
Navigating Large-Scale Development: Lessons from Two 
Summers at Amazon

CS4991 Capstone Report, 2025

Ethan Christian
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
vya9tu@virginia.edu

ABSTRACT
Transitioning from academic coding to 
industry-scale software development presents 
challenges in collaboration, codebase 
navigation, and workflow adaptation. During 
two consecutive internships at Amazon, I 
engaged with enterprise-level systems, 
contributing to backend services and tools 
while refining my understanding of 
professional software engineering practices. 
Key experiences included rigorous code 
reviews, agile sprint cycles, design document 
collaboration, and problem-solving within 
large codebases. I synthesize lessons learned, 
emphasizing teamwork, iterative 
development, and the balance between 
autonomy and mentorship. Future applications 
include leveraging these skills in full-time 
roles and mentoring peers entering similar 
environments.

1. INTRODUCTION
Transitioning from academic projects to 
enterprise software development at Amazon 
marked a major turning point in my 
professional journey. In an environment where 
each coding decision affected a vast, 
interconnected system, traditional academic 
methods gave way to more flexible, carefully 
planned solutions.

During my first summer internship, I focused 
on developing a testing framework that closely 
mirrored live conditions. This task required 

balancing creative problem-solving with a 
strong commitment to system stability, as even 
small changes could impact critical operations.

The following summer offered the opportunity 
to refine deployment processes and set up 
continuous monitoring protocols. This stage 
demanded careful attention to both the fine 
details of code execution and a broader view 
of overall system performance. In doing so, it 
became clear that agile methods, rigorous 
testing, and teamwork are essential for 
success.

Altogether, these hands-on experiences have 
deepened the understanding of large-scale 
development, highlighting the need to 
combine innovative ideas with thoughtful 
planning and ongoing learning.

2. RELATED WORKS
Literature on agile methodologies forms a 
strong foundation for modern software 
practices. The Agile Manifesto (Beck et al., 
2001) outlines principles such as iterative 
progress and continuous feedback, which are 
essential for managing complex systems and 
striking a balance between rapid innovation 
and system stability.

Research on code review processes reinforces 
the importance of collaborative evaluation in 
software development. Rigby and Storey 
(2011) demonstrate that systematic, peer-



driven reviews are crucial for identifying 
issues early, thereby reducing risk in large-
scale projects

In addition, studies focusing on undergraduate 
experiences and internships provide valuable 
insights into the transition from academic 
learning to industry practice. Jones and Smith 
(2010) illustrate how internships serve as a 
critical bridge between classroom theory and 
real-world application, equipping students 
with the practical skills necessary for 
navigating complex systems. Similarly, 
Adams (2016) highlights the positive impact 
of early industry exposure on technical 
proficiency and professional readiness, 
suggesting that hands-on experience is 
indispensable for aspiring computer scientists.

3. PROJECT DESIGN
This section outlines the primary contributions 
made during the summer internships, detailing 
the structured approach followed to develop 
the project from concept to final presentation. 
The process represents the general timeline 
and methodology followed for intern projects 
across both years. This standardized approach 
ensured consistency in planning, 
implementation, and evaluation throughout the 
internship experience.

3.1 Design Document and Planning
The project began with the creation of a 
comprehensive design document. This 
document served as both an internal blueprint 
and an external communication tool, detailing 
the project's purpose, importance, and the 
proposed solution—including system 
architecture, coding strategies, and required 
packages. Before finalization, the document 
was reviewed collaboratively with the entire 
team, and suggested revisions were 
incorporated. This process ensured that the 
design was accessible and understandable not 
only within the immediate team but also for 
other teams across the company.

3.2 Implementation with Sprint 
Architecture

Once the design document was approved, the 
project moved into the implementation phase, 
which was organized using a sprint 
architecture. Tasks and milestones were 
clearly laid out on the scrum board, facilitating 
a structured and iterative development 
process. This approach allowed for regular 
assessment of progress and timely 
adjustments, ensuring that the project 
remained aligned with its initial objectives 
while accommodating evolving requirements.

3.3 Code Review and Final Presentation
Quality assurance was maintained through a 
rigorous code review process. Every code 
change was subjected to at least two team 
member reviews before integration, ensuring 
that the solution met high standards of 
reliability and performance. The final phase 
involved synthesizing the entire effort into a 
detailed presentation. This presentation 
showcased the project's outcomes, highlighted 
key challenges and solutions, and reflected on 
lessons learned throughout the internship.

In the first internship, the deliverable known as 
Nostradamus was developed to generate 
synthetic telemetry data. This tool provided 
realistic, fake data to the FleetWatch alarming 
service, enabling both routine tests of alarm 
functionality and integration tests for new 
features. By automating what was once a 
tedious, manual process at various data 
centers, Nostradamus streamlined testing and 
ensured that updates could be implemented 
with greater confidence in system stability.

During the second internship, the focus shifted 
to the NotificationHistoryService, which was 
designed to capture a comprehensive history 
of notifications sent from the FleetWatch 
team. Leveraging Amazon DynamoDB for 
data persistence and an SNS queue for event 



handling, this service systematically records 
critical datacenter metrics such as voltage, 
current, temperature, and humidity. The robust 
architecture supports seamless code 
deployment across production, development, 
and beta environments, thereby enhancing 
system traceability and facilitating faster 
troubleshooting and proactive maintenance.

4. RESULTS 
During my first internship, I developed 
Nostradamus—a project designed to 
automatically generate synthetic telemetry 
data for the FleetWatch alarming service. This 
deliverable enabled routine testing to verify 
that alarms were operational and supported 
integration tests for new features, ensuring that 
system updates did not break existing 
functionality. By automating what was once a 
tedious, manual process at data centers 
worldwide, Nostradamus greatly reduced 
testing throughput—from processes that 
previously took days to now being completed 
in just 2–3 hours.

For the second internship, preliminary 
outcomes indicated that the 
NotificationHistoryService significantly 
improved the traceability of system events, 
enabling faster troubleshooting and more 
proactive maintenance across teams. The 
centralized repository of historical data not 
only facilitates the identification of trends and 
recurring issues but also supports data-driven 
decision-making. As further refinements and 
advanced analytics are integrated, the service 
is anticipated to enhance operational 
efficiency and scalability, solidifying its role 
as a critical component in managing large-
scale infrastructure monitor

5. CONCLUSION
This report has detailed a transformative 
journey from academic coding to enterprise-
scale software development through two 
distinct internships at Amazon. The first 

internship’s development of Nostradamus 
demonstrated how an automated testing 
framework can replace manual data 
alteration—reducing testing turnaround from 
days to just 2–3 hours—while ensuring system 
updates remain reliable. The second 
internship’s NotificationHistoryService 
showcased a robust approach to monitoring, 
capturing critical datacenter metrics to 
improve event traceability and facilitate 
proactive maintenance. Together, these 
experiences not only enhanced technical 
competencies but also underscored the 
importance of agile practices, rigorous code 
reviews and effective cross-team collaboration 
in solving complex, real-world challenges.

By integrating industry best practices with 
innovative project design, these internships 
provided a solid foundation for addressing 
large-scale development challenges. The 
insights gained extend beyond technical 
improvements to emphasize adaptive 
planning, continuous learning and strategic 
communication—key factors that will inform 
future professional endeavors and drive the 
evolution of modern software engineering.

6. FUTURE WORK
Looking ahead, transitioning to a full-time role 
at Amazon presents an exciting opportunity to 
build on the lessons learned during these 
internships. The practical experience gained—
from refining agile processes and ensuring 
rigorous code reviews to effectively managing 
cross-team communication—will inform daily 
operations in a full-time capacity. The 
intention is to scale these proven practices 
across a wider array of systems, further 
enhancing system reliability and operational 
efficiency.

In the next phase, efforts will focus on 
integrating advanced analytics and automation 
into existing workflows, allowing for 
proactive issue detection and more streamlined 



deployments. These initiatives are expected to 
not only fortify the operational backbone of 
Amazon’s infrastructure but also contribute to 
personal and professional growth, as the 
lessons from these internship experiences are 
directly applied to the challenges of full-time 
enterprise software development.

REFERENCES
Adams, T. (2016). Enhancing undergraduate 

computer science education through 
internships. Journal of Computing in 
Higher Education, 28, 3 (2016), 500–520.

Beck, K., Beedle, M., van Bennekum, A., 
Cockburn, A., Cunningham, W., Fowler, 
M., Grenning, J., Highsmith, J., Hunt, A., 
Jeffries, R., Kern, J., Marick, B., Martin, 
R. C., Mellor, S., Schwaber, K., 
Sutherland, J., & Thomas, D. (2001). 
Manifesto for agile software development. 
Retrieved from https://agilemanifesto.org/

Jones, K. and Smith, A. (2010). Bridging the 
gap: The impact of internships on 
undergraduate computer science 
education. IEEE Transactions on 
Education, 53, 1 (2010), 65–72.

Rigby, P. and Storey, M. (2011). 
Understanding the role of code review in 
software development. Empirical Software 
Engineering, 16, 1 (2011), 3–27.


