
Test Automation Framework for Loan Delivery Assets

CS4991 Capstone Report, 2024

Nikita Jeyasingh

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

npj5kr@virginia.edu

ABSTRACT

Fannie Mae, a leading mortgage finance

company, began its strategic initiative with a

goal to have its Chief Data Office assets

primarily covered under test automation.

Recognizing the importance of accurate data

and efficiency in financial reporting, I leveraged

technologies such as AWS Cloud services,

AWS Lambda, DBeaver, and Python to design

and implement a custom-built test automation

framework. This framework allowed for

enhanced data reliability and streamlined testing

processes. Implementing this test automation

framework led to accelerated results, improved

coverage, and earlier bug detection. The

framework was tailored to validate incoming

data efficiently, ensuring consistency and

accuracy throughout the downstream vending

process and aiding in the design of future

frameworks for different source systems.

1. INTRODUCTION

Test automation stands as a significant

cornerstone in modernizing and optimizing

business processes. As financial institutions

have become increasingly reliant on data-driven

insights to make critical decisions, Fannie Mae

set a goal for its Chief Data Office to have their

assets covered under test automation.

Throughout the summer of 2023, my specific

focus was contributing to the Loan Sourcing

Data Integration Acquisition Data Store (LSDI

ADS) Team by collaborating with team

members to develop a test automation

framework for ADS assets.

Test automation involves the use of

specialized software tools to execute predefined

test cases, then compare actual outcomes with

expected results, and generate detailed reports

on the software's performance. Automating

these tasks can accelerate the testing cycle,

improve test coverage, and mitigate the risks

associated with manual testing, such as human

error and resource constraints. These

frameworks serve as the backbone for

automated testing efforts, providing a structured

approach for organizing, executing, and

managing test scripts and artifacts. This project

sought to accelerate results, enhance coverage,

expedite the detection of latent defects, and to

ensure the timely delivery of high-quality

software solutions.

2. RELATED WORKS

Utilization of cloud services such as AWS

Lambda and AWS Step Functions played a

significant role in exploring development of the

custom-built test automation framework. AWS

Lambda is a serverless computing service that

has revolutionized the deployment and

execution of code by abstracting infrastructure

management. This has allowed developers to

focus solely on the execution of code (Amazon

Web Services, n.d.) This offers good scalability,

increases cost-efficiency, and simplicity making

this a desirable choice for integrating test

automation into cloud-based workflows.

Additionally, AWS Step Functions, a

serverless orchestration service, complements

AWS Lambda with the creation of complex

workflows and state machines. This capability

allows for the orchestration of end-to-end test

automation workflows which can encompass

multiple stages, environments, and

dependencies (AWS Step Functions, n.d.).

AWS Step Functions allow for sequential or

parallel execution flows to be defined, handle

error conditions, and integrate jobs with various

other AWS services, which allows for the

integration of test automation into broader

software delivery pipelines. The serverless

nature of both the AWS Lambda and Step

Functions offers advantages in terms of cost

optimization, as teams only pay for the

resources consumed during test execution. The

integration of AWS Lambda and Step Functions

allowed for this framework to be built and

offered a pivotal role in the design and

implementation process.

3. PROJECT DESIGN

A systematic approach was necessary to

implement and integrate the custom-built test

automation framework within Fannie Mae’s

technological ecosystem. Emphasizing

seamless integration, this project required

meticulous planning, collaboration with various

teams, and adaptation to existing systems to

ensure a smooth deployment process.

3.1 Review of System Architecture

The custom-built test automation

framework is architecturally designed to

integrate seamlessly with AWS Cloud Services

to facilitate data processing and testing

automation. The high-level architecture

encompasses:

• Driver Lambda: Serves as the point for the

framework, processing input JSON to

trigger specific test types and data sets.
• Test Orchestration: Utilized AWS Step

Functions to manage the flow of testing

processes, including application code

execution, test data submission, and test

result analysis.

• AWS Services Integration: Services such as:

Lambda, S3, RDS, ECS, and SNS, are

orchestrated to handle various aspects of the

testing process, from data storage to job

execution and notifications.

3.2 Requirements

The Chief Data Office at Fannie Mae set a

goal for their assets to be primarily covered

under test automation. Fannie Mae’s Loan

Sourcing Data Mart (LSDM) is a reporting

database consolidating multiple Single Family

Data sources. LSDM was previously deployed

on-premises as the trusted source for business

reporting and operations and was previously

deployed on-premises. The Loan Sourcing Data

Integration (LSDI) Team was part of a

collective effort to re-architect and migrate

LDSM to AWS services for each of the

following source systems: Delivery, Cash

Acquisition, MBS Acquisition, Purchase ECF,

Funding ECF, NCD, and Uniform Closing

Disclosure Data (UCD). Each source system

contains data and messages that are published to

queues that come from upstream vendors.

The framework for this project was tailored

specifically to the Cash Acquisition source

system, which refers to the data produced when

Fannie Mae acquires a loan after a loan is

certified from a lender that funds that loan. The

end-goal is to have the test automation run in a

controlled environment that mimics the source

system.

3.3 Key Components

The custom-built framework leverages the

use of AWS services, each step essential to the

orchestration, execution, and management of

tests. AWS Lambda functions act as the drivers

of this process, triggered by various

mechanisms including manual initiation,

CloudWatch events, and Jenkins pipelines.

Upon receiving input in the form of JSON, the

functions begin a series of orchestrated test

procedures managed by AWS Step Functions.

The framework's key components are defined

by their role in the automation process:

• AWS Lambda: Serves as the core execution

environment for running code in response to

events, such as new data submissions or test

trigger requests.

• AWS Step Functions: Manages the

orchestration of testing workflows, linking

multiple AWS services and Lambda

functions into a cohesive process.

• Amazon Simple Notification Service (SNS):

Utilized for publishing messages to trigger

actions across the system, such as notifying

relevant stakeholders of test starts,

completions, or failures.

• Amazon Simple Storage Service (S3):

Serves as the central repository for storing

test cases, data sets, and test results.

• Amazon Relational Database Service

(RDS): Stores and manages structured test

result data, allowing for analysis and

reporting of test outcomes.

• Amazon Elastic Container Service (ECS):

Manages containerized applications,

facilitating the execution of test

environments that require specific

configurations or dependencies.

3.4 Framework Implementation

 The system initiates testing workflows

through three primary mechanisms: manual

triggers, automated scheduling via AWS

CloudWatch, and integration with CI/CD

pipelines through Jenkins.

3.4.1 Driver Lambda Function

 Upon initiation, the Driver Lambda

function is invoked, serving as the entry point to

the framework. The Driver Lambda function

parses the input JSON, the function that reads

and parses input JSON data, which contains

vital parameters for the test execution such as:

source name, test type (regression, smoke,

progression), component to be tested, test case

version, and test data version. Based on the

parsed information, the Driver Lambda sets up

the initial conditions for the test, determining

which components will be tested and used.

3.4.2 Test Orchestration with AWS Step

Functions

 Following the setup initiated by the

Driver Lambda, the Test Orchestration phase is

broken down into steps, managed as states

within the AWS Step Functions state machine:

• Application Code Execution: Executes the

specific application code or testing scripts

relevant to the chosen test type and

component.

• Check Process: Verifies that the application

code execution step was successful and that

the initial conditions for further testing are

met and ensures that the test can proceed as

planned without carrying forward any

errors.

• Publish Messages: Utilizes Amazon SNS to

publish messages regarding the status of the

testing process used for notifying

stakeholders for taking further actions

within the framework, or logging purposes.

• ETL (Extract, Transform, Load) Jobs:

Prepares the test data by extracting data

from specified sources, transforming it

according to the test requirements, and

loading it into the target system or database.

3.4.3 DATA & TEST MANAGEMENT

 Following the execution of the ETL jobs,

the process transitions ensure the validation of

test results. In the following stages, the

framework manages the submission of test data

and collects results:

• DTF (Data Test Files) Submission:

Submitted and managed throughout the test

execution process, including preparing data

in Amazon S3, and managing metadata in

Amazon RDS.

• Test Results: As tests are executed,

successes, failures, and detailed logs are

stored in Amazon S3 for raw results and

Amazon RDS for structured result data,

enabling a thorough analysis of the

outcomes.

4. RESULTS

The test automation framework for the Cash

Acquisition source system was successfully

designed and is currently in its final stages of

production deployment. Cash Acquisition, one

of the seven source systems identified for

automation, has served as a foundational model

for the development of subsequent five

remaining test automation frameworks.

In the final stages of testing and validation,

the Cash Acquisition test automation framework

has demonstrated its capability to perform end-

to-end testing successfully, including validation

of data integrity, performance assessments, and

the automated detection of anomalies.

The final phase of the process involves

analyzing the collected test results and

generating reports. This step allows for

developers to understand the quality and

reliability of the software being tested. The

framework may integrate with additional tools

or services for visualizing test outcomes,

identifying trends, and making data-driven

decisions regarding the software's readiness for

production deployment.

5. CONCLUSION

The development of the Test Automation

Framework at Fannie Mae represents significant

advancement in the integration of automated

testing for the company. This project has

demonstrated the utility of AWS Cloud services,

particularly AWS Lambda and AWS Step

Functions, to create a scalable testing

environment that enhances data reliability and

efficiency in financial reporting. The framework

has successfully reduced the time and resources

required for testing, improved coverage, and

enabled earlier detection of discrepancies,

ensuring data integrity and compliance with

stringent financial regulations.

This framework streamlines the testing

process and lays solid foundation for future

enhancements and integrations for alternative

automation frameworks. Its adaptability to

different testing scenarios and potential to

reduce manual intervention aids the company's

ongoing efforts to ensure technological

excellence.

6. FUTURE WORK

The current framework addresses the needs

of the Cash Acquisition source system; there is

substantial scope for its application to other

source systems within Fannie Mae. Future work

will focus on adapting the framework to

additional source systems, enhancing its

scalability and versatility. Potential

improvements include integrating advanced

data analytics features and exploring the use of

machine learning to predict and rectify

anomalies before they affect the system.

Continued development will ensure the

framework remains at the forefront of

technological advancements and can meet the

evolving demands of the financial industry.

REFERENCES

Amazon Web Services. (n.d.). What is AWS

Lambda? Developer Guide. Retrieved from

https://docs.aws.amazon.com/lambda/latest

/dg/welcome.html

AWS Step Functions. Serverless. (n.d.).

https://www.serverless.com/guides/aws-

step-functions

