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Joanna Zhao (Advisor Sebastian Elbaum) 
Computer Science, University of Virginia, Charlottesville, Virginia, United States, jz5er@virginia.edu 

ABSTRACT 
During this research project, I explored decentralized drone swarm algorithms and selected Craig Reynolds’ 
boids model as the basis for implementation. When simulating the implementation, with correct parameters, 
the drone swarm can consistently navigate to all set destinations while staying apart from each other and not 
colliding. The swarm also avoids obstacles in general, but can get too close to obstacles on around 4 instances. 
All work is done in the context of simulators due to Covid-19 and loss of access to the lab. 

1 Introduction 
A drone swarm is multiple drones acting together to achieve some goal. A swarm of drones provides more 
capability and can cover larger areas compared to a single drone. They are especially shown in usefulness in 
the military and for search and rescue.  
It is expensive for humans to operate vehicles to conduct search and rescue, and drones are “faster and more 
efficient in covering large areas” [1]. However, given the need to “monitor a large area of 30×30 km^2 at a 
distance of 20km from the base (ship or land station)” for a common search and rescue operation, off-the-
shelf drones would struggle to complete as it cannot cover an area of more than 10 x10 km^2 due to limited 
battery life of 2h and average speed of 50mph [1]. In addition, it is hard to establish connection between the 
drone and the base station after a few kilometers to video stream and detect endangered people [1]. Drone 
swarm in this case not only “enables multi-hop communication network” for long distance connection but 
also enables “coverage of a larger area in less time”, reducing the battery capacity limitation and increasing 
efficiency [1].  
The first goal of this project is to explore drone swarms and understand the challenges associated with 
decentralized swarm management. Drone swarms implemented with a distributed system compared with 
centralized control are resilient and hard to fail, destroy, or manipulate. There are no single points of failure 
because all the drones are independently controlled instead of being controlled collectively by one computer 
or drone. Distributed systems also by definition move all the processing that computers do - avoiding 
obstacles and calculating all the destination and positional controls of drones - to individual drones, which 
enables the swarm to scale easily. The second goal of this project is to compare existing implementation and 
algorithms. The third goal of this project is to implement the algorithms in the context of Crazyflie drones in 
the lab. 
However, due to the Covid-19 crisis, I cannot continue with the physical implementation of the swarm 
algorithms on Crazyflie drones as I do not have access to the research building anymore. The third goal is 
thus changed to implementing the swarm algorithms solely in the context of simulators. As the parameter 
space of the algorithm is huge, an additional goal is added to explore the parameter space. 

2 Related Work 
I explored three swarm algorithms: boids model, ant colony, and particle swarm. While the boids model is a 
more traditional approach using steering force vectors, ant colony and particle swarm are newer optimization 
algorithms used for search problems.  
The boids model proposed by Craig Reynolds can be found on his website and through his papers “Steering 
Behaviors For Autonomous Characters” [3] and “Flocks, Herds, and Schools: A Distributed Behavioral 
Model” [4]. Boids are “generic simulated flocking creatures” designed by Reynolds for computer animation 
[2]. Each simulated boid is based on a point mass approximation, acts independently, and navigates only 
based on its changing local neighborhood environment [4]. Each individual boid in the basic flocking model 
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mainly combines three simple steering forces: separation, alignment, and cohesion [2]. Separation force is 
the combination of repel vectors from drones within the neighboring drone range [2]. Alignment force directs 
the drone towards the average direction of the neighboring drones [2]. Cohesion force pulls the drone towards 
the center of the neighboring drones [2].  
In Reynolds’ paper “Steering Behaviors For Autonomous Characters”, he describes more steering forces such 
as seek, pursuit, flee, and obstacle avoidance. In “Flocks, Herds, and Schools: A Distributed Behavioral 
Model”, Reynolds continues to describe the distributed model and includes a lot of intuitions and reasonings 
of the model, including obstacle avoidance reasonings that I later based my obstacle avoidance steering force 
on. 
As described in the paper “Ant Colony Based Path Planning for Swarm Robots”, each drone can use 
optimization algorithms - in this case ant colony but can apply to particle swarm- to plan the shortest route 
to the destination [5]. To ensure mutually exclusive paths between drones, the routes would be planned 
sequentially so that later drones when planning would avoid the paths planned by drones previously [5]. This 
assumes communication of planned paths between drones. 
Ant Colony Optimization (ACO) Algorithm mimics the pattern of ants finding the shortest path to food in 
nature [5]. The algorithm mimics how ants use pheromone levels to communicate with other ants about food 
sources [5]. The shorter the path, the less time it will take to travel and thus the more likely it is that ants will 
pick that path again and leave more pheromone [5]. This continuously increases the pheromone level of the 
shortest path [5]. In addition, pheromone evaporates as time goes on, which discourages the ants to be traped 
in suboptimal paths [5].  
Particle swarm algorithm can be used for drone swarm in the context mentioned above if it is modified to 
identify the shortest path to the destination. Particle swarm algorithm “is a population-based stochastic 
algorithm for optimization” [6]. Particles are randomly initialized in a search space and are moved around to 
test new parameter values [6]. The next position of the particles is decided using its past position, the best 
position the particle has ever had, the best position found by the particles’ neighbors, parameters, and uniform 
random numbers [6]. When the algorithm is run, each particle cycles around its previous best and neighbors’ 
best to explore better positions until the update of the variables. After which, the particles switch to their 
respective new regions in the search space. In the end, the particles will cluster around the optima and the 
solution is found.  

3 Approach 
My approach is mainly based on the algorithm proposed by Craig Reynolds. I utilized and modified the seek, 
separation, cohesion, alignment, and obstacle avoidance steering forces described in the papers: “Steering 
Behaviors For Autonomous Characters” [3] and “Flocks, Herds, and Schools: A Distributed Behavioral 
Model” [4]. The parameters used can be found in Table 1 and the pseudocode for the algorithm can be found 
in Algorithm 1. Note how all the implemented steering forces are only calculated from neighboring drones 
to ensure the scalability of the algorithm. 
In addition to summing up all the force vectors with weights proposed by Reynolds, I decided to normalize 
all the vectors before the summation and the weighting [3]. This is done for better control of steering forces 
using weight parameters, preventing extremely large or small steering forces from overwhelming or 
disappearing. This was inspired by Reynolds’ suggestion for normalizing the separation, cohesion, and 
alignment steering forces before scaling and summing for the simple flocking behavior [3].  
However, normalization removes the distance factors in the steering force vectors so I proposed rings of 
ranges to compensate as shown in Figure 1. Neighboring drones within ring1 will contribute to the repel force 
vector for the current drone while the drones in between ring2 and ring3 will contribute to the coherence 
force vector for the current drone. The neighboring drones between ring1 and ring2 along with drones outside 
of ring3 will have no effect on the current drone. This also enables more control for the entire drone swarm’s 
size as the stable distance between drones are distances between ring1 and ring2. Neighboring drones in that 
range does not pull or repel the current drone so the whole swarm stays in that state. 



 3 

 
Figure 1: Rings of ranges 

In addition, the obstacle avoidance steering force algorithm is significantly modified. Reynolds proposed two 
ways for obstacle avoidance: force field model and steer-to-avoid [4]. My approach includes some aspects 
of both ways proposed. Reynolds pointed out that in the force field obstacle avoidance model, boid heading 
towards the obstacle does not have any side thrusts and that the force tends to be too strong close up and too 
weak far away [4]. In my approach however, the second problem does not apply as the forces are normalized 
without rings of ranges for obstacle avoidance. The obstacle avoidance force is thus constantly applied once 
the drone is in range of the obstacle range. In addition, the obstacle avoidance force is a combination of 2 
forces in my approach, one in the repel direction and one in a perpendicular direction, which avoids the drone 
not having any side thrust when approaching the obstacle directly. 
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3.1 Parameters 

Table 1: All the parameters used in implementation of algorithm 

Parameters Definition 

repelRange_ring1 
neighbor drones within this range adds a repel force on current drone 

noRepelCohRange_ring2 neighbor drones within ring1 to ring2 has no effect on current drone 

cohesionRange_ring3 

neighbor drones within ring2 to ring3 adds a cohesion/ attraction force on 
current drone 

goalRange 
all drones within this range from the goal point has reached that goal 

goal_innerCircle_noPull 

drones within this range will not have the goal attraction force. This is to 
help stabilize and decrease collision when all drones are hovering at one 
goal point 

ObstacleRange_perpendi
cularForce 

obstacles within this range from drone will adds a force perpendicular to 
the repel force of obstacle to drone 

ObstacleRange_innerCir
cle_repel 

obstacles within this range from drone will add a repel force from obstacle 
on drone 

minDistLimit 

drones within this distance from current drone are considered too close/ 
collision 

obstMinDistLimit 

obstacles within this distance from current drone are considered too close/ 
collision 

freq_pub 
publish rate per second 

waitTimeUntilCountColl
ision 

(in seconds) time that collision’s not counted as drone swarm expand from 
one point 

goalWaitTime 

once drone reaches new goal, it will keep that goal for this amount of time 
to wait for other drones to regroup (prevent dragging drones that have not 
arrived at this goal to skip this goal) 

setDroneNum 
number of total drones in the swarm 

weight_separation weight for separation force vector when combining all steering forces 

weight_cohesion weight for cohesion force vector when combining all steering forces 

weight_goal weight for goal force vector when combining all steering forces 

weight_alighn weight for alighn force vector when combining all steering forces 

weight_obstacles_perpen
dicular 

weight for obstacle perpendicular force vector when combining all steering 
forces 

weight_obstacles_repel weight for obstacle repel force vector when combining all steering forces 
weight_overall weight that scales the normalized final steering force vector combination 
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3.2 Algorithm Pseudocode 
ALGORITHM 1 
get all the parameters from launch file 
ROS subscribe to all drone positions and velocities 
dest: list of destination 
obst: list of obstacles 
while dest is not empty: 

nextDest = next destination from dest 
while rospy still running: 

if reached goal, keep last goal as previous goal for goalWaitTime temporarily (wait for 
all drones to reach goal before move on) 
initialize vectors: separation_vect, cumOtherDronePos_vect, numtotNeighborDrones, 
cohesion_vect, alighn_vect 
initialize counters: numCohesionRangeDrones, numRepelDrones, 
numtotNeighborDrones 
for each otherDrone beside drone itself: 

tempDist = distance between otherDrone and this drone 
if tempDist > cohesionRange_ring3: 

continue 
elif tempDist > noRepelCohRange_ring2: 

numCohesionRangeDrones +=1 
updateCumOtherDronePosVec(otherDrone, 
cumOtherDronePos_vect) 

elif tempDist > repelRange_ring1: 
continue 

else: 
numRepelDrones += 1 
updateSeparationVec(otherDrone, separation_vect) 

check tempDist to update collision 
if tempDist <= cohesionRange_ring3: 

numtotNeighborDrones +=1 
updateCumOtherDroneVelVec(otherDrone, 
cumOtherDroneVel_vect) 

if numCohesionRangeDrones != 0: 
cohesion_vect = calcCohesionVec(cumOtherDronePos_vect, 
numCohesionRangeDrones ) 

if numtotNeighborDrones !=0: 
alighn_vect = calcAlighnVec(cumOtherDroneVel_vect, 
numtotNeighborDrones ) 

goal_vect = calcGoalVec(nextDest) 
calcFinalVelVect(separation_vect, cohesion_vect, goal_vect, alighn_vect) 
initialize vectors: obstaclesPerpendicularVel_vect, obstaclesRepelVel_vect 
for each obstacle in obst: 

tempDist = distance between this drone and obstacle 
if tempDist > ObstacleRange_perpendicularForce: 

continue 
updateObstaclesVelVec(obst, obstaclesPerpendicularVel_vect, 
obstaclesRepelVel_vect) 

calcNextPos(obstaclesPerpendicularVel_vect, obstaclesRepelVel_vect) 
publish to drone position input dest_pos that was modified by calcNextPos 
rospy.Rate(freq_pub).sleep 

The methods used are explained in detail in Appendix B while the complete implementation can be found on 
GitHub linked in Appendix A. 
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4 Implementation 
The algorithm is implemented using Carl Hildebrandt’s point simulator labsim [8] for drones, which uses 
ROS and is coded in Python. Working with Hildebrandt, we added support for running multiple drones into 
the simulator. After which, I added the ability to launch any number of drones by passing in an optional 
parameter when executing the launch file, fly_path_recursion_base.launch. Fly_path_recursion_base.launch 
not only takes in the number of drones in the swarm as optional parameter but also optionally takes in any 
number of parameters mentioned in Table 1 above. Fly_path_recursion_base.launch then passes all the 
parameters to fly_path_recursion.launch, which recursively starts drones numbered from setDroneNum to 1 
and passes all the parameters into each drones’ path_planner node as seen in Figure2. Each drone is under 
their name space /drone# and has their own path_planner node running the same algorithm individually. 
Path_planner node handles all the control logic for the drone and executes according to Algorithm 1 described 
in the section above. The only node and topic shared between drones are /view_node which visualizes the 
drones together and /tf. To incorporate obstacles, both the path planner node and viewer node would need to 
get the obstacle information, and path planner node would accordingly use the information to calculate the 
obstacle force vectors while the view node would display the obstacles.  

 
Figure 2: ROS rqt_graph 

The simulator can support around 20 drones to execute a preset path. Above 20 drones, the simulator starts 
to become extremely slow and behaves erratically. The simulator can handle, as an upper limit, around 15 
drones when the algorithm for drone swarms described above is added. This limit is not caused by the 
algorithm or the software, but it is limited by the hardware. This is because the supposed parallel system and 
algorithm is not actually run on individual drones but is all run on this one machine that simulates by 
alternating between the processing of all the drones. Thus, the processing becomes increasingly intensive as 
the number of drones increase and slows down the simulator a lot.  
Before Carl Hildebrandt’s point simulator labsim [8], I tried KTH Royal Institute of Technology’s simulator 
dd2419 [9], but was having a lot of trouble modifying the simulator to support multiple drones, partly due to 
the lack of documentation outside of functionalities for running a single drone. After which, I also tried to 



 7 

modify some other simulators including CrazyS [10], based on RotorS [11], with no success. Sim_cf [12], 
another simulator that uses RotorS [11] motor model, directly supports multiple drones. However, sim_cf 
uses Gazebo, and after adding new logic controls, the simulator has trouble supporting the amount of 
processing required for multiple drones. 

4.1 Limitations of Current Implementation 
The current obstacle steering force vectors, perpendicular and parallel, are not thoroughly tested and might 
not perform as well as other force vectors. It is especially affected when size or shape of obstacles are 
different. In addition, current obstacles are represented as collections of particles (generated through 
makeObst.py in src/simple_control/src), which is very computationally expensive during simulation for big 
obstacles.  
Weight parameters also do not scale with corresponding range parameters, which can affect performance of 
the different force vectors because weight for obstacles, for example, might need to increase with decrease 
of obstacle range to minimize collisions. 
Furthermore, to modify obstacles and destination points lists, one has to directly edit the lists in 
v3.0_mult_drone_preset_path.py in src/simple_control/src and viewer.py in visualizer/src. 

5 Study 
5.1 Goal of the Study 
The purpose of this study is to start exploring the huge parameter space in the algorithm and gain some 
insights into their effects on the drone swarm.  

5.2 Variables 
Table 2 lists the independent variables/ parameters and the values explored for each. The values explored 
were chosen based off of parameter values that worked well in simulation when developing with 10 drones. 

Table 2: Independent Variables/ Parameters 

Parameters Values 
  
weight_separation [40, 60, 100] 

weight_obstacles_perpendicular [50, 120, 200] 

weight_obstacles_repel [0, 40, 120] 

weight_goal [20, 45, 60] 

weight_cohesion [10, 35, 50] 

Table 3 lists the parameters that stayed constant.  
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Table 3: Constant Parameters 

Parameters Value  Parameters Value 

weight_alighn: 10  weight_overall: 5 

repelRange_ring1: 40  goalWaitTime 15 

noRepelCohRange_ring2: 60  minDistLimit 2 

cohesionRange_ring3: 80  obstMinDistLimit 2 

goalRange: 45  freq_pub 20 

goal_innerCircle_noPull: 7  setDroneNum 10 

ObstacleRange_perpendicula
rForce: 45 

 waitTimeUntilCountCollisi
on 7 

ObstacleRange_innerCircle_r
epel: 35 

   

Table 4 lists the dependent variables 

Table 4: Dependent Variables 

Dependent Variable Definition 
  

CloseToOtherDrone 

Number of times each drone recorded that another drone's 
distance is < minDistLimit (note most closeness is double 
counted because both drones record closeness) 

CloseToObstacle 
Number of times each drone recorded that another obstacle's 
distance is < obstMinDistLimit 

AllReachDest (Boolean value) whether all drones have reached all goals 

TimeTookToReachAllDest 
(in seconds) Time took for all drones to reach all destination 
(7 minute cutoff time as some successful runs take 2.5 min) 

Note the number of times counting closeness in distance happens maximum once every 2 seconds to give 
time for separation before counting closeness again 

5.3 Results 
Each set of results from different combinations of parameters is the average from 3 runs and can be found in 
Appendix D. The correlation values and scatter plots can be found below. (Note: I realized alighn_vect, 
whose weight is a constant in the study, was not normalized before combining all steering forces for the runs, 
which deviates from the described algorithm above and might cause slight differences in parameters to 
generate the same results) 
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Figure 3: Correlation Values 

The stronger correlation values were highlighted in Figure 3. In particular, wt_goal and wt_sep seems to have 
stronger correlation with the dependent variables. It makes sense that the stronger the pull towards the goal, 
the more likely it is that all drones will reach all goals. The stronger pull also makes the drones reach all 
destinations faster. It is also interesting to note the inverse relationship between wt_goal and Close2Obst. 
This is possibly because stronger pull towards goal means less time hovering around the obstacles, which 
might result in less collisions. Weight separation also seems to directly relate with time to reach all goals and 
inversely related to number of times close to other drones. The only correlation that was not expected is the 
direct relation between wt_obst_repel and Close2Obst. The more weight for obstacle repel, the less times 
there should be where drones get close to obstacles. This further supports the need to investigate obstacle 
forces, particularly the obstacle repel force. 
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Figure 4: Scatter plot with weight separation as hue 

The rest of the scatter plots with different hues can be found in Appendix C. 
Figure 4 shows how weight separation combined with another independent variable relates to dependent 
variables/ results. Through the scatter plot, one can see patterns like how low weight_cohesion combined 
with high weight_separation can cause outliers and increase in risk of neighbors colliding.  
The scatter plot also reinforces the correlations with weight separation. Weight separation is inversely related 
to number of closeness between drones and directly related to time that it takes to reach all goals, regardless 
of whether it is combined with another independent variable. The increase in weight to separate the drones 
was intended to cause less closeness of drones, however, at the same time it can cause the drones to spend 
more time separating from each other. This might have caused the drones to not directly head towards the 
goals, resulting in an increase in time to reach all goals.  

Key Questions 
As the five parameters are very intertwined with each other and due to the difficulty in analyzing a five-way 
relationship through 5D or 6D graphs, a list of key questions was generated to make more sense of parameter 
combinations. The key questions can display sets of parameters that produce good or bad results in different 
aspects.  

1. Best configurations to get all drones to the destination in the least amount of time 

 

Figure 5: Configurations to get all drones to the destination in the least amount of time 

The fastest times for all drones to reach all goals were 108 seconds and 110 seconds, which is less than two 
minutes. I also displayed the second fastest TimeTookToReachAllDestSec because with just a two second 
increase in time, number of drones that gets close to the obstacles decreases by almost half. This is likely 
because weight_obst_repel was not factored in, which was shown to not perform well in the correlation and 
scatter plot section above. Both sets of parameters have the same weights for separation, obstacle 
perpendicular, and goal, which seems to be a good combination to generate fast goal seeking times along 
with pretty low closeness between drones count.  
 

2. Configurations for all drones to be at least minDistLimit apart at all times (CloseToOtherDrone = 
0) and reach all goals 



 11 

 

Figure 6: Configurations that resulted in number of CloseToOtherDrone = 0 and reached all goals 

All the above parameters resulted in no collisions and the reaching of all goals in less than seven minutes in 
all three trials.  
 

3. Best configuration for drones to be at least obstMinDistLimit away from obstacles and reach all 
goals in < 7 min in all 3 runs 

 

Figure 7: Configurations that resulted in least number of drones getting close to obstacle 

There were no parameter combinations that resulted in no drones getting close to obstacles. The best 
parameter combination resulted in a little over 2 collisions on average among 10 drones in the three trials. 
Note how weight obstacle repel is 0, consistent with previous observations.   
 

4. Configurations where drones do not reach destination within seven minutes for all 3 trials 
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Table 5: Configuration where goals are not reached by all drones in all 3 trials 

weight_obst_repel weight_separation weight_obst_perpendicular weight_goal weight_cohesion 

0 100 200 20 35 

40 100 120 20 50 

0 60 50 20 35 

0 100 50 20 50 

0 100 120 20 50 

40 100 200 20 50 

0 100 200 20 50 

120 100 50 20 50 

120 100 200 20 35 

0 60 200 20 35 

0 100 200 20 10 

40 100 200 20 35 

120 100 120 20 35 

120 60 200 20 10 

40 60 120 20 35 

120 60 50 20 35 

0 60 200 20 50 

0 60 50 20 10 

0 100 120 20 35 

120 100 200 20 50 

40 100 50 20 35 

0 100 50 20 10 

120 100 50 20 35 

120 100 200 20 10 

40 100 200 20 10 

40 100 120 20 10 

120 60 120 20 50 

0 60 200 20 10 
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40 100 120 20 35 

40 100 50 45 10 

120 100 50 20 10 

0 100 50 20 35 

40 60 50 20 35 

120 100 120 20 50 

120 60 120 20 10 

40 100 50 45 35 

0 100 120 20 10 

0 60 50 20 50 

120 60 50 20 10 

40 60 120 20 10 

40 60 50 20 10 

40 100 120 45 50 

40 100 50 20 50 

40 60 200 20 10 

40 60 50 20 50 

120 100 50 45 35 

120 100 50 45 50 

120 100 120 20 10 

40 60 200 20 35 

0 100 50 45 50 

40 100 50 20 10 

120 100 120 45 50 

120 60 50 20 50 

40 60 120 20 50 

40 40 200 20 35 

40 40 50 20 35 

120 40 50 20 50 
In the configurations of parameters above, all drones did not reach all destinations within seven minutes for 
all three trials. Those are parameter combinations that should be avoided. There are an overwhelming amount 
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of weight of goals being 20 in table above, showing that goal of 20 is probably not a good parameter 
combination with most of the other parameter values used.  

Threats to Validity of Findings 
Any answers/trends provided above are not guaranteed to be right as they are based on limited amounts of 
data collected. To be more confident in findings, not only should many more trials be conducted, but a variety 
of different parameters should also be tested. Although not a perfect depiction, it may also be beneficial to 
analyze ratios of parameters to provide further insights and boost confidence in results when more trials are 
performed.   

Data Collection 
The scripts used can be found in src/flightcontroller/launch: scriptRunLaunchFiles.py, killScript.py, 
parserScript.py, analysisParserScript.py. The code can be found in GitHub https://github.com/hildebrandt-
carl/Autosoft_Lab/tree/master/Papers/Joanna 
ScriptRunLaunchFiles.py will run simulations with all the different combinations of weight parameters. Each 
simulation will write all important information, such as location and time for when goal is reached and when 
drones get too close to other drones or obstacles, into a text file in sequential order. It will also launch a 
python subprocess killScript.py for each simulation run that kills the simulation when all drones have reached 
their destinations or when seven minutes have passed.  
After the runs, parserScript.py and analysisParserScript.py can be used to generate tables and graphs from 
all the text files containing all the important information for each run. AnalysisParserScript.py parses and 
saves all the data into pandas dataframe for easy visualization and manipulation of data. However, note that 
pip installing Pandas breaks view.py’s draw_artist function. Virtual environment should be able to solve this 
issue, though it was not tested.  

6 Conclusion 
Through this project, I have learned a lot about drone swarms and swarm algorithms. I have learned about 
the challenges in managing a decentralized swarm system and realized the importance of setting constraints 
to define problem scope so the project does not get infinitely broad. I realized the importance to first map out 
the problem as clearly as I can, setting constraints, and then setting stages so I do not tackle and consider all 
the details of the problem at once.  
When researching the swarm algorithms, I was actually also able to use newly learned concepts in my 
artificial intelligence class like search problems, optimization problems, and local search algorithms. This 
not only helped my understanding of research papers, but also solidified my knowledge on those concepts 
and connected them to real examples. Through this research project, I also learned how to find research 
papers and read them faster and more effectively as I am more familiar with the structure and system.  
In addition, I also learned ROS, going from never hearing about ROS to being able to understand and modify 
several ROS gazebo simulators. Then with all that was learned, I was able to utilize ROS components and 
functionalities to implement and debug the swarm algorithm. In the process I also realized again the 
importance to modularize code, even though I thought it was unnecessary in the beginning due to the 
shortness in length. However, as the code got longer, the modularity provided much more clarity and 
readability.  
Some work still to be done on the simulator includes finding out how to scale parameters with change in 
number of drones, size and shape of obstacles, and range parameters. Better obstacle representation is also 
ideal as obstacles are currently represented as particles, which is very computationally intensive for big 
obstacles. In addition, the obstacle steering force vectors need to be examined for effectiveness especially 
when dealing with different shaped and sized obstacles. 
Furthermore, the algorithm should be implemented on physical drones along with the continued exploration 
and implementation of other drone swarm algorithms. Data collection and analysis of parameters should also 
be continued to further understand the effects of the parameters.  
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APPENDIX A 
Github: https://github.com/hildebrandt-carl/Autosoft_Lab/tree/master/Papers/Joanna 
 

APPENDIX B 
All the methods pseudocode mentioned in the Approach section 
# note all operations are in terms of x,y,z dimension 
# note most vectors are part of the class the algorithm is in, so methods modify vectors and do not need to 
return them 
updateCumOtherDronePosVec(otherDrone, cumOtherDronePos_vect) 

cumOtherDronePos_vect += position of otherDrone 
  
updateSeparationVec(otherDrone, separation_vect) 

sep = drone current position - position of other drone 
if sep != 0: 
sep = 1/ sep^3  #further drones will be weighted less in separation direction 
separation_vect += sep #cumulate 

  
updateCumOtherDroneVelVec(otherDrone, cumOtherDroneVel_vect) 

cumOtherDroneVel_vect += normalized other Drone velocity 
  
calcCohesionVec(cumOtherDronePos_vect, numCohesionRangeDrones) 

initialize cohesion_vect 
cohesion_vect = cumOtherDronePos_vect/ numCohesionRangeDrones - current drone position 
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return cohesion_vect 
  
calcAlighnVec(cumOtherDroneVel_vect, numtotNeighborDrones) 

initialize alighn_vect 
alighn_vect = cumOtherDroneVel_vect/ numtotNeighborDrones 
return alighn_vect 

  
calcGoalVec(nextDest) 

initialize goal_vect 
if distance between current drone and nextDest < goal_innerCircle_noPull: 
return goal_vect 
goal_vect = nextDest - current drone position 
return goal_vect 

  
calcFinalVelVect(separation_vect, cohesion_vect, goal_vect, alighn_vect) 

normalize separation_vect, cohesion_vect, goal_vect, alighn_vect 
return sum(weight_sep*separation_vect, weight_coh*cohesion_vect, weight_goal* goal_vect, 
weight_alighn*alighn_vect) 

  
updateObstaclesVelVec(obst, obstaclesPerpendicularVel_vect, obstaclesRepelVel_vect) 

if moving away from obstacle, return immediately, do not follow obstacle avoidance path (angle 
between the vector from calcFinalVelVect and the vector pointing from obst to drone < 50) 
tempObst = current drone position - obst 
if tempObst !=0: 
tempObst = 1/tempObst^3 #obstacle further away have less weight in obstacle avoidance force 
obstaclesPerpendicularVel_vect += One of the Perpendicular Directions of Obst vect 
if distance between drone and obstacle is < ObstacleRange_innerCircle_repel: 
obstaclesRepelVel_vect += -tempObst 
  

calcNextPos(obstaclesPerpendicularVel_vect, obstaclesRepelVel_vect) 
normalize obstaclesPerpendicularVel_vect and obstaclesRepelVel_vect 
finalVel_vect += weightObstPerpendicular*obstaclesPerpendicularVel_vect + weightObstRepel+ 
obstaclesRepelVel_vect 
normalize finalVel_vect 
dest_pos = current position of drone + weight_overall * finalVel_vect 
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APPENDIX C 
Scatter plot with weight cohesion as hue 
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Scatter plot with weight goal as hue 
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Scatter plot with weight obstacle repel as hue 

 
APPENDIX D 
Averaged Results from Study 

weight_
obstacle
s_repel 

weigh
t_sepa
ration 

weight_obst
acles_perpe
ndicular 

wei
ght
_go
al 

weig
ht_co
hesio
n 

CloseT
oOther
Drone 

Close
ToOb
stacle 

All
Rea
chD
est 

TimeTookT
oReachAll
DestSec 

0 40 120 20 35 4 1.67 0.67 291.77 

0 100 120 20 50 0 5.33 0 420 

40 40 200 60 35 5 6.67 1 132.73 
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0 60 120 20 10 1.33 6 0.33 405.43 

40 60 200 60 10 1.33 4 1 152.87 

40 100 120 45 10 21 11.67 0.67 369.27 

0 60 50 45 10 0 3.67 1 184.33 

0 60 120 20 35 0 5 0.67 371.53 

120 60 50 60 50 1.33 8 1 137.33 

40 40 50 60 35 2 11.33 1 107.6 

120 60 50 45 10 1.33 10 1 235.5 

120 100 50 20 10 0 14.67 0 420 

0 100 200 45 50 0.67 10.33 0.67 338.6 

0 60 200 45 35 2 5.67 1 186.27 

40 60 50 45 50 7.33 18.67 0.67 241.93 

0 40 120 20 50 2.67 5.67 1 261 

120 40 50 60 10 2 11 1 126.13 

120 60 120 20 50 7 12.67 0 420 

0 100 120 20 35 0 11.33 0 420 

0 60 200 45 10 2 8.33 1 291.77 

40 100 200 20 10 0 12.67 0 420 

0 40 50 45 10 2.67 3.67 1 122.97 

0 60 200 60 10 0.67 3.67 1 166.73 

0 40 120 45 50 2 4.33 1 137 

120 100 200 45 50 2 23.33 0.67 382.2 

40 60 120 20 50 4.67 40.67 0 420 

0 40 200 60 50 0.67 5.33 1 136.9 
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40 100 200 45 10 0 6.33 0.67 393.3 

120 100 120 60 10 0 10.67 1 290.6 

40 100 50 45 35 0.67 17 0 420 

0 60 50 45 50 1.33 10.67 1 153.2 

120 40 200 20 50 8.67 17.67 0.67 355.57 

0 60 120 60 35 2.67 5 1 139.37 

0 40 200 20 10 0 10.67 0.33 409.8 

40 40 120 20 10 0 8.67 0.33 383.9 

120 60 120 60 35 1.33 12.33 1 148.67 

40 100 120 20 10 0.67 12.67 0 420 

120 100 120 20 50 2 16.33 0 420 

0 100 120 60 35 0.67 9 1 273.57 

40 100 200 60 10 0.67 7.67 1 365.73 

40 60 120 45 50 0.67 4.67 1 182.87 

0 100 200 60 35 0 13.33 1 261.9 

0 60 120 45 10 0 7 0.67 293.33 

40 60 120 60 50 0.67 9 1 139.43 

120 100 120 45 35 1.33 15.67 1 359.2 

120 100 120 20 10 0.67 24.33 0 420 

120 40 120 45 10 1.33 5 1 164.4 

40 40 50 45 10 0 9 1 121.1 

40 60 120 20 10 0 21.33 0 420 

120 60 200 60 50 5.67 9 1 168.17 

0 100 120 20 10 0 17.33 0 420 
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120 40 120 20 50 5.33 26.67 0.67 342.83 

40 40 200 20 10 0.67 13.67 0.33 400.63 

120 60 200 45 35 4 5.67 1 176.03 

120 60 50 60 35 1.33 10 1 128.5 

0 40 50 20 50 8.67 14.67 0.33 348.77 

40 60 120 45 10 0.67 8.33 1 257.63 

120 60 200 20 10 0 10.33 0 420 

120 60 200 20 50 1.33 16.67 0.33 400.9 

120 100 200 60 10 0.67 8.67 1 338.87 

120 60 120 45 35 2 12 1 199.3 

120 60 120 60 50 2.67 9 1 152.27 

40 60 200 60 50 0 5 1 152.27 

40 60 50 20 10 0 21.67 0 420 

0 40 50 45 35 3 5.33 1 121.6 

40 40 120 60 10 2.33 7.33 1 127.03 

0 60 50 20 35 0 5 0 420 

120 40 50 45 50 2.67 13.67 1 164.03 

40 40 200 60 10 4 8 1 134.8 

120 40 120 45 50 2 6.33 1 152.73 

120 40 200 20 10 0.67 7 0.67 381.4 

120 100 50 20 50 0 6 0 420 

0 40 120 45 10 2.67 4.67 1 135.4 

40 60 50 45 10 1.33 8.33 1 230.1 

0 60 200 60 35 2.67 5.67 1 158.1 



 23 

0 40 120 20 10 0.67 9.33 0.33 392.53 

120 60 50 20 50 4 32 0 420 

120 100 200 20 35 0 6.33 0 420 

120 40 120 45 35 3.67 11.33 1 177.6 

0 60 120 60 50 0.67 6.33 1 143.23 

40 60 200 45 10 0.67 9.33 1 261.3 

120 60 50 20 35 1.33 10.33 0 420 

120 60 50 60 10 2 11.67 1 154.73 

120 60 120 20 35 0.67 13.67 0.33 403 

40 40 200 60 50 2.67 3.67 1 137.6 

120 40 50 20 10 0 10 0.33 395.93 

40 40 200 45 50 8 6.33 1 151.97 

120 40 200 45 50 2.67 12.67 1 165.67 

0 40 200 45 10 2.67 4.67 1 145.9 

0 40 200 60 35 3.67 6 1 143.1 

40 40 200 20 50 7.33 48.33 0.33 358.7 

40 40 50 20 10 0 12.67 1 340.2 

0 40 50 60 10 2 6.67 1 109.67 

0 100 120 45 35 0.67 11.33 0.33 385.93 

120 60 120 45 50 6 14.33 0.67 263.07 

40 60 200 20 35 1.33 24.33 0 420 

120 40 50 60 35 4.67 14.33 1 139 

120 40 200 45 35 3.33 6.67 1 160.37 

120 60 200 45 50 8.67 15.33 1 200.57 
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40 60 50 20 50 3.33 23.33 0 420 

40 40 50 45 50 4 6.67 1 123.6 

0 100 50 60 10 0 7.67 0.67 362.87 

0 60 200 45 50 5.33 7.33 1 190.97 

0 100 50 20 10 18.33 11.33 0 420 

40 100 50 60 35 0.67 13.67 0.67 322.97 

40 100 120 45 35 0 18.67 0.67 379.8 

40 100 50 20 10 0 28.33 0 420 

0 100 50 45 35 0.67 16.67 0.33 403.87 

40 60 50 60 10 2 6.67 1 124.67 

120 60 200 45 10 2 7.33 1 248.8 

120 100 200 45 35 1.33 13 0.67 364.4 

0 60 50 60 50 2 11 1 122.2 

0 100 200 60 50 0 8.67 1 248.77 

0 40 120 60 35 2.67 4.33 1 127.83 

120 40 50 45 10 2 8 1 139.03 

40 40 50 20 35 5.33 56.67 0 420 

0 100 120 45 10 0 15.67 1 372.1 

120 40 120 20 10 0 18.67 0.67 358.63 

120 40 200 60 50 5.33 4 1 131.27 

120 100 50 45 35 0.67 24 0 420 

40 40 50 45 35 1.33 11.67 1 120.73 

0 60 200 60 50 3.33 2.33 1 158.9 

40 60 200 20 10 0.67 22.67 0 420 
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40 60 120 45 35 3.33 8.67 1 165.47 

120 100 200 20 50 0 11.33 0 420 

120 100 120 60 35 2 13.33 1 290.43 

0 100 200 45 35 0 17 0.33 399.73 

40 60 50 60 50 2.67 9.33 1 127.63 

0 40 200 45 50 2.67 7.33 1 145.4 

40 100 200 45 50 0 22 0.33 381.77 

0 40 200 20 35 1.33 7 1 259.7 

120 60 120 45 10 2.33 6.33 1 220.33 

120 40 120 60 50 3.33 9.67 1 129 

0 100 50 20 50 0 5 0 420 

0 100 120 60 10 0 9 0.67 364.67 

120 100 120 45 10 0.67 7.67 0.33 405.43 

0 40 200 45 35 2.67 3.33 1 159.97 

120 100 50 45 50 0.67 24 0 420 

0 60 200 20 10 0 14 0 420 

120 100 120 20 35 0 10 0 420 

40 100 50 20 35 0.67 11.33 0 420 

40 40 50 60 10 0.67 7.33 1 110.8 

0 60 120 20 50 2 14 0.33 376.87 

40 60 50 20 35 2.67 16 0 420 

40 100 120 20 50 0 3 0 420 

120 60 200 60 35 4 6.33 1 153.03 

0 40 50 45 50 1.33 7.33 1 124.47 
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40 60 50 45 35 0 9.33 1 141.93 

40 60 50 60 35 0 9.67 1 122 

0 100 200 45 10 19 5.33 0.67 352.6 

40 100 120 20 35 6 14 0 420 

0 100 50 45 10 0 16.33 0.33 409.33 

0 100 50 20 35 0 15 0 420 

40 40 120 60 35 1.33 6.33 1 123.2 

0 40 120 45 35 1 3.33 1 133.33 

40 60 120 60 35 2.67 9.33 1 140.63 

120 40 120 20 35 10.67 37 0.33 371.1 

120 100 200 45 10 0 13.33 0.67 399.03 

0 40 50 20 35 3.33 7 0.67 275.57 

0 40 50 60 50 1.33 8.33 1 112.27 

40 40 120 20 35 2.67 10.67 1 245.27 

120 100 120 60 50 0 12.67 1 203.37 

0 100 200 20 50 0 5.67 0 420 

0 60 50 60 10 2.67 5.33 1 127.63 

120 100 120 45 50 0.67 31.67 0 420 

0 60 50 45 35 0 5 1 151.43 

0 40 200 60 10 2 4.67 1 141.53 

40 100 200 60 50 2 11.67 1 244.1 

120 60 50 20 10 0.67 18.33 0 420 

40 100 120 45 50 1.33 21.67 0 420 

120 40 200 60 35 3.33 2.67 1 134.5 
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40 40 120 20 50 2.67 23.67 0.33 365.8 

0 60 50 20 10 0 10.67 0 420 

120 100 50 45 10 1.33 12 0.33 414.13 

40 40 50 20 50 9.33 17.67 0.33 348.5 

0 60 200 20 50 6.67 10.33 0 420 

0 40 50 20 10 0 9.67 1 393.33 

120 60 50 45 35 2.67 15.33 1 188.03 

40 60 200 45 35 3.33 9.33 1 237.77 

40 100 200 20 50 0 5.33 0 420 

120 60 120 60 10 0.67 8.33 1 154.47 

0 100 200 20 35 0 0.67 0 420 

40 40 200 45 35 0.67 7.67 1 153.2 

120 60 200 60 10 2.33 4.67 1 171.63 

40 100 50 45 10 0 14.33 0 420 

40 100 200 20 35 0.67 9.67 0 420 

120 40 120 60 10 1.33 7 1 131.37 

40 100 120 60 50 1.33 7.33 1 201.83 

40 100 200 45 35 0 8.33 0.33 416.87 

0 40 120 60 10 2.67 3.67 1 130.73 

120 100 50 60 35 0 9.67 1 283.67 

120 40 200 45 10 6.67 10.67 1 157.17 

40 40 120 45 50 2 10.67 1 140 

40 40 200 45 10 2 4 1 145.47 

120 60 50 45 50 11 11.33 0.67 249.17 
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0 40 50 60 35 1.33 7 1 110.77 

40 100 200 60 35 0.67 14.33 1 247.73 

40 60 120 60 10 0.67 6.67 1 136.4 

40 40 120 45 35 0.67 3.33 1 136.63 

0 40 120 60 50 1.33 6 1 123.3 

0 60 50 60 35 1.33 8.33 1 122.07 

120 60 120 20 10 0 16.67 0 420 

0 100 200 20 10 0 7.67 0 420 

0 40 200 20 50 7.33 7.67 0.33 375.83 

120 100 200 20 10 0 12.33 0 420 

40 60 120 20 35 0 10.33 0 420 

40 100 50 45 50 0.67 20.67 0.33 370.43 

0 60 50 20 50 2.67 17.67 0 420 

40 40 50 60 50 1.33 7.33 1 110.93 

40 100 120 60 35 0.67 15.67 1 290.27 

120 40 120 60 35 3.67 9 1 132.53 

40 60 200 45 50 1.33 8.33 1 206.07 

120 100 200 60 50 2.67 12 1 282.67 

120 40 200 20 35 7 11.33 0.67 336.5 

0 100 50 60 50 1.33 7.67 0.67 277.1 

120 100 50 60 10 0 5.33 1 336.93 

120 40 200 60 10 2.67 7.33 1 148 

0 60 120 45 35 2.67 7 1 167.63 

0 60 120 45 50 0 5.67 1 169.33 



 29 

120 100 50 60 50 2 10.33 1 255.67 

120 100 50 20 35 0 12 0 420 

40 60 200 20 50 2 30.67 0.33 393.2 

40 40 120 45 10 0 4.33 1 154.5 

120 100 200 60 35 0 9 1 311.93 

0 100 50 45 50 0.67 27 0 420 

40 100 50 60 10 0.67 6 1 334.1 

0 60 120 60 10 0 4.67 1 141.27 

40 40 120 60 50 1.33 7 1 124.1 

40 100 50 60 50 0 9 1 233.7 

40 100 50 20 50 0 22.67 0 420 

120 60 200 20 35 2.33 17.33 0.33 388.83 

120 40 50 45 35 2.67 13.67 1 151.77 

120 40 50 20 35 5.33 13.67 0.67 316.1 

0 100 50 60 35 0.67 9.33 1 235.03 

40 100 120 60 10 0 10 0.67 324.07 

0 100 120 60 50 1.33 8.67 1 205.57 

120 40 50 20 50 14.33 71.33 0 420 

0 100 120 45 50 0.67 11.67 0.33 370.37 

40 60 200 60 35 4 6.33 1 145.47 

0 60 200 20 35 0.67 6.33 0 420 

40 40 200 20 35 6.67 51 0 420 

120 40 50 60 50 2.67 12.67 1 122.6 

0 100 200 60 10 0 6.33 1 332.5 

 


