

Exploring Decentralized Swarm Algorithms for Drones

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Joanna Zhao
Spring, 2020

On my honor as a University Student, I have neither given nor received
unauthorized aid on this assignment as defined by the Honor Guidelines
for Thesis-Related Assignments

Signature __ Date __________

Joanna Zhao

Approved __ Date __________

Sebastian Elbaum, Department of Computer Science

2/25/2021

Sebastian Elbaum
2/26/21

 1

Exploring Decentralized Swarm Algorithms for
Drones

Joanna Zhao (Advisor Sebastian Elbaum)
Computer Science, University of Virginia, Charlottesville, Virginia, United States, jz5er@virginia.edu

ABSTRACT
During this research project, I explored decentralized drone swarm algorithms and selected Craig Reynolds’
boids model as the basis for implementation. When simulating the implementation, with correct parameters,
the drone swarm can consistently navigate to all set destinations while staying apart from each other and not
colliding. The swarm also avoids obstacles in general, but can get too close to obstacles on around 4 instances.
All work is done in the context of simulators due to Covid-19 and loss of access to the lab.

1 Introduction
A drone swarm is multiple drones acting together to achieve some goal. A swarm of drones provides more
capability and can cover larger areas compared to a single drone. They are especially shown in usefulness in
the military and for search and rescue.
It is expensive for humans to operate vehicles to conduct search and rescue, and drones are “faster and more
efficient in covering large areas” [1]. However, given the need to “monitor a large area of 30×30 km^2 at a
distance of 20km from the base (ship or land station)” for a common search and rescue operation, off-the-
shelf drones would struggle to complete as it cannot cover an area of more than 10 x10 km^2 due to limited
battery life of 2h and average speed of 50mph [1]. In addition, it is hard to establish connection between the
drone and the base station after a few kilometers to video stream and detect endangered people [1]. Drone
swarm in this case not only “enables multi-hop communication network” for long distance connection but
also enables “coverage of a larger area in less time”, reducing the battery capacity limitation and increasing
efficiency [1].
The first goal of this project is to explore drone swarms and understand the challenges associated with
decentralized swarm management. Drone swarms implemented with a distributed system compared with
centralized control are resilient and hard to fail, destroy, or manipulate. There are no single points of failure
because all the drones are independently controlled instead of being controlled collectively by one computer
or drone. Distributed systems also by definition move all the processing that computers do - avoiding
obstacles and calculating all the destination and positional controls of drones - to individual drones, which
enables the swarm to scale easily. The second goal of this project is to compare existing implementation and
algorithms. The third goal of this project is to implement the algorithms in the context of Crazyflie drones in
the lab.
However, due to the Covid-19 crisis, I cannot continue with the physical implementation of the swarm
algorithms on Crazyflie drones as I do not have access to the research building anymore. The third goal is
thus changed to implementing the swarm algorithms solely in the context of simulators. As the parameter
space of the algorithm is huge, an additional goal is added to explore the parameter space.

2 Related Work
I explored three swarm algorithms: boids model, ant colony, and particle swarm. While the boids model is a
more traditional approach using steering force vectors, ant colony and particle swarm are newer optimization
algorithms used for search problems.
The boids model proposed by Craig Reynolds can be found on his website and through his papers “Steering
Behaviors For Autonomous Characters” [3] and “Flocks, Herds, and Schools: A Distributed Behavioral
Model” [4]. Boids are “generic simulated flocking creatures” designed by Reynolds for computer animation
[2]. Each simulated boid is based on a point mass approximation, acts independently, and navigates only
based on its changing local neighborhood environment [4]. Each individual boid in the basic flocking model

 2

mainly combines three simple steering forces: separation, alignment, and cohesion [2]. Separation force is
the combination of repel vectors from drones within the neighboring drone range [2]. Alignment force directs
the drone towards the average direction of the neighboring drones [2]. Cohesion force pulls the drone towards
the center of the neighboring drones [2].
In Reynolds’ paper “Steering Behaviors For Autonomous Characters”, he describes more steering forces such
as seek, pursuit, flee, and obstacle avoidance. In “Flocks, Herds, and Schools: A Distributed Behavioral
Model”, Reynolds continues to describe the distributed model and includes a lot of intuitions and reasonings
of the model, including obstacle avoidance reasonings that I later based my obstacle avoidance steering force
on.
As described in the paper “Ant Colony Based Path Planning for Swarm Robots”, each drone can use
optimization algorithms - in this case ant colony but can apply to particle swarm- to plan the shortest route
to the destination [5]. To ensure mutually exclusive paths between drones, the routes would be planned
sequentially so that later drones when planning would avoid the paths planned by drones previously [5]. This
assumes communication of planned paths between drones.
Ant Colony Optimization (ACO) Algorithm mimics the pattern of ants finding the shortest path to food in
nature [5]. The algorithm mimics how ants use pheromone levels to communicate with other ants about food
sources [5]. The shorter the path, the less time it will take to travel and thus the more likely it is that ants will
pick that path again and leave more pheromone [5]. This continuously increases the pheromone level of the
shortest path [5]. In addition, pheromone evaporates as time goes on, which discourages the ants to be traped
in suboptimal paths [5].
Particle swarm algorithm can be used for drone swarm in the context mentioned above if it is modified to
identify the shortest path to the destination. Particle swarm algorithm “is a population-based stochastic
algorithm for optimization” [6]. Particles are randomly initialized in a search space and are moved around to
test new parameter values [6]. The next position of the particles is decided using its past position, the best
position the particle has ever had, the best position found by the particles’ neighbors, parameters, and uniform
random numbers [6]. When the algorithm is run, each particle cycles around its previous best and neighbors’
best to explore better positions until the update of the variables. After which, the particles switch to their
respective new regions in the search space. In the end, the particles will cluster around the optima and the
solution is found.

3 Approach
My approach is mainly based on the algorithm proposed by Craig Reynolds. I utilized and modified the seek,
separation, cohesion, alignment, and obstacle avoidance steering forces described in the papers: “Steering
Behaviors For Autonomous Characters” [3] and “Flocks, Herds, and Schools: A Distributed Behavioral
Model” [4]. The parameters used can be found in Table 1 and the pseudocode for the algorithm can be found
in Algorithm 1. Note how all the implemented steering forces are only calculated from neighboring drones
to ensure the scalability of the algorithm.
In addition to summing up all the force vectors with weights proposed by Reynolds, I decided to normalize
all the vectors before the summation and the weighting [3]. This is done for better control of steering forces
using weight parameters, preventing extremely large or small steering forces from overwhelming or
disappearing. This was inspired by Reynolds’ suggestion for normalizing the separation, cohesion, and
alignment steering forces before scaling and summing for the simple flocking behavior [3].
However, normalization removes the distance factors in the steering force vectors so I proposed rings of
ranges to compensate as shown in Figure 1. Neighboring drones within ring1 will contribute to the repel force
vector for the current drone while the drones in between ring2 and ring3 will contribute to the coherence
force vector for the current drone. The neighboring drones between ring1 and ring2 along with drones outside
of ring3 will have no effect on the current drone. This also enables more control for the entire drone swarm’s
size as the stable distance between drones are distances between ring1 and ring2. Neighboring drones in that
range does not pull or repel the current drone so the whole swarm stays in that state.

 3

Figure 1: Rings of ranges

In addition, the obstacle avoidance steering force algorithm is significantly modified. Reynolds proposed two
ways for obstacle avoidance: force field model and steer-to-avoid [4]. My approach includes some aspects
of both ways proposed. Reynolds pointed out that in the force field obstacle avoidance model, boid heading
towards the obstacle does not have any side thrusts and that the force tends to be too strong close up and too
weak far away [4]. In my approach however, the second problem does not apply as the forces are normalized
without rings of ranges for obstacle avoidance. The obstacle avoidance force is thus constantly applied once
the drone is in range of the obstacle range. In addition, the obstacle avoidance force is a combination of 2
forces in my approach, one in the repel direction and one in a perpendicular direction, which avoids the drone
not having any side thrust when approaching the obstacle directly.

 4

3.1 Parameters

Table 1: All the parameters used in implementation of algorithm

Parameters Definition

repelRange_ring1
neighbor drones within this range adds a repel force on current drone

noRepelCohRange_ring2 neighbor drones within ring1 to ring2 has no effect on current drone

cohesionRange_ring3

neighbor drones within ring2 to ring3 adds a cohesion/ attraction force on
current drone

goalRange
all drones within this range from the goal point has reached that goal

goal_innerCircle_noPull

drones within this range will not have the goal attraction force. This is to
help stabilize and decrease collision when all drones are hovering at one
goal point

ObstacleRange_perpendi
cularForce

obstacles within this range from drone will adds a force perpendicular to
the repel force of obstacle to drone

ObstacleRange_innerCir
cle_repel

obstacles within this range from drone will add a repel force from obstacle
on drone

minDistLimit

drones within this distance from current drone are considered too close/
collision

obstMinDistLimit

obstacles within this distance from current drone are considered too close/
collision

freq_pub
publish rate per second

waitTimeUntilCountColl
ision

(in seconds) time that collision’s not counted as drone swarm expand from
one point

goalWaitTime

once drone reaches new goal, it will keep that goal for this amount of time
to wait for other drones to regroup (prevent dragging drones that have not
arrived at this goal to skip this goal)

setDroneNum
number of total drones in the swarm

weight_separation weight for separation force vector when combining all steering forces

weight_cohesion weight for cohesion force vector when combining all steering forces

weight_goal weight for goal force vector when combining all steering forces

weight_alighn weight for alighn force vector when combining all steering forces

weight_obstacles_perpen
dicular

weight for obstacle perpendicular force vector when combining all steering
forces

weight_obstacles_repel weight for obstacle repel force vector when combining all steering forces
weight_overall weight that scales the normalized final steering force vector combination

 5

3.2 Algorithm Pseudocode
ALGORITHM 1
get all the parameters from launch file
ROS subscribe to all drone positions and velocities
dest: list of destination
obst: list of obstacles
while dest is not empty:

nextDest = next destination from dest
while rospy still running:

if reached goal, keep last goal as previous goal for goalWaitTime temporarily (wait for
all drones to reach goal before move on)
initialize vectors: separation_vect, cumOtherDronePos_vect, numtotNeighborDrones,
cohesion_vect, alighn_vect
initialize counters: numCohesionRangeDrones, numRepelDrones,
numtotNeighborDrones
for each otherDrone beside drone itself:

tempDist = distance between otherDrone and this drone
if tempDist > cohesionRange_ring3:

continue
elif tempDist > noRepelCohRange_ring2:

numCohesionRangeDrones +=1
updateCumOtherDronePosVec(otherDrone,
cumOtherDronePos_vect)

elif tempDist > repelRange_ring1:
continue

else:
numRepelDrones += 1
updateSeparationVec(otherDrone, separation_vect)

check tempDist to update collision
if tempDist <= cohesionRange_ring3:

numtotNeighborDrones +=1
updateCumOtherDroneVelVec(otherDrone,
cumOtherDroneVel_vect)

if numCohesionRangeDrones != 0:
cohesion_vect = calcCohesionVec(cumOtherDronePos_vect,
numCohesionRangeDrones)

if numtotNeighborDrones !=0:
alighn_vect = calcAlighnVec(cumOtherDroneVel_vect,
numtotNeighborDrones)

goal_vect = calcGoalVec(nextDest)
calcFinalVelVect(separation_vect, cohesion_vect, goal_vect, alighn_vect)
initialize vectors: obstaclesPerpendicularVel_vect, obstaclesRepelVel_vect
for each obstacle in obst:

tempDist = distance between this drone and obstacle
if tempDist > ObstacleRange_perpendicularForce:

continue
updateObstaclesVelVec(obst, obstaclesPerpendicularVel_vect,
obstaclesRepelVel_vect)

calcNextPos(obstaclesPerpendicularVel_vect, obstaclesRepelVel_vect)
publish to drone position input dest_pos that was modified by calcNextPos
rospy.Rate(freq_pub).sleep

The methods used are explained in detail in Appendix B while the complete implementation can be found on
GitHub linked in Appendix A.

 6

4 Implementation
The algorithm is implemented using Carl Hildebrandt’s point simulator labsim [8] for drones, which uses
ROS and is coded in Python. Working with Hildebrandt, we added support for running multiple drones into
the simulator. After which, I added the ability to launch any number of drones by passing in an optional
parameter when executing the launch file, fly_path_recursion_base.launch. Fly_path_recursion_base.launch
not only takes in the number of drones in the swarm as optional parameter but also optionally takes in any
number of parameters mentioned in Table 1 above. Fly_path_recursion_base.launch then passes all the
parameters to fly_path_recursion.launch, which recursively starts drones numbered from setDroneNum to 1
and passes all the parameters into each drones’ path_planner node as seen in Figure2. Each drone is under
their name space /drone# and has their own path_planner node running the same algorithm individually.
Path_planner node handles all the control logic for the drone and executes according to Algorithm 1 described
in the section above. The only node and topic shared between drones are /view_node which visualizes the
drones together and /tf. To incorporate obstacles, both the path planner node and viewer node would need to
get the obstacle information, and path planner node would accordingly use the information to calculate the
obstacle force vectors while the view node would display the obstacles.

Figure 2: ROS rqt_graph

The simulator can support around 20 drones to execute a preset path. Above 20 drones, the simulator starts
to become extremely slow and behaves erratically. The simulator can handle, as an upper limit, around 15
drones when the algorithm for drone swarms described above is added. This limit is not caused by the
algorithm or the software, but it is limited by the hardware. This is because the supposed parallel system and
algorithm is not actually run on individual drones but is all run on this one machine that simulates by
alternating between the processing of all the drones. Thus, the processing becomes increasingly intensive as
the number of drones increase and slows down the simulator a lot.
Before Carl Hildebrandt’s point simulator labsim [8], I tried KTH Royal Institute of Technology’s simulator
dd2419 [9], but was having a lot of trouble modifying the simulator to support multiple drones, partly due to
the lack of documentation outside of functionalities for running a single drone. After which, I also tried to

 7

modify some other simulators including CrazyS [10], based on RotorS [11], with no success. Sim_cf [12],
another simulator that uses RotorS [11] motor model, directly supports multiple drones. However, sim_cf
uses Gazebo, and after adding new logic controls, the simulator has trouble supporting the amount of
processing required for multiple drones.

4.1 Limitations of Current Implementation
The current obstacle steering force vectors, perpendicular and parallel, are not thoroughly tested and might
not perform as well as other force vectors. It is especially affected when size or shape of obstacles are
different. In addition, current obstacles are represented as collections of particles (generated through
makeObst.py in src/simple_control/src), which is very computationally expensive during simulation for big
obstacles.
Weight parameters also do not scale with corresponding range parameters, which can affect performance of
the different force vectors because weight for obstacles, for example, might need to increase with decrease
of obstacle range to minimize collisions.
Furthermore, to modify obstacles and destination points lists, one has to directly edit the lists in
v3.0_mult_drone_preset_path.py in src/simple_control/src and viewer.py in visualizer/src.

5 Study
5.1 Goal of the Study
The purpose of this study is to start exploring the huge parameter space in the algorithm and gain some
insights into their effects on the drone swarm.

5.2 Variables
Table 2 lists the independent variables/ parameters and the values explored for each. The values explored
were chosen based off of parameter values that worked well in simulation when developing with 10 drones.

Table 2: Independent Variables/ Parameters

Parameters Values

weight_separation [40, 60, 100]

weight_obstacles_perpendicular [50, 120, 200]

weight_obstacles_repel [0, 40, 120]

weight_goal [20, 45, 60]

weight_cohesion [10, 35, 50]

Table 3 lists the parameters that stayed constant.

 8

Table 3: Constant Parameters

Parameters Value Parameters Value

weight_alighn: 10 weight_overall: 5

repelRange_ring1: 40 goalWaitTime 15

noRepelCohRange_ring2: 60 minDistLimit 2

cohesionRange_ring3: 80 obstMinDistLimit 2

goalRange: 45 freq_pub 20

goal_innerCircle_noPull: 7 setDroneNum 10

ObstacleRange_perpendicula
rForce: 45

 waitTimeUntilCountCollisi
on 7

ObstacleRange_innerCircle_r
epel: 35

Table 4 lists the dependent variables

Table 4: Dependent Variables

Dependent Variable Definition

CloseToOtherDrone

Number of times each drone recorded that another drone's
distance is < minDistLimit (note most closeness is double
counted because both drones record closeness)

CloseToObstacle
Number of times each drone recorded that another obstacle's
distance is < obstMinDistLimit

AllReachDest (Boolean value) whether all drones have reached all goals

TimeTookToReachAllDest
(in seconds) Time took for all drones to reach all destination
(7 minute cutoff time as some successful runs take 2.5 min)

Note the number of times counting closeness in distance happens maximum once every 2 seconds to give
time for separation before counting closeness again

5.3 Results
Each set of results from different combinations of parameters is the average from 3 runs and can be found in
Appendix D. The correlation values and scatter plots can be found below. (Note: I realized alighn_vect,
whose weight is a constant in the study, was not normalized before combining all steering forces for the runs,
which deviates from the described algorithm above and might cause slight differences in parameters to
generate the same results)

 9

Figure 3: Correlation Values

The stronger correlation values were highlighted in Figure 3. In particular, wt_goal and wt_sep seems to have
stronger correlation with the dependent variables. It makes sense that the stronger the pull towards the goal,
the more likely it is that all drones will reach all goals. The stronger pull also makes the drones reach all
destinations faster. It is also interesting to note the inverse relationship between wt_goal and Close2Obst.
This is possibly because stronger pull towards goal means less time hovering around the obstacles, which
might result in less collisions. Weight separation also seems to directly relate with time to reach all goals and
inversely related to number of times close to other drones. The only correlation that was not expected is the
direct relation between wt_obst_repel and Close2Obst. The more weight for obstacle repel, the less times
there should be where drones get close to obstacles. This further supports the need to investigate obstacle
forces, particularly the obstacle repel force.

 10

Figure 4: Scatter plot with weight separation as hue

The rest of the scatter plots with different hues can be found in Appendix C.
Figure 4 shows how weight separation combined with another independent variable relates to dependent
variables/ results. Through the scatter plot, one can see patterns like how low weight_cohesion combined
with high weight_separation can cause outliers and increase in risk of neighbors colliding.
The scatter plot also reinforces the correlations with weight separation. Weight separation is inversely related
to number of closeness between drones and directly related to time that it takes to reach all goals, regardless
of whether it is combined with another independent variable. The increase in weight to separate the drones
was intended to cause less closeness of drones, however, at the same time it can cause the drones to spend
more time separating from each other. This might have caused the drones to not directly head towards the
goals, resulting in an increase in time to reach all goals.

Key Questions
As the five parameters are very intertwined with each other and due to the difficulty in analyzing a five-way
relationship through 5D or 6D graphs, a list of key questions was generated to make more sense of parameter
combinations. The key questions can display sets of parameters that produce good or bad results in different
aspects.

1. Best configurations to get all drones to the destination in the least amount of time

Figure 5: Configurations to get all drones to the destination in the least amount of time

The fastest times for all drones to reach all goals were 108 seconds and 110 seconds, which is less than two
minutes. I also displayed the second fastest TimeTookToReachAllDestSec because with just a two second
increase in time, number of drones that gets close to the obstacles decreases by almost half. This is likely
because weight_obst_repel was not factored in, which was shown to not perform well in the correlation and
scatter plot section above. Both sets of parameters have the same weights for separation, obstacle
perpendicular, and goal, which seems to be a good combination to generate fast goal seeking times along
with pretty low closeness between drones count.

2. Configurations for all drones to be at least minDistLimit apart at all times (CloseToOtherDrone =
0) and reach all goals

 11

Figure 6: Configurations that resulted in number of CloseToOtherDrone = 0 and reached all goals

All the above parameters resulted in no collisions and the reaching of all goals in less than seven minutes in
all three trials.

3. Best configuration for drones to be at least obstMinDistLimit away from obstacles and reach all
goals in < 7 min in all 3 runs

Figure 7: Configurations that resulted in least number of drones getting close to obstacle

There were no parameter combinations that resulted in no drones getting close to obstacles. The best
parameter combination resulted in a little over 2 collisions on average among 10 drones in the three trials.
Note how weight obstacle repel is 0, consistent with previous observations.

4. Configurations where drones do not reach destination within seven minutes for all 3 trials

 12

Table 5: Configuration where goals are not reached by all drones in all 3 trials

weight_obst_repel weight_separation weight_obst_perpendicular weight_goal weight_cohesion

0 100 200 20 35

40 100 120 20 50

0 60 50 20 35

0 100 50 20 50

0 100 120 20 50

40 100 200 20 50

0 100 200 20 50

120 100 50 20 50

120 100 200 20 35

0 60 200 20 35

0 100 200 20 10

40 100 200 20 35

120 100 120 20 35

120 60 200 20 10

40 60 120 20 35

120 60 50 20 35

0 60 200 20 50

0 60 50 20 10

0 100 120 20 35

120 100 200 20 50

40 100 50 20 35

0 100 50 20 10

120 100 50 20 35

120 100 200 20 10

40 100 200 20 10

40 100 120 20 10

120 60 120 20 50

0 60 200 20 10

 13

40 100 120 20 35

40 100 50 45 10

120 100 50 20 10

0 100 50 20 35

40 60 50 20 35

120 100 120 20 50

120 60 120 20 10

40 100 50 45 35

0 100 120 20 10

0 60 50 20 50

120 60 50 20 10

40 60 120 20 10

40 60 50 20 10

40 100 120 45 50

40 100 50 20 50

40 60 200 20 10

40 60 50 20 50

120 100 50 45 35

120 100 50 45 50

120 100 120 20 10

40 60 200 20 35

0 100 50 45 50

40 100 50 20 10

120 100 120 45 50

120 60 50 20 50

40 60 120 20 50

40 40 200 20 35

40 40 50 20 35

120 40 50 20 50
In the configurations of parameters above, all drones did not reach all destinations within seven minutes for
all three trials. Those are parameter combinations that should be avoided. There are an overwhelming amount

 14

of weight of goals being 20 in table above, showing that goal of 20 is probably not a good parameter
combination with most of the other parameter values used.

Threats to Validity of Findings
Any answers/trends provided above are not guaranteed to be right as they are based on limited amounts of
data collected. To be more confident in findings, not only should many more trials be conducted, but a variety
of different parameters should also be tested. Although not a perfect depiction, it may also be beneficial to
analyze ratios of parameters to provide further insights and boost confidence in results when more trials are
performed.

Data Collection
The scripts used can be found in src/flightcontroller/launch: scriptRunLaunchFiles.py, killScript.py,
parserScript.py, analysisParserScript.py. The code can be found in GitHub https://github.com/hildebrandt-
carl/Autosoft_Lab/tree/master/Papers/Joanna
ScriptRunLaunchFiles.py will run simulations with all the different combinations of weight parameters. Each
simulation will write all important information, such as location and time for when goal is reached and when
drones get too close to other drones or obstacles, into a text file in sequential order. It will also launch a
python subprocess killScript.py for each simulation run that kills the simulation when all drones have reached
their destinations or when seven minutes have passed.
After the runs, parserScript.py and analysisParserScript.py can be used to generate tables and graphs from
all the text files containing all the important information for each run. AnalysisParserScript.py parses and
saves all the data into pandas dataframe for easy visualization and manipulation of data. However, note that
pip installing Pandas breaks view.py’s draw_artist function. Virtual environment should be able to solve this
issue, though it was not tested.

6 Conclusion
Through this project, I have learned a lot about drone swarms and swarm algorithms. I have learned about
the challenges in managing a decentralized swarm system and realized the importance of setting constraints
to define problem scope so the project does not get infinitely broad. I realized the importance to first map out
the problem as clearly as I can, setting constraints, and then setting stages so I do not tackle and consider all
the details of the problem at once.
When researching the swarm algorithms, I was actually also able to use newly learned concepts in my
artificial intelligence class like search problems, optimization problems, and local search algorithms. This
not only helped my understanding of research papers, but also solidified my knowledge on those concepts
and connected them to real examples. Through this research project, I also learned how to find research
papers and read them faster and more effectively as I am more familiar with the structure and system.
In addition, I also learned ROS, going from never hearing about ROS to being able to understand and modify
several ROS gazebo simulators. Then with all that was learned, I was able to utilize ROS components and
functionalities to implement and debug the swarm algorithm. In the process I also realized again the
importance to modularize code, even though I thought it was unnecessary in the beginning due to the
shortness in length. However, as the code got longer, the modularity provided much more clarity and
readability.
Some work still to be done on the simulator includes finding out how to scale parameters with change in
number of drones, size and shape of obstacles, and range parameters. Better obstacle representation is also
ideal as obstacles are currently represented as particles, which is very computationally intensive for big
obstacles. In addition, the obstacle steering force vectors need to be examined for effectiveness especially
when dealing with different shaped and sized obstacles.
Furthermore, the algorithm should be implemented on physical drones along with the continued exploration
and implementation of other drone swarm algorithms. Data collection and analysis of parameters should also
be continued to further understand the effects of the parameters.

 15

REFERENCES
[1] V. Lomonaco, A. Trotta, M. Ziosi, J. d. D. Y. Ávila, and N. Díaz-Rodríguez, “Intelligent drone swarm

for search and rescue operations at sea,” arXiv preprint arXiv:1811.05291, 2018.
https://arxiv.org/pdf/1811.05291.pdf

[2] C. Reynolds, “Boids.” [Online]. Available: http://www.red3d.com/cwr/boids/. [Accessed: 13-May-2020].
[3] C. W. Reynolds, "Steering Behaviors for Autonomous Characters", Proc. Game Developers Conf., 1999.
[4] C. W. Reynolds, "Flocks Herds and Schools: A Distributed Behavioral Model", Computer Graphics, vol.

21, no. 4, pp. 25-34, 1987.
[5] A. Agrawal, S. A. P., and A. S., Ant colony based path planning for swarm robots: 2015 Conference on

Advances In Robotics, July 2015, Article No.: 61, Pages 1–5, https://doi.org/10.1145/2783449.2783511
[6] J. Kennedy, Particle swarm optimization. In Encyclopedia of Machine Learning; Springer: Berlin,

Germany, 2011; pp. 760–766.
[7] K.-B. Lee, Y.-J. Kim, and Y.-D. Hong, “Real-Time Swarm Search Method for Real-World Quadcopter

Drones,” Applied Sciences, vol. 8, no. 7, p. 1169, Jul. 2018.
[8] C, Hildebrandt, labsim, (2020), GitHub repository, https://github.com/hildebrandt-carl/labsim [Accessed:

March-2020].
[9] “Flight camp part 1,” DD2419 VT19-1 Project Course in Robotics and Autonomous Systems. [Online].

Available:https://kth.instructure.com/courses/8291/pages/flight-camp-part-1?module_item_id=118606.
[Accessed: February-2020].

[10] G. Silano, CrazyS, (2020), GitHub repository, https://github.com/gsilano/CrazyS [Accessed: February-
2020].

[11] Furrer F., Burri M., Achtelik M., Siegwart R. (2016) RotorS—A Modular Gazebo MAV Simulator
Framework. In: Koubaa A. (eds) Robot Operating System (ROS). Studies in Computational Intelligence,
vol 625. Springer, Cham. Available: http://dx.doi.org/10.1007/978-3-319-26054-9_23 [Accessed:
February-2020].

[12] wuwushrek, sim_cf, (2019), GitHub repository, https://github.com/wuwushrek/sim_cf [Accessed:
February-2020].

APPENDIX A
Github: https://github.com/hildebrandt-carl/Autosoft_Lab/tree/master/Papers/Joanna

APPENDIX B
All the methods pseudocode mentioned in the Approach section
note all operations are in terms of x,y,z dimension
note most vectors are part of the class the algorithm is in, so methods modify vectors and do not need to
return them
updateCumOtherDronePosVec(otherDrone, cumOtherDronePos_vect)

cumOtherDronePos_vect += position of otherDrone

updateSeparationVec(otherDrone, separation_vect)

sep = drone current position - position of other drone
if sep != 0:
sep = 1/ sep^3 #further drones will be weighted less in separation direction
separation_vect += sep #cumulate

updateCumOtherDroneVelVec(otherDrone, cumOtherDroneVel_vect)

cumOtherDroneVel_vect += normalized other Drone velocity

calcCohesionVec(cumOtherDronePos_vect, numCohesionRangeDrones)

initialize cohesion_vect
cohesion_vect = cumOtherDronePos_vect/ numCohesionRangeDrones - current drone position

 16

return cohesion_vect

calcAlighnVec(cumOtherDroneVel_vect, numtotNeighborDrones)

initialize alighn_vect
alighn_vect = cumOtherDroneVel_vect/ numtotNeighborDrones
return alighn_vect

calcGoalVec(nextDest)

initialize goal_vect
if distance between current drone and nextDest < goal_innerCircle_noPull:
return goal_vect
goal_vect = nextDest - current drone position
return goal_vect

calcFinalVelVect(separation_vect, cohesion_vect, goal_vect, alighn_vect)

normalize separation_vect, cohesion_vect, goal_vect, alighn_vect
return sum(weight_sep*separation_vect, weight_coh*cohesion_vect, weight_goal* goal_vect,
weight_alighn*alighn_vect)

updateObstaclesVelVec(obst, obstaclesPerpendicularVel_vect, obstaclesRepelVel_vect)

if moving away from obstacle, return immediately, do not follow obstacle avoidance path (angle
between the vector from calcFinalVelVect and the vector pointing from obst to drone < 50)
tempObst = current drone position - obst
if tempObst !=0:
tempObst = 1/tempObst^3 #obstacle further away have less weight in obstacle avoidance force
obstaclesPerpendicularVel_vect += One of the Perpendicular Directions of Obst vect
if distance between drone and obstacle is < ObstacleRange_innerCircle_repel:
obstaclesRepelVel_vect += -tempObst

calcNextPos(obstaclesPerpendicularVel_vect, obstaclesRepelVel_vect)
normalize obstaclesPerpendicularVel_vect and obstaclesRepelVel_vect
finalVel_vect += weightObstPerpendicular*obstaclesPerpendicularVel_vect + weightObstRepel+
obstaclesRepelVel_vect
normalize finalVel_vect
dest_pos = current position of drone + weight_overall * finalVel_vect

 17

APPENDIX C
Scatter plot with weight cohesion as hue

 18

Scatter plot with weight goal as hue

 19

Scatter plot with weight obstacle repel as hue

APPENDIX D
Averaged Results from Study

weight_
obstacle
s_repel

weigh
t_sepa
ration

weight_obst
acles_perpe
ndicular

wei
ght
_go
al

weig
ht_co
hesio
n

CloseT
oOther
Drone

Close
ToOb
stacle

All
Rea
chD
est

TimeTookT
oReachAll
DestSec

0 40 120 20 35 4 1.67 0.67 291.77

0 100 120 20 50 0 5.33 0 420

40 40 200 60 35 5 6.67 1 132.73

 20

0 60 120 20 10 1.33 6 0.33 405.43

40 60 200 60 10 1.33 4 1 152.87

40 100 120 45 10 21 11.67 0.67 369.27

0 60 50 45 10 0 3.67 1 184.33

0 60 120 20 35 0 5 0.67 371.53

120 60 50 60 50 1.33 8 1 137.33

40 40 50 60 35 2 11.33 1 107.6

120 60 50 45 10 1.33 10 1 235.5

120 100 50 20 10 0 14.67 0 420

0 100 200 45 50 0.67 10.33 0.67 338.6

0 60 200 45 35 2 5.67 1 186.27

40 60 50 45 50 7.33 18.67 0.67 241.93

0 40 120 20 50 2.67 5.67 1 261

120 40 50 60 10 2 11 1 126.13

120 60 120 20 50 7 12.67 0 420

0 100 120 20 35 0 11.33 0 420

0 60 200 45 10 2 8.33 1 291.77

40 100 200 20 10 0 12.67 0 420

0 40 50 45 10 2.67 3.67 1 122.97

0 60 200 60 10 0.67 3.67 1 166.73

0 40 120 45 50 2 4.33 1 137

120 100 200 45 50 2 23.33 0.67 382.2

40 60 120 20 50 4.67 40.67 0 420

0 40 200 60 50 0.67 5.33 1 136.9

 21

40 100 200 45 10 0 6.33 0.67 393.3

120 100 120 60 10 0 10.67 1 290.6

40 100 50 45 35 0.67 17 0 420

0 60 50 45 50 1.33 10.67 1 153.2

120 40 200 20 50 8.67 17.67 0.67 355.57

0 60 120 60 35 2.67 5 1 139.37

0 40 200 20 10 0 10.67 0.33 409.8

40 40 120 20 10 0 8.67 0.33 383.9

120 60 120 60 35 1.33 12.33 1 148.67

40 100 120 20 10 0.67 12.67 0 420

120 100 120 20 50 2 16.33 0 420

0 100 120 60 35 0.67 9 1 273.57

40 100 200 60 10 0.67 7.67 1 365.73

40 60 120 45 50 0.67 4.67 1 182.87

0 100 200 60 35 0 13.33 1 261.9

0 60 120 45 10 0 7 0.67 293.33

40 60 120 60 50 0.67 9 1 139.43

120 100 120 45 35 1.33 15.67 1 359.2

120 100 120 20 10 0.67 24.33 0 420

120 40 120 45 10 1.33 5 1 164.4

40 40 50 45 10 0 9 1 121.1

40 60 120 20 10 0 21.33 0 420

120 60 200 60 50 5.67 9 1 168.17

0 100 120 20 10 0 17.33 0 420

 22

120 40 120 20 50 5.33 26.67 0.67 342.83

40 40 200 20 10 0.67 13.67 0.33 400.63

120 60 200 45 35 4 5.67 1 176.03

120 60 50 60 35 1.33 10 1 128.5

0 40 50 20 50 8.67 14.67 0.33 348.77

40 60 120 45 10 0.67 8.33 1 257.63

120 60 200 20 10 0 10.33 0 420

120 60 200 20 50 1.33 16.67 0.33 400.9

120 100 200 60 10 0.67 8.67 1 338.87

120 60 120 45 35 2 12 1 199.3

120 60 120 60 50 2.67 9 1 152.27

40 60 200 60 50 0 5 1 152.27

40 60 50 20 10 0 21.67 0 420

0 40 50 45 35 3 5.33 1 121.6

40 40 120 60 10 2.33 7.33 1 127.03

0 60 50 20 35 0 5 0 420

120 40 50 45 50 2.67 13.67 1 164.03

40 40 200 60 10 4 8 1 134.8

120 40 120 45 50 2 6.33 1 152.73

120 40 200 20 10 0.67 7 0.67 381.4

120 100 50 20 50 0 6 0 420

0 40 120 45 10 2.67 4.67 1 135.4

40 60 50 45 10 1.33 8.33 1 230.1

0 60 200 60 35 2.67 5.67 1 158.1

 23

0 40 120 20 10 0.67 9.33 0.33 392.53

120 60 50 20 50 4 32 0 420

120 100 200 20 35 0 6.33 0 420

120 40 120 45 35 3.67 11.33 1 177.6

0 60 120 60 50 0.67 6.33 1 143.23

40 60 200 45 10 0.67 9.33 1 261.3

120 60 50 20 35 1.33 10.33 0 420

120 60 50 60 10 2 11.67 1 154.73

120 60 120 20 35 0.67 13.67 0.33 403

40 40 200 60 50 2.67 3.67 1 137.6

120 40 50 20 10 0 10 0.33 395.93

40 40 200 45 50 8 6.33 1 151.97

120 40 200 45 50 2.67 12.67 1 165.67

0 40 200 45 10 2.67 4.67 1 145.9

0 40 200 60 35 3.67 6 1 143.1

40 40 200 20 50 7.33 48.33 0.33 358.7

40 40 50 20 10 0 12.67 1 340.2

0 40 50 60 10 2 6.67 1 109.67

0 100 120 45 35 0.67 11.33 0.33 385.93

120 60 120 45 50 6 14.33 0.67 263.07

40 60 200 20 35 1.33 24.33 0 420

120 40 50 60 35 4.67 14.33 1 139

120 40 200 45 35 3.33 6.67 1 160.37

120 60 200 45 50 8.67 15.33 1 200.57

 24

40 60 50 20 50 3.33 23.33 0 420

40 40 50 45 50 4 6.67 1 123.6

0 100 50 60 10 0 7.67 0.67 362.87

0 60 200 45 50 5.33 7.33 1 190.97

0 100 50 20 10 18.33 11.33 0 420

40 100 50 60 35 0.67 13.67 0.67 322.97

40 100 120 45 35 0 18.67 0.67 379.8

40 100 50 20 10 0 28.33 0 420

0 100 50 45 35 0.67 16.67 0.33 403.87

40 60 50 60 10 2 6.67 1 124.67

120 60 200 45 10 2 7.33 1 248.8

120 100 200 45 35 1.33 13 0.67 364.4

0 60 50 60 50 2 11 1 122.2

0 100 200 60 50 0 8.67 1 248.77

0 40 120 60 35 2.67 4.33 1 127.83

120 40 50 45 10 2 8 1 139.03

40 40 50 20 35 5.33 56.67 0 420

0 100 120 45 10 0 15.67 1 372.1

120 40 120 20 10 0 18.67 0.67 358.63

120 40 200 60 50 5.33 4 1 131.27

120 100 50 45 35 0.67 24 0 420

40 40 50 45 35 1.33 11.67 1 120.73

0 60 200 60 50 3.33 2.33 1 158.9

40 60 200 20 10 0.67 22.67 0 420

 25

40 60 120 45 35 3.33 8.67 1 165.47

120 100 200 20 50 0 11.33 0 420

120 100 120 60 35 2 13.33 1 290.43

0 100 200 45 35 0 17 0.33 399.73

40 60 50 60 50 2.67 9.33 1 127.63

0 40 200 45 50 2.67 7.33 1 145.4

40 100 200 45 50 0 22 0.33 381.77

0 40 200 20 35 1.33 7 1 259.7

120 60 120 45 10 2.33 6.33 1 220.33

120 40 120 60 50 3.33 9.67 1 129

0 100 50 20 50 0 5 0 420

0 100 120 60 10 0 9 0.67 364.67

120 100 120 45 10 0.67 7.67 0.33 405.43

0 40 200 45 35 2.67 3.33 1 159.97

120 100 50 45 50 0.67 24 0 420

0 60 200 20 10 0 14 0 420

120 100 120 20 35 0 10 0 420

40 100 50 20 35 0.67 11.33 0 420

40 40 50 60 10 0.67 7.33 1 110.8

0 60 120 20 50 2 14 0.33 376.87

40 60 50 20 35 2.67 16 0 420

40 100 120 20 50 0 3 0 420

120 60 200 60 35 4 6.33 1 153.03

0 40 50 45 50 1.33 7.33 1 124.47

 26

40 60 50 45 35 0 9.33 1 141.93

40 60 50 60 35 0 9.67 1 122

0 100 200 45 10 19 5.33 0.67 352.6

40 100 120 20 35 6 14 0 420

0 100 50 45 10 0 16.33 0.33 409.33

0 100 50 20 35 0 15 0 420

40 40 120 60 35 1.33 6.33 1 123.2

0 40 120 45 35 1 3.33 1 133.33

40 60 120 60 35 2.67 9.33 1 140.63

120 40 120 20 35 10.67 37 0.33 371.1

120 100 200 45 10 0 13.33 0.67 399.03

0 40 50 20 35 3.33 7 0.67 275.57

0 40 50 60 50 1.33 8.33 1 112.27

40 40 120 20 35 2.67 10.67 1 245.27

120 100 120 60 50 0 12.67 1 203.37

0 100 200 20 50 0 5.67 0 420

0 60 50 60 10 2.67 5.33 1 127.63

120 100 120 45 50 0.67 31.67 0 420

0 60 50 45 35 0 5 1 151.43

0 40 200 60 10 2 4.67 1 141.53

40 100 200 60 50 2 11.67 1 244.1

120 60 50 20 10 0.67 18.33 0 420

40 100 120 45 50 1.33 21.67 0 420

120 40 200 60 35 3.33 2.67 1 134.5

 27

40 40 120 20 50 2.67 23.67 0.33 365.8

0 60 50 20 10 0 10.67 0 420

120 100 50 45 10 1.33 12 0.33 414.13

40 40 50 20 50 9.33 17.67 0.33 348.5

0 60 200 20 50 6.67 10.33 0 420

0 40 50 20 10 0 9.67 1 393.33

120 60 50 45 35 2.67 15.33 1 188.03

40 60 200 45 35 3.33 9.33 1 237.77

40 100 200 20 50 0 5.33 0 420

120 60 120 60 10 0.67 8.33 1 154.47

0 100 200 20 35 0 0.67 0 420

40 40 200 45 35 0.67 7.67 1 153.2

120 60 200 60 10 2.33 4.67 1 171.63

40 100 50 45 10 0 14.33 0 420

40 100 200 20 35 0.67 9.67 0 420

120 40 120 60 10 1.33 7 1 131.37

40 100 120 60 50 1.33 7.33 1 201.83

40 100 200 45 35 0 8.33 0.33 416.87

0 40 120 60 10 2.67 3.67 1 130.73

120 100 50 60 35 0 9.67 1 283.67

120 40 200 45 10 6.67 10.67 1 157.17

40 40 120 45 50 2 10.67 1 140

40 40 200 45 10 2 4 1 145.47

120 60 50 45 50 11 11.33 0.67 249.17

 28

0 40 50 60 35 1.33 7 1 110.77

40 100 200 60 35 0.67 14.33 1 247.73

40 60 120 60 10 0.67 6.67 1 136.4

40 40 120 45 35 0.67 3.33 1 136.63

0 40 120 60 50 1.33 6 1 123.3

0 60 50 60 35 1.33 8.33 1 122.07

120 60 120 20 10 0 16.67 0 420

0 100 200 20 10 0 7.67 0 420

0 40 200 20 50 7.33 7.67 0.33 375.83

120 100 200 20 10 0 12.33 0 420

40 60 120 20 35 0 10.33 0 420

40 100 50 45 50 0.67 20.67 0.33 370.43

0 60 50 20 50 2.67 17.67 0 420

40 40 50 60 50 1.33 7.33 1 110.93

40 100 120 60 35 0.67 15.67 1 290.27

120 40 120 60 35 3.67 9 1 132.53

40 60 200 45 50 1.33 8.33 1 206.07

120 100 200 60 50 2.67 12 1 282.67

120 40 200 20 35 7 11.33 0.67 336.5

0 100 50 60 50 1.33 7.67 0.67 277.1

120 100 50 60 10 0 5.33 1 336.93

120 40 200 60 10 2.67 7.33 1 148

0 60 120 45 35 2.67 7 1 167.63

0 60 120 45 50 0 5.67 1 169.33

 29

120 100 50 60 50 2 10.33 1 255.67

120 100 50 20 35 0 12 0 420

40 60 200 20 50 2 30.67 0.33 393.2

40 40 120 45 10 0 4.33 1 154.5

120 100 200 60 35 0 9 1 311.93

0 100 50 45 50 0.67 27 0 420

40 100 50 60 10 0.67 6 1 334.1

0 60 120 60 10 0 4.67 1 141.27

40 40 120 60 50 1.33 7 1 124.1

40 100 50 60 50 0 9 1 233.7

40 100 50 20 50 0 22.67 0 420

120 60 200 20 35 2.33 17.33 0.33 388.83

120 40 50 45 35 2.67 13.67 1 151.77

120 40 50 20 35 5.33 13.67 0.67 316.1

0 100 50 60 35 0.67 9.33 1 235.03

40 100 120 60 10 0 10 0.67 324.07

0 100 120 60 50 1.33 8.67 1 205.57

120 40 50 20 50 14.33 71.33 0 420

0 100 120 45 50 0.67 11.67 0.33 370.37

40 60 200 60 35 4 6.33 1 145.47

0 60 200 20 35 0.67 6.33 0 420

40 40 200 20 35 6.67 51 0 420

120 40 50 60 50 2.67 12.67 1 122.6

0 100 200 60 10 0 6.33 1 332.5

