and Group 2 at dose level 2, we consider

the possible toxicity and efficacy profiles for Group 2 at dose level 1.

1. Given the toxicity and efficacy profile for Group 1 at dose level 1, then determine

possible profiles for Group 1 at dose level 2.

(a) (πT11, πE11) = (πT1, πE0) =⇒ (πT12, πE12) ∈ {(πT1, πE0), (πT1, πE1), (πT0, πE0),

(πT0, πE1)}

(b) (πT11, πE11) = (πT1, πE1) =⇒ (πT12, πE12) ∈ {(πT1, πE1), (πT0, πE1)}

(c) (πT11, πE11) = (πT0, πE0) =⇒ (πT12, πE12) ∈ {(πT0, πE0), (πT0, πE1)}

(d) (πT11, πE11) = (πT0, πE1) =⇒ (πT12, πE12) = (πT0, πE1)
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2. Given the toxicity and efficacy profile for Group 1 at dose level 2, then determine

the possible profiles for Group 2 at dose level 2.

(a) (πT12, πE12) = (πT1, πE0) =⇒

(πT22, πE22) ∈ {(πT1, πE0), (πT1, πE1), (πT0, πE0), (πT0, πE1)}

(b) (πT12, πE12) = (πT1, πE1) =⇒

(πT22, πE22) ∈ {(πT1, πE0), (πT1, πE1), (πT0, πE0), (πT0, πE1)}

(c) (πT12, πE12) = (πT0, πE0) =⇒ (πT22, πE22) ∈ {(πT0, πE0), (πT0, πE1)}

(d) (πT12, πE12) = (πT0, πE1) =⇒ (πT22, πE22) ∈ {(πT0, πE0), (πT0, πE1)}

3. Given the toxicity and efficacy profiles for Group 1 at dose level 1 and Group 2

at dose level 2, then determine the possible profiles for Group 2 at dose level 1.

(a) (πT22, πE22) = (πT1, πE0) =⇒ (πT21, πE21) = (πT1, πE0)

(b) (πT22, πE22) = (πT1, πE1) =⇒ (πT21, πE21) ∈ {(πT1, πE0), (πT1, πE1)}

(c) (πT22, πE22) = (πT0, πE0) & (πT11, πE11) ∈ {(πT1, πE0), (πT1, πE1)} =⇒

(πT21, πE21) ∈ {(πT1, πE0), (πT0, πE0)}

(d) (πT22, πE22) = (πT0, πE0) & (πT11, πE11) ∈ {(πT0, πE0), (πT0, πE1)} =⇒

(πT21, πE21) = (πT0, πE0)

(e) (πT22, πE22) = (πT0, πE1) & (πT11, πE11) ∈ {(πT1, πE0), (πT1, πE1)} =⇒

(πT21, πE21) ∈ {(πT1, πE0), (πT1, πE1), (πT0, πE0), (πT0, πE1)}

(f) (πT22, πE22) = (πT0, πE1) & (πT11, πE11) ∈ {(πT0, πE0), (πT0, πE1)} =⇒

(πT21, πE21) ∈ {(πT0, πE0), (πT0, πE1)}
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C.2 | Configurations

To see all null and alternative configurations for the dose/group scenario presented

in Chapter 4, see tables C.1 and C.2.

C.3 | Considering two groups with non-overlapping

doses

This section discusses how to adapt the designs presented in Chapter 4 when there

are two groups with different doses under consideration. In particular, a trial with

three doses, d1, d2, d3, and two groups g = 1, 2 is considered. In this trial, Group 1

is tried under doses d2 and d3, while Group 2 is tried under doses d1 and d2. This

corresponds to a phase II trial resulting from a phase I groups trial where the MTD

for Group 1 was d3 and for Group 2 was d2 with the phase II trial considering the

group-specific MTDs and one dose lower. Table C.3 outlines the trial setup.

To design a traditional or two-stage design for this scenario, we need to find all

possible configurations under this partial ordering. Once all possible configurations

are enumerated, one repeats the steps outlined in sections 4.4 and 4.5, respectively.

Similar to Appendix C.1, we find all possible configurations using the known or-

derings. Steps to find all possible configurations will be outlined, after which, all

configurations could be enumerated similar to Appendix C.2, a step we leave to a

curious reader.

1. Given the toxicity and efficacy profile for Group 1 at dose level 2, then determine

possible profiles for Group 1 at dose level 3.
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(a) (πT12, πE12) = (πT1, πE0) =⇒ (πT13, πE13) ∈ {(πT1, πE0), (πT1, πE1), (πT0, πE0),

(πT0, πE1)}

(b) (πT12, πE12) = (πT1, πE1) =⇒ (πT13, πE13) ∈ {(πT1, πE1), (πT0, πE1)}

(c) (πT12, πE12) = (πT0, πE0) =⇒ (πT13, πE13) ∈ {(πT0, πE0), (πT0, πE1)}

(d) (πT12, πE12) = (πT0, πE1) =⇒ (πT13, πE13) = (πT0, πE1)

2. Given the toxicity and efficacy profile for Group 1 at dose level 2, then determine

the possible profiles for Group 2 at dose level 2.

(a) (πT12, πE12) = (πT1, πE0) =⇒ (πT22, πE22) ∈ {(πT1, πE0), (πT1, πE1), (πT0, πE0),

(πT0, πE1)}

(b) (πT12, πE12) = (πT1, πE1) =⇒ (πT22, πE22) ∈ {(πT1, πE0), (πT1, πE1), (πT0, πE0),

(πT0, πE1)}

(c) (πT12, πE12) = (πT0, πE0) =⇒ (πT22, πE22) ∈ {(πT0, πE0), (πT0, πE1)}

(d) (πT12, πE12) = (πT0, πE1) =⇒ (πT22, πE22) ∈ {(πT0, πE0), (πT0, πE1)}

3. Given the toxicity and efficacy profile for Group 2 at dose level 2, then determine

the possible profiles for Group 2 at dose level 1.

(a) (πT22, πE22) = (πT1, πE0) =⇒ (πT21, πE21) = (πT1, πE0)

(b) (πT22, πE22) = (πT1, πE1) =⇒ (πT21, πE21) ∈ {(πT1, πE0), (πT1, πE1)}

(c) (πT22, πE22) = (πT0, πE0) =⇒ (πT21, πE21) ∈ {(πT0, πE0), (πT1, πE0)}

(d) (πT22, πE22) = (πT0, πE1) =⇒ (πT21, πE21) ∈ {(πT0, πE0), (πT0, πE1), (πT1, πE0),

(πT0, πE0)}
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Null Hypothesis Configurations
Configuration g d1 d2 g d1 d2

1 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,1

πE,g,k
1
2

θE,0

θE,0

θE,0

θE,0

2 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,0

θE,0

3 πT,g,k
1
2

θT,1
θT,0

θT,1
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,0

θE,0

4 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,0

θE,1

5 πT,g,k
1
2

θT,1
θT,0

θT,1
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,0

θE,1

6 πT,g,k
1
2

θT,1
θT,0

θT,1
θT,0

πE,g,k
1
2

θE,0

θE,1

θE,0

θE,1

7 πT,g,k
1
2

θT,1
θT,0

θT,1
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,0

θE,0

8 πT,g,k
1
2

θT,1
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,0

θE,0

9 πT,g,k
1
2

θT,1
θT,1

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,0

θE,1

10 πT,g,k
1
2

θT,1
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,0

θE,1

11 πT,g,k
1
2

θT,1
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,1

θE,0

θE,1

12 πT,g,k
1
2

θT,1
θT,1

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,1

θE,0

13 πT,g,k
1
2

θT,1
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,1

θE,0

14 πT,g,k
1
2

θT,1
θT,1

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,1

θE,1

15 πT,g,k
1
2

θT,1
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,1

θE,1

16 πT,g,k
1
2

θT,1
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,1

θE,1

θE,1

17 πT,g,k
1
2

θT,0
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,0

θE,0

18 πT,g,k
1
2

θT,0
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,0

θE,1

19 πT,g,k
1
2

θT,0
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,1

θE,0

θE,1

20 πT,g,k
1
2

θT,0
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,1

θE,0

21 πT,g,k
1
2

θT,0
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,1

θE,1

22 πT,g,k
1
2

θT,0
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,1

θE,1

θE,1

23 πT,g,k
1
2

θT,0
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,1

θE,0

θE,1

θE,0

24 πT,g,k
1
2

θT,0
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,1

θE,0

θE,1

θE,1

25 πT,g,k
1
2

θT,0
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,1

θE,1

θE,1

θE,1

Table C.1: Null Configurations
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Alternative Hypothesis Configurations
Configuration g d1 d2 g d1 d2

1 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,1

πE,g,k
1
2

θE,0

θE,0

θE,0

θE,1

2 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,1

πE,g,k
1
2

θE,0

θE,1

θE,0

θE,1

3 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,0

πE,g,k
1
2

θE,0

θE,1

θE,0

θE,1

4 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,1

πE,g,k
1
2

θE,0

θE,0

θE,1

θE,0

5 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,1

πE,g,k
1
2

θE,0

θE,0

θE,1

θE,1

6 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,1

πE,g,k
1
2

θE,0

θE,1

θE,1

θE,1

7 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,1

θE,0

8 πT,g,k
1
2

θT,1
θT,0

θT,1
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,1

θE,0

9 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,1

θE,1

10 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,0

πE,g,k
1
2

θE,0

θE,1

θE,1

θE,1

11 πT,g,k
1
2

θT,1
θT,0

θT,1
θT,0

πE,g,k
1
2

θE,0

θE,0

θE,1

θE,1

12 πT,g,k
1
2

θT,1
θT,0

θT,1
θT,0

πE,g,k
1
2

θE,0

θE,1

θE,1

θE,1

13 πT,g,k
1
2

θT,1
θT,1

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,1

θE,0

θE,1

14 πT,g,k
1
2

θT,1
θT,1

θT,0
θT,0

πE,g,k
1
2

θE,0

θE,1

θE,1

θE,1

15 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,1

πE,g,k
1
2

θE,1

θE,0

θE,1

θE,0

16 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,1

πE,g,k
1
2

θE,1

θE,0

θE,1

θE,1

17 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,1

πE,g,k
1
2

θE,1

θE,1

θE,1

θE,1

18 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,0

πE,g,k
1
2

θE,1

θE,0

θE,1

θE,0

19 πT,g,k
1
2

θT,1
θT,0

θT,1
θT,0

πE,g,k
1
2

θE,1

θE,0

θE,1

θE,0

20 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,0

πE,g,k
1
2

θE,1

θE,0

θE,1

θE,1

21 πT,g,k
1
2

θT,1
θT,1

θT,1
θT,0

πE,g,k
1
2

θE,1

θE,1

θE,1

θE,1

22 πT,g,k
1
2

θT,1
θT,0

θT,1
θT,0

πE,g,k
1
2

θE,1

θE,0

θE,1

θE,1

23 πT,g,k
1
2

θT,1
θT,0

θT,1
θT,0

πE,g,k
1
2

θE,1

θE,1

θE,1

θE,1

24 πT,g,k
1
2

θT,1
θT,1

θT,0
θT,0

πE,g,k
1
2

θE,1

θE,0

θE,1

θE,0

25 πT,g,k
1
2

θT,1
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,1

θE,0

θE,1

θE,0

26 πT,g,k
1
2

θT,1
θT,1

θT,0
θT,0

πE,g,k
1
2

θE,1

θE,0

θE,1

θE,1

27 πT,g,k
1
2

θT,1
θT,1

θT,0
θT,0

πE,g,k
1
2

θE,1

θE,1

θE,1

θE,1

28 πT,g,k
1
2

θT,1
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,1

θE,0

θE,1

θE,1

29 πT,g,k
1
2

θT,1
θT,0

θT,0
θT,0

πE,g,k
1
2

θE,1

θE,1

θE,1

θE,1

Table C.2: Alternative Configurations



146

Group Doses Under Consideration.
Group 1 d2 d3
Group 2 d1 d2

Table C.3: Trial with non-overlapping doses
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