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Abstract

Any given regulatory agency, such as the US Food and Drug Administration, strives to protect the public

interest through certification of systems in the agency’s purview. Modern safety-critical systems have

significant software components. Due to the deterministic nature of software failures, certifiers cannot

apply traditional statistical risk assessment methods. Thus, certifiers struggle to assess whether safety-

critical systems are adequately safe. Current practice for certification revolves around two different types of

standards: (a) prescriptive and (b) goal-based. Both types of standards exhibit significant faults; these faults

can lead to the regulatory approval of systems that are not adequately safe.

To facilitate analysis and repair of certification faults, this work presents the filter model of certification.

The filter model views any given certification mechanism as a safety-critical system in itself. This insight

allows certifiers to apply systematic safety engineering to their certification mechanisms.

The filter model is evaluated for feasibility through a case study. First, common hazard analysis techniques

are adapted and applied to a specimen certification mechanism, the Graydon-Knight-Green mechanism

(GKG). The results of hazard analysis are used to adjudge certification faults. Second, GKG is used in

hypothetical certification of a safety-critical system, the Diabetes Advanced Information System (DAIS). The

results of the hypothetical certification are used to inform the adaptation and application of common fault

mitigation techniques to GKG.
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“I will bless the LORD at all times: His praise shall be continually in my mouth.”
(Psalms 33:10)
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Chapter 1

Introduction

Safety-critical application domains contain some of today’s most complex software systems. Ideally, such

systems would be entirely free of risk; that is, a comprehensive risk analysis would produce a way to

eliminate all possible risk. However, any non-trivial system will almost invariably have some residual risk,

either in the form of identified risks that could not be entirely eliminated or unidentified risks [2].

Thus, the assurance of the residual risk of a system being minimized is essential to the development

of safety-critical systems. Moreover, most such systems must be approved by a regulatory agency. Such

regulatory agencies are tasked by their government to protect the public interest; thus, this “stamp of

approval” is an explicit statement that an independent regulatory body finds the system “adequately safe.”

A decision on whether a system is adequately safe or not is the product of safety assessment.

Definition 1.1. Safety assessment. Safety assessment is the process through which a regulatory agency determines

whether the residual risk of a particular system is acceptably low for the system’s intended context and usage.

Safety-critical systems predate the advent of the microcomputer; Lawrence Sperry received the first

patent for airplane autopilot in 1929 [3]. Before computers became inexpensive and reliable enough to

use in safety-critical systems, these systems consisted primarily of mechanical and electrical components.

Such components have properties that are (a) well-understood and (b) subject to statistical modeling. The

hardware components of computers also consist of mechanical and electrical components, and thus are

subject to the same kind of statistical risk analysis. Statistical analyses yield a probability of failure.

Definition 1.2. Probability of failure. The probability of failure of a system is the prior probability per unit time

that, on a given input, the system does not produce the specified output.

The probability of failure is one component of the residual risk of a system; the other is the consequence of

failure or loss.

1
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Definition 1.3. Loss. The loss associated with a failure is the cost incurred by that failure.

Related to the notion of loss is the notion of accident.

Definition 1.4. Accident. An accident is an event that results in a loss.

The definition of risk follows from the definitions of (a) probability of failure and (b) loss:

Definition 1.5. Risk. Risk is the expected loss per unit time associated with using a system in its intended context

and for its intended purpose.

Because risk is an expected value, we can express this value mathematically:

∑
i

P [failurei]× loss(failurei) (1.1)

where i identifies a particular failure that can occur during system operation.

This equation assumes that we can measure the magnitude of loss. Loss can be measured in a few

different ways, including financial cost or time lost. Losses in life-critical systems are associated with death;

because of the delicate nature of putting a price on human life, engineers do not usually work directly

with risk. Instead, engineers often work only with the probability of failure. Thus, the safety assessment

of a system is essentially reduced to a comparison of the system’s probability of failure and the threshold

probability of failure.

Definition 1.6. Threshold probability of failure. The threshold probability of failure in a safety assessment is the

the maximum probability of failure that a certifier considers adequately safe for a particular system domain.

Ideally, if a system’s probability of failure is less than the threshold probability, the certifier will approve

the system; if the system’s probability of failure is greater than the threshold probability, the certifier will not

approve the system.

However, software systems are fundamentally different from mechanical or electrical systems: they

do not fail in statistically predictable ways, i.e., randomly. Rather, their failures are caused by design faults

[4], which means that if the system executes a piece of code implementing a faulty design element, its

corresponding failure will occur deterministically – there is no randomness inherent in a design fault. Since

there are no generally accepted mathematical models for design faults, developers must turn to other

methods to demonstrate to certifiers that their systems are adequately safe.
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Figure 1.1: Certification as protection of the public interest.

1.1 The Certification Problem

The aim of any regulating agency is to protect the public interest through certification of systems that fall

under its purview.

Definition 1.7. Certification. A process employed by regulatory agencies to protect the public interest by preventing

unfit systems from being released to the public.

Figure 1.1 shows the act of certification as shielding the public interest from potentially dangerous systems.

The mechanism of certification is dependent on two items:

1. The definition of “unfit.” For a given regulator, “unfit” is defined relative to the public interest assigned

to that regulator; this thesis focuses on regulators protecting the public interest in safety.

2. The safety assessment method. Examining a system in and of itself is difficult, so a given system is

represented by its work products. Examples of work products examined in certification include test

reports, requirements traceability matrices, and specification documents.

The combination of these work products is called the certification submission package.
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Definition 1.8. Submission package. The submission package for a given system is a set of work products that

represent the properties of the system, as accurately as possible.

Effectively, submission packages serve as a proxy for the system in certifications. Regulators, such as the

United States (US) Food and Drug Administration (FDA), the US Federal Aviation Administration (FAA),

and the US Nuclear Regulatory Commission (NRC) must examine thousands of these submission packages

to determine whether the residual risk of system usage has been reduced to an adequate level.

If quantitative modeling of software system dependability were straightforward, certification would be a

simple comparison of probabilities. However, the challenges inherent in quantitative modeling of software

systems are so great that regulating agencies do not require quantitative modeling alone for certification. For

the most part, prescriptive standards provide the basis for certification efforts in the US.

Definition 1.9. Prescriptive standard. A prescriptive standard is a document that dictates certain development

practices thought to help in creating acceptably safe systems in a certain domain.

In order to be certified by an agency that uses prescriptive standards, developers must adhere to the

practices dictated in the relevant standards. Dictating development practice enables regulators to demand

certain techniques that are known to eliminate or limit certain classes of faults in an effort to satisfy the

dependability requirements of the system. However, prescriptive standards exhibit two broad categories of

disadvantages:

1. Prescriptive standards are inflexible; by definition, they prescribe certain activities and approaches to

development, often to the exclusion of other activities and approaches.

2. Prescriptive standards rely on an unjustified assumption: namely, that adherence to the standard requirements

will fulfill the dependability requirements of a system.

This work refers to the assumption in the second problem as the “adherence assumption.” The adherence

assumption is especially worrisome: prior work has not shown that the adherence assumption is always

wrong, but work by German [5] has suggested that standards provisions do not always impart the level of

dependability they are intended to provide.

German’s work, coupled with the lack of carefully controlled studies on the efficacy of oft-recommended

standards provisions, has resulted in the rise of goal-based standards [6, 7, 8, 9, 10].

Definition 1.10. Goal-based standard. A goal-based standard is a document that sets goals for the safety of a

system.

Developers who wish to adhere to a goal-based standard must provide a documented rationale for

why they believe that their system is safe. Such a rationale is called a safety case [11, 12, 13, 14]. Goal-
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based standards deal with the disadvantages of prescriptive standards, but present two new categories of

disadvantages:

1. There is a distinct lack of established quality metrics for safety cases, i.e., ways to determine whether a

safety case presents a believable rationale or not.

2. By contrast with prescriptive standards, goal-based standards are highly flexible; this flexibility allows

for significant variation in the materials that comprise the safety case.

The lack of quality metrics for safety cases affects both certifiers and developers:

• Certifiers. Certifiers must conduct safety assessments without an objective notion of whether a safety

case shows that a system is adequately safe. In addition, variation in the forms of safety case materials

necessitates that certifiers be prepared for every eventuality, further complicating the certifier’s attempts

at safety assessment.

• Developers. Because of the difficulty certifiers have with safety assessments, developers have trouble

predicting certification decisions. The plethora of options available to developers for safety case

construction and presentation require developers to devote non-trivial amounts of resources solely for

the purposes of constructing a safety case, adversely affecting development time and budget.

Thus, both prescriptive and goal-based standards exhibit faults. As the purpose of certification is to protect

the public interest, obvious faults in certification are unacceptable. Faults in certification can lead to unacceptably

dangerous systems being released to the public under the guise of acceptable systems.

Mitigating certification faults requires discovering and characterizing the faults; discovery of faults

requires a general fault model. This thesis presents the filter model of certification to this end.

1.2 The Filter Model

The fundamental assertion of the filter model is:

Any given certification mechanism can itself be viewed
as a safety-critical system.

This certification system takes submission packages as input and produces certification decisions as

output.

Definition 1.11. Certification decision. Given a candidate system as input, a certification process decides whether

to (a) approve or (b) reject the system for public use. This certification decision is based on the safety assessment of the

system.
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Figure 1.2: The basic view of certification as a system.

Definition 1.12. Positive certification decision. A positive certification decision is a certification decision to

approve a candidate system, i.e., a judgment by the certifier that the candidate system is adequately safe.

Definition 1.13. Negative certification decision. A negative certification decision is a certification decision to

reject a candidate system, i.e., a judgment by the certifier that the candidate system is not adequately safe.

Protracted and frequent discussions are likely to take place between the applicant and the certifier.

Although such discussions might affect the certification decision, in the end the certifier always arrives

at a certification decision. Figure 1.2 shows this basic view of certification as a system. The certification

mechanism examines submission packages that are provided as input. Since a given submission package

serves as a proxy for a given system, this work refers generally to the input of certification mechanisms as

“systems.”

Essentially, the two types of certification decision are the output of a detection system of whether a given

system is fit for public use. As an example, consider a hypothetical certification mechanism 1 for drug

infusion pumps, named CMDIP . Modern drug infusion pumps, which are commonly referred to simply as

“infusion pumps,” contain a significant software component that enables programmability [16, 17]. Infusion

pumps are the input to CMDIP . CMDIP attempts to detect whether a particular drug infusion is worthy of a

positive certification decision. This decision is the output of CMDIP .

An erroneous certification decision is either:

• An unacceptably unsafe system that is deemed fit for public use.

• An acceptably safe system that is deemed unfit for public use.

1The Food and Drug Administration (FDA) offers guidance on certification of medical devices, including infusion pumps [15]. For
the purposes of this example, such detail is unnecessary.
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Figure 1.3: Possible erroneous certification decisions.

When viewed through the lens of certification as a safety-critical system, an erroneous certification

decision is a certification accident. Figure 1.3 shows the concept of erroneous certification decisions as

accidents (Chapter 3 expands on the concept in depth).

Continuing with the previous example of CMDIP , assume that the candidate system is a morphine

infusion pump. Further assume that the pump has a defective dosing system that allows lethal amounts of

morphine to be infused into the patient. Certification of this candidate system is a certification accident.

Accidents, hazards, and faults are related but subtly distinct and, as a result, often confused with one

another. This work uses the definitions given below, which are in line with safety engineering literature and

practice [18]. Recall the previous definition of accident: an accident is a a loss event.

Definition 1.14. Hazard. A hazard is an erroneous system state that could lead to an accident.

Definition 1.15. Fault. A fault is the adjudged cause of an erroneous system state.

While sufficient for other discussions of accidents, hazards, and faults, the definitions so far are not precise

enough for the purposes of this work. Since the fundamental assertion of the filter model is that certification

itself is a system, we necessarily use the same terminology of “accident,” “hazard,” and “fault” to refer to

hazards and faults of both the certification mechanism and the candidate system. This ambiguity introduces

significant difficulty in determining to which type of hazard/fault we refer. As the two terms are already

easily confused, this thesis introduces two new designations for hazard and fault:

• The subscript cert designates that the scope of the accident/hazard/fault as at the certification mechanism

level.

• The subscript cand designates that the scope of the accident/hazard/fault as at the candidate system

level.
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The definitions below are derived from the established definitions of fault and hazard.

Certification Mechanism Terminology:

Definition 1.16. Accidentcert. An accidentcert is an erroneous certification decision.

Definition 1.17. Hazardcert. A hazardcert is a state in a certification system that could lead to an accidentcert.

Definition 1.18. Faultcert. A faultcert is the adjudged cause of a hazardcert.

Candidate System Terminology:

Definition 1.19. Accidentcand. An accidentcand is a loss event in a candidate system.

Definition 1.20. Hazardcand. A hazardcand is an erroneous state in a candidate system that could lead to an

accidentcand.

Definition 1.21. Faultcand. A faultcand is the adjudged cause of a hazardcand.

The previous example of CMDIP included an accidentcert: certification of a defective infusion pump. An

accidentcand in this scenario is if the defective infusion pump did, in fact, provide a lethal dosage of morphine

to a patient.

In both certification mechanisms and candidate systems, faults cause hazards; we would like to mitigate

faultscert to the extent possible. Viewing a given certification mechanism, CM , as a system allows us to

leverage extant safety engineering techniques for faultcert discovery and mitigation. More precisely:

• We can adapt and apply existing hazard analysis techniques to CM to systematically analyze the

hazardscert and, from there, adjudge the faultscert associated with hazardscert in CM .

• Once we discover various faultscert in CM , we can adapt and apply existing fault mitigation techniques

to CM to lessen the severity of or even eliminate the faultscert in CM .

The result of faultcert mitigation on CM is also a certification mechanism, just with less faultscert. We can

apply safety engineering iteratively, improving the safety of CM with each iteration. I call this iteration the

filter repair cycle. Figure 1.4 illustrates the filter repair cycle.

1.3 Thesis Statement

The thesis of this work is that the filter model enables the systematic fault identification and mitigation in

certification mechanisms. More precisely:
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Figure 1.4: The filter repair cycle.

Existing hazard analysis techniques can identify faults in certification systems, which can
then be mitigated by existing safety engineering techniques.

To test this hypothesis, the author conducted a case study on a specimen certification mechanism, the

Graydon-Knight-Green method, or GKG. The target system for the GKG case study was the Diabetes

Advanced Information System, or DAIS. DAIS is the first in a new class of system, the safety-enhanced

patient environment.

Definition 1.22. Safety-enhanced patient environment. A safety-enhanced patient environment, or SEPE, is an

information system that augments the living environment of a patient in order to improve the patient’s safety as much

as possible without relying on the patient or any medical treatment devices.

1.4 Thesis Outline

1. Chapter 2 describes current current product certification practices.

2. Chapter 3 presents the filter model of certification and the filter repair cycle.

3. Chapter 4 gives an overview of the evaluation, including:

• The specimen certification mechanism, GKG.

• The adapted techniques used to identify and mitigate faultscert.

• The target system, DAIS, and the system domain to which DAIS belongs, SEPE.

• The methods used to seed the discovered defects into the certification process.
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• Proposed fault mitigations, based on the identified faults and mitigation techniques.

• A summary of the results.

Chapters 5 through 8 expand on all of the above topics in detail.

4. Chapter 9 presents a summary of related work in the general areas of certification and assurance case

quality assessment.

5. Chapter 10 concludes and presents some avenues for future work.



Chapter 2

Certification: Goals and Requirements

Regulatory agencies have the public interest as their primary focus. For safety-critical industries, the public

interest is safety. Thus, the overarching purpose of regulators of safety-critical industries is to protect, to the

extent possible, the public’s safety. Regulators must deem a safety-critical system to be safe enough for the

public to use before the system is deployed for public use. Safety is dependent on context and intended usage;

even an innocuous “system” like a brick can be misused, despite being completely safe for its intended

purpose (as a building block for a structure) and in its intended context (construction).

Chapter 1 refers informally to “certifiers” and “developers” without defining the terms. The intuitive

definitions of the terms are not sufficient for a detailed description of certification; below are rigorous

definitions of both terms.

Definition 2.1. Certifier. A regulatory agency, tasked (usually within a legal framework) with protecting the public

interest in safety for a particular domain.

Definition 2.2. Developer. A person, corporation, or conglomerate that produces systems in a particular domain.

The fundamental goal of developers, especially corporate developers, is to generate profit. This goal may

initially seem to be at odds with the goal of certification. However, since systems in regulated domains must

be certified in order to generate profit, we can assign the goal of protecting the public interest to developers

without obscuring the principles of interaction in certification.

2.1 Goals

Previously, this work referred informally to the main goal of certification: to protect the public interest.

Below is a rigorous definition of the term.

11
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Definition 2.3. Main goal. The main goal of certification is to ensure that any system released to the public exhibits

residual risk that is as low as reasonably practicable 1 when the system is operated in its intended context and for

its intended purpose.

This goal has several complex components. We can break this goal down into several sub-goals that are

designed to help both certifiers and developers achieve the main goal.

2.1.1 Sub-Goals

For the purposes of this work, certification can be broken into sub-goals. The following sections elaborate on

each of these sub-goals:

• A clear definition of safety.

• Clear expectations that certifiers have of submission packages.

• An accurate certification mechanism.

• A consistent certification mechanism.

Definition of Safety

The definition of “safety” regarding a particular domain should be clear to those with an interest in that

domain. The exact words of the definition vary from agency to agency, but the overall meaning is the same.

For example, the FDA uses the following definition of safety, from the Code of Federal Regulations [20]:

“There is reasonable assurance that a device is safe when it can be determined, based upon valid
scientific evidence, that the probable benefits to health from use of the device for its intended
uses and conditions of use, when accompanied by adequate directions and warnings against
unsafe use, outweigh any probable risks. The valid scientific evidence used to determine the
safety of a device shall adequately demonstrate the absence of unreasonable risk of illness or
injury associated with the use of the device for its intended uses and conditions of use.”

The definition seems complete, but showing that a system fulfills these safety conditions is difficult. Any

approach to certification must provide sufficient guidance about how to show that a certain system is safe

according to the certifying agency’s chosen definition of safety.

Clear Expectations

The expectations that certifiers have of submissions should be clearly communicated and reasonable. This

goal is related to the previous goal, but encompasses all expectations that a certifier has of submissions,

e.g., presentation format, volume, content, etc. Ideally, the certification process should be systematic,

1“As low as reasonably practicable” is an established term in the system safety literature, usually shortened to ALARP [19].
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comprehensive, and focused on the technical aspects of the submission. Submission expectations define how

amenable a submission is to such a review.

To a large extent, these expectations are meant to reduce, as much as is practical, the effort a reviewer must

put forth in order to review a submission. Therefore, submissions should be accessible by and familiar to

certifiers. However, if developers do not understand certifier expectations, or find the expectations drastically

impractical, the expectations will not be met and therefore will not reduce reviewer effort. Submissions that

do not meet expectations could be rejected because the certifier must spend extraordinary amounts of effort

simply to understand the submission.

Accuracy

The certification process should produce accurate certification decisions on whether a given submission is

certifiably safe.

Definition 2.4. Certifiably safe. A certifiably safe submission demonstrates that the system meets the criteria the

certifier has set with regard to safety.

These criteria include the definition of safety and other submission expectations. Recall the definition of

certification decision stated in Chapter 1 (Definition 1.11): a decision on whether a candidate system should

be certified or not. Given this definition, we arrive at the definition for accurate certification decision.

Definition 2.5. Accurate certification decision. An accurate certification decision is one that correctly identifies

whether a candidate system is certifiably safe.

Logically, an inaccurate certification decision is the opposite of an accurate certification decision.

Definition 2.6. Inaccurate certification decision. An inaccurate certification decision is one that incorrectly

identifies whether a candidate system is certifiably safe.

Note that there are two ways that a certification decision can be accurate. The certification mechanism

can:

1. Identify a certifiably safe candidate system as such.

2. Identify an uncertifiably unsafe candidate system as such.

Similarly, there are two ways that a certification decision can be inaccurate. The certification mechanism can:

1. Identify a certifiably safe candidate system as uncertifiably unsafe.

2. Identify an uncertifiably unsafe candidate system as certifiably safe.

Chapter 3 describes inaccurate certification decisions in greater detail.
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Consistency

The certification process should be consistent both across and within domains in a given certifier’s purview.

Consistency in the certification process of a given certifier is important for objectivity and repeatability.

Consider two different systems in different domains: A and B. Assuming both submissions demonstrate

the systems’ certifiable safety equally well, the certification process should yield the same certification

decision for both A and B. Similarly, if A and B are different systems within the same domain, equally good

submissions should yield the same certification decision for A and B.

2.1.2 Certification and Residual Risk

Note that none of the sub-goals directly mention assurance of residual risk. This is due to the difficulty of

quantitative system safety assessment. Historically, compositional models have proven to be useful in safety

assessment. Compositional models are models that allow engineers to make system-level assessments by

combining module-level assessments, according to the model. Ideally, we would like to use compositional

models to assess safety, but modern software-intensive systems suffer from the following important fact:

There are no generally accepted compositional models for design faults in
systems.

Detailed reliability growth models for software systems do exist, but no model is general enough to apply

to all software systems [21]. This difficulty is primarily due to design faults being the only kind of fault in

a software system, (or sub-system) [22]. That is, there are no degradation or Byzantine faults inherent in

software systems (although such faults can certainly occur in larger systems that contain hardware as well as

software sub-systems). Design faults are not random but systematic and thus not amenable to analysis using

statistical models [4].

Without models to define combination, dependability attributes for large code bases cannot be determined

in an acceptable way by combining dependability attributes of smaller parts of the system.

2.2 Current Practices

Recall from Chapter 1 that, because of the significant difficulty in product certification for dependability,

developers and certifiers have worked together to create two different types of standards: prescriptive and

goal-based.
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2.2.1 Prescriptive Standards

A prescriptive standard is a document that dictates certain development practices usually demonstrated to

help in creating acceptably safe systems in a certain domain.

Recall that a prescriptive standard is one that requires developers to adhere to a certain set of development

practices in order to comply with the standard. Such standards can provides requirements for either or both

of the following:

1. Specific types of work products that must be produced.

2. Specific development procedures that must be followed.

Examples of prescriptive standards are RTCA DO-178B [23], NASA-STD-8739.8 [24], UL 1998 [25], and SAE

ARP 4754 [26]. In the prescriptive standard approach, certification of a system is achieved by the certifier

assessing compliance with the standard. The certifier inspects the submission package for (a) the prescribed

work products and (b) proof that the developer followed the prescribed development procedures.

Advantages and Disadvantages

Prescriptive standards provide developers and certifiers with several advantages:

1. Techniques that are specifically designed to effect avoidance or elimination of an entire class of faults

can be included in a prescriptive standard. For example, mandating the usage of the Ada programming

language will eliminate faults associated with ambiguous typing, because Ada is a type-safe language

[27].

2. Guidance on process usage can be encoded in the standard requirements; this guidance can be designed

to ensure that developers fulfill temporal and form requirements of certain critical process steps. For

example, requiring a spiral model process for software development will ensure that developers

evaluate development risk first and continue to periodically evaluate development risk.

3. Common reliance on a well-defined prescriptive standard means that all engineers on a project

understand important details on how a project must proceed.

4. Prescriptive standards bring together a wealth of accumulated knowledge. No engineer is an expert in

every subject area that his work may touch; standards serve to “fill in the gaps” in knowledge, thereby

improving the efficacy of individual engineers and personnel in general.

However, prescriptive standards also exhibit two significant disadvantages: inflexibility and reliance on the

adherence assumption.
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Inflexibility. Prescriptive standards, by their very nature, are inflexible. Locking developers into one specific

set of artifacts they must produce and/or processes they must execute in specific ways may not be the

best approach for all of the systems the developers must create, especially if standards cross application

domains. For example, ISO 14971 [28] is a standard extensively used in the broad medical device

domain. Its stated scope is:

“This International Standard specifies a process for a manufacturer to identify the hazards
associated with medical devices, including in vitro diagnostic (IVD) medical devices, to esti-
mate and evaluate the associated risks to control these risks, and to monitor the effectiveness
of the controls. The requirements of this International Standard are applicable to all stages of
the life-cycle of a medical device.”

While this standard provides developers with valuable development and certification guidance on

various necessary development activities, the standard applies to all medical devices. The character-

istics of surgical robots [29] are vastly different from HIV diagnostic tests [30], automated external

defibrillators [31], infusion pumps [16], etc. Specific systems may benefit from specific development

strategies or technologies, but prescriptive standards effectively preclude such deviations, even if

justified. Deviation from the standard may result in certification failure, which is costly in terms of

immediate profit from the device, time spent in repairing or redesigning the device, and reputation.

Reliance on the adherence assumption. Prescriptive standards rely on the assumption that following the

prescribed processes and producing the prescribed work products effects the goal: a certain level of residual

risk, i.e., a system which is acceptably safe for a particular domain. However, there is no scientific basis

for the adherence assumption; some work even suggests that certain standard prescriptions intended

to effect higher dependability do not do so [5]. Moreover, there is no way of measuring the extent to

which the developers followed the intent of a prescriptive standard.

Despite these disadvantages, prescriptive standards have worked fairly well across the world. Neverthe-

less, goal-based standards deal with these disadvantages.

2.2.2 Goal-Based Standards

An alternative approach to prescription is the goal-based approach. Goal-based standards set goals for the

dependability of a product; the developers are then free to pursue any approach they choose to meet the

goals. Typically, developers must provide their documentation for their belief in the claim that their system

meets the necessary dependability goal.

Definition 2.7. Dependability goal. A dependability goal is a dependability requirement set by a particular certifier

in a goal-based standard.
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Since the certifiers in this discussion are interested in protecting the public interest in safety, this work

focuses on one particular type of dependability goal, the safety goal. A set of documentation supporting a

developer’s belief that a system satisfies the requisite safety goal is called a safety case. Kelly’s definition of

safety case is sufficient for the purposes of this work.

Definition 2.8. Safety case. A safety case is “a documented body of evidence that provides a convincing and valid

argument that a system is adequately safe for a given application in a given environment” [14].

Safety Cases

Safety cases have been built to document rationale for the belief in the safety of a variety of production

systems, and are required by law for some systems in Europe by various agencies. Examples of goal-based

standards are the UK Defence Standard 00-56 [9], UK Civil Aviation Authority CAP 670 [10], and FDA Draft

Guidance for Infusion Pumps [15].

A safety case comprises three essential elements:

1. A safety goal that is required for the system.

2. Evidence that the safety goal has been satisfied.

3. An argument linking the evidence to the safety goal.

The argument should convince the reader that the evidence justifies the safety claim.

Definition 2.9. Safety claim. The safety claim is the claim by a developer that a particular system satisfies the

requisite safety goal.

Safety arguments can be recorded in natural language, but natural language safety arguments suffer

from similar problems to natural language software requirements specifications:

Clarity. Natural language, when crafted properly, can be quite clear and expressive. However, writing clear

natural language is difficult, and the skill to do so is not easily learned. Engineers tasked with writing

safety arguments may not receive any formal writing training. Even if they do receive writing training,

technical training is an engineer’s primary focus.

Lack of writing prowess is not a fundamental problem with natural language; poor writing skills can be

improved with comprehensive training. In an ideal world, all engineers would successfully complete

such training. However, these programs are prohibitively expensive, both in terms of finances and

time.

Poor structure. Pure natural language lends itself to a linear narrative. However, safety arguments often

require cross-references between the argument and pieces of evidence [13]. The more evidence required,
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Prescriptive Standard Problem Goal-Based Standard Solution

Prescriptive standards dictate details of de-
velopment processes and products, result-
ing in inflexibility.

Developers adhering to a goal-based stan-
dard can follow any processes they want,
as long as the dependability goals of the
system are achieved.

Prescriptive standards rely on the un-
founded assumption that a set of prescribed
processes and products can effect the de-
sired level of dependability.

Goal-based standards require an assurance
case, a rigorous rationale for why the sub-
mitted system fulfills the dependability re-
quirement of the certifier.

Table 2.1: Disadvantages of prescriptive standards and how goal-based standards deal with these disadvantages.

the more cross-references appear in the safety argument. Safety-critical systems rightfully require a

great deal of evidence to support a safety claim; thus, safety arguments must include a great deal of

cross-references to relevant pieces of evidence.

Succinctly:

Natural language imposes neither clarity
nor structure on a safety argument.

Because of unclear and poorly structured prose, natural language safety arguments are often ambiguous

and difficult to understand [13]. Graphical notations have been designed to facilitate presentation of safety

arguments in a manner that is easier (but not necessarily easy) for humans to understand. Examples of

these notations include the Claims, Arguments, and Evidence notation (CAE) [8] and the Goal-Structuring

Notation (GSN) [12]. The graphical components of each of these notations is a directed acyclic graph. This

work uses GSN when treating safety arguments because GSN is one of the more widely used notations [32];

readers unfamiliar with GSN are referred to Kelly [12, 14].

Advantages and Disadvantages

Goal-based standards remedy both of the problems that arise with prescriptive standards, as shown in Table

2.1. However, goal-based standards introduce two new disadvantages:

Lack of quality metrics. Currently, there are no established quality metrics for safety cases. Despite the

rigorous nature of safety cases, they are informal, so certifiers have difficulty assessing safety case

quality quantitatively without attaching subjective judgments to the assessment.

If the argument in a safety case is flawed in some way, belief in the top-level goal might be unwarranted.

This issue can be seen in UK Defence Standard 00-56, which states:
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“The Safety Case shall consist of a structured argument, supported by a body of evidence,
that provides a compelling, comprehensible and valid case that a system is safe for a given
application in a given environment.”

The standard requires a safety case that is compelling, comprehensive and valid. Despite this requirement,

the standard does not define these terms, leaving in doubt how the requirements can be met and how

a certifier will determine whether they have been met.

Significant variation in submission packages. The flexibility of the goal-based approach, while a strength

when compared with the inflexibility of prescriptive standards, introduces a significant degree of

variation into the potential submissions a certifier could see. The certifier could be presented with a

safety case that does not necessarily facilitate review in any sense. Claims, arguments, and evidence in

a safety case can take many forms, and the certifier must be prepared for any of them.

These issues cannot be easily addressed. Experts involved in certification at the FDA, for example, work

on a variety of devices, so any solution must be broadly applicable both across domains and within each

domain.

2.3 Summary

We have established in this chapter that both approaches to certification – prescriptive and goal-based – have

problems. Two related questions remain:

Question 2.1. How do these issues manifest in a particular certification mechanism?

Question 2.2. How can we evaluate the viability of a certification mechanism?

Question 2 introduces the notion of viability.

Definition 2.10. Viable. A viable certification mechanism is one that effectively protects the public interest.

A regulator effectively protecting the public interest in safety means that the systems that are certified

by the regulator are certifiably safe with a high degree of accuracy. A general model of certification would

provide the first step to answering these questions; Chapter 3 describes a general model created by the

author, the filter model.



Chapter 3

The Filter Model of Certification

Evaluating whether a given certification mechanism is viable is a difficult task. Ideally, we would study the

mechanism empirically. To come to any conclusive results, such a study would necessarily be large scale, i.e.,

with participation of multiple regulatory agencies and many subject systems across different domains over

many years. The resources required to conduct such a study are prohibitively high. In addition, deploying

untested certification mechanisms is a dangerous activity. An untested mechanism could have a systematic

flaw that allows certification of systems with certain critical defects. Accidents involving such systems could

result in loss of life, the prime outcome against which certification should protect.

Another approach to determine the viability of a certification mechanism is to instantiate a general model

of the mechanism itself and examine the model for flaws. Such an approach is far less resource-intensive, but

requires a comprehensive, representative, and general model. To my knowledge, no such models exist for

certification mechanisms. This chapter introduces the filter model of certification that models certification as

a system which is designed to prevent systems with unacceptably high residual risk from being released

to the public. That is, systems with unacceptably high residual risk are filtered out by certification. The

filter model enables pre-deployment evaluation and repair of arbitrary certification mechanisms, which is

necessary for highly reliable operation of certification mechanisms.

3.1 The Filter Model

3.1.1 Inputs and Outputs

The first step toward defining the filter model is characterizing the inputs and outputs of certification.

We have established that the purpose of certification is to protect the public interest in safety. Generally,

20
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Figure 3.1: Inputs to certification and corresponding outputs.

certification mechanisms accomplish this goal with two warranted outcomes.

Definition 3.1. Warranted outcome. A warranted outcome is a certification decision that properly protects the

public interest.

There are two types of warranted outcome: acceptance of an adequately safe system and rejection of a

system that is not adequately safe. However, since certification is not perfect, unwarranted outcomes are

also possible.

Definition 3.2. Unwarranted outcome. An unwarranted outcome is a certification decision that does not properly

protects the public interest.

Thus, an unwarranted acceptance is the acceptance of an unsatisfactory system, and an unwarranted

rejection is the rejection of a satisfactory system.

The inputs to certification are candidate systems, which are either satisfactory or unsatisfactory.

Definition 3.3. Candidate system. A candidate system is one which has been deemed to require certification

For simplicity, this work assumes that candidate systems have two important properties:

• A candidate system is either adequately safe or not adequately safe.

• A candidate system falls under the purview of a single regulatory agency.

The outputs of certification are warranted and unwarranted acceptances and rejections. Figure 3.1 shows

the relationship between these inputs and outputs.

Both developers and certifiers would benefit from minimizing the unwarranted outcomes of certification.

To do this, we must first examine how certification operates in a general sense.
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3.1.2 General View of Certification

A sufficiently general view of certification must accurately reflect the commonalities between the two

different types of certification. Fortunately, both types have an important commonality, that of inspection:

• With prescriptive standards, certification consists of the inspection of a collection of work products

for the presence of various critical work products.

• With goal-based standards, certification consists of the inspection of a collection of work products for

fulfillment of the goals set forth in the standard.

In either case, certification consists of the inspection of a representative set of work products. For

simplicity, I will refer to these work products simply as the system, as their purpose is to proxy for the

actual system. The inspection is usually a multi-stage process, with several different work products being

examined during each stage.

A particular certification mechanism, CM , can be thought of as a filtration system. For the purposes

of this work, I define a filtration system as having one or more filters. Each filter is designed for two

complementary purposes:

1. Prevent a certain type of undesirable particle from being released past the filter. In the context of air

filters, an example of an undesirable particle is a pollen particle.

2. Allow desirable particles to pass the filter. In the context of air filters, a desirable particle is any particle

that constitutes clean air.

Thus, unwarranted outcomes are the failures of this system. The filter model of certification is based loosely

on Reason’s Swiss cheese model of system failure [33], shown in Figure 3.2. The different layers of the Swiss

cheese model are designed to protect against a failure. The holes in the Swiss cheese model represent system

faults, and the different layers of cheese represent the aggregate fault tolerance of the system. Adding layers

of cheese is equivalent to increasing the fault tolerance of the system. Reducing the size of the holes, or

elimination of the holes, is equivalent to fault reduction or fault elimination, respectively.

Most of the elements of the certification filter model are the same as the elements of the Swiss cheese

model. The layers of Swiss cheese become the filters.

Definition 3.4. Filter. In the context of the filter model, a filter is one of the different checks that comprise the

certification mechanism.

These filters correspond to the stages in the system examination process described above. Holes in the

filters represent faults, just like holes in the Swiss cheese.
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Figure 3.2: Reason’s Swiss-cheese model of system failure.

However, the Swiss cheese model of the system assumes that the system is trying to prevent everything

from passing through the layers of cheese to the other side, as the model is concerned with hazards, faults,

and failures. In the filter model, a satisfactory system should pass through the filtration system, so a pre-

determined way to pass each filter is necessary. This difference is shown in Figure 3.3. Figure 3.3 shows

one warranted outcome of the certification process: warranted acceptance. The doors represent the correct

way that a system should undergo a particular check during the filtering process, and the system passing

through an opened door indicates that the system was deemed satisfactory for that particular check.

Figures 3.4 through 3.6 show the other outcomes. In Figure 3.4, the candidate system is unsatisfactory

and is correctly rejected. The second door is closed, indicating that the certifier performed the second check

correctly and rejected the candidate system on grounds of that result. Figure 3.5 shows the first unwarranted

outcome of certification: an unsatisfactory system that is nevertheless accepted as a satisfactory system. The
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Figure 3.3: The filter model of certification, with a satisfactory system as input and a warranted acceptance as output.

system correctly passes the first check. However, instead of being correctly rejected by the second check, the

system is able to bypass the correct execution of the check through a fault in the check. The system then

proceeds to correctly pass the third check and be accepted as a certified system.

An exaggerated example of this would be a certifier forgetting to check a critical verification document

that should contain proofs of worst-case execution time (WCET) for various calculations performed in a

pacemaker. If the proofs are incorrect, then the system is unsatisfactory and should not have been certified.

Despite being an exaggerated example, certifiers neglecting or forgetting to examine various documents is

not entirely outside of the realm of possibility. A typical certification submission package contains thousands

of pages of documentation, which must be examined and decided on within a short time period, e.g., 60

days. Coupled with the requirement of examining multiple submissions in a given 60-day period, certifiers

might have approximately ten days to examine a single submission.
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Figure 3.4: The filter model of certification, with an unsatisfactory system as input and a warranted rejection as output.

Examining unwarranted acceptance is the focus of this work. While unwarranted rejection is still a

certification failure, an uncertified system will not be deployed and thus cannot cause harm. Finding the

probability of unwarranted rejection is a subject for future work, discussed in Chapter 10. For completeness,

Figure 3.6 shows unwarranted rejection of a satisfactory system. The system correctly passes the first check.

However, instead of being correctly accepted by the second check, the system runs up against a part of the

filter that is neither the door nor a fault. This represents an overly stringent requirement that the system,

while being satisfactory, did not fulfill. Thus, the system is rejected.
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Figure 3.5: The filter model of certification, with an unsatisfactory system as input and an unwarranted acceptance as
output.

3.2 System Safety Analysis

The similarity of system failure and certification failure raises the question: can existing techniques for

reducing system failures be used to reduce certification failures, particularly unwarranted acceptances? Recall

the thesis statement:

Existing hazard analysis techniques can identify faults in certification systems, which can
then be mitigated by existing safety engineering techniques.

Figure 3.7 illustrates the thesis statement. Note that, as both the left- and right-hand sides of Figure 3.7

are the same type, i.e., they are both filtration systems, we can apply the safety engineering iteratively. The

term for this continual repair of the certification mechanism in this work is the filter repair cycle.
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Figure 3.6: The filter model of certification, with a satisfactory system as input and an unwarranted rejection as output.

Definition 3.5. Filter repair cycle. The filter repair cycle is the iterative application of safety engineering to a

particular certification mechanism, in order to discover as many faults as possible and mitigate those faults.

This section provides a brief background in established hazard analysis and safety engineering techniques.

3.2.1 Discovering Faults

Various hazard analysis techniques provide information about hazards; this information contributes to

adjudging the cause of the hazards, i.e., discovering the faults that lead to hazards before corresponding

failures happen. For discovering faultscert, this work uses three popular techniques: fault tree analysis [34],

failure modes and effects analysis [35], and hazard and operability studies [36].
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Figure 3.7: An illustrated version of the thesis statement.

Fault Tree Analysis

Fault tree analysis(FTA) is a top-down method of fault identifications. Analysts start with a particular hazard

and work backward, determining the events that could lead to the hazard by recursively breaking down

the possible events leading up to the hazard. Intermediate events are broken down using Boolean logic

operations (most commonly AND and OR). Based on the level of detail needed, analysts conclude the event

breakdown at basic events.

Typically, FTA is done graphically, although fault trees can also be represented textually. The most

widely-used notation is similar to logic diagrams, which makes the fault trees easy to understand for anyone

familiar with electronic circuits. Figure 3.8 shows an example fault tree for the software in a hypothetical

morphine infusion pump. The fault tree breaks down the compound event, “Infusion pump delivers lethal

dose of morphine.” This event is broken down into three contributing events. These are linked together

with a boolean OR gate, indicating that the infusion pump will deliver a lethal dose of morphine if any of the

contributing events occur.

Since the fault tree is directed toward the software in the infusion pump, “hardware failure” is regarded

as a basic event, i.e., one that the fault tree does not break down any further. “User error” can be caused by

poor user interface design and implementation, which is a software problem; thus, the “user error” element

in the diagram is a transfer to another fault tree. Lastly, “software failure” is composed of two basic events

that are linked together by a boolean OR gate.
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Figure 3.8: Example fault tree for the software in a hypothetical morphine infusion pump.

Note that the example fault tree shown in 3.8 is (a) hypothetical and (b) incomplete. As such, the example

does not show all the notational intricacies possible in industrial FTA.

Failure Modes, Effects, and Criticality Analysis

Failure modes and effects analysis (FMEA) is a bottom-up method of discovering hazards. FMEA is often

extended to Failure Modes, Effects, and Criticality Analysis (FMECA). In FMECA, analysts assess criticality

information for each effect and include the information in the chart.

In FMEA, analysts examine individual components or functions within the system, in order to identify

and investigate the failure modes of each component. Analysts consider possible causes and assess likely

effects of each failure mode. Failure mode effects are assessed at both the component and system level. If

the analysis is a FMECA, the analysts also classify the effects on a criticality scale. Optionally, analysts can

suggest possible solutions.

Table 3.1 shows a simple, incomplete example of a FMECA table. Each row examines one failure mode

for a particular component, elaborating the characteristics of the failure mode, the effects of the failure mode,
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Component Failure Mode Effects Criticality

Calculation
module Overflow error

Morphine dosage is set to
minimum negative num-
ber, resulting in massive
underdose.

Low; probability of patient
death due to underdose is low.

Underflow error

Morphine dosage is set to
maximum positive num-
ber, resulting in massive
overdose.

Extremely high; probability of
patient death due to overdose
is proportional to magnitude of
overdose.

Table 3.1: Hypothetical FMECA results for the calculation module in a morphine infusion pump.

and the criticality of the effects. In this incomplete example, the FMECA examines the calculation module of

the hypothetical morphine infusion pump. A complete FMECA would identify and examine as many failure

modes as possible.

FMEA and FMECA are often used to provide input data for FTA; the two methods are complementary.

Hazard and Operability Study

A hazard and operability study, or HazOp, is an algorithmic method of discovering hazards. The HazOp

technique was originally developed for hazard analysis in chemical and process control plants, but is used

in a wide range of domains, including software [37, 38].

A HazOp analysis generates questions about a system based on parameters and guide words. Parameters

are based on system components or attributes. The standard guide words are shown in Table 3.2 along with

the meaning of each guide word.

HazOp questions take the general form of, “What happens when [parameter] [phrase involving guide

word]?” For example, if parameter is “memory” and guide word is “more,” then a logical question to generate

is, “What happens when the system uses memory more than specified?” or, phrased more clearly, “What

happens when the system uses more memory than specified?”

HazOp question generation crosses all parameters with all guide words, so some of the resulting questions

may be meaningless. Nevertheless, the answers to meaningful questions often directly provide hazards,

which can be used as input to FTA. If not, the answers identify areas for further investigation.

3.2.2 Fault Mitigation

Given hazards and adjudged faults, safety engineering techniques and principles can protect against

corresponding failures. To protect against accidentscert, this work uses analogs of fault mitigation techniques.

Ordinarily, engineers apply each of the following techniques in succession:
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Guide Word Meaning

No or Not Complete negation of the design intent

More Quantitative increase

Less Quantitative decrease

As well as Qualitative modification/increase

Part of Qualitative modification/decrease

Reverse Logical opposite of the design intent

Other than Complete substitution

Early Relative to the clock time

Late Relative to the clock time

Before Relating to order or sequence

After Relating to order or sequence

Table 3.2: Standard HazOp guide words and their meanings.

1. Fault avoidance.

2. Fault elimination.

3. Fault tolerance.

4. Fault forecasting.

That is, engineers start with the application of fault avoidance. After applying fault avoidance techniques to

the extent possible, engineers apply fault elimination techniques, then fault tolerance techniques, and finally

fault forecasting techniques.

Chapter 8 discusses the difficulty of adapting these techniques to a novel area — certification — in more

detail. Due to these difficulties, this work focuses on:

• Analogs of fault tolerance techniques, drawing specifically from redundancy.

• Analogs of fault-specific methods.

The following sections briefly introduce redundancy and fault-specific methods.

Redundancy

Fault tolerance is achieved through some form of redundancy. Different types of redundancy include:

• Hardware redundancy, e.g., triple modular redundancy to protect against random component failures.



Chapter 3 The Filter Model of Certification 32

• Software redundancy, e.g., recovery blocks to provide alternative software routines in the event of a

software failure.

• Information redundancy, e.g., Hamming codes to detect and possibly correct transmission errors.

• Temporal redundancy, e.g., repeating calculations to detect and possibly ignore transient faults.

Fault-Specific Methods

Certain classes of faults have specific methods for mitigating or even eliminating their occurrence. For

example, the usage of the Ada programming language [39] eliminates entire classes of faults that are possible

in the standard C programming language [40]. In general, such methods are often found in prescriptive

standards.

Faultscert are at another level of abstraction, but similar techniques apply. For example, misunderstanding

of domain-specific terminology used in a safety case can be mitigated by comprehensive and highly accurate

glossaries.

3.3 Summary

Viewing a given certification mechanism as a system allows for systematic application of proven engineering

techniques for fault detection and mitigation.

The next chapter describes how I evaluate fault detection and mitigation for certification systems.
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Evaluation Overview

This work evaluates the feasibility of the filter model with a case study. This chapter summarizes the

structure and results of the case study. Chapters 5 and 6 elaborate on the components of the case study and

Chapters 7 and 8 elaborate on the results.

4.1 Introduction

Recall the thesis statement from Chapter 1:

Existing hazard analysis techniques can identify faults in certification systems, which can
then be mitigated by existing safety engineering techniques.

This evaluation uses a case study to demonstrate the two main points of the thesis:

• Existing hazard analysis techniques can identify faults in certification.

• Certification faults can be mitigated by applying safety engineering techniques.

The case study examines a specimen certification mechanism in two phases:

1. First, the certification mechanism is examined for faultscert using hazard analysis.

2. Second, fault treatment is applied to the faultscert discovered in the certification mechanism.

The case study uses the Graydon-Knight Green mechanism (GKG) for its certification mechanism, and for

its target system, a novel system developed at the University of Virginia: the Diabetes Advanced Information

System (DAIS). DAIS is the first of a new class of systems called a safety-enhanced patient environment, or

SEPE. Chapter 6 defines SEPE and discusses the distinction between DAIS and SEPE.

33
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Figure 4.1: An ideal evaluation, comprising systems across many domains.

4.2 Evaluation

Section 4.2.1 presents one design for a comprehensive empirical evaluation of filter model analysis. However,

such a comprehensive analysis is out of the scope of this work; Section 4.2.2 presents the design of the case

study used in this work.

4.2.1 Ideal Evaluation

Given unlimited resources, an important property to measure about a certification mechanism is its probabil-

ity of unwarranted acceptance. Ideally, a comprehensive empirical evaluation of a certification mechanism

would use a significant number of systems across many domains. All such systems would need to have the

following properties:

1. Safety-critical.

2. A member of a class of systems that resides primarily in the regulatory purview of one certifying

agency.

In addition, examining multiple certification mechanisms would be beneficial for comparison purposes.

Figure 4.1 shows the interaction of the many systems needed for an ideal evaluation. Figure 4.1 shows S

system domains, each with N candidate systems, for a total of S ×N candidate systems. In addition, the

figure shows C certification mechanisms. Each experiment in the ideal evaluation chooses one certification
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mechanism, CMi, to evaluate and one candidate system, Systemi, with which to evaluate CMi. The

certification outcome of Systemi being processed by CMi is CertDecisionii. The researchers conducting this

ideal evaluation know the expected decision on each candidate system, i.e., whether each candidate system

should be certified. To identify the probabilities of unwarranted acceptance and unwarranted rejection for,

researchers compare the expected CertDecisionii to the actual CertDecisionii.

This structure would imply that C certification mechanisms each examine S ×N candidate systems, for

a total of C × S ×N experiments. However, not every CM fits each candidate system domain; for example,

the intended application of ISO 14971 is to medical devices [28]. In addition, some standards require the usage

of other standards; for example, ISO 13485 requires the usage of ISO 14971 for risk management practices

[41]. Thus, the amount of experiments is less than C × S ×N in practice.

Nevertheless, even one of these experiments is extremely costly. Examining one official certification

mechanism requires the cooperation of a government regulator, and examining one industrial candidate

system requires the cooperation of that system’s developer. Given the resources available, this ideal

analysis is not practical. Moreover, the safety cases (including all relevant documents, e.g., source code,

software/hardware specifications, etc.) of industrial safety-critical systems are almost never released; they

are regarded as trade secrets. The prohibitive expense of such an evaluation necessitates a more practical,

small-scale approach.

4.2.2 Practical Evaluation

In lieu of directly measuring the probability of unwarranted acceptance, the case study evaluation presented

in this work evaluates the feasibility of the filter model. In particular, the filter model enables the application

of systematic safety engineering to certification mechanisms. Candidate system safety engineering can be

divided into two parts: hazard analysis and fault treatment. Thus, this evaluation is structured around these

two parts.

4.2.3 Aims

The case study shows the feasibility of the filter model through two aims:

Case Study Aim 4.1. Hazard analysis. Identify faultscert in GKG.

Case Study Aim 4.2. Fault treatment. Propose plausible faultcert mitigation strategies.

The case study is organized into two phases, each of which is designed to satisfy one aim. Figure 4.2

shows the overall structure. Section 4.2.4 elaborates on phase 1 and section 4.2.5 elaborates on phase 2.
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Figure 4.2: The two-phase structure of the case study evaluation used in this work.

4.2.4 Phase 1 - GKG Hazard Analysis

The first phase adapts and applies three hazard analysis techniques to the specimen certification mecha-

nism. The specimen certification mechanism is an instantiation of the Graydon-Knight-Green certification

mechanism; the instantiation is named GKGSEPE. The three hazard analysis techniques used are hazard

and operability study (HazOp), fault tree analysis (FTA), and failure modes, effects, and criticality analysis

(FMECA). The results of phase 1 are two-fold:

• A set of measurements of the feasibility and yield of the applied hazard analysis techniques.

• A list of faultscert in GKGSEPE.

This section gives an overview on the input and results of phase 1. Chapter 3 gave an overview of

HazOp, FTA, and FMECA.
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Input - GKGSEPE

Recall that the specimen certification mechanism is the Graydon-Knight-Green mechanism, which this work

classifies as a domain-independent or general certification mechanism.

Definition 4.1. General certification mechanism. A general certification mechanism is a certification mechanism

that can be adapted to any candidate system domain.

Related to the idea of a general certification mechanism is the idea of a specific certification mechanism.

Definition 4.2. Specific certification mechanism. A specific certification mechanism is a certification mechanism

that is adapted for a particular candidate system domain.

A certification mechanism must be specific to be applied to candidate systems. Some certification

mechanisms exist in a specific form, most often in the form of prescriptive standards that apply to a specific

domain. For example, DO-178B [23] applies to software used in airborne systems. However, general

certification mechanisms, e.g., GKG, must be adapted to a specific domain in order to be applied to candidate

systems. This work terms the result of this adaptation process a certification mechanism instantiation, or

simply instantiation.

Definition 4.3. Certification mechanism instantiation. An instantiation of a general certification mechanism is

a specific certification mechanism for a particular candidate system domain, derived from the general certification

mechanism.

An instantiation is derived by supplying the general certification mechanism with domain-specific

information. As an example, consider a GKG instantiation concerned with software for drug infusion pumps,

GKGSDIP. To obtain GKGSDIP, certifiers at the FDA would instantiate GKG with information from the drug

infusion pump software domain, e.g., hazards, best practices, etc.

This work uses a GKG instantiation for the safety-enhanced patient environment domain; the instantiation

is named GKGSEPE. Chapter 5 elaborates on the characteristics of GKGSEPE.

Results - Measurements

HazOp, FTA, and FMECA have been shown to be feasible and to have positive yield when applied to

safety-critical systems, such as nuclear control systems. However, systematic hazard analysis has never

been applied to certification mechanisms. Thus, this work provides an assessment of feasibility and yield of

hazard analysis application to certification mechanisms. Phase 1 develops several metrics to measure feasibility

and yield. With respect to these metrics, each technique was found to be feasible and to have positive yield.
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Results - GKGSEPE Faultscert

Recall from Chapter 3 that hazard analysis techniques do not directly result in faults. Instead, faults are the

adjudged causes of hazards. For each technique, phase 1 adjudges the faultscert that exist in GKGSEPE. These

faultscert are compiled for use in phase 2.

4.2.5 Phase 2 - GKGSEPE Fault Treatment

The second phase adapts and applies several fault treatment techniques to GKGSEPE. The overall goal of phase

2 is to generate faultcert mitigation strategies. Thus, the input to phase 2 is the list of faultscert found in phase

1.

To better understand how faultscert manifest themselves in a GKG instantiation and thus generate better

faultcert mitigation strategies, phase 2 conducted several hypothetical certifications. GKG is a certification

mechanism for safety case submissions; thus, each certification examined an evaluation safety case. Each of

these safety cases was derived from the target system, the Diabetes Advanced Information System (DAIS).

Moreover, each safety case was seeded with a faultcand that corresponds to a faultcert in the list from phase 1.

The results of phase 2 are three-fold:

• A set of examples of how unwarranted certification outcomes can occur.

• A list of faultcert mitigation strategies for GKGSEPE.

• A set of measurements of the feasibility and yield of generating faultcert mitigation strategies.

This section gives an overview of the input and results of phase 2.

Input - GKGSEPE Faultscert

The set of faultscert found in phase 1 was used to create a corresponding set of faultscand. These faultscand

were codified into faulty fragments.

Definition 4.4. Faulty fragment. A faulty fragment is a fragment in a safety argument that represents a faultcand in

the corresponding system.

These faulty fragments were seeded into a baseline safety case, SCbase. SCbase was constructed to reflect

an idealized, high-assurance version of DAIS. The safety cases resulting from seeding the faulty fragments

into SCbase are termed evaluation safety cases.
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Results - Certification Examples

Phase 2 conducted a hypothetical certification on each evaluation safety case and compiled the results. Each

certification provided one example of the outcome of a GKG-based certification effort.

Results - Faultcert Mitigation

Based on the results of the hypothetical certifications, phase 2 generated several faultcert mitigation strategies.

These strategies were adaptations of faultcand treatment strategies for candidate systems. This evaluation used

primarily fault elimination and fault tolerance.

Results - Measurements

Fault mitigation methods have been shown to be feasible and to have positive yield when applied to

candidate systems. However, systematic fault mitigation has never been applied to certification mechanisms.

Thus, this work provides an assessment of the feasibility and yield of generating faultcert mitigation strategies

for certification mechanisms. Note that this work does not make claims about the efficacy of the faultcert

mitigation strategies.

4.2.6 Assumptions

The evaluation makes several assumptions for practicality.

Case Study Assumption 4.1. The baseline DAIS safety case accurately represents a high assurance version of DAIS.

This evaluation examines the GKGSEPE filter, not the quality of the arguments, which are inputs to the

filter.

Case Study Assumption 4.2. Any tools used are fault-free.

In the same vein, this work does not evaluate tool quality.

Case Study Assumption 4.3. GKG fragment selection is fault-free.

The problem of a filter (or filter component) that changes submissions is out of the scope of this analysis.

At best, such a filter will change the submission in a benign or beneficial way, but negative change is a

distinct possibility. Analysing this kind of deficient filter could be addressed by future work.

Case Study Assumption 4.4. GKG conclusion combination is fault-free.

A perfect conclusion combination process is assumed for the same reason as the perfect selection process

assumption.
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4.3 Summary

The following chapters present the pieces of the case study evaluation.

4.3.1 GKG Hazard Analysis

Chapter 5 describes the GKG mechanism in detail and the particular instantiation I use for the GKG analysis.

Chapter 7 describes the results of the GKG analysis in detail.

4.3.2 GKG Fault Mitigation

Chapter 6 describes the candidate system for certification, DAIS. Chapter 8 describes the results of using

DAIS to examine the faults found in the hazard analysis. Chapter 8 also proposes the safety engineering

techniques that correspond with the faults identified and examined in Chapters 7 and 8, respectively.



Chapter 5

Graydon-Knight-Green Certification

This chapter summarizes the Graydon-Knight Green mechanism (GKG) [42], and describes a partial instanti-

ation of the GKG mechanism for the SEPE domain. GKG is an approach to product certification introduced

by Graydon, et al. Recall Kelly’s definition of a safety case:

“A documented body of evidence that provides a convincing and valid argument that a system
is adequately safe for a given application in a given environment [emphasis added]” [14].

Kelly uses the words “adequately,” “convincing,” and “valid,” but does not provide an actionable definition

of those words. UK Def Stan 00-56 [9] provides a similar set of requirements:

“The Contractor shall produce a Safety Case for the system on behalf of the Duty Holder. The
Safety Case shall consist of a structured argument, supported by a body of evidence, that provides
a compelling, comprehensible and valid case that a system is safe for a given application in a
given environment.”

The gist of this definition is similar to Kelly’s: “compelling,” “comprehensible,” and “valid” are terms that do

not have inherently clear definitions, and are not defined by the standard. These terms are the only quality

metrics provided to certifiers. In practice, these metrics are extremely difficult to measure; The Nimrod Review

[43] states that the terms are “too amorphous to inject real rigour and focus into the [certification] process.”

Kelly proposed a four-step process for assurance case review [44]; since a safety case is a specific type of

assurance case, the process applies to safety cases. The four steps are:

1. Argument comprehension. Arguments are composed of certain elements: claims, assumptions, context,

argumentation strategy, and evidence. The certifier should check whether he understands the essential

elements of the argument.

2. Well-formedness checks. Arguments can exhibit obvious structural defects, including circular argu-

ments and claims that lack supporting evidence. The certifier should check for these obvious structural

defects.

41
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3. Expressive sufficiency checks. Arguments can often have implicit elements, e.g., strategies that are not

fully explained. The certifier should assess whether certain elements are sufficiently expressed.

4. Argument criticism and defeat. Arguments are usually inductive (as opposed to deductive) [45]. As

such, certifiers must be convinced that the argument is “strong enough” to support the safety claim. In

this step, certifiers should challenge the argument and evidence by finding and presenting evidence

that supports the opposite of the safety claim, i.e., that the system is not acceptably safe.

GKG was designed to expand Kelly’s recommendations into an actionable definition of “compelling.”

The authors’ key insight was to make this definition an operational one, i.e., defined by the certification

process itself.

5.1 Description

GKG is a certification mechanism for safety case submissions based on an operational definition of safety case

quality metrics. Certifiers determine whether a system is adequately safe through a structured dialog between

developers and certifiers. The two portions of the structured dialog are a phased inspection and a dialectic:

• Phased inspection. First, a phased inspection examines the safety argument for essential argument

qualities. Section 5.1.1 expands on the characteristics of the GKG phased inspection.

• Dialectic. After the phased inspection is finished, the certifier and developer engage in a dialectic. In

the dialectic, the certifier levies challenges against the safety argument to drive debate with the applicant

about the truth of the argument. Section 5.1.2 expands on the characteristics of the GKG dialectic.

This process is the operational definition of “compelling” that GKG provides.

Figure 5.1 shows the outline of the GKG process, taken from the original paper. The structured dialog

can begin at any point during the system development life cycle. In the structured dialog, certifiers treat the

safety argument as a set of fragments.

Definition 5.1. Fragment. A fragment is a small collection of related argument elements that support a single

sub-claim.

When all fragments have been examined and, if necessary, corrected, the certification is deemed complete.

5.1.1 Phased Inspection

Knight and Myers first introduced the idea of a phased inspection [46]. A phased inspection consists of

multiple phases, each of which is a partial inspection that examines for a particular quality of a work product.
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Figure 5.1: GKG process outline: certification based on a safety case.

As an example of a work product, consider the source code of a program. In a phased inspection of a

source program, the first phase could be devoted to examining layout, the second phase could be devoted to

examining coding practices, and the third phase could be devoted to examining functional correctness.

At the end of each phase, inspectors recommend rework for defects related to the quality examined in

that phase. When the rework is completed, inspectors can assume that the quality examined in that phase

has been established. Thus, the order of phases in a phased inspection matters. Inspectors can thus structure a

phased inspection to their advantage. Continuing with the previous example, a common coding practice
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for which to inspect is initializing all variables at declaration. Assume that the inspection structures the

“coding practices” phase, which includes checking for whether variables are initialized at declaration, before

a “functional correctness” phase. After completion of the “coding practices” phase (including any necessary

rework), inspectors can assume that no variables will be used before being initialized. This assumption

allows inspectors in the “functional correctness” phase to focus on whether the code implies the specification,

without inspecting for low-level errors.

The phased inspection in the GKG mechanism examines fragments for qualities that Graydon, et al.

believe are essential to all safety cases; these qualities are listed below:

1. Terminology understood identically by all readers. In order to effectively evaluate a safety case, a

certifier should understand the safety case in the same way that the developer does. If the certifier and

developer understand a certain term differently and are unaware of their misunderstanding, the resulting

certification decision could be unwarranted.

2. Absence of vagueness. The documents that comprise a safety case should be free from vagueness, as

vagueness makes safety assessment difficult. A common source of vagueness is the natural language

in the documents.

3. Document syntactic validity. A safety case consists of a variety of documents, each of which follows

a pre-determined syntax. All documents should have the proper syntax; certifiers should examine

documents for content and relevance to the argument, not format.

4. Evidence availability and sufficiency. Some of the documents in a safety case contain evidence; these

documents are cited in the safety case to support various claims. An evidence citation should be a

unique identifier of the cited artifact. Furthermore, the cited artifact should be sufficient to support the

claim that the artifact purports to support.

5. No unnecessary argument elements. Threads of argument that are unnecessary should be removed.

An example of unnecessary argument elements is a fragment that was developed regarding a depre-

cated part of the candidate system.

6. Assumption necessity and reasonableness. Any safety case will make assumptions about various

system facets; prominent examples of assumptions are assumptions about operator capability and

assumptions about system operating context. Each assumption should be checked to establish whether:

• The assumption is necessary.

• The assumption is plausible.

• The certifier can show that the assumption is false.
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If the assumption is plausible and the certifier cannot show that the assumption is false, the assumption

should be considered reasonable.

7. Freedom from well-known fallacies. Fallacious reasoning in a safety argument can result in unwar-

ranted belief in a safety claim, which leads to unwarranted certification. Greenwell, et al. developed a

taxonomy of safety argument fallacies [47]. The certifier can examine the argument for the presence of

well-known fallacies using the Greenwell taxonomy.

After a fragment in question has been inspected for the necessary qualities, the certifier and developer

engage in the dialectic.

5.1.2 Dialectic

Chapter 2 established that safety cases cannot be evaluated quantitatively in general. Thus, certifiers

must establish the truth of the claim in a fragment, and therefore the truth of the overall safety claim, in a

qualitative way. GKG uses the notion of a dialectic, which the Merriam-Webster dictionary defines as:

“Discussion and reasoning by dialogue as a method of intellectual investigation; specifically: the
Socratic techniques of exposing false beliefs and eliciting truth.” [48] [emphasis added]

The dialogue is driven by a catalog of domain-specific challenges.

Definition 5.2. Challenge. In GKG, a challenge is a short statement or question that calls into question the truth of

a fragment.

During the dialectic, the certifier levies relevant challenges against each fragment. The developer must

either refute or accept the challenge. Refutation of a challenge requires the developer to convince the certifier

that the challenge should be dismissed. Acceptance of a challenge requires that the developer modify the

argument in such a way that subsequent levying of the same challenge will result in refutation. The certifier

may require modifications that include (but are not limited to):

• Generating additional evidence, e.g., formal verification of critical sections of code.

• Changing the argument, e.g., modification of contexts assumed in the argument.

• Changing the candidate system, e.g., adding redundant hardware components.

• A combination of the above modifications, e.g., changing an argument strategy to include a “formal

verification” supporting leg and generating the formal verification evidence.

5.1.3 Challenge Categories

Certifiers can derive challenges from the definition of what is “reasonable” in the domain of interest. To help

guide challenge derivation, Graydon, et al. identified predetermined challenge categories:
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1. Omission of expected practice. Many critical domains have developed expected practices. Omission

of an expected practice could indicate any of the following:

• The argument has a defect.

• The argument could benefit from including additional evidence.

• The candidate system is a special case for which the expected practice does not apply.

In the last case, the developer must convincingly refute the need for the expected practice. This category

contains challenges that reflect relevant expected practices.

2. Common dependence of subarguments. When a single argument does not provide adequate confi-

dence in a claim, arguments often provide subarguments to increase confidence. These arguments

are intended to be independent; if a certain circumstance exists that invalidates the independence

assumption, the subarguments provide no extra confidence. This category contains challenges that

reflect these circumstances.

3. Negative experience. Many established system domains have extensive histories of accidents. The

foreknowledge of why a specific accident occurred can aid in avoiding similar accidents with new

candidate systems. This category contains challenges that reflect relevant negative experience.

4. Unrealistic assumptions. Safety cases must often make assumptions about candidate system properties,

e.g., component reliability. If these assumptions are incorrect, the argument could be unsound. This

category contains challenges that reflect the bounds of realism on assumptions for the domain in

question.

5. Inapplicability. Safety cases must also make assumptions about the circumstances in which the candi-

date system will be used; these assumptions must hold for the argument to be sound. This category

contains challenges that reflect the bounds of applicability of various circumstances relevant to the

domain in question.

6. Inadequate strategy. Safety argument strategy affects the assurance that a safety case can provide.

Developers must choose a strategy to argue the safety of the candidate system; however, some

strategies provide more assurance than others. This category contains challenges that reflect the

certifier’s knowledge of both the presence of inadequate strategy and the absence of adequate strategy.

7. Improper use of patterns. Safety case patterns [14, 11] are previously successful argument portions

that have been preserved for posterity. Patterns encode the knowledge of engineers that were trying

to solve the same problem as the candidate system. Developers can quickly create safety cases from

appropriate patterns; however, the selection of patterns and their usage must be correct for the resulting

safety case to be effective. This category contains challenges that reflect both accepted patterns (and
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their usage) and contra-indicated patterns.

8. Inadequate argument strength. The strength of a fragment is defined by Graydon, et al. as the

confidence that a certifier has in a fragment, i.e., how confident a certifier is about the truth of a

fragment. This category contains challenges that reflect:

• Fragments that are known to be inadequate in general.

• Fragments that are known to be inadequate in particular sets of circumstances.

Other challenges could be derived based on the domain of interest, but most challenges would fall under

one of the above categories.

5.2 Instantiation

The description of the GKG process throughout Section 5.1 is an abstract definition of the GKG process, i.e.,

every certifier that uses GKG must follow the general idea of:

1. Phased inspection of safety argument qualities.

2. Dialectic to establish truth of fragments through levying challenges and subsequent discussion.

In order to be used in a real certification, a certifier must supply the abstract GKG definition domain

information: information that will enable certifiers to comprehensively examine arguments for systems in the

certifier’s purview. Section 5.2.1 discusses how to instantiate the GKG phased inspection, and Section 5.2.2

discusses how to instantiate the GKG dialectic.

5.2.1 Phased Inspection

The literature indicates that these properties are necessary for a convincing argument, but not whether these

properties are sufficient. More properties may be needed for a sufficient set. Domain-specific argument

properties may also be necessary for systems in a particular domain to have convincing arguments. The

properties listed in Section 5.1.1 are domain-independent, i.e., all arguments across all certifications should

have them. At this point, whether this set is complete (in either sense described above) is an open research

question.

Open Question 5.1. Are the GKG argument properties sufficient for all safety arguments?

Until this question is answered definitively, a typical GKG instantiation should use the qualities detailed

in Section 5.1.1.
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5.2.2 Dialectic

The dialectic requires most of the domain information, because the challenges are domain-dependent. The

description of the challenge categories in Section 5.1.3 implies sources for challenge derivation; these sources

are much more easily explained through the use of an example. Section 5.3 provides an example of a GKG

instantiation for the SEPE domain, discussed in Chapter 6. Section 5.3.2 describes example SEPE challenges

for each challenge category.

5.3 SEPE Instantiation of GKG

This section introduces a partial instantiation of GKG for the SEPE domain. The rest of this work refers to this

instantiation as “GKGSEPE.” The evaluation of the filter repair cycle uses GKGSEPE as its subject certification

mechanism.

As in Section 5.2, any GKG instantiation must supply enough information to conduct certifications in a

particular domain. The following sections describe the domain information used in creating GKGSEPE. Note

that the novelty of SEPE lies in the new application of existing technologies, specifically software. Thus, all

software safety/quality standards apply; these standards are leveraged in the domain instantiation.

5.3.1 Qualities

Since the argument qualities, to the best of our knowledge, are domain-independent, GKGSEPE includes

them as in Section 5.1.1. The qualities are reproduced below.

1. Terminology understood identically by all readers.

2. Absence of vagueness

3. Document syntactic validity.

4. Evidence availability and sufficiency.

5. No unnecessary argument elements.

6. Assumption necessity and reasonableness.

7. Freedom from well-known fallacies.

5.3.2 Challenges

Because of the novel nature of the SEPE domain, the predefined challenge categories require some special

care to use. Below is the list of categories, along with some example challenges. These example challenges
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form an incomplete set of challenges for GKGSEPE, in order to evaluate the filter model using GKGSEPE as the

certification mechanism.

The list of predefined challenge categories from GKG is:

• Omission of expected practice.

• Common dependence of subarguments.

• Negative experience.

• Unrealistic assumptions.

• Inapplicability.

• Inadequate strategy.

• Improper use of patterns.

• Inadequate argument strength.

The following sections expand on each of these categories in detail.

Omission of Expected Practice

As a novel domain, SEPE does not have any new expected practices. However, prescriptive standards

include a wealth of expected practice for various types of software systems. Each of the following well-

understood system domains applies in part to SEPE:

• Distributed systems [49].

• Safety-critical systems [23].

• Mobile device systems [50].

• Web services [51].

• Medical systems/devices [28].

• Software that must interoperate with external systems (both software and hardware) [52].

As shown in Figure 5.2, SEPE is at the intersection of all of those domains. Note that the fully intersecting

Venn diagram shown in Figure 5.2 is qualitative in terms of the degree to which the various system domains

overlap with each other. Additionally, SEPE may develop its own expected practices that do not derive from

expected practices in other domains. The diagram is intended to convey the relationship the domains have

to SEPE.

Note the important distinction between using some of the provisions of a prescriptive standard as source

material for challenges and adhering to a prescriptive standard for certification. Recall from Chapters 1 and

2 that prescriptive standards rely on the unjustified adherence assumption instead of explicitly showing
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Figure 5.2: Well-understood system domains that contributed expected practices to SEPE.

dependability. However, using individual standards provisions as source material for challenges allows

certifiers to pose challenges of the following form to developers:

Challenge. “Explain why you did not follow [expected practice] from a standards provision.”

[Expected practice] is a general placeholder for any given expected practice for which the certifier issues a

challenge. In the ensuing dialectic, the certifier and developer can arrive at a decision about whether the

developer should have included [expected practice]:

• [Expected practice] was necessary for this particular candidate system, so the certifier will not issue

a positive certification decision until [expected practice] is fulfilled. For example, the FDA has issued

guidance on off-the-shelf (OTS) software use in medical devices [52]; one provision states, “Provide the

results of the testing [of the OTS software].” In most candidate systems that incorporate OTS software

1, providing testing results is a prudent decision; OTS software often does not come with guarantees of

dependability, forcing developers of candidate systems to derive this dependability themselves.

• [Expected practice] was not necessary for this particular candidate system, so the certifier will issue a

positive certification decision. Continuing with the previous example, not providing the results of OTS

software testing would be justifiable if the OTS software provided a legal guarantee of high reliability

from the OTS software developer. Hypothetically, a legal guarantee of sufficient reliability would

1From a naive point of view, one might argue that not many systems have a large OTS software component. However, third-order
programming languages are either (a) compiled or (b) interpreted; compilers and interpreters are almost invariably OTS software. So,
the vast majority of candidate system that incorporate any software at all contain or depend on OTS software.
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convince the FDA certifier that the OTS software did not require testing to be included as OTS software

in another device.

Given the source of these challenges – all relevant prescriptive standards – developing a comprehensive

set of challenges for any GKG instantiation is beyond the scope of this work. However, the analysis requires

some challenges in order to approach accurate simulation of an instantiated GKG mechanism. Challenges

5.1 through 5.4 reflect standards provisions. Each challenge provides a reference to the standard from which

the challenge is derived.

Challenge 5.1. “Explain why you did not provide a testing report for this OTS software.” (FDA Off-The-Shelf

Software Use in Medical Devices [52])

Challenge 5.2. “Explain why you did not provide a formal specification for your software.” (IEC 61508 [53])

Challenge 5.3. “Explain why your software data exchanges do not include checksums.” (ISO 14971 [28])

Challenge 5.4. “Explain why you did not obtain independent verification and validation (IV & V) for your software.”

(NASA-STD-8739.8 [24])

Note that despite the disparate origins of the standards cited in the example challenges, each standard

applies to some domain of software systems, and high-assurance software systems in general.

Common Dependence of Subarguments

Independent subarguments are often used to provide additional assurance where one argument does not

provide sufficient assurance. However, if subarguments that are surmised to be independent have a common

dependence, their assurance is reduced. If the common dependence is, for example, software requirements,

then any requirements error will percolate to both subarguments, reducing the advantage of the independent

subargument construction. The fragment shown in Figure 5.3 illustrates this problem. Hypothetically, the

two legs have a high probability of being dependent, as both the formal specification and the test cases in

the test plan are derived from the same requirements analysis, in most cases. Challenge 5.5 reflects this

difficulty.

Challenge 5.5. “Explain why your verification argument legs are independent.”

For more on the two-legged construction shown in Figure 5.3, see the below section on Inadequate

Strategy.
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Figure 5.3: A fragment with two potentially dependent subarguments.

Negative Experience

As a novel domain, SEPEs have not accumulated significant negative experience (if any). However, certifiers

can again draw from related software system domains. This time, the source material for challenges is

different collections of failure data, whether in the form of official report narratives [54, 55] or databases

with failure data records [56].

Related SEPE domains (e.g., medical devices) have accumulated extensive collections of failure data.

Deriving a comprehensive set of challenges for this category is out of the scope of this work; as in other areas,

this work instead provides some example challenges below. Challenges 5.6 through 5.8 reflect negative

experience. Each challenge provides a reference to the negative experience from which the challenge is

derived.

Challenge 5.6. “Explain why you did not ensure that converting a variable from a floating point representation to an

integer representation will not cause a catastrophic failure.” (Ariane 5 Flight 501 Failure Report [55])

Challenge 5.7. “Explain why you did not ensure that all hardware components provide an adequate degradation

failure warning at the time of the failure.” (Boeing Company 777-200 9M-MRG In-flight Upset Event Report [54])

Challenge 5.8. “Explain why you did not ensure that the software will not crash when a physician tries to access

diagnostic data.” (FDA Manufacturer and User Facility Device Experience database [56])

Unrealistic Assumptions

Any developer must make assumptions about the context and usage of the system under development. These

assumptions can vary widely in form and content; especially in a novel domain, it would be impractical to
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enumerate all unrealistic assumptions that could be made in the SEPE domain.

An example of an assumption category is rate of user error.

Definition 5.3. Rate of user error. Rate of user error is the average number of user errors per unit time.

In order to scope the amount of error detection and correction the system must perform, a SEPE developer

could assume a bound on the rate of user error. One can conceive of a hypothetical, exaggerated situation

in which the developer bases the bound on the average rate of user error. This assumption could be too

optimistic for the most error-prone patients, making the system unsafe for those patients. Challenge 5.9

reflects this unrealistic assumption.

Challenge 5.9. “Explain why you chose the value you chose for your bound on rate of user error.”

Inapplicability

SEPEs imply a certain set of circumstances under which normal operation is justified. Safety arguments rely

on the details of these circumstances [42], so defining a clear set of applicable circumstances is important.

A general, comprehensive set of criteria for what makes a circumstance acceptable is beyond the scope of

this work. An example of a criterion is the age of the patient. A child under a certain certifier-determined

age may not have the motor skills or cognitive faculties to properly use a SEPE. Without loss of generality,

assume that the minimum age for a patient to qualify for using a SEPE is fourteen. Challenge 5.10 reflects

this inapplicable circumstance of a patient below the age of fourteen using a SEPE.

Challenge 5.10. “Explain why no patient under the age of fourteen (14) will use this system.”

Inadequate Strategy

The strategies used in safety arguments affect the maximum overall level of assurance that the safety

argument can reflect. Argumentation is not an exact science; there is a human element in choosing particular

argumentation strategies. Different individuals are often more comfortable arguing using one strategy over

another.

However, some strategies do not provide as much assurance as others. Consider the top-level strategies

shown in the safety argument fragments in Figure 5.4. The strategy on the left, S.DAIS.1, directly addresses

hazards; the strategy on the right, S.DAIS.2, argues conformance to a standard. In contrast with S.DAIS.2,

S.DAIS.1 provides a much more direct argument that SEPE hazards have been mitigated. Furthermore,

S.DAIS.1 is a more flexible strategy than S.DAIS.2; recall that one of the disadvantages of prescriptive
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Figure 5.4: Example safety argument fragments exhibiting two differing strategies of top-level argumentation. One
strategy argues over all known hazards, while the other argues conformance to a standard.

Figure 5.5: Example safety argument fragments exhibiting two differing strategies of arguing about verification. One
strategy argues that only testing is sufficient, while the other argues that verification is also necessary.

standards is their inflexibility. While S.DAIS.2 argues conformance to a standard, S.DAIS.1 allows the

developers to choose what they deem to be the best strategy for mitigating each hazard.

Challenge 5.11 reflects the general superiority of arguing over all hazards compared to arguing standards

conformance.

Challenge 5.11. “Explain why you based your safety argument on conformance to a standard.”

Challenge 5.11 is a challenge at the highest level of the argument; another useful illustrative example is

one at a lower level. Consider the strategies in the fragments shown in Figure 5.5.
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The strategy on the left of Figure 5.5, G.Verification.1, argues that adequate dependability is

shown by both testing and formal verification, while the strategy on the right, S.Verification.2, argues

that only testing is required for adequate dependability. S.Verification.1 is a more rigorous verification

strategy; formal verification has been shown to be complementary to testing [57, 58]. Moreover, Butler and

Finelli [59] showed the infeasibility of employing only statistical life testing to show that critical software

systems fulfill ultra-high dependability criteria.

UK Def Stan 00-56 [9] refers to the construction including S.Verification.1 as a diverse two-legged

argument. Def Stan 00-55 [60] suggests that one leg should be based on statistical testing and another on

logical proof of correctness, i.e., formal verification. Thus, this work uses the following specialized definition

of a diverse two-legged argument.

Definition 5.4. Diverse two-legged argument. A diverse two-legged argument is a safety argument fragment

that argues adequate verification with two legs: one based on testing and one on formal verification.

Challenge 5.12 reflects the inadequacy of solely testing as a verification strategy.

Challenge 5.12. “Explain why you argued that testing alone is sufficient for verification.”

Improper Use of Patterns

Safety case patterns [14, 11] are an important asset for safety case creation. Patterns encode previously

useful safety argument fragments and corresponding usage guidance; however, they must be used correctly

to impart the assurance that they are intended to impart. Incorrect usage could lead to, among other things,

a confused safety case that is not representative of the system for which it is a proxy.

For example, consider the software safety pattern shown in Figure 5.6, the “Hazardous Software Failure

Mode Decomposition” pattern [61]. Weaver states the following about SWContribIdent:

This context gives the safety requirements which are related to the software. These can be either
through software causes or through derived requirements due to cross dependencies [emphasis
mine].

Blind application of this pattern without reading the guidance about “cross dependencies” could result in

subtle deficiencies in the safety case, where both the developer and certifier miss the existence of requirements

generated from cross dependencies. Challenge 5.13 reflects this difficulty.

Challenge 5.13. “Explain why your safety requirements are all identified, including requirements generated from

cross dependencies.”
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Figure 5.6: The Hazardous Software Failure Mode Decomposition pattern.

Inadequate Argument Strength

The original GKG paper states that the “strength of an argument fragment is basically the confidence

that the certifier has in the fragment.” Measuring confidence in safety arguments is area of current work

[62, 63, 64, 65], so there is no established answer to the question of how exactly a certifier can measure his

confidence in a fragment’s strength. One practical way to approach such a measurement is to allow the

certifier to issue Challenge 5.14. Challenge 5.14 reflects the the confidence that the certifier has in the

fragment.

Challenge 5.14. “Explain why this fragment is of adequate strength.”

5.4 Summary

This chapter summarized the GKG mechanism and provided an example instantiation, GKGSEPE. Chapters

7 and 8 present the results of a case study evaluation of the filter model approach. This evaluation uses

GKGSEPE as the subject certification mechanism and DAIS as the specimen candidate system. GKGSEPE is

necessarily a partial instantiation; nevertheless, the subsequent chapters show that a filter model analysis of

GKGSEPE provides non-trivial results and many future directions.
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Diabetes Advanced Information

System

This chapter describes how the Diabetes Advanced Information System (DAIS) is used in evaluating the

filter model analysis presented in this work. In particular:

• DAIS is the candidate system that is supplied as input to GKGSEPE, in order to measure GKGSEPE’s

response to a system requiring certification.

• As discussed in section 5.3, GKG was instantiated for the SEPE domain to form GKGSEPE. DAIS is a

system in this domain.

Section 6.1 expands on the SEPE domain and introduces DAIS. Section 6.2 expands on the role of DAIS in

this work. Section 6.3 describes how the safety case representing DAIS was developed.

6.1 System Overview

DAIS is a software system inspired by Lin’s work on environmental hazard analysis for Type I diabetics

[1]. Recall from Chapter 1 that DAIS is an example of a new type of system, which this work calls a safety-

enhanced patient environment (SEPE). SEPEs are information systems that store, analyze, and present

information about a patient’s condition. DAIS is designed to improve the safety of the living environment

of a Type I diabetic using an insulin pump and continuous glucose monitor (CGM). Instead of exclusively

focusing on the patient, the insulin pump, or the interaction between the patient and pump, DAIS considers

the environment as a whole, holding the patient and insulin pump as given factors. Figure 6.1 illustrates

this view.
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Figure 6.1: The DAIS application model (from Lin [1]).

6.1.1 DAIS Information Collection

DAIS collects, organizes, and analyzes information of various natures. The sources of this information are:

1. User input.

2. External devices.

3. Environmental sensors.

4. Trusted external databases.

Each of the following sections describes the type(s) of information DAIS records from each source.

User Input

The patient can provide DAIS with various forms of user input. Diabetics must monitor various types of

information that affect blood glucose levels. Typically, patients monitor this data manually; DAIS provides

the capability to electronically record supplies, food intake, medication, exercise, sickness, stress, infusion

sites, and emergency contact information. All this information is available to the patient, allowing the patient

to make informed decisions.
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Supplies. The patient can organize and catalog supplies (e.g. syringes, insulin, food) using DAIS, such that

DAIS can provide and maintain a comprehensive view of the living environment.

Food intake. The patient can track food intake using DAIS facilities. Typically, the patient requires a bolus of

insulin after a meal. The amount of insulin in this bolus is determined by the nutritional characteristics

of the foods in the meal, especially carbohydrate content. DAIS records the nutritional information of

default meals; the patient enters in the type and quantity of foods eaten in the meal and DAIS calculates

the correct bolus for that specific meal, eliminating the usual guesswork. DAIS allows patients to set a

default meal schedule and default meals.

DAIS also provides for deviations from the default schedule and meals. The patient can record both:

• Deviations from default meals, i.e., different meals, with corresponding nutritional information.

For example, the patient may eat out at a restaurant. A restaurant meal consisting of a 225 g steak

with 500 g of broccoli and 100 g of brown rice may not be a default meal. DAIS can record new

meals and, if the patient desires, add the new meals to the list of default meals.

• Deviations from the default schedule, i.e., eating a meal at an unscheduled time. For example,

the patient may have a default meal – lunch – set for 12:00 p.m., but may not eat that meal until

2:00 p.m. on one particular day. DAIS can record this deviation, and, if the patient desires, change

the default schedule to set lunch to 2:00 p.m.

Medication. The patient can record all current medication. Various medications can be prescribed for treating

diabetes, as well as other diseases. These medications may interact with each other. DAIS can combine

this information with information about drug interactions, e.g., from a a trusted external database (see

below), informing the patient of possible drug interactions as soon as possible.

Exercise. Physicians often recommend that diabetes patients embark on an exercise program. Exercise can

affect blood glucose levels and insulin sensitivity [66]; DAIS can record the type and duration of

exercise.

Illness and stress. Ilnesses can also affect blood glucose levels [67], as can stress [68]. DAIS can record

patient illness and stress levels.

Infusion sites. The patient uses an insulin pump to deliver infusions of insulin to the subcutaneous tissue.

Insulin pumps deliver insulin through an infusion site, i.e., the location of the pump’s connection to the

skin of the patient. The patient can change infusion sites for various reasons, including periodic change

to prevent scarring [69]. DAIS can record both periodic and on-demand change of infusion site.

Emergency contact information. DAIS manages the patient’s emergency response mechanisms. For exam-

ple, the patient designates several people as emergency contacts. If DAIS, through monitoring of the
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CGM, senses that the patient has entered hypoglycemia and is unresponsive, DAIS can place telephone

calls to people on the lists, notifying them of the emergency.

External Devices

DAIS assumes that the patient uses external devices; the minimum assumption is that the patient uses a

continuous glucose monitor (CGM) and an insulin pump. The patient can upload the data from these devices

into DAIS for DAIS to record and analyze.

Insulin pump. The patient uses an insulin pump to deliver boluses of insulin when necessary. The bolus

amounts and times are stored in the memory of the device, which the patient can transfer to a computer.

DAIS can process and record the pump data.

Continuous glucose monitor. The patient uses a continuous glucose monitor (CGM) to keep track of blood

glucose levels; based on blood glucose levels, the patient may need to deliver a bolus of insulin or eat

some high-glycemic-index food (food that raises blood sugar). The CGM memory records the glucose

readings, which the patient can transfer to a computer. DAIS can process and record the CGM data.

Other devices. DAIS does not currently interface with other devices, but type 1 diabetics use a variety of

other devices, including infusion sets, test strips, and symlin pens. With minimal effort, DAIS could

accommodate data from devices such as these as well.

Sensors and Databases

Lin’s work [1] mentions the possibility of DAIS interacting with embedded environmental sensors and

trusted external databases. This section describes:

• How DAIS would interact with external sensors and databases.

• Examples of such sensors and databases.

Environmental sensors. Lin mentions several types of environmental sensors possible: emergency push

buttons, motion sensors, and cameras. DAIS does not currently interface with any such sensors, but

designs for such interfaces are in place.

Trusted external databases. Interoperability with trusted external databases is built into DAIS; however,

these databases are not yet implemented. Possible databases from which DAIS could draw data are:

• FDA database with alerts relevant to diabetes. The FDA maintains a “Recalls, Market With-

drawals, & Safety Alerts” database [70]. DAIS could interface with a relevant subset of the extant

FDA database – one that selects alerts pertaining to diabetes type 1.
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• Database with drug side-effects and interactions. Cerner Multum, Inc. provides a “Drugs

Interactions Checker” [71]; DAIS could interface with this database and other similar databases

to calculate drug interactions and side effects.

• Nutritional information database. SELFNutritionData [72] is one of many online, searchable

databases of nutrition data. Interfacing with this database would provide DAIS with the capability

to auto-calculate the nutritional information of default meals, as opposed to manual entry of the

nutritional information by the patient.

• Exercise information database. CyberSoft offers software that can track nutrition and fitness;

part of this software is a database of calorie expenditure per type of exercise [73]. DAIS could

interface with this database or similar databases to facilitate patient entry of exercise into DAIS.

• FDA Manufacturer and User Facility Device Experience database. The FDA Manufacturer and

User Facility Device Experience (MAUDE) database contains failure information for medical

devices. DAIS could interface with MAUDE to derive and present contra-indicated uses of the

patient’s devices.

6.1.2 DAIS Information Analysis

In addition to information collection, DAIS provides displays to facilitate patient analysis of data. The patient

can customize charts to display by choosing various characteristics, including:

• Type of chart, e.g., line chart.

• Data to plot, e.g., CGM glucose readings.

• Time constraints, e.g., “from May 5, 2013 to May 12, 2013.”

Figure 6.2 shows an example of a line chart with data series from CGM readings and insulin pump boluses,

and with a time constraint from April 1, 2012 to April 8, 2012. Displays like the ones in Figure 6.2 are useful

for the patient to discern trends in physiological response to various disturbances, whether from new meals,

new medicines, illness, exercise, or other sources.

6.2 Role in Evaluation

This work uses DAIS for two purposes in filter model evaluation. Recall from Chapter 4 that:

• GKG must be initialized with domain-specific information, in order to be effective for a particular

candidate system domain. Section 6.2.1 explains how the SEPE domain fulfills this role. As the only
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Figure 6.2: DAIS display, showing CGM readings and insulin boluses on the same chart.

extant system in the SEPE domain, DAIS serves as the system from which generalizations about the

SEPE domain are drawn.

• GKG is a certification mechanism based on safety case examination. Thus, the evaluation must employ

a full complement of safety cases, derived from one candidate system. This candidate system must be:

1. Safety-critical.

2. A member of a class of systems that resides primarily in the regulatory purview of one certifying

agency.

Section 6.2.2 explains how DAIS fulfills the role of candidate system.

6.2.1 GKG Candidate System Domain - SEPE

SEPEs are designed to aid patients with diseases requiring extensive home care, i.e., patients with such

diseases must “take care of themselves” to a large degree. Typically, such diseases are chronic; diabetes is

one such disease. Often, a mistake in self-care can lead to serious injury or death. Such a system, because of
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the nature of the information it manipulates, is certainly safety critical and would fall under the regulatory

purview of the FDA. Thus, SEPE serves as the candidate system domain for the partial GKG instantiation

used in the evaluation, GKGSEPE.

6.2.2 Evaluation Candidate System - DAIS

DAIS serves as the candidate system in the evaluation. The safety case for DAIS serves as the baseline safety

case; this safety case is used to create several evaluation safety cases. However, DAIS and its safety case

have the following limitations:

• Currently, DAIS is an experimental prototype. Such a system is not representative of an industrial

safety-critical system. Instead of using the system as-is, this work hypothesizes a high-assurance

version of DAIS: a version that is an ideal candidate for certification.

• DAIS, as an experimental prototype, was not constructed in accordance with a typical software engi-

neering process. As such, DAIS does not have a corresponding complete set of development artifacts

to include in a safety case, nor was its safety case constructed with the “early and often” [13] method

recommended by the safety engineering community. Instead of creating a safety case representative of

DAIS as-is, this work assumes the existence of various artifacts and, where appropriate, elaborates the

contents of these artifacts.

Section 6.3 expands on how the baseline safety case was constructed. Recall from Chapter 4 that

the evaluation safety cases are created by seeding faultscand into the baseline safety case. These faultscand

correspond to faultscert found in GKG. Chapter 8 summarizes the faultscert and the corresponding faultscand.

6.3 DAIS Baseline Safety Case

Recall from Chapter 4 that this work uses a set of evaluation safety cases to evaluate the filter model. The

DAIS safety cases are this set. The baseline safety case, used to construct the evaluation safety cases, reflects

a high-assurance version of DAIS. This section expands on how the baseline safety case was constructed.

The main strategy for the safety case was:

Argue that all hazards defined in the hazard log are mitigated.

Section 6.3.1 presents the hazard analysis used as the basis of the safety case.
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SEPE Requirement DAIS Requirement

The probability that the system,
in and of itself, causes mistreat-
ment is acceptably low.

DAIS is a software system that handles information and, as such,
can only cause serious harm through providing misinformation
(as discussed previously) —whether through internal data mis-
handling or security breaches.

The probability that the system’s
interoperability with other de-
vices causes mistreatment is ac-
ceptably low.

DAIS is designed to work with other device domains, including
insulin pumps and CGMs. In addition, DAIS runs on a number of
interconnected pieces of computer hardware through a network.
Any communication DAIS conducts with external devices must
not affect the correct operation of the devices.

The probability that the system
allows confidential information
to be accessed by unauthorized
parties is acceptably low.

DAIS includes connections to remote databases (e.g., the insulin
pump’s record or the FDA alerts database) over the Internet.
If these connections are compromised, attackers could access
confidential information (e.g., the patient’s other prescriptions).

Table 6.1: FDA SEPE requirements and their instantiation in DAIS.

6.3.1 DAIS Hazard Analysis

Lin’s work identified two major hazardous states possible through the environment: severe hypoglycemia

and severe hyperglycemia of the patient. Chapter 7 of Lin’s work divides the information system into Data

Analysis, Data Archive, and Interface modules.

6.3.2 Requirements

DAIS would be under the regulatory purview of the FDA, in the SEPE domain. SEPE is not yet recognized

as an official FDA domain, due to its novelty. Thus, this work hypothesizes FDA requirements for all SEPE

systems, shown on the left side of Table 6.1. DAIS requirements are derived from these hypothesized SEPE

requirements, and are shown on the left side of Table 6.1.

The two hazards that can occur in the patient’s environment are:

1. Severe hypoglycemia.

2. Sever hyperglycemia.

These two environmental hazards can be caused by factors external to DAIS, but this work will focus on how

DAIS can bring about these hazards. All of the DAIS modules can generate events that contribute to the

environmental hazards. Usually, these events have similar geneses:

The path from faultcand to hazardcand for a SEPE will include providing
misinformation to the patient in some form.
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Thus, the main hazardcand for DAIS is misinformation. Misinformation can come in two forms: omission

of necessary information or supply of incorrect information.

Omission of necessary information. Consider a situation in which a patient adds a new prescription into

DAIS. DAIS should monitor the interactions of the drugs that the patient is prescribed; if DAIS fails to

warn the patient of a lethal interaction involving the new drug and an existing drug, the patient could

be misled into thinking DAIS is protecting him from hurting himself by taking either of the interacting

drugs. In this case, DAIS is providing misinformation through omitting the necessary information

for a decision that the patient must make.

Incorrect information. Consider the situation in which a patient enters a drug that has no adverse interac-

tions with existing prescriptions, but DAIS decision support notifies the patient that the drug does have

adverse interactions. In this case, DAIS supplies incorrect information directly to the patient.

Because DAIS is designed to work with all insulin pumps and CGMs, rather than just one brand,

interoperability is also a major concern. Interfaces and data formats could be different from manufacturer to

manufacturer, A complete implementation of DAIS should have the following two properties:

• DAIS should be able to communicate effectively with any insulin pump.

• DAIS should not interfere with the correct operation of the insulin pump or CGM.

Therefore, a complete safety case should argue that the implementation fulfills these requirements. The

corresponding certification of the DAIS implementation using this safety case should determine whether the

argument is sufficient.

In addition, confidentiality is a major concern with any networked system, and a complete implementa-

tion of DAIS should not allow an unacceptable amount of confidential data to be accessed by attackers. A

security breach of DAIS or the insulin pump [74] could certainly cause mistreatment. However, if attackers

are merely reading, not writing, confidential data, then confidentiality concerns may be better suited to a

security case, i.e., an assurance case for security [75], rather than a safety case. Confidential information could

be used to blackmail a patient, but such activities and their possible physical consequences are well beyond

the scope of treatment. While effectively independent from safety concerns, confidentiality concerns are

always present, and could be addressed via a separate security certification on a security case for the system.

GKG is designed to be property-agnostic, i.e., the certification aim could be safety, security, availability,

or any other property. Thus, GKG could be used to certify information security as a separate property, or

together, using a combined safety/security case. Security cases and their combination with other properties,

e.g., safety, is a current area of research [75].



Chapter 6 Diabetes Advanced Information System 66

A complete safety case would address all of the SEPE requirements, as all the requirements represent do-

main hazardscand. However, evaluating security and interoperability is beyond the scope of this work. Thus,

this case study focuses only on the first SEPE requirement in Table 6.1, lack of mistreatment. Correspond-

ingly, the hazardcand analysis for the DAIS safety case focuses on how omission of necessary information

and incorrect information – the two types of misinformation – contribute to patient mistreatment.

6.3.3 Hazard Analysis Techniques

Creating a plausible baseline evaluation safety case requires a hazardcand analysis – any ideal safety case

would at least consider all known hazards in the domain. The DAIS hazard analysis employs HazOp and

FTA. HazOp was chosen to identify hazards, and FTA was chosen to elaborate these hazards into events.

The hazard analysis techniques used raise the following open question:

Open Question 6.1. What hazard analysis techniques work best for SEPEs?

Appendices D and E present the full DAIS HazOp and FTA, respectively. The resulting events are

summarized here:

Event 1 The Data Archive module fails to supply the relevant requested information at an acceptable rate.

Event 2 The link between Data Analysis and Interface Modules fails at an unacceptable rate.

Event 3 The Data Analysis Module fails to procure relevant information at an unacceptable rate.

Event 4 The Interface Module display fails at an unacceptable rate.

Event 5 The Data Analysis module fails to send a relevant remote alarm signal at an acceptable rate.

Event 6 The link between patient device and Data Analysis Module fails at an unacceptable rate.

Event 7 The Data Analysis Module verification fails at an unacceptable rate.

Event 8 The patient fails to enter data at an acceptable rate.

Event 9 The device fails to present correct data at an acceptable rate.

Event 10 The database has incorrect information at an unacceptable rate.

Event 11 The Data Analysis Module calculates incorrectly at an unacceptable rate.

Event 12 The Interface Module fails at an unacceptable rate.

6.3.4 Safety Case

The safety case is designed to show hazard mitigation with direct evidence. The safety case uses the

construction of a diverse two-legged argument for each event, as discussed in Chapter 5; each event

sub-argument has a testing leg and proof leg [64, 60]. This analysis hypothesizes the existence of a formal
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specification and a test plan; creating a full-fledged formal specification and test plan for DAIS is beyond the

scope of this work.

Implicit in the two-legged construction is the following assumption:

Case Study Assumption 6.1. The two-legged argument construction shows a high degree of reliability by virtue of

extraordinary amounts of testing, in addition to a formal verification.

This assumption is generally accepted, but there are certain edge cases that may be problematic; these are

identified by Littlewood and Wright [64]. The caveat regarding argument leg independence also applies.

However, this analysis does not use the safety case to derive a probability of failure, so independence is not

needed for any probability calculations. This analysis makes only a qualitative claim about the reliability

afforded by the diverse two-legged construction.

Figure 6.3 shows an example of one of the argument legs. For the goal node, G LackOfInformation.1,

the text for Event 1, “The Data Archive module fails to supply the relevant requested information at an

acceptable rate,” is reversed to its positive, such that the goal node text reads, “The rate of the Interface Module

displaying incorrect data is acceptably low.” The solution nodes, Sn.1 and Sn.2, reference two documents

that support the goal:

Sn.1 A formal proof report, “FormalProof.pdf.” This document shows the results of a formal verification

with respect to a formal specification, “FormalSpec.pdf.” The formal specification is referenced in the

context node, C LackofInformation.1.2.

Sn.2 A testing report, “TestReport.pdf.” This document shows the results of a test battery. The test cases for

this test battery, “TestCases.pdf” are referenced in the context node,

C LackofInformation.1.1.

The other eleven events are structured similarly. Appendix F shows the full DAIS safety argument in GSN.
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Figure 6.3: A portion of the baseline safety case. This GSN structure is a diverse two-legged argument, designed to show
partial mitigation for Event 1.



Chapter 7

GKG Hazard Analysis

7.1 Introduction

Recall from Chapter 4 that the case study evaluation is structured in two phases. This chapter presents

the results of Phase 1: a hazard analysis on GKGSEPE. Chapter 6 introduced the idea of safety-enhanced

patient environments (SEPEs) as a candidate system domain, with the Diabetes Advanced Information System

(DAIS) as a system in the SEPE domain. Chapter 5 introduced GKGSEPE as the Graydon-Knight-Green

certification mechanism instantiated for certification of SEPE candidate systems. Figure 7.1, reproduced here

from Chapter 4, shows the roles of DAIS and and GKGSEPE in the evaluation, along with how phase 2 uses

the output of phase 1.

The goal of phase 1 is to analyze GKGSEPE for hazardscert using common hazard analysis techniques.

Chapter 8 presents the results of phase 2: safety engineering of GKGSEPE, based on the faultscert found in

phase 1.

This chapter presents the results of three hazard analysis techniques:

• Hazard and operability study (HazOp). Section 7.2 presents the HazOp results.

• Fault tree analysis (FTA). Section 7.3 presents the FTA results.

• Failure modes, effects and criticality analysis (FMECA). Section 7.4 presents the FMECA results.

Each technique provided two categories of results, feasibility and yield. Each of the hazard analysis

techniques as applied to GKGSEPE provided some results in both categories. The discussions of results focus

on these categories in the following ways:

Feasibility. Given the novelty of the application domain (certification mechanisms), this work measured the

feasibility of application of each of the three hazard analysis techniques using the following metrics:

69
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Figure 7.1: Summary of the evaluation used in this work (from Chapter 4).

• Time taken to perform the analysis.

• Whether or not the analysis yielded any non-trivial results.

Yield. Each technique helps to analyze hazards in a different way. This work categorizes the results of each

technique into the type of faultcert that would cause a corresponding hazardcert. In addition, several

metrics are developed for each technique; each results subsection describes these metrics in greater

detail.

Most of these metrics suffer from the fact that this analysis is the first time hazard analysis techniques have

been applied to certification mechanisms. Thus, there are many open questions relating to the acceptability

criteria for these metrics. Each results subsection details these questions in relation to the relevant metrics.

Ideally, feasibility results and yield results would be independent. However, the two properties are not
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Figure 7.2: The functional block diagram used for the safety analyses.

easily separated and controlled for without extraordinary resources. Moreover, the limited analysis presented

in this work prevents large-scale declarations of feasibility or non-feasibility. This analysis concerns only

GKGSEPE:

• Feasibility. If a technique, T , yields non-trivial results, then T is feasible, but only for GKGSEPE. No

claims can be made about whether T is feasible for other certification mechanisms.

• Non-feasibility. If T yields no non-trivial results, then T is non-feasible, but only for GKGSEPE. No

claims can be made about whether T is non-feasible for other certification mechanisms.

Thus, each section includes a discussion of feasibility and yield together.

Throughout the following sections, I note various open questions about limitations of the hazard analysis

techniques used (HazOp, FTA, and FMECA), the results metrics, and the methods used to collect results.

Chapter 10 discusses these and other open questions as possibilities for future work.

To facilitate the safety analyses, a functional block diagram of GKG was developed, shown in Figure 7.2.

The block diagram describes how information flows through the filter.

7.2 HazOp

Recall the nature of HazOp analyses:
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• HazOp is an algorithmic question generation strategy that helps analysts combine guide words and

parameters to form questions about various system components.

• Guide words are not system-specific; usually, there is an industry standard set of HazOp guide words.

• Parameters are system specific, and are often derived from a functional block diagram or other diagram

depicting system flow.

• HazOp-generated questions are sometimes irrelevant or nonsensical.

This section describes the conduction of the GKGSEPE HazOp. Below is the HazOp process followed in this

work.

1. Select guide word set.

2. Construct parameter set.

3. Construct the cross-product set of guide words and parameters and generate questions from this set.

4. Classify questions as relevant/not relevant.

5. Answer the relevant questions and classify the answers as representing a faultcert/not representing a

faultcert.

6. Assign fault designations to each faultcert.

Sections 7.2.1 through 7.2.5 elaborate on the conduction of each step in this process, and section 7.2.6

presents the results. Appendix A contains the full GKGSEPE HazOp analysis.

7.2.1 Guide Word Selection

The GKG HazOp uses the standard guide words, described in Table 3.2. The Chemical Industries Association

of the UK issued guidance for HazOp in 1977 [76] that included the standard guide words. There are other

guides for other domains, including software [77, 78], but which set of guide words to apply for any given

filter model analysis is an open question. A special case of this question is whether new guide words should

be developed for filter model analyses.

Open Question 7.1. In a filter analysis, what are the criteria for selection of HazOp guide words?

Open Question 7.2. Should analysts develop new guide words specifically for filter analysis?

For simplicity, this HazOp analysis uses the standard guide words as a starting point.
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7.2.2 Parameter Construction

Parameters for candidate system HazOp analysis are derived from a flow model of the system. One

advantage of the filter model is that the model views the certification mechanism as a flow of information.

This is a fundamental property of certifications:

Analysts can derive an information flow model
for any certification mechanism.

The correctness and/or complexity of the flow model may vary greatly; such variance may affect the

parameters selected. How the parameters change is an open question.

Open Question 7.3. In a filter model analysis, how much do the correctness and/or complexity of the flow model of

the certification mechanism affect which HazOp parameters analysts generate?

The best way to generate parameters for filter model HazOp is another open question.

Open Question 7.4. In a filter analysis, what criteria should analysts use to (a) generate HazOp parameters and (b)

determine if the generated parameters are acceptable?

GKG HazOp parameters are derived from the flow control blocks and inputs in the functional block

diagram from Figure 7.2:

1. Safety case.

2. Fragment selector.

3. Phased inspection.

4. Quality.

5. Dialectic.

6. Challenge.

7. Conclusion combiner.

These parameters may not be optimal parameters for analysis, because they might be generated based on a

faulty assumption: the flow control blocks and inputs are a sufficient source for parameter generation. In

addition, these parameters may not be a complete set of parameters. This analysis arrived at non-trivial

results using this selection of parameters, but further investigation of the effect of parameter selection on

results is needed.

7.2.3 Cross Product and Question Generation

Questions for candidate system HazOp analysis are generated by following these two steps:
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1. Cross-product construction. The input to question generation is the cross product of (a) the set of

guide words and (b) the set of questions. Formally:

• Let G be the set of selected guide words:

G = {NO OR NOT,MORE,LESS,AS WELL AS,

PART OF,REV ERSE,OTHER THAN,EARLY,

LATE,BEFORE,AFTER} (7.1)

• Let P be the set of constructed parameters:

P = {Safety Case, Fragment Selector, Phased Inspection,

Quality,Dialectic, Challenge, Conclusion Combiner} (7.2)

• Let C be the input set to question generation:

C = G× P (7.3)

C = {{NO OR NOT, Safety Case},

· · ·

{AFTER,Conclusion Combiner} (7.4)

The process of constructing C is entirely mechanical.

2. Question generation. After generating C, analysts use the pairs in C to generate a set of questions

about the system, Q:

Q = questionGeneration(C), (7.5)

where questionGeneration is the process through which analysts generate a question, qi ∈ Q, from a

pair, ci ∈ C. Question generation is largely guided by:

• Experience with the subject system domain.

• Experience with applying HazOp.

• Intuition.
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Thus, the content of the questions in Q depends on the experience and intuition of the analyst applying

HazOp.

In this work, question generation depended on the author’s intuition and experience. Given the same guide

words and parameters, analysts with different backgrounds and experience may have generated different

questions; the effect of expertise/background variance on the content of the questions in Q is not known.

Open Question 7.5. To what extent does analyst expertise in the particular subject domain of certification affect

Q in a filter model analysis, i.e., on a certification mechanism?

Open Question 7.6. To what extent does analyst expertise in general application of HazOp affect Q in a filter

model analysis?

7.2.4 Relevancy Classification

Because of the cross-product construction, not all candidate system HazOp questions are relevant. Analysts

must classify each question from Q as relevant or irrelevant. The relevant questions are collected into a new

set, R:

R ⊆ Q (7.6)

R = relevancyClassification(Q) (7.7)

R contains the set of questions that analysts answer. Relevancy classification is dependent on the analysts’

backgrounds and experience.

As an example of relevancy classification, consider the pair, c1:

c1 = {NO OR NOT, Safety Case} (7.8)

The parameter, NO OR NOT , conveys “complete negation of the design intent” (cf. Table 3.2). The resultant

pair, c1, generated the following question, q1:

‘‘What if the submitted safety case does not address risk?’’

This question was classified as irrelevant by the author’s intuition and expertise: safety cases are meant to

address overall system risk. However, analysts with different backgrounds and experience could interpret

q1 differently, possibly resulting in q1 being classified as relevant. The effect of background/experience on

question classification is not known.

Open Question 7.7. To what extent does analyst expertise affect R in a filter model analysis?
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7.2.5 Answers and Fault Classification

After completing relevancy classification, analysts answer the questions in R and decide whether the answers

imply faults. Similarly to question generation and relevancy classification, question answering and fault

classification are guided by analyst experience and intuition. The effect of background/experience on

question answering and fault classification is not known.

Open Question 7.8. To what extend does analyst expertise affect question answering and faultcert classification in a

filter model analysis?

7.2.6 Results

This section presents the results of the HazOp analysis on GKGSEPE. The results are presented in the following

order:

1. Measurements of HazOp metrics. Table 7.1 presents:

• The metrics this analysis uses to assess the feasibility and yield of applying HazOp.

• The values of these metrics.

• The category of each metric.

2. Discussion of HazOp metrics and measurements, including a qualitative discussion of acceptability.

3. Discussion of the limitations of these results, including open questions raised by these results.

4. Discovered faultscert. Tables 7.2 and 7.3 present a summary of the faultscert in GKGSEPE discovered

by the HazOp analysis, including open questions about the effects of GKG fragment selection and

conclusion combination on the conclusions drawn from the hazard analysis.

Feasibility and Yield Assessment

This analysis uses several metrics to assess feasibility and yield. Table 7.1 shows these metrics, the value

at which each metric was measured, and what property each metric is designed to assess. We cannot

meaningfully compare the measurements in Table 7.1 to the same measurements for HazOp analyses

of candidate systems. However, the HazOp did achieve non-trivial results, generating 88 questions and

discovering 9 potential faultscert based on those questions in 1.5 hours. Both feasibility metrics – time and

generation of non-trivial results – are fulfilled.

In terms of yield, 9 potential faultscert out of 88 generated questions results in 10.227% of generated

questions identifying faultscert. Again, we cannot meaningfully compare this statistic to others like it, but
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Metric Value Category

Hours to complete HazOp 1.5 Feasibility

Total number of questions and answers 88 Yield

Questions generated and answered per hour 58.667 Feasibility/Yield

Number of irrelevant questions 59 Yield

Number of relevant questions 29 Yield

Number of questions with answers that imply
faults 9 Yield

Number of questions with answers that do not
imply faults 20 Yield

Potential faultscert discovered per hour 13.333 Feasibility/Yield

Percentage of faultscert in relation to total ques-
tions 10.227% Feasibility/Yield

Table 7.1: Measurements for the HazOp analysis on the GKGSEPE certification mechanism.

we can state that HazOp has a non-zero yield for discovering faultscert, which is important both in terms of

feasibility and yield.

Limitations

These results imply a number of open questions relating to the application of the HazOp technique to GKG

in addition to Open Questions 7.1 through 7.8. In particular, the metrics and their acceptability criteria are

not well-understood.

Open Question 7.9. In a filter model analysis, what metrics should analysts measure to determine the feasibility and

yield of HazOp analysis?

Open Question 7.10. In a filter model analysis, what are the acceptability criteria for the metrics chosen to determine

feasibility and yield of HazOp analysis?

Discovered Faultscert

Out of the 29 relevant questions produced in the HazOp analysis, 9 had answers that pointed to faultscert in

the GKG mechanism. Tables 7.2 and 7.3 presents the guide words and parameters that produced each of

the 9 questions, along with the conditions under which the faultcert can be exercised. The table also assigns a

unique fault designation to each result. Appendix A contains the whole HazOp analysis.



Chapter 7 GKG Hazard Analysis 78

Fault Designa-
tion Parameter Guide

Word Question Fault Exercised When:

Fcert−frag.oth Fragment Other
Than

What if the cur-
rent fragment is
corrupted?

The fragment contains a fault
and the corruption masks the
fault.

Fcert−qual.oth Quality Other
Than

What if the cur-
rent quality is
corrupted?

The corruption changes the qual-
ity into a quality not exhibited
by sound arguments.

Fcert−chal.oth Challenge Other
Than

What if the cur-
rent challenge is
corrupted?

The corruption changes the chal-
lenge such that the challenge no
longer accurately represents a
domain hazard.

Fcert−insp.oth
Phased
inspection

Other
Than

What if the
phased in-
spection is
not conducted
correctly?

The phased inspection is done in-
correctly, e.g., by inexperienced
inspectors, in the improper or-
der, etc.

Fcert−dial.le Dialectic Less

What if the
dialectic issues
fewer chal-
lenges than
necessary?

The dialectic fails to issue critical
challenges.

Fcert−dial.rev Dialectic Reverse

What if the
dialectic does
not challenge
the fragment?

Certifier and developer agree
that the fragment has been suffi-
ciently challenged.

Fcert−dial.oth Dialectic Other
Than

What if the
dialectic is
corrupted?

The dialectic fails to issue chal-
lenges that, if issued, would un-
cover faultscand.

Table 7.2: Results of HazOp analysis on the GKG certification mechanism.

As per Case Study Assumptions 4.3 and 4.4, I deemed questions about the fragment selection and

conclusion combination irrelevant because analyzing either mechanism is out of scope of this analysis. This

analysis assumes that the effects of fragment selection and conclusion combination are null for simplicity.

However, these effects are unknown.

Open Question 7.11. What are the effects of GKG fragment selection on the meaning of the fragments?

Open Question 7.12. What are the effects of GKG conclusion combination on the meaning of the conclusions?

These questions are analogous to questions about compositional models for dependability assessment of

candidate systems:
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Fault Designa-
tion Parameter Guide

Word Question Fault Exercised When:

Fcert−sc.oth Safety Case Other
Than

What if the
submitted
safety case is
corrupted?

The safety case changes in such
a way that it masks faultscand, al-
lowing the candidate system to
be certified.

Fcert−qual.po Quality Part Of

What if the
current quality
is not stringent
enough?

A degenerate case of
cert.qual.oth: equivalent to
corruption of the quality from a
more stringent version to a less
stringent version.

Table 7.3: Faultscert discovered in the GKG certification mechanism using HazOp analysis.

Fragment selection as decomposition. Decomposition of a candidate system to its component subsystems

may be difficult, due to high degrees of coupling between subsystems. Forcing decomposition of two

tightly coupled subsystems may change the behavior of each subsystem.

Conclusion combination as composition. Recall from Chapter 2 that there are no generally accepted com-

positional models for dependability assessment of candidate systems. Thus, composition of the

dependability assessments of subsystems into an overall system-wide dependability assessment is

difficult.

7.3 Fault Tree Analysis

Recall the nature of fault tree analyses from Chapter 3:

• Fault tree analysis (FTA) is a top-down method of hazard analysis, starting with a hazard of interest.

• The goal of FTA is to determine all the events that could lead to the hazard. The two types of events

are compound and basic events. Basic events are events that can be treated as indivisible actions in the

system context; compound events are logical combinations of basic events.

• Analysts break down the hazard into events, refining compound events until basic events are reached.

• The determination and refinement of events is informal. Effective FTA requires insight about the system

in question and experience in the system domain.

This section describes the conduction of the GKGSEPE FTA. Below is the FTA process followed in this work.

1. Start with the hazard of interest and hypothesize events that could cause GKGSEPE to reach this hazard.

2. Hypothesize causal events for the events recorded in # 1. Iterate until events can be classified as basic.
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3. Adjudge the faultscert that cause the basic events.

4. Assign fault designations to each faultcert

Sections 7.3.1, 7.3.2, and 7.3.3 elaborate on the conduction of each step in this process and section 7.3.4

presents the results. Appendix B contains the whole GKGSEPE FTA.

7.3.1 Initial Hazard and Event Hypothesizing

The initial hazard in a fault tree is called the top-level hazard. Recall from Chapter 3 that any certification

mechanism, CM , presented with a candidate system, CS, can have two unwarranted outcomes:

• Unwarranted rejection. The rejection of CS is unwarranted if CS is acceptably safe, but CM decides

to reject CS.

• Unwarranted acceptance. The acceptance of CS is unwarranted if CS is unacceptably unsafe, but

CM decides to accept CS.

Both of these outcomes constitute hazards for CM . This work focuses only on unwarranted acceptance. Thus,

the top-level hazard for the GKGSEPE FTA was:

‘‘GKG allows certification of a product with unacceptable residual
risk.’’

After determining the top-level hazard, causal events for the top-level hazard are hypothesized. The

events are combined with Boolean logic operators; the highest-frequency operators are AND and OR, but

other operators can be used.

This work based the first-iteration events on the components derived from the flow model in Figure 7.2.

Each first-iteration event is combined together with the rest using an OR operator. Below is an example of

one event derived from the quality component of the flow model.

‘‘Quality omitted from qualities list.’’

This analysis uses the flow model components as a simple starting point. This starting point may not

be optimal, because the hypothesized events might be (a) incomplete or (b) incorrect. In general, hypothe-

sizing events in a fault tree is partially based on the experience and intuition of the analyst. Furthermore,

determining how the events combine is also based on experience and intuition.

Open Question 7.13. What criteria should analysts use to hypothesize events and combinations thereof when

conducting FTA in a filter model analysis?
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7.3.2 Event Hypothesizing and Iteration

Subsequent hypothesizing of events is done according to the ability of the analyst. The analyst continues to

iteratively refine the events in the fault tree until he decides that the events are basic events. Basic events are

events that analysts can treat as indivisible actions.

An event is basic if the analyst does not need to refine a hypothesized event any further. An event, E, can

always be refined, but depending on analyst’s context, E might not need to be refined.

As an example, consider the Amazon Web Services Java library. A hypothetical fault tree for this library

could include an event based on the class, DBInstance:

‘‘DBInstance fails.’’

An analyst at a company simply using the library would not need to refine this event any further, as

DBInstance would be used as a “black box.” However, analysts at Amazon would be interested in how

exactly DBInstance fails, necessitating further refinement of the event.

Deciding whether to classify an event as basic requires some level of analyst judgment. The FTA in this

work is the product of the author’s judgements; other analysts could make different judgments. The effects

of intuition and experience on fault tree event refinement is not known.

Open Question 7.14. To what extent does analyst expertise affect fault tree event refinement in a filter model analysis?

7.3.3 Fault Determination

Recall from Chapter 1 that a fault is the adjudged cause of an erroneous state, which could be a hazard. The

events in a fault tree are not faults in themselves; some of the events in a fault tree happen because of faults.

Deriving faults from a fault tree requires an additional analyst judgment.

Adjudging faults is difficult enough for well-established domains: despite analysts having extensive

experience in a certain domain, adjudging faults is still an informal and, at times, imprecise activity. The

novelty of applying FTA to certification mechanisms makes this difficulty even more apparent. This work

adjudges faults by adapting the second-level events in the GKGSEPEfault tree. As an example, consider the

this second-level event:

‘‘Quality stated incorrectly in qualities list.’’

This sentence fragment can be interpreted as an event, i.e., “An analyst states a quality incorrectly.” After

this event occurs, however, the event creates a fault in the GKG mechanism: the qualities list that will be

used in the phased inspection now has an incorrect quality. This kind of understanding is applied to all

the second-level events because beyond the second level, the events do not seem to be amenable to such

understanding. However, analysts with different intuition and experience could adjudge faults differently.
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Open Question 7.15. To what extent does analyst expertise affect fault adjudging in a filter model analysis?

7.3.4 Results

This section presents the results of the fault tree analysis on GKGSEPE in the following order:

1. Measurements of FTA metrics. Table 7.4 presents:

• The metrics this analysis uses to assess the feasibility and yield of applying FTA to GKG.

• The values of these metrics.

• The category (feasibility and/or yield) of each metric.

2. Discussion of FTA metrics and measurements, including a qualitative discussion of acceptability.

3. Discussion of the limitations of these results, including open questions raised.

4. Discovered faultscert. Table 7.5 presents a summary of the faultscert in GKGSEPE discovered by the FTA.

Following is a discussion of the open questions raised by these results.

Feasibility and Yield Assessment

This analysis uses several metrics to assess feasibility and yield of applying FTA to GKGSEPE. Table 7.5 shows

these metrics, the value at which each metric was measured, and what property each metric is designed to

assess. We cannot meaningfully compare the measurements in Table 7.4 to the same measurements for FTA

of candidate systems. However, the FTA achieved non-trivial results: a fault tree with 57 total events and 7

total faults was created in 32 hours. Both feasibility metrics – time and generation of non-trivial results –

are fulfilled.

In terms of yield, 7 potential faultscert out of 57 total events results in 12.281 % of events being designated

as ones that create faults in GKGSEPE. Compared to the HazOp analysis from section 7.2, the percentage of

faultscert found per element (question for HazOp and event for FTA) is slightly higher. However, the FTA

took significantly more time to complete, resulting in only 0.122 faultscert being found per hour. Nevertheless,

5 of these 7 faults were distinct from the faults discovered using HazOp; thus, we can can state that FTA has

a non-zero yield for discovering faultscert.

Limitations

In addition to the limitations stated in the Open Questions in this section (Open Questions 7.13 through

7.15), the limitations on metric acceptability criteria stated for HazOp in section 7.2.6 also apply to this

FTA and its metrics. Additionally, the existence of overlapping raises the issue of feasibility of applying
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Metric Value Category

Hours to complete FTA 32 Feasibility

Total number of events 57 Yield

Intermediate events 12 Yield

Basic events 45 Yield

Events generated per hour 1.781 Feasibility/Yield

Number of faultscert 7 Yield

Percentage of faultscert to events 12.281% Yield

Faultscert generated per hour 0.122 Yield

Number of faults overlapping with HazOp anal-
ysis 3 Feasibility

Percent of faults overlapping with HazOp analy-
sis 42.857 Feasibility

Table 7.4: Measurements for the fault tree analysis on the GKG certification mechanism.

one technique relative to another. Whether a 42.857% overlap between two techniques is acceptable for the

resources spent on the more expensive technique is unknown.

Open Question 7.16. To what extent do overlapping results affect the feasibility of a hazard analysis technique?

Discovered Faultscert

The FTA discovered 7 faultscert. Of these 7, 3 were classified as similar to faultscert:

1. Fcert−dial.rev . The HazOp question, “What if the dialectic does not challenge the fragment?” has as its

answer an FTA result, “The dialectic leads to unwarranted agreement.”

2. Fcert−chal.oth. The HazOp question, “What if the current challenge is corrupted,” is the statement,

“Challenge in challenge list stated incorrectly,” but in question form.

3. Fcert−frag.oth. The HazOp question, “What if the current fragment is corrupted?” is the statement,

“Current fragment corrupted,” but in question form.

These three faultscert use the same fault designation in both analyses. Each of the other four faultscert

receives a fault designation. Table 7.5 presents the faultscert discovered by the GKG FTA, and the events

from which the faultscert were derived.
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Fault Designation Event that Creates Fault:

Fcert−qual.est.inc
Quality X established incorrectly (i.e., it is established, but is not actu-
ally present).

Fcert−qual.omi Quality omitted from qualities list.

Fcert−qual.oth Quality stated incorrectly in qualities list.

Fcert−dial.rev (same as
GKG HazOp) Dialectic leads to unwarranted agreement.

Fcert−chal.oth (same as
GKG HazOp) Challenge in challenge list stated incorrectly.

Fcert−chal.omi Challenge in challenge list omitted.

Fcert−frag.oth (same as
GKG HazOp) Current fragment corrupted.

Table 7.5: Results of FTA on the GKG certification mechanism.

7.4 Failure Modes, Effects, and Criticality Analysis

Recall the nature of failure modes, effects, and criticality analyses from Chapter 3:

• Failure modes, effects, and criticality analysis (FMECA) is a bottom-up, inductive method of hazard

analysis, starting with the system components.

• The goal of FMECA is to determine:

– Failure modes, i.e., under what conditions components can fail.

– Effects, i.e., what happens when components fail.

– Criticality, i.e., which effects, and thus failure modes, are the most dangerous.

• Determining the failure modes, effects, and criticality relies to some extent on analyst intuition and

experience.

This section describes the conduction of the GKGSEPE FMECA. Below is the FMECA process followed in

this work.

1. Start with the flow model elements from Figure 7.2, using the elements as as FMECA components.

2. Hypothesize failure modes for each component.

3. Hypothesize effects for each failure.

4. Hypothesize circumstances under which effects become critical.

Sections 7.4.1 through 7.4.3 elaborate on the conduction of each step in the process and section 7.4.4 presents

the results. Appendix C contains the whole GKGSEPE FMECA.
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7.4.1 Module Selection

The starting point for FMECA is all the components of interest. In candidate systems, the components are

equated on the system modules, as defined in the system design documents. For a software system, UML

class diagrams detail the different modules and module relationships. Unfortunately, UML class diagrams

do not directly apply to certification mechanisms; in fact, certification mechanisms suffer from the following

important fact:

There exist no generally accepted design methods for
certification mechanisms.

Recall from section 7.2.2 that an information flow model can be derived from any certification mechanism.

In the absence of a comprehensive, generally accepted design document, this flow model’s modules become

the components for the GKGSEPE FMECA. Whether using a flow model is optimal as a source for FMECA

components is an open question.

Open Question 7.17. What criteria should analysts use to select FMECA components in a filter model analysis?

7.4.2 Failure Mode Determination

Determining the different ways in which components can fail relies to some extent on analyst intuition and

experience. The less “concrete” the components are, the more analysts must rely on intuition and experience.

Informally, “concreteness” indicates how tied to physical reality a module is, i.e., how closely a module

functions to hardware. Inductive reasoning about failure modes is often easier for hardware modules than

software modules, due to how well hardware failures are understood compared to software failures.

The components in the GKGSEPE flow model are constructs that relate only to information; there are no

physical sensors or actuators in GKGSEPE. Therefore, this analysis deems the components as non-concrete,

and relies on the author’s intuition and experience with certification. Analysts with different intuition and

experience could determine different failure modes for the components.

Open Question 7.18. To what extent does analyst expertise affect the determination of failure modes in a filter model

analysis?

7.4.3 Effect and Criticality Determination

Like the determination of failure modes, the determination of effects of failure modes is based to some

extent on analyst intuition and experience. The effects, being tied to their failure modes, are also related to

information and therefore not concrete. Thus, the effects are determined through the author’s intuition and
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experience. Analysts with different intuition and experience could determine different effects for the failure

modes.

Open Question 7.19. To what extent does analyst expertise affect the determination of effects in a filter model

analysis?

Criticality analysis unifies the probability of failure modes and the severity of the effects. However, the

novelty of analyzing GKGSEPE as a system resulted in the following problems:

• There is no accepted way to derive probabilities for the failure modes, and no historical data from

which to derive these probabilities.

• There is no accepted way to measure the criticality of the effects of the failure modes.

Thus, the analysis treats criticality qualitatively, like the treatment of risk in Chapter 1. Whether certification

mechanisms are amenable to quantitative criticality analysis is an open question. Moreover, this analysis

depends on the author’s intuition and experience. Analysts with different intuition and experience could

derive different criticality to each effect.

Open Question 7.20. Can certification mechanisms be subjected to quantitative criticality analysis as part of a filter

model analysis?

Open Question 7.21. To what extent does analyst expertise affect the derivation of criticality in a filter model

analysis?

7.4.4 Results

This section presents the results of the failure modes, effects, and criticality analysis on GKGSEPE in the

following order:

1. Measurements of FMECA metrics. Table 7.6 presents:

• The metrics this analysis uses to assess the feasibility and yield of applying FMECA to GKG.

• The values of these metrics.

• The category (feasibility and/or yield) of each metric.

2. Discussion of FMECA metrics and measurements, including a qualitative discussion of acceptability.

3. Discussion of the limitations of these results, including open questions raised.

Note that the results do not include discovered faultscert; the FMECA did not discover any new faults.

Instead, the FMECA discovered:
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• Failure modes for the faultscert in the components; these faults were discovered in the HazOp and FTA.

• The possible effects of some of the failure modes.

• The circumstances under which a failure caused by a fault would be critical.

Feasibility and Yield Assessment

This analysis uses several metrics to assess feasibility and yield of applying FMECA to GKGSEPE. Table 7.6

shows these metrics, the value at which each metric was measured, and what property each metric is designed

to assess. We cannot meaningfully compare the measurements in Table 7.6 to the same measurements for

FMECA of candidate systems.

The FMECA took 27 hours to complete and discovered no new faultscert. However, the FMECA did

generate non-trivial results:

• Organization of the faultscert discovered with HazOp and FTA. The FMECA organized 8 of the 13

discovered faultscert by the components that could harbor each faultcert.

• Failure modes and effects of the faultscert. The FMECA found at least one failure mode and effect for

each of the 8 faultscert.

Thus, the FMECA fulfilled both feasibility metrics – time and generation of non-trivial results. In this

analysis, the FMECA achieved a zero yield for faultscert and a non-zero yield for the other non-trivial results

shown above.

Limitations

In addition to the limitations stated in the Open Questions in this section (Open Questions 7.17 through

7.20), the limitations on metric acceptability criteria stated in section 7.2.6 also apply to this FMECA and its

metrics. The scope of the case study also limited this FMECA; recall that Case Study Assumptions 4.3 and

4.4 deem questions about fragment selection and conclusion combination out of scope of this analysis. The

FMECA components included the “Fragment Selector” and “Fragment Conclusion Combiner” blocks from

the GKG functional block diagram in Figure 7.2, but the failure modes and effects from these components

are not examined further. Furthermore, faultscert found in these components are not subjected to adapted

safety engineering techniques in phase 2 of the evaluation. Thus, this work will not analyze Fcert−frag.oth

any further.
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Metric Value Category

Hours to complete FMECA 27 Feasibility

Total number of FMECA rows 23 Feasibility

FMECA rows produced per hour 0.852 Feasibility

Total number of failure modes 22 Yield

Average faultscert per component 2 Yield

Average percentage of total faultscert per compo-
nent 22.222% Yield

Total number of effects 23 Yield

Average number of effects per failure mode 1.045 Feasibility/Yield

Average number of effects per faultcert 2.556 Feasibility/Yield

Percentage of faultscertorganized by FMECA 61.538% Feasibility

Table 7.6: Measurements for the FMECA on the GKGSEPE certification mechanism.

7.5 Summary

This chapter presented:

• Measurements of feasibility and yield for various hazard analysis techniques that were adapted for use

on certification mechanisms.

• The faultscert discovered in the GKG certification mechanism using established hazard analysis tech-

niques.

The sections throughout this chapter note 21 open questions about the analysis presented in this chapter.

The questions fell into two broad categories:

1. Variance introduced by analyst expertise. This analysis was conducted by the author. The author is

not an expert in (a) the subject area of certification or (b) application of HazOp, FTA, and FMECA. The

validity and utility of the results of candidate system hazardcand analysis depend on the expertise of the

analyst; by analogy, the results of certification mechanism hazardcert analysis also depend on the expertise

of the analyst.

2. Fundamental unknowns. Due to the novelty of this analysis, the optimal way to apply HazOp, FTA,

and FMECA to certification mechanisms is unclear. In particular, the metrics used to assess feasibility

and yield might not be the right metrics, and the acceptability criteria for the metrics presented are

unknown.
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Analyst Expertise Variance Fundamental Unknowns

7.5, 7.6, 7.7, 7.8, 7.14, 7.15, 7.18, 7.19,
7.21

7.1, 7.2, 7.3, 7.4, 7.9, 7.10, 7.11, 7.12,
7.13, 7.16, 7.17, 7.20

Table 7.7: Categorization of the open questions in this chapter.

Table 7.7 shows to which category each Open Question belongs.

Chapter 8 provides a comprehensive summary of the faultscert found in the analysis presented in this

chapter, as these faultscert are used in phase 2 of the evaluation. Chapter 8 also presents the results of

phase 2 of the evaluation: seeding faultscert into the evaluation, recording the results, and adapting safety

engineering techniques to complete the filter repair cycle.



Chapter 8

GKG Fault Mitigation

Recall from Chapter 4 that the aim of Phase 4.2 of the case study was to generate faultcert mitigation

strategies as part of the filter repair cycle. This chapter presents the results of phase 2.

Chapter 7 provided a list of faultscert. In candidate system safety engineering, the next step is fault treatment.

Chapter 3 briefly introduced the following broad categories of safety engineering techniques:

1. Fault avoidance.

2. Fault elimination.

3. Fault tolerance.

4. Fault forecasting.

Typically, candidate system engineers apply each in succession. First, fault avoidance is applied. After fault

avoidance has been applied to the extent possible, engineers move on to fault elimination, and then to fault

tolerance. Finally, when all the other techniques have been applied to the extent possible, fault forecasting is

applied.

In this work, faultcert mitigation strategies are generated through adaptation of techniques in the above

categories. Unfortunately, how to adapt these techniques is not established because of the novelty of this

analysis. Thus, this analysis focuses mostly on fault elimination and fault tolerance. Fault-specific methods

and redundancy are two techniques from each category:

• Fault-specific methods are fault-elimination techniques designed to eliminate specific classes of faults.

• Redundancy is a fault-tolerance technique that uses multiple copies of identical system modules in place

of a single module. Simple redundancy mitigates random and transient faults in candidate systems.

This chapter presents adaptation and application of these safety engineering techniques to generate

faultcert mitigation strategies.

90
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Below is the safety engineering process followed in this work.

1. Start with faultscert discovered in Chapter 7. Place these faultscert into the GKGSEPE mechanism.

2. Where appropriate, place corresponding faultscand into the baseline safety case, creating an evaluation

safety case.

3. Conduct certifications using GKGSEPE and evaluation safety cases.

4. Generate fault mitigation strategies using the safety engineering literature.

Sections 8.1 through 8.4 elaborate on the conduction of each step in the process.

This chapter also presents the following results:

• Outcome of GKGSEPE certifications. This evaluation examines the certification decisions of GKGSEPE

on:

– The baseline DAIS safety case.

– The evaluation safety cases.

• Fault mitigation strategies. Based on the outcome of the GKGSEPE certifications, this analysis generates

various fault mitigation strategies.

Section 8.5.1 presents the GKGSEPE certification decisions, and section 8.5.2 presents the fault mitigation

strategies.

8.1 GKGSEPE Faultscert Placement

The starting point for phase 2 of the evaluation was the faultscert discovered in phase 1. Table 8.1 summarizes

each of the faultscert discovered in Chapter 7. These faultscert are generally applicable to all instantiations of

GKG. The specimen certification mechanism in this analysis is GKGSEPE; therefore, the faultscert should be

instantiated for GKGSEPE. Table 8.2 shows how this analysis places faultscert into GKGSEPE. Each table entry

contains:

• The faultcert designation.

• The part of GKGSEPE in which the faultcert is placed.

• How the faultcert is placed.

The two following faultscert shown in Table 8.1 are not analyzed in this chapter, because their scope is too

large:
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Fault Designation Description

Fcert−insp.oth The phased inspection is conducted incorrectly.

Fcert−qual.oth A quality is corrupted.

Fcert−qual.est.inc A quality is established incorrectly.

Fcert−qual.omi A quality omitted from qualities list.

Fcert−dial.less The dialectic issues fewer challenges than necessary.

Fcert−dial.rev The dialectic does not challenge the fragment.

Fcert−dial.oth The dialectic is corrupted.

Fcert−chal.oth A challenge is corrupted.

Fcert−chal.omi A challenge is omitted.

Table 8.1: Summary of faultscert found in Phase 1 of the case study.

1. Fcert−insp.oth. Phased inspections can be conducted incorrectly in a wide variety of ways, with a wide

variety of effects; one way is Fcert−qual.est.inc. As an example, consider a phased inspection conducted

by non-experts. Such an inspection could be faulty by virtue of the inspectors missing details that can

only be learned with extensive experience. These details can range from knowing the importance of

the phase order to minute details about the qualities for which the inspectors examine.

Most of these effects are difficult to predict, especially those of not conducting the phased inspection in

the correct order. Thus, with the exception of Fcert−qual.est.inc, this analysis will not analyze faultscert

related to conduction of the phased inspection.

2. Fcert−dial.oth. The dialectic can be corrupted in a wide variety of ways; two of the ways are Fcert−dial.rev

and Fcert−dial.le. Other ways in which the dialectic can be corrupted are not clear from the analysis

conducted in phase 1, because of the generality of Fcert−dial.oth.

Thus, phase 2 of the case study introduces two new assumptions:

Case Study Assumption 8.1. The phased inspection process is conducted perfectly with supplied materials.

Case Study Assumption 8.2. Fcert−dial.rev and Fcert−dial.le are a reasonable approximation of Fcert−dial.oth.

Each of the faultscert in Table 8.2 could be placed into GKGSEPE in many ways. This analysis chooses only

one way for each faultcert. The effect of placing the same faultcert into a certification mechanism in multiple

ways is an open question.

Open Question 8.1. What is the effect of multiple placing of the same class of faultcert into a certification mechanism?
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Fault Designation Placement Method Example

Fcert−qual.oth
Make a plausible corruption to
the quality.

Change Q4: “Evidence availability and suffi-
ciency” to “Evidence availability.”

Fcert−qual.est.inc
Make a plausible but faulty as-
sumption.

Use Q6: “Assumption Necessity and Reason-
ableness.” Assume testing is sufficient to es-
tablish verification.

Fcert−qual.omi Omit a quality. Omit Q7, “Freedom from well-known falla-
cies.”

Fcert−dial.le

Select a fragment that requires
multiple challenges. Fail to
levy one of those challenges.

G Misinformation.6 could have two chal-
lenges levied: 5.1 and 5.12. Fail to issue 5.12.

Fcert−dial.rev
Do not issue any challenges to
a particular fragment.

Fail to issue 5.12 to a fragment that dictates
issuing of 5.12.

Fcert−chal.oth
Make a plausible corruption to
a challenge.

Change 5.11 to “Explain why you did not
base your safety argument on conformance to
a standard.”

Fcert−chal.omi Omit a challenge. Omit Challenge 5.11.

Table 8.2: How the discovered faultscert are placed into GKGSEPE.

8.2 Evaluation Safety Case Construction

In order to construct the evaluation safety cases for this analysis, a fault mapping and faulty fragments were

needed. Section 8.2.1 expands on the fault mapping, section 8.2.2 expands on the construction of the faulty

fragments, and section 8.2.3 how the faulty fragments were used to create the evaluation safety cases.

8.2.1 Fault Mapping

Recall the definition of unwarranted acceptance from Chapter 3: an unwarranted acceptance is the accep-

tance of an unsatisfactory system. In order for a certification mechanism, CM , to arrive at an unwarranted

acceptance of a candidate system, CS, both of the following must be true:

• CM must contain at least one faultcert.

• CS must contain at least one faultcand that is not filtered out by the (faulty) CM .

In particular, faultscand in CS can be mapped to the faultscand in CM that produces an unwarranted acceptance

for CS, and all other candidate systems with the same faultscand. Figure 8.1 illustrates this concept. In this

figure, Fcert−1 is a faultcert, and Fcand.1 through Fcand.3 are some possible faultscand in the particular system

domain for which the certification mechanism, CM , is designed. If a candidate system, CS1,2, contains either
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Figure 8.1: Hypothetical simple fault mapping for one faultcand in a hypothetical certification mechanism.

of Fcand.1 or Fcand.2, CM will not filter CS1,2 out because of Fcert−1, i.e., CM will produce an unwarranted

acceptance for CS. Thus, Fcand.1 and Fcand.2 map to Fcert−1 A different candidate system containing only

Fcand.3, CS3, would not exercise Fcert−1. Thus, Fcand.3 does not map to Fcert−1.

Note that the example in the figure is (a) simple and (b) incomplete; in practice, Fcand.3 would be mapped

to a faultcert of its own. Moreover, faultscand could be mapped to multiple faultscert and vice versa. Being

neither one-to-one nor onto, this mapping is not a function, but a relation. Nevertheless, the term is useful

for this discourse:

Placing faultscand that map into the faultscert discovered in phase 1 enables
examination of these faultscert in a certification.

This work terms such a mapping a fault mapping.

Definition 8.1. Fault mapping. A fault mapping is a mapping of faultscert to faultscand; the mapping maps faultscert

to the faultscand that, if present in a candidate system, are not filtered out by the faulty certification mechanism.

Established system domains, e.g., infusion pumps, have extensive failure data derived from certified

systems. For example, the FDA’s MAUDE database [56] has over 2.5 million manufacturer reports, spanning
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Faultcert Corresponding Faultcand

Fcert−qual.oth Evidence insufficiency in fragment solution elements.

Fcert−qual.est.inc No formal specification/verification in fragment.

Fcert−qual.omi Argument from ignorance in fragment.

Fcert−dial.le No formal specification/verification in fragment.

Fcert−dial.rev No formal specification/verification in fragment.

Fcert−chal.oth N/A

Fcert−chal.omi Arguing conformance to a standard in fragment.

Table 8.3: The partial GKGSEPE fault mapping used in this analysis.

from 1996 to 2012 1. These collections of failure data provide ample information for constructing a compre-

hensive fault mapping. However, the SEPE domain is novel, so the only mapping from faultscert to faultscand

is the partial mapping presented in Table 8.3. The only faultcert that did not receive a corresponding faultcand

was Fcert−chal.oth; the reason for this absence is explained in section 8.3.

The fault mapping shown in Table 8.3 is incomplete, and the author selected the faultscand. There are

many possible faultscand. The chosen set of faultscand might not be the optimal set of faultscand with which to:

• Demonstrate faultscert.

• Engage in filter repair.

These concerns raise the following open questions:

Open Question 8.2. What is the effect of an incomplete fault mapping on the results of the filter repair cycle?

Open Question 8.3. Which faultscand are optimal for use in a filter model analysis?

8.2.2 Faulty Fragments

The fault mapping in Table 8.3 enables the creation of faulty safety case fragments. These fragments can

then be passed through GKGSEPE to form the basis for mitigating the faultscand exhibited in the fragments.

Each of these fragments exhibits one faultcand; each faultcand is mapped to one faultcert as per Table 8.3. The

following sections expand on each of the faulty fragments. Each section contains:

• The faulty fragment, represented in GSN.

1The FDA has even more records in the predecessor of the MAUDE database, the Medical Device Reporting (MDR) database,
spanning from 1984 to 1996. The MDR database contains over 600,000 records.
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• The entrance node of the faulty fragment in the baseline DAIS safety case. This entrance node is where

the fragment is inserted instead of the baseline fragment.

• A description of the faulty fragment, including the deficiency represented in the faulty fragment.

• The faultscert that map to the faultcand exhibited in the faulty fragment.

• Additional notes, if necessary.

Evidence Insufficiency Fragment

Entrance node: G LackOfInformation.1.

Description: Figure 8.2 shows the Evidence Insufficiency fragment, FragEI . FragEI attempts to argue

high assurance via the two-legged construction. The argument portion of the fragment is the same as

the fragment in the baseline safety case. However, the difference between FragEI and the original

fragment is the following assumption:

The testing plan does not sufficiently stress the system.

An example of such a testing plan is a plan based around the use of statement coverage. Statement

coverage is regarded as the weakest of test coverage metrics [79]; such a test plan would not be suitable

for a high-assurance system.

Faultscert that map to this faultcand:

• Fcert−qual.oth.

Additional notes: None.

Lack of Formal Verification Fragment

Entrance node: G LackOfInformation.1, G Misinformation.6.

Description: Figure 8.3 shows the Lack of Formal Verification fragment, FragLOFV . FragLOFV attempts to

argue high assurance via testing alone. Recall from Chapter 5 that (a) formal verification is comple-

mentary to testing [57, 58] and (b) testing alone is not sufficient to establish ultra-high dependability

[59].

Faultscert that map to this faultcand:

• Fcert−qual.est.inc

• Fcert−dial.le

• Fcert−dial.rev
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Figure 8.2: The Evidence Insufficiency Fragment, FragEI .

Figure 8.3: The Lack of Formal Verification Fragment, FragLOFV .

Additional notes: FragLOFV is used in two different places in the argument,

G LackOfInformation.1 and G Misinformation.6. Figure 8.3 shows two versions of this frag-

ment; the two versions are identical except for the entrance node.

Argument from Ignorance Fragment

Entrance node: G Misinformation.5.
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Figure 8.4: The Argument From Ignorance Fragment, FragAFI .

Description: Figure 8.4 shows the Argument from Ignorance fragment, FragAFI . FragAFI attempts to argue

for the safety of an external component, the FDA Safety Alerts system. The verification of external

components is a non-trivial issue for critical systems [80, 81]; developers cannot simply assume that

external components have the desired dependability attributes. FragAFI argues that the FDA Safety

Alerts system is sufficiently dependable because the writer of the fragment is unaware of any errors.

This is an argument from ignorance; the presence of an argument from ignorance is a fallacy, as per the

taxonomy of safety case fallacies described by Greenwell, et al. [47]

The FDA Safety Alerts system is a large, human-centric system, with many industrial collaborators.

The probability that such a system is sufficiently dependable is unknown. Moreover, the probability

that the system is correct at any given instant about the safety of a certain product is unknown; the

purpose of the system is to rectify errors in FDA approval of products. Thus, patients could use

products for which safety alerts are issued well after the product approval date [82]. Such usage is

dangerous to the patient.

Faultscert that map to this faultcand:

• Fcert−qual.omi

Additional notes: None.
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Conformance Argument Fragment

Entrance node: Top.

Description: Figure 8.5 shows the Conformance Argument fragment, FragCA. FragCA attempts to argue

overall safety via conformance to a standard. Recall from Chapter 5 the inadequacy of this argumenta-

tion strategy: arguing over hazards is (a) more direct and (b) more flexible than arguing conformance

to a standard.

Faultscert that map to this faultcand:

• Fcert−chal.omi

Additional notes: The previous faulty fragments presented in this section were leaf fragments:

Definition 8.2. Leaf fragment. A leaf fragment in a safety case is a fragment that contains leaf nodes, i.e.,

solutions or undeveloped elements.

Leaf fragments are concluding fragments, i.e., there are no argument elements that continue past a

leaf fragment. However, FragCA is not a leaf fragment; G DAIS.2.Standard replaces Top. The

entire strategy of the safety case, and thus the content of the safety case itself, is changed. There is no

corresponding exit node into the baseline DAIS safety case.

8.2.3 Evaluation Safety Cases

Each of the faulty fragments presented above are placed into one evaluation safety case. The effect of the

presence of additional faulty fragments in a safety case is an open question.

Open Question 8.4. What is the effect of multiple faulty fragments in a safety case?

This work names each of these safety cases by the placed fragment and entrance node, e.g., SCEI.G LackOfInformation.1

is the baseline safety case with FragEI placed at entrance node G LackOfInformation.1. The baseline

safety case is termed SCbase. Table 8.4 maps each faulty fragment to its corresponding evaluation safety

case.

8.3 GKGSEPE Certification

The next step in phase 2 was to use GKGSEPE to conduct hypothetical certifications of each evaluation safety

case; faultscert were placed into GKGSEPE in section 8.1. The certification for each faultcert used one evaluation

safety case from Table 8.4. For each certification, Table 8.5 shows:
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Figure 8.5: The Conformance Argument Fragment, FragCA.

Safety Case Name Faulty Fragment Entrance Node

SCbase None N/A

SCEI.GLackOfInformation.1 FragEI G_LackOfInformation.1

SCLOFV.G LackOfInformation.1 FragLOFV G_LackOfInformation.1

SCLOFV.G Misinformation.6 FragLOFV G Misinformation.6

SCAFI.G Misinformation.5 FragAFI G Misinformation.5

SCCA.Top FragCA Top

Table 8.4: The names of each evaluation safety case and the faulty fragments contained in each evaluation safety case.

• A unique certification designation.

• The faultcert being examined.

• The faultcand example paired with that faultcert. The original faultcand example text from Table 8.1) is

augmented with the name of the entrance node of the faulty fragment that the certification examines;

this augmentation is shown in bold.

• The evaluation safety case used to exercise the faultcert.
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Cert. Des. Fault Designation and Placement Method Safety Case Used

C1

Fcert−qual.oth. Change Q4: “Evidence availability
and sufficiency” to “Evidence availability.” Ex-
amine G LackOfInformation.1.

SCEI.GLackOfInformation.1

C2

Fcert−qual.est.inc. Use Q6: “Assumption Ne-
cessity and Reasonableness.” Assume testing
is sufficient to establish verification. Examine
G LackOfInformation.1. NoFormal.

SCLOFV.G LackOfInformation.1

C3

Fcert−qual.omi. Omit Q7: “Freedom
from well-known fallacies.” Ex-
amine G Misinformation.5.Arg-
uingFromIgnorance.

SCAFI.G Misinformation.5

C4

Fcert−dial.le. G Misinformation.6 could have
two challenges levied: 5.1 and 5.12. Fail to issue
5.12.

SCLOFV.G Misinformation.6

C5

Fcert−dial.rev. Examine G LackOf-
Information.1.NoFormal. Fail to issue
5.12 to fragment.

SCLOFV.G LackOfInformation.1

C6

Fcert−chal.oth. Change 5.11 to “Explain
why you did not base your safety argument
on conformance to a standard.” Examine
Goal DIP.1.Mistreatment.

SCbase

C7
Fcert−chal.omi. Omit Challenge 5.11. Examine
G.DAIS.2.Standard.

SCCA.Top

Table 8.5: The characteristics of the certifications used in this analysis: the faultscert each certification focuses on, the
faultcand example, and the evaluation safety case examined in the certification.

Recall from Chapter 6 that the baseline DAIS safety case, SCbase, is assumed to be high-assurance:

• SCbase argues directly over all identified hazards, an accepted high-assurance safety argumentation

strategy.

• Each hazard is shown to be mitigated using a two-legged construction, an accepted high-assurance

construction.

• The evidence documents that SCbase links to, e.g., test plans and test reports, accurately represent a

high-assurance version of DAIS.

The construction of SCbase differed from typical industrial construction practices in the following ways:

• SCbase was constructed after most of the system development had been finished; industry professionals

typically construct safety cases in parallel with system development.
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• SCbase represents a research system, DAIS. As DAIS is a novel system, the requirements and identified

hazards may be incorrect. Established types of industrial systems have a clearer picture of requirements

and domain hazards.

• SCbase relies heavily on the two-legged construction. However, some of the identified hazards may

not be amenable to mitigation via formal verification and/or testing.

Whether an industrial safety case would provide better results for filter repair is an open question.

Open Question 8.5. What kind of safety cases should be used to examine faultscert in a filter model analysis?

Each evaluation safety case, except SCCA, uses mostly SCbase fragments: one faulty fragment replaces the

corresponding baseline fragment at the entrance node (discussed in section 8.2.2). Essentially, fragments are

examined as proxies for entire safety cases. SCbase was constructed specifically to pass GKGSEPE certification.

Industrial safety cases could be constructed differently, thus potentially containing more than one faultcand.

Moreover, GKGSEPE is incomplete; a complete, FDA-ready GKGSEPE instantiation (or other instantiations of

GKG) could be affected in unpredictable ways by complex fault mappings. In addition, the author conducted

all the hypothetical certifications in this analysis. A team of professional certifiers using GKGSEPE (e.g., at the

FDA) might have produced different results, due to expertise with certification and the candidate system

domain. The effects of using industrial safety cases, a complete certification mechanism, and a team of

professional certifiers are open questions.

Open Question 8.6. What are the effects of using safety cases with multiple faultscand in a filter model analysis?

Open Question 8.7. What are the effects of examining a complete certification mechanism in a filter model analysis?

Open Question 8.8. To what extent does certifier expertise in certification affect the results of a filter model analysis?

Open Question 8.9. To what extent does certifier expertise in the candidate system domain affect the results of a

filter model analysis?

8.4 Faultcert Mitigation Strategy Generation

The last step in phase 2 was to generate faultcert mitigation strategies. Ideally, strategies would be drawn

progressively from the following sources:

1. Fault avoidance.

2. Fault elimination.

3. Fault tolerance.
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4. Fault forecasting.

The author generated strategies by adapting existing safety engineering techniques using his own

expertise. The faultcert mitigation strategies were adapted from fault-specific methods, which effect fault

elimination, and redundancy, which effects fault tolerance. Professional safety engineers with different

expertise could generate different mitigation strategies. Moreover, different mitigation strategies could be

generated by adapting additional existing techniques, as discussed in Chapter 3:

• Fault avoidance techniques.

• Different fault elimination techniques,

• Different fault tolerance techniques, including design diversity and different kinds of redundancy, e.g.,

temporal.

• Fault forecasting techniques.

The effects of engineer expertise and adapting additional techniques are open questions.

Open Question 8.10. To what extent does engineer expertise affect the generation of faultcert mitigation strategies in

the filter repair cycle?

Open Question 8.11. What additional faultcert mitigation strategies could be derived by adapting different safety

engineering techniques?

8.5 Results

This section presents the results of GKGSEPE safety engineering in the following order:

1. Certification results. Section 8.5.1 elaborates on each certification. For each certification, Table 8.6

presents:

• The safety case used.

• The faultcert being examined.

• The decision of the certification: positive or negative certification.

• The type of certification accident caused by the certification decision.

2. Section 8.5.1 also contains a discussion of the certification results.

3. Section 8.5.2 presents the generated faultcert mitigation strategies. Table 8.7 shows the faultscert and

the strategies generated to mitigate them.

4. Section 8.5.2 also presents the measurements of safety engineering metrics. Table 8.8 shows:
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Certifi-
cation

Faultcert Exam-
ined

Safety Case Used Decision Certification Ac-
cident?

C1 Fcert−qual.oth SCEI.G LackOfInformation.1 Positive Unwarranted Ac-
ceptance: YES

C2 Fcert−qual.est.inc SCLOFV.G LackOfInformation.1 Negative Warranted Rejec-
tion: NO

C3 Fcert−qual.omi SCAFI.G Misinformation.5 Positive Unwarranted Ac-
ceptance: YES

C4 Fcert−dial.le SCLOFV.G Misinformation.6 Positive Unwarranted Ac-
ceptance: YES

C5 Fcert−dial.rev SCLOFV.G LackOfInformation.1 Positive Unwarranted Ac-
ceptance: YES

C6 Fcert−chal.oth SCbase Negative Unwarranted Re-
jection: YES

C7 Fcert−chal.omi SCCA.Top Positive Unwarranted Ac-
ceptance: YES

Table 8.6: Certification results for all evaluation certifications.

• The metrics this analysis uses to assess the feasibility and yield of adapting safety engineering

techniques to GKGSEPE.

• The values of these metrics.

• The category (feasibility and/or yield) of each metric.

8.5.1 Certification Outcomes

Table 8.6 shows the certification decisions for C1 through C7. The following sections elaborate on how each

certification decision was reached and the characteristics of the certification decision.

C1: Fcert.qual.oth

C1 examined faultcert Fcert−qual.oth, the faultcert created when a GKG quality is corrupted. The GKG quality

chosen was Q4:

‘‘Evidence availability and sufficiency.’’

The corruption was to remove “sufficiency,” resulting in the following quality:

‘‘Evidence availability.’’

C1 used evaluation safety case SCEI.G LackOfInformation.1, the safety case with faulty fragment FragEI

inserted at G LackOfInformation.1.
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Recall from section 8.2.2 that FragEI showed an evidence insufficiency in the testing plan. However,

examining the fragment only for evidence availability would not uncover this faultcand. Thus, C1 arrived at a

positive certification decision for a system that has not been adequately tested, resulting in an unwarranted

acceptance.

C2: Fcert.qual.est.inc

C2 examined faultcert Fcert−qual.est.inc, the faultcert exercised when the phased inspection incorrectly estab-

lishes a GKG quality. The GKG quality chosen was Q6:

‘‘Assumption Necessity and Reasonableness.’’

The assumption made was:

‘‘Assume testing is sufficient to establish verification.’’

C2 used evaluation safety case SCLOFV.G LackOfInformation.1, the safety case with faulty fragment FragLOFV

inserted at G LackOfInformation.1.

Recall from section 8.2.2 that FragLOFV argued for verification using only testing-based evidence. Given

that Q6 is established incorrectly, the assumption that testing is sufficient is incorrectly deemed necessary and

reasonable. However, FragLOFV dictates levying Challenge 5.12. FragLOFV failed Challenge 5.12. Thus,

C2 arrived at a negative certification decision for a system that made an unreasonable assumption, resulting

in a warranted rejection.

C3: Fcert.qual.omi

C3 examined faultcert Fcert−qual.omi, the faultcert created when a GKG quality is omitted. The GKG quality

chosen was Q7:

‘‘Freedom From Well-Known Fallacies.’’

C3 used evaluation safety case SCAFI.G Misinformation.5, the safety case with faulty fragment FragAFI

inserted at G Misinformation.5.

Recall from section 8.2.2 that FragAFI argued from ignorance that an external component, the FDA

Safety Alerts system, was safe. The argument from ignorance fallacy is described in the safety case fallacy

taxonomy created by Greenwell, et al. [47]. However, omitting Q7 caused the certification to not examine the

fragment for common fallacies, including fallacies in the Greenwell taxonomy. Thus, C3 arrived at a positive

certification decision for a system in which an external component was not properly verified, resulting in an

unwarranted acceptance.
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C4: Fcert.dial.le

C3 examined faultcert Fcert−dial.le, the faultcert exercised when the dialectic issues less challenges than

necessary for a fragment. C4 used evaluation safety case SCLOFV.G Misinformation.6, the safety case with

faulty fragment FragLOFV inserted at G Misinformation.6. Of the 14 challenges in GKGSEPE, 2 are

immediately applicable to FragLOFV : 5.1 and 5.12. These challenges are reproduced below:

Challenge. 5.1. Explain why you did not provide a testing report for this OTS software.

Challenge. 5.12. Explain why you argued that testing alone is sufficient for verification.

In G Misinformation.6, the argument makes reference to “sensing data,” which come from an external

instrument. The certification deemed Challenge 5.1 passed because of the assumption that DAIS was built

using high-assurance components. High-assurance sensor arrays would come with manufacturer guarantees

of reliability, obviating the need for an OTS testing report by DAIS developers. However, as FragLOFV

argues verification of sensor data by testing only, Challenge 5.12 would not have been passed if the challenge

had been issued. Because Challenge 5.12 was not issued, C4 arrived at a positive certification decision for a

system that had not been adequately verified, resulting in an unwarranted acceptance.

C5: Fcert.dial.rev

C5 examined faultcert Fcert−dial.rev , the faultcert exercised when the dialectic fails to issue any challenges for a

fragment. C5 used evaluation safety case

SCLOFV.G LackOfInformation.1, the safety case with faulty fragment FragLOFV inserted at G LackOfInformation.1.

G LackOfInformation.1 argues the safety of a DAIS software module, the remote alarm signaling

sub-module of the Data Analysis module. Inserting FragLOFV at G LackOfInformation.1 means that

the safety of the remote alarm signal module was not properly verified. Sn.16 points to a testing report

as direct evidence of verification, so certifiers should issue at least Challenge 5.12 against this fragment.

If Challenge 5.12 were issued, the fragment would fail. However, no challenges were issued due to

Fcert−dial.rev; the fragment passed certification. Thus, C5 arrived at a positive certification decision for a

system that had not been adequately verified, resulting in an unwarranted acceptance.

C6: Fcert.chal.oth

C6 examined Fcert−chal.oth, the faultcert exercised when a challenge is corrupted. C6 used evaluation safety

case SCbase, the baseline safety case. The challenge chosen was Challenge 5.11:

Challenge. 5.11. Explain why you based your safety argument on conformance to a standard.
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Figure 8.6: The top-level fragment of SCbase, against which Challenge 5.11 should have been issued.

Challenge 5.11 was designed to be issued against the top-level fragment, because the top-level fragment

contains the overall argumentation strategy of the safety case. Figure 8.6 shows the top-level fragment of

SCbase. The corruption to the challenge was to reverse the meaning, adding “did not” between “you” and

“base[d].”

Challenge 8.1. Explain why you did not base your safety argument on conformance to a standard [emphasis added].

The corrupted challenge, Challenge 8.1, was issued against the top-level fragment of SCbase. The

fragment failed certification, despite being a higher-assurance argumentation strategy than arguing standards
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conformance. Thus, C6 arrived at a negative certification decision for a system that was adequately safe,

resulting in an unwarranted rejection.

C7: Fcert.chal.omi

C7 examined Fcert−chal.omi, the faultcert exercised when a challenge is omitted. C7 used evaluation safety

case SCCA.Top, the safety case with faulty fragment FragCA inserted at the top level. The challenge chosen

was Challenge 5.11, a challenge designed to be issued against the top-level fragment.

Recall from section 8.2.2 that FragCA argued safety based on conformance to a standard. Further recall

from Chapter 5 the inadequacy of such a strategy compared to arguing over hazards. However, C7 failed to

issue Challenge 5.11 due to Fcert−chal.omi. Thus, C7 arrived at a positive certification decision for a system

whose safety argument had an inadequate strategy, resulting in an unwarranted acceptance.

Discussion

Of the 7 certifications, 5 (C1, C3, C4, C5, C7) had the expected certification decision of unwarranted acceptance,

1 (C6) had the expected certification decision of unwarranted rejection, and 1 (C2) had an unexpected decision

of warranted rejection. Two certifications deserve special mention, C2 and C6:

• C2. The warranted rejection indicates that the qualities and challenges in a GKG instantiation can

provide some redundancy for each other, depending on the instantiation. In this work, GKGSEPE was

instantiated with Challenge 5.12, which protected against the common assumption, “Assume testing

is sufficient to establish verification.” Other redundancies in GKGSEPE are not identified. Moreover, a

complete GKGSEPE instantiation could have far more redundancies, decreasing its probability of an

unwarranted acceptance. The effect of redundancies on the probability of unwarranted acceptance

is an open question. Furthermore, whether a decrease in the probability of unwarranted acceptance

necessarily affects the probability of unwarranted rejection is also an open question.

Open Question 8.12. What is the effect of redundancies in a GKG instantiation on its probability of unwar-

ranted acceptance?

Open Question 8.13. What is the effect of redundancies in a GKG instantiation on its probability of unwar-

ranted rejection?

• C6. C6 raised two issues:

1. The unwarranted rejection reached by C6 indicates Faultscert that corrupt a GKG element – a

challenge or quality– E, can corrupt E such that the stringency of E is increased as well as decreased
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(as in the case of the other faultscert). Increased stringency results in a higher probability of

unwarranted rejection, while decreased stringency results in a higher probability of unwarranted

acceptance. The extent of this effect an open question.

Open Question 8.14. What is the effect of corruption of GKG elements on the probability of unwarranted

acceptance?

Open Question 8.15. What is the effect of corruption of GKG elements on the probability of unwarranted

rejection?

2. Recall from Chapter 4 that this analysis assumes a single submission action for simplicity, whereas

the original GKG paper advocated an iterative approach, similar to the “early and often” advo-

cated by Kelly [13]. Following the unwarranted rejection of SCbase due to the corrupted challenge,

Challenge 8.1, the iterative process would dictate that the top-level fragment of SCbase would be

changed to pass the corrupted challenge. Following the iterative approach in such a case would

result in an eventual unwarranted acceptance.

Overall, this analysis is more limited than the analysis presented in Chapter 7, especially by available

resources. Nevertheless, the results point toward the need for the last part of the filter repair cycle: generating

faultcert mitigation strategies.

8.5.2 Generated Faultcert Mitigation Strategies

The results of the sample certifications (presented in section 8.5.1), while limited, suggest that faultscert

can have serious effects. To mitigate these effects, the filter model analysis framework includes a filter

repair mechanism designed to occur prior to deployment of a certification mechanism. Table 8.7 shows

the repairs that the filter repair made for GKGSEPE. Each repair is designed to mitigate one faultcert; some

faultscert are assigned multiple repairs. These repairs are inspired by safety engineering. Table 8.7 also

links the repair to the safety engineering technique that inspired the form of the repair. Some repairs, e.g.,

a multi-inspector phase for each inspection GKG calls for, are analogous to classic hardware redundancy

techniques. Others are adapted from recommendations of various standards, e.g., requiring qualification of

interoperable devices. The rest are derived from the author’s intuition about GKG.

Note that the adaptation of recommendations of standards is, in effect, a hybridization of the goal-based

and prescriptive approaches. Judicious application of such recommendations is a good “middle ground.”

Certification mechanisms can reap the benefits of both the goal-based approach and the prescriptive approach

while not suffering from the disadvantages. Over-inclusion of standards recommendations would give the
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Fault Designa-
tion Solution Technique

Fcert−qual.est.inc Include a list of commonly-made erroneous assumptions. Fault-specific

Multi-inspector phase Redundancy

Applicant: Create comprehensive glossary. Certifier: In-
spect glossary before starting fragment inspections. Fault-specific

Require rigorous inspections of all documents included in
fragments.

Fault-specific/ Re-
dundancy

Fcert−qual.omi

Treat GKG instantiation as a system with inspections of
qualities list before deployment. Checklist derived from
qualities list in GKG paper.

Fault-specific/ Re-
dundancy

Fcert−qual.oth

Treat GKG instantiation as a system with inspections of
qualities list before deployment. Checklist derived from
qualities list in GKG paper.

Fault-specific/ Re-
dundancy

Fcert−chal.oth

Treat GKG instantiation as a system with inspections of
challenges list before deployment. Checklists derived from
GKG paper.

Fault-specific/ Re-
dundancy

Fcert−chal.omi

Treat GKG instantiation as a system with inspections of
challenges list before deployment. Checklists derived from
challenge categories in GKG paper.

Fault-specific/ Re-
dundancy

Fcert−dial.rev Link document safety case patterns to relevant challenges. Fault-specific

Require qualification of interoperable devices. No more
grandfathering (abbreviated 510(k)). Fault-specific

Fcert−dial.le Issue at least 2 challenges per fragment. Redundancy

Table 8.7: Faultcert mitigation strategies and the safety engineering techniques from which they are derived.

certification mechanism the same disadvantages that prescriptive standards have, thus defeating the point

of the filter repair cycle.

Feasibility and Yield Assessment

This analysis uses several metrics to assess feasibility and yield of generating faultcert mitigation strategies to

apply to GKGSEPE. Table 8.8 shows these metrics, the value at which each metric was measured, and what

property each metric is designed to assess.

Filter repair took 4 hours to complete and generated at least one mitigation strategy for each faultcert.

Thus, filter repair fulfilled both feasibility metrics – time and generation of non-trivial results. In this

analysis, filter repair addressed 100% of the analyzed faultscert, with an average of 1.286 mitigation strategies

per faultcert. Thus, filter repair achieved a non-zero yield.
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Metric Value Category

Hours taken to produce mitigation strategies 4 Feasibility

Total faultcert mitigation strategies 9 Feasibility

Average number of faultcert mitigation strategies
per faultcert

1.286 Feasibility/Yield

Percentage of faultscert with generated mitigation
strategies 100 % Feasibility/Yield

Mitigation strategies generated per hour 2.25 Feasibility/Yield

Table 8.8: Measurements for fault mitigation strategy generation for the GKGSEPE certification mechanism.

Limitations

In addition to the limitations stated in the Open Questions in this chapter (Open Question 8.1 through 8.15),

filter repair is subject to limitations on metric acceptability criteria (cf. section 7.2.6).

Open Question 8.16. In a filter model analysis, what metrics should analysts measure to determine the feasibility

and yield of filter repair?

Open Question 8.17. In a filter model analysis, what are the acceptability criteria for the metrics chosen to determine

feasibility and yield of filter repair?

In this analysis, filter repair addressed 100% of the analyzed faultscert. Assuming that the mitigation

strategies are 100% effective, this means that filter repair had a 100% success rate. Intuitively, this number

seems implausible. Fault elimination is preferable to fault tolerance in candidate systems, implying that fault

tolerance has a lower success rate than fault elimination.

However, there is no way to determine a priori the efficacy of a particular faultcert mitigation strategy for

certification mechanisms. In general, without a large-scale empirical evaluation, there is no way to empirically

determine the efficacy of any particular faultcert mitigation strategy. These strategies are well-studied for

candidate systems, so analysts could make educated guesses about strategy efficacy based on previous

applications to candidate systems. However, the strategies have never been examined for certification

systems; whether the strategies have similar levels of efficacy is an open question. Furthermore, this chapter

presents only one iteration of the filter repair cycle. The effect of subsequent iterations in reducing the

probability of unwarranted acceptance for certification mechanisms is an open question. A related open

question is the value of the termination criterion of the FRC, i.e., after how many iterations should analysts

terminate the FRC and proceed with deployment of the certification mechanism.
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Open Question 8.18. How effective are faultcert mitigation strategies?

Open Question 8.19. What is the effect of subsequent iterations of the filter repair cycle on the probability of

unwarranted acceptance?

Open Question 8.20. After how many iterations should analysts terminate the FRC?

8.6 Summary

This chapter presented:

• The concept of a fault mapping and how fault mapping contributes to the examination and under-

standing of faultscert.

• Examples of faulty safety case fragments.

• Examination of GKGSEPE faultscert through hypothetical certification of several evaluation safety cases.

• The faultcert mitigation strategies generated by filter repair.

• Measurements of feasibility and yield for the process of filter repair.

The sections throughout this chapter note 20 open questions about the concepts presented in the chapter.

As in Chapter 7, the questions fell into two broad categories:

1. Variance introduced by analyst expertise. This analysis was conducted by the author. The author

is not an expert in (a) safety case construction, (b) certification process, nor (c) faultcand mitigation

techniques. The validity and utility of the results of candidate system faultcand mitigation depend on the

expertise of the analyst; by analogy, the results of certification mechanism faultcert mitigation also depend

on the expertise of the analyst.

2. Fundamental unknowns. Due to the novelty of this analysis, the optimal way examine faultscert

and generate mitigation strategies for faultscert is unclear. Furthermore, the effects of the mitigation

strategies and the optimal amount of iterations to execute are unclear. In addition, the metrics used

for feasibility and yield might not be the right metrics, and the acceptability criteria for the metrics

presented are unknown.

Table 8.9 shows to which category each Open Question belongs.

The contribution of this work lies in the introduction of the filter model and the attendant comprehensive

analysis framework. The results presented in Chapter 7 and this chapter offer confidence that the filter

model is an effective framework for analysis and repair of certification mechanisms.
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Analyst Expertise Variance Fundamental Unknowns

8.5, 8.8, 8.9, 8.10 8.1, 8.2, 8.3, 8.4, 8.6, 8.7, 8.11, 8.12, 8.13,
8.14, 8.15, 8.16, 8.17, 8.18, 8.19, 8.20

Table 8.9: Categorization of the open questions in this chapter.
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Related Work

9.1 Prescriptive Standards

Papadopoulos and McDermid [83] summarize, compare, and contrast various standards across safety-critical

domains. The authors assert that “[i]t is accepted that only with respect to hardware safety it is possible to

quantify and apply reliability prediction in accessing whether safety requirements have been met” and that

“[e]ffective defense against [systematic] faults can only be assured by the implementation of the quality and

safety management conditions specified within the standards.” These assertions, made in 1999 (although

not for the first time), are the reason for continuing difficulty with system dependability assessment and, by

extension, certification.

Commonalities between the standards were:

• The notion of certification, based on evidence of both followed processes and evidence about the

system integrity itself.

• The notion of safety as freedom from unacceptable risk.

• System safety requirements and how to derive them.

• Development and safety processes at a structural and semantic level.

• The presence of development assurance/integrity levels.

• Requirement of system verification activities driven by the functional safety and integrity requirements.

• Standards present the structure of a safety case, whether explicitly or implicitly.

Areas of divergence were:

• Development and safety process.

• Derivation and allocation of functional safety requirements.
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• Verification and validation.

• Certification and structure of the safety case.

• Treatment of integrity levels (the primary area of difference).

German [5] presents the results of practical application of static analysis to various safety-critical systems

in the aircraft domain. The systems varied in size from 3,000 to 300,000 lines of code in various languages.

German’s prime result is that a comparison of static analyses of code adhering to DO-178B Levels A and B

found no discernible difference between the two levels. This result indicates that “[e]ven the most extensive

testing does not remove the anomalies found by static code analysis.” This result heavily implies that

adhering to more rigorous prescriptive standards does not necessarily result in a higher-assurance system,

especially for certain classes of faults. No other such analyses exist, let alone comprehensive analyses of the

faults of prescriptive standards.

Rouvroye and Brombacher [84] present the problem of standards for safety instrumented systems (SIS).

SIS are used in the process industry to perform safety functions. Some common standards for these systems,

e.g., the German DIN [85], do not require quantitative analysis, relying instead on qualitative analysis

and expert judgment. Other standards, e.g., IEC 61508 [53], prescribe quantitative risk analysis but do not

prescribe analysis methods. Adherence to these standards results in the safety of a SIS being quantified into

a “safety integrity level” (SIL); guidelines on determination of a system’s SIL are the only guidelines given.

The authors give an overview of analysis techniques, including:

• Expert analysis.

• FMEA.

• Parts count analysis [86].

• Reliability block diagrams [87].

• Hybrid analysis [53].

• FTA.

• Markov analysis [88].

• Enhanced Markov Analysis [89].

The authors compare these techniques using a 2 out of 3 (2oo3) system with a single sensor and single

actuator/final element, finding the following:

• Different techniques account for different aspects of system behavior, meaning that techniques are

complementary.

• Only quantitative techniques can calculate probabilities of dangerous failures. However, the techniques

are based on models that are based on possibly uncertain data.
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• Parts count analysis resulted in the highest (i.e., worst) time-average probability of failure on demand

(PFD) and thus the lowest SIL, SIL0. EMA resulted in a range that contained the highest (i.e., best) PFD

and thus the highest SIL, SIL2.

The main conclusion that the authors draw is that, even with the same set of data, different analysis

techniques can result in different integrity levels. This result is shown by the disparity between the parts

count analysis and EMA results.

9.2 Goal-Based Standards

Sokolsky, Lee, and Heimdahl [90] summarize problems in the broad area of software certification, and the

specific area of medical devices. Challenges in software certification include:

• Lack of objectivity in software dependability assessment.

• Doubts if there is a correlation between practices required by standards and dependability (adherence

assumption).

• Standards discourage adoption of new, more effective techniques because of the regulatory risk

associated with deviation from the relevant standard.

• Model-based development is used to decrease cost (financial and temporal) and increase dependability.

However, there is no established solution to the model validation problem.

Problems specific to medical devices include:

• Devices that are too safe; physicians may need to override restrictions in order to provide effective,

creative care.

• Patients are the largest source of uncertainty; this source of uncertainty is difficult to model.

• Medical devices increasingly require network interoperability. However, different device developers

do not necessarily design devices for interoperability.

Sokolsky, Lee, and Heimdahl propose an evidence-based approach, essentially advocating safety cases. The

paper summarizes assurance case definitions, approaches, and patterns. The paper also proposes certification

of virtual devices, i.e., scenarios based on types of devices that are networked together.

Penny, et al. [7] recognize the magnitude of the paradigm shift from the prescriptive to goal-based

approach. They cite past experience, which shows that while the goal-based approach remedies the problems

of prescriptive standards, the magnitude of the shift indicates that industry needs significant support to ease

the transition. Penny, at al. discuss the motivation behind the goal-based approach, illustrating with an

example from CAP 670. The paper states that prescriptive standards:
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• Only require developers to carry out the mandated prescriptions in order to fulfill legal responsibility.

• Cannot cope with innovation; as a result, they range from inappropriate to dangerous in technically

innovative industries.

• Are a snapshot of best practices at the time they are written; as a result, they become outdated quickly

in industries with rapidly changing best practices.

• Create a barrier to open markets, especially when they are overly restrictive.

The goal-based approach suffers none of these disadvantages, but the creation of a convincing safety case

is a difficult process. CAP 670 SW 01 provides guidance on creating a safety case that fulfills the safety

requirements of CAP 670 without prescribing how the requirements are to be fulfilled. Penny, et al. present

an example — air traffic management software — and introduce the concept of the assurance evidence level

(AEL). Informally, the AEL represents the rigor of supporting arguments and evidence; the higher the AEL,

the greater the rigor.

McDermid [91] addresses evidence regarding variation in safety integrity levels and examines assump-

tions central to the standards-based approach. The two main assumptions are:

• Processes for higher SILs produce software of higher integrity.

• Processes for SILs are more expensive, and are thus only warranted with severe failure consequences.

McDermid cites work that shows little correlation between “obvious” process factors and failure rate [92], and

work that shows no significant cost variations between SILs 0, 2, and 3. Neither assessment is definitive, but

both challenge the central standards assumptions. Essentially, standards prescriptions are not safety-focused,

but quality- and repeatability-focused.

The paper also discusses potential advantages of product-based (as opposed to process-based) evidence

for safety assessment, i.e., the goal-based approach. At a high level, this approach treats software as any

other system component.

Lastly, McDermid discusses the ALARP principle, along with how it can be shown, in software-intensive

systems, that risks have been reduced ALARP.

9.3 Assurance Cases

Kelly [13] defines the role and purpose of a safety case:

A safety case should communicate a clear, comprehensive and defensible argument that a system
is acceptably safe to operate in a particular context.

Various standards, including 00-55 [60] provide different pieces of this definition. Following from the

definition, Kelly [13] states that the three main pieces of a safety case are:
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• Safety requirements and objectives.

• The safety argument.

• Safety evidence.

Safety evidence supports the safety argument, which argues that the system fulfills the safety requirements

and objectives. Argument and evidence are closely coupled; Kelly [13] states:

Argument without supporting evidence is unfounded, and therefore unconvincing. Evidence
without argument is unexplained it can be unclear that (or how) safety objectives have been
satisfied.

Kelly recommends that GSN be used for recording safety arguments because natural language in safety

cases often becomes ambiguous and unclear. Natural language can also contain many cross-references to

evidence and other parts of the safety argument.

Kelly [13] also presents the problems with producing a safety case at the end of the development lifecycle,

including:

• Significant redesign due to the inability of developers to construct a satisfactory safety argument.

• Final safety cases with less robust safety arguments, due to safety case developers having no influence

over the design of the system.

• Safety cases with lost safety rationale, due to lack of recording of rationale at the time of system design.

Based on industry experience, Kelly recommends incremental safety case development, which integrates the

safety case development into the system development through three safety cases: the preliminary safety

case, the interim safety case, and the operational safety case. GSN can be used to record the preliminary

safety case; the interim and operational safety cases can be evolved from the preliminary safety case using

GSN as well.

Kelly and McDermid [11] introduce the concept of safety case patterns, i.e., pieces of safety arguments

that are commonly reused. The paper observes that many arguments reuse parts of arguments informally.

Informal reuse has the following problems:

• Opportunities for reuse must be identified manually.

• Informal reuse is ad hoc and thus not not predictable nor dependable.

• Informal reuse can be inappropriately applied.

• Informal reuse is not traceable, nor does informal reuse offer consistency or process maturity.

• There exists no mechanism for recording reusable argument parts, resulting in possible loss of knowl-

edge.

Safety case patterns are designed to remedy these problems. These patterns capture successful safety

argument approaches, including:
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• Solutions that evolved over time.

• Solutions involving company expertise.

• Approaches that proved successful for certification.

• Special skills and knowledge associated with particular domains.

Kelly and McDermid present several patterns, encoding their patterns in GSN for clarity and consistency of

the pattern library and using the documentation format proposed by Gamma, et al. [93]. The appendix of

the paper presents the ALARP pattern. Kelly and McDermid conclude that patterns will help to improve

safety case construction and reuse.

Bishop, Bloomfield, and Guerra [8] summarize the characteristics of the goal-based approach and

contrast the goal-based approach with the prescriptive approach and vulnerability assessment. The goal-

based approach is top down and entails demonstrating, through argument and evidence, that safety goals

are fulfilled by a candidate system. The prescriptive approach is also top down and entails demonstrating

compliance to known safety standards. Vulnerability assessment is bottom up and entails demonstrating

that the existence of potential vulnerabilities within a system is acceptably safe.

The goal-based approach is based on the idea of supporting sophisticated arguments about characteristics

of a candidate system, e.g., safety. Toulmin’s earlier work on argumentation [94] identifies the general shape

of an argument, regardless of application domain (e.g., scientific, legal, etc.):

• A claim, i.e., an assertion that the arguer makes.

• Grounds, i.e., the facts that are purported to support a claim.

• A warrant, i.e., the reasoning that links the grounds to the claim.

• Backing, i.e., support for the warrant.

Bishop, Bloomfield, and Guerra focus on the claims-argument-evidence notation (CAE), presenting its

genesis from Toulmin: claims are the same as Toulmin’s claims, evidence is the same as Toulmin’s grounds,

and argument combines Toulmin’s warrant and backing. GSN has a similar genesis.

Bishop, Bloomfield, and Guerra also present the structured approach to safety cases used at Adelard.

The paper notes open issues, including:

• The lack of formality and applicable models for assurance argumentation.

• The difficulty in transitioning from the predominant prescriptive approach to the goal-based approach,

and the role of standards, both prescriptive and goal-based, in this transition.

• Using assurance case technology for system properties other than safety, e.g., reliability, dependability,

security, etc.
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Hawkins, et al. [62] introduce assured safety arguments to solve the difficulties with a single safety

argument. The traditional structure of the safety argument includes the reasons for confidence in the claims

of the safety argument; Hawkins, et al. decompose the traditional structure into a safety argument and a

confidence argument. The confidence argument separates out the justification for confidence in the safety

argument.

The stated difficulties of the single safety argument are:

• Arguments become large and unwieldy, causing rambling arguments, omission of necessary elements,

inclusion of unnecessary material “just in case,” and difficulty reviewing (e.g., for certification).

• Safety and confidence portions of the argument are not differentiated, causing both portions to be

poorly prepared, unfocused argumentation, and difficulty building and maintaining the argument.

Hawkins, et al. separate the safety argument from the confidence argument, allowing mitigation of these

difficulties. The confidence argument is linked back to the safety argument by assurance claim points

(ACP). The paper provides several patterns for construction of confidence arguments. An example of how a

confidence argument could be structured is presented; the example is from the safety/confidence arguments

for a hypothetical drug infusion pump.

9.4 Dependability Assessment

Bloomfield, Littlewood, and Wright [63] argue that quantitative assessment of confidence in dependability

case claims is necessary for proper risk assessment. The authors model judgment of safety integrity levels

(SIL); the higher the estimated SIL, the higher assurance a system is required to be. From prior experimental

work, a log-normal model is suggested as a good distribution for how experts make probability of failure on

demand, or pfd, judgments. The log-normal distribution has different mean and mode values for variances

greater than zero. The difference between the mean and the mode models the confidence in the judgment,

e.g., if most experts judge the system to be SIL2 but are less than 67 percent confident in that judgment, then

the mean pfd is actually SIL1. This means that a system that is judged to be SIL(n+1) can be considered to be

a SIL(n) system with high confidence. This paper assumes a perfectly trustworthy test oracle and a perfectly

representative operational testing profile.

Littlewood and Wright [64] examine the use of multiple diverse argument legs to support dependability

claims. By analogy to fault tolerance through diversity, some make the assertion that multiple diverse

arguments supporting a claim increase the confidence in the claim. The problem is that there is no theoretical

basis to this assertion. In this paper, the authors model the structure of a two-legged argument example using
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a six-variable Bayesian belief network (BBN). The example’s legs are (1) a testing leg and (2) a verification

leg, i.e., formal verification against the system’s specification. The results of the model analysis are:

• A diverse argument leg can increase confidence, e.g., reduce doubt by almost two-thirds in one

particular example.

• An entirely supportive second leg can reduce the overall confidence when the correlation between

specification and oracle correctness is sufficiently high.

• Nonsupportive legs can also substantially decrease confidence.

• For perfection claims (estimation of pfd equal to zero), failure-free testing always constitutes a support-

ive argument leg, and ideal testing evidence added to a positive verification outcome always improves

upon the confidence of the verification leg alone, even if the verification leg is not supportive.

The authors do mention ways that the systems/arguments analogy breaks down: (a) lack of composability

and (b) lack of proven efficacy of the approach. They also mention the fact that they do not know the

extent to which their counter-intuitive results are simply model artifacts. This work also assumes a perfectly

trustworthy test oracle and a perfectly representative operational testing profile.

Bishop, et al. [65] continue this work on confidence by placing their conservative pfd values on a formal

footing. The approach is extremely conservative when only a priori beliefs are considered. With evidence of

failure-free working, the approach is much less conservative, allowing the expert to treat as true stronger

claims of pfd. If the expert has a strong enough prior belief that the system is perfect (completely fault-free),

he can treat as true even stronger claims after the same evidence of failure-free working. However, this

particular paper only treats testing as evidence in its formalism; formal verification and standards adherence

are mentioned but do not make an appearance in the formalism, other than as a possibility for defining prior

belief that the system is perfect. As before, this work assumes that the test oracle is totally trustworthy, and

the operational testing profile accurately represents real use.
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Conclusion

This work defines the filter model, a new framework for researching safety-critical systems certification, and

evaluates the filter model for feasibility and yield. The fundamental assertion of the filter model is that the

mechanisms that regulators use for critical systems certification are, themselves, critical systems. Thus,

certification mechanisms are amenable to systematic safety engineering.

The work in this thesis supports the following conclusions:

1. The filter model is a feasible model for representing certification mechanisms as systems.

2. Adapting and applying common hazard analysis techniques to certification mechanisms is feasible

and yields non-trivial results.

3. Adapting and applying common safety engineering practices to certification mechanisms is feasible.

This thesis makes no claims beyond these conclusions. The analysis presented in this work is the first of its

kind, so the conclusions are necessarily presented with significant caveats. Section 10.1 summarizes the

results supporting these conclusions, section 10.2 summarizes the limitations of these conclusions, and 10.3

summarizes the avenues of future work.

10.1 Results

The general categories of results that this thesis recognizes are:

• Model feasibility.

• Technique feasibility.

• Technique yield.

• Problem scope.
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• Other contributions.

Each of the following subsections briefly summarizes these results.

10.1.1 Model Feasibility

The techniques applied and examined in Chapters 7 and 8 were examined in part to assess the feasibility of

the central assumption of the filter model, stated in Chapter 1.

Any given certification mechanism can be viewed
as a safety-critical system.

The techniques were all found to be feasible and have non-zero yield. The hazard analysis techniques in

particular depended on an information flow model; another important result of this thesis is the following,

reproduced from Chapter 7:

Analysts can derive an information flow model for any certification
mechanism.

Thus, the filter model was found to be a feasible model for representing certification mechanisms as

safety-critical systems.

10.1.2 Technique Feasibility

The work in this thesis applied safety engineering techniques to an instantiation of the GKG certification

mechanism, GKGSEPE. Chapter 7 presented the results of applying hazard analysis techniques – HazOp,

FTA, and FMECA – to GKGSEPE, and Chapter 8 presented the results of applying fault treatment – fault

elimination and fault tolerance – to GKGSEPE. Each hazard analysis technique was found to be feasible.

Generating fault elimination and fault tolerance strategies to apply to GKGSEPE was also found to be feasible.

The feasibility of other hazard analysis techniques was not examined; neither was the feasibility of generating

fault treatment strategies from fault avoidance or fault forecasting.

10.1.3 Technique Yield

The safety engineering techniques examined in Chapters 7 and 8 were examined for yield as well as

feasibility. Each hazard analysis technique was found to have a non-zero yield. HazOp and FTA yield were

measured in the amount of faultscert discovered. FMECA yield was measured in the organization of faultscert

and failure mode discovery.

The generation of fault treatment strategies was also found to have a non-zero yield. At least one strategy

was generated for each faultcert that was analyzed.
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Analyst Expertise Variance Fundamental Unknowns

7.5, 7.6, 7.7, 7.8, 7.14, 7.15, 7.18, 7.19,
7.21, 8.5, 8.8, 8.9, 8.10

7.1, 7.2, 7.3, 7.4, 7.9, 7.10, 7.11, 7.12,
7.13, 7.16, 7.17, 7.20, 8.1, 8.2, 8.3, 8.4, 8.6,
8.7, 8.11, 8.12, 8.13, 8.14, 8.15, 8.16, 8.17,
8.18, 8.19, 8.20

Table 10.1: Categorization of the open questions in this thesis.

10.1.4 Problem Scope

The analysis presented in Chapters 7 and 8 was partially an exploratory analysis. Thus, the open questions

noted in the analysis are a category of results in themselves. This thesis produced 41 open questions. Each

question was categorized according to whether the question was about (a) variance introduced by analyst

expertise or (b) fundamental unknowns. Thirteen questions were about variance and 28 questions were

about fundamental unknowns. Table 10.1 summarizes this categorization. These results can be interpreted

in three different ways:

• First, the open questions provide a foundation for placing the other results in context. While incomplete,

the foundation did not exist before the analysis in this thesis.

• Second, the open questions define the limitations to the results presented in this thesis. Section 10.2

expands on these limitations.

• Third, the open questions present avenues for future work. Answering these questions would expand

understanding of the certification process. Section 10.3 expands on avenues for future work.

10.1.5 Other Contributions

Two other results can be gleaned from viewing this thesis holistically:

• Additional insight into GKG. GKG was originally intended to provide a definition for the term,

“compelling.” The process of (a) creating a partial instantiation of GKGSEPE and (b) analyzing GKGSEPE

provided insight into the GKG mechanism itself, culminating in several recommended repairs to the

mechanism.

• Certification analysis framework. To the author’s knowledge, the filter model is the first framework

capable of analyzing and evaluating any certification mechanism. The introduction of the framework

in this thesis paves the way for comprehensive analysis and comparison of all certification mechanisms.

Section 10.3.3 elaborates on future filter model analyses, and section 10.3.5 elaborates on future

comparison of standards, which is enabled by the existence of the filter model.
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10.2 Limitations

The general categories of caveats that this thesis recognizes are:

• Scope.

• Specimen certification mechanism.

• Candidate system.

• Technique application.

• Results metrics.

Each of the following subsections briefly summarizes these caveats.

10.2.1 Scope

Ideally, the claim of this thesis would be that the filter model enables feasible and comprehensive analysis

and repair for certification mechanisms in general. Assessing this claim requires controlled experiments,

culminating in statistical assessment of the effect of filter analysis and repair on certification mechanisms.

However, such experiments must include comparison to control groups. Every element in a filter model

analysis introduces some variance. A comprehensive study requires control groups for every source of

variance:

• Specimen certification mechanism(s). Certification mechanisms certainly vary across domains, and

may vary widely in their ability to filter unfit systems.

• Certifiers. The group(s) of certifiers that instantiate and use the specimen certification mechanism(s)

may vary widely in their abilities.

• Candidate system(s). The characteristics of candidate systems, e.g., complexity, vary across domains,

and within domains.

• Developers. The group(s) of developers that engineer the candidate system(s) may vary widely in

their capabilities.

Additionally, the novelty of this analysis means that the limits of variance-introducing elements is not

known.

10.2.2 Specimen Certification Mechanism

This work analyzes GKG as the specimen certification mechanism. GKG was chosen in part because it

has never been evaluated, but this means that whether GKG is better or worse than any other certification



Chapter 10 Conclusion 126

mechanism is unknown. In addition, the instantiation of GKG is incomplete; a comprehensive analysis

would include a complete instantiation.

10.2.3 Candidate System

This work analyzes DAIS as a candidate system for certification. As DAIS is both a novel type of system and

one that was developed in a research context, standard assumptions about development process are not

applicable.

10.2.4 Application of Techniques

The hazard analysis techniques used in this work – HazOp, FTA, and FMECA – are well-established in the

literature and in the safety-critical systems industry. The same goes for the safety engineering techniques

used in this work. However, application of these techniques to a new domain raises questions about the

exact methods that analysts should use to apply the techniques. In particular:

• This work makes no claim that the inputs to the techniques are the correct or optimal set of inputs.

• The techniques themselves may not be optimal for filter analysis; there may already exist other

techniques that are more amenable to adaptation for use in filter analysis. Also, future filter analyses

may identify specialized techniques for filter analysis.

10.2.5 Results Metrics

The metrics used to measure how well the filter model analysis and repair worked are only one set of possible

metrics. The novelty of the work leaves questions about what the measurements mean, including:

• What are acceptable values/ranges for the metrics?

• What metrics apply to which techniques?

• Are the metrics used in this work necessary or sufficient?

• Are there other metrics that could be used in such an analysis?

10.2.6 Other Limitations

In addition to these limitations, there may be others that are not recognized in this work. The caveats

presented in this section place this work in a greater context – examining the characteristics of certification

mechanisms. Much of this context is unexplored. As a first foray into this greater context, this work presents

the above caveats as areas that warrant future work.
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10.3 Future Work

All of the open questions presented throughout the thesis imply future directions for this research. This

section summarizes and focuses those questions into research questions in their own right.

Areas of future work include:

• Refining the filter model.

• Refining the process of filter model analysis.

• Filter model analysis of other certification mechanisms.

• Measuring benefits and drawbacks of safety cases.

• Comparison of standards-based certification to goal-based certification.

Each of the following subsections briefly summarizes these areas of future work.

10.3.1 Refining the Filter Model

The filter model makes a number of assumptions. Chief among these assumptions is that certification is a

one-time event, occurring at the end of system development and resulting in a binary decision: accept or

reject. This assumption, while helpful in this analysis, may be unwarranted; Kelly and others recommend

that safety cases be developed during system development, and checked with regulators “early and often”

[13]. One obvious avenue for future work is refining the structure of the filter model to include iterative

filtration, i.e., multiple attempts to certify a candidate system.

Refining the filter model itself could also prove to be a source for improvement of the design of certification

mechanisms. Recall from Chapter 7:

There exist no generally accepted design methods for
certification mechanisms.

The existence of the filter model enables systematic design of certification mechanisms. As the filter model

is novel, such design would be rudimentary. Refining the filter model would improve the certification

mechanism design process.

10.3.2 Refining Filter Model Analysis

This work is the first filter model analysis of certification mechanisms; thus, the results are of an exploratory

nature. The hazard analyses, safety engineering techniques, and metrics used were largely used because of

necessity. This analysis has enabled future work that:
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• Studies the effect of variance in how the presented techniques and metrics are used.

• Identifies and studies the use of different techniques and metrics.

10.3.3 Filter Model Analysis of Other Certification Mechanisms

The filter model is designed to be a general model that is applicable to all certification mechanisms. Of partic-

ular interest are extant certification mechanisms; filter model analysis could prove fruitful in understanding

which of today’s certification mechanisms work, why they work, and how to fix the mechanisms that do not

work. Filter model analysis of extant standards, both prescriptive and goal-based, is an area of future work,

as is filter model analysis of any new certification mechanisms.

A sub-area of analyzing a wide variety of certification mechanisms is analyzing certification mechanisms

for a particular domain; standards such as DO-178B [23] were designed to be applicable to the specific domain

of “airborne systems.” Establishing conclusions about a particular domain’s certification mechanisms

requires a representative sample of candidate systems from that domain. Such a study would examine the

certification decisions of multiple certification mechanisms that are supplied the representative sample.

10.3.4 Benefits and Drawbacks of Safety Cases

One common thread in the safety case literature is the assumption that safety cases are generally beneficial

to system development. Intuitively, this seems to be true; the very act of creating a safety case structures the

thought processes of system developers to think about how a particular system can convincingly be shown

to fulfill a safety case. However:

There are no studies that confirm or refute the assumption of the superiority of
a goal-based approach in general.

The idea of goal-based certification is, intuitively, a good one, but the benefits of goal-based certification

depend in part on the benefits of safety cases. If safety case construction turns out to be extraordinarily

expensive for comparatively little benefit, the benefit of goal-based certification will be called into question.

10.3.5 Standards-Based vs. Goal-Based Certification

Lastly, this work enables the possibility of a comparison of prescriptive standards to goal-based standards.

The critical systems community is moving to goal-based standards largely because of intuition [6]. However:

There are no studies that show a significant difference, either positive or
negative, between standards-based certification and goal-based certification.
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A scientific comparison of standards-based certification to goal-based certification would be beneficial in

settling the debate about which approach is better. Metrics for this comparison include (but are not limited

to) cost to the certifier, cost to the developer, residual risk in certified systems, and rates of unwarranted

decisions (both positive and negative).
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A GKG HazOp

This appendix lists the questions generated by applying HazOp to GKGSEPE. The parameters used for the

HazOp analysis were introduced in Chapter 7 and are reproduced here:

1. Safety case.

2. Fragment.

3. Fragment selector.

4. Phased inspection.

5. Quality.

6. Dialectic.

7. Challenge.

8. Conclusion combiner.

The guide words used are the standard guide words introduced in Chapter 2; the guide words are reproduced

here:

1. No or not.

2. More.

3. Less.

4. As well as.

5. Part of.

6. Reverse.

7. Other than.

8. Early.

9. Late.

10. Before.

11. After.
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Each entry in the table gives each question a unique question designation (q1 through q88). Each question is

categorized as either irrelevant or relevant. If a question is irrelevant, the entry contains N/A. Otherwise, the

entry contains Regular and is answered: either Yes if the question implies a faultcert or No if the question

does not imply a faultcert.



Q# Parameter Guide Word Meaning Question Category Fault?

q1 Safety Case NO OR NOT
Complete negation 

of the design intent

What if the submitted 

safety case does not 

address risk?

N/A N/A

q2 MORE
Quantitative 

increase

What if the submitted 

safety case over-mitigates 

risk?

Regular No

q3 LESS
Quantitative 

decrease

What if the submitted 

safety case under-mitigates 

risk?

Regular No

q4 AS WELL AS

Qualitative 

modification/ 

increase

What if the submitted 

safety case needs more 

relevant parts?

Regular No

q5 PART OF

Qualitative 

modification/ 

decrease

What if the submitted 

safety case has only some 

relevant parts?

Regular No

q6 REVERSE
Logical opposite of 

the design intent

What if the submitted 

safety case argues for risk?
N/A N/A

q7

OTHER 

THAN

Complete 

substitution

What if the submitted 

safety case is corrupted?
Regular Yes

q8 EARLY
Relative to the clock 

time

What if the submitted 

safety case is filtered too 

early?

N/A N/A

q9 LATE
Relative to the clock 

time

What if the submitted 

safety case is filtered too 

late?

N/A N/A

q10 BEFORE
Relating to order or 

sequence

What if the submitted 

safety case is filtered before 

it is complete?

N/A N/A

q11 AFTER
Relating to order or 

sequence

What if the submitted 

safety case is filtered after 

it is complete?

Regular No

q12 Fragment NO OR NOT
Complete negation 

of the design intent

What if the current 

fragment does not support 

any claims?

Regular No

q13 MORE
Quantitative 

increase

What if the current 

fragment supports more 

than a single sub-claim?

Regular No

q14 LESS
Quantitative 

decrease

What if the current 

fragment supports less 

than a single sub-claim?

N/A N/A



q15 AS WELL AS

Qualitative 

modification/ 

increase

What if the current 

fragment supports part of 

another sub-claim?

N/A N/A

q16 PART OF

Qualitative 

modification/ 

decrease

What if the current 

fragment is only part of the 

support for a single sub-

claim?

N/A N/A

q17 REVERSE
Logical opposite of 

the design intent

What if the current 

fragment does not support 

a single sub-claim (!= 1)?

N/A N/A

q18

OTHER 

THAN

Complete 

substitution

What if the current 

fragment is corrupted?
Regular Yes

q19 EARLY
Relative to the clock 

time

What if the current 

fragment is examined too 

early?

N/A N/A

q20 LATE
Relative to the clock 

time

What if the current 

fragment is examined too 

late?

N/A N/A

q21 BEFORE
Relating to order or 

sequence

What if the current 

fragment is examined 

before one that it depends 

on?

Regular Yes

q22 AFTER
Relating to order or 

sequence

What if the current 

fragment is examined after 

one it depends on?

Regular Yes

q23 Quality NO OR NOT
Complete negation 

of the design intent

What if the current quality 

is unnecessary for risk 

reduction?

Regular No

q24 MORE
Quantitative 

increase

What if the current quality 

is established as greater 

than needed?

Regular No

q25 LESS
Quantitative 

decrease

What if the current quality 

is established as less than 

needed?

Regular No

q26 AS WELL AS

Qualitative 

modification/ 

increase

What if the current quality 

is too stringent?
Regular No

q27 PART OF

Qualitative 

modification/ 

decrease

What if the current quality 

is not stringent enough?
Regular Yes

q28 REVERSE
Logical opposite of 

the design intent

What if the current quality 

is antithetical to reduction 

of risk?

N/A N/A



q29

OTHER 

THAN

Complete 

substitution

What if the current quality 

is corrupted?
Regular Yes

q30 EARLY
Relative to the clock 

time

What if the current quality 

is examined for too early?
N/A N/A

q31 LATE
Relative to the clock 

time

What if the current quality 

is examined for too late?
N/A N/A

q32 BEFORE
Relating to order or 

sequence

What if the current quality 

is examined for before one 

that it depends on?

N/A N/A

q33 AFTER
Relating to order or 

sequence

What if the current quality 

is examined for after one 

that it depends on?

N/A N/A

q34 Challenge NO OR NOT
Complete negation 

of the design intent

What if the current 

challenge does not 

accurately represent the 

certifier's definition of 

reasonable?

N/A N/A

q35 MORE
Quantitative 

increase

What if the current 

challenge exceeds the 

certifier's definition of 

reasonable?

N/A N/A

q36 LESS
Quantitative 

decrease

What if the current 

challenge does not meet 

the certifier's definition of 

reasonable?

N/A N/A

q37 AS WELL AS

Qualitative 

modification/ 

increase

What if the current 

challenge is composed of 

other challenges?

N/A N/A

q38 PART OF

Qualitative 

modification/ 

decrease

What if the current 

challenge is part of another 

challenge?

N/A N/A

q39 REVERSE
Logical opposite of 

the design intent

What if the current 

challenge is totally 

unreasonable?

N/A N/A

q40

OTHER 

THAN

Complete 

substitution

What if the current 

challenge is corrupted?
Regular Yes.

q41 EARLY
Relative to the clock 

time

What if the current 

challenge is issued too 

early?

N/A N/A



q42 LATE
Relative to the clock 

time

What if the current 

challenge is issued too 

late?

N/A N/A

q43 BEFORE
Relating to order or 

sequence

What if the current 

challenge is issued before 

one that it depends on?

N/A N/A

q44 AFTER
Relating to order or 

sequence

What if the current 

challenge is issued after 

one that it depends on?

N/A N/A

q45

Fragment 

Selector
NO OR NOT

Complete negation 

of the design intent

What if the fragment 

selector does not select 

related argument 

elements?

N/A N/A

q46 MORE
Quantitative 

increase

What if the fragment 

selector selects too many 

argument elements?

N/A N/A

q47 LESS
Quantitative 

decrease

What if the fragment 

selector selects too few 

argument elements?

N/A N/A

q48 AS WELL AS

Qualitative 

modification/ 

increase

What if the fragment 

selector selects more 

argument elements than it 

should?

N/A N/A

q49 PART OF

Qualitative 

modification/ 

decrease

What if the fragment 

selector selects fewer 

argument elements than it 

should?

N/A N/A

q50 REVERSE
Logical opposite of 

the design intent

What if the fragment 

selector selects totally 

unrelated argument 

elements?

N/A N/A

q51

OTHER 

THAN

Complete 

substitution

What if the fragment 

selector algorithm is 

corrupted?

N/A N/A

q52 EARLY
Relative to the clock 

time

What if the fragment 

selector selects a fragment 

too early?

N/A N/A

q53 LATE
Relative to the clock 

time

What if the fragment 

selector selects a fragment 

too late?

N/A N/A



q54 BEFORE
Relating to order or 

sequence

What if the fragment 

selector selects a fragment 

before one that it depends 

on?

N/A N/A

q55 AFTER
Relating to order or 

sequence

What if the fragment 

selector selects a fragment 

after one that it depends 

on?

Regular No

q56

Phased 

Inspection
NO OR NOT

Complete negation 

of the design intent

What if the phased 

inspection is not able to 

establish any qualities?

Regular No

q57 MORE
Quantitative 

increase

What if the phased 

inspection establishes more 

qualities than intended?

Regular No

q58 LESS
Quantitative 

decrease

What if the phased 

inspection establishes 

fewer qualities than 

intended?

Regular No

q59 AS WELL AS

Qualitative 

modification/ 

increase

What if the phased 

inspection establishes 

qualities more strongly 

than required?

Regular No

q60 PART OF

Qualitative 

modification/ 

decrease

What if the phased 

inspection establishes 

qualities less strongly than 

required?

Regular No

q61 REVERSE
Logical opposite of 

the design intent

What if the phased 

inspection establishes the 

opposite of all the 

qualities?

Regular No

q62

OTHER 

THAN

Complete 

substitution

What if the phased 

inspection is not conducted 

correctly?

Regular Yes

q63 EARLY
Relative to the clock 

time

What if the phased 

inspection is conducted too 

early?

N/A N/A

q64 LATE
Relative to the clock 

time

What if the phased 

inspection is conducted too 

late?

N/A N/A

q65 BEFORE
Relating to order or 

sequence

What if the phased 

inspection is conducted 

before the dialectic?

Regular No



q66 AFTER
Relating to order or 

sequence

What if the phased 

inspection is conducted 

after the dialectic?

N/A N/A

q67 Dialectic NO OR NOT
Complete negation 

of the design intent

What if the dialectic does 

not end?
N/A N/A

q68 MORE
Quantitative 

increase

What if the dialectic issues 

more challenges than 

necessary?

Regular No

q69 LESS
Quantitative 

decrease

What if the dialectic issues 

fewer challenges than 

necessary?

Regular Yes

q70 AS WELL AS

Qualitative 

modification/ 

increase

What if the dialectic results 

in more agreement than 

necessary?

N/A N/A

q71 PART OF

Qualitative 

modification/ 

decrease

What if the dialectic results 

in less agreement than 

necessary?

Regular Yes

q72 REVERSE
Logical opposite of 

the design intent

What if the dialectic does 

not challenge the 

fragment?

Regular Yes

q73

OTHER 

THAN

Complete 

substitution

What if the dialectic is 

corrupted?
Regular Yes

q74 EARLY
Relative to the clock 

time

What if the dialectic is 

conducted too early?
N/A N/A

q75 LATE
Relative to the clock 

time

What if the dialectic is 

conducted too late?
N/A N/A

q76 BEFORE
Relating to order or 

sequence

What if the dialectic is 

conducted before the 

phased inspection?

N/A N/A

q77 AFTER
Relating to order or 

sequence

What if the dialectic is 

conducted after the phased 

inspection?

N/A N/A

q78

Conclusion 

Combiner
NO OR NOT

Complete negation 

of the design intent

What if the conclusion 

combiner cannot combine 

the conclusions?

N/A N/A

q79 MORE
Quantitative 

increase

What if the conclusion 

combiner combines too 

many conclusions?

N/A N/A

q80 LESS
Quantitative 

decrease

What if the conclusion 

combiner combines too few 

conclusions?

N/A N/A



q81 AS WELL AS

Qualitative 

modification/increa

se

What if the conclusion 

combiner overstates the 

conclusions?

Regular Yes

q82 PART OF

Qualitative 

modification/decrea

se

What if the conclusion 

combiner understates the 

conclusions?

Regular No

q83 REVERSE
Logical opposite of 

the design intent

What if the conclusion 

combiner cannot combine 

the conclusions correctly?

Regular Yes

q84

OTHER 

THAN

Complete 

substitution

What if the conclusion 

combiner corrupts 

conclusions?

Regular Yes

q85 EARLY
Relative to the clock 

time

What if the conclusion 

combiner is used too early?
N/A N/A

q86 LATE
Relative to the clock 

time

What if the conclusion 

combiner is used too late?
N/A N/A

q87 BEFORE
Relating to order or 

sequence

What if the conclusion 

combiner is used before the 

input fragments are 

inspected/dialected?

N/A N/A

q88 AFTER
Relating to order or 

sequence

What if the conclusion 

combiner is used after the 

input fragments are 

inspected/dialected?

N/A N/A



B GKG Fault Tree Analysis

This appendix presents the fault tree generated by applying FTA to GKGSEPE. The fault tree is presented in

textual form; the general format is below:

• [BOOLEAN OPERATOR] [EVENT]

– [CONTRIBUTING EVENT 1]

– [CONTRIBUTING EVENT 2]

– ...

– [CONTRIBUTING EVENT N]

[BOOLEAN OPERATOR] represents the boolean operator that operates on [CONTRIBUTING EVENT 1]

through [CONTRIBUTING EVENT N], which are contributing events to [EVENT]. The most-indented

events are basic; the rest are compound.
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FAULT TREE 

Where C = Certifier, A = Application, OR, AND, etc. = FTA gates. (Text) = placeholder 

 GKG allows certification of a product with unacceptable residual risk 

OR 

o OR (Phased inspection fails to identify “flaw”) 

 Phase order allows fault to slip by 

 AND 

 Quality X established incorrectly (i.e., it is established, but is 

not actually present) 

 Quality X is a critical quality 

 OR (Phased inspection tool malfunction) 

 AND  

o Tool corrupts inspection data 

o Inspector fails to recognize corruption 

 Tool omits inspection phase 

 Other tool malfunction occurs 

o OR (Quality omitted from qualities list) 

 AND 

 Quality X considered not critical 

 Lack of quality X contributes to unacceptable residual risk 

 Quality X accidentally omitted in transcription from source (e.g., 

from GKG paper) 

o OR (Quality stated incorrectly in qualities list) 

 Quality transcribed incorrectly from source (e.g., from paper) 

 Quality derived incorrectly (e.g., misunderstanding of literature) 

o OR (Challenge omitted from challenge list) 

 Analyzed failure data incomplete 

 Analyzed failure data incorrect (e.g., numbers too high/low to merit 

inclusion of a challenge) 

 Failure data analyzed incorrectly 

 (Note: both predominantly human and mechanical (tool-based) 

analysis have the same types of events) 



o OR (Challenge in challenge list stated incorrectly) 

 AND (Tool-related) 

 Challenge derived using tool 

 OR 

o Tool provided with incorrect information 

o AND 

 Tool provided with correct information 

 Tool derived challenge incorrectly 

 AND (User-related) 

 Challenge derived from inspection of failure data 

 OR 

o Analyzed data irrelevant to current system domain 

o Analyst derives challenge incorrectly 

o OR (Dialectic leads to unwarranted agreement) 

 AND (Parties agree on incorrect expected practice) 

 C and  A agree that expected practice is X 

 Expected practice is actually Y ≠ X 

 AND (Expected practice omitted by agreement) 

 C and A agree that all expected practices adhered to 

 An expected practice was omitted 

 AND (Subarguments have common dependence fault) 

 Independent subarguments used 

 C and A agree that subarguments are independent 

 Subarguments have a common dependence 

 AND (Negative experience dealt with, but not 

sufficiently/incorrectly) 

 C and A agree that the argument has dealt with the 

accumulation of negative experience 

 OR 

o Negative experience X was not dealt with. 

o Negative experience dealt with incorrectly 

o (Note what are the negative experiences) 

 AND (Unrealistic assumptions) 

 C & A agree that all assumptions made are realistic 



 Assumption X is unrealistic 

 AND (Inapplicability) 

 C & A agree that all circumstances that the safety argument 

depends on are applicable 

 Circumstance X is not applicable 

 (Note What are the circumstances) 

 AND (Improper use of patterns) 

 C & A agree that all patterns are used correctly 

 Pattern X is used incorrectly 

 AND (Inadequate argument strength) 

 C & A agree that the argument fragments all have adequate 

strength 

 OR (Fragment X is inadequate) 

o Fragment X is on the inadequate fragments list 

o Fragment X is from a system that was inadequate in 

given circumstances 

o AND (Fragment passes through the review process 

but is inadequate) 

 Fragment X passes local review process 

 Likely consequences of failure underestimated 

o AND (Break down to fragments results in some failure) 

 OR (Break down changes meaning of argument) 

 Break down removes necessary context element from a 

particular fragment 

 Break down changes logical flow of argument 

 Meaning is changed such that it affects safety 



C GKG Failure Modes, Effects, and

Criticality Analysis

This appendix presents the results of the FMECA applied to GKGSEPE. The results are presented in tabular

form; each entry contains:

• The fault designation (cf. Chapter 7).

• A failure mode for that fault designation.

• Possible effects of that failure mode.

• A short statement explaining how the effects can become critical.

The entries are grouped by fault designation, i.e., if a fault designation has multiple failure modes, they are

presented in succession.
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Fault Designa-
tion Failure Mode Possible Effects Failure is Critical When:

Fcert−qual.est.inc

Quality established
incorrectly (i.e.,
it is established,
but is not actually
present).

Arguments exhibiting the
fallacy associated with
that quality will all pass
through.

The argument exhibits the fal-
lacy associated with the quality.

Fcert−qual.omi
Quality omitted
from qualities list.

Argument not inspected
for that quality.

The argument exhibits the fal-
lacy associated with the quality.

Fcert−qual.oth

Quality transcribed
incorrectly from
source (e.g., from
paper)

Quality morphs into an-
other quality, which may or
may not be necessary to in-
spect for. Either way, the
argument is not inspected
for the original quality.

The argument exhibits the fal-
lacy associated with the quality.

Quality derived in-
correctly (e.g., mis-
understanding of
literature).

(same as above) (same as above)

Quality corrupted
by some other
means.

(same as above) (same as above)
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Fault Designa-
tion Failure Mode Possible Effects Failure is Critical When:

Fcert−chal.oth

Failure data analy-
sis for a challenge
used incomplete
failure data.

Challenge does not accu-
rately reflect accumulation
of negative experience.

The dialectic using the challenge
results in an unwarranted agree-
ment that negative experience
has been properly mitigated.

Failure data analy-
sis for a challenge
used incorrect fail-
ure data.

(same as above) (same as above)

Failure data analy-
sis for a challenge
conducted incor-
rectly.

(same as above) (same as above)

Fcert−chal.omi
Challenge in chal-
lenge list omitted.

The dialectic fails to issue a
critical challenge.

The dialectic using the challenge
results in an unwarranted agree-
ment that negative experience
has been properly mitigated.

Fcert−dial.le

The dialectic issues
fewer challenges
than necessary.

The dialectic fails to issue
critical challenges.

The dialectic results in unwar-
ranted agreement because the
certifier issues too few chal-
lenges.

Fcert−dial.oth

The dialectic is
corrupted in some
other way.

The dialectic fails to issue
challenges that, if issued,
would uncover faultscand.

The dialectic results in unwar-
ranted agreement.
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Fault Designa-
tion Failure Mode Possible Effects Failure is Critical When:

Fcert−dial.rev

Dialectic leads to
unwarranted agree-
ment regarding an
expected practice,
X.

Whatever assurance EPX
should have provided is
gone. The developer actu-
ally applied EPX’. Any fur-
ther assurance detriment is
dependent on what EPX’
is. At the very least, any
part of the argument that
depends on EPX is invalid.

EPX’ does not mitigate the fault
that EPX is designed for, and
if the candidate system exhibits
the fault that EPX is supposed
to mitigate, then the candidate
system is an accidentcert if other
parts of the filter do not stop it
from getting through.

Unwarranted
agreement - Omit-
ted expected
practice X

Whatever assurance that
expected practice should
have provided is gone. A
actually did EPX’ = null.

(same as above)

Unwarranted
agreement - Sub-
arguments have
common depen-
dence fault

Actual assurance of frag-
ment that depends on
those sub-arguments is
lower than estimated.

The actual assurance is too low:
below ALARP region.

Unwarranted
agreement - Unre-
alistic assumptions

Fragments dependent on
those assumptions are not
sufficiently strong, despite
being believed to be.

The actual assurance is below
ALARP region.
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Fault Designa-
tion Failure Mode Possible Effects Failure is Critical When:

Fcert−dial.rev

Unwarranted
agreement - Inap-
plicable circum-
stances

Fragments dependent on
those circumstances are not
sufficiently strong, despite
being believed to be.

The actual assurance is below
ALARP region.

Unwarranted
agreement - Im-
proper use of
patterns

Actual assurance of argu-
ment is probably lower
than what it is believed to
be.

The actual assurance is below
ALARP region.

Unwarranted
agreement - Inad-
equate argument
strength

Actual assurance of argu-
ment is probably lower
than what it is believed to
be.

The actual assurance is below
ALARP region.

Unwarranted
agreement in some
other way.

Actual assurance of argu-
ment is probably lower
than what it is believed to
be.

The actual assurance is below
ALARP region.



D DAIS HazOp

This appendix presents the results of the HazOp analysis on DAIS. The parameters used were the three

major system modules, as defined in Lin [1]:

1. Display Module, abbreviated as DM.

2. Data Analysis Module, abbreviated as DAnM.

3. Data Archive Module, abbreviated as DArM.

The guide words used were the standard guide words (cf. Chapter 3 and Appendix A):

1. No or not.

2. More.

3. Less.

4. As well as.

5. Part of.

6. Reverse.

7. Other than.

8. Early.

9. Late.

10. Before.

11. After.

Each entry in the table contains one question and its answer. If a question is irrelevant, the entry contains

N/A. Otherwise, the entry contains the answer to the question. The answers to the question were used for

the FTA for DAIS, presented in Appendix E.
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Parameter Guide Word Meaning Question Answer

Display 

Module
NO OR NOT

Complete 

negation of the 

design intent

What if the Display 

Module displays 

nothing?

DM failure.

MORE
Quantitative 

increase

What if the Display 

Module displays 

more information 

than necessary?

N/A.

LESS
Quantitative 

decrease

What if the Display 

Module displays less 

information than 

necessary?

DM failure.

AS WELL AS

Qualitative 

modification/ 

increase

What if the Display 

Module displays 

more information 

than necessary?

Could lead to 

information 

overload.

PART OF

Qualitative 

modification/ 

decrease

What if the Display 

Module displays less 

information than 

necessary?

DM failure.

REVERSE

Logical opposite 

of the design 

intent

What if the Display 

Module displays 

incorrect 

information?

DM failure.

OTHER 

THAN

Complete 

substitution

What if the Display 

Module displays 

something other 

than the requested 

information?

DM failure.

EARLY
Relative to the 

clock time

What if the Display 

Module displays 

requested 

information early?

That's OK.

LATE
Relative to the 

clock time

What if the Display 

Module displays 

requested 

information late?

Could lead to 

information 

overload.



BEFORE
Relating to order 

or sequence

What if the Display 

Module displays 

requested 

information before it 

should?

N/A. Information 

return should be 

as fast as possible.

AFTER
Relating to order 

or sequence

What if the Display 

Module displays 

requested 

information after it 

should?

DM failure.

Data 

Analysis 

Module

NO OR NOT

Complete 

negation of the 

design intent

What if the Data 

Analysis Module 

does not analyze 

data correctly?

DAnM failure.

MORE
Quantitative 

increase

What if the Data 

Analysis Module 

does more analysis 

than necessary?

N/A.

LESS
Quantitative 

decrease

What if the Data 

Analysis Module 

does less analysis 

than necessary?

DAnM failure.

AS WELL AS

Qualitative 

modification/ 

increase

What if the Data 

Analysis Module 

does more analysis 

than necessary?

N/A.

PART OF

Qualitative 

modification/ 

decrease

What if the Data 

Analysis Module 

does less analysis 

than necessary?

DAnM failure.

REVERSE

Logical opposite 

of the design 

intent

What if the Data 

Analysis Module 

analyzes data 

incorrectly?

DAnM failure.

OTHER 

THAN

Complete 

substitution

What if the Data 

Analysis Module 

analyzes other data?

DAnM failure.

EARLY
Relative to the 

clock time

What if the Data 

Analysis Module 

analyzes data too 

early?

N/A.



LATE
Relative to the 

clock time

What if the Data 

Analysis Module 

analyzes data too 

late?

DAnM failure.

BEFORE
Relating to order 

or sequence

What if the Data 

Analysis Module 

analyzes data before 

it should?

N/A.

AFTER
Relating to order 

or sequence

What if the Data 

Analysis Module 

analyzes data after it 

should?

DAnM failure.

Data 

Archive 

Module

NO OR NOT

Complete 

negation of the 

design intent

What if the Data 

Archive Module 

does not archive 

data?

DArM failure.

MORE
Quantitative 

increase

What if the Data 

Archive Module 

archives more data 

than necessary?

Could lead to 

storage being full. 

Highly unlikely.

LESS
Quantitative 

decrease

What if the Data 

Archive Module 

archives less data 

than necessary?

DArM failure.

AS WELL AS

Qualitative 

modification/ 

increase

What if the Data 

Archive Module 

archives more data 

than necessary?

Could lead to 

storage being full. 

Highly unlikely.

PART OF

Qualitative 

modification/ 

decrease

What if the Data 

Archive Module 

archives less data 

than necessary?

DArM failure.

REVERSE

Logical opposite 

of the design 

intent

What if the Data 

Archive Module 

does not archive the 

necessary data?

DArM failure.

OTHER 

THAN

Complete 

substitution

What if the Data 

Archive Module 

archives other data 

than it should?

DArM failure.



EARLY
Relative to the 

clock time

What if the Data 

Archive Module 

archives data too 

early?

Could lead to 

synchronization 

problem. DArM 

failure.

LATE
Relative to the 

clock time

What if the Data 

Archive Module 

archives data too 

late?

Could lead to 

synchronization 

problem. DArM 

failure.

BEFORE
Relating to order 

or sequence

What if the Data 

Archive Module 

archives data before 

it should?

Could lead to 

synchronization 

problem. DArM 

failure.

AFTER
Relating to order 

or sequence

What if the Data 

Archive Module 

archives data after it 

should?

Could lead to 

synchronization 

problem. DArM 

failure.



E DAIS Fault Tree Analysis

This appendix presents the fault tree generated by applying FTA to DAIS. The fault tree is presented in

textual form; the general format is the same as in Appendix B and is reproduced below:

• [BOOLEAN OPERATOR] [EVENT]

– [CONTRIBUTING EVENT 1]

– [CONTRIBUTING EVENT 2]

– ...

– [CONTRIBUTING EVENT N]

[BOOLEAN OPERATOR] represents the boolean operator that operates on [CONTRIBUTING EVENT 1]

through [CONTRIBUTING EVENT N], which are contributing events to [EVENT]. The most-indented

events are basic; the rest are compound.
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FAULT TREE 

Where OR, AND, etc. = FTA gates. Text = placeholder 

 OR DAIS causes patient mistreatment 

o OR DAIS provides misinformation to the patient  

 Data Analysis Module sends incorrect remote alarm signal 

 OR Interface Module displays incorrect information 

 Interface Module fails 

 OR Data Analysis Module generates incorrect information 

o OR External sources present incorrect information 

 Device presents incorrect data 

 FDA Safety Alert presents incorrect 

information 

 Sensing data is wrong 

o OR Data Archive Module presents incorrect 

information 

 Data Archive Module transports data 

incorrectly 

 Database gets corrupted 

 AND Database has incorrect information 

1. Data Analysis Module verification fails 

2. Patient enters data incorrectly 

o OR Data Analysis Module calculates incorrectly 

 Software Failure 

 AND  

1. Database information used in 

calculation 

2. AND Database has incorrect 

information 

1. Data Analysis Module 

verification fails 

2. Patient enters data incorrectly 



o OR DAIS does not provide necessary information to the patient (lack of 

information) 

 OR Interface Module fails to display relevant information 

 OR Interface Module fails to receive relevant information 

o OR Link between Data Analysis and Interface 

Modules fails 

o OR Data Analysis Module fails to send relevant 

information 

 Data Archive Module does not supply relevant 

information 

 Data Analysis Module fails to create relevant 

information 

o OR Data Analysis Module cannot procure relevant 

information 

 OR Relevant remote alarm signal (from Data Analysis Module) not 

received 

 Data Analysis module fails to send relevant remote alarm 

signal 

 Link between patient device and Data Analysis Module fails 



F DAIS Safety Case

This appendix presents the safety case constructed for the high assurance version of DAIS (cf. Chapter 6).

The contexts, C.FormalSpec and C.TestPlan apply to all of the goals directly above leaf (solution) level,

e.g., G_LackOfInformation.1..
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Figure 1: The top of the DAIS safety case.
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Figure 2: DAIS safety case portion starting with G.DIP.1.Misinformation.
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Figure 3: DAIS safety case portion starting with G.DIP.1.Lack of Information.
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