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Abstract

The human brain is a hierarchical system where molecular, cellular, and cortical-

level components interact to produce myriad mental states. Thus, brain networks

can broadly be characterized in a hierarchical fashion, such that macroscale cortical

functions result from accumulated microscale events ranging from the cellular to

the molecular levels. However, modern neuroimaging techniques are limited in the

extent to which they can resolve these interactions. In the following set of experi-

ments, we employ a combination of imaging epigenetics and statistical machine

learning techniques to decode individual differences in epigenetic makeup from

multiple modalities of macroscale brain network data. A convenient target for this

approach is the oxytocin system, which is modulated by epigenetic modifications

to the oxytocin receptor gene (OXTR). Differential levels of DNA methylation in

OXTR are thought to have downstream effects on both social behavioral pheno-

types and the development of neural networks supporting such behaviors. Using

data obtained from a large sample of healthy young adults, we describe: 1) The

identification of epigenetic fingerprints in macroscale neural network architecture;

2) Spatially-heterogenous relationships between epigenetic factors and spontaneous

BOLD dynamics; and 3) An entropy-based model that links epigenotypes and be-

havioral phenotypes through patterned network dynamics. Our approach offers

both novel applications of previously-existing techniques and new tools for quan-

tifying dynamics in functional brain networks. Together, these methods have the

potential to illuminate complex interactions across multiple levels of brain systems

in numerous contexts, from social behavior and beyond.
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Chapter 1

Introduction

The human brain is a complex system in which numerous spatially-distributed

networks interact to produce myriad mental states. These networks can broadly be

characterized in a hierarchical fashion with increasing spatial resolution, such that

macroscale cortical functions result from accumulated microscale events ranging from

the cellular to the molecular levels. However, modern neuroimaging techniques

are limited in the extent to which they can resolve these interactions. Functional

magnetic resonance imaging (fMRI), for example, is able to measure metabolic

events on the scale of millimeters—but each voxel itself contains hundreds of

thousands of neurons. Furthermore, the molecular mechanisms governing inter-

neuron communication are regulated by genetic and epigenetic factors that may

be transient or otherwise impossible to measure in the living human brain. In

the following experiments, we use the oxytocin system in social cognition as a

foundation to demonstrate that such microscale-molecular factors can be decoded

from macroscale functional network characteristics. Moreover, we show that these

network features not only predict one’s molecular makeup—they also inform social-

behavioral phenotypes commonly associated with oxytocinergic action.

1



CHAPTER 1. INTRODUCTION 2

1.1 Oxytocin at a glance

Oxytocin (OT) is a nonapeptide with wide-reaching targets across both the brain and

peripheral body1–3. As a central neurotransmitter and neuromodulator, oxytocin

has been associated with a number of neural phenomena in nonhuman animals,

including anxiolysis4 and the adjustment of neural signal-to-noise ratios (SNR)

during long-term potentiation5,6. In humans, a growing body of research has

demonstrated that intranasal administration of oxytocin acutely modulates the

function of brain networks in support of social cognition7–12.

The integral role of oxytocin in social behavior is without dispute2,13. Commonly

referred to as the “love hormone,” oxytocin has indeed been shown to promote

feelings of trust14,15, empathy16, and social closeness17 in humans. The intranasal

administration of oxytocin also provides short-term benefits for emotion recognition

and inference18, memory for faces19, biological motion detection20, and even social

behavior in psychiatric populations21,22. However, oxytocin has evolutionarily-

ancient roots, with variations appearing in all known vertebrate species2,23–26—it

is therefore dubious that oxytocin‘s primary function in the brain is to promote

human constructs such as trust or love. Rather, a more compelling alternative is

that oxytocin aids in the development of distributed neurobiological systems that

variously support complex social, emotional, and cognitive processes6.

1.2 The molecular and cellular bases of oxytocinergic

action

Oxytocin is synthesized in the paraventricular (PVN) and supraoptic (SON) nuclei

of the hypothalamus and released into the bloodstream via the posterior pituitary27.

Its action in the brain is facilitated through a single G-protein coupled receptor type
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(hereafter referred to simply as the OT receptor)3,28. However, structural similarities

between oxytocin and a related nonapeptide, arginine vasopressin (AVP), have

complicated efforts to develop a ligand selective for the OT receptor alone29,30—

thus, it has been historically difficult to characterize the distribution of OT receptors

throughout the brain. Early work in mice and prairie voles demonstrated that OT

receptors are abundant in the striatum, thalamus, and amygdala (components of

the so-called “limbic system”)1,31–33. These regions receive direct axonal projections

from OT neurons in the hypothalamus and are associated with the various social-

behavioral consequences of oxytocin action27,34–36.

Importantly, the hypothalamic-limbic pathway of oxytocin signaling is only

a small piece of the puzzle. Receptors have also been found in spatially-distant

regions of the brain that do not receive direct projections from oxytocinergic neurons

in the hypothalamus, such as the anterior cingulate cortex (ACC) and prefrontal

cortex (PFC)27. Oxytocin activity in these areas is a function of paracrine signaling

processes, which are critical for the distributed central nervous effects of many

neuropeptides37,38. Through this mechanism, oxytocin is secreted from dendrites

and axonal varicosities into the extracellular matrix where it can then travel across

the brain. A key observation is that oxytocin has a remarkably long half-life com-

pared to classical neurotransmitters (20 minutes vs. 5 milliseconds)37–39, which

suggests it is plausible for oxytocin to diffuse over vast neuronal distances and

effect long-lasting changes in brain function and behavior.

1.3 Oxytocin as a neuromodulator

Perhaps a greater role for oxytocin lies not in its function as a primary neuro-

transmitter, but rather as a neuromodulator. In particular, two recent studies have

highlighted the possibility that oxytocin is a key player in modulating neural SNR
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and promoting neural plasticity during long-term potentiation (LTP)5,6—a process

classically associated with dopamine (DA), which is known to enhance learning via

coordinated gain modulation (i.e. amplifying SNR across ensembles of neurons in

response to relevant input signals)40–45. These findings suggest that oxytocin and

dopamine function may be intimately linked, a notion supported by animal work

describing direct projections from OT neurons to DA-rich basal ganglia regions27

and general co-expression of OT/DA receptors (both in hypothalamic-limbic re-

gions and prefrontal areas not receiving direct OT projections)46–48. Critically, one

study demonstrated that blockading either OT or DA receptors in the striatum

diminished social affiliative behaviors in voles—even when using an agonist to am-

plify the activity of the other neurotransmitter47. Thus, it is becoming increasingly

clear that joint-modulation of OT/DA systems is a critical facet of the neurobiology

underlying social behavior13,49–54. Moreover, because DA-rich subcortical areas

heavily modulate the activity of widely-distributed cortical systems40–43, this ob-

servation provides yet another (indirect) route through which oxytocin can drive

changes in large-scale brain function.

1.4 Genetic and epigenetic regulation of the oxytocin

system

Regardless of how oxytocin arrives at a given brain region—either via direct projec-

tion or paracrine diffusion—its potential for effect is limited by the availability of

OT receptors. Consequently, a critical mediator of oxytocinergic action in the brain

is the oxytocin receptor gene (OXTR; hg38, chr3: 8,750,409-8,769,614). Broadly-

speaking, genetic variants in OXTR (single nucleotide polymorphisms, SNPs; and

copy number variants, CNVs) have been linked to differences in brain structure55–57,
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function50,57–61, and may also provide an etiological basis for autism spectrum dis-

orders (ASD)62–67. Frustrated efforts to replicate these associations68–70 or further

solidify OXTR‘s status as the “sociability gene”71 have often been attributed to

within-group differences in factors such as gender and early life experience, which

might confound links between genetics and behavior. A potential unifying expla-

nation might instead be an oversight of epigenetic modifications along OXTR that

further regulate the oxytocin system.

Although a number of epigenetic processes are known to occur in the genome,

DNA methylation of 5‘-Cytosine-phosphate-Guanine-3‘ (CpG) dinucleotide pairs is

among the most studied in humans. Unlike a SNP, which often requires individuals

to be dichotomized by allele, methylation on a CpG site can be measured as a

continuous variable (0-100%), which offers more explanatory power with regard to

tracking individual differences. Moreover, increased levels of DNA methylation

have direct functional consequences by (typically) decreasing the expression of

genes72. In the case of OXTR, the functions of associated allelic variants in humans

have not been identified, nor have they been linked to transcriptional changes in

the gene.

Several studies have begun to illuminate the potential functions of epigenetic

modifications along OXTR. Early work showed that increased methylation indeed

reduces transcription of the gene72, thereby limiting one‘s endogenous access to

oxytocin. Later studies have shown that higher levels of OXTR methylation are

associated with various psychiatric conditions, including autism63,73–76. Critically,

one report63 demonstrated that methylation levels derived from peripheral sources

(e.g. blood) reported on elevated levels in brain tissue. The persistence of OXTR

methylation levels across tissue types raises the possibility that methylation may be

established early in life, further validating its usefulness as a noninvasive biochemi-
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cal marker in human adults.

1.5 Oxytocin and human brain function

A relatively-recent effort to elucidate the role of oxytocin in human brain systems

is gaining momentum. In an effort to mimic pharmacological manipulations in

animal research, most studies have relied on intranasal administrations of oxytocin.

This methodology is rooted in fact that oxytocin and other large peptides are unable

to cross the blood-brain barrier; intranasal administration, by contrast, allows

for potential diffusion into cerebrospinal fluid (CSF) and consequently the brain

(although there is dispute over the extent to which CSF and blood OT levels are

amplified via intranasal administration)77–79. A number of studies using intranasal

OT have shown that oxytocin, relative to placebo, modulates task-related BOLD

(blood oxygen level dependent) activity across various regions comprising the

“social brain”8,10,11,59,80—these include areas such as the amygdala (AMG), medial

PFC (mPFC), insula, fusiform gyrus (FG), superior temporal sulcus (STS), and

inferior frontal gyrus (IFG), among others81–83. Importantly, however, the effects

of OT administration on regional brain function are acute and, in some cases, both

regional- and context-dependent. For example, one study reported OT-induced

increases in AMG activity when viewing happy faces and decreased AMG activity to

angry faces80. Similarly, another group reported (in women) increased activity in

the AMG, FG, and superior temporal gyrus when viewing fearful faces, but activity

was decreased in the IFG in response to angry and happy faces84. Finally, a pair of

studies suggested OT administration decreased the AMG response to infant crying

and infant laughter; infant crying was further associated with increased insula and

IFG activity, but this did not hold for laughter11,59.

So, while oxytocin is without doubt central to social cognition, its functional
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role in the brain is highly complex. One broad explanation is that OT increases the

response to positively-valenced social information while decreasing the response

to aversive or threatening social information—both would suggest that oxytocin

enables various types of social reinforcement learning, and the latter phenomenon

is in agreement with animal and human research suggesting an anxiolytic effect

of oxytocin4,85–87. That being said, there are clear examples of this dichotomy

breaking down (e.g. work showing that oxytocin enhances feelings of jealousy and

schadenfreude88). A focus on regional activity (while a good place to start) also belies

the true nature of the brain: complex social behaviors manifest from the concerted

activity of distributed neural systems—not any single brain region.

A rapidly-growing set of studies have accordingly investigated the effects of in-

tranasal OT on functional network connectivity. There are many methods available

for modeling brain networks that are beyond the scope of the current discussion;

here, we simply use functional connectivity in reference to any statistical dependence

between two waveforms of brain activity. For example, a pair of regions who are os-

cillating “in-phase” (i.e. rising and falling in activity together over time) are said to

be functionally-coupled—a group of functionally-coherent brain areas then comprise

a network. Note that this does not require direct axonal connections between brain

regions, but there is evidence that functional networks indeed reflect underlying

structural connectivity89,90.

In general, most evidence points to oxytocin administration enhancing func-

tional coupling across the brain, both at rest and under task-positive states7. For

example, intranasal OT commonly increases functional connectivity from the amyg-

dala to areas such as the insula91, mPFC12,92,93, anterior cingulate92, and a number

of additional brain regions relevant for social perception9 and emotion regula-

tion11. OT administration may also enhance connectivity between mesolimbic



CHAPTER 1. INTRODUCTION 8

and prefrontal regions important for social motivation9 and social evaluation94.

Instances of decreased functional connectivity have been attributed to processes such

as emotional dampening10,95,96 and modulation of approach-avoidance behaviors97.

Importantly, several of these reports suggested a potential therapeutic role for OT

administration in cases of trauma95, social anxiety92, and autism9,12,94.

It is worth reiterating, however, that the effects of intranasal OT on brain func-

tion are acute—there is little evidence of any benefits persisting in the weeks or

months following treatment. There also remains healthy debate over the mech-

anism of action for intranasal OT and the accuracy with which we can measure

peripheral levels of the peptide itself78,98. We propose that a focus on epigenetic

modifications to OXTR may be a more reliable indicator of endogenous oxytocin

action, as OXTR methylation directly mediates access to oxytocin (by regulating

receptor expression). In other words, even if intranasal OT does increase central

nervous concentrations, receptor availability puts a hard upper bound on its po-

tential to modify brain function and behavior. Mounting evidence indicates that

genetic/epigenetic variations in OXTR may specifically contribute to phenotypic

differences in social behavior by modulating the functional neuroanatomy of a num-

ber of brain regions83. Our own work among adult neurotypicals has supported

this, demonstrating that increased OXTR methylation predicts increased regional

BOLD responses during social cognition99,100.

1.6 Towards a gene-brain-behavior model

An emerging hypothesis suggests that healthy social behavior is driven by a robust

oxytocin system early in life, which enhances the neural mechanisms of social learn-

ing101. A related model similarly proposes that oxytocin facilitates social behavior

via dopaminergic systems that form the biological basis of learning, motivation,
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and reward13,49,51,52. The logic of this hypothesis can be intuitively understood with

a simple thought experiment:

Imagine you are sitting at work and you hear an eruption of laugher

from a group of colleagues down the hall. Your brain’s first task has

already been completed effortlessly—you perceived the auditory in-

put, oriented your attention to it, and tagged it as something socially

relevant, perhaps with an additional positive emotional valence (if

you aren’t paranoid they might be laughing at your expense). You

then decide to get up and investigate the commotion: this requires

an internal push (motivation) and the development of a motor plan

to engage in social interaction. Walking down the hall, you come

upon your colleagues huddled around a computer watching videos

of cats on the Internet. They invite you to join, you enjoy a few shared

laughs, and you walk back to your desk, smiling. Again rather effort-

lessly, your brain engaged in a complex empathetic, joint-emotional

experience and you left feeling good about it. And presumably this

sort of reinforcement has happened before (i.e. it has been learned),

otherwise you might not have been motivated to leave your desk in

the first place!

All of these processes require coordinated activity across networks that are

oxytocin and dopamine rich. On a mechanistic level, it implies that oxytocin works

with dopamine to amplify the salience of social information in the environment,

which can then be perceived and appropriately acted upon.
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1.6.1 Social cognition is an inferential process

To further illustrate the putative function of this system, suppose you see a friend

who appears to be very upset: she is sitting with her head cradled in her hands,

and you can hear muffled cries slipping between her fingers.

This perceptual signal travels along a so-called “bottom-up” pathway through

the brain. In parallel fashion, visual and auditory systems are activated in response

to the scene before you. Autonomic nervous responses are also triggered in circuits

densely-populated by OT receptors (e.g. the brainstem, basal ganglia, hypotha-

lamus, and amygdala)1,31,34. Thus, an exteroceptive social cue (your friend crying)

forms an interoceptive response—an internal representation of a cognitive-emotional

state that must be interpreted by higher-level cortical systems in order to make

the correct behavioral response. For this to occur, your brain must integrate and

compare these interoceptive signals against an a priori model of the world that is

largely embodied. In other words, your brain attempts to simulate the scene in front

of you from a self-perspective, asking: What do these signals mean? If I were posed in

such a manner, how would I be feeling? How would I expect another person to react?102,103

A simulation of this type is known as a generative model; in this context, we might

call it a generative model of the “social-emotional self,” as you are required to

imagine both how you would feel and how you would expect others to respond.

Taking a step back from underlying mechanisms, this is clearly a neurobiological

account of empathy. Formally, however, we refer to this process as predictive coding.

Bottom-up environmental inputs are tested against a top-down hypothesis—an

expectation about how the world should work based on your prior experience with

it104. Interestingly, this sort of embodied, emotional assessment and prediction is

thought to rely on regions such as the insula, anterior cingulate, and mPFC105,106,

all of which have been previously associated with oxytocin action12,91–93,99,100. Ul-
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timately, you likely assess that your friend is in distress, and you respond by

approaching and comforting her. This may be met with a positive response, thereby

reinforcing your prior model of the world; alternatively, it may be resisted, which

yields prediction error. The latter triggers a separate cascade of neural events that

updates your model of the world, modifying your preponent behavioral response in

order to avoid social reproach in the future.

1.6.2 Failures of inference

In many cases, this process is hidden to our conscious access. You don’t feel or

realize your brain is testing such a complex model because it happens so readily

and effortlessly. As it were, this is a critical feature of the system. Drawing an

emotional inference requires internally simulating the physiology of the emotional

response itself, but in order to react appropriately, your outward expression of

the response must be suppressed—you cannot help your friend if you become

flustered yourself. A failure of suppression in this context is known as emotional

contagion. Individuals with ASD commonly experience emotional contagion107,108,

suggesting they generate an internal representation of external emotional cues,

but they lack the parasympathetic resources necessary to attenuate the autonomic,

physiological response109–112. Coupled with a vast body of evidence to suggest

autistic individuals have a generally-decreased sense of self113–116, this may explain

why empathic deficits are a classical symptom of social-behavioral disorders117—

the inability to ground internalized, autonomic responses within an embodied sense

of the emotional self prohibits an appropriate behavioral response and effective

updating following prediction error107,108.



CHAPTER 1. INTRODUCTION 12

1.6.3 A “critical period” for oxytocin in social development?

It has been said that, “If you know one person with autism, you know one person

with autism.” This underscores the notion that autism and its related phenotypes are

extremely variable across the spectrum. However, ASD is commonly characterized

by deficiencies in the oxytocin system63,118,119—the work reviewed here suggests

that early oxytocin dysfunction precludes the plasticity required to establish brain

systems that support healthy social cognition. At the structural level, oxytocin has

been shown to promote encephalization and neuronal growth in vitro120. A pair of

studies in vivo similarly demonstrated that oxytocin enhanced neurogenesis in the

hippocampus121,122.

It is well-known that dynamic structural changes in the hippocampus are central

to learning and memory processes. This brand of neural plasticity (long-term poten-

tiation) is classically taught to young psychologists using the mnemonic: neurons

that fire together, wire together. In other words, the physical basis of learning requires

persistent, coherent activity across ensembles of neurons. Precision in the timing

of neural events further necessitates high signal-to-noise ratios—a function tradi-

tionally ascribed to dopamine40–45, but for social learning, oxytocin likely plays a

critical modulatory role. Indeed, animal research has shown that oxytocin enhances

neural SNR and promotes hippocampal spike coupling6, ultimately leading to

improvements in late-stage LTP5.

The joint effects of oxytocin and dopamine may therefore allow for efficient

allocation of attentional and neural resources to learn salient social information

early in the lifespan—likely starting mere days after birth. Infants who are several

days old, for example, readily engage in shared attentional processes via mutual

eye gaze123. The ability to infer emotional states from the eyes is dependent on

oxytocin18 and is arguably a cornerstone of the generative model defining one’s
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social-emotional sense of self.

However, as aforementioned, the fine-tuning of top-down predictions is not

possible without bottom-up prediction error. This requires considerable precision

with respect to evaluating perceptual inputs from the environment. In other words,

a number of emotional states may produce similar physiologic responses, and

higher-level cognitive systems must nevertheless find a means of differentiating

between feelings of fear, anger, and so on. Moreover, given the context, this physi-

ologic simulation may require suppression in order to engage in the appropriate

social behavior. Dopamine, gamma-aminobutyric acid (GABA), and other classical

neurotransmitters have all been associated with modulating bottom-up inputs in

order to facilitate accurate inference124. Oxytocin interacts with all of these sys-

tems125, modulating dopaminergic function in mesolimbic pathways central to gain

modulation, motivation, and action50,51, and GABA-ergic inhibition of autonomic

emotional responses in the amygdala and hypothalamus126,127. Oxytocin dysfunc-

tion in these feedback loops may therefore disrupt the fine-tuning of predictive

models in two ways: 1) inaccurate labeling of internal physiologic states (causing a

decreased sense of the emotional self), and 2) the inability to suppress simulated

responses (causing emotional contagion but not empathy).

The common denominator between learning (model building) and updating

(precision tuning) is the need for coordinated action across distributed neurobio-

logical systems. We have discussed a role for oxytocin in modulating processes

such as LTP, but more broadly, there is evidence to suggest that oxytocin initiates

and fosters coherent activity across neural networks—both at the cellular level and

macroscopic cortical level7,128. Indeed, if cellular systems are not firing together

(and consequently not wiring together), we would expect this level of disconnection

to cascade upwards into higher-level networks, and recent evidence suggests this is
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true for human brain systems129. It is therefore unsurprising that ASD phenotypes

are commonly associated with hypoconnectivity and generally “noisy brains”130–132.

Such low-fidelity signaling is likely a result of oxytocin dysfunction starting at the

cellular level, prohibiting the robust coupling of large-scale networks in support of

social perception, inference, learning, and motivation.

Because this implies an early developmental origin, it is plausible to suspect an

underlying genetic cause. As aforementioned, the oxytocin receptor gene (OXTR)

is a critical mediator of one’s endogenous access to oxytocin, and genetic variants

in OXTR have frequently been associated with ASD phenotypes62–67. However,

identifying a genetic association does not necessarily inform our understanding

of the gene’s function on a molecular level. In humans, variants in OXTR have

been associated with differences in the brain50,55–61, but there is no known effect of

allelic variation on gene transcription or related signaling pathways. In contrast,

epigenetic modifications such as DNA methylation do have direct functional conse-

quences, limiting the expression of OT receptors across the brain72. Accordingly,

OXTR methylation has been associated with autism spectrum disorders63 and is

thought to be sensitive to early life experiences133.

If OXTR methylation is established in early stages of the lifespan, driving

changes in the development of social behavior and its related neurobiological

systems, a critical assumption for human neuroscience is that these epigenetic fin-

gerprints persist and are detectable in adolescence and adulthood. Animal models

suggest this assumption is likely to hold: there is evidence that early life experiences

predict differential expression of OXTR and associated socio-sexual behaviors134–137.

Human research has also shown that OXTR methylation levels may persist across

central and peripheral tissue sources63, suggesting early-life modifications to the

gene. Finally, we have demonstrated that OXTR methylation predicts differences in
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adult brain function—both at the regional level and across a putative network for

social-emotional information processing99,100.

1.7 The present investigation

We endorse the notion that endogenous access to oxytocin, regulated by DNA

methylation in OXTR, plays a critical role in the development of brain systems

that support a wide array of social behaviors. However, to date, nearly all studies

demonstrating associations between epigenetics and neural activity (or oxytocin

and neural activity, more broadly) have focused on regional hypotheses or mass-

univariate approaches to statistical modeling. This includes studies of functional

connectivity, which have almost exclusively employed seed-based models that

require strong anatomical assumptions and are blind to multivariate interactions

across the whole network. Here, we utilize an entirely bottom-up, data-driven

methodology, employing machine learning techniques across spatially-distributed

(in some cases whole-brain) functional networks. This approach affords consider-

able conceptual and methodological advances over previous voxelwise/regional

analyses, allowing us to tie complex network characteristics to differences in the

fundamental, molecular foundations of the brain. Moreover, we demonstrate that

the same network characteristics predicting OXTR methylation also inform individ-

ual differences in social-behavioral phenotypes. We describe several experiments

toward these ends, building from the molecular level to behavioral outcomes.
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Experiment 1: Identify epigenetic fingerprints in macroscale

neural network architecture.

Hypothesis: Multivariate patterns of connectivity in task-related neural networks will

predict variability in the epigenetic factors contributing to their development.

Understanding the molecular basis of human neural network function. While

the links between brains and behavior are growing ever-stronger, the molecular

mechanisms guiding and supporting functional network connectivity are only

just beginning to be understood61,100,138–142. Our approach employs data-driven

machine learning techniques—so-called multivariate pattern analyses (MVPA)—to

demonstrate that epigenetic information can be decoded from patterns of functional

network architecture. This offers a means of reverse-engineering the brain from

macroscale systems to underlying molecular makeup with relevance to disease

processes such as ASD.

Experiment 2: Examine relationships between epigenetic factors

and spontaneous BOLD dynamics.

Hypothesis: Multivariate patterns of BOLD variability will index DNA methylation on

OXTR.

Extending animal literature to human subjects. Recent work in animals has high-

lighted the neuromodulatory role of oxytocin in adjusting neural SNR5,6. However,

to date, no studies have been conducted in humans to examine this relationship.

We therefore employ resting-state fMRI (rs-fMRI) to determine how individual

differences in baseline system dynamics index the epigenetic factors that regulate

oxytocin action, particularly within networks previously implicated in social cog-

nition (e.g. the default mode network, DMN)143. Notably, while Experiment 1
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is concerned with the spatial topology of functional brain networks, Experiment 2

explores spatial patterns of variability in the BOLD signal.

Experiment 3: Bridge epigenotypes and behavioral phenotypes

through patterned network dynamics.

Hypothesis: Patterns of dynamic functional connectivity offer a unifying neural endopheno-

type that explains both underlying molecular makeup and phenotypic outcomes.

Building comprehensive gene-brain models for social behavior. Autism spec-

trum disorders are highly variable, complex phenotypes that are characterized by

oxytocin deficiencies, hypoconnectivity, and generally “noisy brains”63,130–132. Our

dataset is comprised of molecular, neural, and behavioral measures (the broad

autism phenotype, BAP144) that are uniquely suited to assess these common facets

of ASD simultaneously. We propose a model in which hypoconnectivity is not truly

an indicator of disconnected brain regions, but rather noisy, transient connections

that flicker in and out of the network over time. Oxytocin deficiencies (indexed by

increased OXTR methylation) are offered as an explanatory underlying mechanism:

oxytocin dysfunction reduces neural SNR in response to social information, preclud-

ing the development of robust functional networks for social cognition. As modern

neuroscience and psychology move forward, complex phenotypes (from healthy

behavior to disease states) will inevitably be understood through constellations of

factors realized at multiple levels of the system in question. Here we propose a

strong first step towards that direction in our conception of social behavior.
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Experiment 1

There is increasing evidence to suggest that genetic and epigenetic regulation of the

oxytocin system contributes to developmental differences in the neurobiology of

social cognition. Our own work has previously shown that epigenetic variability in

the oxytocin receptor gene explains individual differences in the neural processing

of social information, both at the regional level99,100 and with respect to amygdalar

functional connectivity100. However, it remains unknown how OXTR methylation

might affect the coupling of more widespread networks underlying social cognition.

We therefore hypothesized that social task-related network topologies are stamped

with an epigenetic fingerprint of sorts, which should allow us to decode individual

differences in OXTR methylation from spatial patterns of functional connectivity.

To test this, we present a novel approach using statistical machine learning coupled

with graph theoretic measures of network connectivity to predict inter-individual

variability in OXTR methylation. We first describe the construction and validation

of machine learning models on task-related network data using a large sample

of healthy young adults. We then demonstrate that it is possible to generalize

these models to a new set of individuals. Together, these results show that intrinsic

network connectivity is an informative endophenotype for individual differences

18
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at the epigenetic level.

2.1 Materials and Methods

2.1.1 Participants

We present data from two sets of healthy young adults who participated in these

experiments for monetary compensation. Study 1 participants performed three

social-cognitive tasks in the fMRI scanner; Study 2 participants completed a larger

task battery in addition to resting state fMRI. Here, we focus on a social attribution

task common across groups. Both provided blood samples for epigenotyping—

in order to prevent population stratification artifacts with respect to epigenetic

markers, only Caucasians (self-reported) were included in the present analyses.

All individuals provided written informed consent for a protocol approved by

the University of Virginia Institutional Review Board (Protocol 15051; Principal

Investigator, Jessica J. Connelly).

Study 1 sample. The primary sample consisted of 150 individuals. Two participants

were excluded for non-Caucasian descent; two individuals were excluded for

providing incomplete methylation data; and an additional 19 were excluded for

excessive head motion during the fMRI task (mean framewise displacement � 0.50

mm and/or a single frame of motion � 3 mm). The Study 1 sample was therefore

comprised of 127 individuals (60 men, 67 women; Mage = 22.13± 2.98 SD, range =

18-30).

Study 2 sample. Data from a second study (61 participants) were reserved for

further model testing. One individual was excluded for non-Caucasian descent;

one individual was excluded for providing incomplete methylation data; and an

additional 11 were excluded for excessive head motion. Thus, the Study 2 sample
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was comprised of 48 individuals similar in age and gender makeup to Study 1 (24

men, 24 women; Mage = 20.94± 2.85 SD, range = 18-30).

2.1.2 Blood collection and DNA extraction

All individuals underwent venipuncture at the UVA Fontaine Research Park. Eight

milliliters of blood were collected in mononuclear cell separation tubes (BD Vacu-

tainer CPT with sodium citrate; BD Biosciences). Samples were immediately spun

for 30 minutes at 1,800 relative centrifugal force to separate the mononuclear cell

fraction (as per product protocol). The mononuclear cells were subsequently lysed,

and DNA was extracted using the reagents supplied in the Gentra Puregene Blood

Kit (Qiagen). DNA was stored at -20 �C until further analysis.

2.1.3 Epigenotyping targets and procedures

We assessed percent DNA methylation on OXTR CpG sites -934 (hg38, chr3:

8,769,121) and -860 (hg38, chr3: 8,769,047). These targets were identified from

prior work demonstrating differential methylation in autistics versus neurotypicals,

both in peripheral blood mononuclear cells (PBMCs) and cortical tissue63. Methy-

lation at these sites has also been shown to directly impact gene expression72 and

covary with BOLD activity in various social-cognitive tasks99,100. Prior to epigeno-

typing, 200 ng of DNA were bisulfite converted for each participant (Kit MECOV50;

Invitrogen), which allows for detection of methylated cytosines by converting all

non-methylated cytosines to uracil. We then used 12 ng of bisulfite-treated DNA

as templates for PCR amplification, performed in triplicate on three identical ma-

chines (C1000 Thermal Cycler; Biorad). Successful amplification was confirmed

with agarose gel electrophoresis. Pyrosequencing was subsequently performed

using Qiagen PyroMark Q24 Classic and Pyromark reagents per the manufacturer’s
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protocol; samples during this procedure were randomized to account for plate/run

variability. Site-specific primer pairs and PCR/pyrosequencing conditions are given

below (bolded nucleotides in primer sets indicate insertion of an A or C nucleotide

at a variable C/T position due to a CpG site within the primer). All epigenotypes

reported are an average of the three replicates.

CpG site -934. Sample amplification via PCR was performed using 0.20 µM of

primers TSL101F

(5’-TTGAGTTTTGGATTTAGATAATTAAGGATT-3’) and TSL101R

(5’-biotin-AATAAAATACCTCCCACTCCTTATTCCTAA-3’). Thermal cycling con-

ditions were: Step 1: (95 �C/15 min)/1 cycle; Step 2: (94 �C/30 s, 56 �C/30 s, 72

�C/30 s)/50 cycles; Step 3: (72 �C/10 min)/1 cycle; Step 4: 4 �C hold. Pyrosequenc-

ing was then performed using primer TSL101S (5’-AGAAGTTATTTTATAATTTTT-

3’). On average, replicate variability deviated from the mean ± 1.50%.

CpG site -860. Sample amplification via PCR was performed using 0.20 µM of

primers TSL104F

(5’-GTAGTTTAGAAAGTTTTGGAATTTTTGATT-3’) and TSL104R

(5’-biotin-AATAAAATACCTCCCACTCCTTATTCCT-3’). Thermal cycling condi-

tions identical to those used for CpG site -934. Pyrosequencing was performed

using primer TSL104S (5’-AGTTTTGGAATTTTTGATTTG-3’). On average, replicate

variability deviated from the mean ± 1.55%.

2.1.4 Social attribution task

The present analyses used data from a social attribution paradigm145,146 performed

in the fMRI scanner (one of several functional tasks in the full protocol, completed in

a quasi-random, counterbalanced fashion). In this task, 16 animations were shown

to participants for approximately 16 seconds each: these stimuli contained three
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white geometric shapes (a triangle, a diamond, and a circle) and an empty white box

centered on a black background. Half the stimuli presented the shapes as characters

engaging in social, goal-directed behaviors (e.g. playing hide-and-seek, dancing,

etc.); the other half displayed random motion, with the shapes bouncing around

the screen like billiard balls. These “animate” and “random” stimuli alternated for

the duration of the task. On average, overall motion vectors (speed and amount

of motion) were conserved across conditions. Participants were simply instructed

to observe the shapes as they moved along the screen—no overt responses were

required, but debriefing confirmed that participants differentiated between stimulus

types and attempted to infer the shapes’ behaviors during animate trials.

2.1.5 fMRI acquisition and preprocessing

All imaging procedures were conducted on a 3T Siemens Magnetom Tim Trio MRI

system using a standard 12-channel head coil at the UVA Fontaine Research Park.

In an effort to minimize participant motion, the head was secured using plastic

paddles on each side of the coil; foam cushions were additionally inserted into

the remaining space around the shoulders and neck. Functional MR data were

acquired via T

⇤
2 -weighted single shot gradient echo, echo planar imaging sequences

sensitive to the BOLD contrast (TR = 2 s; TE = 40 ms; FA = 90�) with generalized

autocalibrating partially parallel acquisitions (GRAPPA). Whole-brain coverage

was collected in 28 interleaved slices (4.2 mm slice thickness; 3 ⇥ 3 mm in-plane

resolution) parallel to the AC-PC line. The social attribution task consisted of 118

volumes plus several dummy scans to allow for steady-state magnetization. High-

resolution anatomical images were collected using a T1-weighted magnetization

prepared rapid gradient echo (MPRAGE) sequence (TR = 1.9 s; TE = 2.53 ms; FA =

9�; 176 slices; 1 mm thickness).
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Initial preprocessing was performed using the Statistical Parametric Mapping

8 software (SPM8, Wellcome Trust Centre for Neuroimaging, London) in Mat-

lab. Functional data were first realigned and unwarped to correct for participant

head motion. The mean motion-corrected image was then coregistered to the

high-resolution anatomical image. All scans were normalized to the Montreal

Neurological Institute template (MNI152) using both affine and nonlinear trans-

formations; functional volumes were resampled to 3 ⇥ 3 ⇥ 3 mm voxels and were

registered according to the transformation parameters derived from the anatomical

normalization. An 8 mm full-width at half-maximum (FWHM) isotropic Gaussian

kernel was subsequently applied to smooth the functional data.

Prior to functional connectivity analyses, additional preprocessing was per-

formed using in-house Matlab scripts. We first applied global signal scaling (median

= 1,000) to account for transient fluctuations in signal intensity across space/time.

We then extracted the residual BOLD signal from each voxel after removing the

effect of head motion. Motion was modeled based on the Friston-24 approach,

which includes six translation/rotation parameters, their temporal derivatives, and

the squares of each set147. This allowed us to account for both time-lagged and

nonlinear effects of motion on the BOLD signal.

2.1.6 Functional connectivity estimation

Functional network nodes were defined by parcellating the cerebrum into 90

anatomically defined regions of interest according to the widely-used automated

anatomical labeling (AAL) atlas148. Given that some AAL regions are large (and may

therefore have highly-heterogeneous voxelwise responses), a summary timecourse

was extracted for each region by taking the first eigenvariate within each functional

volume149,150. We then decomposed the timeseries into several frequency bands
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using a maximal overlap discrete wavelet transform (MODWT): in accordance with

previous uses of this filtering approach151,152, the low-frequency fluctuations in

wavelet scale two (0.06-0.12 Hz) were selected for subsequent connectivity analyses.

Thus, each participant yielded a 118 ⇥ 90 matrix of regional timeseries, X.

Next, we constructed a 90 ⇥ 90 functional association matrix, A, where each

element Ai,j (i.e. a network edge) indicated the strength of association between

regional timeseries xi and xj , computed as magnitude-squared coherence. Coher-

ence is a method for estimating linear time-invariant relationships between signal

timeseries. As a function of the cross-power spectrum between two signals, it

offers several advantages: 1) estimation of frequency-specific covariances; 2) simple

interpretability (values are normalized to the [0, 1] interval); and 3) robustness to

regional differences in the hemodynamic response function, which otherwise intro-

duce time-lag confounds to connectivity estimates via Pearson correlation153. At a

given frequency, !, the coherence between two regional timeseries, xi and xj , is:

�

2
xixj

(!) =

|S
xixj(!)|2

S
xixi(!)Sxjxj(!)

. (2.1)

Here, S
xixj is the cross-spectral density between xi and xj , while S

xixi and S
xjxj

are the auto-spectral densities of xi and xj , respectively. These were estimated

using the high-resolution minimum variance distortionless response (MVDR)154,155.

Ultimately, for each pair of regions, the mean coherence value was taken within our

frequency band of interest (0.06-0.12 Hz). Accompanying p-values were computed

using an F -distribution, according to convention156. Because this pairwise estima-

tion process involved a total of 4,005 comparisons, all association matrices were

submitted to an FDR correction (q < .05). Any elements of A that did not meet the

multiple comparisons threshold were set to zero.

In addition to FDR thresholding, we applied a range of proportional thresholds

to each association matrix, examining the top 50% of network edges to the top 10%
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of edges in 5% intervals (Figure A.1). Such thresholding practices are common

in functional connectivity analyses to determine how the apparent topology of

a network changes when filtering out weaker links157–159. For our subsequent

pattern analyses, this was especially important to consider: lower thresholds (e.g.

the 50th percentile) may still contain noisy connections that artificially inflate our

network metrics; conversely, more stringent thresholds (e.g. the top 10%) may

deflate estimates across much of the brain, leaving little information for pattern

identification. Network topology metrics and subsequent statistical models were

therefore estimated for each threshold.

Brain network quantification. Whole-brain network topology was characterized

using several common graph theoretic metrics included in the Brain Connectivity

Toolbox (BCT)160. We first obtained the degree of each node in the network. Nodal

degree is simply the total number of nonzero edges connected to a node. We

then computed nodal strengths, or the sum of all edge weights connected to a node.

Finally, we estimated eigenvector centrality across nodes. In general, nodal “centrality”

measures directly quantify the importance of each node in the system, such that

highly central nodes act like hubs which variously direct or coordinate information

flow across the network. Eigencentrality is formally defined via eigendecomposition

of the thresholded association matrix, A:

AV = �V, (2.2)

where � is a diagonal matrix of eigenvalues and V is a matrix of A’s right eigen-

vectors. The eigencentrality for each node is contained in the column eigenvector,

v, corresponding to the largest positive eigenvalue in �. Thus, similar to principal

component reduction, nodes with high eigencentrality can be thought to explain

more “variance” in global connectivity across the network by providing paths to

other central nodes. Network hubs in this sense are therefore defined statistically
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from the data—not based on prior functional/anatomical labels (e.g. default mode

network regions).

It is worth noting that nodal degree, strength, and eigencentrality all attempt to

characterize the presumptive influence of each brain region in the network (and

are therefore likely to be positively correlated). Importantly, however, a node with

many connecting edges (high degree) may have low overall strength if its numerous

links are weak. Similarly, high nodal eigencentrality does not necessitate that a

node is also high in degree and strength—a node may in fact have few edges

linking it to other nodes, but it could nevertheless be considered central if those

edges link to other highly-connected brain regions. Because the choice of network

metric may produce nontrivially dissimilar characterizations of system topology,

it is important to consider a number of measures when applying graph theory to

functional connectivity data.

2.1.7 Multivariate pattern analysis: Relevance vector regression

In an effort to decode individual differences in OXTR methylation from multi-

variate patterns of network topology, we employed a sparse Bayesian learning

technique: relevance vector regression (RVR), implemented in Matlab using the

SparseBayes software, v2.0161,162. A key advantage to RVR is its exploitation of

the marginal likelihood to achieve a sparse solution to the prediction problem.

Moreover, predictions are made by integrating over probability distributions, and

model hyperparameters do not need to be optimized through computationally

intensive cross validation routines; rather, they are learned directly from the data.

Data from Study 1 were used in these analyses, and models were trained/tested

per combination of {threshold,metric, CpG}.

For each model, training inputs were given as a set of feature vectors, {fn}Nn=1, with
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corresponding continuous targets, t = [t1, ..., tN ]
T , where N was the total number of

training examples. More specifically, feature vectors were comprised of network

statistics (degrees, strengths, or eigencentralities) derived from the 90-region AAL

atlas, and the target vector gave each participant’s methylation level for a given

CpG site. RVR formulates the target vector as the sum of an approximation vector,

y = [y(f1), ..., y(fN)]
T , and an error vector, ✏:

t = y + ✏ = �w + ✏. (2.3)

Notably, the approximation vector represents a linear combination of weights, w =

[w1, ..., wM ]

T , and an N ⇥ M design matrix, �, whose rows were comprised of

feature vectors from each participant. M here refers to the number of nodes in

the network. RVR treats the columns of � as a set of basis functions; thus, unlike

many other machine learning methods, RVR is not inherently a dual-form kernel

technique. Given our sufficiently large sample size, we elected to train models on

the primal representation of � rather than compressing features to a linear kernel

space, which compromises the sparseness of RVR.

Under the conventional assumption of independent and identically distributed

errors (with variance �

2), RVR specifies a multivariate Gaussian likelihood over the

target data:

p(t|w, �

2
) = (2⇡)

�N
2
�

�N
exp

⇢
�kt� yk2

2�

2

�
. (2.4)

A vector of hyperparameters, ↵ = [↵1, ...,↵M ]

T , modulates the prior distribution over

w (also Gaussian in form):

p(w|↵) = (2⇡)

�M
2

MY

m=1

p
↵m exp

✓
�↵mw

2
m

2

◆
. (2.5)

Put differently, the value of a hyperparameter, ↵m, models uncertainty about the

corresponding weight parameter value, wm. Given the target data, t, and the

hyperparameters, ↵, Bayes’ rule allows us to represent the posterior conditional
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distribution over w:

p(w|t,↵, �

2
) =

p(t|w, �

2
)p(w|↵)

p(t|↵, �

2
)

. (2.6)

The weight posterior is multivariate Gaussian with covariance

⌃ = (H+ �

�2�T�)

�1 (2.7)

and mean

µ = �

�2⌃�T t, (2.8)

where H is a diagonal matrix containing model hyperparameters, ↵.

The goal of RVR is to identify “most-probable” point estimates, µMP , for the

parameters, w. This is accomplished by maximizing the (log) marginal likelihood

of the posterior conditional with respect to model hyperparameters (i.e. type-II

maximum likelihood estimation):

L(↵) = log p(t|↵, �

2
) = log

1Z

�1

p(t|w, �

2
)p(w|↵)dw

= �1

2

�
N log(2⇡) + log |C|+ tTC�1t

�
,

(2.9)

where covariance C = �

2I+�H�1�T (I gives the identity matrix). The algorithm

initializes by identifying a “best aligned” basis function—this is the column vector

(network node) in � with the largest normalized projection onto t. The crux of RVR

and sparse Bayesian learning is then a sequential addition/deletion of network

nodes to the model until the likelihood objective converges. For each iteration, a

candidate node, �m, is selected and model quality (q2m) and sparsity (sm) parameters

are updated. In short, these represent a tradeoff between error reduction (quality)

and redundancy (sparsity). The gradient of the marginal likelihood at ↵m is reflected

by the “relevance factor,” ✓m:

✓m , q

2
m � sm. (2.10)
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If the relevance factor is positive (i.e. the increase in fit outweighs the cost in spar-

sity), �m may be added to the model or retained if it is already present; conversely,

if the criterion is zero or negative (i.e. the cost in sparsity matches or outweighs the

increase in fit), �m will be deleted or left out. We then update the noise parameter es-

timate (�2) along with model-level statistics and repeat until convergence. Critically,

any basis function may be re-added or deleted at any step if doing so improves the

marginal likelihood. In this way, we continually increase model evidence while also

ensuring that we identify the network nodes most relevant to the final prediction

function. Once this optimal solution has been converged upon, we derive µMP for

the weight vector via Equations 2.7 and 2.8 and may estimate the most-probable

value for new target data, t⇤ (given a new vector of inputs, �⇤):

t⇤ = y⇤ = �⇤µMP . (2.11)

The ability of RVR to predict percent methylation on OXTR was tested using

leave-one-subject-out cross-validation (LOSO-CV). For each fold of LOSO-CV, an

individual row vector of network statistics was removed from � (along with the

corresponding target value in t). Data were mean-centered according to the re-

maining training examples, the model was fit, and a predicted methylation level

was obtained for the left-out subject. This ultimately yielded a vector of predicted

methylation values, t⇤.

We quantified accuracy across CV folds using two measures: 1) the correlation

between actual and predicted methylation values (prediction correlation) and 2) av-

erage model loss (root mean squared error; RMSE). These performance statistics

were each compared against empirical distributions of plausible accuracies, gen-

erated through 1,000 iterations of nonparametric permutation testing. For each

iteration, the target vector was randomly permuted, the entire LOSO-CV procedure

was performed, and accuracy statistics were recorded. For prediction correlation,
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p-values were given as the fraction of cases in which permuted model accuracy was

higher than the “true” model; for RMSE, p-values reflected the fraction of cases in

which permuted model error was lower.

Subnetwork identification. Because RVR performs automatic feature selection,

we sought to determine whether a core “subnetwork” of brain regions was con-

sistently identified as relevant to predicting OXTR methylation. For each model

{threshold,metric, CpG}, weight vectors were averaged across CV folds and unit

normalized. We then collected all model weight vectors for a given {metric, CpG}

and computed “relevance probabilities” for each region (i.e. the probability of

nonzero weight across all 10 threshold levels). Regional relevance probabilities

were averaged across network metrics within each methylation site, allowing us

to determine which regions were consistently deemed relevant across all thresh-

old levels and network metrics. In order to avoid bias toward either methylation

site, a subnetwork was conservatively identified by selecting nodes which were

relevant over 75% of the time for either CpG -934 or CpG -860—this pared down

the original 90-region network to a 43-region subnetwork. We then re-estimated

network metrics based solely on connectivity across these areas and re-ran the RVR

procedure above (still based on the large Study 1 sample).

Independent generalization. After confirming the subnetwork improved overall

predictive performance, the data from Study 2 were used for further model testing.

We applied each model’s average weight vector (derived from Study 1 participants)

to the Study 2 data. Thus, we could directly assess the generalizability of our models

to an independent sample of participants. Model error (RMSE) was recorded and

significance was determined via 1,000 iterations of nonparametric permutation

testing.
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2.1.8 Brain data visualization

Multivariate weight maps from each model were averaged over CV folds and

unit normalized. These were projected onto a cortical surface using the Surf

Ice software (https://www.nitrc.org/projects/surfice/). Subnetwork

regions were mapped using the BrainNet Viewer (https://www.nitrc.org/

projects/bnv/)163.

2.2 Results

2.2.1 DNA methylation on OXTR

Percent DNA methylation was assessed at OXTR CpG sites -934 and -860. Within

each site, there were no significant differences in methylation between the two

samples (Figure 2.1). Collapsing across samples, methylation was generally much

higher on CpG -934 (M = 46.88± 6.27 SD) relative to CpG -860 (M = 25.99± 5.73

SD), t(174) = 38.23, p < .0001, two-tailed; however, there was still a positive

association between sites, r(173) = 0.28, p = .0002, two-tailed. Consistent with

previous work, we observed a sex effect on CpG -934 such that women (M = 48.26±

6.88 SD) were significantly more methylated on average than men (M = 45.39±5.19

SD), t(173) = 3.10, p = .002, two-tailed. No such differences were observed on

CpG -860: t(173) = 1.41, p = .162, two-tailed. Age was not a significant predictor

of methylation on either CpG -934 [r(173) = �0.04, p = .623, two-tailed] or CpG

-860 [r(173) = �0.02, p = .832, two-tailed]. Finally, and importantly, participant

head motion (mean framewise displacement) did not correlate with methylation

on either CpG -934 [r(173) = �0.10, p = .169, two-tailed] or CpG -860 [r(173) =

�0.004, p = .961, two-tailed], which suggests that associations between connectivity

and methylation are unlikely to be an artifact of motion-corrupted imaging data164.

https://www.nitrc.org/projects/surfice/
https://www.nitrc.org/projects/bnv/
https://www.nitrc.org/projects/bnv/
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2.2.2 Multivariate pattern analyses

A first pass using the full 90-region network demonstrated that multivariate pat-

terns of network topology significantly predicted OXTR methylation. This held

for all three network metrics, although prediction success varied depending on

methylation site and network threshold (Figure 2.2; see also Tables A.1 and A.2).

Performance was highly significant for CpG site -860 across several thresholds rang-

ing from the top 35% to the top 20%, with peak performance at the 30% threshold.

Models also significantly predicted methylation on CpG site -934 with performance

peaking between the top 40% and top 35% thresholds.

Subnetwork modeling. A visual inspection of the multivariate weight maps de-

rived from the models above demonstrated remarkable consistency in the regions

selected by RVR (Figure A.2). This was despite clear changes in overall network

topology (the degree distribution) across threshold levels (Figure A.1). We therefore

calculated the probability of each node being included across models (Figure 2.3A;

see also Tables A.3 and A.4) and defined a 43-region subnetwork: these core nodes

were relevant in over 75% of the models for either CpG site -934 or CpG site -860

(Figure 2.3B).

Following subnetwork definition, we then re-calculated network metrics based

on subnetwork connectivity and re-ran the RVR procedure. Feature reduction

generally offered increased performance relative to the full 90-region network: CpG

-934 enjoyed the largest benefit in overall error reduction, but CpG -860 continued

to yield the highest accuracies overall (Figure 2.4; see also Tables A.5 and A.6).

Unlike the whole-brain models, however, it was less clear which thresholds offered

peak predictive performance (Figures 2.2, 2.4). A number of network metrics still

saw an increase in predictive power around the top 30% and top 25% thresholds;

however, some metrics (e.g. strengths for CpG -860) yielded significant prediction
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performance for weak and stringent thresholds alike. For all metrics and both

methylation sites, RVR revealed a widely-distributed network of nodes ranging

from dorsal anterior regions of the brain to ventral posterior regions (Figure 2.5).

Interestingly, some regions selected by RVR were lateralized by methylation site

(e.g. the negative weights over postcentral gyrus, see Figure 2.5), but the non-

independence of multivariate weights precludes extensive local inference.

Model testing on independent data. Finally, we sought to directly test general-

izability of the subnetwork models by applying them to an independent dataset.

Weight vectors for each model {threshold,metric, CpG} were applied to the corre-

sponding subnetwork data obtained from the smaller Study 2 sample. Given the

inevitably-vast amount of individual variation in brain data, most models did not

significantly generalize to new examples. However, eigencentrality continued to

significantly predict OXTR methylation on CpG site -934 (Figure 2.6). This was

largely threshold-invariant (Table 2.1), but the best-generalizing thresholds also

yielded the highest performance for eigencentrality in the original subnetwork

models (Figure 2.4), suggesting that processes such as DNA methylation may play

a critical role in shaping the spatial organization of task-related network hubs.

2.3 Discussion

In this experiment, we used a combination of imaging epigenetics and statistical ma-

chine learning to demonstrate that inter-individual variability in social task-related

network architecture reflects epigenetic variation in OXTR. We presented this first

in a large sample using cross validation before demonstrating that it is possible to

generalize these models to an independent set of individuals. Although we have

previously shown that OXTR methylation covaries with regional BOLD activity and

seed-based connectivity during social-cognitive tasks99,100, to our knowledge, this is
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Network threshold RMSE (p)

FDR 6.83 (.051)
Top 50% 6.75 (.035)
Top 45% 6.75 (.031)
Top 40% 6.67 (.017)
Top 35% 6.70 (.016)
Top 30% 6.76 (.020)
Top 25% 6.73 (.011)
Top 20% 6.87 (.062)
Top 15% 7.29 (.298)
Top 10% 7.50 (.585)

Table 2.1: Independent model fit: Eigencentrality on CpG site -934. Model error (RMSE)
after applying Study 1 subnetwork models to Study 2 data (p-values derived from 1,000
iterations of nonparametric permutation testing).

the first study to show that individual differences at the microscale molecular-level

can be decoded from patterns of macroscale network connectivity. The Bayesian

learning approach used here allowed us to probe these relationships without forcing

prior anatomical or regional assumptions on the data (cf. seed-based connectivity).

2.3.1 Functional relevance of subnetwork regions

Automated feature selection is central to relevance vector machine learning. This

process was highly-reliable in our analyses, with RVR consistently identifying a

subnetwork of regions across threshold levels and network metrics. However, given

that many AAL partitions cover relatively large anatomical areas, it is critical to

assess the functional relevance of our subnetwork nodes. The regions selected by

RVR largely comprised a network of areas commonly implicated in various types

of social information processing, including the insula, fusiform gyrus, superior

temporal sulcus, temporoparietal junction, and inferior frontal gyrus82,145,165. More

recent work has extended this network to include other regions found in our

subnetwork, such as the caudate, premotor cortex, and precuneus166. Thus, the
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feature selection implemented by RVR successfully identified regions that are

functionally relevant for social cognition. While it is possible we would have

observed more nuanced weight distributions (or a more nuanced subnetwork)

with a more fine-grained atlas, our method of signal extraction (taking the first

eigenvariate within an ROI) can mitigate anatomical/functional variability across

individuals by capturing the spatial dimension along which maximal variance in

signal is accounted for. In other words, it is unlikely that task-related activations will

be expressed in precisely the same way for each individual, and the eigenvariate

will return the principal signal component regardless of where, exactly, those voxels

are in the ROI.

With respect to our earlier studies relating OXTR methylation to social task-

related activity99,100, we find considerable overlap between those clusters and our

subnetwork nodes—these include many of the areas listed above as well the amyg-

dala and dorsal anterior cingulate. Although we hesitate to draw overly-localized

inferences from our multivariate maps, it is worth noting that many (but not all)

of these regions are weighted negatively, such that decreased connectivity predicts

higher methylation. This offers an interesting perspective on our previous work,

which consistently demonstrated positive relationships between OXTR methyla-

tion and regional BOLD activity: increased levels of task-related activity may, in

certain cases, reflect weaker connectivity to other network nodes (as a function of

endogenous access to oxytocin), requiring these areas to “work harder” on their

own.

2.3.2 Network threshold and metric considerations

In general, most models suffered declines in performance at very weak (e.g. raw

FDR) and very stringent (e.g. top 10%) network thresholds. In the former case, this
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is likely a result of too much noise across the network; in the latter case, connectivity

density may have been too low for RVR to detect informative patterns. For both the

90-region network and 46-region subnetwork, a “sweet spot” in performance tended

to emerge around the top 30% threshold. At these levels, the degree distribution of

the network began to reflect a power-law form characteristic of so-called “small-

world” organization, where most nodes have few direct connections to one another,

instead relying on central hubs to quickly propagate information across the network.

Many biological systems—including the brain—indeed demonstrate small-world

organization167–171. Thus, thresholding the network to an increasingly small-world

state effectively optimized our ability to find relationships between connectivity

and methylation, removing superfluous, noisy edges that clouded the identification

of underlying topological patterns. Although higher thresholds (e.g. top 10%)

appear most similar to classical small-world networks, we suspect that RVR was

unable to find informative patterns when most nodes were disconnected from one

another.

With regard to graph theoretic metrics, nodal degree tended to predict methy-

lation better than nodal strength and eigencentrality, both in the whole-brain 90-

region network and the 46-region subnetwork. Degree is ostensibly a crude measure

of connectivity (simply a count of connected links, without considering weight),

but prior work has shown that nodes with high degree also tend to correspond

with central hub-like nodes: the knockout of these high-degree nodes in the brain

compromises network function and may directly contribute to a number of psy-

chopathological states167,172,173. Although a wealth of research has sought to identify

functional and structural hubs in brain networks174, in the present study, we de-

fined hubs in a data-driven, empirical fashion using nodal eigencentrality—this

allowed us to identify central nodes that emerged purely as a function of our task.
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Given that hubs are generally thought to enable efficient communication across

network components, it is perhaps not coincidental that eigencentrality was the

only metric able to generalize to an independent dataset. We suggest that individual

variation in DNA methylation may mediate the spatial development of a functional

network, including the extent to which various regions are integrated with one an-

other. These results further bolster an exciting, emerging body of research showing

network connectivity to be a stable intrinsic trait within individuals (across tasks,

rest, etc.)175–177: here, system architecture—or the topology of network hubs—offers

an informative endophenotype for one’s underlying molecular makeup, which

together translate into the complex phenotypes that define us as individuals.

2.3.3 Implications for oxytocin action and social behavior

It is well-established that oxytocin is critical for a number of social and affiliative

behaviors. However, mounting evidence suggests that genetic/epigenetic variation

in OXTR may specifically contribute to individual differences in social-behavioral

phenotypes by modulating the functional neuroanatomy of a number of brain re-

gions83. Such a mechanism is supported by recent work showing that cellular-level

networks display similar organization to macroscale cortical networks129. Thus, the

cytoarchitectural effects of genetic/epigenetic variation may cascade upwards to

large-scale functional network organization. Currently the full downstream conse-

quences of methylation on CpG sites -934 and -860 are unknown: more molecular

work is needed to elucidate their specific functions. While the observed differences

in weight maps may indicate non-overlapping roles for these sites, prediction suc-

cess in both CpG -934 and CpG -860 suggests they are each likely to contribute to

differences in multiscale network topology.

A compelling hypothesis suggests that social deficit disorders (such as the
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autism spectrum) are due to early-life dysfunction of the oxytocin system, which

otherwise supports social learning101. In this view, oxytocin amplifies the salience of

social information in the environment, allowing individuals to construct generative

models of the social self—this, in turn, enables the predictive coding mechanisms

necessary to engage in social inference and effectively navigate the social world.

Indeed, animal research has shown that oxytocin enhances neural signal-to-noise

and promotes neural plasticity through long-term potentiation5,6. In autistic chil-

dren, a recent study has further shown that intranasal oxytocin acutely strengthens

seed-based connectivity from the amygdala and ventral striatum to networks sup-

porting social perception and motivation9. There is also evidence that differential

expression of OXTR is predicted by early life experiences135. Together, these studies

suggest that early oxytocin dysfunction obstructs the development of brain systems

that support healthy social cognition. We therefore suggest that our ability to de-

code OXTR methylation from social task-related network architecture may reflect

variable neurodevelopmental trajectories, spurred by epigenetic limits on oxytocin’s

action. The predictive value of nodal centrality in particular further indicates that

oxytocin may support the coupling of brain networks that predispose individuals

to social behavior. Again, this is of special relevance to autism spectrum disorders

which are commonly characterized by higher levels of OXTR methylation63 and

hypoconnectivity in functional brain networks131,132—however, because the present

study included only neurotypical adults, future longitudinal work is needed to

clarify the role of OXTR methylation in brain network development and social

behavior over time.
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2.4 Figures

Figure 2.1: OXTR methylation by CpG site and sample. A, Distribution of percent methy-
lation values for CpG site -934. B, Distribution of percent methylation values for CpG
site -860. In both A and B, Study 1 samples (N = 127) are shown in light red while Study
2 samples (N = 48) are shown in light blue. No differences in mean methylation were
observed between samples.
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Figure 2.2: Results of relevance vector regression by threshold, metric, and CpG site.
Model performance for the full 90-region network (see also Table S1), trained/tested on the
Study 1 sample (N = 127). Left panels give prediction accuracies for CpG site -934; right
panels give accuracies for CpG site -860. Performance summarized using both Pearson
correlations (actual vs. predicted methylation; top) and model error (RMSE; bottom). Point
size indicates significance derived from 1,000 iterations of nonparametric permutation
testing; similarly, darker shading indicates smaller p-values (shading is scaled by � log(p)).
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Figure 2.3: Relevance probabilities and subnetwork map. A, Regional relevance proba-
bilities for each network metric and methylation site (models trained/tested on Study 1
data). Brighter colors indicate higher probabilities of model inclusion across all 10 threshold
levels. B, Reduced subnetwork of anatomically-defined nodes, relevant in more than 75%
of all models for either site.
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Figure 2.4: Subnetwork RVR performance. Model performance (prediction correla-
tion, top, and prediction error, bottom) for the 43-region subnetwork (see also Table S3),
trained/tested on the Study 1 sample. Point size and shading schemes are identical to
Figure 2.2.
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Figure 2.5: Multivariate weight maps derived from subnetwork relevance vector regres-
sion models. Relevance vector regression analyses on the 43-region subnetwork revealed
spatially-distributed sets of brain regions relevant for predicting individual differences in
OXTR methylation. Models were trained and tested using data from Study 1 (N = 127).
For both CpG site -934 (left) and CpG site -860 (right), weight maps are provided at the
top 30% and top 25% connectivity thresholds. Values reflect average weights across CV
folds (with unit normalization). Note that exact local inference is inappropriate given the
non-independence of multivariate weights—nevertheless, “hot” colors push the prediction
function towards higher expected methylation (with increased connectivity) while “cool”
colors indicate the reverse.
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Figure 2.6: Subnetwork eigencentrality models generalize to new data. Applying the
subnetwork models derived from Study 1 to data from Study 2 (N = 48) significantly
predicted OXTR methylation on CpG site -934—this was largely threshold-invariant, but
we provide the four best-fitting thresholds here. Prediction accuracy is given as model error
(RMSE), and p-values were derived through 1,000 iterations of nonparametric permutation
testing.
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Experiment 2

While Experiment 1 focused on task-related associations with OXTR methylation,

we now shift our focus to the resting state. Recently, variability intrinsic to the

BOLD signal has received attention as an informative measure in its own right178–180.

Studies on the effects of intranasal OT have suggested that oxytocin may enhance

synchronous temporal variability7 (i.e. functional connectivity), but to date, no

research has specifically examined how oxytocin might modulate baseline signal

fluctuations themselves—whether in terms of variability, power, or other signal

processing characteristics. Animal models, however, have identified a key role for

oxytocin in modulating neural SNR in the rodent hippocampus, simultaneously

amplifying signal and decreasing spontaneous background firing6. Thus, the pri-

mary aim of this study was to explore the potential relationships between intrinsic

BOLD dynamics and endogenous access to oxytocin in humans.

We hypothesized that multivariate patterns of BOLD variability—particularly

within networks relevant for social cognition (e.g. the default mode network—will

index DNA methylation on OXTR. Given that there is no previous research relating

intrinsic BOLD dynamics to molecular markers, we consider a host of variability

metrics ranging across temporal, spectral, and information theoretic domains. We

45
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also employ both whole-brain and network-specific machine learning models to

examine spatial heterogeneity in the relationships between BOLD variability and

OXTR methylation. Results provided mixed support for our hypothesis: the best-

performing models were localized to subcortical-cerebellum and higher-order visual

processing networks, not systems classically associated with overt social behavior.

Nevertheless, we find that endogenous access to oxytocin may indeed modulate

baseline oscillatory patterns across the whole-brain and within specific networks.

3.1 Materials and Methods

3.1.1 Participants

For the current analyses, data were drawn from 61 participants previously re-

ferred to as the Study 2 sample (Section 2.1.1). One individual was excluded for

non-Caucasian descent; one individual was excluded for providing incomplete

methylation data; and an additional 9 were excluded for excessive head motion dur-

ing the resting-state fMRI scan (mean framewise displacement � 0.50 mm and/or a

single frame of motion � 3 mm). The sample was therefore comprised of 50 individ-

uals (24 men, 26 women; Mage = 20.78± 2.64 SD, range = 18-30). All participants

provided written informed consent for a protocol approved by the University of

Virginia IRB (Protocol 15051; Principal Investigator, Jessica J. Connelly).

3.1.2 Blood collection and epigenotyping

We again report percent DNA methylation on OXTR CpG sites -934 and -860. Blood

collection, DNA extraction, and epigenotyping procedures were identical to those

described in Experiment 1 (see Section 2.1.2 and Section 2.1.3).
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3.1.3 Resting-state fMRI acquisition and preprocessing

All imaging procedures were conducted on a 3T Siemens Magnetom Tim Trio

MRI system using a standard 12-channel head coil at the UVA Fontaine Research

Park. In an effort to minimize participant motion, the head was secured using

plastic paddles and foam cushions within the head coil. High-resolution anatomical

images were collected using a T1-weighted magnetization prepared rapid gradient

echo (MPRAGE) sequence (TR = 1.9 s; TE = 2.53 ms; FA = 9�; 176 slices; 1 mm

thickness). Prior to collecting task-related functional MR data (not the focus of this

experiment), we collected resting-state fMRI via a T

⇤
2 -weighted multiband echo

planar imaging (mbEPI) sequence sensitive to the BOLD contrast (TR = 1 s; TE =

32 ms; FA = 90�; acceleration factor = 4). Whole-brain coverage was collected in

40 interleaved slices (3 mm slice thickness; 3 ⇥ 3 mm in-plane resolution). A total

of 500 volumes were acquired over approximately 8.5 minutes: during this time,

participants were simply instructed to lay still with their eyes open—a fixation cross

was presented on a projector screen in the back of the scanner, but participants were

otherwise free to let their minds wander.

We performed standard preprocessing procedures using the SPM8 software in

Matlab. Steps were identical to those described in Experiment 1 (Section 2.1.5), in-

cluding motion correction (realignment/unwarping), coregistration, normalization,

and smoothing.

Resting-state fMRI is particularly susceptible to motion and other MR signal

artifacts. Thus, like a connectivity analysis, additional preprocessing is necessary

before estimating BOLD variability. Importantly, however, we have previously

shown that relationships between BOLD variability and individual difference mea-

sures are heavily influenced by different techniques used to deal with motion180.

Our pipeline took a conservative approach to addressing this problem. We first
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applied global signal scaling (median = 1,000) to account for transient fluctuations

in signal intensity across space/time. The voxelwise BOLD timeseries were then

demeaned and detrended to correct for linear signal drift. Next, we employed

wavelet despiking—a cutting-edge technique that identifies spectral signatures of

head motion and removes them from the signal181. As a final effort to ensure our

data were not contaminated by motion artifacts, time-lagged and nonlinear effects

of head motion were estimated and removed from voxelwise BOLD timeseries

using the Friston-24 approach147.

3.1.4 Brain parcellation and timeseries extraction

In order to test whether relationships between BOLD variability and OXTR methy-

lation are heterogeneous across different functional networks, we partitioned the

brain into 268 regions according to the Shen atlas176,182–184. Unlike the anatomically-

defined AAL atlas used in Experiment 1, Shen atlas regions are functionally-defined

and pre-labeled according to one of eight networks (Table 3.1; Figure 3.1). In gen-

eral, this affords a more fine-grained parcellation than the AAL atlas; however,

because voxelwise responses within a region are still not guaranteed to be homoge-

nous, we extracted a summary timecourse per node by taking the first eigenvariate

at each timepoint149,150. No subsequent temporal filtering was performed—this

ensures that variability estimates are not biased by a limited band of information in

the signal.

3.1.5 Quantifying BOLD dynamics

Recent efforts to model intrinsic BOLD variability have employed a number of

techniques for quantifying dynamic fluctuations in signal. These can broadly

be characterized in terms of temporal variability, spectral variability, and dynamic
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Network N regions Kernel?

Medial frontal 29 N

Frontoparietal 34 N

Default mode 20 N

Subcortical-cerebellum 90 Y

Motor 50 Y

Visual I 18 N

Visual II 9 N

Visual association 18 N

Table 3.1: Networks of the Shen atlas. Network labels with corresponding numbers of
nodes. The far right column indicates whether network data must be compressed to a linear
kernel for relevance vector regression (based on the number of ROIs relative to the sample
size). See Figure 3.1 for a visual map.

complexity. Due to the lack of prior investigation into the relationship between these

factors and molecular level-variation, we consider the full range of metrics below.

Temporal variability. To asses BOLD dynamics in the time domain, we simply

computed the standard deviation (�t) of each regional timeseries in accordance

with previous work178–180,185.

Spectral variability. Measures of spectral variability rely on Fourier decomposi-

tions of the BOLD signal, allowing us to probe the proportion of signal energy

represented across different frequencies185–187. According to Parseval’s theorem, for

a zero-mean timeseries, x, realized at timepoints, t:

Z
x

2
(t)dt =

Z
|F(!)|2d!, (3.1)

where F(!) is the Fourier transform of x(t) at frequency, !. Variance in the fre-

quency domain, �2
!, is then given by the following set of equalities:

�

2
! = lim

T!1

1

T

T
2Z

�T
2

x

2
(t)dt = lim

T!1

1

T

Z
|F(!)|2d! =

Z
�(!)d!. (3.2)
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Here, �(!) is the power spectral density of the signal at frequency, !. We can therefore

take the integral over the entire range of frequencies as a general measure of spectral

variance (this is equivalent to estimating the total spectral power of the BOLD signal).

Additional measures of spectral variability commonly focus on low-frequency

ranges (e.g. 0.01-0.10 Hz) thought to reflect intrinsic network function185,186,188.

Evaluating the integral of �(!) over this band yields an estimate of low-frequency

power (LFP). Higher estimates of regional LFP (relative to the total power of the

signal) would suggest that BOLD fluctuations carry neurally-relevant information—

this ratio is known as the fractional amplitude of low-frequency fluctuations (fALFF)

and is thought to index neural signal-to-noise187.

In the present analyses, we estimated the full spectral variance (�2
!) of regional

BOLD timeseries, LFP, and fALFF. In concordance with connectivity analyses in Ex-

periments 1 and 3, LFP (and consequently fALFF) was derived from low frequency

fluctuations in the range of 0.06-0.12 Hz.

Dynamic complexity. Finally, we considered the entropy of regional BOLD signals.

Entropy is commonly understood in colloquial terms as “disorder” or “chaos”—in

this context, entropy is a statistical phenomenon that quantifies the amount of infor-

mation in a signal over time. Nevertheless, it can be conceptualized along similar

lines. Like chaotic physical systems, complex signals carry an inherent degree of

uncertainty: knowledge of previous system states may not guide expectations for

present states (vs. a sine wave which is perfectly predictable given sufficient infor-

mation about its past states). It then follows (perhaps counterintuitively) that stable,

predictable signals have low information content; greater uncertainty/complexity

increases the information in a signal and thus its entropy.

The entropy of physiological timeseries can be quantified using measures such

as approximate entropy (ApEn) its extension, sample entropy (SampEn)—the technical
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minutiae of each have been previously described in detail189–191. In short, both mea-

sures rely on a window parameter (m) and a tolerance parameter (r). These transform

the timeseries into a set of discrete matched (1) and mismatched (0) states over

time—states “match” if patterns of activity across contiguous windows (defined by

m) are similar within some distance criterion (r). Entropy is then the probability

of similar patterns of activation over time. There is some evidence that SampEn

provides more stable estimates of entropy regardless of timeseries length189,191;

however, both measures have successfully been used to characterize the complexity

of neural signals over time192–194.

We estimate both ApEn and SampEn using parameter settings recommended

in prior work—specifically, we set m = 2 and r = 0.25⇥MAD (where MAD is the

median absolute deviation of the regional timeseries)189,191–194.

3.1.6 Multivariate pattern analysis: Bayesian efficient multiple

kernel learning

To examine the relationships between OXTR methylation and patterns of whole-

brain BOLD variability (measured using the metrics defined above), we used

Bayesian efficient multiple kernel learning (BEMKL)195,196, implemented in Matlab—

this approach allowed us to specify whole-brain models while determining the

relative importance of BOLD variability in each network of the Shen atlas. Similar

to the relevance vector analyses described in Experiment 1 (see Section 2.1.7),

BEMKL can be used to obtain probabilistic, sparse solutions to the prediction

problem; however, BEMKL differs from RVR in a two important respects. First,

while RVR does not require the use of kernels, BEMKL necessitates compressing

data into a kernelized feature space. Second, BEMKL does not encode sparsity

though automated relevance detection—rather, it is manually manipulated via a
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priori hyperparameter settings. Models were trained and tested using standard

cross-validation and permutation procedures per combination of {metric, CpG}.

For a given BOLD variability measure, data were partitioned into M individual

N⇥Pm feature matrices, {Xm}Mm=1, corresponding to each of the eight Shen networks

(N gives the number of training examples and Pm indicates the number of regions

that comprised a given network, m). We then computed a simple N ⇥ N linear

kernel for each feature matrix:

Km = XmX
T
m. (3.3)

where each element Km|i,j indicated the similarity (i.e. the dot product) between

two feature vectors, xm|i and xm|j .

The decision function is formally defined using a multi-kernel extension of

classic dual-form machine learning:

t = ↵T

 
MX

m=1

�mKm

!
+ b. (3.4)

Here, t is an N ⇥ 1 vector of continuous targets (i.e. methylation values for a given

CpG site); ↵ is an N ⇥ 1 vector of sample weights (invariant across kernels); �m is a

kernel weight describing the contribution of Km; and b is a bias term.

While BEMKL specifies a fully-conjugate probabilistic model for the data, exact

inference is analytically intractable (again in contrast to RVR). Estimation is instead

performed using a deterministic variational approximation that places a lower

bound on the marginal likelihood, factoring out posterior distributions for each

parameter in an effort to model their joint distribution. The mathematics underlying

this procedure are dense and described in detail elsewhere195,196; therefore, we omit

a complete description here.

Before model estimation, however, BEMKL requires setting a series of hyper-

parameters that define prior distributions over the weight parameters. We denote
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the prior over sample weights using � ⇠ G(�) and the prior over kernel weights

using ! ⇠ G(!). Note these are gamma-distributed, which allows for simulating

either `1 (sparse) or `2 (nonsparse) norms over the weights by manipulating the

shape and scale parameters of the prior distribution. Given our relatively-small

sample size, we specified a nonsparse prior over the sample weights to retain as

much information from each input as possible: � = (1⇥ 10

�10
, 1⇥ 10

�10
). Sparsity

was instead encoded into kernel weights in an effort to identify networks most

strongly driving the final prediction function: ! = (1⇥ 10

�10
, 1⇥ 10

10
).

Each BEMKL model was trained and tested using leave-one-subject-out cross-

validation (LOSO-CV). For each fold, one individual was removed from the multi-

kernel and reserved for testing. The remaining data were then centered and unit

normalized to account for differences in the number of ROIs contributing to each

kernel. After the model was fit, an approximate-Gaussian predictive distribution

was obtained for the left-out data195,196—the mean of this distribution was taken as

the maximum-likelihood estimate of methylation for that individual. Overall pre-

diction accuracy was quantitated as model loss (root mean squared error; RMSE)

over all CV folds. We compared the “true” RMSE against an empirical distribu-

tion of error, generated over 1,000 iterations of nonparametric permutation testing.

As in Experiment 1, this involved shuffling the target vector, performing the full

LOSO-CV procedure, and recording the resulting RMSE. P -values thus reflected

the proportion of cases in which permuted model error was lower.

3.1.7 Multivariate pattern analysis: Relevance vector regression

Following whole-brain BEMKL, we used relevance vector regression (implemented

in Matlab using SparseBayes, v2.0) to model network-specific relationships between

BOLD variability and OXTR methylation. We elected to make a second pass with
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RVR for two reasons: 1) some networks are small enough so as to not require a

kernel (potentially allowing for more sensitive mappings of regional variability to

methylation), and 2) whole-brain BEMKL, despite using sparse kernel loadings, may

still have been hampered by uninformative features clouding pattern identification.

Of the eight networks in the Shen atlas, only two required computation of

a linear kernel (Table 3.1): the subcortical-cerebellum network (90 regions) and

the motor network (50 regions). Data from the remaining networks were kept

in primal form. All models were fully cross-validated (LOSO-CV) and evaluated

using nonparametric permutation tests per combination of {network,metric, CpG}.

We have previously described the specification and estimation of RVR models in

detail (see Section 2.1.7); however, in brief, BOLD variability measures from a given

network were used as training inputs while methylation values (from either CpG

site -934 or CpG site -860) served as targets for prediction. Regardless of whether

inputs were kernelized, a sparse parameter set was derived using sequential type-

II maximum likelihood estimation—in this procedure, individual features (i.e.

columns of the input matrix) were iteratively tested to determine whether their

inclusion in the model improved the overall likelihood of the data. The decision

to include or exclude a feature was determined by a “relevance factor,” which

captured the tradeoff between error reduction and redundancy relative to other

features presently in the model. The critical observation is that we are guaranteed a

monotonic increase in model evidence at each step, ultimately yielding a subset of

features that are most informative to the prediction problem.

The correspondence between actual methylation values and predictions from

LOSO-CV was quantified using RMSE. To determine whether model fit was

significantly better than chance, we performed 1,000 iterations of nonparametric

permutation testing—p-values again indicated the probability of “random” models
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outperforming the true model.

3.1.8 Brain data visualization

Kernel weights from BEMKL and dual-form RVR were reverse-transformed back

into the original space of the data per CV fold, averaged, and unit normalized;

primal-form RVR weights were simply averaged and normalized. The result-

ing multivariate maps from both BEMKL and RVR were projected onto a corti-

cal surface using the Surf Ice software (https://www.nitrc.org/projects/

surfice/). Shen atlas regions were mapped using the BrainNet Viewer (https:

//www.nitrc.org/projects/bnv/)163.

3.2 Results

3.2.1 DNA methylation on OXTR

Percent DNA methylation was assessed at OXTR CpG sites -934 and -860. Results

were largely consistent with Experiment 1 (see Section 2.2.1). Within-subjects,

methylation was significantly higher on CpG -934 (M = 46.62± 6.93 SD) relative

to CpG -860 (M = 25.93± 6.32 SD), t(49) = 17.95, p < .0001, two-tailed. However,

there was not a significant linear relationship between sites, r(48) = 0.25, p = .086,

two-tailed. We observed a smaller (albeit significant) sex effect on CpG -934 such

that women (M = 48.54 ± 7.48 SD) were more methylated on average than men

(M = 44.55 ± 5.72 SD), t(48) = 2.10, p = .041, two-tailed. There was no sex effect

on CpG -860: t(48) = 0.84, p = .406, two-tailed. Age was also not a significant

predictor of methylation on either CpG -934 [r(48) = �0.08, p = .575, two-tailed] or

CpG -860 [r(48) = �0.21, p = .143, two-tailed], and again, participant head motion

(mean framewise displacement) did not correlate with methylation on either CpG

https://www.nitrc.org/projects/surfice/
https://www.nitrc.org/projects/surfice/
https://www.nitrc.org/projects/bnv/
https://www.nitrc.org/projects/bnv/
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-934 [r(48) = �0.17, p = .252, two-tailed] or CpG -860 [r(48) = �0.15, p = .306,

two-tailed].

3.2.2 Whole-brain BEMKL

BEMKL largely failed to identify patterns of BOLD variability that were predictive

of OXTR methylation (see Supplementary Table B.1 for the full set of model fit

statistics). However, multivariate patterns of spectral variance (�2
!) significantly

predicted methylation on CpG site -934 (RMSE = 7.42, p = .047; Figure 3.2).

Regional weights were entirely negative, such that more variability predicted

decreased methylation. Interestingly, at the kernel level, the model was most

strongly driven by variance in the subcortical-cerebellum network (� = 0.50),

which is chiefly comprised of regions that are dopamine-rich (e.g. basal ganglia

structures). This was followed by the medial frontal network (� = 0.41) and the

default mode network (� = 0.39)—both of which span a number of areas relevant

for mentalizing and social information processing. The networks with the lowest

loadings were mainly sensory (visual I, � = 0.27, and visual II, � = 0.23), but

the frontoparietal network was also a weak contributor to the decision function

(� = 0.26). Motor regions (� = 0.35) and visual association regions (� = 0.35)

contributed equally in the mid-range of network loadings.

For CpG site -860, multivariate patterns of fALFF—rather than the full spectral

variance, �2
!—significantly predicted methylation (RMSE = 6.36, p = .006; Figure

3.3). Here, regional weights were almost exclusively positive. This was unexpected

given that fALFF is thought to index SNR in the BOLD signal: our model suggests

that higher SNR generally predicts increased OXTR methylation (i.e. decreased

access to endogenous oxytocin). The strongest network loadings were in line

with those observed for �2
! on CpG -934, such that subcortical-cerebellum regions
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(� = 0.54) and medial frontal regions (� = 0.47) were the greatest contributors

to the decision function. However, unlike the previous model, the default mode

network yielded one of the weakest loadings (� = 0.17), ranking only above the

visual association network (� = 0.02). The frontoparietal network (� = 0.37), motor

network (� = 0.34), and primary/secondary visual networks (visual I, � = 0.34,

and visual II, � = 0.30) were all modest contributors.

3.2.3 Network-specific RVR

A more focal examination of network-specific variability yielded a mixed set of re-

sults. Most models were not able to accurately predict OXTR methylation regardless

of metric or CpG site; sensory networks, however, demonstrated relatively strong

performance across several metrics within CpG -934. We summarize performance

for each network below.

Medial frontal (primal RVR). Although the medial frontal network was highly-

weighted in successful BEMKL analyses, models of variability in the primal network

space failed to yield significant prediction accuracy across all combinations of

{metric, CpG} (Supplementary Table B.2).

Frontoparietal (primal RVR). Similarly, patterns of frontoparietal variability in

primal space did not index OXTR methylation on either CpG site (Supplementary

Table B.3).

Default mode (primal RVR). We also observed no significant relationships between

BOLD variability metrics and OXTR methylation in the primal space of the default

mode network (Supplementary Table B.4).

Subcortical-cerebellum (dual RVR). Despite loading the strongest on significant

BEMKL models, network-specific analyses across subcortical-cerebellum regions
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largely failed to predict OXTR methylation (Supplementary Table B.5). How-

ever, multivariate patterns of low-frequency power accurately predicted percent

methylation on CpG site -860 (RMSE = 6.03, p = .016; Figure 3.4). Weights were

positive across the network such that greater LFP was associated with higher

levels of methylation—this was similar to the above BEMKL model which associ-

ated a greater proportion of LFP (fALFF) with increased methylation on CpG -860.

Here, fALFF trended towards significance but was outperformed by LFP alone

(RMSE = 6.39, p = .071).

Motor (dual RVR). Baseline variability across the motor network did not predict

methylation on either CpG site (Supplementary Table B.6).

Visual I (primal RVR). The primary visual network additionally yielded null per-

formance for each metric and CpG site (Supplementary Table B.7).

Visual II (primal RVR). Multivariate patterns of dynamic complexity in the sec-

ondary visual network—both approximate and sample entropy—significantly pre-

dicted OXTR methylation on CpG site -934 (Figure 3.5; Supplementary Table B.8).

ApEn (RMSE = 6.55, p = .007) fit slightly better than SampEn (RMSE = 6.63, p =

.016). Notably, both models were exceedingly sparse: RVR selected two regions

as relevant for ApEn and one region as relevant for SampEn (out of nine in the

network). For ApEn, predictions were driven by variability in the left lingual gyrus

and right middle occipital gyrus—both negatively weighted, such that increased

variability predicted decreased methylation. Similarly, SampEn was driven by a

negative weight in the right middle occipital gyrus.

Low-frequency power also significantly predicted percent methylation on CpG

site -934 (Figure 3.6); however, the effect was weaker than that of entropy (RMSE =

6.82, p = .049).

Visual association (primal RVR). Finally, multivariate patterns of temporal and
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spectral variability (�t and �

2
!, respectively) were significantly associated with

OXTR methylation on CpG -934 (Supplementary Table B.9). Fit was trivially better

for �

2
! (RMSE = 6.20, p = .001; Figure 3.7) relative to �t (RMSE = 6.30, p =

.002; Figure 3.8). Interestingly, the regions selected by RVR were primarily right-

lateralized, which follows previous work suggesting hemispheric asymmetries in

social perception—specifically, that non-verbal social cues are dominantly processed

in the right hemisphere197.

3.3 Discussion

The purpose of this experiment was to explore potential associations between

BOLD dynamics and epigenetic variability in the oxytocin system, using a number

of common metrics across distributed functional networks. Previous animal mod-

els have suggested that oxytocin modulates neural signal-to-noise6—perhaps in

concert with dopaminergic systems that regulate the gain of neural signals27,41,42,44.

However, until now, no studies have attempted to determine whether oxytocin is

related to SNR or baseline functional dynamics more broadly in humans. In part,

this may be due to measurement uncertainty: it is unclear how accurately we can

quantify peripheral concentrations of the peptide itself98. We suggest that epige-

netic markers such as OXTR methylation may circumvent this issue, providing a

measure of endogenous access to oxytocin independent of actual peptide levels.

Moreover, given that social deficit disorders are commonly associated with OT

receptor deficiencies63 and “noisy brains,”130 the current investigation offered a

means of linking these observations together, identifying which functional systems

might be impacted by decreased access to oxytocin.

Our data-driven approach employed whole-brain and network-specific machine

learning models in an effort to identify spatial patterns of variability that informed
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epigenetic differences. While an increasing number of studies have suggested that

BOLD variability is more than mere noise178–180,185, few models were able to identify

consistent, patterned structure in the data, yielding only partial support for our

hypothesis that OXTR methylation might impact baseline system dynamics at the

macroscale. There are several reasons why this may have occurred.

First, we have previously shown that associations between BOLD variability

and individual difference measures are highly influenced by different preprocess-

ing pipelines180. It is possible that some of our methods (e.g. wavelet despiking)

removed relevant variability from the signal; however, an exhaustive compar-

ison of different preprocessing pipelines was beyond the scope of the current

analyses. Second, the BOLD signal is a crude measure relative to cellular-level

electrophysiology—consequently, the effects of oxytocin on neuronal SNR may

be muddled when measuring a broad, vascular process such as BOLD. Third, the

nature of this experiment was to model noise, which is theoretically random and

normally-distributed across the brain (according to the assumptions of many sta-

tistical analysis techniques in neuroimaging). While there may be focal, regional

associations between BOLD variability and individual difference measures, an

attempt to find coherent, spatially-distributed structure may simply be an uphill

battle. Nevertheless, we observed a number of significant relationships between

measures of BOLD dynamics and OXTR methylation, both at the whole-brain and

network-specific level, suggesting that endogenous access to oxytocin may indeed

modulate the baseline functioning of macroscale networks.

3.3.1 Evidence for oxytocin-dopamine interactions

Although it was not possible for us to directly measure levels of dopaminergic ac-

tivity in the brain, several of our models demonstrated strong associations between
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OXTR methylation and spectral variability in the subcortical-cerebellum network.

The nodes of this system are densely packed across regions that are both dopamine-

rich and innervated by oxytocin neurons, such as the ventral striatum and other

basal ganglia structures27,34. Thus, our ability to decode OXTR methylation from

this network may reflect differences in baseline oscillatory function, driven by

interactions between oxytocin and dopamine. The strongest effects were observed

within CpG site-860, but methylation on both sites may still have downstream

consequences for the function of this network.

A landmark study in nonhuman primates demonstrated that spontaneous,

low-frequency BOLD fluctuations were strongly correlated with underlying neu-

ronal spike patterns198. Perhaps not surprisingly then, metrics accounting for

low-frequency dynamics (LFP and fALFF) were the most predictive of OXTR

methylation, but general spectral variance may also be a relevant measure. A

broad class of dopaminergic neurons exhibit tonic firing patterns absent of stimula-

tion, but afferent modulation of these systems can shift firing modes into phasic

or burst states199,200. There is increasing evidence to suggest that stimulation of

mesolimbic oxytocin causes downstream stimulation of dopaminergic cells, in-

ducing dopamine release and driving socio-sexual behaviors associated with joint

oxytocin-dopaminergic action51; however, to our knowledge, there is limited elec-

trophysiological work detailing how oxytocin might modulate the firing states of

dopaminergic neurons. A pair of studies have shown that oxytocin modulates tonic

and bursting firing patterns of dopaminergic neurons in the hypothalamus, but

these effects were primarily in service of lactation201,202.

Nevertheless, it remains a possibility that OXTR methylation affects the extent

to which oxytocin modulates firing in dopaminergic neurons. Suppose that greater

endogenous access to oxytocin enables more diffuse regulation of baseline firing
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states: this might produce more variability in the expression of tonic vs. bursting vs.

phasic firing across mesolimbic dopamine neurons. As a consequence, we might

expect more variability in the power spectrum of the BOLD signal across these

regions (assuming that spontaneous BOLD fluctuations do, in fact, reflect neuronal

spike patterns198). This would be in line with our BEMKL model which associ-

ated increased spectral variability with decreased OXTR methylation. However,

if oxytocin generally serves to promote synchronous activity6,7,128, the opposite

trend is likely to emerge: rather than more variable spike patterns, oxytocin may

encourage time/phase-locked spiking in a specific frequency range. Whole-brain

BEMKL and subcortical-cerebellum RVR models suggested that greater degrees of

LFP and fALFF predicted higher levels of OXTR methylation—but according to

animal research, oxytocin may actually decrease slow, spontaneous spiking and en-

hance synchronous fast-spiking activity6, consistent with our observations (which

associated low-frequency fluctuations with decreased access to oxytocin).

3.3.2 Oxytocin, social perception, and predictive coding

Contrary to expectation, networks classically associated with social cognition (e.g.

the medial frontal and default mode networks) did not predict OXTR methylation

on their own. The best predictors in network-specific RVR models—aside from

subcortical-cerebellum regions—were instead associated with higher-level visual

processing. Approximate and sample entropy in the secondary visual network both

significantly predicted epigenetic variability on CpG site -934; similarly, temporal

and spectral variability in the visual association network also predicted methylation

on CpG -934. On average, whole-brain entropy measures were not correlated

with either temporal or spectral variability measures (Supplementary Table B.10),

suggesting that they capture unique functional characteristics of the BOLD signal
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(temporal and spectral variability, by contrast, were very highly correlated).

The small size of the secondary visual network (nine regions) and extreme

sparsity of the resulting models (driven by a mere one or two regions) means

results should be interpreted with caution. Perhaps more interesting was the

strongly right-lateralized effect observed in the visual association network. In

general, higher-order visual areas in the right hemisphere are thought to support

processing of nonverbal social cues197. Previous work has also associated OXTR

polymorphisms with differential activity in lateral occipital cortex during emotional

face processing203, and we have further shown that lateral occipital activity covaries

with methylation on CpG site -934 when viewing emotional faces100.

The regions selected by RVR extended from lateral occipital cortex into ventral

temporal regions—components of the “visual what stream” associated with rapid

processing of visual emotional stimuli204. We suggest that our results reveal differ-

ences in the baseline function of predictive coding systems underlying emotional

inference and social cognition. Recall that social-emotional inputs from the environ-

ment travel in a bottom-up fashion through sensory systems before being integrated

and interpreted by top-down cortical networks—in order to avoid prediction error,

the bottom-up system is required to generate a precise neural representation of the

external stimulus104,124. We previously posited that oxytocin plays a central role

in coordinating activity to generate such a representation: therefore, individual

differences in oxytocin action may modulate stimulus-free “preparatory” states,

similar to tonic firing of dopamine neurons. Maintaining a coherent baseline then

makes it possible for high-fidelity information transfer given stimulus-evoked exci-

tation of the system—another putative function of oxytocin6,128. This hypothesis

could be illuminated in future studies using more temporally-sensitive measures

such as electrophysiology, providing higher-resolution estimates of the relationship
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between OXTR methylation, baseline variability, and task-evoked processing of

social-emotional information.
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3.4 Figures

Figure 3.1: Shen atlas partitions. The 268 individual regions of the Shen atlas (top) are
further partitioned into 8 functional networks (bottom). See Table 3.1 for network labels
and sizes (i.e. number of nodes).



CHAPTER 3. EXPERIMENT 2 66

Figure 3.2: Multivariate patterns of spectral variance across the whole brain predict
OXTR methylation on CpG site -934. Average, unit-normalized weight maps from whole-
brain BEMKL analyses are given for individual regions (top) and networks (middle). In
general, increased spectral variability predicted decreased methylation. The bottom panel
displays the correspondence between actual methylation values (black) and model predic-
tions (red). See Table B.1 for a full summary of model fit for all variability metrics at the
whole-brain level.
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Figure 3.3: Multivariate patterns of fALFF across the whole brain predict OXTR methy-
lation on CpG site -860. Average, unit-normalized weight maps from whole-brain BEMKL
analyses are given for individual regions (top) and networks (middle). Although some re-
gions were weighted negative„ an increased proportion of low-frequency power across the
brain (relative to the full signal power spectrum) generally predicted increased methylation.
The bottom panel displays the correspondence between actual methylation values (black)
and model predictions (red). See Table B.1 for a full summary of model fit for all variability
metrics at the whole-brain level.
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Figure 3.4: Multivariate patterns of LFP in the subcortical-cerebellum network predict
OXTR methylation on CpG site -860. Network-specific RVR in the subcortical-cerebellum
network suggested that greater levels of low-frequency power were associated with in-
creased methylation (weight maps, top, are averaged and unit-normalized). The bottom
panel displays the correspondence between actual methylation values (black) and model
predictions (red). See Table B.5 for a full summary of model fit for all variability metrics in
subcortical-cerebellum analyses.
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Figure 3.5: Multivariate patterns of entropy in the secondary visual network predict
OXTR methylation on CpG site -934. Both approximate entropy (left) and sample entropy
(right) were significantly associated with methylation on CpG -934. We omit multivariate
weight maps due to the extreme sparsity of each RVR model—ApEn was driven by a
mere two regions while SampEn was driven by one region. We therefore recommend
cautious interpretation of these findings. See Table B.8 for a full summary of model fit for
all variability metrics in secondary visual analyses.



CHAPTER 3. EXPERIMENT 2 70

Figure 3.6: Multivariate patterns of LFP in the secondary visual network predict OXTR
methylation on CpG site -934. Low-frequency power in the secondary visual network was
a weak predictor of OXTR methylation on CpG site -934. See Table B.8 for a full summary
of model fit for all variability metrics in secondary visual analyses.
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Figure 3.7: Multivariate patterns of temporal variability (�t) in the visual association
network predict OXTR methylation on CpG site -934. RVR analyses in the visual asso-
ciation network revealed a right-lateralized set of regions whose variability over time
significantly predicted methylation (weight maps, top, are averaged and unit-normalized).
The bottom panel displays the correspondence between actual methylation values (black)
and model predictions (red). See Table B.9 for a full summary of model fit for all variability
metrics in visual association analyses.
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Figure 3.8: Multivariate patterns of spectral variability (�2
!) in the visual association net-

work predict OXTR methylation on CpG site -934. RVR analyses in the visual association
network demonstrated that spectral variability across a right-lateralized set of regions
significantly predicted methylation (weight maps, top, are averaged and unit-normalized).
The bottom panel displays the correspondence between actual methylation values (black)
and model predictions (red). See Table B.9 for a full summary of model fit for all variability
metrics in visual association analyses.



Chapter 4

Experiment 3

Thus far, we have provided evidence that OXTR methylation is associated with

the topology of task-related functional networks (Experiment 1) and the intrinsic

dynamics of the resting brain (Experiment 2). Experiment 3 therefore aimed to

combine these approaches in an effort to determine whether spontaneous dynam-

ics in baseline functional connectivity index epigenetic variability along OXTR.

We were further motivated by the observation that autism spectrum phenotypes

are associated with oxytocin receptor deficiencies, hypoconnectivity, and “noisy

brains”63,130–132. Our results from the previous experiment suggest that OXTR

methylation modulates resting BOLD fluctuations. Rather than hypoconnectivity,

then, it is possible that connectivity is simply more transient as a function of de-

creased oxytocin signaling (which otherwise supports robust synchronous activ-

ity6,128). Moreover, because ASD-like traits exist across a wide spectrum in the

population, we can usefully model these potential relationships in our sample of

neurotypical young adults.

We therefore hypothesized that patterns of dynamic functional connectivity

offer a unifying neural endophenotype that explains both underlying molecular

makeup and the extent to which one expresses autistic like traits. To quantify

73
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moment-to-moment stability in network coupling, we describe a novel application

of entropy to continuous connectivity estimates. Machine learning models are used

in an effort to predict OXTR methylation and autistic-like traits from patterns of

connectivity entropy. We show that network stability within a subsystem of the

default mode network (commonly associated with social cognition) indeed predicts

both epigenetic and behavioral variability; network stability within a subsystem of

the salience network (involved in top-down interpretation of emotional stimuli) also

predicts individual differences in methylation. These results highlight functional

differences between default mode and salience network components and further

validate the use of network endophenotypes as a link between genes and behavior.

4.1 Materials and Methods

4.1.1 Participants

The sample used in the following analyses was identical to that in Experiment

2 (Section 3.1.1): we present data from 50 self-identified Caucasians (24 men, 26

women; Mage = 20.78±2.64 SD, range = 18-30) with complete methylation data and

acceptable head motion during resting-state fMRI. All individuals provided written

informed consent for a protocol approved by the University of Virginia Institutional

Review Board (Protocol 15051; Principal Investigator, Jessica J. Connelly).

4.1.2 Blood collection epigenotyping

As in Experiments 1 and 2, we report percent DNA methylation on OXTR CpG sites

-934 and -860. Blood collection, DNA extraction, and epigenotyping procedures

were identical to those described in Experiment 1 (see Section 2.1.2 and Section

2.1.3).
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4.1.3 Behavioral assessment: The broad autism phenotype

We obtained estimates of the broad autism phenotype (BAP) using the 50-item Autism-

Spectrum Quotient (AQ)144. The AQ is a self-report assay quantifying the extent

to which individuals express autistic-like traits over five subscales: social skill,

attention switching, attention to detail, communication, and imagination. Subscale

scores were summed to obtain a total out of 50 (with 32 as a potential clinical

cutoff144). Although not a diagnostic scale per se, the AQ was demonstrated to be a

reliable indicator of BAP expression in neurotypical controls and individuals with

Asperger Sydnrome and high-functioning autism144.

4.1.4 Resting-state fMRI acquisition and preprocessing

Image acquisition and preprocessing procedures followed those described in Ex-

periment 2 (Section 3.1.3). Briefly, whole-brain resting-state fMRI was collected

using a high-speed mbEPI sequence. Data underwent standard preprocessing using

SPM8 in Matlab. We additionally performed voxelwise global signal scaling, linear

detrending, wavelet despiking, and nuisance regression of motion parameters.

4.1.5 Network selection and timeseries extraction

Due to the computational complexity of dynamic connectivity analyses, we limited

our focus to individual networks and their subsystems rather than whole-brain

models. Specifically, we examined functionally-distinct components of the default

mode network (DMN) and salience network (SN) as defined by an adapted version

of the Willard atlas 139. We modified the original atlas because Willard regions were

initially defined using independent component analysis—component clusters near

the midline often spanned both hemispheres, requiring them to be split in two for

the present analyses.
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The DMN was partitioned into a dorsal (dDMN) component and a ventral

(vDMN) component (Figure 4.1). The dDMN largely corresponds to what oth-

ers have termed the dorsal medial subsystem—these regions, primarily spanning the

posterior cingulate and medial PFC, are frequently associated with empathetic pro-

cesses such as mentalizing and perspective-taking205,206. Accordingly, connectivity

across these regions is compromised in ASD207,208. The vDMN is relatively intact,

by contrast—it comprises a medial temporal subsystem that is primarily associated

with mental time-travel and other autobiographical memory-related functions205,206.

Consequently, we expect that OXTR methylation and BAP expression will be asso-

ciated with networks dynamics in the dDMN, not the vDMN.

Similarly, the SN was partitioned into an anterior (aSN) component and a poste-

rior (pSN) component (Figure 4.2). Nodes of the aSN (e.g. the anterior insula, dorsal

anterior cingulate, and dorsomedial PFC) are associated with a host of functions, in-

cluding attentional orienting, cognitive control, and various empathetic/emotional

processes, such as top-down assessment of emotional signals in predictive cod-

ing models; the pSN is primarily linked to bottom-up, autonomic responses to

externally- and internally-generated signals105,106,209,210. Although there is evidence

to suggest autistic individuals have difficulties regulating autonomic responses,

aSN deficits are most commonly associated with ASD211,212. We therefore suspect a

similar dissociation between SN subsystems to emerge, such that aSN dynamics

predict methylation and behavior to a greater extent than pSN dynamics.

4.1.6 Dynamic functional connectivity estimation

We estimated dynamic connectivity between network nodes using multiplication of

temporal derivatives (MTD)213–215. Similar to other dynamic connectivity techniques,

MTD is dependent on a window parameter, w. However, unlike the standard win-
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dowed cross-correlation approach—which uses w to define a series of discrete,

non-overlapping temporal windows—MTD uses this parameter to define the width

of a one-dimensional temporal smoothing operator (a simple moving average). Thus,

MTD yields a time-resolved, continuous estimate of moment-to-moment connectiv-

ity.

As the name implies, MTD is based on a pointwise multiplication of velocity

vectors (i.e. first derivatives) for a pair of BOLD timeseries. Let w denote the width

of the smoothing window and di and dj denote the temporal derivatives of two

regional timeseries, xi and xj (with length, T , and standard deviations of velocity,

�i and �j)—the MTD estimate of connectivity at time, t, is then:

MTDi,j(t) =
1

w

t+wX

t

di(t)dj(t)

�i�j
. (4.1)

Put differently, MTD yields a normalized estimate of similarity in rates of change

between two signals. Like a Pearson correlation, it can be positive (suggesting “in-

phase” coupling) or negative (suggesting “anti-phase” coupling). The smoothing

window serves to protect against high-frequency noise; thus, it is typically set

within a range comparable to the temporal filter applied to the BOLD signal. We

set w = 10 seconds per prior recommendations213–215, which corresponds to ⇠ 0.10

Hz. The end result is an N ⇥N ⇥ (T � w � 1) matrix, A, of continuous, dynamic

connectivity estimates, where N is the number of network nodes and (T � w � 1)

is the number of timepoints (reduced from the original total, T , due to taking a

derivative and applying smoothing). We left A for each network unthresholded,

as there is no parametric null distribution from which to estimate significance.

Moreover, the temporal smoothing applied to each network edge hampers the

ability to compute p-values via surrogate or permutation testing, as connectivity

estimates over time are necessarily non-independent of one another.

Connectivity entropy. Given that each edge in A is itself a timeseries, we computed
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the approximate entropy (m = 2, r = 0.25 ⇥MAD) for each pairwise connection

in the network. Similar to ApEn as discussed in Section 3.1.5, this offers a means

of estimating the complexity or stability of interregional connectivity over time:

relatively-constant connections would yield low entropy while highly-dynamic

connections would be characterized by high entropy. Modeling edgewise variability

in this way is preferable to possible alternatives such as the standard deviation,

because a regularly-oscillating signal can nevertheless cover a wide range in ampli-

tude. Connectivity entropy, by contrast, directly quantifies the probability of similar

connectivity states in a temporally-evolving network. Thus, we can test whether

OXTR methylation might be associated with high-fidelity connectivity and whether

these network characteristics additionally explain behavioral outcomes.

4.1.7 Multivariate pattern analysis: Relevance vector regression

We next sought to determine whether multivariate patterns of network stability

might jointly predict both OXTR methylation and the extent to which one ex-

pressed autistic-like traits. Relevance vector regression was again performed using

the SparseBayes software (v2.0) in Matlab. Edgewise connectivity entropy esti-

mates for a particular network (either dDMN, vDMN, aSN, or pSN) served as

training inputs; OXTR methylation values and BAP scores were given as targets

for prediction. Although we previously attempted to model network data in its

primal representation whenever possible, the number of features (i.e. edges) in each

network consistently exceeded the number of training examples—thus, all network

data were compressed into a linear kernel space. We omit a complete description of

RVR estimation here as we have described it previously (see Section 2.1.7).

Models were trained and tested using leave-one-subject-out cross-validation

(LOSO-CV). At each step, one subject was removed from the kernel, the remaining
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data were centered, and the model was fit, yielding a sparse vector of kernel

hyperparameters. These were applied to the left-out feature vector to obtain a

predicted methylation value; root mean squared error (RMSE) was computed over

all folds as a measure of accuracy. Finally, we used 1,000 iterations of nonparametric

permutation testing to determine whether models were performing above chance.

We report p-values indicating the probability of permuted models yielded lower

error than the “true” model.

4.1.8 Brain data visualization

Kernel weights were projected back into the original space of the data, averaged

over CV folds, and unit normalized. Network regions and their multivariate

maps were visualized using the BrainNet Viewer (https://www.nitrc.org/

projects/bnv/)163.

4.2 Results

4.2.1 OXTR methylation and the broad autism phenotype

We previously reported general methylation-related results for this sample in Ex-

periment 2 (see Section 3.2.1). In line with the notion that ASD traits are still

expressed along a continuum in the neurotypical population, we observed a nor-

mal distribution of BAP scores (although none exceeded the clinical cutoff; Figure

4.4). We subsequently used a linear mixed effects model to determine whether

BAP scores significantly differed by sex and OXTR methylation. Methylation was

entered as a random effect whose slope varied freely by CpG site. Because it is

nontrivial to compute degrees of freedom in mixed models, we used a Satterthwaite

approximation to test against the null hypothesis of no effect for each parameter

https://www.nitrc.org/projects/bnv/
https://www.nitrc.org/projects/bnv/
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(model-level statistics are collated in Table 4.1). Although men (M = 18.92± 4.64

SD) tended to be higher on BAP than women (M = 15.27± 5.50 SD), there was not

a main effect of sex (� = 2.27, SE = 3.14; t = 0.72, p = .472). Percent methylation

was significantly associated with BAP scores, such that higher methylation pre-

dicted lower expression of the broad autism phenotype (� = �0.20, SE = 0.08; t =

�2.49, p = .046). There was no further interaction between sex and methylation

(� = .02, SE = 0.08; t = 0.28, p = .780); however, see Figure 4.4 for sex and CpG-

specific relationships between OXTR methylation and BAP.

Parameter Estimate SE t (p)

Intercept 22.87 4.14 5.52 (.081)
Sex 2.27 3.14 0.72 (.472)
Methylation -0.20 0.08 -2.49 (.046)
Sex ⇥ Methylation 0.02 0.08 0.28 (.780)

Table 4.1: Inter-individual variability in OXTR methylation predicts differences in the
broad autism phenotype. A linear mixed-effects model demonstrated a significant inverse
relationship between OXTR methylation and the broad autism phenotype. T -statistics
and p-values obtained using the Satterthwaite approximation. Although there was not a
significant interaction between sex and methylation, CpG site and sex-specific relationships
are visualized in Figure 4.4.

A more focal analysis demonstrated that the effect of methylation was primarily

driven by CpG site -934 [r(48) = �0.40, p = .004, two-tailed]. CpG -860 was

not significantly correlated with BAP [r(48) = �0.25, p = .078, two-tailed]. We

also observed no correlation between BAP scores and participant head motion

[r(48) = .004, p = .978, two-tailed].

4.2.2 Connectivity entropy: Default mode network

As hypothesized, multivariate patterns of connectivity entropy within the dorsal

DMN predicted OXTR methylation and the extent to which individuals expressed

autistic like traits (Figure 4.5)—this did not hold in the ventral DMN (Table 4.2).
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Specifically, dDMN entropy informed individual differences on CpG site -860

(RMSE = 5.69, p = .011) and BAP (RMSE = 4.99, p = .022); methylation on CpG

-934 was poorly-predicted in comparison (RMSE = 8.50, p = .961). The weights

learned by RVR generally pushed expected methylation and BAP in opposite di-

rections, such that higher entropy across the dDMN was associated with increased

methylation and decreased BAP scores. This follows the inverse relationship de-

scribed between OXTR methylation and BAP above, although CpG site -860 was not

significantly correlated with autistic-like traits. Nevertheless, these results suggest

that OXTR methylation may contribute to the baseline stability of networks related

to social cognition, ultimately translating into behavioral variability.

Component CpG -934 CpG -860 BAP

dDMN 8.50 (.961) 5.69 (.011) 4.99 (.022)
vDMN 7.89 (.526) 6.80 (.257) 6.12 (.595)

Table 4.2: RVR model fit: Default mode network. Prediction accuracies (RMSE) are given
for RVR models on dDMN and vDMN data (see Figure 4.5 for weight maps corresponding
to significant dDMN analyses). P -values derived from 1,000 iterations of nonparametric
permutation testing are given in parentheses.

4.2.3 Connectivity entropy: Salience network

Model performance in the salience network lent partial support to our hypothesis:

multivariate patterns of connectivity entropy in the aSN significantly predicted

OXTR methylation on both CpG sites, but it did not predict behavior. Entropy

in the pSN was not associated with methylation or behavior (Table 4.3). For aSN

models, accuracy was trivially better for CpG -934 (RMSE = 6.56, p = .019) relative

to CpG -860 (RMSE = 6.11, p = .040)—the larger magnitude of RMSE for site

-934 merely reflects greater variability in percent methylation across individuals.

Weights were positive across aSN edges for both methylation models, such that
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more entropic networks predicted higher methylation (consistent with the dDMN

weight distribution for CpG -860). It is possible that we may have predicted

BAP scores with a larger sample (RMSE = 5.49, p = .092); nevertheless, the

present findings demonstrate that OXTR methylation may modulate the baseline

dynamics of salience network components involved in top-down evaluation of

social-emotional information.

Component CpG -934 CpG -860 BAP

aSN 6.56 (.019) 6.11 (.040) 5.49 (.092)
pSN 8.17 (.780) 7.78 (.958) 6.53 (.941)

Table 4.3: RVR model fit: Salience network. Prediction accuracies (RMSE) are given
for RVR models on aSN and pSN data (see Figure 4.6 for weight maps corresponding
to significant aSN analyses). P -values derived from 1,000 iterations of nonparametric
permutation testing are given in parentheses.

4.3 Discussion

In this experiment, we describe a novel approach to capturing the dynamics of

functional brain networks, estimating the entropy of moment-to-moment connectiv-

ity between system components. Although previous research has associated ASD

phenotypes with widespread hypoconnectivity131,132,207,208,211,212, we hypothesized

that “noisy brains” were a more plausible explanation—rather than being discon-

nected, individuals expressing autistic-like traits would exhibit transient, dynamic

connectivity that might otherwise deflate “static” estimates over the course of a

scan. We proposed increased OXTR methylation as an underlying mechanism,

such that decreased access to endogenous oxytocin would produce less-robust

functional connections. A series of machine learning models lent partial support

to our hypothesis: patterns of connectivity entropy in the dDMN jointly predicted

OXTR methylation on CpG site -860 in addition to variation in BAP scores, but
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the direction of the behavioral effect was contrary to expectation (more entropy

predicted decreased expression of the broad autism phenotype). Additionally, mul-

tivariate patterns of entropy in the aSN successfully predicted methylation on both

CpG sites, but we did not obtain a significant effect of entropy on behavior.

4.3.1 Open questions about methylation-behavior relationships

We observed an unexpected negative relationship between OXTR methylation

and behavior. This ran counter to previous research, which found higher levels

of methylation in ASD relative to neurotypical controls63. Of course, there are a

number of plausible explanations why our sample of healthy young adults did not

replicate the effect observed in a clinical population. One obvious possibility is that

methylation-behavior associations are parabolic or nonlinear over the spectrum

from healthy cognition to social deficit disorders—cross-sectional studies or those

limited strictly to neurotypical or patient groups will therefore never fully capture

the nuance of the relationship. However, obtaining an accurate estimate of the

underlying latent function would require a massive effort to recruit individuals

covering the full range of behavior. Another potential account is that healthy

individuals possess compensatory mechanisms which insulate them against the

deleterious effects of high OXTR methylation. For example, oxytocin and arginine

vasopressin are known to promiscuously bind to one another’s receptors—this was

originally a major challenge for mapping OT receptors across the brain29,30, and it

opens up the possibility that one may be able to compensate for deficiencies in the

other. Whenever possible, future work should consider molecular markers related

to both peptides, especially within neurotypical populations. Finally, and perhaps

most intriguingly, there may be differences related to “standard” methylation and

hydroxymethylation between clinical and neurotypical populations. While DNA
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methylation is traditionally associated with decreases in gene expression, hydrox-

ymethylation has been tied to both de-methylation (as an intermediate step) and

increases in gene expression216,217. We did not explicitly measure hydroxymethyla-

tion here; thus, it is critical for later studies to attempt to differentiate between these

processes. If neurotypicals are largely hydroxymethylated, this would explain the

inverse relationship we observed—more methylation might instead indicate greater

endogenous access to oxytocin, ultimately predicting decreases in BAP expression.

4.3.2 Functional networks and their subsystems

We hypothesized there would be a dissociation between DMN components and

SN components, such that only one of their subsystems would predict OXTR

methylation and behavior. Although we (and others) have characterized each

subsystem as functionally-distinct, they are not functionally-orthogonal—dDMN

and vDMN regions undoubtedly communicate with one another, as do components

of the aSN and pSN. On a broader scale, the DMN and SN also interact. The

decision to focus on subsystem connectivity was supported by previous work

indicating specific deficits in ASD207,208,211,212, but it was also largely practical due

to the computational complexity of dynamic connectivity analyses.

Our results confirmed that OXTR methylation is associated specifically with net-

works that support social cognition. However, this only translated into behavioral

variability through the dorsal DMN. We propose that these predictive differences

highlight unique functional roles for the dDMN and aSN in social behavior. The

dorsal DMN has previously been associated with effortful mentalizing processes

(e.g. inferring goal states or the beliefs of others) and social abstraction, including

the retrieval of social knowledge (e.g. norms of behavior)205,206. Nodes of the aSN,

by contrast, are often linked to attentional and emotional processes105,106,209,210.
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Therefore, the dorsal DMN may contribute more directly to overt social be-

haviors, while the anterior SN may be involved in signal detection and inference

processes associated with predictive coding. This would explain why entropy in

dDMN indexed both methylation and behavior while aSN dynamics only predicted

methylation. In both cases, we suggest that endogenous access to oxytocin supports

the coherence and stability of functional connectivity. However, the primary role

of the aSN may be to integrate bottom-up signals with an internal model of the

social-emotional self105,106—this would indirectly affect behavior by generating a

“hypothesis” that other systems (e.g. the dorsal DMN) apply and translate into ac-

tion. Moreover, if endogenous access to oxytocin facilitates the precise, coordinated

signaling required for active social inference (perhaps through mutual-modulation

of dopamine systems)6,104,124,128, this would explain why higher levels of methy-

lation were consistently associated with more entropic brains (particularly in the

aSN).

4.3.3 Entropy and the search for a gene-brain-behavior model

Entropy itself is a dimensionless quantity that reflects the uncertainty inherent

in a system. More specifically, in the present analyses, it quantifies the extent

to which a network edge exhibits predictable patterns of connectivity over time.

Decreases in entropy across a functional network may therefore imply metastable

connectivity states, fluctuating around a robust neurobiological equilibrium218.

However, we note that our approach cannot quantify or test metastability per

se—rather, entropy may simply quantify the number of metastable states (i.e. the

proportion of accurately-predicted states). A more direct assessment of metastability

would require: 1) an exhaustive search over the brain’s phase space to identify the

“lowest-energy” connectivity state, and 2) a point-process analysis that identifies
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concerted phase shifts from the low-energy state, both of which were beyond the

scope of the present analysis.

Nevertheless, recent efforts to put forth a unified theory of brain function suggest

that healthy cognition (and consciousness more broadly) depends on a sort of

entropic “Goldilocks zone” in brain systems219–221. In other words, normal waking

consciousness is typically characterized by a suppression of entropy that allows

the brain to organize itself into neatly-ordered hierarchical systems220,222. These

enable careful, structured sampling of the environment during predictive coding

and active inference processes. However, at the same time, prediction error and

subsequent hypothesis updating induce entropy and thus require flexibility and

criticality (i.e. phase transitions) in brain systems. This has led some to suggest

that the Goldilocks zone is a sort of “self-organized instability”—a delicate balance

between order and entropy that facilitates optimal perceptual inference220,221.

We show that tipping the scales towards entropy predicts deficiencies in epi-

genetic factors thought to support accurate social perception and inference (i.e.

endogenous access to oxytocin). In the dorsal DMN, this also predicted behav-

ioral differences, but not in the direction expected from neural entropy theories:

increased entropy was associated with decreased expression of autistic-like traits.

Still, if healthy cognition truly depends on an optimal level of entropy, it follows

that too little entropy should also have adverse effects on behavior—our data sug-

gested that low-entropy individuals indeed expressed higher levels of the broad

autism phenotype (although we reiterate that none exceeded the traditional clinical

threshold). Thus, it appears increasingly likely that there exists a complex nonlinear

relationship between OXTR methylation, network entropy, and social-behavioral

outcomes. We urge future studies to explore this possibility further. However, at

present, these analyses provide a critical first step towards identifying a network
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endophenotype that bridges the gap between genes and behavior.
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4.4 Figures

Figure 4.1: Subsystems of the default mode network. Dynamic connectivity was assessed
in two functionally-distinct subdivisions of the default mode network, as defined by the
Willard atlas: the dorsal component (left) and the ventral component (right).

Figure 4.2: Subsystems of the salience network. Dynamic connectivity was assessed in
two functionally-distinct subdivisions of the salience network, as defined by the Willard
atlas: the anterior component (left) and the posterior component (right).
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Figure 4.3: Distribution of broad autism phenotype scores. The extent to which indi-
viduals expressed autistic-like traits was normally-distributed in our sample (N = 50;
M = 17.02±5.38 SD, range = 4-30). Note, however, that none exceed the suggested clinical
cutoff of 32.
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Figure 4.4: Relationships between BAP and OXTR methylation by sex and CpG site. In
general, higher levels of methylation predicted lower expression of the broad autism phe-
notype, but there was not a significant effect of sex (nor an interaction between methylation
and sex; see Table 4.1 for parameter estimates from a linear mixed effects model).
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Figure 4.5: Connectivity entropy in the dorsal DMN predicts OXTR methylation and
BAP scores. Multivariate weight maps for edgewise connectivity entropy are displayed
for CpG site -860 (left) and BAP (right). Weights were exclusively positive for the methyla-
tion model, such that increased entropy across the network predicted increased levels of
methylation; similarly, weights were almost entirely negative for the BAP model, such that
more entropic brains were associated with lower levels of BAP. Bottom panels display the
correspondence between target values (black) and relevance vector model predictions (red).
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Figure 4.6: Connectivity entropy in the anterior SN predicts OXTR methylation. Multi-
variate weight maps for edgewise connectivity entropy are displayed for CpG site -860
(left) and CpG site-934 (right). Unlike the dorsal DMN, connectivity entropy did not predict
behavior. For both models, weights were exclusively positive, such that increased entropy
across the network predicted increased levels of methylation. Bottom panels display the
correspondence between target values (black) and relevance vector model predictions (red).



Chapter 5

General discussion

The broad aim of this work was to develop a network-based endophenotype linking

together genes and social-behavioral outcomes. We presented three studies toward

that end, offering both novel applications of previously-existing methods and new

means of quantifying dynamics in functional brain networks. Beginning with a

consideration of task-related connectomes, we identified epigenetic fingerprints in

the spatial topology of widely-distributed functional networks in service of social

cognition. We then investigated the intrinsic dynamics of the resting brain. Our

second experiment demonstrated that epigenetic variability was reflected across

spatial patterns of spontaneous BOLD variability—both in subcortical networks that

are dopamine-rich and networks that participate in higher-level social perception.

Finally, we detailed the estimation and use of connectivity entropy to quantify stability

within functional networks, providing evidence that network dynamics explain

individual differences at the epigenetic and behavioral levels. Although we used

oxytocin and social cognition as a model foundation, these methods have the

potential to illuminate complex interactions across multiple levels of brain systems

in numerous contexts, from social behavior and beyond.

93
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5.1 Emergent phenomena and the evolution of

network neuroscience

A wealth of past neuroimaging research has undoubtedly yielded critical insights

into the biological bases of social cognition. Similarly, early applications of imaging

genetics provided much needed tests of a hypothesis long-intuited to be true: that

one’s genetic makeup likely modulates the structure and function of the brain.

Nevertheless, many of these previous studies have been slaves to the mean, search-

ing for average differences in activity between task-related conditions or groups

defined by genetic polymorphisms. In such mass-univariate approaches to fMRI data

analysis, each voxel is treated as an independent statistical test under the general

linear model (GLM)—it is consequently assumed (for statistical reasons) that there

are no dependencies in activity across voxels or brain regions more generally. This

has led to uncharitable critiques of fMRI as “blobology” or “neophrenology,” with

researchers imagined as desperate mental gymnasts, attempting to reduce complex

cognitive functions to splotches of activity on a brain.

Of course, the brain is not merely a collection of individual cogs, spinning

freely on their own. There are complex feedback loops, time-dependent patterns

of inhibition, excitation, and so on, such that one’s ultimate conscious experience

is supported by a vast network of neuroanatomical substrates. While the love

affair between neuroimaging researchers and the GLM may truly last forever, the

advent of multivariate pattern analyses (MVPA) in the last decade has invigorated

a discussion over how information is represented across wide swaths of brainspace.

However, MVPA alone cannot tell us how these brain regions interact over time,

nor can it uncover the topology of neurobiological systems underlying a given

behavior or function. This requires conceptualization of the brain as something like
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a classical computer network, with “nodes” (brain regions) that communicate along

“edges” connecting them. Although cognitive psychologists and neuroscientists

have long described the brain colloquially as an information processing network,

only recently have we been able to explicitly model functional neuroimaging data

in this fashion.

Neuroscience as a field has been quick to embrace concepts derived from net-

work science and complex systems theory. The explosion of network-based models

of the brain has consequently led to powerful revelations about behavior and

individual differences. Recent evidence has highlighted the notion that brain con-

nectivity is a stable, intrinsic trait unique to an individual175–177, and psychopatho-

logical states such as autism131,132,207,208,211,212,223, schizophrenia222, and Alzheimer’s

dementia172 (among others173) are increasingly associated with abnormalities in

functional and structural networks. Moreover, the integration of these methods

with the philosophy of mind has generated a number of fascinating insights into

the relationship between mental processes and the physical brain224.

A key concept is that of emergence in complex systems. In short, a complex system

is one whose overall behavior is greater than a mere sum of its parts. In other words,

cognition and behavior are emergent phenomena that arise from components of the

brain interacting. Thus, in order for us to understand the output of our system, we

need to consider how different pieces of the machinery are functioning together; we

cannot realistically hope to identify a 1:1 mapping between behavior and the brain.

An ideal model would take into account multiscale interactions spanning molecular,

cellular, and cortical system components. However, as neuroimaging researchers,

we often cannot resolve events occurring at sub-millimeter spatial scales (or at

millisecond temporal scales).

Therefore, one of the primary motivations for the current work was to circum-
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vent these deficits in resolution and identify cortical-scale interactions that explain

both molecular-level factors and behavioral outcomes. More specifically, we sought

to identify potential molecular mechanisms that might guide or support differences

in network function, ultimately translating into variation in behavior. While there is

rising interest in the genetic and epigenetic bases of network connectivity61,100,138–142,

these factors remain poorly understood—especially given that many studies still

turn to genetic polymorphisms that are merely associative, lacking clearly-defined

functions. A major strength of our approach was our focus on epigenetic modifica-

tions to the oxytocin receptor gene—a molecular variable with known functional

consequences, both in terms of gene transcription72 (thereby regulating endoge-

nous access to oxytocin) and social behavioral phenotypes63. Our experiments here

offered proof of concept that such molecular-level information can be decoded from

multiple modalities of macroscale brain network data; although this will not be

possible for all genes (e.g. those which cannot be reliably measured in peripheral

sources), we hope future studies will follow suit in attempting to model gene-brain

interactions as they relate to behavior.

5.2 Epigenetic modulation of functional network

architecture

Despite the controversy surrounding intranasal oxytocin research, a number of

studies have consistently found that OT administration increases functional con-

nectivity across regions relevant for social perception, motivation, and cognition

more broadly9,11,12,91–94. Still, these effects are highly-acute, and furthermore, it is

unclear whether (or to what extent) baseline connectivity (i.e. pre-intranasal OT) in

these systems was previously shaped by endogenous oxytocin function. If network
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connectivity developed in absence of robust oxytocin input—perhaps due to high

OXTR methylation—this may place an upper bound on the potential for exogenous

OT to enhance interregional coupling. We previously demonstrated that OXTR

methylation predicts differences in seed-based connectivity with the amygdala,

such that increased methylation was associated with decreased connectivity. How-

ever, a shortcoming of seed-based connectivity is blindness to other multivariate

interactions across the network.

Experiment 1 in the present report extended these findings to show that large-

scale network topologies reflect differences in endogenous access to oxytocin. Criti-

cally, we demonstrated that models based on nodal centrality were generalizable to

an independent sample of individuals. Centrality measures attempt to capture the

hub-like behavior of nodes in the network—our metric of choice (eigencentrality)

directly quantified the extent to which each node explained overall variance in

connectivity. These results suggest that processes such as DNA methylation may

mediate the spatial development of functional networks, including the distribution

of central hubs. Interestingly, a general role proposed for oxytocin is the initiation

of synchronous activity across networks128—this sort of rapid, distributed action

is most easily enabled via hubs, which coordinate information flow between dis-

tant network nodes174. Thus, decreased access to endogenous oxytocin may result

in less efficient network configurations. A consequence of weakened functional

infrastructure might be increased regional activity, as disconnected nodes cannot

coordinate with or rely on other regions to facilitate behavior. This interpretation

fits nicely with our earlier work demonstrating increases in regional BOLD activity

with higher levels of OXTR methylation99,100. Importantly, many of the regions

previously showing this association were weighted negatively in our current ma-

chine learning models, suggesting that lower levels of connectivity indeed predict
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higher levels of methylation. In light of previous research demonstrating that

functional network architecture is largely stable over time and task states in young

adults175,176, this again implies a role for OXTR methylation in early functional

network development.

5.3 Epigenetic modulation of functional network

dynamics

Recent work in animal models has suggested that oxytocin robustly amplifies

neural signal-to-noise ratios6. This process is likely to involve interactions with

dopaminergic systems, which overlap considerably with subcortical oxytocin path-

ways27 and are known to act as gain modulators in the brain, increasing SNR in

response to relevant external inputs41,42,44. Given that behavioral deficits associated

with oxytocin receptor deficiencies (e.g. ASD63) are also characterized by noisy

brains dinstein2012, this suggests that endogenous access to oxytocin might predict

differences in baseline functional dynamics across various neural networks. We

addressed this possibility in a pair of experiments. Experiment 2 sought to iden-

tify spatial patterns of variability that informed epigenetic differences in OXTR;

Experiment 3 described an approach for associating spatiotemporal dynamics in

connectivity with both epigenetic and behavioral differences.

Both whole-brain and network-specific analyses demonstrated that BOLD vari-

ability in subcortical-cerebellum regions indexed OXTR methylation. These predic-

tions were driven exclusively by spectral variability measures such as low-frequency

power (LFP) and the fractional amplitude of low-frequency fluctuations (fALFF).

Notably, the vast majority of nodes in the Shen atlas subcortical-cerebellum network

are localized to structures such as the basal ganglia, thalamus/hypothalamus, and
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brainstem. These are all highly-populated by dopamine neurons and also receive

direct projections along oxytocin pathways27,34. Dopamine circuits in these regions

are likely modulated by mesolimbic oxytocin, which may cause shifts between

tonic, phasic, and bursty firing states51,201,202. Thus, decreased endogenous oxytocin

action may disrupt baseline oscillatory patterns expressed across these regions.

Interestingly, increases in low-frequency dynamics were associated with higher-

levels of methylation—power in these frequency bands is commonly thought to

represent biologically-relevant information (as low-frequency fluctuations form the

basis for intrinsic functional connectivity). However, some evidence suggests that

oxytocin reduces spontaneous background firing and enhances higher-frequency

synchrony6—it is unclear whether this translates well into physiologically-slow

signals such as BOLD (particularly at the baseline resting state), but it may explain

why decreased methylation corresponded to decreases in LFP and fALFF.

We also observed significant associations between OXTR methylation and tem-

poral and spectral variability in higher-level visual processing networks. In par-

ticular, our models demonstrated a right-lateralized effect of BOLD variability on

methylation in visual association regions. The areas selected by our model ex-

tended into ventral temporal areas that are associated with emotional information

processing204, but on a broader scale, this fits with the notion that nonverbal so-

cial information is dominantly processed in the right hemisphere197. We interpret

these results as a function of baseline differences in bottom-up predictive coding

systems—a more thorough discussion is contained in the section below.

Finally, with respect to dynamic connectivity, increases in entropy across dorsal

DMN and anterior SN nodes predicted higher levels of methylation. Thus, de-

creased access to endogenous oxytocin was associated with more random patterns

of connectivity. In the anterior salience network, these results might also indicate
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baseline differences in predictive coding systems—this time from the top-down.

Decreased entropy may further be related to metastable network states, which

allow for the hierarchical organization necessary to engage in accurate active infer-

ence220. While oxytocin certainly may facilitate synchrony and stability in network

connectivity, our approach cannot directly test the hypothesis that endogenous

oxytocin action is related to genuine metastability. Nevertheless, in both the dDMN

and aSN, increased entropy exclusively predicted increases in OXTR methylation,

suggesting that noisy, low-fidelity connectivity may be spurred by decreased access

to oxytocin.

5.4 Oxytocin and social inference

We previously argued that social cognition is an inherently inferential process.

Recall that socially-relevant signals in the environment (e.g. an emotional facial ex-

pression) must first be salient enough for perception: after orienting your attention

to this input, the signal travels in a bottom-up fashion through the brain’s sensory

pathways. Autonomic responses simultaneously help to form an interoceptive,

internal representation of the exogenous stimulus (in this case, an emotional state),

which is then tested against a top-down prediction generated from higher-level

cortical systems. Critically, in order to avoid prediction error, the representation

that reaches the top-down interpreter must be precise—this requires high SNR and

coordinated signaling across forward-propagating circuits in the bottom-up system.

Our findings in Experiments 2 and 3 suggest that OXTR methylation may

modulate the baseline functional dynamics of both bottom-up and top-down pre-

dictive coding systems. From the bottom-up, patterns of BOLD variability in

right-lateralized visual association regions indexed one’s endogenous access to oxy-

tocin. Additionally, baseline dynamics in the dopamine-rich subcortical-cerebellum
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network were associated with epigenetic variability in OXTR. It is likely that both

of these networks interact to generate bottom-up representations of social infor-

mation. For example, in the case of emotional inference, the autonomic systems

that simulate the physiology of an emotional response are densely populated with

oxytocin neurons1,31,34. The precision of a physiologic representation is known to

be heavily modulated by dopamine104,124, which further interacts with mesolim-

bic oxytocin50,51. In general, there is evidence to suspect that oxytocin coordi-

nates synchrony between these components128 and directly impacts firing states of

dopaminergic neurons201,202.

In the absence of stimulation, there is a large class of dopaminergic neurons that

exhibit tonic firing patterns in preparation for stimulus-evoked activity199,200. We

suggest that oxytocin may similarly facilitate coherent, spontaneous “preparatory”

states in visual association and subcortical components of bottom-up prediction

coding pathways—given a relevant environmental input, oxytocin can then readily

induce a phase shift that suppresses spontaneous background activity and enables

high-fidelity transfer of information to higher-level cortical systems6.

From the top-down, entropy across the aSN was consistently associated with

higher levels of OXTR methylation. Nodes of the aSN such as the anterior insula,

anterior cingulate, and dorsomedial prefrontal cortex are putatively responsible

for integrating bottom-up signals with an embodied model of the social-emotional

self105,106. However, for accurate predictions to emerge from this process, there is

evidence that entropy in the brain must be suppressed—excessive disorder disrupts

the hierarchical organization of predictive coding pathways and may introduce

communication errors in feedback loops transmitting interoceptive signals and

higher-order predictions220,221. Although entropy is necessarily increased by predic-

tion error, the brain uses this information to fine-tune its representations and thus
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revert back to a state of low-entropy contentedness220. Our results suggest that a

pervasive high-entropy baseline in networks supporting active social inference may

be due to decreased access to oxytocin, which otherwise supports stable connectiv-

ity states. However, given that our analyses included only healthy young adults, it

is not clear how these patterns of entropy and methylation might manifest in social

deficit disorders.

5.5 Bridging the gap between genes and behavior

In our final experiment, we proposed an entropy-based network endophenotype

that might jointly explain molecular and behavioral-level variability. It was hypoth-

esized that increased levels of entropy would predict higher levels of methylation,

and as a result, higher expression of the broad autism phenotype. Indeed, connectiv-

ity entropy in the dDMN successfully predicted both OXTR methylation and BAP

scores; however, the celebration was short-lived. Rather than yielding a positive

association between entropy and each measure, higher levels of entropy predicted

greater methylation but lower expression of autistic-like traits. This reflected an

unexpected inverse relationship between methylation and BAP—wholly counter to

previous reports of increased methylation in ASD relative to neurotypicals63. While

unexpected, neurotypicals may not demonstrate the same effects as clinical ASD for

a number of reasons. We considered several potential explanations: 1) a nonlinear

relationship between methylation, entropy, and behavior over the full spectrum of

individuals; 2) compensation via arginine vasopressin; and 3) increased instances

of hydroxymethylation in neurotypicals, which would amplify, not decrease, OXTR

expression and endogenous access to oxytocin.

Current accounts of the “Bayesian brain” in predictive coding suggest that the

brain is constantly poised in a state of “self-organized instability”220,221. Although
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seemingly paradoxical, this hypothesis suggests that the brain balances itself be-

tween hierarchical order (necessary for accurate top-down predictions) and entropic

flexibility (necessary to learn from prediction error). Accordingly, extended states

of too little or too much entropy may spiral into pathology219–221.

This notion of a sweet spot in brain entropic states (with respect to behavior)

is most consistent with the idea of a nonlinear or parabolic relationship between

methylation, entropy, and behavior—it follows from our data that neurotypicals

who exhibit low degrees of entropy display more autistic-like traits. Individuals

who are high in entropy predict the opposite behavioral outcome, but it is unclear

how high these individuals truly are relative to those with actual social deficit

disorders. What is high for neurotypicals may actually be in the mid-range of

the full spectrum. Furthermore, a nonlinear relationship between entropy and

behavior does not preclude the possibility that hydroxymethylation is still a factor.

As is likely to be the case in nature, there may be an incredibly tangled web of

associations between various flavors of methylation, entropy, and social behavioral

phenotypes.

Although it may be a massive undertaking, our understanding of the paths

between genes, brains, and behavior would benefit immensely from future work

considering all of the above factors. We submit that we have barely scratched the

surface of the true nature of these relationships; nevertheless, we hope these findings

lay a useful foundation for the use of network endophenotypes in uncovering the

molecular and neural roots of complex human behavior.

5.6 Conclusion

A major goal of modern neuroscience is to understand how individual differences

in the brain contribute to the rich variety of phenotypes expressed across the popu-
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lation. Unfortunately, we are often limited in the spatial resolution our methods

allow, preventing us from acquiring a more complete picture of how various levels

of the system might interact. Here we offer a novel approach to understanding

the hierarchical nature of human brain systems, demonstrating that molecular-

level information can be decoded from intrinsic and task-evoked characteristics of

macroscale functional networks. Moreover, we show that the baseline dynamics

of network connectivity may provide a unifying endophenotype between genes

and behavior. Future efforts to illuminate complex interactions across molecular,

cellular, and cortical-level system components will allow us to better target where

and how these systems break down, offering new avenues for intervention and

treatment of disease states.
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Figure A.1: Proportional thresholds nontrivially affect overall network topology. Degree
distributions for each threshold are given for the full 90-region network (Study 1 data,
N = 127). As the threshold becomes more stringent, the distribution approaches a heavily-
tailed power law—this is characteristic of so-called “small-world” networks where a few
highly-connected hubs control most of the information flow.
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Figure A.2: Multivariate weight maps derived from the full 90-region network. Rele-
vance vector regression identified a highly consistent set of regions relevant for predicting
OXTR methylation. Models trained/tested using Study 1 data (N = 127). For simplicity,
only models from CpG site -860 are presented here; weight maps are provided at the top
30% and top 25% thresholds. Values reflect average weights across CV folds, normalized to
unit length. “Hot” colors push the prediction function towards higher expected methylation
(with increased connectivity) while “cool” colors indicate the reverse.
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Metric Threshold Prediction correlation Prediction error (RMSE)

Degrees

FDR 0.11 (.227) 6.86 (.477)
Top50 0.10 (.270) 6.86 (.480)
Top45 0.19 (.102) 6.54 (.212)
Top40 0.37 (.010) 5.87 (.012)
Top35 0.35 (.009) 5.93 (.013)
Top30 0.27 (.044) 6.25 (.078)
Top25 0.06 (.331) 6.92 (.524)
Top20 0.16 (.142) 6.80 (.383)
Top15 0.26 (.052) 6.40 (.109)
Top10 -0.12 (.742) 7.71 (.931)

Strengths

FDR 0.29 (.031) 6.11 (.045)
Top50 0.21 (.097) 6.44 (.182)
Top45 0.20 (.109) 6.43 (.193)
Top40 0.28 (.032) 6.19 (.069)
Top35 0.21 (.106) 6.43 (.197)
Top30 0.17 (.141) 6.55 (.249)
Top25 0.05 (.329) 7.01 (.599)
Top20 0.11 (.252) 7.07 (.626)
Top15 0.10 (.240) 7.22 (.716)
Top10 -0.14 (.792) 7.87 (.967)

Eigencentrality

FDR 0.19 (.142) 6.63 (.344)
Top50 0.22 (.085) 6.46 (.167)
Top45 0.21 (.091) 6.51 (.196)
Top40 0.25 (.060) 6.33 (.100)
Top35 0.26 (.049) 6.38 (.133)
Top30 0.28 (.033) 6.20 (.065)
Top25 0.24 (.060) 6.32 (.102)
Top20 0.20 (.102) 6.61 (.257)
Top15 0.19 (.118) 6.63 (.285)
Top10 0.13 (.195) 6.60 (.294)

Table A.1: Whole-brain RVR model fit: CpG site -934. Model fit statistics (prediction
correlation and prediction error) are given for each metric and network threshold. P -values
derived from 1,000 iterations of nonparametric permutation testing are given in parentheses.
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Metric Threshold Prediction correlation Prediction error (RMSE)

Degrees

FDR 0.06 (.351) 6.44 (.591)
Top50 0.12 (.217) 6.48 (.625)
Top45 0.31 (.021) 5.76 (.070)
Top40 0.34 (.016) 5.57 (.034)
Top35 0.48 (.001) 4.97 (.001)
Top30 0.56 (.001) 4.63 (.001)
Top25 0.48 (.001) 4.91 (.001)
Top20 0.47 (.001) 5.03 (.001)
Top15 0.35 (.009) 5.46 (.010)
Top10 0.16 (.161) 6.04 (.185)

Strengths

FDR 0.13 (.176) 6.30 (.469)
Top50 0.25 (.051) 5.96 (.200)
Top45 0.22 (.080) 6.18 (.380)
Top40 0.26 (.053) 6.00 (.222)
Top35 0.47 (.002) 5.04 (.001)
Top30 0.53 (.001) 4.78 (.001)
Top25 0.44 (.005) 5.17 (.006)
Top20 0.42 (.001) 5.26 (.002)
Top15 0.31 (.023) 5.58 (.025)
Top10 0.21 (.087) 5.91 (.128)

Eigencentrality

FDR 0.18 (.129) 5.95 (.210)
Top50 0.23 (.071) 5.87 (.120)
Top45 0.27 (.041) 5.77 (.072)
Top40 0.26 (.044) 5.77 (.076)
Top35 0.41 (.005) 5.21 (.004)
Top30 0.42 (.001) 5.18 (.001)
Top25 0.41 (.002) 5.17 (.001)
Top20 0.36 (.003) 5.41 (.006)
Top15 0.23 (.062) 5.84 (.096)
Top10 0.01 (.453) 6.60 (.784)

Table A.2: Whole-brain RVR model fit: CpG site -860. Relevance vector regression fit
statistics (prediction correlation and prediction error) are given for each metric and network
threshold. P -values derived from 1,000 iterations of nonparametric permutation testing are
given in parentheses.
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Region Degrees Strengths Eigencentrality Mean

Amygdala (L) 50% 20% 40% 36.67%
⇤Amygdala (R) 100% 100% 90% 96.67%

Angular Gyrus (L) 80% 100% 20% 66.67%
⇤Angular Gyrus (R) 60% 90% 80% 76.67%
Calcarine Fissure (L) 40% 20% 30% 30%
Calcarine Fissure (R) 70% 70% 60% 66.67%

Caudate (L) 50% 40% 40% 43.33%
⇤Caudate (R) 80% 40% 30% 50%
Cuneus (L) 40% 20% 10% 23.33%
Cuneus (R) 70% 70% 80% 73.33%

⇤Fusiform Gyrus (L) 90% 90% 80% 86.67%
⇤Fusiform Gyrus (R) 60% 90% 80% 76.67%
⇤Gyrus Rectus (L) 80% 80% 90% 83.33%
⇤Gyrus Rectus (R) 90% 100% 100% 96.67%
⇤Heschl’s Gyrus (L) 70% 80% 50% 66.67%
Heschl’s Gyrus (R) 50% 30% 80% 53.33%
Hippocampus (L) 70% 60% 60% 63.33%
Hippocampus (R) 40% 80% 20% 46.67%

⇤Insula (L) 90% 90% 100% 93.33%
⇤Insula (R) 100% 100% 100% 100%

Lingual Gyrus (L) 10% 20% 20% 16.67%
⇤Lingual Gyrus (R) 0% 50% 10% 20%
⇤Olfactory Cortex (L) 70% 70% 0% 46.67%
Olfactory Cortex (R) 40% 40% 50% 43.33%

Pallidum (L) 30% 90% 30% 50%
Pallidum (R) 20% 10% 0% 10%

Paracentral Lobule (L) 10% 20% 60% 30%
⇤Paracentral Lobule (R) 90% 90% 90% 90%

⇤Parahippocampal Gyrus (L) 70% 100% 100% 90%
⇤Parahippocampal Gyrus (R) 100% 100% 100% 100%

⇤Postcentral Gyrus (L) 30% 20% 60% 36.67%
⇤Postcentral Gyrus (R) 100% 100% 100% 100%
⇤Precentral Gyrus (L) 100% 100% 90% 96.67%
Precentral Gyrus (R) 30% 10% 90% 43.33%

⇤Precuneus (L) 90% 90% 100% 93.33%
Precuneus (R) 50% 40% 50% 46.67%
Putamen (L) 50% 90% 50% 63.33%
Putamen (R) 10% 20% 0% 10%

⇤Rolandic Operculum (L) 30% 30% 0% 20%
⇤Rolandic Operculum (R) 90% 80% 100% 90%

Supplementary Motor Area (L) 60% 50% 60% 56.67%
⇤Supplementary Motor Area (R) 100% 100% 100% 100%

⇤Supramarginal Gyrus (L) 100% 100% 90% 96.67%
Supramarginal Gyrus (R) 40% 20% 30% 30%

Thalamus (L) 40% 20% 80% 46.67%
Thalamus (R) 10% 70% 0% 26.67%

Table A.3: Relevance probabilities: CpG site -934. For each AAL node and network
metric, we give the probability of inclusion across RVR models for CpG site -934. Metric-
specific columns indicate the probability of nonzero weight across all network threshold
levels; the far right column gives the mean. Starred (⇤) nodes were ultimately included in
the 43-region subnetwork (relevant in over 75% of models for either CpG site -934 or CpG
site -860).
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Region Degrees Strengths Eigencentrality Mean

Amygdala (L) 30% 0% 60% 30%
⇤Amygdala (R) 40% 40% 70% 50%

Angular Gyrus (L) 50% 90% 0% 46.67%
⇤Angular Gyrus (R) 70% 90% 30% 63.33%
Calcarine Fissure (L) 40% 50% 20% 36.67%
Calcarine Fissure (R) 50% 30% 10% 30%

Caudate (L) 50% 40% 60% 50%
⇤Caudate (R) 80% 90% 80% 83.33%
Cuneus (L) 30% 80% 0% 36.67%
Cuneus (R) 90% 60% 10% 53.33%

⇤Fusiform Gyrus (L) 20% 60% 30% 36.67%
⇤Fusiform Gyrus (R) 60% 50% 20% 43.33%
⇤Gyrus Rectus (L) 30% 90% 10% 43.33%
⇤Gyrus Rectus (R) 50% 60% 0% 36.67%
⇤Heschl’s Gyrus (L) 100% 100% 100% 100%
Heschl’s Gyrus (R) 50% 60% 20% 43.33%
Hippocampus (L) 30% 10% 20% 20%
Hippocampus (R) 30% 30% 20% 26.67%

⇤Insula (L) 100% 90% 100% 96.67%
⇤Insula (R) 90% 100% 10% 66.67%

Lingual Gyrus (L) 30% 20% 10% 20%
⇤Lingual Gyrus (R) 80% 90% 90% 86.67%
⇤Olfactory Cortex (L) 100% 100% 100% 100%
Olfactory Cortex (R) 70% 70% 50% 63.33%

Pallidum (L) 20% 20% 60% 33.33%
Pallidum (R) 20% 40% 20% 26.67%

Paracentral Lobule (L) 30% 10% 20% 20%
⇤Paracentral Lobule (R) 70% 70% 70% 70%

⇤Parahippocampal Gyrus (L) 100% 100% 100% 100%
⇤Parahippocampal Gyrus (R) 90% 90% 90% 90%

⇤Postcentral Gyrus (L) 100% 100% 90% 96.67%
⇤Postcentral Gyrus (R) 40% 20% 30% 30%
⇤Precentral Gyrus (L) 80% 50% 80% 70%
Precentral Gyrus (R) 60% 40% 100% 66.67%

⇤Precuneus (L) 50% 50% 0% 33.33%
Precuneus (R) 30% 30% 100% 53.33%
Putamen (L) 40% 20% 10% 23.33%
Putamen (R) 50% 50% 0% 33.33%

⇤Rolandic Operculum (L) 100% 100% 100% 100%
⇤Rolandic Operculum (R) 80% 90% 60% 76.67%

Supplementary Motor Area (L) 0% 10% 0% 3.33%
⇤Supplementary Motor Area (R) 100% 100% 100% 100%

⇤Supramarginal Gyrus (L) 20% 30% 70% 40%
Supramarginal Gyrus (R) 20% 0% 30% 16.67%

Thalamus (L) 10% 10% 30% 16.67%
Thalamus (R) 70% 70% 80% 73.33%

Table A.4: Relevance probabilities: CpG site -860. For each AAL node and network
metric, we give the probability of inclusion across RVR models for CpG site -860. Metric-
specific columns indicate the probability of nonzero weight across all network threshold
levels; the far right column gives the mean. Starred (⇤) nodes were ultimately included in
the 43-region subnetwork (relevant in over 75% of models for either CpG site -934 or CpG
site -860).
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Metric Threshold Prediction correlation Prediction error (RMSE)

Degrees

FDR -0.01 (.488) 6.80 (.972)
Top50 0.18 (.092) 6.20 (.259)
Top45 0.22 (.058) 6.19 (.237)
Top40 0.33 (.004) 5.77 (.006)
Top35 0.29 (.023) 5.93 (.046)
Top30 0.29 (.016) 5.95 (.052)
Top25 0.26 (.022) 6.06 (.089)
Top20 0.28 (.014) 5.94 (.038)
Top15 0.22 (.047) 6.25 (.273)
Top10 0.15 (.152) 6.16 (.188)

Strengths

FDR 0.18 (.110) 6.15 (.434)
Top50 0.21 (.065) 6.15 (.225)
Top45 0.21 (.063) 6.20 (.274)
Top40 0.30 (.013) 5.87 (.025)
Top35 0.32 (.005) 5.79 (.016)
Top30 0.25 (.038) 6.07 (.111)
Top25 0.20 (.091) 6.26 (.376)
Top20 0.21 (.058) 6.24 (.336)
Top15 0.24 (.037) 6.12 (.140)
Top10 0.11 (.225) 6.20 (.257)

Eigencentrality

FDR 0.12 (.170) 6.29 (.408)
Top50 0.10 (.244) 6.38 (.573)
Top45 0.15 (.157) 6.28 (.409)
Top40 0.23 (.118) 6.20 (.285)
Top35 0.25 (.049) 6.06 (.103)
Top30 0.24 (.039) 6.02 (.074)
Top25 0.24 (.025) 6.03 (.075)
Top20 0.11 (.064) 6.06 (.109)
Top15 0.17 (.107) 6.09 (.146)
Top10 0.12 (.209) 6.11 (.182)

Table A.5: Subnetwork RVR model fit: CpG site -934. Fit statistics (prediction correla-
tion and prediction error) from subnetwork relevance vector regression are given for each
metric and network threshold. P -values derived from 1,000 iterations of nonparametric
permutation testing are given in parentheses.
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Metric Threshold Prediction correlation Prediction error (RMSE)

Degrees

FDR 0.09 (.236) 5.90 (.606)
Top50 0.29 (.012) 5.36 (.011)
Top45 0.30 (.013) 5.37 (.019)
Top40 0.24 (.042) 5.52 (.061)
Top35 0.27 (.021) 5.46 (.034)
Top30 0.38 (.002) 5.18 (.001)
Top25 0.25 (.003) 5.32 (.110)
Top20 0.37 (.002) 5.29 (.006)
Top15 0.37 (.002) 5.32 (.007)
Top10 0.06 (.318) 5.93 (.656)

Strengths

FDR 0.34 (.002) 5.30 (.013)
Top50 0.23 (.041) 5.62 (.165)
Top45 0.26 (.017) 5.54 (.067)
Top40 0.21 (.067) 5.67 (.254)
Top35 0.26 (.025) 5.61 (.041)
Top30 0.39 (.001) 5.17 (.001)
Top25 0.40 (.001) 5.18 (.002)
Top20 0.35 (.003) 5.29 (.005)
Top15 0.38 (.002) 5.24 (.025)
Top10 0.03 (.392) 6.00 (.750)

Eigencentrality

FDR 0.23 (.053) 5.57 (.116)
Top50 0.17 (.106) 5.73 (.312)
Top45 0.25 (.042) 5.53 (.079)
Top40 0.16 (.123) 5.75 (.334)
Top35 0.19 (.225) 5.90 (.641)
Top30 0.23 (.042) 5.61 (.120)
Top25 0.18 (.113) 5.78 (.410)
Top20 0.17 (.129) 5.83 (.501)
Top15 0.21 (.051) 5.67 (.234)
Top10 0.09 (.273) 5.93 (.701)

Table A.6: Subnetwork RVR model fit: CpG site -860. Fit statistics (prediction correla-
tion and prediction error) from subnetwork relevance vector regression are given for each
metric and network threshold. P -values derived from 1,000 iterations of nonparametric
permutation testing are given in parentheses.
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Metric CpG site -934 CpG site -860

ApEn 7.85 (.277) 8.20 (.863)
SampEn 8.31 (.590) 8.06 (.842)
�t 7.48 (.057) 7.46 (.379)
�

2
! 7.42 (.047) 7.18 (.220)

LFP 8.27 (.397) 7.55 (.380)
fALFF 9.11 (.804) 6.36 (.006)

Table B.1: Whole-brain BEMKL model fit. Values indicate root mean squared error
(RMSE) across CV folds; p-values from 1,000 iterations of nonparametric permutation
testing are given in parentheses.

Metric CpG site -934 CpG site -860

ApEn 8.50 (.967) 7.30 (.879)
SampEn 8.00 (.892) 6.63 (.270)
�t 7.85 (.890) 7.41 (.986)
�

2
! 8.38 (.993) 7.42 (.979)

LFP 8.67 (1.00) 8.15 (1.00)
fALFF 8.97 (1.00) 7.25 (.976)

Table B.2: Medial frontal RVR model fit. Values indicate root mean squared error (RMSE)
across CV folds; p-values from 1,000 iterations of nonparametric permutation testing are
given in parentheses.

Metric CpG site -934 CpG site -860

ApEn 8.41 (.974) 8.03 (.994)
SampEn 7.58 (.477) 7.76 (.990)
�t 8.35 (.994) 6.53 (.209)
�

2
! 7.46 (.491) 6.80 (.572)

LFP 7.73 (.899) 7.95 (1.00)
fALFF 7.40 (.504) 6.44 (.133)

Table B.3: Frontoparietal RVR model fit. Values indicate root mean squared error (RMSE)
across CV folds; p-values from 1,000 iterations of nonparametric permutation testing are
given in parentheses.
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Metric CpG site -934 CpG site -860

ApEn 7.54 (.549) 6.40 (.110)
SampEn 8.29 (.992) 7.18 (.926)
�t 7.15 (.194) 7.28 (.974)
�

2
! 7.13 (.171) 7.34 (.984)

LFP 7.42 (.624) 7.34 (.998)
fALFF 7.77 (.964) 7.15 (.978)

Table B.4: Default mode RVR model fit. Values indicate root mean squared error (RMSE)
across CV folds; p-values from 1,000 iterations of nonparametric permutation testing are
given in parentheses.

Metric CpG site -934 CpG site -860

ApEn 7.37 (.153) 7.90 (.918)
SampEn 7.65 (.344) 6.83 (.294)
�t 7.41 (.247) 7.29 (.860)
�

2
! 7.46 (.285) 7.53 (.955)

LFP 7.81 (.766) 6.03 (.016)
fALFF 7.30 (.193) 6.39 (.071)

Table B.5: Subcortical-cerebellum RVR model fit. Values indicate root mean squared error
(RMSE) across CV folds; p-values from 1,000 iterations of nonparametric permutation
testing are given in parentheses.

Metric CpG site -934 CpG site -860

ApEn 7.79 (.504) 6.39 (.073)
SampEn 5.17 (.111) 7.56 (.961)
�t 7.21 (.153) 6.79 (.453)
�

2
! 7.30 (.239) 6.85 (.534)

LFP 7.89 (.888) 7.01 (.811)
fALFF 7.08 (.114) 6.72 (.474)

Table B.6: Motor RVR model fit. Values indicate root mean squared error (RMSE) across
CV folds; p-values from 1,000 iterations of nonparametric permutation testing are given in
parentheses.
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Metric CpG site -934 CpG site -860

ApEn 7.35 (.394) 7.08 (.857)
SampEn 8.20 (.988) 7.85 (.997)
�t 7.33 (.565) 6.62 (.445)
�

2
! 7.55 (.843) 6.79 (.775)

LFP 7.43 (.860) 6.49 (.274)
fALFF 6.93 (.089) 6.91 (.929)

Table B.7: Visual I RVR model fit. Values indicate root mean squared error (RMSE) across
CV folds; p-values from 1,000 iterations of nonparametric permutation testing are given in
parentheses.

Metric CpG site -934 CpG site -860

ApEn 6.55 (.007) 6.84 (.758)
SampEn 6.63 (.016) 6.99 (.915)
�t 7.18 (.380) 5.34 (.100)
�

2
! 7.19 (.412) 6.46 (.242)

LFP 6.82 (.049) 6.58 (.418)
fALFF 7.20 (.438) 6.95 (.940)

Table B.8: Visual II RVR model fit. Values indicate root mean squared error (RMSE)
across CV folds; p-values from 1,000 iterations of nonparametric permutation testing are
given in parentheses.

Metric CpG site -934 CpG site -860

ApEn 7.92 (.905) 6.63 (.261)
SampEn 8.49 (.570) 7.79 (1.00)
�t 6.30 (.002) 6.83 (.690)
�

2
! 6.20 (.001) 7.04 (.920)

LFP 7.14 (.284) 6.98 (.925)
fALFF 8.09 (.998) 6.27 (.068)

Table B.9: Visual association RVR model fit. Values indicate root mean squared error
(RMSE) across CV folds; p-values from 1,000 iterations of nonparametric permutation
testing are given in parentheses.
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Metrics ApEn SampEn �t �2
! LFP fALFF

ApEn – 7.28 (< .001) 0.33 (.744) 0.44 (.663) 0.66 (.511) 1.27 (.203)
SampEn – – -0.95 (.343) -0.82 (.418) -0.83 (.407) 0.03 (.973)
�t – – – 18.19 (< .001) 7.72 (< .001) 2.52 (.012)
�2
! – – – – 8.04 (< .001) 2.55 (.011)

LFP – – – – – 7.54 (< .001)
fALFF – – – – – –

Table B.10: Average whole-brain correlations between BOLD variability metrics. Z-
scored mean correlation coefficients across all participants are given for each pairwise
comparison. In general, entropy measures were significantly related to each other but not to
any other metrics. Temporal and spectral variability measures (including LFP and fALFF)
were also significantly correlated. Together, this suggests that entropy is capturing a unique
functional characteristic of the BOLD signal relative to other standard measures of BOLD
variability.
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