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ABSTRACT 

TBP nucleates the assembly of the transcription pre-initiation complex. 

Although TBP can bind promoters with high stability in vitro, recent results 

establish that virtually the entire TBP population is highly dynamic in yeast nuclei 

in vivo. The dynamic behavior of TBP is a consequence of the enzymatic activity of 

the essential Snf2/Swi2 ATPase Mot1, suggesting that ensuring a highly mobile TBP 

population is critical for transcriptional regulation on a global scale. We studied the 

effect of altering TBP binding dynamics on transcription using tiling arrays and a 

new computational analysis method to determine how perturbed TBP dynamics 

impact the precision of RNA synthesis in Saccharomyces cerevisiae. We found that 

in mot1-42 cells RNA length changes were observed for 713 genes with prematurely 

terminated transcripts representing the largest class of events. Genetic and genomic 

analyses support the conclusion that these effects on RNA length are mechanistically 

tied to dynamic TBP occupancies at certain types of promoters. To further capture 

the TBP binding dynamics we developed a novel method based on modified ChIP 

assay with sub-second temporal resolution. The time dependence of formaldehyde 

crosslinking was utilized to extract in vivo on- and off-rates for site-specific 

chromatin interactions varying over a ~100-fold dynamic range. Using this method, 

we show that a novel regulatory process shifts weakly bound TATA-binding protein 

to stable promoter interactions, thereby facilitating transcription complex 

formation.   
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Chapter I 

Introduction 

Transcription is a multistep process of RNA synthesis from DNA sequence. 

Precise regulation of transcription is crucial at every biological step for the organism such 

as growth, development, response to environment etc. Hence, transcription is well 

regulated by different types of mechanisms at every stage, including pre-initiation 

complex (PIC) formation, transcription initiation, elongation, and termination. 

Transcription in eukaryotes is carried out by RNA polymerases, which are recruited by 

general transcription factors which organize at core promoters and interact with 

coactivators and repressors to regulate transcription. The three Polymerases (Pol I, II, and 

III) have their own transcription machinery sharing only TATA binding protein (TBP) a 

general transcription factor (Grünberg et al. 2012). Transcription involving Pol II is 

responsible for all the messenger RNA (mRNA) synthesis (Hahn 2004; Hahn and Young 

2011). In this study we investigated the role played by TBP in the transcription initiation 

process. We developed computational methods to study how transcription factors 

influence transcription initiation and termination, as well as their effects on RNA level. 

1.1 GTF recruitment, PIC assembly and transcription initiation 

The Pol II transcription machinery consists of a collection of general transcription 

factors (GTFs) which include TFIIA TFIIB TFIID, TFIIE, TFIIF, TFIIH and the 

multisubunit Pol II enzyme itself (Reese 2003; Hahn 2004; Hahn and Young 2011). 

Assembly of the Pol II preinitiation complex (PIC) on promoters is highly orchestrated 



2 

 

by transcriptional regulators and co-regulators that influence GTF recruitment by direct 

interaction with the transcription machinery and by modulating the promoter chromatin 

template (Hahn 2004). Major efforts in the field have been to understand how activators 

and co activators affect the basic transcription machinery to regulate gene expression, 

how the activities of these regulators are regulated, and how the various regulators’ 

pathways are coordinated with signal transduction to control gene expression in response 

to stress or growth. 

PIC assembly is nucleated when TBP is recruited to the TATA box, which is an 

AT rich sequence motif in the promoter region (Hahn et al. 1989; Spencer and Arndt 

2002). Once recruited, TBP alone can initiate the recruitment of other GTFs and PIC 

assembly at promoters. At TATA-less promoters, TBP is still present, but it requires 

TAFs (TBP-associated factors) that help stabilize TBP binding to the promoter as a 

complex called TFIID. TFIID binding to promoters is in turn stabilized by TFIIA and 

TFIIB (Geiger et al. 1996; Jacobson and Tjian 1996; Hahn and Young 2011) and this 

complex forms a platform for Pol II and the remaining GTFs to bind. TFIIB directly 

binds to Pol II along with TFIIF, and both are critical for Pol II recruitment, initiation, 

and start-site recognition and initiation of RNA synthesis (Chen and Hahn 2003; 

Kostrewa et al. 2009; Liu et al. 2010; Hahn and Young 2011). TFIIE and H subsequently 

bind and play an important part in opening the DNA strands to provide a template for 

RNA synthesis. TFIIH is a multisubunit complex possessing helicase and kinase 

activities, and also plays a role in stabilizing the promoter DNA during the transition of 

the PIC into an active open complex (Hahn 2004; Thomas and Chiang 2006; Hahn and 

Young 2011). This involves TFIIH helicase activity which separates DNA strands around 
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the transcription start site (TSS) and insertion of single stranded DNA template into the 

active site of Pol II. This active open complex is highly unstable (Wang et al. 1992; Hahn 

and Young 2011) (See Figure 1-2).  

TFIIB has an important role in the assembly of the PIC as it contacts both TBP-

DNA and Pol II.  In the open complex, Pol II is reads the DNA sequence and recognizes 

the start site (Kostrewa et al. 2009). The N-terminus of TFIIB binds to a Pol II and 

positions the TBP-DNA complex over the Pol II active site cleft (Miller and Hahn 2006; 

Chen and Hahn 2003; Chen et al. 2007). At this stage, TFIIF stabilizes Pol II in the PIC 

by interaction with DNA upstream of TATA box, setting the transcription start site and 

also stabilizing the PIC open complex(Eichner et al. 2010). In vitro studies suggest that 

TFIIF also stabilizes the RNA-DNA hybrid in the elongation complex at the beginning of 

elongation (Hahn 2004; Thomas and Chiang 2006; Kostrewa et al. 2009; Hahn and 

Young 2011). After Pol II leaves the promoter to continue transcription elongation, it is 

proposed that some of the GTFs dissociate and a scaffold complex remains to facilitate 

transcription reinitiation (Figure 1.1) (Hahn 2004) By this mechanism the PIC can 

continue to promote active transcription for some time.   

1.1.1 Transcription start site scanning 

After binding to the promoter, Pol II scans downstream sequence for a suitable 

transcription start site (TSS) (Giardina and Lis 1995; Kuehner and Brow 2008; David et 

al. 2006; Steinmetz et al. 2006a). Promoter DNA is unwound from 20 bp to 90 bp 

downstream of TATA element. Scanning does not involve transcription but does
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Figure 1- 1: Transcription initiation and GTF assembly at Pol II genes 

A) Representation of GTFs, Pol II and promoter DNA. B-E) Steps in the recruitment of GTFs. F) Transition to the open 

complex for start site scanning/selection and starting elongation. G) Pol II promoter escape. A subset of the GTFs 

dissociate from the promoter, leaving behind a scaffold complex. This complex facilitates subsequent rounds of 

transcription via rapid recruitment of the remaining GTFs and Pol II.  
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involve DNA unwinding and consumes considerable energy in this process. TSS 

scanning requires TFIIB, TFIIF and Pol II and mutations in any of these factors lead to 

disruption of proper start site selection (Hampsey 1998; Faitar et al. 2001). Failing to 

select a proper start site will lead to transcription precision defects. Mutations in TFIIB 

and Rpb1, a subunit of Pol II, cause the reduced efficiency in recognizing the initiator 

sequence causing the start of transcription at an alternate start site in the body of the gene 

(Faitar et al. 2001; Kostrewa et al. 2009). Mutation in TFIIF or in Pol II where it interacts 

and binds with TFIIF cause a shift in the start of transcription away from the TSS and 

towards the TATA box (Khaperskyy et al. 2008). In yeast there are multiple TSSs in a 

single promoter and the mechanism involved in selection of TSS is still not understood.  

The Pol II C terminal domain (Pol II CTD) plays unique and important role in 

PIC assembly. It functionally interacts with co-activators (Mediator) for initiation, 

interacts with transcription termination factors, and is phosphorylated at Ser2, Ser5 and 

Ser7 by kinases. Pol II is assembled at the PIC with a non-phosphorylated CTD. During 

early initiation, the CTD is phosphorylated at Ser5 and Ser7 by a Kin28/Cdk7 which is a 

subunit of TFIIH (Feaver et al. 1994; Akhtar et al. 2009; Grünberg et al. 2012). Cdk9 

activity increases and plays a dominant role of phosphorylation after the transition to the 

elongation. (Liu et al. 2009b; Kanin et al. 2007) and phosphorylates Ser2 (Buratowski 

2009; Liu et al. 2009a; Hahn and Young 2011). The level of these CTD phosphorylations 

is very closely regulated in initiation, elongation and termination. These markers serve an 

important function in recruiting many factors, which associate with elongating 

polymerase and include mRNA capping factors, chromatin modifying enzymes, and 

termination and mRNA export factors.    
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1.1.2 Coactivators 

Activation is a critical step in regulation of gene expression. Coactivators are 

large protein complexes that enhance the action of activators by direct contact with GTFs 

and Pol II or by modifying chromatin. Mediator, SAGA and NuA4 are general 

coactivators.  Mediator is a 25 subunit complex in yeast although human homologs exits 

in multiple forms depending on tissue type and the function of the cell (Conaway et al. 

2005). Also, 17 out of the 25 subunits comprise a core complex and other subunits are 

organism specific (Bourbon 2008; Hahn and Young 2011).  Mediator binds to the 

transcription activation domain and Pol II allowing activator-dependent Pol II activation 

(Björklund and Gustafsson 2005; Malik and Roeder 2005), although more knowledge of 

the mechanism is needed to completely understand mediator’s role in initiation. Mediator 

also stimulates basal transcription by stabilizing the PIC and by stimulating TFIIH-

dependent phosphorylation of the Pol II CTD (Nemet et al. 2013; Esnault et al. 2008). 

The effect of mediator on transcription is positive or negative because of its diverse roles 

at all stages of the process. It is a potential target for promoter-specific regulation in 

various regulatory pathways (Hahn and Young 2011; Malik and Roeder 2005; Taatjes 

2010).  

TBP and TAFs which comprise TFIID are targeted by activators to stimulate 

transcription activation. Although TBP is sufficient to promote basal transcription from 

TATA containing promoters with purified Pol II and other GTFs, transcription from 

TATA less promoters as well as response to activators require the TFIID complex. In 

yeast, Taf1, a subunit of the TFIID complex, has histone acetyl transferase (HAT) 

activity (Mizzen et al. 1996). SAGA modulates the expression of about 10% of genes that 
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have TATA boxes (Lee et al. 2000; Huisinga and Pugh 2004). TATA box containing 

genes are usually genes which are stress regulated and highly inducible. SAGA 

influences transcription by modifying chromatin and recruiting TBP to the promoters to 

initiate PIC assembly (Baker and Grant 2007). SAGA is a large multisubunit complex. 

There are multiple functions of SAGA. Two of the subunits function to suppress TY 

element expression (Winston et al. 1984). Three other subunits, when mutated, suppress 

the toxic effect of overexpression of transcription activator (Berger et al. 1992). SAGA 

was found in a search for co-factors with HAT activity (Grant et al. 1997) in yeast along 

with NuA4. SAGA preferentially acetylates Histone H3 and NuA4 acetylates Histone H4 

proteins and these modifications are in general correlated to activation of genes (Baker 

and Grant 2007; Zhang et al. 2004).  Similar to mediator, SAGA can activate or suppress 

gene expression. For example Gcn5 can act as coactivator and corepressor for genes in 

yeast (Xue-Franzén et al. 2010). Gene expression studies have suggested that Gcn5 and 

SAGA-TBP binding modules have opposite roles in gene expression. Similarly SPT3 and 

GCN5 mutations also have opposite effects on gene expression regulation (Yu et al. 

2003; Helmlinger et al. 2008). TFIID and SAGA share some of the same TAFs but they 

have very different biochemical properties in TBP binding.  

1.1.3 Transcription Activation Mechanisms 

Controlling transcription initiation is an effective way of controlling transcription 

itself. This can be achieved by many mechanism (Hahn 1998; Keaveney and Struhl 

1998). What important mechanisms result in transcription stimulations? 

Some general mechanisms for stimulation of transcription include. 1) Activation by 

recruitment, 2) Activator induced conformational changes in the transcriptional 
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machinery, 3) activation through chromatin remodeling 4) activator-mediated regulation 

post initiation (Hahn and Young 2011). 

Activation by recruitment  

Activation by recruitment of basal TFs is best studied and mechanistic 

recruitment studies have been carried out by use of artificial fusion constructs (Chatterjee 

and Struhl 1995; Klages and Strubin 1995; Xiao et al. 1995) where a specific coactivator 

or a GTF is targeted to a promoter by fusing it to a DNA binding domain and studying 

the coactivator or GTF’s effect on transcription. There are numerous examples of 

coactivators, GTFs and chromatin remodelers targeted to promoters and occupancy levels 

of these factors correlate very well with gene expression.  

Other activation mechanisms 

Activator-induced conformational changes comprise another class of mechanisms, 

but to date these have been more prevalent in mammalian systems where activator 

binding to Mediator causes dramatic changes in conformation of Mediator (Taatjes and 

Tjian 2004; Taatjes et al. 2002). These conformation changes in the Mediator complex 

are presumed to result in functional transcription complexes. Chromatin modifications 

and remodeling directed by transcription factors are also widespread and there are many 

examples of chromatin remodeling leading to transcription initiation (Narlikar et al. 2002; 

Li et al. 2007a; Weake and Workman 2010). Many genome-wide studies correlate certain 

types of chromatin modifications to transcription (Xu et al. 2010; Jung and Kim 2012), 

but this is not the only type of mechanism used in the processes. This type of mechanism 

alone cannot lead to transcription initiation without the recruitment of GTFs to promoters 

(Green 2005). Post-initiation mechanisms of regulation are more prevalent in higher 
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eukaryotes and one of the best studied mechanism is Pol II pausing shortly after initiation 

which was first observed in Drosophila (Rasmussen and Lis 1993). Pol II pausing has 

been observed as Pol II accumulation at the 5’ end of the genes in genome-wide studies 

and is not observed in yeast (Steinmetz et al. 2006b).  In Chapter II (and (Poorey et al. 

2010; Chu et al. 2007) ) we find that deletion of the histone methyltransferase SET2, 

which methylates H3K36, results in cryptic initiation within the body of genes, which 

was known from previous study Li, Gogol, et al., 2007 from Jerry Workman Lab. Hence 

chromatin modifications regulate transcription and precision of transcription.    

1.2 Transcription Termination 

Transcription termination occurs when the RNA Pol II complex is releases the 

nasent RNA-DNA template and 3’ end formation of nascent RNA occurs. This process is 

important to prevent interference with downstream genes, Pol II turnover and successful 

3’ end formation of mRNA. Termination of Pol II transcription occurs when cis-acting 

elements are recognized by RNA binding proteins that associate with the Pol II CTD. Pol 

II transcription termination is coupled with 3’ end formation in which the 3’ end of the 

nascent RNA undergoes cleavage and polyadenylation (Zhao 1999; Rosonina 2006). 

Termination of Pol II transcription takes place in two steps. 1) transcription of the poly A 

signal triggers RNA cleavage, and 2) the upstream cleavage product is polyadenylated 

and the downstream product is degraded. Recognition of the poly (A) signal and cleavage 

is performed by three factors, CPF, CF1A and CF1B.  Mutations in any one of these lead 

to termination defects.  

Termination of most of Pol II genes with a poly (A) signal is carried out by an 

exonuclease called Rat1(Kuehner 2008; Connelly and Manley 1988; Kim et al. 2004). 
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Rat1 is involved in RNA processing and termination of rRNA, snRNA and poly (A) 

containing transcripts. Another pathway, referred to as the Sen1-dependent pathway, is 

responsible for poly (A) independent termination of transcripts for most of the noncoding 

Pol II genes ( Steinmetz et al. 2006; Steinmetz et al. 2001). The required components for 

Sen1-dependent termination are Sen1, a presumed helicase, RNA binding proteins Nrd1 

and and Nab3, and the CTD phosphatase Ssu72. These factors interact with Pol II and 

nasent RNA (Kuehner 2008) for termination and 3 prime end formation. In Chapter IV, 

we use various computational tools to characterize and study the qualitative and 

quantitative effects of the components of the Sen1 pathway on transcription genome-

wide.      .      

1.3 TBP 

TBP is the subunit of the TFIID complex and itserves as a central component of 

the transcriptional apparatus. Binding of TBP to DNA is the first step in transcription 

complex assembly. (Auble 2009; Buratowski et al. 1989; Burley and Roeder 1996; 

Thomas and Chiang 2006; Tora and Timmers 2010).  TBP acts as a lynchpin of the Pol II 

machinery. TBP has important roles in many of the transcription regulatory mechanisms. 

TBP alone can initiate PIC assembly by binding to an AT rich sequence motif called the 

TATA box, which is generally represented as TATA(A/T)A(A/T)(A/G) (Basehoar et al. 

2004). Previously it was believed that only 20% of promoters in the yeast genome have 

strong and readily recognizable TATA boxes and hence the promoters were classified  

into TATA-less and TATA-containing promoters (Basehoar et al. 2004). But a recent 

study from the Pugh Lab, which used ChIP-exo to precisely map the binding sites of TBP 

genome-wide, revealed that even so called “TATA less” promoters had some TATA-like 
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sequence at TBP binding sites (Rhee and Pugh 2012). These two classes have different 

mechanisms for initiation and recruitment of GTFs. At TATA-containing promoters, TBP 

recruitment is facilitated by the SAGA (Spt-Ada-Gcn5-acetyltransferace) complex 

(Bhaumik and Green 2002; Mohibullah and Hahn 2008; Hahn and Young 2011). TBP 

dynamics are also thought to correlate with the strength of TATA box at the promoter 

(Tora and Timmers 2010). Genomic studies have revealed that the promoters containing 

a strong TATA box belong to focused core promoters which control stress response, 

tissue specific expression, or viral genes in higher eukaryotes (Juven-Gershon et al. 2008; 

Sandelin et al. 2007; Tora and Timmers 2010).  In vitro TBP can form stable complexes 

with DNA and it directs PIC formation at TATA-containing promoters based on on 

TATA box strength (Burley and Roeder 1996). The binding of TBP results in two sharp 

kinks in the DNA at either end of the TATA box which induce an ~90° bend in DNA 

towards the major groove (Burley and Roeder 1996). Thermodynamic parameters of 

TBP-DNA binding have been well studied but much remains to be learned about TBP 

binding at promoters with weak TATA box. The TBP-DNA interaction is stabilized by an 

extensive hydrophobic interface, and the complex has a half-life of 15 min to 1 hr 

(Sprouse et al. 2008).  This highly stable interaction suggests that TBP dynamics is 

regulated in vivo by dedicated mechanisms to maintain the soluble pool of TBP as well 

as to enable PIC turnover in order for transcription to be sensitive to extracellular signals 

on a rapid time-scale. TBP binds to a variety of sites with high affinity as well as to a 

variety of non-specific sites (Patikoglou et al. 1999). In principle, this could deplete the 

soluble TBP pool. In addition, binding of TBP to non-specific promoter sites would 
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sterically hinder PIC formation. Hence in order for the cell to function properly, 

mechanisms should be in place to regulate TBP-DNA turnover and dynamics.   

1.3.1 Regulation of TBP dynamics  

Many factors regulate TBP recruitment to promoters, including Mot1, NC2, Taf1, 

TFIIA and SAGA (Pereira et al. 2003; Auble 2009).  Mot1 and NC2 have global effects 

on TBP activity. Mot1 is a member of SNF2/SWI2 ATPase family and it displaces TBP 

from DNA in an ATP-dependent reaction (Auble and Hahn 1993; Auble 2009). In yeast, 

the robust catalytic activity of Mot1 is responsible for the dynamic nature of TBP and the 

maintenance of a soluble TBP pool (Sprouse et al. 2008). NC2 is a TBP binding 

heterodimer which was originally believed to function by blocking PIC formation.  

However, in addition,NC2 interacts with TBP to form an encircling clamp that allows 

TBP to diffuse along the DNA contour (Kamada et al. 2001; Schluesche et al. 2007). In 

this way, NC2 may function to redistribute TBP among different DNA sites in cis. Both 

NC2 and Mot1 were believed to be repressors of transcriptions (Prelich 1997; Dasgupta 

et al. 2002; Geisberg et al. 2001, 2002) but they can also act as activators (Collart 1996; 

Dasgupta et al. 2005; Madison and Winston 1996; Geisberg et al. 2002, 2001). Models by 

which Mot1 and NC2 can act as global activators and repressors are discussed below.  

Activation Mechanisms 

- Mot1 can remove a kinetically trapped, inactive form of TBP to facilitate assembly of 

a functional PIC (Auble 2009; Figure 1-2 D).   

- Mot1 maintains a free TBP pool to allow binding to new locations in DNA to form 

functional PICs (Auble 2009; Sprouse et al. 2008; Figure 1-2 C).  
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Figure 1- 2: Regulation of TBP binding and regulation of transcription by Mot1 

A) Schematic representation of Mot1 removing TBP from DNA. B) Repression by Mot1. 

Mot1 removes TBP from active promoters, resulting in repression. C-E) Activation by 

Mot1. In (C), Mot1 removes TBP from non-specific sites, thereby replenishing the TBP 

pool. In (D), Mot1 relieves kinetically-trapped and functionally inactive TBP from 

promoters to allow a functional PIC to form in a subsequent reaction.  In  (E), Mot1 

forms a hypothetical novel complex to activate transcription.   
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- Mot1 is member of transcriptionally complex active for stress response genes and 

also believed to have chromatin remodeling properties which are required for gene 

activation (Auble, 2009; Figure 1-2 E)`.  

- NC2 activates transcription by stabilizing weak TBP-DNA or by moving TBP from a 

non-specific site to the core promoter (Tora and Timmers 2010).  

Repression Mechanisms 

- Mot1 displaces TBP from core promoters and interrupts the formation of PIC or 

disassembling the PIC from the promoter (Figure 1-2 B) 

- NC2 binds to the TBP DNA complex and sterically hinder the binding of other GTFs 

to form a functional PIC. 

Mot1 has a direct role in regulation of TBP dynamics. Recent measurements of 

TBP mobility in living yeast cells demonstrate that all detectable TBP is highly mobile, 

displaying Mot1-dependent FRAP recovery times of < 15 seconds (Sprouse et al. 2008).  

Importantly, while the recovery times are rapid, they are markedly slower than can be 

explained by diffusion, and are instead consistent with transient interactions with 

chromatin.  This suggests that nearly the entire TBP pool is rapidly recycled, leading to 

rapid redistribution of TBP among chromatin binding sites.  Our kinetic analysis of TBP 

binding undertaken by a new method that we developed (Chapter III) shows that there are 

longer-lived TBP complexes at promoters in vivo, however they represent a tiny fraction 

of the TBP interactions in the nucleoplasm and escaped detection by live cell imaging.  

 Several fundamental questions are raised by the observed high mobility of TBP in 

vivo.  If TBP is rapidly recycled from sites on chromatin, what is the nature of these 
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sites? Are they specific or non-specific interactions? In Chapter II of this dissertation we 

report the results of our investigation  of Mot1’s effect on TBP and TFIIB recruitment 

and on RNA synthesis genome-wide. We found that modulating TBP dynamics by 

mutations in Mot1 caused RNA synthesis precision defects in 713 genes. Given the 

pervasive RNA synthesis in yeast cells under these conditions, it would appear that there 

may be active promoters for which PICs are rapidly recycled.  If this is true, how and 

why are such dynamics important for promoter function?  When TBP dynamics are 

compromised, we also investigate whether new or different types of RNA made, or if 

simply the quantity at annotated genes is changed.  

1.4 Transcription factor dynamics 

The many processes of transcription including PIC assembly, initiation, Pol II 

pausing, reinitiation, elongation, dynamic rearrangements of nucleosomes, histone 

modifications, termination, and polyadenylation involve dynamic interaction between 

transcription factors and regulators with chromatin and Pol II and RNA. Most of the 

things we know about how the transcription machinery is assembled, how it initiates and 

elongates are deduced from snapshots obtained from biochemical methods including 

chromatin immunoprecipitation (ChIP) which do not assay dynamics. These methods 

have been invaluable in showing us the key players involved but not have been insightful 

in providing the kinetics of these factors in these processes (Hager et al. 2009). The 

dynamic interaction of proteins with DNA is key to understand PIC assembly, 

transcription regulation and many other related regulatory processes. 



18 

 

1.4.1 Existing methods to study transcription factor dynamics: 

Two general methods exist to measure protein-DNA interaction dynamics in vivo: 

competition ChIP and fluorescence recovery after photobleaching (FRAP),which we 

describe below. 

Competition ChIP  

Competition ChIP is used to measure protein-DNA dynamics at a specific site or 

across the whole genome (Lickwar et al. 2012; van Werven et al. 2009; Rufiange et al. 

2007; Schermer et al. 2005). In this method, the cell contains two copies of the 

transcription factor or protein with each copy tagged with a different epitope. One of the 

copies is expressed constitutively and the other is induced as a competitor. Chromatin 

occupancies of each copy of the protein can be quantified by ChIP, ChIP-Chip or ChIP-

seq over time as they compete for the same binding sites. The rate of exchange of the two 

isoforms enables an estimate of the relative turnover rate and the residence time of the 

protein on the DNA for each site (Lickwar et al. 2013).  

The advantage of using this technique is that site-specific estimates of the relativel 

turnover and residence time can be can be directly correlated with other genomic features 

at each promoter across the genome. This method is also readily applicable to any ChIP-

based technology and in any organism. Apart from these advantages, the method is only 

applicable to transcription factors with fairly long chromatin residence times (>500 s) 

(Lickwar et al. 2013) due to the relatively long induction time (~20 min) of the 

competitor. Events that are much faster than the rate of induction will appear to have the 

same kinetic profile driven purely by competitor induction (Lickwar et al. 2013; Deal et 

al. 2010).  
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Single cell fluorescence techniques 

Fluorescence recovery after photobleaching (FRAP), fluorescence correlation 

spectroscopy (FCS) (Michelman-Ribeiro et al. 2009) and single-molecule tracking (SMT) 

are the other common techniques used to study protein-DNA interactions, and all are 

based on fluorescence imaging. These methods have the advantage that they are applied 

to single cells and they have high temporal resolution (i.e., seconds). The disadvantage of 

FRAP is the relatively poor spatial resolution. The extracted binding behavior is averaged 

over an area which likely includes many promoters and binding sites, and such methods 

are unable to provide any site specific dynamic information, except for a few special 

cases where the transcription factor being studied binds to one locus which contains 

multiple copies of the binding site (Karpova et al. 2008; van Royen et al. 2011).   

In Chapter III, I discuss the development of a new method to measure chromatin 

dynamics which is based on a modified ChIP assay and which provides kinetic 

parameters on the second time scale with site specificity.  

1.4.2 How do transcription factors find targets? 

As discussed above, recruitment is a major regulatory step in transcriptional 

control. Binding sites are in general sparsely located in the genome and comprise a very 

small percentage of the total genome. Proteins find their binding sites using diffusion 

which is well supported by FRAP studies (Hager et al. 2009; Gorski and Misteli 2005). 

TFs diffuse rapidly in the nucleus traveling the length of nucleus within a few seconds 

and the whole nuclear volume within a few minutes(Hager et al. 2009). FRAP studies 

revealed that the diffusion rate of TFs was about 2-3 order of magnitude slower than 

expected (Sprague et al. 2004; Mueller et al. 2008). The loss of mobility could be the 
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result of TFs integrating into larger complexes, or could be due to transient binding to 

chromatin (Hager et al. 2009). TFs use of transient binding to find their target sites  has 

been called the “3D scanning model” (Misteli 2001). Most of the TF scanning-time is 

spent interacting with chromatin non-specifically with an estimate of 50-250 ms between 

TF-chromatin interactions. This 3D hopping is supplemented by local scanning via 1D 

diffusion along the DNA has been called facilitated diffusion(Winter et al. 1981).  It has 

been argued that facilitated diffusion makes it possible for TFs to find their targets 

relatively quickly and efficiently (Phair et al. 2004; Elf et al. 2007). In this model, TFs 

search the local vicinity using 1D diffusion, scanning about 500 bp before dissociation 

from DNA (Halford and Marko 2004; Gorman and Greene 2008; Hager et al. 2009)    

1.4.3 Modeling of transcription factor binding 

Chemical kinetics of  various biophysical processes in an organism like TF-DNA 

binding Protein-protein binding, protein transport, transcription variation/noise, have 

been modeled for quite some time. Many biological processes can be defined or 

approximated by a set of reactions known as reaction networks (Wilkinson 2009). These 

reactions are usually described by nonlinear ordinary differential equations (ODE) or 

partial differential equations. Solutions of these equations provide valuable insights and 

dynamics of the studied process. (Resat et al. 2009) For example in Samorodnitsky and 

Pugh 2010 study they developed a computational program PathCom which under the 

assumption that occupancy levels can be related to binding duration models in vivo 

protein-DNA occupancy data as biochemical mechanisms. They model the assembly of 

the general transcription factors (TBP, TFIIB, TFIIE, TFIIF, TFIIH, and RNA 

polymerase II) at the genes yeast. They found that TBP occupancy at promoters is rather 
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transient compared to other general factors.  Another example in the study Lickwar et al. 

2012 better computational model lead to better understanding of competition ChIP 

dataset with more accurate parameter estimation.   

We aimed to develop a mathematical model to understand TF-DNA interactions 

and their dynamics measured by the ChIP assay. The traditional way to model a time-

evolved molecular population in a reacting system is to use a set of coupled first order 

ODEs called reaction rate equations (RREs).  Usually, RREs are valid in spatially 

homogeneous systems and are nonlinear for bio-molecular reactions.  However, in 

special cases when time scales are widely different or under simplifying conditions or 

assumptions, the RRE can be reduced to a linear set of differential equations . 

Assumption we made were 1) TF concentration in the cell is constant 2) all binding 

events are independent events. Under these assumptions the the ODEs representing our 

system was simplified to linear set of equations (Chapter III). 

Typical steps taken in developing RREs to model a dynamic process: 

1.) Identify key species and properties to be simulated including dependent (output) 

and independent (input) variables.  

2.) Model formulation: where we define the changes in the concentration as a 

function of time and location, constraints are defined and applied in RRE.  In the 

case of models of average dynamics over a population (as is the case for the 

experiments in this chapter), the RRE is formulated in terms of the average of the 

relevant variables and kinetic parameters.  In the case of stochastic dynamics, the 

behavior of individual events in a relatively small, molecular-scale volume are 
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modeled and the RRE takes the form of a master equation in terms of the 

probability of events occurring.  

3.) Solving the deterministic or stochastic RRE analytically or numerically (Resat et 

al. 2009). 

Deterministic approach to model chemical kinetics in general assume that the 

reactants are abundant and have a level measured on a continuous scale. The state of the 

system at any particular instant is stated in concentration and the changes in 

concentration are assumed to occur in a continuous and deterministic process. The rate of 

the reaction can be represented by simple mass action kinetics or enzyme kinetic law 

(Wilkinson 2009) these equations can be solved analytically to give an explicit formula 

but if the mathematical solution is not tractable, numerical methods can be used to 

determine the solution In contrast, stochastic approaches are used in model the systems 

which have heterogeneity in them for example in modeling TF-DNA dynamics the 

concentration of TF might change over time or modelling TF occupancy in a single 

molecular system. To model these stochastic systems probability theory is used to 

account of inherent unpredictability and determine RREs using one or multiple stochastic 

variables. Single cell systems have more. We applied deterministic methods to solve the 

TF-DNA binding equations and the relatively few underlying assumptions allowed us to 

solve the system analytically (Chapter III).    

1.5   Scope of the Study 

With the help of various computational techniques (Chapter II) we studied the 

effect of Mot1 on TBP and TFIIB binding genome wide and correlated these effects with 

gene expression. We found that while a mutation in Mot1 elicited only modest changes in 
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gene expression, it caused significant changes in RNA synthesis precision. To do this, 

qualitative and quantitative changes in the transcriptome we analyzed using a 

computational pipeline that I developed called TraPP (Transcription Precision Pipeline) 

which was designed to quantify and classify transcription precision defects in a mutant 

strain compared to a control. Also the effects observed in mot1 cells appeared to be 

caused by changes in TBP dynamics.  To capture these changes in dynamics we 

developed a novel method called CLK ChIP (Chapter III) to capture in vivo DNA-protein 

interaction using a modified ChIP assay. We used deterministic methods to model TF- 

DNA binding and crosslinking. Non-linear regression was used to fit the mathematical 

model to the experimental data, yielding kinetic parameters describing protein-DNA 

interactions in vivo for a number of TFs. Specifically, we derive the on and off rates, the 

molecular crosslinking rate and in vivo occupancy at steady state for these TFs. In 

Chapter IV, we expand the application of TraPP to study factors involved in the Sen1 

transcription termination pathway.   
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Chapter II  

Defining Transcription Precision Defects and Correlation with PIC Dynamics  

 

The work presented in this Chapter was published in Poorey et al. 2010 

Transcription regulation plays an important role in development, differentiation, 

and disease models. TBP nucleates the assembly of the PIC and although TBP can bind 

very stably to promoters in vitro, it has been found to be very dynamic in vivo. Mot1 is a 

SWI2/SNF2 ATPase responsible for dissociation of TBP from DNA. By this reaction, 

Mot1 can serve as a transcription activator by removing TBP from unproductive 

promoters and as a repressor by removing TBP from active promoters. We studied the 

effect of altering TBP binding dynamics on transcription using tiling arrays and a new 

computational analysis method to determine how perturbed TBP dynamics impact the 

precision of RNA synthesis in Saccharomyces cerevisiae. We found that Mot1 plays a 

broad role in establishing the precision and efficiency of RNA synthesis. In mot1-42 

cells, RNA length changes were observed for 713 genes, about twice the number 

observed in set2∆ cells, which display a previously reported propensity for spurious 

initiation within open reading frames (Li et al. 2007b). Loss of Mot1 led to both aberrant 

transcription initiation and termination, with prematurely terminated transcripts 

representing the largest class of events. Genetic and genomic analyses support the 

conclusion that these effects on RNA length are mechanistically tied to dynamic TBP 
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occupancies at certain types of promoters. These results suggest a new model whereby 

dynamic disassembly of the PIC can influence productive RNA synthesis. 

2.1 Introduction 

As described in Chapter I, the Pol II transcription machinery consists of a 

collection of GTFs and the multisubunit Pol II enzyme itself (Reese 2003; Hahn 2004).  

Assembly of the PIC is highly orchestrated by transcriptional regulators and co-regulators 

that influence GTF recruitment by direct interaction with the transcription machinery and 

by modulating the promoter chromatin template (Hahn 2004).  PIC assembly is nucleated 

by TBP, which physically interacts with multiple GTFs and DNA.   TBP recruitment to 

promoters is often rate limiting for transcription in vivo (Pugh 2000).   

 Interaction of the TBP saddle with the TATA Box results in severe bending and 

unwinding of the DNA (Burley and Roeder 1996).  In vitro, the resultant complex forms 

a specialized, long-lived substrate for accrual of the other GTFs.  Biochemical evidence 

indicates that a TBP-containing subcomplex remains on promoter DNA following 

departure of Pol II (Hahn 2004).  This complex, termed the scaffold, can facilitate 

transcription reinitiation in vitro (Hahn 2004).  Although the in vitro evidence in support 

of a stable reinitiation intermediate is strong, PIC dynamics may be influenced by other 

factors in vivo.  For example, stable TBP-DNA binding is antagonized by Mot1, a 

Snf2/Swi2-related ATPase that dissociates the TBP-DNA complex (Auble 2009).  As 

another example, the NC2 heterodimer interacts with TBP to form an encircling clamp 

that allows TBP to diffuse along the DNA contour (Kamada et al. 2001; Schluesche et al. 

2007).  In fact, recent measurements of TBP mobility in living yeast cells demonstrate 

that all detectable TBP is highly mobile, displaying Mot1-dependent FRAP recovery 
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times of < 15 seconds (Sprouse et al. 2008).  Importantly, while the recovery times are 

rapid, they are markedly slower than can be explained by diffusion, and are instead 

consistent with transient interaction with chromatin.  This suggests that the entire (or 

nearly entire) TBP pool is rapidly recycled, leading to rapid redistribution of TBP among 

chromatin binding sites.   

 Several fundamental questions are raised by the observed high mobility of TBP in 

vivo.  If TBP is rapidly recycled from sites on chromatin, what is the nature of these 

sites?  Given the pervasive RNA synthesis in yeast cells under these conditions, it would 

appear that there may be active promoters for which PICs are rapidly recycled.  If this is 

true, how and why are such dynamics important for promoter function?  When TBP 

dynamics are compromised, are new or different types of RNA made, or is simply the 

quantity at annotated genes changed?  To begin to address these questions, we developed 

a general genomic strategy to identify aberrant RNA species in mutant strains of interest. 

Surprisingly, we find that compromising TBP dynamics via conditional mutation of Mot1 

gave rise to many hundreds of changes in RNA length, the largest category of which 

includes transcripts that were apparently initiated properly but failed to reach the end of 

the gene.  In parallel, we determined how Mot1 affects TBP occupancy genome-wide for 

comparison with the RNA effects.  The results support a model in which Mot1-mediated 

TBP dynamics at the promoter influence transcription elongation efficiency. These 

results argue that in contrast to prevailing views, at many promoters PIC dynamics can 

play an important role in conferring efficiency and accuracy of transcription elongation.     
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2.2 Materials and Methods 

 All wet-bench procedures were performed by Melissa Wells Carver and Rebekka 

Sprouse.  I was responsible for all computational analyses of the resulting data.   

2.2.1 Yeast strains and growth conditions 

The strains and the growth conditions used for the study of RNA and ChIP in WT, 

mot1-42 and set2Δ are described in the material and method section of the publication 

described in detail in (Poorey et al. 2010).  

2.2.2 Expression Analysis 

Total RNA was isolated using hot-acid phenol extraction (Schmitt et al. 1990).  

For the tiling arrays, cDNA was synthesized from 7 µg of total RNA using the 

Affymetrix GeneChip WT Double-Stranded cDNA Synthesis Kit as recommended by the 

manufacturer, but with the addition 0.4 mM dUTP for subsequent fragmentation and 

biotin end-labeling.  dsDNA was purified using the GeneChip Sample Cleanup Module 

(Affymetrix, Inc.).  Fragmentation and labeling were performed using the GeneChip WT 

Double Stranded DNA Terminal Labeling Kit.  Fragmented DNA was confirmed to be 

between 25-100 bp using the Agilent RNA 6000 Nano Kit and an Agilent 2100 

Bioanalyzer.  Efficient labeling was confirmed by gel shift assay using NeutrAvidin.  

Samples were hybridized to S. cerevisiae Tiling 1.0R Arrays (Affymetrix, Inc.) and raw 

data were generated by the Microarray Core Facility at UVA.  WT, mot1-42, and set2∆ 

RNA analyses were performed using two independent biological replicates for each. For 

the experiment in Figures 2-7 A and B, WT (TBP), mot1-42 (TBP-Y185C), and mot1-42 

(TBP-F207L) RNA was analyzed as a single replicate. For real-time qPCR validation, 
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RT-PCR was first performed using the iScript Select cDNA Synthesis Kit (BioRad) 

according to manufacturer’s instructions. cDNA was then quantitated by real-time PCR 

using iQ SYBR Green Supermix (BioRad) and the BioRad MyiQ Single Color Real-time 

PCR detection system.  Each experiment includes two independent biological replicates.  

Northern blotting was performed as previously described (Dasgupta et al. 2005) using 

strand-specific probes obtained by single- -32P-

dATP.  In each case, the template for probe synthesis was a gel-purified PCR fragment 

spanning the differentially affected transcribed region.  The Tiling Array hybridization 

for total RNA in WT, mot1-42, and set2∆ was performed by Rebekka O Sprouse, and the 

hybridization for total RNA in mot1-42 (TBP-Y185C), and mot1-42 (TBP-F207L) was 

performed by Melissa Wells Carver  with the validation experiments involving PCR and 

Northern Blotting.  

2.2.3 Chromatin immunoprecipitation (ChIP) 

ChIP assays were performed exactly as previously described (Dasgupta et al. 

2005) with the following antibodies: for TBP ChIP, anti-myc (9E10) (Dasgupta et al. 

2005); for TFIIB ChIP, a TFIIB rabbit polyclonal antibody (Dasgupta et al. 2005); and 

for RNA pol II ChIP, the Pol II monoclonal antibody 8WG16 (Thompson et al. 1989), 

(Bhaumik and Green 2001). ChIP material was then used for hybridization to tiling arrays 

or for quantitation by real-time qPCR.  For the tiling arrays, library preparation and 

amplification of DNA for both ChIP and mock IP samples were performed using the 

GenomePlex Complete Whole Genome Amplification Kit (Sigma) as described (O’Green 

et al. 2006) with several modifications:  dUTP was added in equimolar concentration to 

the dNTP mix (0.4 mM), and a second amplification was performed for both the ChIP 



29 

 

and mock samples using 10 ng of the previously amplified material.  Samples were 

purified with the QIAquick PCR purification kit (QIAGEN) prior to re-amplification and 

fragmentation. Duplicate samples were combined to obtain 7.5 µg of material for 

fragmentation and labeling.  Samples were hybridized to S. cerevisiae Tiling 1.0R arrays 

(Affymetrix, Inc.) (Experiments for TBP hybridization were done by Rebekka O. Sprouse 

and for TFIIB hybridization were carried on by Melissa Wells Carver ) and raw data were 

generated by the Microarray Core Facility at UVA.  Three independent biological 

replicates were analyzed for TBP and two independent biological replicates for were 

analyzed for TFIIB.  Real-time qPCR was performed on ChIP, mock IP, and total 

samples as described for the RNA analysis.   ChIP signals were obtained by subtracting 

mock IP signal from ChIP signal and normalizing against the input. ORF primers were 

identical to those used in the expression analysis.  Three independent biological replicates 

were performed for each ChIP analysis.  P-values were obtained by log transforming the 

calculated ChIP signals and a one-tailed, paired, t-test was conducted. The locus specific 

ChIP quantification and the analysis were performed by Melissa Wells Carver. 

2.2.4 Tiling array data analysis 

We performed both gene biased and unbiased analyses of the tiling array data.  

For unbiased analysis, we used the Affymetrix Tiling Array Software (TAS) which 

quantile normalizes replicate arrays, scales their median intensity to a user defined value 

and calculates the -10log10(p-value) and log2(pseudo-median) (or signal strength) 

associated with a one- or two-sample Wilcoxon signed rank test over a sliding window 

(Cawley et al. 2004).  For the ChIP-chip analysis of TBP and TFIIB for mot1-42 and WT 

strains, we applied the two-sample test of the ChIP sample compared to mock IP using a 
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window size of 500bp.  For the total RNA analysis, we applied the one-sample test using 

a window size of 50bp.  For the biased analysis, a gene-centric library (CDF) file was 

generated from yeast gene annotations (Fisk et al. 2006) and the Affymetrix tiling array 

library (BPMAP) file, which contained a probe set for every annotated yeast gene 

comprised of all probes whose central position fell within the annotated start and stop of 

the gene.  Normalized gene expression estimates were obtained by quantile normalizing 

the arrays and applying GCRMA.  Lists of differentially expressed genes were obtained 

using the limma package in Bioconductor and applying a 5% False Discovery Rate 

cutoff.   

2.2.5 ChIP Tiling Array Data 

Raw array data (CEL files) or the intensity data of the treatment (ChIP sample) 

and control (mock sample) were quantile normalized separately within replicate groups 

and the median intensity was scaled to a common target of 100.  To determine the size 

and the significance of the difference between ChIP and mock sample data (signal 

estimates and the p values) we applied a Wilcoxon Rank-Sum test to log transformed 

PM-MM values, log2(max(PMi-MMi,1)), whose genomic coordinate ‘i’ (i.e., central 

position of 25mer PM/MM probe sequence) fell within a 500 bp (i.e., the ChIP 

fragmentation size) sliding window.  The Hodges-Leman estimator, which is the 

estimator associated with the Wilcoxon Rank Sum test, was calculated along with -

10log10(p-value). This analysis was applied to the following datasets: 

1. WT TBP occupancy: 3 replicates of myc-tagged TBP ChIP as treatment and mock 

ChIP as control in WT cells. 
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2.  mot1-42 TBP occupancy: 3 replicates of myc-tagged TBP ChIP as treatment and 

mock ChIP as control in mot1-42 cells. 

3. WT TFIIB occupancy: 2 replicates of TFIIB ChIP as treatment and mock ChIP as 

control in WT cells. 

4.  mot1-42 TFIIB occupancy: 2 replicates of TFIIB ChIP as treatment and mock 

ChIP as control in mot1-42 cells. 

5. Differential TBP occupancy: 3 replicates of myc-tagged TBP ChIP in mot1-42 

cells as treatment and 3 replicates of myc-tagged TBP ChIP in WT cells as control. 

6. Differential TFIIB occupancy: 2 replicates of TFIIB ChIP in mot1-42 cells as 

treatment and 3 replicates of TFIIB ChIP in WT cells as control. 

The above analysis was performed using TAS (Tiling Analysis Software version 1.1) to 

generates graph files (.bar and .txt) files which contain signal and log transformed p-

values as a function of genomic coordinates. 

2.2.6 RNA Tiling Array Data 

Estimates of RNA levels were made from the raw array data (CEL files) by first 

quantile normalizing all replicate arrays and scaling the data to a target median intensity 

of 100. We applied the Wilcoxon Signed-Rank test to the normalized log2(max(PMi-

MMi,1)) values whose genomic coordinate ‘i’  fell within a 100 bp (i.e., a length much 

smaller than the typical ORF) sliding window to calculate the log transformed probability 

(-10log10(p-value)) that the RNA was detected above noise levels. The associated 



32 

 

Hodges-Leman estimator was used to estimate RNA levels.  This analysis was applied to 

the following samples: 

1. Total RNA in WT cells (MOT1 isogenic control, 2 replicates). 

2. Total RNA in mot1-42 cells (2 replicates). 

3. Total RNA in WT cells (SET2 isogenic control, 2 replicates) 

4. Total RNA in set2∆ cells (2 replicates) 

Differential RNA levels were estimated using the same procedure described for the ChIP 

data including a window size of 500 bp with mot1-42 RNA samples as treatment and WT 

RNA samples as control.   

2.2.7 ChIP-chip Peak Identification 

In order to identify the location and height of TBP and TFIIB ChIP-chip peaks, 

we started by applying a series of cutoffs to the signal data, from 0.3 to 4.3 in intervals of 

1 (as illustrated in Figure 2-1), which result in a series of segments or intervals for each 

cutoff.  To avoid characterizing spurious, noisy local peaks, we further joined intervals 

for every cutoff that are > 50 bp apart and eliminated those that are > 100 bp long.  This 

yielded a series of intervals which encompass TBP and TFIIB peaks which were found 

by searching for the maximum signal in each interval.  

2.2.8 Associating ChIP-chip Peaks to Genes 

Using the TBP and TFIIB peaks, we associated a peak with a gene if it was within -300 

to +50 bp of the annotated transcription start site (TSS).  We allowed multiple genes 

which satisfy the distance criteria, to be associated with a single peak.  Conversely, a 
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single gene can be associated with multiple peaks, each of which satisfies the distance 

cutoff separately. 

2.2.9 Average Plots 

We generated average RNA and ChIP enrichment plots for selected genes in 

Figures 2-8, 2-10, and 2-11 and 2-9A, C, D by setting the TSS of the genes to a common 

value of 0 (effectively aligning the TSSs) and averaging the signal over genes as a 

function of genomic coordinate.  For Figure 2-8 B, the gene end was set to 0 and the 

signal was averaged over the gene upstream and downstream.  We applied modest 

smoothing to the data by calculating the averages in a sliding window ranging from 1 to 

50bp in length depending on the plot.   

2.2.10 Heat Maps 

The Heat maps shown in Figures 2-10 C- and D were generated by discretizing 

absolute and differential mot1-42 versus WT TBP and TFIIB signals (i.e., maximum 

signal value within -300 to +50 bp of the TSS) into a 30x30 grid.  The position of the box 

on the grid represents the median absolute or differential TBP (x-axis) and TFIIB (y-axis) 

value of the genes in the box.  Similarly, absolute or differential RNA levels of genes 

falling within a box were summarized by their median value and assigned a color based 

on percentile (e.g. dark brown for upper 20% absolute or differential RNA levels).   

 

2.2.11 Transcription Precision Pipeline (TraPP) 

This pipeline was developed to measure and classify the defects in RNA transcript
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Figure 2-1: peak-finding method.  

In each successive segment (horizontal line), the position of maximum signal was 

computed, thereby estimating the location of the bound factor (red arrows). Annotated 

Pol II transcribed genes are indicated by green bars, and the red bar denotes a tRNA gene. 



35 

 

lengths.  We applied a 0.3 cutoff to differential RNA signal data generated using a 500 bp 

sliding window.  By comparing these segments to annotations, we identified 5’ and 3’ 

length changes in mot1-42 relative to WT transcription.  These length changes were 

either positive or negative and represented a different RNA defect as described in Figure 

2-3.  Cases where the significant differential expression segment mapped to two or more 

annotated genes were separately characterized.  Putative length changes that did not 

satisfy all the criteria below were filtered out: 

1. The overlap between annotations and the significant differential signal segments 

was at least 100 bp long. 

2. The length of the defect computed was > 150 bp long. 

3. Median signal in the defect was significantly different from the baseline 

differential expression value as described in Figure 2-2.  In the case of extensions 

where the segment fell beyond the boundaries of the annotation, the median signal 

in the extended region, Sext, was greater than 0.44 to make a length change call.  

In the case of truncations, we defined two quantities: (1) Soverlap as the median of 

the differential signal in the region where the differential segment and the 

annotation overlapped and (2) Sint as the median signal in the region internal to 

the gene that did not overlap the differential expression segment.  For a truncation 

to be called, we required Soverlap = Sint >  0.44.  

4. Spliced genes (283 total) were excluded because differential expression of spliced 

genes spans more than one CDS segment and were therefore erroneously called as 

length changes. 



36 

 

 

Figure 2-2: Overview of the TraPP method.  

illustrated with an enlargement of the chromosomal region in the center of the screen shot 

in (A).  In the case of the gene YBR284W, the significant differential RNA segment found 

using signal log2(mot1-42/WT) > 0.3 (blue segment) was compared with the annotation, 

and aberrant transcript length changes (denoted by the red and the black segments) were 

calculated.  Thresholds requiring a > 100 bp overlapping gene segment and length 

changes > 150 bp long were applied. Soverlap and Sext refer to the differential RNA signal 

in the region where the differential segment overlaps (orange segment) and is external 

(black segment) to the annotation, respectively.  Sint refers to the differential signal within 

the portion of the annotation that does not overlap the differential segment (red segment).  

By provisionally defining the differential RNA with respect to the overlapping gene, the 

aberrant RNAs were sorted among 4 groups (see text).  In this example, a 5’ length 

change is classified as an upstream initiation event whereas the partial overlapping gene 

segment and consequent change in 3’ length define a premature termination event. 
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2.2.12 SUT/CUT Analysis 

We assessed the association between SUTs/CUTs (Neil et al. 2009) and 

significant changes in Mot1-mediated changes in RNA expression (i.e., differential level 

and/or location of expression) from the tiling array analysis.  Genes were classified 

according to the location of SUTs/CUTs: (1) overlapping the gene; (2) located in the 

promoter of the gene and (3) located at the 3’ end of the gene.  We used BEDTools to 

perform the overlap analysis (Quinlan and Hall 2010).  Based on an analytical formula, 

we found the overlap of SUTs/CUTs with RNA length changes was the expected number 

due to random chance.  However the associations with RNAs that were differentially up 

or down regulated were found to be potentially significant from the same analysis.  To 

further test this association, we randomly associated SUTs/CUTs with genes while 

maintaining the same number of overlapping, 5’ and 3’ proximal cases.  We generated 

10,000 random associations of SUTs/CUTs with genes and calculated both p-values and 

the enrichment of observed over random.   

2.2.13 Comparison of Shifts in TBP Localization and RNA Length Changes 

A number of analyses were performed to assess the extent to which aberrant TBP 

localization correlated with changes in RNA lengths.  Similar to the RNA length change 

calculation, we first calculated the differential TBP signal between mot1-42 and WT 

cells.  We then calculated average plots of the differential signal near the TSS for all 

genes.  We found a general tendency for the differential TBP peak to be localized closer 

to the TSS or even within the ORF when compared to the WT peak.  This is consistent 

with the average plots shown in Figure 2-10 A where the differences between mot1-42 

and WT tend to be largest near the TSS.  To assess if this differential shift in TBP signal 
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correlated with RNA length changes, we identified the differential peak positions and 

calculated the difference between the differential peak and the WT peak.  For each of the 

four RNA length change classes as well as those that display no detectable length 

significant differences between each of the RNA length change classes and the null class 

distributions.  This was reflected in insignificant p-values derived from a Kolmogorov-

Smirnov test between the null and each of the RNA length change classes separately.  We 

then assessed the extent to which the shifts between the WT and the mot1-42 TBP peaks 

correlated with the LI and EI length change classes.  We first calculated the difference 

between mot1-42 and WT peak positions as well as the difference between the apparent 

site of initiation of the new RNA and the annotated TSS.  We calculated the Pearson 

correlation coefficient for these two sets of differences and found a correlation coefficient 

of- 0.51 for the downstream initiation events. 

2.3 Results 

We first compared RNA from wild-type (WT) and mot1-42 yeast cells using 

Affymetrix genomic tiling arrays which interrogate the yeast genome at 5 bp resolution. 

mot1-42 is a temperature-sensitive allele that encodes a protein that is biochemically 

inactive in vitro (Darst et al. 2003), and prior work established that this allele induces 

changes in gene expression in vivo that closely parallel other severe, conditional mot1 

alleles (Dasgupta et al. 2002).  WT and mutant strains were grown at permissive 

temperature (30
o
 C), then shifted for 45 min to 35

o
 C prior to harvesting RNA.  This 

temperature shift did not impair growth of WT cells, but dramatically inhibited growth of 

mot1-42 cells (Darst et al. 2003). We calculated gene expression changes from the tiling 
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array data using methods similar to those applied to conventional gene expression arrays 

(see Materials and Methods).  These expression changes were well correlated with 

expression changes defined previously (Sprouse et al. 2009; Figure 2-3), thus validating 

the use of tiling arrays for quantitative RNA analysis.  

Although Mot1 exerts a global effect on transcription, most of these 

transcriptional effects are modest in magnitude.  To better understand why Mot1-

catalyzed TBP recycling is essential, we took advantage of the tiling arrays to determine 

whether Mot1-mediated TBP dynamics affect RNA precision as well as quantity.  To test 

this idea, we developed a method to capture significant RNA hybridization signals that 

deviate from gene annotations (Figure 2-4).  This approach was possible because in the 

overwhelming majority of cases, the WT RNA signals were closely aligned with 

annotated genes (an example is shown in Figure 2-2A, and others are discussed below).  

By comparing the coordinates of gene annotations with differential RNA segments, a 

methodology was developed that can detect RNA segments that extend outside a gene 

annotation, or differential signals that overlap with only a portion of an open reading 

frame.  The gene-dense nature of the budding yeast genome presented challenges for the 

analysis because differential RNA signals could potentially overlap with more than one 

gene annotation, giving rise to different types of apparent RNA length changes based on 

the relative orientation of the two genes (Figure 2-4).  Nonetheless, it was possible to 

segregate the differential RNA signals into four categories in which the RNA segment 

overlap was defined provisionally with respect to the gene annotation (Figure 2-2 B).  

Thus, “upstream initiation” segments are RNAs that extended upstream of the normal 

transcription start site, “downstream initiation” events are RNAs apparently initiated 
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within the open reading frame (a.k.a. cryptic initiation events), “premature termination” 

segments correspond to RNAs within an open reading frame that do not include the 

normal 3’ end, and “downstream termination” events are those in which RNA extended 

beyond the termination site in WT cells.  Although the arrays do not provide information 

about the strand specificity of the hybridized RNA, the strand-specific analyses described 

below confirm that most if not all of the detected events correspond to changes in RNA 

sense strand abundance. 

To validate the array-detected RNA length changes, RNA from set2∆ cells was 

compared to WT using the same methodology.  Loss of the H3 K36 methyltransferase 

activity in set2∆ cells is well known to result in cryptic initiation within open reading 

frames (Workman 2006).  Consistent with the published data (Li et al. 2007a), 206 

instances of cryptic initiation were detected in set2∆ cells, and these “downstream 

initiation” events comprised the largest class of RNA length changes by far (Table 2-1). 

Among the set2∆-induced array detected RNA length changes, we found and 

validated cryptic initiation in STE11 and PCA1, two genes previously shown to be 

susceptible to cryptic initiation in set2∆ cells (Li et al. 2007; Figure 2-5).   

Using the same approach, we characterized RNA length changes from differential 

mot1-42 versus WT RNA.  Strikingly, twice as many aberrant RNA species were 

detected in mot1-42 cells compared to set2∆ cells (Table 2-1), and the mot1-42-induced 

length changes had a significantly different distribution among the four length change 

classes.  Notably, a Mot1 defect led to 338 genes showing “premature termination”, the 

most prevalent class of events.  The “premature termination” events fell into two 
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Figure 2-3 Comparison of mot1 microarray fold changes from Sprouse et al. (2009) and 

the present study.  

Note the linear correlation between Mot1-dependent fold changes derived from Agilent 

Yeast Oligo arrays (conventional microarrays; Sprouse et al. 2009) and those derived 

from this study using Affymetrix S. cerevisiae 1.0R tiling arrays. The slope of the best-fit 

line is 0.73.  The technical differences in experimental design, array sensitivity, and data 

analysis account for why the datasets are correlated but the slope of the line is not equal 

to 1. 
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Figure 2-4: Biological complexity in the observed RNA length changes.  

(A-P) The gene-dense nature of the S. cerevisiae genome, which gives rise to 

transcription of ~90% of the sequence, leads to complexity in the interpretation of 

observed RNA length changes, particularly when a differential RNA signal bridges two 

adjacent annotations.  Schematic representations of RNA length changes are shown, with 

differential RNA shown in the blue curves and the brown segments showing the RNA 

length change segments called by the algorithm.  The length changes were called with 

respect to a given gene or genes as shown in green. 
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Table 2-1: The table summarizes the number of aberrant RNAs identified from the 

differential RNA signal mot1-42 and set2∆ cells compared to WT cells.  Of particular 

note is the large number of premature termination events in mot1-42 cells and the 

enrichment in downstream (cryptic) initiation events in set2∆ cells. 
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categories: (1) “differential down” instances in which the RNA level was similar in the 5’ 

end of the open reading frame (ORF) but diminished in the 3’ end of the ORF in mot1-42 

cells compared to WT (77%) and (2) “differential up” instances in which a defect in 

Mot1 led to increased RNA in the 5’ portion of the ORF but the differential RNA failed 

to extend to the 3’ end of the ORF (23%). Although the mot1-42 and set2∆ datasets have 

different numbers of genes and different distributions among the length change 

categories, there are 12 genes that displayed premature termination in both mot1-42 and 

set2∆ cells.  While few in number, the overlap is statistically significant (p = 0.02), 

suggesting that elongation efficiency in some genes may be under both Mot1 and Set2 

control.   

Selected RNA length changes were validated by real time PCR, including two 

genes with premature termination defects (Figure 2-6 A-G).  Note that strand-specific 

real time PCR showed that the differential RNA effects are attributable largely if not 

entirely to changes in sense strand abundance.  The results thus far support a role for 
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Figure 2-5: Confirmation of RNA length changes in set2∆ cells.   

(A-C) Integrated Genome Browser screenshots of log2 WT, set2∆, and 

differential RNA levels (set2∆/WT) for STE11, PCA1 and ACT1 genes. The bar graphs 

show the relative RNA levels (arbitrary units) quantified by real time PCR using sense 

and antisense-specific 5’ and 3’ primer sets for each gene (depicted by small black boxes 

above each gene).  Average values are shown + the standard error obtained by analysis of 

two independent RNA samples for each strain.  Cryptic initiation was detected in STE11 

and PCA1, whereas there was no significant change in ACT1 expression.  The length 

change confirmation experiments were performed by Melissa Wells Carver. 
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Mot1 in maintaining RNA profiles that match annotated genes, but do not address 

whether this effect is mediated through transcription or some other effect on RNA 

processing.  To address this question, ChIP was performed to assess the Pol II density on 

genes for which the RNA length changes occurred.  As shown in Figures 2-6 differential 

changes in RNA level correlated with changes in Pol II occupancy as expected if the 

differential RNA signals arose through changes in transcription.  

To further confirm the interpretations of the differential RNA tiling array data, we 

analyzed RNAs by Northern blotting using strand-specific probes.  We chose genes 

associated with premature termination for which the full-length and predicted short 

RNAs were appropriately sized for detection on the blot, as well as being reasonably well 

resolved from each other.  THI2 displayed premature termination and was in the 

“differentially up” class.  As shown in Figure 2-7 A, primarily two species of THI2 RNA 

were detected in WT cells, a full-length species and a discrete shorter RNA which has not 

been characterized.  In mot1-42 cells, most of the full-length THI2 RNA was slightly 

shifted to a position of smaller size (marked by asterisk), and a heterogeneous smear of 

shorter RNAs was detected (marked by bracket).  This is consistent with the tiling array 

and RT-PCR data showing an increase in prematurely terminated RNA in mot1-42 cells.  

As expected, all of the detectable RNA was sense RNA, confirming the premature 

termination designation.  PAN1 was also detected as a gene associated with premature 

termination, but in the “differentially down” class.  PAN1 is a Mot1-activated gene, and 

as expected, there was less full-length PAN1 RNA in mot1-42 cells compared to WT.  A 

smear of shorter PAN1 RNA was readily detected, and as expected for a gene in the 

“differentially down” class, PAN1 short RNA was at least as abundant in mot1-42 cells as 
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Figure 2-6: Validation of premature termination RNA length changes in mot1-42 cells 

and correlation with Pol II density.   

(A-G)  Upper panel, screen shots showing WT, mot1-42 and differential RNA 

signals across PDR11, EMP47, and ACT1 genes.  Middle panel, relative RNA levels 

were quantified by real time PCR for both the sense and antisense strands.  Primers were 

specific for either the 5’ or 3’ end of each gene and the amplified product is represented 

by the small black square above each gene in the upper panel.  Results shown are from 

the means of two independent RNA samples with associated standard error.  PDR11 is an 

example of a gene with increased 5’ transcription in mot1-42 cells (classified as 



48 

 

“differentially up”) whereas EMP47 had similar levels of 5’ RNA but less 3’ RNA in 

mot1-42 versus WT cells (classified as “differentially down”).  No RNA length change 

was detected for ACT1, and the change in RNA level across the open reading frame was 

small (< 5%) in comparison to the total level of total ACT1 RNA in both strains.  Anti-

sense ACT1 RNA was not detectable. Last panel show relative Pol II ChIP signals in the 

promoter, 5’ end, and 3’ end of each ORF.  The results were obtained using the 8WG16 

antibody and are shown as the mean of 3 independent biological replicates + the standard 

deviation. The indicated p-values were determined using a one-tailed paired t-test of the 

log-transformed ChIP values.  Note the correspondence between the changes in Pol II 

ChIP and RNA length changes: the 5’ ORF of PDR11 had an increased level of Pol II in 

mot1-42 cells that corresponded with increased 5’ ORF RNA level.  Similarly, Pol II 

ChIP signal was decreased in the 3’ ORF of EMP47, consistent with the decrease in 3’ 

RNA in mot1-42 cells.   As expected, there were no significant changes in Pol II ChIP for 

ACT1. Confirmation of cryptic initiation and 3’ transcript length changes in mot1-42 

cells.   (D-G) Screenshots of log2 WT, mot1-42, and differential RNA levels for 4 

selected genes are shown in the upper part of each panel.  Relative RNA levels quantified 

by real-time PCR using sense- and antisense-specific primers are shown in the bar 

graphs.  The graphs show the average + the standard error obtained by analysis of two 

independent RNA samples for each strain.  The small black boxes above each gene depict 

the locations of each primer set.  Bottom panel show relative RNA Pol II ChIP signals 

were obtained at the 5’ end and the 3’ end of the ORF (THI2 and PDC5) or the 3’ end of 

the ORF and the 3’ intergenic region (TAT1 and ARN1).   The results were obtained using 

the 8WG16 antibody and are shown as the mean of 3 biological replicates ± the standard 
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deviation.  The indicated p-values were determined using a one-tailed paired t-test of the 

log-transformed ChIP values.  The same primer sets were used as the RNA analysis.   

THI2 is an example of prematurely terminated RNA and PDC5 is an example of 

downstream initiation.  In contrast, TAT1 and ARN1 are examples of downstream 

termination RNAs.   For all of the genes there is an increase in Pol II ChIP levels that 

correspond with the RNA length change.  Note that the Pol II ChIP data for PDC5 are 

shown on a log scale.   The strong signal at the 5’ end of the PDC5 ORF is consistent 

with previously published data (Steinmetz et al. 2006).  The experimental confirmation of 

length changes and Pol II ChIP were performed by Melissa Wells Carver. 
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it was in WT cells. Moreover, we observed that the shortest RNA species detected were 

more abundant in mot1-42 cells compared to WT cells (small bracket).  As expected, all 

of the detectable PAN1 RNA was sense RNA.  In contrast, ACT1 RNA was a discrete 

species unaffected by mot1-42 (Figure 2.7 C).  Interestingly, the presence of shorter THI2 

and PAN1 RNA in WT cells suggests that these genes are prone to premature termination 

even in WT cells, but that these effects are exaggerated by mutation of MOT1.  

In a previous study (Sprouse et al. 2009), two TBP alleles were studied that 

bypass the requirement for Mot1 in vivo.  These TBPs restored appropriate expression 

levels to many Mot1-regulated genes in vivo and allowed cells to grow without Mot1, 

which is otherwise essential (Sprouse et al. 2009).  Biochemically, the bypass TBPs were 

defective for interaction with other GTFs or DNA, consistent with the critical activity 

Mot1 provides in destabilizing TBP-containing complexes in vivo (Sprouse et al. 2009).  

RNA tiling array analysis demonstrated that the two TBP bypass alleles suppressed the 

premature termination RNA length changes observed in mot1-42 cells (Figures 2-8 A and 

B).  Suppression of premature termination RNA synthesis from the “differential up” class 

was essentially complete, whereas the bypass TBPs partially restored efficient RNA 

synthesis to the “differentially down” gene class.  Interestingly, the bypass TBPs were 

able to suppress each of the other RNA length change classes as well (Figure 2-8).  We 

conclude that the mot1-42-mediated effects on RNA length can be explained by a direct 

effect of Mot1 on TBP dynamics.  

Computational approaches were employed to determine if there are promoter 

features or aspects of local genomic organization that correlate with the RNA length 

changes observed in mot1 cells.  First, we found that upstream initiation and downstream 
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Figure 2-7: Confirmation of RNA length changes by Northern blotting.   

Total RNA from WT or mot1-42 cells was resolved by gel electrophoresis, transferred to 

nylon membrane and probed with radiolabeled single DNA strands to detect gene-

specific sense or antisense RNAs, as indicated.  (A), THI2.  Full-length RNA is indicated 

by the arrow.  Note the slight shift in mobility of full-length RNA (indicated by the 

asterisk) and the smear of smaller RNA species (bracket) in mot1-42 versus WT samples.  

Only sense RNA was detected.  The probes spanned +240 to +930 with respect to the 

start of the open reading frame.  (B), PAN1 was identified as a Mot1-activated gene 

displaying premature termination in the “differentially down” class.  Consistent with this, 

note the decrease in full-length RNA (arrow) in mot1-42 cells, which was in contrast to 

the shorter RNAs (large bracket) whose abundance was comparable in mot1-42 versus 

WT cells.  However, the small RNA species were distributed such that the shortest RNAs 

were more prominent in mot1-42 cells compared to WT (denoted by small bracket).  
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Only sense RNA was detected.  The probes spanned +420 to +864 with respect to the 

start of the open reading frame (C) ACT1 control RNA was detected with a sense-strand 

specific probe.  As expected, discrete full-length bands were detected in both WT and 

mot1-42 cells, with no quantitative difference between them.  The ACT1 probe spanned 

+14 to +184 with respect to the start of the open reading frame.  These experiments were 

performed by Melissa Wells Carver. 
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Figure 2-8: Suppression of the premature termination defects in mot1-42 cells by 

mutations in TBP.   

(A, B) Profiles of average differential RNA—defined as the average of the differential 

RNA signal as determined in Supplemental Methods (RNA Tiling Array Data)- for genes 

showing premature termination length changes in mot1-42 versus WT cells (black lines).  

The x-axis indicates the position along the chromosome in base pairs relative to the start 

of the gene annotation (zero).  For comparison, the plots show the average differential 

RNA profiles for these same genes in mot1-42 cells harboring TBP-F207L versus WT 

(red lines) and mot1-42 TBP-Y185C versus WT (green lines).  Premature termination 

length effects were sub-classified depending on whether the differential signal was 

positive (A, 77 genes) or negative (B, 264 genes). Average signals were obtained by 

smoothing over a 30 bp window. Suppression of transcription length changes in mot1-42 

cells by TBP bypass alleles: (A-F) Average profiles of differential RNA for genes 

showing upstream initiation (C), downstream termination (D), and downstream initiation 

(E, F) length changes in mot1-42 versus WT cells (black lines).  The x-axis indicates the 

position along the chromosome in base pairs relative to the start of the gene annotation 

(zero in C, E, and F) or gene end (zero in D).  The average differential RNA profiles for 

these same genes in mot1-42 cells harboring TBP-F207L versus WT (red lines) and 

mot1-42 TBP-Y185C versus WT (green lines) show that the bypass alleles at least 

partially suppress each of the RNA length change categories. 
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termination classes of RNA length changes are enriched in genes whose promoters 

possess TATA boxes (Table 2-2; Basehoar et al. 2004).  The TATA box association with 

premature termination genes was only detected for the “differentially up” class; the 

“differentially down” premature termination genes are significantly under-represented in 

TATA-containing genes. In contrast, no significant TATA box enrichment or depletion 

was seen for the downstream initiation genes.  These results argue that the nature of the 

core promoter is related to the propensity to generate a certain type of aberrant RNA.  

This observation provides further support for the notion that these RNA length changes 

result from direct, promoter-mediated effects on transcriptional elongation.   

Recent work has revealed two classes of noncoding RNA in yeast, termed SUTS 

(stable unannotated transcripts) and CUTS (cryptic unstable transcripts) (David et al. 

2006; Davis and Ares  Jr. 2006; Xu et al. 2009; Neil et al. 2009; Wyers et al. 2005).  An 

extensive and detailed investigation uncovered no statistically significant relationship 

between the occurrence of a particular type of aberrant RNA in mot1-42 cells and the 

occurrence of a SUT or CUT flanking or within the annotated gene in which the RNA 

length change was detected (Figure 2-9 and data not shown).  As a second approach, we 

classified annotated genes as Mot1-activated, Mot1-repressed or Mot1-unaffected, based 

on the overall change in RNA level quantified in the gene-centric analysis of the tiling 

data described above (Figure 2-3).  Interestingly, in this case, significant relationships 

were discovered between Mot1-regulated genes and the presence of a SUT or CUT 

proximal or overlapping the annotation.  As shown in Figure 2-10, Mot1-repressed genes 

(scored as “differentially up”) are enriched in genes with a SUT that overlaps their 

transcribed regions.  These SUTs are transcribed in the opposite sense as the affected
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Table 2- 2: Relationship between RNA length change class and occurrence of TATA box 
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Figure 2-9: Relationship between mot1-induced expression changes and CUT and SUT 

RNAs.   

The diagrams illustrate the two significant relationships detected between Mot1-mediated 

gene expression and noncoding transcription.  Mot1-activated genes tend to have an 

overlapping CUT transcribed in the antisense direction.  The CUT transcripts initiate 

within the transcribed region of the Mot1-activated gene, ~40 bp on average upstream of 

the Mot1-activated gene termination site.  In contrast, Mot1-repressed genes tend to have 

an overlapping antisense SUT.  These SUTs initiate ~40 bp on average downstream from 

the termination site for the Mot1-repressed gene. 
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Figure 2-10: Global effects of Mot1 on TBP and TFIIB genomic distribution and 

correlations with transcription.  

 (A) Plots of average TBP and (B) average TFIIB chromatin occupancies obtained by 

aligning all annotated Pol II genes with respect to the transcription start site (TSS).  The 

signals were smoothed over a 50 bp sliding window (WT, solid curves; mot1-42, dashed 

curves).  In both cases, the differences in the distributions are highly significant as 

determined by the Kolmogorov-Smirnov test (p-values as indicated). (C) The heat map 

displays the transcriptome-wide relationship between TBP occupancy (x-axis), TFIIB 

occupancy (y-axis), and RNA level (color) in WT cells.  Each box represents one or more 

genes whose TBP and TFIIB occupancies fall within the box’s x-axis/y-axis values.  The 

box color is the relative median expression value on a scale defined by the range of all 

medians in the dataset. Note the general trend that increasing TBP and TFIIB promoter 

occupancy is correlated with increasing RNA level (arrow).  However, the correlation 

between TFIIB and RNA levels is better because there are genes with high TBP 

occupancy but low expression (black rectangle).  (D) The heat map is similar to panel C, 

but shows the transcriptome-wide relationship between the differential TBP signal (x-

axis), the differential TFIIB signal (y-axis) and the change in RNA level (color) in mot1-

42 versus WT cells.  As in (C), changes in TFIIB occupancy are reasonably well 

correlated with changes in transcription whereas changes in TBP promoter occupancy do 

not correlate as well with changes in RNA level.  (E, F) Density distributions of the 

differential TBP and differential TFIIB signals (as indicated), over the promoters for all 

the genes.  The plots show that in mot1-42 cells compared to WT, TBP occupancies 

increased at the majority of promoters.  In contrast, TFIIB occupancies increased or 
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decreased at roughly equal numbers of promoters, consistent with changes in gene 

expression in both positive and negative directions. 
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Figure 2-11: Average profiles of TBP, TFIIB, nucleosome positioning, and Pol II 

stratified by expression level.  

(A) Average RNA plots for genes in WT cells stratified by expression level (i.e., 

quintiles). (B, C) Average plots for TBP and TFIIB (as indicated) in WT cells for genes 

grouped by RNA level depicted in (A).  The curves were generated using a 20 bp sliding 

window.  Note that on average, TBP and TFIIB levels increased with increasing RNA 

level. (D-F) Average profiles for RNA, TBP and TFIIB as in (A-C) but for genes in 

mot1-42 cells. (G) Average nucleosome profile for genes segregated by expression level.  

Nucleosome data were obtained from Whitehouse et al. 2007. (H) Average Pol II 
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occupancies in WT cells (Steinmetz et al. 2006) stratified by relative RNA level. The 

curves were made with 50 bp window smoothing of the signal. 
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gene.  On the other hand, Mot1-activated genes (scored as “differentially down”) tend to 

have an overlapping CUT near the 3’ end of the gene.  Again, these CUTs are transcribed 

in the opposite sense as the affected gene.  Although the underlying mechanisms are 

unknown, collectively, these results suggest that Mot1’s effects on transcription are 

influenced by antisense transcription of SUTs or CUTs with a particular proximal 

relationship to the affected gene. 

Next, we sought to correlate TBP chromatin localization with the global changes 

in transcription observed in mot1 cells. Published work has documented TBP distribution 

genome-wide (Kim and Iyer 2004; Zanton and Pugh 2004; van Werven et al. 2008; 

Venters and Pugh 2009), as well as the Mot1 distribution and its correlation with TBP 

genome-wide(van Werven et al. 2008; Geisberg and Struhl 2004; Zanton and Pugh 

2004). To determine the genome-wide dependence of TBP localization on Mot1 and to 

compare Mot1-mediated localization to changes in RNA length, chromatin 

immunoprecipitation was performed using these same tiling arrays (ChIP-on-chip).  

These results allowed us to define the locations of TBP binding as well as the relative 

TBP occupancies genome-wide in both WT and mot1-42 cells. To distinguish productive 

TBP binding from nonproductive binding to Pol II promoters, ChIP-on-chip was 

performed in parallel for TFIIB. The results obtained with WT cells are in good 

agreement with published data (van Werven et al. 2009; Venters and Pugh 2009).  For 

example, TBP and TFIIB were localized near each other and primarily in promoters, 126 

and 123 bp, respectively, upstream from the transcription start site (TSS)  (Nagalakshmi 

et al. 2008; Figures 2-10 A and B).  As expected, these locations correlate well with 

nucleosome-free regions (Whitehouse et al. 2007; Figure 2-11 and data not shown).  In 
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addition, although there was a weak positive correlation between TBP promoter 

occupancy and gene expression, TFIIB promoter occupancy in both WT and mot1-42 

cells tracked much more closely with RNA level (Figures 2-10 C).   

Interestingly, in mot1-42 cells, TBP promoter occupancies were increased 

genome-wide compared to WT cells (Figures 2-10 A and B). More detailed analyses 

supported the conclusion that overall, TBP occupancies increased in promoters across the 

board regardless of whether Mot1 exerted a detectable effect on expression of the gene 

(Figure 2-10 and data not shown).  The implications of these observations are discussed 

below.  Figure 2-10 C shows the global relationship between TBP promoter occupancy 

(x-axis), TFIIB promoter occupancy (y-axis), and RNA level (color).  The diagonal arrow 

shows that for a significant number of genes, increasing TBP and TFIIB promoter 

occupancy was correlated with increasing RNA level, as indicated by a transition in the 

color along the diagonal from green (lower RNA level) to brown/red (higher RNA level).  

However, the plot also shows that TFIIB promoter occupancy was much better correlated 

with RNA level than TBP, as indicated by the substantial number of genes with low 

associated RNA levels (colored green) but with high TBP occupancy (demarcated by the 

rectangle).  The global effects of Mot1 on gene expression, as well as TBP and TFIIB 

occupancy are shown in Figure 2-10 D.  Differential TFIIB promoter occupancy was 

reasonably well correlated with differential expression mediated by loss of Mot1.  Note 

that an increase in gene expression in mot1-42 cells (brown/red) was generally associated 

with an increase in TFIIB promoter occupancy (higher y-axis value), whereas decreases 

in gene expression (green) generally displayed a decrease in TFIIB promoter occupancy 

(lower y-axis value). In contrast, there was no obvious correlation between the change in 
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gene expression (color) and the change in TBP promoter occupancy (x-axis value).  

Figures 2-10 E and F support these general conclusions.  These histograms show how the 

global distributions of TBP and TFIIB changed in mot1-42 versus WT cells. Most 

promoters (60%) had increased TBP occupancies in mot1-42 versus WT cells, as 

illustrated by the large peak of positive differential TBP in Figure 2-10 E.  The small 

peak centered over zero indicates that there were some genes (20%) whose TBP 

occupancies did not change, and the left-hand shoulder reflects promoters whose TBP 

occupancies decreased in mot1-42 cells.  In contrast, as shown in Figure 2-10 F, the two 

large peaks indicate that TFIIB occupancies were increased or decreased at roughly equal 

numbers of promoters (39% increased and 42% decreased).  The correlation of 

differential TFIIB signal with differential RNA (Figure 2-10 D) indicates that the 

bimodal distribution of differential TFIIB in Figure 2-10 F was a consequence of the 

nature of the Mot1-mediated transcriptional effect.  To further explore the nature of 

Mot1-mediated effects on TBP, a peak finding algorithm was employed to map more 

precisely the loci of protein binding (Figure 2-12).  Most promoters possessed single TBP 

peaks (67.4%), about a third (32.7%) possessed TFIIB peaks, and close to half of the 

detected TBP peaks (47.3%) were associated with a TATA motif (Figure S4).  Thus, in 

many instances the effects of Mot1 on TBP and TFIIB promoter occupancy appear to 

reflect changes in the occupancies of single, discrete complexes formed on promoters. 

 Finally, using several computational approaches, we investigated the relationship 

between TBP occupancy and the RNA length changes that occurred in mot1-42 cells (see 

Supplemental Materials and Methods). For the altered initiation events in particular, the 

relatively small number of affected genes made statistical analysis difficult.  Nonetheless, 
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we observed that the “downstream initiation” events appear to have a relatively 

straightforward origin: in mot1-42 cells, the shift in TBP localization parallels the 

apparent site of initiation of the new RNA (Pearson correlation = 0.51, data not shown). 

This suggests that changes in initiation occurred because Mot1 failed to clear TBP from 

cryptic sites that can nucleate the assembly of functional transcription complexes.  It is 

unclear how a defect in Mot1 could give rise to RNAs with extended 3’ ends, but the 

correlation of these different aberrant RNA species with promoter type (Table 2-2) 

suggests that termination or 3’ processing events can somehow be influenced by TBP 

dynamics, depending on the type of promoter. 

2.4 Discussion and Future Directions 

The results presented here reveal several new and unanticipated relationships between 

TBP dynamics and transcription.  Notably, we find that impaired turnover of TBP at 

promoters correlates with the production of a predominant class of “premature 

termination” RNAs.  The Pol II ChIP and TBP allele suppression results argue that Mot1-

mediated effects on RNA length distribution are attributable to changes in transcription of 

the affected genes, and that these occur as a consequence of altered TBP dynamic 

behavior at promoters.  Moreover, the genes that display RNA length changes tend to 

have certain promoter attributes (TATA versus TATA-less).  The stochastic failure of Pol 

II elongation that ensues when TBP dynamics are perturbed suggests that Mot1-catalyzed 

clearance of TBP may be important for promoter recruitment or activity of accessory 

factors that subsequently promote Pol II elongation.  Another attractive model is that 

there may be communication between factors associated with the promoter and the
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Figure 2-12: Overview of TBP and TFIIB peak-finding method.  

(A) Screenshot of a region of chromosome 14 showing TBP occupancies in WT cells 

(black) and TFIIB (red) ChIP-on-chip signals.  The vertical lines shown above each 

signal track indicate the positions of TBP and TFIIB identified by the algorithm and the 

annotated genes by green bars (Pol II transcribed) and a red bar (Pol III transcribed gene). 

(B) Enlargement of a portion of panel (A) shows the principle of the method.  In each 

successive segment (horizontal line), the position of maximum signal was computed, 

thereby estimating the location of the bound factor (red arrows). Annotated Pol II 

transcribed genes are indicated by green bars, and the red bar denotes a tRNA gene. (C) 

Screenshot of a region of chromosome 2 showing TBP occupancy in mot1-42 (red), TBP 

occupancy in WT (black), and differential TBP occupancy (mot1-42/WT; blue).  

Annotated genes are shown as green bars.  

 

 

 

 

 

 

 

 

 

  



69 

 

 

 

  



70 

 

 

Table 2- 3: Summary of counts obtained from the peak finding algorithm.   

(A) The total number of TBP and TFIIB peaks computed by the peak finding algorithm 

in WT and mot1-42 cells. (B) The table shows the distribution in the number of TBP 

peaks associated with a given promoter.  Note that most promoters (4697) were 

associated with a single TBP peak in WT cells. (C) The table shows the distribution of 

the number of TFIIB peaks associated with a given promoter.  Note that most promoters 

(4649) did not have an associated TFIIB peak in WT cells. (D) The table shows the 

distribution of TBP peaks with and without TATA boxes.  TATA boxes were defined as 

in Basehoar et al. 2004.  Note that in contrast to the results shown in Table 2-2, these 

assignments of TBP peaks to TATA sequences were made without regard for whether the 

detected TATA box was located within a promoter.  Overall, about 20% of Pol II 

promoters possess a TATA box; the large number of TATA-associated TBP peaks in this 

analysis indicates that a substantial number of peaks are not in promoters.  
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 elongating Pol II.  A possible explanation is that a physical connection persists between 

the promoter and elongating Pol II which can stall elongation some distance from the 

promoter.  The role of Mot1 then would be to facilitate dissolution of the TBP complex at 

the promoter to release a restrained Pol II.  Alternatively, there may be communication 

between the promoter and an elongating Pol II to facilitate transit through chromatin or to 

ensure that downstream RNA processing events are coupled to transcription.  Regardless 

of the mechanism, it is striking that a large number of yeast genes rely to some extent on 

TBP dynamics to ensure accurate and efficient RNA elongation.  

The genome-wide increase in TBP occupancy observed in mot1-42 cells 

compared to WT reported here fits well with the rapid mobility of essentially the whole 

TBP pool assessed by live cell imaging (Sprouse et al. 2008) and shows that TBP 

occupancy is generally limiting at promoters in vivo. On the other hand, although Mot1 

regulates a substantial proportion of the transcriptome, not all yeast genes are affected in 

mot1-42 cells.  Presumably, Mot1-affected genes are especially sensitive to TBP 

occupancy whereas other genes are rate-limited in some other critical step of the 

transcription cycle.  A recent study concluded that TBP turnover rates are different at 

different classes of promoters (van Werven et al. 2009).  This study relied on a 

replacement strategy in which expression of a differentially tagged form of TBP was 

induced and the rate of its association with promoters was tracked.  As the production of 

the new TBP pool required on the order of 30 min, this approach would not capture the 

very rapid Mot1-catalyzed dynamics (occurring on the order of seconds) that our 

previous work has shown accounts for the behavior of the majority of the TBP pool 

(Sprouse et al. 2008).  Although no genomic scale method exists yet for detection of such 
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rapid, locus specific dynamic behavior, the analysis of the TBP occupancy profile in 

mot1-42 cells reported here significantly extends prior work by showing that Mot1 does 

target virtually the entire pool of promoter bound TBP in vivo.  This observation provides 

support for a recent study that modeled the dynamic behavior of GTFs based on 

previously published ChIP-chip data, which found that interactions between TBP and 

chromatin are best described by models in which the interactions are rather transient 

(Samorodnitsky and Pugh 2010).  Our suspicion is that GTF-promoter interactions span a 

wide range of lifetimes. Because the long-lived interactions detected by kinetic ChIP 

experiments appear to represent a relatively small (albeit very important) proportion of 

the total number of chromatin interactions, they may well be below the limit of detection 

in live cell imaging experiments which capture the behavior of the overall GTF pool.    

Recent results show that constitutive yeast genes are expressed by infrequent 

initiation events clearly separated in time (Zenklusen et al. 2008).  These observations 

also fit well with our measurements of highly dynamic TBP in vivo (Sprouse et al. 2008) 

and suggest that in contrast to establishing a stable scaffold, many active promoters are 

subject to occupancy by transcription complexes that undergo rapid cycles of assembly 

and disassembly.  Such dynamic behavior has been speculated to be important for 

ensuring appropriate start site selection and timely transcriptional regulatory responses 

(Auble 2009).  However, the results presented here support the notion of a fundamental 

role for PIC dynamics in the process of RNA synthesis itself.  More generally, the ability 

to rapidly characterize the spectrum of aberrant RNAs present in a particular mutant 

background using the approach outlined here will likely be of use in unraveling the 

molecular mechanisms responsible for these effects.  
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The TraPP (Transcription Precision Pipeline) developed in this study has been 

proven to be a powerful tool to quantify the transcription precision defects in mutants. 

This tool has also been successfully applied to a study showcasing the role of a new 

histone modification (Hyland et al. 2011), and to characterize of the Sen1 RNA 

termination pathway as described in Chapter IV. Currently is also used to characterize 

precision defects in spt16 and mot1 and spt16 double mutants by Jason True and Joseph 

Muldoon. 

The methodology to measure transcription precision has a lot of scope for 

improvement. We developed a Multi pass TraPP methodology to be used for datasets 

with very high variation in differential expression. For these kind of dataset we take 

multiple cut-offs to define the segments of significant differential expression and use the 

TraPP for each cut-off. And finally we combine all the captured defects and filter for 

significant defects. This methodology is applied to capture transcription precision defects 

in sen1 dataset in Chapter IV of this dissertation. First a better segmentation method 

could be applied to the current dataset for capturing the changes in transcription. This 

will increase our efficiency for defining precision defects as we will get better in defining 

the transcription boundaries. This would be more efficient from the current method of 

just taking a single cut-off over the differential RNA signal. One such method is 

described in (), this method was found to be very computationally intensive. In the 

current dataset of tiling arrays we only get the information for the sense strand and the 

use of strand specific arrays would give much more information about the biology and 

origin of these RNA defects. For example we will be able to know that upstream 

initiation events for our dataset arise from sense or antisense strand, also weather the 
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downstream termination events are coming from the antisense transcription from tandem 

gene or they are real downstream termination. Although all the above improvement could 

be made by using high throughput sequencing  data to measure the transcription precision 

defects. Although we lack experience in using TraPP on RNA-seq but using sequencing 

would give us strand specific information and also precise location of where the 

transcript originate and terminate. Although using sequencing to measure transcription 

precision is the way to go, further work is needed to develop the analysis pipeline.    
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Chapter III  

CLK ChIP reveals dynamics of TBP invivo 

The work presented in this Chapter has been published in Poorey et al. 2013  

 

The chromatin immunoprecipitation (ChIP) assay is widely used to capture 

interactions between chromatin and regulatory proteins, but it is unknown how stable 

most native interactions are.  No general method thus far can measure short-lived site-

specific binding events that live cell imaging suggests are prevalent in vivo. Here we 

show using a modified ChIP assay with sub-second temporal resolution that the time 

dependence of formaldehyde crosslinking can be used to extract in vivo on- and off-rates 

for site-specific chromatin interactions varying over a ~100-fold dynamic range.  Using 

the method, we show that a novel regulatory process shifts weakly bound TATA-binding 

protein to stable promoter interactions, thereby facilitating transcription complex 

formation.   This assay provides an approach for systematic, quantitative analyses of 

chromatin binding dynamics in vivo.  

 

3.1 Introduction 

In the ChIP assay, cellular constituents are crosslinked with formaldehyde, the 

isolated chromatin is fragmented, and protein-DNA complexes are then recovered by 
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immunoprecipitation using an antibody that detects a chromatin-associated protein of 

interest.     DNA sequences in the immunoprecipitate are then inventoried by PCR.  The 

assay accurately defines where proteins bind (Rhee and Pugh 2011, 2012), but it provides 

limited information about how stable the interactions are.  For example, a relatively high 

ChIP signal could reflect high occupancy stable binding, or that a dynamic interaction 

was efficiently trapped owing to the long formaldehyde incubation period employed in 

standard assays (Kuo and Allis 1999).  In fact, live cell imaging approaches indicate that 

many chromatin interactions are exceedingly short-lived (Hager et al. 2009; van Royen et 

al. 2009), although such techniques do not provide high resolution regarding chromatin 

binding location. Precise chromatin location information can be obtained by competition 

ChIP, a method that monitors the replacement rate by a differentially tagged factor of 

interest.  However, the method only provides relative turnover rates and the time 

resolution is limited to ~20 min owing to the delay required to generate the competitor 

species (e.g., (van Werven et al. 2009; Deal et al. 2010; Lickwar et al. 2012)). A general 

assay that provides quantitative measures of site-specific on- and off-rates is essential for 

defining and modeling chromatin regulatory events as they occur in vivo. 

 

3.2 The theory 

In this section we provide an overview of the CLK concept, the derivation of the 

mathematical model, a detailed description of how the method is implemented 

computationally, and our interpretation of the parameters yielded by the method.  
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3.2.1 Overview of the CLK Model 

The ChIP assay is the most widely used experimental approach for determining 

where chromatin-binding factors interact with DNA in vivo.  However, the standard 

assay does not provide clearly interpretable quantitative information about chromatin 

binding.  Changes in ChIP signal under different conditions or in comparing different 

binding sites can be interpreted in many ways, and most importantly, the signal derived 

from a standard ChIP assay does not provide information about binding kinetics or the 

fractional occupancy across a cell population.  The CLK method capitalizes on the power 

of the ChIP assay to provide precise location information and extends it so as to provide 

quantitative kinetic information on a broad time scale. 

We applied chemical reaction rate theory to model what happens during a ChIP 

experiment.  The concept is that the dependence of ChIP signal on formaldehyde 

crosslinking time can be used to extract site-specific kinetic information for a chromatin-

binding factor of interest. A simple kinetic model of transcription factor (TF) binding to 

DNA followed by crosslinking is given by 

               

   
→ 

   
← 
               

  
→                  

where the first reaction represents reversible transcription factor binding to DNA. The 

overall on rate     denotes the forward reaction rate for binding and     denotes the 

dissociation rate. The second reaction represents the overall rate,   , at which bound TF-

DNA complexes are crosslinked.  We assume that the crosslinking reaction is irreversible 

under our experimental conditions. We obtained the CLK mathematical model by 
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analytically solving the rate equations derived from this simple scheme. The derivation of 

the CLK model is presented in Section 3.2.2.  Important assumptions are that the 

concentration of the TF is in excess over the number of binding sites, and that the 

unbound TFs are not nonspecifically inactivated or crosslinked by formaldehyde. (Figure 

3-1; Evidence in support of this is provided in Figure 3-8B and D, and Figure 3-9.)  In 

addition, the method requires that we are able to obtain time-resolved crosslinking data, 

including on the second time scale and that formaldehyde is not limiting in the reaction.  

(Figure 3-1; Evidence in support of these assumptions is provided in Figure 3-8A, B and 

E.)  

The CLK model was used to simulate how the ChIP signal varies with 

formaldehyde crosslinking time (Figure 3-2). The curve shows an initial rapid rise at 

short crosslinking times (< 5 sec), which corresponds to the formaldehyde fixation of TF-

chromatin complexes that were existing at steady-state in the cell population prior to 

addition of formaldehyde.  The steep initial rise is related to the rate constant for the 

formaldehyde crosslinking reaction.  Published work provides support for the suggestion 

that crosslinking occurs much more rapidly than TF-chromatin dynamics, and our 

estimates of crosslinking rate obtained with the CLK model are in good agreement with 

in vitro data (see Section 3.2).  
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Figure 3-1 : Schematic diagram of a cell 

Schematic diagram of a cell with a membrane represented by the dotted arc, a 

transcription factor (TF) of interest shown as the light blue circle, chromatin shown as the 

thick green line, and formaldehyde molecules as the small red circles.  The small orange 

chromatin segments represent specific binding sites for the TF.  Red circles superimposed 

on the TF or chromatin represents chemical crosslinking events.  The boxes denote the 

main categories of phenomena occurring in formaldehyde-treated cells that are of 

importance for understanding how a binding site-specific ChIP signal relates to the time 

of formaldehyde treatment. 
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Figure 3-2: Simulation of the CLK model curve 

Simulation of the dependence of ChIP signal on formaldehyde incubation time using the 

CLK model. The early steep rise of the curve shows the formaldehyde crosslinking 

reaction time dependence of the ChIP signal, which occurs at times much shorter than the 

formaldehyde incubation time used in traditional ChIP experiments. The later slow rise of 

the curve shows the increase in the ChIP signal due to the interaction of TF molecules 

with available sites and their capture by formaldehyde crosslinking. The “knee” at the 

inflection point indicates the fractional occupancy of the locus for its chromatin binding 

site at steady-state in the absence of formaldehyde. 
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The simulation in Figure 3-2 also shows that following the initial rapid increase, 

the ChIP signal increases more gradually in response to formaldehyde incubation times 

longer than a few seconds.  In the model, this second-phase increase is due to the on-rate 

driven accumulation of new TF-chromatin interactions, which are fixed by formaldehyde 

as they form.  Eventually, the ChIP signal saturates, reflecting the theoretical state in 

which all chromatin sites have become occupied and crosslinked.  Additional simulations 

(Figure 3-3) show that the dependence of the ChIP signal on formaldehyde incubation 

time is expected to be dramatically different for TF-chromatin interactions with different 

kinetic parameters (e.g. high or low on- or off-rates).  For the method to be implemented, 

it is not necessary that every chromatin binding site is eventually crosslinked to a TF in 

the sample or that we recover the TF-chromatin complexes with high efficiency.  Rather, 

we assume that regardless of practical limitations of sample handling and recovery that 

the ChIP signal we measure is proportional to the number of TF-chromatin complexes 

crosslinked in the population of cells at a particular formaldehyde incubation time.  

We make measurements in cells with two different concentrations of the TF.  The 

overall on-rate for chromatin binding contains the TF concentration term, so the rate of 

increase of the second, slower, phase of the reaction will depend on the TF concentration.  

Moreover, an increase in the TF concentration will increase by mass action the steady-

state fractional occupancy of the chromatin site in the absence of formaldehyde, which is 

why simulations show that the inflection point or “knee” in the curves moves upward as 

the TF concentration is increased (see Figure 3-4B).  Simultaneous fitting of data sets 

obtained in cells with two different concentrations of TF thus imposes strong constraints 

on the mathematical model and reduces the problem of overfitting.  In practice, we apply 
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Figure 3-3: Simulations of the CLK curve for various ranges of kinetic parameters 

 (A) Simulation of the CLK curve for promoter TF-chromatin interaction with a slow on-

rate (kaCTF), slow off-rate (kd) and low occupancy (5%; blue lines). The red lines show 

simulations in which the TF concentration has been increased three-fold compared to the 

blue line. (B) Simulation of CLK curves as in (A) for a TF-chromatin interaction with 

slow on-rate, slow off-rate and high occupancy (65%). (C) Simulation of CLK curves for 

TF-chromatin interaction with slow on-rate, fast off-rate, and low occupancy (5%). (D) 

Simulation of CLK curves for promoter TF-chromatin interaction with fast on-rate, low 

off-rate, and high occupancy (65%). (E) Simulation of CLK curves for promoter TF-

chromatin interaction with fast on-rate, fast off-rate, and low occupancy (5%). (F) 

Simulation of CLK curves for promoter TF-chromatin interaction with fast on-rate, fast 

off-rate, and high occupancy (65%). “Low” on-rate refers to kaCTF values in the range of 

0.4-5 x 10
-4

 s
-1

, and “high” on-rates varied from 0.2-5 X 10
-1

 s
-1

.  “Low” off-rates ranged 

from 2-9 x 10
-3

 s
-1

, and “high” off-rates varied from 0.09 to 1.5 s
-1

. 
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Figure 3-4: Overview of the CLK model.    

(A) Schematic showing a chromatin site (blue rectangle) interacting with a transcription 

factor (blue circle) in a population of four cells in which chromatin binding has a 

relatively high on-rate (left) or low on-rate (right), but in both cases the off-rate is the 

same. Rows descending from t=0 show how the site occupancy in the cell population is 

predicted to change following addition of formaldehyde for 1, 10 or 100 seconds.  Red 

X’s indicate crosslinking.  (B) Simulations of the two scenarios in (A) using the CLK 

model (blue lines).  The red lines show simulations in which the TF concentration was 

increased three-fold. 
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nonlinear regression to fit the CLK model to the experimental CLK dataset to obtain ka, 

kd, kxl and   
  as parameters (see Section 3.2.4).  

3.2.2 – Derivation of the CLK Model 

 In this model, the transcription factor (TF) can be in one of three states over the 

course of the crosslinking reaction: unbound, bound to DNA (but not crosslinked) and 

crosslinked to DNA. In a given ChIP assay only a fraction of chromatin fragments give 

rise to the ChIP signal. We start by defining    as the total number of available binding 

sites for a given TF at a specific site or array of sites in a population of cells. Denoting 

  ( ) as the number of sites bound by the TF as a function of crosslinking time,  ,   ( ) 

the number of unbound sites as a function of t, and    ( ) the number of sites with the TF 

crosslinked to DNA as a function of t, we have       ( )    ( )     ( ).  Dividing 

by the total number of binding sites gives 

 

  ( )    ( )     ( )                                                                  (1)   

    

where   ( )    ( )    is the fraction of bound sites;   ( )    ( )    is the fraction 

of unbound sites; and    ( )     ( )    is the fraction of sites with the TF crosslinked 

to DNA and linearly related to ChIP signals,   ( ), as    ( )    ( )   ( ).   

 Based on the kinetic model shown above, the rate of change of the fraction of 

sites bound by the TF is given by 
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   ( )

  
                                                               (2) 

and the rate of change of sites crosslinked to the TF is\ 

    ( )

  
                                                                      (3) 

Assuming first order kinetics, the overall association- or on-rate of TF binding is 

            where    ,    and    are the concentration of the TF in the nucleus, the 

fraction of unbound sites, and the molecular on-rate, respectively.  The overall 

dissociation- or off-rate is          where    and    are the fraction of sites bound by 

the TF, and the molecular off-rate, respectively.  In the absence of cross-linking (    ), 

equation (2) describes the dynamics of a TF binding to its DNA site in vivo.  We assume 

that the crosslinking reaction is first order with respect to the formaldehyde concentration 

(   ) and   , giving             for the overall rate where     is the molecular 

crosslinking rate. 

Substituting the overall rates into Eq. (2) and (3) yields 

   ( )

  
        ( )       ( )           ( )                                   (4) 

    ( )

  
         ( )                                                                                     (5)                  

Boundary Conditions 

The boundary conditions can be derived from Eq. (1)-(3) assuming steady-state 

conditions.  Before crosslinking (at t=0),  

   ( )                                                                  (6) 
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by definition.  Using this, we can solve for the equilibrium fraction of sites bound by the 

TF by first setting      and solving Eq. (2) with      ⁄    (i.e., steady-state before 

addition of crosslinker). This results in the equilibrium fraction of bound sites,   
 , at t = 0 

  
  

      

        
                                                         (7)  

After crosslinker is added and     ,      ⁄     and       ⁄     (i.e., steady-state is 

reached after addition of crosslinker).  Use of Eqs. (1)-(3) under steady-state yields 

     →    →                                                         (8)  

Eqs. (6)-(8) constitute the boundary conditions, which we will use together with Eqs. (1)-

(3) to solve for the fraction of sites crosslinked to the TF as a function of time,    ( ). 

Solution of the Differential Equations Subject to Boundary Conditions     

Differentiating Eq. (4) with respect to t, substituting for    using Eqs. (1), and 

using (5), we find 

    ( )

   
   (                )

   ( )

  
  (            )  ( )               (9) 

which has a general solution of the form 

  ( )        ⁄                                                       (10) 

with the inverse of the two time constants or relaxation times—times over which the two 

dynamic processes shown in Eq. (10) take to reach steady state—
 

  
 
 

  
 given by  
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(                )

 
[  √  

      

      
 

 

[  (
         
      

)]
 ]                 (11) 

Applying the boundary condition at t = 0 shown in Eq. (7), we have 

  ( )    
  

      

        
                                            (12) 

Integrating Eq. (5) with respect to t and then substituting the general solution of   ( ), 

Eq. (10), gives 

   ( )     ( )        ∫   ( 
 )   

 

 
                                  (13) 

   ( )        [   (    
 
  ⁄ )      (    

 
  ⁄ )]                   (14)  

where we have used Eq. (6). 

Next, we apply the boundary condition for     as  →  , Eq. (8), to Eq. (14), 

which gives  

        [        ]                                                   (15) 

We use Eqs. (12) and (15) to solve for A and B which when substituted into Eq. (14) 

yields the fraction of binding sites with crosslinked TF in a population of cells as a 

function of crosslinking time,  

   ( )     
   

    ⁄       
    ⁄

     
  

  
           

     
(  

 
  ⁄    

 
  ⁄ ).             (16) 
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3.2.3 – Approximate Forms of the CLK Model 

Eqs. (11), (16) describe the relationship of the fractional ChIP signal to chromatin 

binding dynamics and formaldehyde crosslinking rate.  These equations were challenging 

to understand and implement because of their complexity and the number of parameters 

involved.  We derived simpler approximations to obtain insight into the interpretation of 

CLK data, and in addition, the approximate models allowed us to obtain accurate initial 

parameter estimates for subsequent fitting.  The experimental results show in general a 

steep dependence of ChIP signal on time for relatively short incubation times, followed 

by a more gradual increase in ChIP signal with longer formaldehyde incubation times.  

This suggested that two processes were occurring that are well separated in time. Thus, 

we assumed that the two time constants shown in Eq. (11) are well separated (i.e., 

different orders of magnitude), which led to two simplified approximate models: (1) 

crosslinking dynamics is much faster than TF-DNA binding dynamics or (2) TF-DNA 

binding dynamics is much faster than crosslinking dynamics.  The detailed derivation of 

these two approximate models is shown below. 

 

TF-DNA Binding Dynamics-Limited Model 

We arrive at the first approximate model by assuming that the crosslinking rate is 

much greater than transcription factor binding dynamics (i.e., (        )       ⁄   

   ).  Applying these assumptions, we Taylor expand Eq. (11) in              and 

          and retain the first order terms 

 

  
         and  

 

  
       .                                            (17)  
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We then find the approximate forms for Eq. (16) for relatively short crosslinking times 

(i.e., ) and long crosslinking times (i.e., ).  Use of Eq. (17) and , we 

Taylor expand Eq. (16) in             ,           and retaining the lowest order 

terms find 

   ( )     
 (           )                                                     (18) 

which is the approximate form of  for short crosslinking times (i.e., crosslinking 

times shorter than or comparable to            ).  Use of Eq. (17) and     , we 

Taylor expand Eq. (16) in             ,          , and, retaining the lowest order 

terms, we find the approximate form for    ( ) for relatively long crosslinking times (i.e., 

crosslinking times much longer than            ),  

   ( )    (    
 )        .                                            (19) 

Equations (18) and (19) have a simple, intuitive interpretation.  TFs which are bound to 

DNA are first rapidly crosslinked at the crosslinking rate as described by Eq. (18)., This 

continues until the fraction of sites containing crosslinked TF equals the in vivo 

occupancy (i.e.,    ( )    
  for         ).  Sites are then crosslinked to TFs at the 

in vivo overall on-rate,       of the TF as shown in Eq. (19).  This continues until all the 

sites are crosslinked at crosslinking times much longer than the time-scale associated 

with the in vivo on-rate (i.e.,    ( )    for     ). 

 

Crosslinking Dynamics-Limited Model 



t 



t 



t 



xl (t)
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For the second approximate model, we assume that the crosslinking rate is much 

slower than transcription factor binding dynamics (        )       ⁄     .  Taylor 

expanding Eq. (11) in              and           and retaining the lowest order 

terms, we find 

 

  
  

 

   
             and     

 

  
           

    .                           (20) 

We then find the approximate forms for Eq. (16) for relatively short crosslinking times 

(i.e., ) and long crosslinking times (i.e., ).  Here, we start with deriving the 

approximate form for long crosslinking times.  Substituting Eq. (20) into Eq. (16), 

assuming      , expanding in              and           and neglecting higher 

orders terms we find  

     ( )               
     ,                                          (21) 

which is the approximate form for the fraction of sites containing crosslinked TF as a 

function of time for long crosslinking times (i.e., crosslinking time much longer than the 

in vivo TF binding relaxation time ). Substituting Eq. (20) into Eq. (16), 

assuming     , Taylor expanding in              and           and retaining the 

lowest order terms yields  

   ( )     
           .                                            (22) 

which is the approximate form for the fraction of sites containing crosslinked TF as a 

function of time for short crosslinking times (i.e., crosslinking times much shorter than 

).  Given that Eq. (22) is simply the first term in a Taylor expansion of 

Eq. (21) for short crosslinking times (i.e., ), Eq. (21) represents a good 

approximation of  for all crosslinking times assuming the crosslinking rate is much 

slower than transcription factor binding dynamics. 



t 



t 



  TF



 1/kxlCFHb
0



kxlCFHb
0t 1



xl (t)
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3.3 Materials and Methods  

3.3.1 Experimental Methods 

All wet-bench procedures were performed by Melissa Wells Carver , Ramya 

Viswanathan and Shana Cirimotich.  Live cell imaging was done by Tatiana Karpove and 

Jim McNally.  My role in this project was to develop and implement the CLK 

mathematical model. 

3.3.1.1 – Yeast strains and growth conditions 

S. cerevisiae strains and plasmids used in this study are listed in Tables 3-1 and 3-

2.  YPH499 (Sikorski and Hieter 1989) cells used for Gal4 ChIP were grown in YEP plus 

2% raffinose to an OD600 = 0.8.  Cells were then pelleted and resuspended in YEP plus 

2% galactose for 1 hour prior to addition of formaldehyde. In order to make 

measurements with cells overexpressing Gal4, YRV004 cells were used. The strain 

carries a 2µ plasmid, pSJ4, harboring the GAL4 open reading frame under control of its 

own promoter (Johnston and Hopper 1982). For Gal4 ChIP in the Gal4 overexpression 

strain YRV004 cells were grown overnight at 30° C in SC-URA plus 2% raffinose, 

pelleted and resuspended in YEP plus 2% galactose for 1 hour prior to treatment with 

formaldehyde. The level of Gal4 protein in cells is extraordinarily low (Table 3-5), so 

GAL4-TAP (YRV005) cells were used in western blotting experiments to quantify Gal4 

levels.   The level of Tfa1 protein in cell extracts has been reported (Borggrefe et al. 

2001), so TFA1-TAP (YRV006) cells were used to obtain a quantitation standard. 

YRV005 and YRV006 cells were obtained from the Yeast TAP-fusion library (Open 
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Biosystems, provided by Dan Burke and Frank Pugh). YRV005 was grown in the same 

way as cells for Gal4 ChIP experiments.  YRV006 was grown overnight at 30° C in YPD 

to OD600 ~1.0 and then harvested. To quantify the level of Gal4 in the Gal4 

overexpression strain, extracts from YRV012 and YRV014 harboring pRV021 were 

compared with extracts from YRV005. Plasmid pRV021 was constructed by fusing the 

TAP coding sequence to the 3’ end of the GAL4 open reading frame in plasmid pSJ4 

using the Infusion kit (Clontech). The TAP sequence was obtained by PCR amplification 

using YRV005 genomic DNA.  

YTK539 cells used for Ace1 ChIP were grown overnight in CSM-HIS (MP 

biomedicals) to an OD600 = 0.8.  Cultures were then induced with 1 ml of 10 mM CuSO4 

for 90 minutes and processed immediately for ChIP. The Ace1 overexpression plasmid 

(pMW101) was constructed by restriction enzyme digestion of pTSK241 with Not1 and 

Sac II and cloning the triple GFP tag into pTSK65 to replace the single GFP tag on Ace1 

with a triple GFP tag. Strain YSC002 was grown at 30° C overnight in CSM-HIS to an 

OD600 = 0.8. Cultures were induced in the same way as for YTK539 cells. 

TBP ChIP was performed using YRV018 cells, which were grown in YPD at 30° 

C to an OD600 = 1.0 prior to addition of formaldehyde. A 2µ plasmid carrying the TBP 

open reading frame under the control of its own promoter (pSH223, a gift from Steve 

Hahn) was transformed into the TBP shuffling strain (YAD165). The URA1-marked 

SPT15 plasmid covering the TBP deletion was shuffled out using FOA selection to 

generate the TBP overexpression strain YSC003. YSC003 was grown in YPD overnight 

at 30° C to an OD600 = 1 prior to the addition of formaldehyde. YAD154 cells, used for 

quantitation of the soluble pool of TBP, were grown in YPD to an OD600 = 1 prior to 
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harvesting. AY87 cells (Darst et al. 2003),  used for TBP ChIP in the mot1-42 

overexpression plasmid; a gift of Steve Hahn) and cells were grown in SC-URA medium. 

For ChIP, YSC004 and YSC005 cells were grown in SC-URA medium and then diluted 

into YPD for approximately two population doublings before crosslinking. Note that in 

order to directly compare TBP ChIP signals in WT and mot1-42 cells, and at each of two 

TBP expression levels, YSC004 and YSC005 were grown at 30° C in YPD prior to 

crosslinking and no heat shock was done. 

Strain YTK260, used for LacI-GFP ChIP, was grown in SC-HIS medium 

overnight at 30° C to an OD600 ~1.0 prior to addition of formaldehyde. The LacI-GFP 

overexpression plasmid (pSC001) was constructed by restriction enzyme digestion of 

pTSK437 with Kpn1 and Not1 and subcloning of the LacI-GFP cassette into pRS426 

(Sikorski and Hieter, 1989). Strain YSC001 harboring pSC001 was grown at 30° C 

overnight in SC-HIS-URA medium to an OD600 ~1.0 prior to addition of formaldehyde. 

 

3.3.1.2 – Chromatin Immunoprecipitation (ChIP) 

 ChIP was performed as described in Dasgupta et al. (2005), but with varying 

crosslinking times. Unless otherwise indicated, formaldehyde was added to a final 

concentration of 1% (360 mM) for various times and quenched by adding glycine to 250 

mM (final concentration). The shortest crosslinking times (1.37 s and shorter) were 

achieved using a quench flow apparatus, which is described below. For longer but still 

relatively short crosslinking times (5 s to 60 s), formaldehyde and glycine were added to 
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cell cultures while rapidly mixed using a stir bar. After incubation with glycine for 5 

minutes, cells were washed with cold TBS (40 mM Tris-HCl pH 7.5, 300 mM NaCl) with 

125 mM glycine and once with cold TBS.  Cell pellets were then resuspended in ChIP 

lysis buffer (50 mM HEPES pH 7.5, 1% Triton-X 100, 0.1% sodium deoxycholate) with 

140 mM NaCl and protease inhibitors (Roche Complete Protease Inhibitor Cocktail 

Tablet) and were lysed using acid-washed glass beads (Sigma) in a FastPrep machine 

(MP Biomedicals).  The whole cell extracts were then sonicated and subsequently 

quantitated using Bradford Reagent.  Immunoprecipitation (IP) was performed overnight 

at 4°C using 1 mg chromatin protein. For Gal4 ChIP, Gal4-TA C-10 antibody (sc-1663x; 

Santa Cruz Biotechnology) was used. For Ace1-GFP and LacI-GFP IPs, anti-GFP 

antibody was used (Invitrogen).  TBP immunoprecipitations were performed using anti-

TBP antibodies (Sigma, clone 58C9). Following antibody incubation with sonicated 

chromatin, 40 µL Protein A sepharose beads (Amersham) were added and samples were 

mixed by rotation for 2 hours at 4° C. Mock IPs were performed by combining 1 mg total 

chromatin protein with the protein A sepharose beads, without addition of antibody. The 

beads were then washed twice with 1 ml of each of the following buffers:  ChIP lysis 

buffer (140 mM NaCl), ChIP lysis buffer (500 mM NaCl), LiCl buffer (10 mM Tris pH 

8.0, 250 mM LiCl, 0.5% NP-40, 0.5% sodium deoxycholate, 1 mM EDTA), and TE (10 

mM Tris-Cl pH 8.0, 1mM EDTA).  Protein-DNA complexes were then eluted with 50 

mM Tris pH 8.0, 1% SDS, 10 mM EDTA twice for 10 minutes at 65°C, and 

formaldehyde crosslinks were reversed by incubation overnight at 65°C.  DNA was 

purified using a QIAquick PCR purification kit (QIAGEN) according to the 

manufacturer’s instructions.  ChIP DNA was then quantified by real-time qPCR. 
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3.3.1.3 – KinTek ChIP 

A KinTek quench flow instrument (model RQF-3, KinTek corporation) was used 

for formaldehyde crosslinking reactions too short in duration to be performed by simple 

hand mixing.  The KinTek apparatus is encased in a waterbath whose temperature was set 

to 30° C. One syringe was filled with 5 ml of yeast cell culture, while the other syringe 

was filled with 5 ml of 2% formaldehyde.  The quench syringe was not used.  Instead, 

different times were obtained by adjusting the length of the exit tube, whose end was 

placed in 10 ml of the quenching solution (500 mM glycine).  The stepping motor speed 

was set to 200 and there were 60,000 steps per cycle.  The mixing time and effectiveness 

of the quenching arrangement were calibrated according to the manufacturer’s 

instructions using the standard reaction of hydrolysis of benzylidenemalononitrile by 

NaOH at 20° C. The calibrated mixing times and errors are shown in Table 3-3. 

Following quenching, the formaldehyde-treated cells were pelleted and washed as 

described above.   

3.3.1.4 – ChIP quantitation 

ChIP, mock IP, and total samples were quantitated by real time PCR using iQ 

SYBR Green Supermix (BioRad) and the BioRad MyiQ Single Color Real Time PCR 

detection system.  Relative ChIP signals were obtained by subtracting the mock IP signal 

from the ChIP signal and normalizing against the input.  Two to three independent 

biological replicates were averaged for each time point.  Oligonucleotides used for PCR 

are listed in Table 3-4. Oligonucleotides used for the lacO array ChIP anneal to a unique 

region located just outside the array to avoid amplifying the repetitive sequence. 
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3.3.1.5 – Nuclear protein concentration of factors and the amount overexpressed  

 The numbers of Ace1-GFP and TBP molecules per cell have been reported 

previously (See Table 3-5). The nuclear concentration of these factors was estimated 

based on the nuclear volume reported in Jorgensen et al. (2007). As Gal4 levels are very 

low, the nuclear concentration of Gal4 for cells grown in galactose-containing media was 

determined by Western blot analysis of TAP-tagged Gal4 by normalizing the signal with 

TAP-tagged TFIIE, whose concentration is known(Borggrefe et al. 2001) .  

 The amount of each factor overexpressed in cells, except for LacI-GFP, was 

quantified by Western blot analysis. Strains were grown as described above, pelleted and 

washed with cold TBS. For Western blot analysis of Gal4 and Ace1-GFP, the cells were 

then resuspended in Benoit’s buffer (200 mM Tris-Cl pH 8, 400 mM (NH4)2SO4, 10 mM 

MgCl2, 1 mM EDTA, 10% glycerol) plus protease inhibitors and lysed using acid-washed 

glass beads as was done for ChIP. After incubating on ice for 30 minutes, the extracts 

were then clarified by centrifugation at 14000 rpm for 30 minutes in a microcentrifuge. 

The protein amounts in the supernatant were quantified as for ChIP using Bradford 

Reagent using bovine serum albumin as the standard. Extracts normalized for total 

protein were boiled with sample buffer and loaded onto SDS polyacrylamide gels and 

Western blotted using antibody against the various factors as for ChIP. α-protein A was 

used for TAP-tagged protein and anti-GFP antibody (Invitrogen) was used for Ace1-GFP. 

To quantify TBP levels YPH499, YRV018 and YSC003 cells were lysed as described 

(Borggrefe et al, 2001) and extracts were Western blotted using anti-TBP antibody 

(Sigma, clone 58C9) and purified recombinant yeast TBP as a standard. Quantification 
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was done using Image J software (NIH). The overexpression level of TBP was the same 

in WT and mot1-42 cells.  

 To measure the LacI-GFP level in cells and extent of over-expression, 

fluorescence microscopy was used. The spindle pole body (SPB) and the lacO array 

under conditions of saturated LacI-GFP expression were imaged for calibrating the 

relationship between average intensity and number of molecules per pixel.  Based on the 

calibration curve, the molecules per pixel for each structure were determined. Then, this 

number was multiplied by the measured area of the structure to obtain the estimated 

number of total molecules (Table 3-6).   

 

3.3.1.6 – Quantitation of soluble protein pools with/without formaldehyde treatment 

 YRV005 and YAD154 cells were used to quantify the soluble Gal4 and TBP prior 

to and after formaldehyde treatment. At an OD of 1, 250 mM glycine was added to one-

fourth of the volume of cells and they were harvested (0 minute sample). To the 

remaining culture, 1% formaldehyde was added and samples were quenched by adding 

250 mM glycine after 5, 10 or 15 min incubation with formaldehyde. The soluble protein 

fraction was separated from the chromatin-bound fraction for each sample by each of two 

different methods. In one method, the cells were lysed in Benoit’s buffer and the extracts 

were treated the same way as described for quantification in Section 3.3.1.5 above. In the 

second method, cells were spheroplasted using the procedure described (Muldrow et al., 

1999). After the spheroplasts were allowed to recover in YPD-S media (10 g of yeast 

extract, 20 g of peptone, 20 g of glucose, and 182.2 g of sorbitol per liter) by shaking 
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gently at 30° C, they were pelleted at 4000 rpm for 9 minutes in a clinical centrifuge and 

washed thrice with lysis buffer (0.4 M Sorbitol, 150 mM potassium acetate,, 2 mM 

magnesium acetate, 20 mM Pipes/KOH, pH 6.8, 1 mM phenylmethylsulfonyl fluoride, 10 

µg/mL leupeptin, 1 µg/mL pepstatin A, 10 mM benzamidine) (Donovan et al. 1997). 

Cells were then resuspended in ~200 µL of lysis buffer to which was added Triton-X100 

to a final concentration of 1%. The supernatant and chromatin-enriched fractions were 

separated by centrifuging the extracts for 15 minutes at 14,000 rpm in a microcentrifuge 
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Table 3-1 S. cerevisiae strains used in this study. 

Strain Genotype Reference or source 

YPH499 MATa ura3-52 lys2-801a ade2-101o trp1-Δ63 his3-Δ200 leu2-Δ1 Sikorski and Hieter, 1989 (19) 

YRV004 MATa * pSJ4 [GAL4 URA3 2µ] This study 

YRV005 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 GAL4-TAP Ghaemmaghami et al. 2003 

(35) 

YRV006 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TFA1-TAP Ghaemmaghami et al. 2003 

YRV012 MATa * pRV021[GAL4-TAP URA3 2µ] This study 

YRV014 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 GAL4-TAP pRV021[GAL4-

TAP URA3 2µ] 

This study 

YTK539 MATa his3-Δ1 leu2Δ0  met15Δ0 ura3Δ0  ace1Δ :: KAN TRP1:: 

pCap2-ACE1-tripleGFP-HIS3 

Karpova et al, 2008 (11) 

YTK934 MATα his3∆1 leu2∆0 lys2∆0 ura3∆0 ACE1-tripleGFP-URA3 This study 

YRV018 MATa ade2–1 his3–1115 leu2–112 trp1–1 ura3–1 can1–100 

abf1::HIS3MX6 pRS415-ABF1-FLAG 

Miyake et al, 2004 (36) 

AY87 MATa * mot1Δ::TRP pMOT221 [LEU2 CEN ARS] Darst et al, 2003 (22) 

YSC002 MATα his3∆1 leu2∆0 lys2∆0 ura3∆0 ACE1-tripleGFP-URA3 

pMW101 [ACE1-triple GFP HIS3 2µ] 

This study 

YSC004 MATa * mot1Δ::TRP pMOT221[LEU2 CEN ARS] pRS426 This study 

YSC005 MATa * mot1Δ::TRP pMOT221[LEU2 CEN ARS] pSH224 [TBP 

URA3 2µ] 

This study 

YAD154 MATa * SPT15-myc This study 

YTK260 MAT a/α, HIS5/his3∆1, leu2∆0/leu2∆0, ura3∆0/ura3∆0, met15∆0 

LYS2::pHIS3-lacI-GFP-NLS-NAT1, CU3::KAN-(LacO)256 , 

CU1::(LacO)256 

This study 

YSC001 MAT a/α, HIS5/his3∆1, leu2∆0/leu2∆0, ura3∆0/ura3∆0, met15∆0 

LYS2::pHIS3-lacI-GFP-NLS-NAT1, CU3::KAN-(LacO)256 , 

CU1::(LacO)256 pSC001 [pHIS3-GFP-LacI  URA3 2µ]  

This study 

YSC003 MATa * spt15::natMX pSH223 [TBP LEU 2µ] This study 

* ura3-52 lys2-801a ade2-101o trp1-Δ63 his3-Δ200 leu2-Δ1 
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Table 3-2 Plasmids used in this study. 

Plasmid name Information Reference or source 

pSJ4 GAL4 URA3 2µ Johnston and Hopper, 1982 (20) 

pSH223 TBP LEU 2µ Steve Hahn 

pSH224 TBP URA3 2µ Steve Hahn 

pRV021 GAL4-TAP URA3 2µ This study 

pSC001 pHIS3-GFP-LacI  URA3 2µ This study 

pMW101 ACE1-triple GFP HIS3 2µ This study 

pTSK65 ACE1-GFP HIS3 2µ Karpova et al., 2004 (37) 

pTSK241 pCap2-ACE1-tripleGFP HIS3 Karpova et al., 2008 (11) 

pTSK437 pHIS3-GFP-LacI HIS3 This study  

 

 

Table 3-3 KinTek calibrated times with errors. 

 

 

 

 

 

 

  

Mixing time point Standard 

deviation 

142 ms ± 52 ms 

264 ms ± 16 ms 

441 ms ± 30 ms 

814 ms ± 170 ms 

1.37 s ± .12 s 
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Table 3-4 Oligonucleotides Used for Real-Time PCR (5’-3’). 

Name Sequence 

CUP1-F AGA AGC AAA AAG AGC GAT GC 

CUP1-R GAC AAT CCA TAT TGC GTT GG 

LOS1-F TTT GAG AAG TTG TCG GTA AGC A 

LOS1-R GCA TTC CTC GAT TTG ACT GG 

ACT1-F CAG CTT TTA GAT TTT TCA CGC TTA 

ACT1-R TTT TCG ATC TTG GGA AGA AAA A 

HSC82-F TCT TGA AAC GCT ACA GAA CCA A 

HSC82-R CAC CAG CCA TAT TTC AGA ATG A 

URA1-F AAG ATG CCC ATC ACC AAA AA 

URA1-R AAG AAT ACC GGT TCC CGA TG 

NTS2-F GCA CCT GTC ACT TTG GAA AAA 

NTS2-R TCG CCG AGA AAA ACT TCA AT 

U6-F TTC GTC CAC TAT TTT CGG CTA 

U6-R GGG TTA CTT CGC GAA CAC AT 

INO1-F GTT GGC GGC AAT GTT AAT TT 

INO1-R CGA CAA CAG AAC AAG CCA AA 

GAL3 UAS-F CCG AAC ATG CTC CTT CAC TA 

GAL3 UAS-R GCA TGG CGA TTT CAT TCT TT 

GAL3 ORF-F GCC AAA ACT AAA GGC CAC AC 

GAL3 ORF-R GGC GAT GAC GAA ACT GAT TT 

CU3-F TCT CGG CCT AGC TCA TCA GT 

CU3-R AAG ACA GAT CCA CGT CTT TGG 
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Table 3-5 Estimate of nuclear protein concentrations, based on nuclear volume from 

Jorgensen et al, 2007. 

Factor Concentration 

in the 

nucleus* (µM) 

*Reference  Overexpression 

concentration (µM) 

(This study) 

Ace1-GFP 1 Ghaemmaghami S et al, 2003 

(35), Karpova et al, 2004 (37) 

10 

TBP 12 Borggrefe et al, 2001 (21) 38 

Gal4 0.18 This study 0.45 

LacI-GFP 1 This study 3.6 

 

 

Table 3-6 Measurement of the total number of LacI-GFP molecules per cell using 

fluorescence microscopy. 

 Total molecules  Molecules/pixel  Intensity/pixel  

Overexpression strain 6150 3.99 227 

Basal expression strain 1691 0.91 25 
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(Donovan et al., 1997). Bradford assays were used to quantitate the total protein levels in 

the soluble pools, and 100 µg of total protein were mixed with equal volumes of 2X 

sample buffer, boiled, and loaded onto denaturing gels and Western blotted using α-

protein A (to detect Gal4-TAP) or α-myc (to detect TBP-myc) (Dasgupta et al., 2005). 

The blots were also probed for G6PDH using α-G6PDH antibody, which served as a 

control. Quantification was done using Image J software (NIH) and both methods yielded 

similar results. The reported soluble protein levels were obtained by averaging the data 

from three independent sets of biological replicates.  

3.3.1.7 – Experiments to test the efficiency of formaldehyde crosslinking reaction 

 This procedure refers to the results presented in Figure 3-8B.  YPH499 cells were 

grown in YEP plus 2% raffinose as described above. At an OD600 = 0.8, cells were split 

into three samples. To one sample, formaldehyde was added for 1 minute and then 

quenched with glycine. The cells were pelleted, washed and processed as described above 

for ChIP. To the second sample, formaldehyde was added for 1 minute and the reaction 

was quenched as for the first sample. Then these formaldehyde-treated cells were 

resuspended in YEP plus 2% galactose and incubated for 20 minutes at 30 degrees with 

shaking. Then formaldehyde was added again for 5 minutes and the reaction was then 

quenched with glycine. The cells were pelleted, washed, and processed for ChIP as 

described above. To the third sample, GAL gene expression was induced by resuspending 

the cells in YEP plus 2% galactose, and then cells were crosslinked by incubating with 

1% formaldehyde for 5 minutes. The reaction was then quenched and processed for ChIP 

as described above. Note that in a separate experiment we confirmed that Gal4 bound to 

the GAL3 promoter within 20 minutes post induction with galactose (data not shown). 
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3.3.1.8 – Imaging of live cells 

 Live yeast cells were imaged in LabTek II coverglass chambers (Nalge Nunc Intl., 

Rochester, NY). Before an experiment, 500 ml of the mid-log phase yeast culture was 

concentrated by centrifugation, and then 5 ml of the concentrated suspension was placed 

into a Lab Tek II chamber and subsequently covered by a 10 mm x 10 mm agarose slab 

cut from the solid NF-His/agarose medium.  

 

3.3.1.9 – FRAP 

 FRAP experiments were carried out on a Zeiss 510 confocal microscope with a 

100X/1.3 NA oil immersion objective.  To reduce bleaching due to imaging, cells were 

imaged with a 488 nm laser line from a 30 mW argon laser operating at low laser 

intensity (0.75%). One of the two CUP1 loci or lacI/lacO markers in a diploid cell was 

photobleached using a short (17 msec) laser pulse with the laser operating at 75% of full 

power. Fluorescent recovery for LacI was monitored at 30 sec time intervals for 240 sec 

(24 cells).   Fluorescent recovery for CUP1 was monitored at 10 sec time intervals for 

235 sec (30 cells).  3D image stacks (11 focal planes at 250 nm z step size) were 

collected, and intensities of both the bleached and unbleached locus were measured, and 

image background was subtracted from each measurement.  To correct for bleaching due 

to imaging in each cell, intensities from the bleached locus were divided by those from 

the unbleached locus. The resulting curve was normalized to the prebleach level of array 

intensity, and these normalized curves were then averaged. The curves were fit with the 
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reaction-dominant model (Sprague et al. 2004) ( ) 1 offk t
FRAP t Ae


  , with time t, and A 

and koff free parameters determined by the fit. The half-time, t1/2, is equal to ln2/koff. 

 

3.3.2 Computational Methods 

3.3.2.4 – Non-linear regression analysis using the approximate CLK models    

We took an agnostic view regarding which approximate equation (Section 3.2.2) 

would yield the best fit, and hence, best explanation of the CLK data.  This yielded four 

Cases (Figure 3-5).  We fit each case to determine which gave the best initial and final 

parameters as determined by the full model with the lowest RMSE.  This in turn selected 

the best performing case.  While we exhaustively tested each Case (see Figure 3-6), we 

found that Case 1 (illustrated in Figure 3-2) yielded the best RMSE between the model 

estimates and the experimental data, and moreover, all of the CLK model-fitted curves 

shown in this study are approximated by Case 1. 

We arrived at the initial estimates of the parameters by fitting approximate 

generalized linear equations shown in Eqs. (18), (19), (21) and (22) using linear 

regression.  Indeed, taking the natural log of Eqs. (18), (19) and (21) gives the following 

expressions 

,       (24) 

   (     ( ))    (    
 )        ,                                                (25) 

                                                       (26) 



ln(1xl (t) /b
0) kxlCFH t



ln(1xl (t)) kxlCFHb
0t
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Figure 3-5: Schematic illustrating four possible cases of regimes considered for deriving 

CLK model 

Schematic illustrating four possible cases in which crosslinking kinetics (blue arrows) 

and TF binding dynamics (orange arrows) contribute to the increase in ChIP signal with 

increasing formaldehyde incubation time (black arrow at top of figure). The four cases 

arise as a result of our experimental observation that in general, the ChIP signal increases 

dramatically in response to relatively short formaldehyde incubation times, and then more 

gradually in response to longer incubation times.  This suggests that the processes of 

formaldehyde crosslinking and chromatin binding dynamics are themselves well 

separated in time. Reactions too fast (less than ~100 ms) and too slow (>40 min) are 

outside the experimentally accessible regime (shown by the central light blue shaded 

area).  In Cases 1 and 2, crosslinking kinetics is assumed to be much faster than TF-

chromatin binding dynamics. In Case 1, crosslinking occurs very rapidly (seconds time 

scale), followed by TF-chromatin binding which is on-rate limited and occurs on the 
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order of seconds to ~30 minutes. Case 2 is similar to Case 1 in that crosslinking occurs on 

a faster time scale than binding dynamics, but in this case crosslinking occurs more 

slowly and TF-DNA binding dynamics is even slower still.  In Case 2, on-rate limited 

chromatin binding dynamics occurs on the minutes to hours time scale (i.e., much of it is 

beyond our experimentally accessible time range). In Cases 3 and 4, TF-chromatin 

binding dynamics is much faster than crosslinking kinetics. In Case 3, TF-chromatin 

binding dynamics happens over the first few seconds while most of the measured ChIP 

signal increase would be explained by the crosslinking reaction rate. In Case 4, the 

overall ChIP reaction is limited by the crosslinking reaction rate. The experimentally 

accessible increase in ChIP signal is linearly dependent on the crosslinking rate. As the 

formaldehyde incubation time increases (~30 minutes to hours), the crosslinking-limited 

reaction drives the ChIP signal to saturation by an exponential relationship with the 

crosslinking rate. As discussed in the text, the CLK data reported here are best described 

by Case 1. 
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Figure 3-6: Example of CLK data fitting to the four approximate models 

An example of CLK data fitting to the four approximate models, using data obtained for 

Gal4 binding to the GAL3 promoter. See Section 2.3 for derivations and description of 

these limiting cases.  In each graph, the blue circles correspond to data obtained from 

cells with WT levels of Gal4, and the red circles to data obtained from cells with 

overexpressed Gal4.  Red and blue curves correspond to the fits obtained in each case.  

The full CLK model (Eq (16)) is shown at the top. (A) CLK model fits for Case 1 

(described by Eq (19)).  (B) CLK model fits for Case 2 (described by Eq (18)). (C) CLK 

model fits for Case 3 (described by Eq (21)). (D) CLK model fits for Case 4 (described 

by Eq (22)).  The approximate model equation for each case is shown above the graph 

and the assumptions giving rise to each approximate case are shown in red text. 



111 

 

 

which are linear in the crosslinking time, t.  We note that the last approximate model, Eq. 

(22), is  linear in crosslinking time.   

The specific approach for fitting experimental data to the CLK model is outlined 

in Figure 3-7.  With Eqs. (18), (19) and (21), as starting points, the step wise procedure 

involves robust linear regression to fit these log-linear equations (detailed in Figure 3-7-

B), followed by nonlinear regression to fit Eqs. (18), (19) and (21) (detailed steps shown 

in Figure 3-7-C ), followed by nonlinear regression to fit the full CLK model, Eqs. (11), 

(16), by a Multi-Pass Parameter Estimation Procedure (MPPEP; Figure 3-7-D) to the 

experimental data.  For Eq. (22), the stepwise procedure is similar.  Each step uses the 

previous steps estimated parameters as initial guesses. We apply this overall procedure 

starting with the different approximate equations derived above to arrive at final fits and 

determine the best case, hence dynamic model, based on the lowest RMSE. 

 

Case 1: For the first case we use Eq. (25) to fit the CLK model with robust linear 

regression to arrive at initial estimates of ,   
  and .  Using the parameters we gather 

from the linear regression as initial guesses we apply nonlinear regression to fit Ip(t) 

(ChIP signals) to Eq. (19).  The parameters obtained after this step are θb and kaCTF and 

Ip()).   

In order to fit the full CLK model, Eqs. (11), (16), to experimental CLK data, we 

use the parameter estimates from fitting Eq. (19) together with a series of initial guesses 

  

ka

  

kd
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Figure 3-7: Flow charts describing the nonlinear regression fitting procedure 

 (A) Overview of the nonlinear regression procedure. (B) Flow chart of the linear 

regression procedure.  (C) Flow chart of the nonlinear regression procedure using the 

approximate models. (D) Flow chart for the nonlinear regression fitting procedure using 

MPPS (Multi-Pass Parameter Estimation Procedure). 



113 

 

for  which are consistant with approximations used to derive this equation, kxlCFH 

> kaCTF and kd.  Specifically, we generated an array of initial values ranging from  

2 to 10
6
  in 1.5 to 2-fold steps.  We arrive at the final fitted values for 

kaCTF, kd, kxlCFH, andand Ip() by simultaneously fitting wt and ox CLK data to Eqs. 

(11), (16) using the Matlab function ‘nlinfit’ within a Multi-Pass Parameter Estimation 

Procedure (MPPEP) described below.  

Case 2: Similar to the method described in Case 1 we used  Eq. (24) to apply robust 

linear regression to obtain kxlCFH . Next we apply nonlinear regression to fit Eq (20) to 

CLK data using initial guesses for Ip()  
  followed by robust linear regression to arrive 

at refined initial estimates of   
  and .  Use of these parameters from fits to wt and ox 

data allowed us to derive estimates of Ip(), K = kaCTF/kd , and kxlCFH where we took the 

mean of kxlCFH from the wt and ox fits.  Using these parameters as initial guess next we 

apply nonlinear regression analysis, we fit Eq. (18) simultaneously to wt and ox CLK 

data from which we derived refined estimates of Ip(), K = kaCTF/kd , and kxlCFH. 

 Assuming that the crosslinking reaction rate is much faster than TF-chromatin 

binding dynamics (kxlCFH >> kaCTF and kd), we select an array of initial guesses for kaCTF 

and kd which are at least an order of magnitude smaller than kxlCFH and satisfy K = 

kaCTF/kd where K is the TF-DNA equilibrium binding constant obtained from previous 

step.  Using these as initial estimates of the parameters, we fit Eqs. (11), (16) 

simultaneously to wt and ox CLK data using ‘nlinfit’ within our MPPEP (described 

below) to derive the final values for kaCTF, kd, kxlCFH, and Ip(). 

  

kxlCFH

  

kxlCFH

  

max(kaCTF,kd )

  

kxl
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Case 3: Similar to the earlier described two cases we use Eq (26) to estimate         
 . 

Using this as initial guess we apply nonlinear regression to fit Eq (24) using ‘nlinfit’ to 

obtain estimates of   
 , kxlCFH.and  .  

 Using the assumption that the crosslinking reaction rate is much slower than TF-

chromatin binding dynamics, we select an array of initial guesses for kaCTF and kd that 

also satisfy the estimated values from previous steps.  Using these as initial estimates of 

the parameters, we fit Eqs. (11), (16) simultaneously to wt and ox CLK data using 

‘nlinfit’ within our MPPEP (described below) to derive the final values for kaCTF, kd, 

kxlCFH, and Ip(). 

Case 4: We fit Eq. (22) to CLK data using the robust linear regression function ‘regress’ 

to  

arrive at estimates of θbkxlCFH from the slope of the line. Using these to arrive at initial 

guesses for kaCTF, kd, kxlCFH, and Ip() which are compatible with the assumptions made 

to derive Eq (22), we apply non-linear regression fit of CLK data to Eq. (22) to arrive at 

estimates of kaCTF, kd, kxlCFH, and Ip(). 

Using the estimates of kaCTF, kd, kxlCFH, and Ip() from the previous step as initial 

guesses to the MPPEP (described below), we fit the full model, Eqs. (11), (16), to CLK 

data to arrive at final estimates of kaCTF, kd, kxlCFH, and Ip(). 

MPPEP  (Multi-Pass Parameter Estimation Procedure)  

Step 1:We fit ChIP signal as a function of crosslinking time to the full CLK model shown 

in Eqs. (11), (16) with kaCTF, kd and kxlCFH as free parameters and Ip() fixed using the 

  

K = kaCTF /kd
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Matlab ‘nlinfit’ function.  Initial values for all these parameters are obtained from the fits 

to the approximate equation associated with each case. 

Step 2:Using the values obtained for kaCTF, kd, kxlCFH  from step 1 and Ip() from the fit 

to the approximate equation associated with each case as initial guesses, we fit ChIP 

signal as a function of crosslinking time to the full CLK model, Eqs. (11), (16), with 

kaCTF, kd, and Ip() as free parameters and kxlCFH fixed using the Matlab function 

‘nlinfit’.  

Step 3:Using the values for kaCTF, kd, kxlCFH, and Ip() obtained from step 2 as initial 

guesses, we fit ChIP signal as a function of crosslinking time to the full CLK model, Eqs. 

(11), (16), with kaCTF, kd, kxlCFH, and Ip() as free parameters.   

We follow steps 1-3 for each value of an array of initial guesses (e.g., array of 

guesses for kxlCFH in step 4 of case 1) and select the fit and corresponding estimates of 

kaCTF, kd, kxlCFH, and Ip() which yields the smallest MSE. 

TF-Specific Fitting Approaches: While the majority of fits to CLK data were executed 

using the steps detailed in Case 1 above, the procedure for fitting Ace1 at CUP1 and LacI 

at LacO deviated from this despite the fact that the final fitted curves satisfy case 1 

dynamics (Figure 3-2).  For Ace1 at CUP1, the procedure detailed in case 2 lead to the 

final fitted curves shown in Figure 3-10A.  For LacI at LacO, we tuned the 

overexpression concentration and found           produced the best fits.  We note 

that this value differs from the estimated value shown in Table 3-5 by 2.6-fold.  Use of 

the estimated overexpression concentration shown in Table 3-5 yielded un-physically 

high values for the ChIP saturation signal,   ( ). 
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3.3.2.5 – Error Estimation 

In order to estimate the errors in the estimates of the kinetic parameters, we 

sampled the error in the measured ChIP signal to generate multiple curves using the 

fitting procedures described above.  Specifically, we calculated the mean and standard 

deviation of the ChIP signal from biological replicates at each experimental CLK 

datapoint.  We randomly sampled a normal distribution with the estimated mean and 

standard deviation of the ChIP signal in order to generate error-sampled CLK data.  We 

did this 10000 times.  We fit these error-sampled data to Eqs. (11), (16) using the fitting 

procedures described above to arrive at 10000 values for      ,   ,    ,   
 , and     .  In 

Figure 3-12-14, we display distributions of   (     ),   (  ), and     (      ), and, for 

Figure 3-15, we plotted the same for   (     ),   (  ),     (      ) ,   (    ),and 

   (  
 ).  We note that in each case where the distribution of a parameter’s estimates was 

unimodal, the distribution appeared more normal for log-transformed parameter estimates 

compared to that of the untransformed parameter estimates.  We then calculated the left 

and right tail standard deviations from the log-transformed parameters for      ,   ,    , 

  
 , and     , which correspond to the lower and upper bounds of the parameters, 

respectively, shown in Tables 3-7 – 3-9.  

3.4 Results  

To test the CLK method, we analyzed Gal4 binding to the single UAS in the 

GAL3 promoter.  The Gal4 system has provided a paradigm for transcriptional 

regulation(Traven et al. 2006), but the in vivo stability of the Gal4-promoter interaction 

has been the subject of debate (Collins et al. 2009; Nalley et al. 2006).  A quench flow 

apparatus was adapted to acquire formaldehyde-treated samples on the sub-second 
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timescale, and longer time points were obtained by hand mixing, prior to quenching in 

glycine (supplementary online text).  As predicted by the simulations (Figure 3-4, Figure 

3-2 and Figure 3-3), the ChIP signal increased dramatically at short formaldehyde 

incubation times (< 5 sec), and then gradually following longer incubation times (Figure 

3-8A, blue curve).  The time dependence of the ChIP signal substantiates several key 

aspects of the model (Figure 3-1), and other fundamental suppositions were validated 

experimentally.  First, the steep increase in ChIP signal at short crosslinking times 

demonstrates that crosslinking occurred rapidly and that glycine efficiently quenched the 

reaction (Figure 3-8A,C), as stipulated in the model. The curve was shifted upward in 

cells with a 2.5-fold increase in Gal4, (Figure 3-8A, red curve), consistent with the time 

dependence of the slower phase of the ChIP signal being driven by the overall on-rate for 

Gal4 chromatin binding and not formaldehyde reaction kinetics.  In the model, the ChIP 

assay rapidly captures specifically bound TFs but does not inactivate or nonspecifically 

crosslink the remaining TF pool.  Remarkably, the Gal4-promoter interaction occurred in 

cells even when binding was induced after formaldehyde pre-treatment (Figure 3-8B).  

Thus, Gal4 was not nonspecifically inactivated by formaldehyde.  Moreover, the levels of 

soluble Gal4 and other proteins were reduced less than two-fold in cell extracts following 

formaldehyde incubation, and their apparent molecular weights were not detectably 

affected (Figure 3-8D, Figure 3-9). In addition, ChIP signals were indistinguishable over 

an 8-fold range of formaldehyde concentration (Figure 3-8E), demonstrating that 

formaldehyde was not limiting in the reaction.  CLK analysis revealed that the Gal4-

GAL3 interaction had a t1/2 of about 10 min (Figure 3-8A; Table 3-9), suggesting that a 

single Gal4 complex facilitates multiple rounds of transcription initiation. Combined with 
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Figure 3-8: CLK analysis of Gal4 and tests of model assumptions.   

 (A) Model fits of CLK data for Gal4 binding to the GAL3 promoter in cells with WT 

Gal4 levels (blue line) and cells with 2.5-fold overexpression of Gal4 (red line).  Inset 

shows first 5 sec of time course from cells with WT Gal4 levels.  (B) Gal4 ChIP results 

obtained with cells treated as shown in the schematic.  ChIP signal obtained in 

formaldehyde treated, uninduced cells (1), formaldehyde treated cells subsequently 

induced by addition of galactose (2), and cells induced with galactose and subsequently 

treated with formaldehyde (3).  Note that Gal4 chromatin binding was fully inducible in 
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formaldehyde treated cells.  (C) Glycine addition prior to formaldehyde (Form) prevents 

crosslinking.  The graph shows the relative Gal4 ChIP signal obtained when glycine was 

added prior to formaldehyde or 8 min after formaldehyde treatment, compared to cells in 

which no formaldehyde was added.  (D) Relative soluble Gal4 protein level in extracts 

from cells treated with formaldehyde for the indicated times.  Gal4 was quantified by 

Western blotting.  (E) Gal4 ChIP signals at GAL3 obtained using cells treated with 1% or 

8% formaldehyde for the indicated times. ChIP signals did not depend on formaldehyde 

concentration. 
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Figure 3-9: Quantification of the soluable TBP in formaldehyde treated cells 

Soluble TBP levels are reduced less than two-fold in cell extracts prepared from 

formaldehyde-treated cells. (A) Western blotting analysis of soluble TBP (top panel) and 

G6PDH (below) in extracts made from cells treated with 1% formaldehyde for the 

indicated times in minutes. (B) Western blot of soluble fraction of TBP as shown in A. 

This image of the entire blot shows that there was no detectable proportion of TBP with 

an aberrant migration pattern as a consequence of formaldehyde treatment. (C, D) 

Quantitation of soluble TBP and G6PDH from Western blots such as those shown in (A) 

and (B). 
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the low fractional promoter occupancy (~0.17), we conclude that the GAL3 gene is likely 

transcribed in infrequent bursts.  

To better define the dynamic range within which the CLK method can capture 

kinetic information in vivo, we analyzed two TFs whose widely divergent dynamic 

behavior could be independently measured by fluorescence recovery after photobleaching 

(FRAP).  FRAP was possible in these cases because the fluorescently tagged factors 

interact with tandem arrays of binding sites, making the chromosomal loci visible by 

microscopy. The CLK measured t1/2 for the interaction of the Ace1 TF with the CUP1 

gene array(Karpova et al. 2008) was 11 sec, in excellent agreement with the value of 31 

sec obtained by FRAP (Figure 3-10A,B; Table 3-8).  The interaction of LacI-GFP with an 

array of 256 Lac operators (Robinett et al. 1996) was far more stable, and the two 

methods yielded t1/2 values again within about a factor of four (Figure 3-10C,D; Table 3-

8).  Thus, as validated by an independent approach, the CLK method can reveal rank-

ordered estimates of TF-chromatin interaction stability over a wide range in vivo, 

including interactions that persist for mere seconds.  Compared to other methods, the 

CLK method increases the time resolution of chromatin dynamics at single copy loci by 

two to three orders of magnitude.    

To further explore transcription dynamics using this method, we investigated the 

interaction of the TATA-binding protein (TBP) with each of seven different promoters 

possessing diverse transcriptional activities and driven by RNA polymerases I, II or III.  

Consistent with expectation (Roberts et al. 2003), the Pol III-driven SNR6 (U6) promoter 

had the highest occupancy, however, interestingly, occupancies of all promoters were 

well below saturation (Figure 3-11A; supplementary online text).  Moreover, TBP-
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Figure 3-10: Comparison of TF-chromatin dynamics by CLK and FRAP 

 (A) Model fits of CLK data for Ace1-GFP binding to CUP1 in cells with two different 

expression levels of Ace1-GFP (low, blue curve; high, red curve; Table 3-2).  Inset: 

distributions of t1/2 values obtained from multiple independent fits of the Ace1-GFP or 

LacI-GFP CLK data.  (B) FRAP of Ace1-GFP in cells with low Ace1-GFP levels. (C) 

Model fits of CLK data for LacI-GFP binding to the Lac array in cells with low (blue 

curve) or high (red curve) levels of LacI-GFP (Table 3-2). (D) FRAP of LacI-GFP in 

cells with low LacI-GFP levels. 



123 

 

 

 

Figure 3-11: TBP dynamics and regulation by Mot1 

 (A) Distributions of TBP occupancy at different yeast promoters obtained by multiple 

independent fits of the CLK data . (B) Distributions of TBP-promoter half-lives, whose 

mean values vary from 60 to about 2000 seconds.  (C) Model fits of CLK data for TBP 

binding to the Mot1-activated URA1 promoter in WT (sold lines) and mot1-42 cells 

(dashed lines).  Data and fits from cells expressing WT levels of TBP are shown in blue, 

results from cells over-expressing TBP are in red. (D) Boxplots for distribution of t1/2 
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values (log scale) for TBP binding to the Mot1-activated URA1 promoter in WT (blue) 

and mot1-42 cells (red).  (E) Average genome-wide log2 differential TBP and TFIIB 

ChIP-chip signals at promoters in mot1-42 versus WT cells shown with respect to the 

transcription start site (arrow) (Poorey et al. 2010). 
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Table 3-7 Estimated kinetic parameters for TBP binding to the indicated promoters and in the indicated strains. 

Promoter kaCTF (s
-1

) ka (M
-1

s
-1

) kd (s
-1

) kxl (M
-1

s
-1

) IP sat   
 

 t1/2 (s) 

LOS1 1.7 (+1.2, -0.8 )x10-4 1.4 (+1, -0.6)x101 1.7 (+0.7, -0.6)x10-3 6.7 (+4.5, -2.8) 1.1 (+0.4, -0.3) 0.09 (+0.03, -0.03) 406 (+198, -118) 

 ACT1 6.8 (+2.7, -3.3 )x10-5 5.66 (+2.2, -2.7) 1.2 (+1.5, -0.7)x10-3 1 (+103, -1)x102 1.8 (+1.2, -0.4) 0.05 (+0.07, -0.03) 574 (+867, -320) 

 NTS2 4.4 (+3, -2 )x10-4 3.7 (+2.4, -1.6)x101 4.5 (+4, -2.1)x10-3 6.0 (+6.6, -3.2) 1.3 (+0.3, -0.2) 0.09 (+0.03, -0.03) 155 (+137, -73) 

 

 

 

Promoter Strain kaCTF (s
-1

) ka (M
-1

s
-1

) kd (s
-1

) kxl (M
-1

s
-1

) IP sat   
  t1/2 (s) 

URA1 

  

WT 2.7 (+2.1, -1.0 )x10-5 2.2 (+1.7, -0.9) 3.3 (+0.9, -0.5)x10-4 1.0 (+0.3, -0.1) 2.8 (+1.1, -0.9) 0.08 (+0.04, -0.02) 2120 (+389, -440) 

mot1-42 2.6 (+0, -1.7 )x10-3 2.2 (+0, -1.4)x102 1.3 (+0, -1)x10-2 16.3 (+0, -13.7) 0.66 (+0.1, -0) 0.17 (+0.06, -0) 53 (+157, -0) 

 HSC82  

 

WT 1.1 (+0.5, -0.4 )x10-3 9.0 (+4.4, -3.1)x101 1.2 (+0.6, -0.6)x10-2 1 (+23, -1)x109 1.1 (+0.1, -0.1) 0.08 (+0.04, -0.01) 57 (+58, -19) 

mot1-42 1.3 (+4, -0.8 )x10-3 1.1 (+3.3, -0.6)x102 6.1 (+37, -4.8)x10-3 8.6 (+58, -7) 0.8 (+0, -0.14) 0.17 (+0.1, -0.05) 114 (+433, -98) 

 INO1 

  

WT 3.6 (+32, -0 )x10-8 3.0 (+26, -0)x10-3 2.0 (+1, -0.2)x10-4 3.0 (+1.2, -0.5) 975.6 (+0, -851) 2 (+10, -0)x10-4 3529 (+387, -1247) 

mot1-42 2.6 (+0.7, -0.5 )x10-4 2.2 (+0.6, -0.5)x101 1.2 (+0.3, -0.2)x10-3 8.5 (+2.1, -1.7) 0.8 (+0.07, -0.07) 0.19 (+0.02, -0.02) 604 (+154, -123) 

 SNR6  

  

WT 1.3 (+0.1, -0.1 )x10-3 1.1 (+0.1, -0.1)x102 4.9 (+0.8, -1)x10-3 6.3 (+3.7, -2.2) 3.3 (+0.1, -0.1) 0.21 (+0.03, -0.02) 142 (+35, -21) 

mot1-42 2.2 (+1.5, -1.3 )x10-3 1.9 (+1.2, -1.1)x102 1.3 (+3.7, -1.1)x10-2 16.2 (+88, -14) 2.1 (+0.2, -0.1) 0.15 (+0.1, -0.06) 53 (+256, -39) 
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Table 3-8 Estimated kinetic parameters for Ace1-GFP and LacI-GFP chromatin binding. 

Transcription 

factor Promoter kaCTF (s
-1

) ka (M
-1

s
-1

) kd (s
-1

) kxl (M
-1

s
-1

) IP sat   
  t1/2 (s) 

Ace1 CUP1 1.1 (+0.8, -0.5 )x10-1 1.1 (+0.8, -0.5)x105 6.1 (+10, -3)x10-2 2.9  (+1.6, -0.7) 1.1 (+0.05, -0.02) 0.64 (+0.1, -0.1) 11 (+17, -7) 

LacI LacO 1.3 (+0.1, -0.3 )x10-4 1.3 (+0.1, -0.3)x102 5.9 (+0.8, -1)x10-4 1.6  (+0.3, -1.5)x1010 4.8 (+0.4, -0.2) 

0.19 (+0.01, -

0.02) 

1176 (+228, -

135) 

 

 

  

 

 

Table 3-9 Estimated kinetic parameters for Gal4 binding to the GAL3 promoter 

Transcription 

factor kaCTF (s
-1

) ka (M
-1

s
-1

) kd (s
-1

) kxl (M
-1

s
-1

) IP sat   
  t1/2 (s) 

Gal4 2.4 (+5.4, -1.7 )x10-4 1.4 (+3, -1)x103 1.2 (+1, -0.4)x10-3 1.7 (+0.8, -0.7) 3.3 (+4.7, -1.8) 0.17 (+0.18, -0.1) 602 (+358, -227) 
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promoter interactions varied dramatically, with t1/2 values ranging from one to about 

thirty minutes (Figure 3-11B; Figure 3-16 and Table 3-7), and in many cases half-lives 

were much shorter than distinguishable by any other current technique.  To test whether 

the method can quantify a dynamic difference associated with a perturbation in cellular 

transcription, we next compared TBP dynamics in WT and mot1-42 cells.  Mot1 is an 

essential regulator of TBP, which can use its ATPase activity to dissociate TBP from 

DNA in vitro (Viswanathan and Auble 2011).  Evidence supports a direct role for Mot1 

in gene activation, but how it accomplishes this is unknown.  Using URA1 as a model 

Mot1-activated gene (Sprouse et al. 2008), we observed dramatically different CLK 

curves for TBP binding to the URA1 promoter in WT and mot1-42 cells (Figure 3-11C; 

Table 3-7).  Surprisingly, mutation of Mot1 gave rise to TBP binding that was far more 

dynamic than in WT cells (Figure 3-11D. Similar results were observed at INO1, another 

Mot1-regulated promoter, but not control promoters (Figure 3-16; Table 3-7).  Rather 

than catalyzing dissociation of stable TBP-chromatin interactions, these results reveal a 

Mot1-mediated mechanism responsible for dissociating weakly bound TBPs in promoter 

regions, thereby facilitating much more stable binding of TBP in functional transcription 

complexes.  This enzyme-catalyzed change in TBP dynamics appears essential for proper 

gene expression; analogous processes may operate to facilitate functional high affinity 

chromatin binding at the expense of weak binding by other TFs as well.  

Time-dependent formaldehyde crosslinking ChIP data and CLK model fits for 

TBP binding to promoters referred to are shown in Figure 3-16.  The full set of 

parameters obtained by CLK model fitting of all of the data sets in this study are shown 

in Tables 3.7-3.9, and errors in the parameters are presented below.  Box plots showing
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Figure 3-12: Density distributions of kinetic parameters and occupancy for LacI and 

Ace1 binding 

Density distributions of kinetic parameters and occupancy (as indicated) obtained by 

multiple independent fits of the Ace1-GFP (black lines) and LacI-GFP (red lines) CLK 

data. The red arrow at the top of the figure shows the direction for a faster parameter set.     
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Figure 3-13: Density distributions of kinetic parameters for TBP binding 

Density distributions of kinetic parameters for TBP binding to the indicated promoters 

obtained by multiple independent fits of the CLK data.   
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Figure 3-14: Density distribution of kinetic parameters for TBP binding in WT and mot1-

42 
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Density distribution of kinetic parameters for TBP binding to the indicated promoters in 

WT (black lines) or mot1-42 cells (red lines) obtained by multiple independent fits of the 

CLK data.   

  



132 

 

 

 

 

Figure 3-15: Density distributions of kinetic parameters for Gal4 binding 

Density distributions of kinetic parameters estimated by CLK model nonlinear regression 

fits obtained by randomizing data points within the error range of the replicates for Gal4 

binding to the GAL3 promoter. 
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Figure 3-16: CLK model fits for TBP binding 



134 

 

 

CLK model fits for TBP binding to the promoters of the LOS1 (A), ACT1 (B), NTS2 

(RNA Pol I promoter in the ribosomal DNA repeat) (C), INO1 (D), HSC82 (F) and SNR6, 

a Pol III-transcribed gene (H). Panels E, G and I show the CLK model fits for TBP 

binding to the indicated promoters in mot1-42 cells.  The red curve fits the data obtained 

in cells with WT levels of TBP, the blue curve describes the data obtained in cells in 

which TBP was over-expressed three-fold over the WT level.   
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 the distributions of complex half-life and fractional occupancy in WT versus mot1-42 

cells are shown in Figure 3-16 and Figure 3-17.  Note that in addition to the shorter 

chromatin complex half-life and higher TBP occupancy observed at the URA1 promoter 

in mot1-42 versus WT cells as reported in the main text, a similar trend in dynamics was 

observed at the Mot1-repressed INO1 promoter whereas there was less of a kinetic effect 

on TBP binding to the HSC82 or the U6 promoter. In addition, TBP occupancies 

increased in mot1-42 cells compared to WT cells at each of the three Pol II-driven 

promoters but not at the RNA Pol III-driven U6 promoter.  Density distribution plots 

shown in Figures. 3-12-3.14 show how the model parameters obtained from multiple 

independent fits of each data set (see Section 3.3.2.5) vary for chromatin interactions at 

different sites and in different cells.   

The most notable differences in chromatin interaction behavior evident from the 

density distribution plots include: 

1. On-rate, off-rate, and occupancies are different for Ace1 and LacI binding to their 

respective sites (Figure 3-12).  This is consistent with their dramatically different 

kinetic behavior measured by both the CLK method and by FRAP.   

2. On-rates and off-rates for TBP binding to each of seven different promoters span 

a broad range (Figure 3-13 A, B).  In contrast, with but one exception, the 

formaldehyde crosslinking rates in WT cells are tightly clustered (Figure 3-13C).  

See summary section (below)  for an interpretation of the crosslinking rates. 

On-rates and off-rates for TBP binding are distinctly different in WT versus mot1-42 

cells for interactions at the Mot1-regulated URA1 and INO1 promoters but similar in both 

cell types at the HSC82 and U6 promoters (Figure 3-14).  The crosslinking rates
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Figure 3-17: Box plot of distribution of parameters for TBP in WT and mot1-42 

 (A) Boxplots for distribution of t1/2 values (log scale) for TBP binding to various 

promoters in WT and mot1-42 cells. (B) Boxplots for distribution of fractional occupancy 

levels for TBP binding to various promoters in WT and mot1-42 cells.  Note that the TBP 

occupancy increases in mot1-42 cells at each of three Pol II promoters (URA1, INO1 and 

HSC82) but not at the Pol III-driven SNR6 promoter. 
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Figure 3-18: Genome wide distribution of TBP and TFIIB at the URA1 gene 

TBP (top panel) and TFIIB (bottom panel) binding to the ~1.1 kb URA1 promoter in WT 

and mot1-42 cells.  The URA1 gene is shown as the red arrow, and is transcribed from 

left to right.  TBP and TFIIB log2 ChIP-chip signals (29) in WT cells are shown in blue; 

signals in mot1-42 cells are shown in red.  The log2 fold change differential signals for 

each factor are shown in green.  Note that the TBP signal increased and the peak 

broadened in mot1-42 cells compared to WT cells.  In contrast, the TFIIB signal 

decreased, suggesting that the TBP that accumulates in mot1-42 cells is nonfunctional.   
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Figure 3-19 :Control for ChIP at non specific sites. 

Relative ChIP signals for four TFs at specific versus control loci.  Each bar graph shows 

the relative ChIP signal obtained from two biological replicate cultures for interaction of 

the indicated TF with known chromosomal binding site regions (leftmost bar in each 

graph) versus control chromosomal locations either in the open reading frame (ORF) 

adjacent to the targeted promoter (A, B and E) or at other promoters lacking the sequence 

recognized by the TF (C, D).  Cells were fixed with formaldehyde for 8 min (A, B), 27 

min (C), or 20 min (D, E).  For Gal4, LacI, and Abf1, nonspecific ChIP signals were 

barely detectable.  The Ace1 ChIP signal at CUP1 was about six-fold greater than the 

signals obtained at INO1 and ACT1.  



139 

 

 (Table 3-7) also vary in these two cell types, but with one exception, the differences are 

in general rather modest in magnitude.  

3.5 Summary 

The CLK assay yields estimates of physical kinetic parameters as opposed to 

relative rates, and it is applicable over a much broader time scale than competition ChIP 

since it is not limited by the time required to synthesize or activate a competitor 

molecule.  This will permit rapid chromatin interaction dynamics for a factor to be 

compared directly to kinetic parameters for functionally related factors or processes. The 

CLK methodology is in principle not limited to yeast, and it is based on ChIP, one of the 

most widely used assays in chromatin research. Our data suggest an explanation for why 

there is no detectable chromatin-bound TBP as judged by live cell imaging (Sprouse et al. 

2008), but there are stable TBP complexes as judged by competition ChIP(van Werven et 

al. 2009).  The CLK results show that TBP fractional occupancies  are low.  Thus, while 

there are stable TBP-promoter complexes in vivo, most promoters are not occupied at 

steady state.  The surprisingly low occupancies are consistent with results showing that 

transcription in vivo occurs via uncoordinated stochastic cycles separated in time (Larson 

et al. 2011; Suter et al. 2011) . CLK results also illustrate the danger of inferring relative 

occupancies or dynamics from ChIP assays employing single, long formaldehyde 

incubation times.  TBP ChIP signals are much greater in mot1-42 cells than in WT cells, 

but the higher ChIP signals result from highly dynamic TBP molecules being trapped 

during the formaldehyde incubation period, rather than reflecting stable TBP binding.  

An added advantage is that the approach is based on ChIP, one of the most widely 

used assays in chromatin research. The ability to obtain binding kinetic parameters will 
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permit direct comparison with rates for other steps in the transcription cycle.  Moreover, 

the approach could be useful for analysis of other chromatin-based processes 

TBP ChIP signals are much greater in mot1-42 cells than in WT cells, but CLK 

analysis shows that the higher ChIP signals result from highly dynamic TBP molecules 

being trapped during the formaldehyde incubation period, rather than reflecting stable 

TBP binding.  Formaldehyde-mediated trapping of dynamic binding may be a general 

ChIP phenomenon as the crosslinking reaction rates we calculate are in the same range as 

the rates of spontaneous DNA base flipping, the postulated rate limiting step in 

formaldehyde reaction with DNA.    

3.6 Future Directions 

3.6.1 Study of PIC dynamics 

The CLK method can be used to measure the dynamics of binding for PIC factors 

at promoters of interest and to study recruitment dynamics and regulation at relatively 

high temporal resolution. Some progress along these lines has already been made by 

Ramya Viswanathan and Savera Shetty, who are using the CLK assay to measure TBP, 

TFIIB and Pol II binding dynamics at the GAL3 promoter. Additional measurements at 

different promoters would be useful to study the recruitment dynamics of TFIIB, TFIIA, 

TFIIH, TFIIE, and Pol II will further our understanding of PIC assembly. Although 

locus-specific studies are informative and will provide insight into mechanism of PIC 

assembly dynamics, genome wide CLK–ChIP using high throughput sequencing 

technology will be required to relate the range of PIC assembly/disassembly dynamics to 

gene expression levels, RNA synthesis precision, response to stress, TATA-containing 

and TATA-less sequences, histone modifications, and other regulatory elements across 
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genes.. In order to see the scope of application of CLK method a dynamic system should 

also be studied in mammalian system to prove the applicability of the method for more 

complex organisms such as humans and mouse.       

3.6.2 Genome-wide application of CLK-ChIP 

Another advantage of using a ChIP based approach method is the versatility of the 

application and its wide application in genome-wide studies. We have used the CLK 

method to study TBP binding dynamics through ChIP-Chip. We have collected 7 

crosslinking time points and are in the process of developing a computational pipeline 

(discussed in Appendix A) to analyze the dataset. Although we carried out experiments 

with genomic tiling arrays for practical reasons at the time, the best way to conduct 

genome wide CLK experiments would be to use ChIP-seq which should yield more 

accurate and precise genome-wide CLK data (See Appendix A).  

3.6.3 Simplified CLK 

Although proven successful in providing insights about chromatin interactions, 

much effort goes into collecting the data. Each CLK curve involves fitting 15-18 time-

points including measurements using the KinTek apparatus and strains with two different 

TF concentrations in biological duplicates  requiring 50-60 ChIP measurements. 

Accounting for sample preparation time, generation of a CLK data set for one TF at a 

given locus required 5-6 weeks of hard work. Since the CLK method was published 

(Poorey et al. 2013) interest in application of the CLK method by other groups is driving 

the development of simpler, less labor intensive approach than that detailed in this 

chapter.  The approach is to use an approximate CLK model (described in Eq(19)) with a 

subset of time points to determine a minimal number of data-points required to obtain 
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reasonable estimates of the kinetic parameters, which agree with our original findings. 

Our results show that crosslinking rates are much faster than chromatin-binding rates and 

the crosslinking rates did not vary much for different factors. Using measurements for 

time points longer than the crosslinking-limited range (typically 1-2 s), the approximate 

model described in Eq(19) is sufficient to estimate the dynamics for TF-DNA interactions 

that are relatively slow, as was observed for TBP (for example LOS1, ACT1 INO1 wt, 

URA1 wt, ). If ChIP measurements for sub-second crosslinking times are not required, 

then collection of the data using KinTek apparatus will not be needed, reducing the labor 

required for data collection.  

3.6.4 Improvement in the CLK Method 

Apart from making the CLK method simpler, there is additional room for 

improvement to make the method more accurate.  

Modeling approaches 

The current CLK model is based on the assumption that the TF concentration 

remains constant.  The experimental measurements in Figure 3-8 and 3-9 show that the 

concentration of free Gal4 and TBP did not change significantly overtime to introduce 

significant (i.e., order of magnitude) bias in estimation of kinetic parameters But there 

may be other TFs in different systems which could be dramatically affected. A more 

comprehensive CLK model could be developed for a system affected by TF 

concentration depletion.  

Another assumption was that all of the TF binding interactions were independent 

events and were not dependent on any other factors. However, recruitment of TFs to 
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promoters can be complicated.  As detailed in the introduction, recruitment of TFs to a 

given promoter is much more complicated. Some factors bind cooperatively including 

those that bind as dimers. Cooperative binding can affect the derived on-rates, off-rates 

and occupancy relative to binding of the same factor as a monomer. Moreover, 

incorporating cooperative effects in generalized CLK mathematical models would lead to 

different interpretations and values for the kinetic parameters.   For initial study, 

modeling two-factor cooperative binding in a system where factors are known to 

cooperatively bind, for example, TBP and TFIIB binding to a promoter as TFIIB binding 

is dependent on TBP binding, would be an important start.  One could then expand to a 

multicomponent system like Gal4 binding on a GAL 1-10 promoter which requires 

cooperative binding of 4 Gal4 molecules. 
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Chapter IV 

Analysis of the Sen1 Termination Pathway Using the Transcription 

Precision Pipeline (TraPP) 

4.1 Introduction 

Transcription termination is a tightly regulated process (Kuehner et al. 2011; 

Brow 2011). The same core complex can precisely transcribe a short ncRNA transcript 

and also a long Pol II transcript. The termination signal for most of the cases is carried by 

the nascent RNA which is recognized by termination factors, cleavage factors and also 

poly Adenylation (Poly (A)) factors (Zhao et al. 1999; Rosonina et al. 2006). For yeast 

Pol II two termination pathways have been identified, Poly (A)-dependent where most of 

the mRNA transcripts are terminated by the action of exonuclease Rat1 and the other is a 

Poly (A)-independent transcription termination pathway involving Sen1 (Kuehner 2008). 

Sen1, Nrd1 and Nab3 were identified as termination factors for snoRNA and snRNA in 

yeast by Steinmetz et al. 2001. It was found that Sen1, Nrd1 and Nab3 associate with Pol 

II with each other and with the Pol II CTD. Binding of Nrd1 and/or Nab3 to specific 

sequences in the nascent transcript results in Sen1 dependent termination. (Brow 2011; 

Steinmetz et al. 2006b; Ursic et al. 1997). As mentioned in Chapter I, the essential 

components for the Sen1-dependent termination pathway include the Sen1 helicase, Nrd1 

and Nab3 RNA binding proteins, the CTD phosphatase Ssu72, and Pol II (Kuehner 

2008). We studied the effects of mutations in Sen1, Nrd1, Nab3, Ssu72, Rpb11, and Hrp1 

(subunit of Cleavage factor 1) on  transcription both qualitatively and quantitatively. 
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Figure 4-1: Schematic of the Sen1-Nrd1-Nab3 termination machinery scanning nascent 

transcript shown in red. Figure is adapted from  Brow, 2011 
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Sen1 is presumed to be a helicase based on studies of, Sen1 homolog in S. Pombe 

which has 5’-3’ helicase activity (Ursic et al. 2004). Sen1 is essential and conditional 

loss-of-function mutations in Sen1 result in accumulation of tRNA and  rRNA 

precursors, as well as mis-localization of snoRNA. Such mutations are also known to 

cause 3’ extension and transcriptional read through of some snoRNAs and some short Pol 

II genes (Ursic et al. 1997, 2004). The human homolog of Sen1 is Sentaxin and mutations 

in Sentaxin are known to cause the progressive neurological disease Ataxia Oculomotor 

Apraxia 2 as well as  Juvenile Amjotrophic Lateral Sclerosis ALS4 (Chen et al. 2006, 

2004). Nrd1 interacts with the large subunit of Pol II at phosphorylated Ser 5 to direct 

termination of the transcript for non poly(A) transcripts (Steinmetz et al. 2001; Vasiljeva 

et al. 2008). Hrp1 is a subunit of cleavage factor 1 which is a five subunit complex 

required for the cleavage and polyadenylation of the pre-mRNA 3’ end. It binds to the 

poly (A) signal sequence (Kessler et al. 1997). Ssu72 is a phosphatase and 

transcription/RNA processing factor; it associates with Pta1p and removes Ser 5 and Ser 

7 phosphorylation of the RNA Pol II CTD (Krishnamurthy et al. 2004). It also associates 

with TFIIB to ensure accurate start site selection (Sun and Hampsey 1996). Mutation of 

Ssu72 affects start site selection and causes transcription read through (Sun and Hampsey 

1996; Krishnamurthy et al. 2004). Along with this, mutations in the Pol II subunit Rbp11 

cause read-through transcription in vivo.(Steinmetz et al. 2006b).  It is evident from the 

wide spread roles played by these factors that their role is not limited to termination of 

ncRNAs. And study of transcription when these factors are mutated would reveal their 

involvement in other fundamental pathways to modulate transcription. The study 
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presented in this chapter would assess the effect of mutation of these factors on ncRNA 

coding genes and also genes transcribed by Pol II.    

4.2 Materials and Methods 

4.2.1 Yeast strains 

Strains for RNA processing analysis were obtained from David Brow and were 

previously described in: (sen1-E1597K, Steinmetz and Brow 1996; nrd1-V368G, 

Steinmetz and Brow 1996; nab3-11( F371L, P374T), Kuehner 2008; ssu72-G338, 

Steinmetz and Brow 2003; hrp1-L205S, Kuehner 2008; rpb11-E108G, Eric J Steinmetz 

et al. 2006.  

4.2.2 Expression Analysis 

Total RNA was isolated and hybridized to S. cerevisiae Tiling 1.0R Arrays (Affymetrix, 

Inc.) and raw data were generated by the Microarray Core Facility at UVA using the 

method described in chapter II for  WT, sen1-E1597K, nrd1-V368G, nab3-11, ssu72-

G338, hrp1-L205S and rpb11-E108G RNA analyses were performed using two 

independent biological replicates for each.  Cell growth, RNA isolation and library 

preparation were performed by Melissa Wells Carver . Estimates of total RNA levels 

were made from the raw array data (CEL files) by first quantile normalizing all replicate 

arrays and scaling the data to a target median intensity of 100. We applied the Wilcoxon 

Signed-Rank test to the normalized log2(max(PMi-MMi,1)) values whose genomic 

coordinate ‘i’  fell within a 100 bp (i.e., a length much smaller than the typical ORF) 

sliding window to calculate the log transformed probability (-10log10(p-value)) that the 
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RNA was detected above noise levels. The associated Hodges-Leman estimator was used 

to estimate RNA levels.  Differential RNA levels were estimated using the same 

procedure described in Chapter II including a window size of 500 bp with mutant RNA 

samples as treatment and WT RNA samples as control using Tiling Assesment Software 

TAS version 1.1.  

4.2.3 Multi Pass TraPP Pipeline 

We applied the TraPP pipeline described in Chapter II with 0.3, 1.3, 2.3, 3.3 and 

4.3 cutoffs of the differential RNA signal (log2(Mut/WT) ) data generated using a 500 bp 

sliding window.  By comparing these segments to annotations, we identified 5’ and 3’ 

transcriptional length changes in each mutant relative to WT RNA (Figure 4-2).  We used 

the annotations provided by Saccharomyces Genome Database from the reference 

genome released in 2004. These length changes were either positive or negative and 

represent different transcriptional defects as described in Chapter II.  Cases where the 

significant differential expression segment ran across to two or more annotated genes 

were characterized separately on gene-by-gene basis.  Putative length changes that did 

not satisfy all the criteria below were filtered out: 

- The overlap between annotations and the significant differential signal segments 

was at least 100 bp long. 

- The length of the defect computed was > 150 bp long. 

- Median signal in the defect was significantly different from the baseline 

differential expression value as described in Figure 4-2.  In the case of extensions 

where the segment fell beyond the boundaries of the annotation, the median signal 

in the extended region, Sext, was greater than 0.6 to make a length change call.  In  



149 

 

 

 

Figure 4-2 Analysis methods used for characterizing the RNA defects as 

described in the text.  
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the case of truncations, we defined two quantities: (1) Soverlap as the median of the 

differential signal in the region where the differential segment and the annotation 

overlapped and (2) Sint as the median signal in the region internal to the gene that did not 

overlap the differential expression segment.  For a truncation to be called, we required 

Soverlap = Sint >  0.6.  

4.2.4 Cross Correlation Analysis 

This analysis was used to measure the similarities of the differential RNA profiles 

of two datasets which was sensitive to transcriptional precision defects for all the genes 

or a given gene list. The first step of this analysis was to select an annotation class for 

comparing the differential signal. Genomic coordinates of the selected annotations are 

supplied as input to the program. For this current study, two sets of coordinates were 

used: (1) gene boundaries and (2) extended gene boundaries which included 150 bp 

upstream of the TSS and 100 bp downstream of the transcription stop site for each gene 

in the yeast genome.  This was done to ensure we took into account the 5’ and 3’ RNA 

precision defects. We used these coordinates to select differential RNA data from two 

datasets (e.g. Nrd1 and Nab3) and calculated the cross-correlation coefficient using the 

Matlab function “xcorr” over the normalized differential signal of these datasets. Using 

the normalized differential signal was crucial so that the overall differential signals did 

not influence the cross-correlation coefficient.  

4.2.5 Clustering Analysis 

We used the Matlab function “clustergram” to perform clustering analysis for 

gene expression and used Pearson, Mahalonobis and Spearman correlation coefficients as 

metrics to calculate the distances between genes and mutants in the data. We also used 
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AutoSOME which uses a powerful unsupervised computational method for identifying 

discrete and fuzzy clusters of diverse geometries from large datasets without requiring an 

estimate of the number of clusters as input. We divided the gene body into five equal 

lengths and calculated the median differential signal within these boundaries. Which 

allowed clustering and visualization of shared transcriptional defects across genes and 

mutants. We applied AutoSOME to cluster this dataset in order to produce lists of genes 

with similar transcriptional defects across mutants.  The resulting clustered profiles were 

viewed using the java-Tree View software. 

4.3 Results 

We compared overall RNA expression levels from sen1-E1597K, nrd1-V368G, 

nab3-11, ssu72-G338, hrp1-L205S,  and rpb11-E108G with respect to their WT strains 

using Affymetrix yeast genomic tiling arrays at 5bp resolution as described in the 

Chapter II Materials and Methods section. Two different WT datasets were used to 

account for different mating types in the mutant strains. Consistent with the method used 

in Chapter II, the total RNA profile was calculated by averaging the signal over 100 bp 

windows and the differential profiles were calculated using a 500 bp window. Figure 4-5 

shows a screenshot of genomic region of chromosome 7 showing total RNA from WT 

and sen1 as well as the differential RNA signal which effictively is log2(Mut/WT). 

Although the Sen1 pathway is believed to target genes involving poly (A)-independent 

termination and 3’end formation, we found that a large portion of Pol II genes show 

aberrant differential RNA precision defects at both 5’ and 3’ regions We estimated 

overall gene expression changes from the tiling array data by calculating the median 

log2(Mut/WT) signal within the gene body. In the sen1 strain, it was observed that the 
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Table 4- 1: GO term and pathway results from DAVID 
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expression changes were relatively large compared to other mutants studied. Table 4.1 

shows the GO term and KEGG pathway analysis and the enriched terms and pathways 

highlighted by DAVID. Most of the enriched terms are related to meiosis and 

reproduction with very significant p-values. This strongly suggests that Sen1 has a 

function in suppressing meiosis related genes in vegetative state. Furthermore, when we 

focus on the genes which are highly differentially expressed, they show enriched for 

meiosis pathway (Table 4.1) as well.  And 21 out of the top 26 higly expressed genes 

were caused by read through from snoRNA genes. This behavior of read-through 

transcription was also observed from the average plot of total RNA in WT and sen1 cells, 

as well as from average profile of differential RNA for snoRNA genes shown in Figure 

4-3. To capture these readthrough events  TAS was used to calculate the differential RNA 

signal using a 50 bp smoothing window so that these relatively shorter genes could be 

studied. The average profile shows clear signs of read-through transcription in the mutant 

(Figure 4-3 A).  

In order to capture and quantify these read-through events from snoRNA genes 

we modified the Multi-Pass TraPP algorithm to be applied for snoRNAs, which are 

relatively short. First, we used the a smaller smoothing window of 50 bp to estimate 

differential RNA signal.  The RNA precision defects for snoRNAs are shown in Table 4-

2. The defects were classified into upstream initiation (UI), premature termination (PT), 

downstream termination (DT) and downstream initiation (DI). As expected, the dominant 

class of RNA precision defects was downstream termination (DT) with more than 60% of 

snoRNA genes affected. Further analysis showed that all 41 cases exhibitread-through 

transcription and led to RNAs that apparently ran into 77 downstream Pol II genes. 
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Figure 4-4 shows two examples of snoRNA read-through transcripts which runs through 

multiple Pol II genes. Surprisingly ~40% of the snoRNA genes were not affected by the 

mutation in Sen1, which suggests the possibility of another termination pathway for these 

genes. 

Average profiles of total RNA and differential RNA in sen1 versus WT cells at 

Pol II genes suggest that both quantity and precision of RNA at Pol II genes is widely 

affected (Figure 4.3 B). Both 5’ and 3’ regions of Pol II genes show in general an 

accumulation of differential RNA, which suggests prominent upstream initiation and 

downstream termination defects. To further investigate this phenomenon we used the 

Multi-pass TraPP method for all the Pol II genes. Table 4.3 shows the number of 

significant transcript precision defects detected. We also applied the peak calling 

algorithm to the differential RNA signal data to classify the 5’ and 3’ accumulation of 

differential RNA captured in the average plots in Figure 4-3. Figure 4-5 shows an 

example of the accumulation of the differential RNA signal and how well these effects 

can be captured and classified by peak calling.  Table 4.3 B shows the number of genes 

associated with 5’ or 3’ differential RNA peaks. Associations were made if the peak was 

within 150 bp of the TSS and 100 bp downstream of the transcription stop site. Figure 4-

6 shows an example of all the methods used to classify RNA length defects for the 

sen1data. There were many orphan differential RNA peaks which were not associated 

with any genes.  This is surprising given the gene dense nature of yeast genome. 

However, the Sen1 pathway is involved in degrading SUTs (Kuehner 2008)and further 

investigation is needed to determine if there is an association between



155 

 

 

 

Figure 4-3: Average profiles of total RNA and defferential RNA signal centered over 

gene start and Gene end for snoRNA and CDSs.  
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Figure 4-4: Example of snoRNA read through downstream Pol II genes.  
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Figure 4-5: Example of differential RNA signal (differential RNA peaks) at 5’ and 3’ end 

of the genes in sen1-E1597K.  
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Table 4- 2: Classification of RNA precision defects in snoRNA. 

Sen1 - snoRNA Total Genes considered 68 

Upstream initiation (UI) 13 

Downstream termination (DT) 41 

Late Initiation (LI) 10 

Premature termination (PT) 2 

 

 

Table 4- 3: Classification of RNA precision defects in Pol II  genes for the sen1-E1597K 

dataset  

A 

Type: Sen1 Pol II Genes Count 

Upstream Initiation 1236 

Premature Termination 196 

Downstream Initiation 184 

Downstream Termination 1185 

Total Length Changes 3084 

Total number of genes involved in Length Changes 1931 

 

B 

 Type: Sen1 Pol II Genes Count 

5’ Associated Peaks (Promoters) 1921 

3’ Associated Peaks 1738 

Overlapping Promoter Peaks(1921) and Upstream Initiation(1236) 647 

Overlapping Promoter Peaks (1738) and Downstream termination (1185) 635 
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these events and the occurrence of SUTs. Further wet-bench experimentation is also 

needed of the 5’ and 3’ peaks to understand the origins of the signal. Table 4-6 shows the 

collection of enriched GO terms and pathways for the genes which have significant 

length changes.  Similar to the results of the snoRNA-focused analysis described above, 

meiosis is highlighted in a number of significant terms.  

The  TraPP pipeline as described in Chapter II was also used to analyze and 

classify the RNA precision defects in other components of the Sen1 termination pathway 

(Nrd1, Nab3, Ssu72, Rpb11 and Hrp1). The significant RNA length changes detected are 

summarized in Table 4-4 A. Nab3, Hrp1 and Nrd1 mutants show a premature termination 

phenotype. A mutation in Hrp1 gave rise to a large number of premature termination 

defects, as expected, and these defects were mostly differentially down premature 

termination events, whereas Nab3 and Nrd1 show a mixture of both differentially down 

and differentially up premature terminations. Ssu72 and Rpb11 mutants show 

downstream termination and upstream initiation effects to be the dominant phenotypic 

effects, similar to what was observed in sen1 cells. We also calculated the overlap of the 

genes sets involved in significant length changes and the overlap numbers are enriched 

over what was expected from random chance, which is expected since all these factors 

are part of the same pathway (Table 4-4 B).  
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Figure 4-6: Example of computational methods applied to sen1 mutant dataset. A) 

Integrated Genome Browser view of a segment of chromosome 2. B) Example of Multi-

pass TraPP and peak finding algorithm applicatied to YHR011W , showing red peaks as 

final location calls and transcription precision defects called by pink and orange bands at 

the bottom for 5’ and 3’ changes respectively.  
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Table 4- 4: Summary of transcript length changes for Pol II genes 

A) Number of instances of different classes of transcription precision defects 

B) Overlap of genes involved in different datasets  
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Table 4- 5: Cross-correlation coefficients A) for Pol II genes B) for ncRNA genes.  

For Pol II genes the cross-correlation was computed using extended gene boundaries 

which included 150 bp upstream of the TSS and 100 bp downstream of the transcription 

stop site for each gene. And for the ncRNA genes only gene boundaries are used to 

compute the cross-correlation coefficient. 



163 

 

 

 

Figure 4-7 Tree based cross-correlation coefficient computed in the Table 4-5 as a 

distance matrix. For the Pol II genes the cross-correlation coefficient was computed by 

comparing the differential signal within the extended gene boundaries which included 

150 bp upstream of the TSS and 100 bp downstream of the transcription stop site for each 

gene. The median cross-correlation coefficients were used as a distance matrix to form a 

tree based on similarities in transcription defects. Similar method was applied for ncRNA 

genes but only gene boundaries were considered for comparison        
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Figure 4-8: Distribution of Cross-correlation-coefficients for all the pairs of mutants in Sen1 termination pathway 
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Table 4- 6: GO term and pathway enriched terms for genes involved in transcription 

length changes in sen1 cells. 

 



166 

 

 

In the six datasets we analyzed for RNA lengths, change there were two broad 

classes of factors based on the precision defects that we identified. 1.)  Mutations in 

Nrd1, Nab3, and Hrp1 caused premature terminations and 2.)  mutations in Sen1, Rpb11 

and Ssu72 caused 5’ and 3’ RNA extension defects (UI and DT). As discussed above, we 

already knew that the genes with associated RNA length changes in each mutant 

significantly overlap, However do they share similar specific precision defects? To 

investigate this, we calculated the cross-correlation coefficients using differential RNA 

profiles for all the pairs of mutants at every gene locus. In two different analyses, we used 

differential RNA profiles from (1) the gene body and (2) the gene body, promoter and 3’ 

region to compute the cross-correlation coefficient for Pol II genes and ncRNA genes. 

Table 4-5 shows the median cross-correlation coefficient between mutants where we 

analyzed 5’ and 3’ extended boundaries for Pol II genes and only the gene body for 

ncRNA genes. Because ncRNAs are in general short and the value of cross-correlation 

coefficient would be heavily biased for the signal in the regulatory region rather than the 

whole body we used only the gene body for analysis of ncRNA genes. These coefficients 

quantify the similarity of the differential RNA profile between each pair of mutants 

(cross-correlation coefficient nearing 1 corresponds to a highly correlated profile and 

cross-correlation coefficient nearing -1 corresponds to a highly anti-correlated profile). 

We can use these coefficients across mutants and form a distance matrix in order to 

generate a tree based on similarities of transcriptional defects. Figure 4-7 shows trees 

made using the median coefficients calculated for Pol II genes. We also normalized the 

differential expression profile to vary from -1 to 1 for this analysis so the overall 

expression levels do not drive the relationship between mutants. This was necessary due 
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to higher levels of expression levels in certain datasets (e.g. sen1). F). For this analysis 

we also only included the union of genes, which were involved in RNA precision defects 

across mutants. By doing this we ensured that differential expression alone does not play 

a dominant role in determining the overall relationships. Figure 4-8 show boxplots of the 

cross-correlation coefficients calculated for Pol II genes. In this case we found that the 

termination factors can be subdivided into two classes. Nrd1 and Nab3 mutant defects are 

quite closely related across genes, which is consistent with their known biochemical 

relationship. We also included the set2Δ dataset described earlier as a control, and its 

relationship with the other datasets was observed to be the weakest, as expected.  

Next we applied clustering techniques over gene expression and differential gene 

expression profiles to determine if overall levels of expression yielded similar 

associations across mutants as those that resulted from the analysis of defects in 

transcriptional precision. Two-way clustering was done using Matlab for the gene 

expression data and the resulting dendrogram is shown in Figure 4-9. The pattern of the 

tree emerging from the two-way clustering of the Pol II genes is different than that 

observed for the cross-correlation analysis. This is because the large gene expression 

profiles of the factors drive the clustering approach. Sen1 seems to be more closely 

related to Nrd1 and Nab3 based on overall expression but it seems to play a different role 

in modulating termination, hence yielding a different RNA profile.  This defect was 

better characterized by cross-correlation analysis above and beyond the results of the 

gene expression.  

We next computed the median differential RNA signal in seven regions for every 

gene as described in the material and method section. We used Autosome to cluster these 
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seven regions of genes in all the datasets including set2Δ as a control, resulting in 49 

columns to cluster. This was done to ensure that clustering approach can capture the 

structure of genes associated with precision defects and not just gene expression patterns. 

Sixty clusters were obtained from this analysis with thirty clusters containing more than 

50 genes. Overall trends across the clusters were difficult to determine but some of the 

clusters showed very distinct patterns. For example, Cluster 5 (Figure 4-10) contains 

genes that predominantly show premature termination defects. The 5’ and 3’ differential 

RNA accumulation in sen1data is evident in this cluster. nrd1 and nab3 show mixture of 

both premature termination and downstream initiations, rpb11is differentially down-

regulated and hrp1shows premature termination in all the displayed genes. Furthermore 

the control dataset, set2Δ, show no consistency in the pattern.    

Figure 4-11 shows an Autosome clustering plot of the genes showing premature 

termination in hrp1 cells. It has been observed that Hrp1 functions independent of the 

Sen1 pathway (Kuehner 2008). To confirm this, we made average plots of differential 

RNA signal over the 5’ end of genes involved in length changes where we included 

(Figure 4-12 black curves) and excluded Sen1-affected genes (Figure 4-12 red curves) 

for the purpose of comparison. All the datasets except Hrp1 show a difference in the 

average differential profile (Figure 4-12). This suggest that Hrp1 is part of a mutually 

exclusive termination pathway then Sen1.     
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Figure 4-9: Dendrogram obtained from two-way clustering of gene expression for Sen1, 

Nrd1, Nab3, Ssu72, Rpb11 and Hrp1 datasets .  

A) The tree showsthe overall relationships between the datasets with distances calculated 

by clustering. B) Heatmaps of gene expression with red – downregulation and green – 

upregulation.  
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Figure 4-10: Example of AutoSOME output.  

The left panel shows a segment of the overall AutoSOME clustering results.  The right 

panel shows Cluster 5 from the AutoSOME output with blue representing differentially 

up signal and yellow showing differentially down signal. The order of columns from left 

to right is Nrd1, Nab3, Sen1, Rpb11, Ssu72, Hrp1, and Set2 dataset. 
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Figure 4-11: Example clusters with Hrp1 showing premature termination.  

Java tree view of Clusters 11-13 which show premature termination to be the 

predominant class of defects in hrp1 cells. Blue color represents positive differential 

RNA signal and yellow representing differential negative signal. Panel on the left 

showing collection of all the clusters and panel on the right showing the genes 

corresponding to the selected view.  
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Figure 4-12: Differential RNA profile for genes showing length changes in various 

factors 

Average differential RNA profiles for Hrp1, Nrd1, Nab3, Rpb11, and Ssu72 data sets at 

the 5’ regions (in A-E) and at 3’ regions (F-J) of the genes with transcription precision 

defects in black and with genes containing transcription precision defects with no Sen1 

affect. An interesting thing to note is that in (A), the Hrp1 profile is not affected from 

black to red (the black and red curves overlap each other perfectly) showing 

independence from Sen1 pathway.  
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4.4 Summary and Further Analysis 

We analyzed the effect of mutations in factors in the Sen1 termination pathway on 

transcription using gene expression and analyzing the data using the TraPP. Mutation in 

Sen1 had a very dramatic effect on transcription, showing extensive differential 

expression and a very distinct signature of transcription precision defects. Mutation of 

Sen1 resulted in read-through transcripts in 60% of snoRNA genes, with remaining 40% 

of snoRNA unaffected by mutations in any of the factors studied, suggesting presence of 

another termination pathway or exisitance of other unknown factors in the termination 

pathway for these genes.  The gene expression and transcription precision results 

obtained strongly suggest that Sen1 is involved in suppression of meiosis-related genes in 

the vegetative state. Though thought to be involved only in poly (A)-independent 

termination, mutations in all these factors show termination defects in many Pol II genes. 

Sen1 pathway is responsible for degradation of the SUTs and CUTs  and further analysis 

of SUT/CUT annotations using TraPP would shed light on whether these effects are 

direct or indirect. Also other classes of ncRNA should be analyzed by TraPP to test how 

these factors are involved in their processing. 
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APPENDIX A 

Genome wide analysis of TBP binding dynamics by CLK ChIP-Chip 

This includes preliminary results from analysis of genome-wide CLK ChIP Chip data for TBP.  

Methods 

Experimental data was collected using S. cerevisiae strain YAD155 (SPT15-MYC) which was 

derived from YPH499 (Sikorski and Hieter 1989) and is described in Chapter II and III. ChIP 

experiments were conducted by Melissa Wells Carver as previously described in Chapter II and 

with modifications described in Chapter III. Cells were crosslinked for different times: 15 min (3 

biological replicates), 8 min (2 biological replicates), 5 min (2 biological replicates), 3 min (2 

biological replicates), 1 min (2 biological replicates), 5 sec (2 biological replicates), 0.5 sec (2 

biological replicates) along with native ChIP where no formaldehyde was added. Mock ChIP 

samples were also processed for different time points of crosslinking : 15 min (2 biological 

replicates), 8 min (1 sample), 5 min (1 sample), 3 min (2 biological replicates), 1 min (2 

biological replicates), and 5 sec (2 biological replicates).   

 

Data Analysis 

Tiling Array Analysis 

Tiling Analysis Software (TAS) version 1.1 was used to processes the raw files in the same 

manner as described in Chapter II with a slight variation in which we used all the Mock samples 

as a control to compute the signal intensities. This was done to reduce the noise variation or 
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apparent noise in the data.  The output of TAS are graph files (.bar and .txt) files which contain 

signal and log-transformed p-values as a function of genomic coordinate. 

ChIP-chip Peak Identification 

In order to compare the ChIP levels we applied the method described in Chapter II and Figure 2-

1 to identify TBP peak positions. Notably we only searched peaks within the promoter region (-

300 to +50 bp region of the gene start site).  

Consensus Peak finding Algorithm (CoPFA) 

For CLK analysis, we need ChIP signals across crosslinking times spanning seconds to 

minutes.  The following algorithm was developed to link the peaks in different time points to a 

promoter region. The resolution of ChIP-Chip is relatively poor and the TBP occupancy peaks 

are very broad, and when we calculate peak locations, these locations can vary hundreds of base 

pairs for different time points. We found the nearest neighbor of the peaks found in the datasets 

in other time-points within 350 bp region of the peak in question. Because new neighboring 

peaks can appear within 350 bp of a newly calculated centroid, we iterated this procedure until a 

centroid is stably identified (i.e., the centroid does not change between two successive 

iterations). The peaks used to calculate the centroids were used for the CLK analysis.  Due to the 

broad resolution of tiling arrays, not all of the peaks were successfully clustered, especially the 

low peaks obtained at short time points (0.5 and 5 sec datasets). For the missing dataset points 

we computed the median signal within a window of 50 bp flanking the centroid. An illustration 

of the calculation of these centroids is shown in the Figure A-2. And Figure A-3 shows a screen 

shot showing centroid locations calculated with respect to each time-point.  
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Figure A- 1:  A Screen shot of a region of chromosome 3 showing the genome-wide CLK data 

for TBP. The arrows show peaks examples of TBP peaks which with increasing crosslinking 

time.  
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Figure A- 2: Schematic representation of how CoPFA computes centroids of peak clusters.  
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Figure A- 3: Example of CoPFA in the top panel showing all the different centroids computed by 

CoPFA for every time point, and the bottom panel shows the final centroids used to compute the 

signal used for CLK analysis. 
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Associating ChIP-chip Peaks to Genes 

Using the TBP peaks, we associated a peak with a gene if it was within -300 to +50 bp of the 

annotated transcription start site (TSS).  We allowed multiple genes which satisfy the distance 

criteria, to be associated with a single peak.  Conversely, a single gene can be associated with 

multiple peaks, each of which satisfies the distance cutoff separately. 

 

CLK model fitting 

An approximate CLK model described by Eq. (19) in Chapter III was used to fit the datasets. 

Because of the sparsity of the time course data, only generalized linear regression could be 

effectively applied using the Eq. (25) described in Chapter III 

   ( )    (    
 )        .                                                    (19) 

   (     ( ))    (    
 )        ,                                                (25) 

 we used Eq. (25) to fit the CLK model with robust linear regression to arrive at initial estimates 

of ,   
  and  where  

   ( )  
  ( )

  ( )
 

and    ( ) is defined by the maximum measured ChIP signal. These steps were sequentially 

applied to all the promoters which resulted data from CoPFA.  

 

Results 

The ChIP-chip data was analyzed with TAS as described in the Method section. 

Centroids and peaks were estimated for each promoter that containe significant ChIP signal 

  

ka

  

kd
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yielding a time series of ChIP signal data which allow fitting of the CLK model shown above in 

order to derive kinetic parameters..  We found ~1900 clusters of peaks which could be associated 

with genes and centroids with more than 3 peaks from individual time points from which the 

centroids were derived using CoPFA. Figure A-4 shows a heat map of the ChIP signal across 

time points derived using CoPFA. For each promoter with an associated centroid, we fit the CLK 

signal data derived using CoPFA to the CLK model using robust linear regression. Figure A-5 

shows some of the model fits of selected promoters. Figure A-6 shows the distribution of 

parameters calculated across promoters. With this approach we found that the CLK model was 

able to fit about 900 promoter sites yielding ~300 physically plausible parameters.  However, 

comparisons between the locus specific parameters and the ChIP-chip derived parameters 

showed relatively large discrepancies.  The main source of the discrepancy was the estimation of 

saturation. In the Genomic CLK ChIP due to sparcity in the time course and also lack genomic 

data for over expression of TBP in the cell the fitting procedure only attempted to fit two 

parameters through linear regression. The ChIP saturation level was set to the maximum 

measured ChIP signal from the measured ChIP signal. This creates bias for datasets to be 

interpreted for high occupancy of TBP. This is an artifact of the analysis which can easily be 

rectified by including overexpression of TBP dataset in parameter estimation method.  

Potential Pitfalls and Caveats in this approach 
Although we derive kinetic parameters from some promoters, this approach could be 

significantly improved. We find reasonable fits for only 10% of the sites with peaks/centroids. 

ChIP-chip is a powerful approach, but the peaks are quite broad and the loss of peak-resolution 

contributes significantly to the effective noise in the data used for fitting the CLK model.  Figure 

A-7 shows the DNA quantification data after the first amplification of DNA for different time 



181 

 

 

points. The x-axis represents the crosslinking time in seconds and y-axis represents the amount 

of DNA acquired after first amplification (ng) normalized to the number of cells used.  

It is evident that the total DNA content increases with the increase in crosslinking time; however, 

ChIP-chip requires two rounds of amplification to generate the minimum amount of DNA for 

array hybridization. Although this amplification step is necessary to ensure detectable signal 

intensities, it creates an amplification bias for the lower time points which display lower levels of 

originally collected DNA. Notably, there are traces of this amplification-based bias in the 

background levels (i.e., background levels in lower time points are higher), however, they are 

challenging to quantify.  This amplification bias can be easily avoided if ChIP-seq method is 

applied to perform CLK analysis because only one amplification step is required. Another major 

is problem in the dataset is lack of CLK-ChIP data-points for overexpressed TBP. As it has 

discussed above lack of TBP overexpression data-points for fitting the CLK model leaves us 

with only two parameters and also a poor estimate of ChIP saturation levels. And it is evident 

from comparing the parameters computed in the genomic study and the locus specific study 

(Chapter III) that the parameters computed in in genomic CLK-ChIP is biased towards saturated 

ChIP signal. Hence in order to get more meaningful parameters there should be atleast one 

datapoint of ChIP for over-expressed TBP to have a better estimate of ChIP saturation levels. 

One other problem with using Tiling arrays is that CLK method has been optimized to be applied 

to ChIP non log transformed signal and TAS produces log transformed ChIP signal, and 

conversion to non-logtransformed data increases the error exponentially. Again this error can be 

reduced by using mapped ChIP-seq reads for doing the CLK analysis, but further study and 

optimization is needed to see the applicability of CLK method using ChIP-seq. 
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Figure A- 4: A heatmap of ChIP Signals computed from the clusters of the peaks and 

signal associated with promoters 
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Figure A- 5: Examples of CLK model fits for TBP binding to various promoters. 
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Figure A- 6: Distribution of parameters collected by fitting the approximate CLK model 

using robust linear regression to the datasets obtained using microarrays. 
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Figure A- 7: DNA quantification data after the first round of DNA amplification.
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