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Abstract 

Cardiac fibroblasts are the cells responsible for remodeling the heart’s 

extracellular matrix (ECM) after a myocardial infarction. ECM breakdown during the 

early, inflammatory phase of remodeling should be balanced with deposition of new 

collagen during the proliferative phase in order to maintain cardiac function and prevent 

heart failure. Currently, it is not clear which drug(s) would best modulate ECM 

production by fibroblasts because relevant proteins and signaling pathways are typically 

studied in isolation. In this study, we adopted a systems biology approach to perform a 

comprehensive drug screen using a fibroblast signaling network that integrated 10 

signaling pathways with 104 molecules and 157 reactions. We developed a differential 

equation model for the reactions in the network and used the DrugBank database to 

obtain information on 114 FDA approved/investigational drugs that had a target within 

our network. We simulated the addition of each drug to the model in either the 

proliferative or inflammatory phases and observed the foldchange in activity of 8 

network outputs, including collagen I and III protein. Drugs such as Arbutamine, Amyl 

Nitrate and Arsenic Trioxide were predicted to decrease collagen levels during the 

proliferative phase, thereby potentially helping prevent excess ECM deposition. 

Siltuximab and Triflusal were predicted to increase collagen protein during the 

inflammatory phase, thereby working to prevent excess ECM degradation.  
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Introduction 

Fibroblasts are the cells responsible for producing structural proteins that form 

the extracellular matrix (ECM) (Fan et al., 2012). In the heart, fibroblasts account for 

two-thirds of all cells and contribute to myocardial stability, coordinate responses to 

mechanical stimuli and help remodel tissue after cardiac injury (MacKenna et al., 2000). 

One of the most common examples of cardiac injury is an acute myocardial 

infarction (MI). Cardiomyocyte death from an MI triggers a pro-inflammatory cellular 

environment that induces the migration of leukocytes, macrophages and fibroblasts. 

This phase of healing post-MI, deemed the “inflammatory phase”, is characterized by 

ECM degradation by fibroblasts and the subsequent clearing of dead cells by 

macrophages. As dead cells are cleared out of the infarct, secretion of signaling 

molecules such as Transforming Growth Factor Beta (TGFb) marks the end of the 

inflammatory phase and beginning of the “proliferative phase”. Since adult 

cardiomyocytes are terminally differentiated, there is no possibility of new heart cells 

growing to replace the dead cells. Therefore, in the proliferative phase, fibroblasts 

themselves proliferate and deposit collagen in the infarct (Dobaczewski et al., 2010).  

The wound healing process post-MI is tightly controlled, in that ECM breakdown 

during the inflammatory phase must be balanced with deposition of collagen in the 

proliferative phase. Pathological remodeling with excessive ECM breakdown and 

insufficient collagen deposition can lead to cardiac dilation. On the other hand, 

insufficient ECM breakdown and excessive collagen deposition can lead to cardiac 

fibrosis. Both dilation and fibrosis eventually lead to heart failure, which currently affects 
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over 23 million people worldwide and costs the United States healthcare system $32 

billion dollars a year (Bui et al., 2011; Mozaffarian et al., 2015). Since fibroblasts are the 

cells responsible for remodeling the ECM, it would be ideal to therapeutically target their 

activity to prevent heart failure.  

Currently, it is not clear what drug(s) would best modulate production of ECM by 

fibroblasts because relevant proteins or signaling pathways are typically studied in 

isolation. Previous studies have examined the effects of disrupted IL-1 signaling on 

cardiac remodeling (Bujak et al., 2008) or have shown that Angiotensin II Receptor 

inhibitors decrease collagen production and secretion in fibroblasts (Lijnen et al., 2000). 

However, there have not been studies that combine multiple fibroblast signaling 

pathways in order to examine gene expression and protein activity across the 

inflammatory and proliferative phases. In this study, we adopted a systems biology 

approach to perform a comprehensive, mechanistic drug screen using an 

experimentally validated fibroblast signaling network. The overall goal of the study was 

to identify drugs that could control/modulate cardiac fibroblast activity and prevent the 

development of heart failure.  

Drugs likely affect the heart differently in the inflammatory versus the proliferative 

phases. Our computational model allowed us to simulate those stages of wound healing 

while also enabling us to examine the effects of different drug properties. Specifically, 

we were interested in studying the effects of competitive and non-competitive binding, 

since it has been shown in the literature that drug effects vary depending on whether 

the drug bound its target competitively or non-competitively (Jensen et al., 2016).   
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 Here we developed a methodology that utilizes a cardiac fibroblast signaling 

network to computationally screen for drugs that could prevent excess ECM breakdown 

or deposition. In both the competitive and non-competitive drug simulations, we 

identified Siltuximab and Triflusal as drugs that increased activation of Collagen I (CI) 

and Collagen III (CIII) and Arbutamine, Amyl Nitrate and Arsenic Trioxide as drugs that 

decreased activation of both collagens. We also observed differential effects of 

Arbutamine and Amyl Nitrate on CI & CIII based on whether the drugs were simulated 

as competitive or non-competitive.   

Methods       

Fibroblast Signaling Network 

The cardiac fibroblast signaling network was constructed using data from 

previous experimental studies in the literature. The network incorporated 104 nodes 

(mRNA, proteins and cell processes) connected by 157 reactions and was converted 

into a logic-based ordinary differential equation (ODE) computational model as 

described in previous studies (Kraeutler et al., 2010; Ryall et al., 2012; Zeigler et al., 

2016). The activity of each node was modeled using a normalized Hill ODE with default 

reaction parameters of weight (1), Hill coefficient (1.4) and EC50 (0.6). Each node had 

yinit (0), ymax (1) and a time constant, t, that was scaled based on the type of reaction. 

The network was developed using 84 papers and 34 papers were used to validate the 

prediction of node activity. Overall, the network correctly validated 66 of 82 comparisons 

(80%).  
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DrugBank 

 DrugBank provided a .csv file of 8207 FDA-approved and investigational drugs. 

Using BeautifulSoup 3.0, a Python 

HTML/XML parsing library, we 

data-mined the DrugBank website 

(Law et al., 2014) to extract more 

information such as the drug target 

and type of drug. In MATLAB, we compared the GeneCard IDs of the nodes in our 

network to those of the drug targets to generate a list of 114 drug–node pairs. The 

drugs were further classified as antagonists or agonists to generate a list of 30 unique 

drug–node pairs, a subset of which is shown in Figure 1.  

Simulations 

 The system of ODEs underlying our fibroblast signaling network was generated 

using the Netflux software available at: https://github.com/saucermanlab/Netflux. Netflux 

provided MATLAB files for the model parameters (Weight, Hill Coefficient, etc.) of each 

reaction in the network, the ODE model itself and the initial activation of all the nodes. 

The extracellular environments during the inflammatory and proliferative phases 

were gleaned from the literature (Bujak et al., 2008; Dewald et al., 2004; White et al., 

2001). Specifically, the inflammatory phase was characterized by increased activation of 

IL1, IL6 and Tumor Necrosis Factor Alpha (TNFa) while the proliferative phase was 

characterized by increased activation of Angiotensin II (ANGII), TGFb, Norepinephrine 

(NE), Endothelin 1 (ET1) and Natriuretic Peptide (NP). The upregulation of these 

Figure 1. Four of the 30 unique drug-node pairings.   
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signaling molecules was simulated by increasing the weight of the appropriate input 

reactions. The weights of all input reactions in the model were set to a default value of 

0.25. To simulate the inflammatory phase, for example, the weights for IL1, IL6 and 

TNFa input were increased to 0.5. 

Un-perturbed simulations, without the addition of any drugs, were run using 

MATLAB ODE15s to establish baseline activation in the wound healing phase being 

simulated. We ran four perturbed simulations for each drug: 1) Inflammatory phase, 

simulating the drug as competitive, 2) Inflammatory, drug as non-competitive, 3) 

Proliferative, drug as competitive, 4) Proliferative, drug as non-competitive.  

All simulations took the type of drug into account: agonist or antagonist. Briefly, 

agonists increase activity of their targets while antagonists decrease activity. We also 

took the drugs’ mechanisms – either competitive or non-competitive – into 

consideration. Figure 2 shows the 

effect of simulating the addition of 

an antagonist that acts on a simple, 

A ® B reaction. The blue curve 

depicts the activation of B without 

the addition of a drug. The orange 

curve shows the characteristic 

response after the addition of a 

competitive antagonist in which there 

is a change in the EC50 – the drug concentration required to achieve half maximal 

Figure 2. The responses to a competitive and non-competitive 
antagonist. The competitive curve shifts to the right, changing the 
EC50 but not the maximal activation. The non-competitive curve is 
scaled down, changing the maximal activation but not the EC50.   
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response – but not the maximal activation. The yellow curve depicts the characteristic 

response after the addition of a non-competitive antagonist in which there is a change in 

maximal activation but not in the EC50.  

The Hill Equation used to calculate activation of the nodes was:  fact(X) = w βXn

Kn+Xn 

‘b’ and ‘K’ were parameters used to constrain the function such that fact(0) = 0,   

fact(EC50) = 0.5 and fact(1) = 1. ‘X’ is the activation of the node directly upstream, ‘w’ is 

the weight of the reaction and ‘n’ is the Hill Coefficient (set to 1.4 in our model).  

We ran non-competitive simulations by altering the weight(s) of the reaction(s) in 

which the drug target was a product. For example, the drug Benazepril is an antagonist 

that targets Angiotensin Converting Enzyme (ACE). There was only one reaction in our 

network that fed into ACE (TGFB1R ® ACE), so when simulating the addition of 

Benazepril, we decreased the weight of that reaction to 50% of its default value. For 

agonists, we increased the weights to 150% of their default values. The weights could 

be scaled differently to model different doses.  

We ran competitive simulations by altering ‘X’, the activity of a node’s upstream 

regulator(s). Specifically, in order to achieve the shift in EC50 without changing the 

maximal activation, the Hill Equation became fact(X-a) = w β(X-a)n

Kn+(X-a)n
 where ‘a’ was positive 

for agonists and negative for antagonists.  

Simulations without drugs were run to steady state and afterwards, we ran the 

simulations with competitive or non-competitive drugs. The steady state activations of 

all nodes were recorded, paying special attention to Alpha Smooth Muscle Actin 

(aSMA), Matrix Metalloproteinases (MMP) 1, 2 & 9, CI & CIII protein, and CI & CIII 
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mRNA. The foldchange was calculated by dividing the steady state, un-perturbed 

activation by the steady state, perturbed activation.    

Results 

Non-Competitive Simulations 

  

 The heatmap seen in Figure 3 depicts the effects on 8 selected outputs of the 

network when the 30 drugs were modeled non-competitively in the inflammatory 

environment. Siltuximab and Triflusal were considered promising drugs in this phase of 

wound healing because they would increase CI & CIII levels and help prevent excess 

ECM degradation.  
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The non-competitive simulations were re-run for the proliferative phase post-MI. 

Arbutamine, Amyl Nitrate and Arsenic Trioxide were considered promising drugs in this 

phase of wound healing because they would decrease CI & CIII levels and help prevent 

excess ECM deposition (Figure 4).  
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Competitive Simulations 

 

We simulated the same drugs in the same environments, this time modeling the 

drugs as competitive agonists/antagonists. As seen with the non-competitive, 

inflammatory simulations, Silutimab and Triflusal were the promising drugs that 

increased CI & CIII levels (Figure 5).  
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  Arbutamine, Amyl Nitrate and Arsenic Trioxide continued to be the promising 

drugs in the proliferative phase of wound healing. However, the competitive simulations 

show an increase in the effect the three drugs had on CI & CIII, as seen by the darker 

blue bars in Figure 6.  
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Effects of Promising Drugs on CI/CIII 

 

 Figure 7 summarizes the effects of the five promising drugs on CI & CIII. The 

data for Arbutamine, Amyl Nitrate and Arsenic Trioxide were from the proliferative 

simulations while the data for Siltuximab and Triflusal were from the inflammatory 

simulations. All drugs affected CI and CIII equally, resulting in the same foldchange 

values for both proteins. Siltuximab, with foldchange effects of 1.0357 and 1.0324 for 

the competitive and non-competitive simulations respectively and Triflusal, with 

foldchange effects of 1.0439 and 1.0271, were barely above a foldchange of 1, which 

would indicate no effect at all.  

 Arbutamine and Amyl Nitrate displayed the largest change in activity between the 

competitive and non-competitive simulations. Arbutamine’s effects on CI/CIII increased 
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7-fold in the competitive simulations (0.1283 non-competitive to 0.8895 competitive) and 

Amyl Nitrate’s effects increased 10-fold (0.0823 to 0.8439).   

Altered Effects in Competitive and Non-Competitive Simulations  

 

 As discussed in Jensen et al., we observed changes in drug effects based on 

whether the drugs were simulated as competitive or non-competitive. Specifically, 

Arbutamine and Amyl Nitrate had no effects on CI or CIII when simulated as non-

competitive agonists, but decreased both proteins’ activities when simulated as 

competitive agonists (Figure 7).  
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Discussion 

 In this study, we developed a methodology that utilized a cardiac fibroblast 

signaling network to computationally screen for drugs that could prevent excess ECM 

breakdown or deposition. We compared drug action in two different wound healing 

environments and examined how drug mechanisms (Competitive and Non-Competitive) 

altered the drugs’ effects. In both the competitive and non-competitive simulations, 

Siltuximab and Triflusal were found to prevent excess ECM breakdown while 

Arbutamine, Amyl Nitrate and Arsenic Trioxide could prevent excess ECM deposition. 

We also observed differential effects of Amyl Nitrate and Arbutamine on CI & CIII based 

on whether the drugs were simulated as competitive or non-competitive. Specifically, 

the two drugs had a greater effect on collagen if modeled as competitive.    

 In their 2016 paper reviewing the status quo of research for the treatment of 

myocardial fibrosis, Gyöngyösi et al. discussed the importance of high throughput 

screening (HTS) to allow for the testing of thousands of drugs and the subsequent 

measurement of multiple biological parameters to determine the drugs’ efficacies 

(Gyöngyösi et al., 2017). Many studies have developed techniques to conduct these 

types of screens as recently as Kithcart et al., who used Zebrafish embryos for 

experimental HTS of cardiovascular drugs (Kithcart and MacRae, 2017). However, 

Gyöngyösi et al. also stress the importance of leveraging the increasing power of 

computers to conduct purely computational drug screens. Our study is the first in its 

field to use a computational model of fibroblast signaling to identify drugs that have the 

potential to prevent dilation and fibrosis. We developed a methodology to both identify 
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drugs of interest from a database and run simulations of adding those drugs to our 

network. Our drug simulations were able to reflect, to some degree, the complexity of 

drug-target interactions by accounting for the type of drug and type of drug binding. At 

its core, this project resulted in the identification of drugs that could prevent excess 

ECM breakdown or deposition, which can now be tested using in vitro models.  

 Luo et al. showed Arsenic Trioxide to be anti-fibrotic by studying its inhibition of 

bleomycin-induced pulmonary fibrosis (Luo et al., 2014). Although the Luo study aligns 

with our simulations of Arsenic Trioxide, many of the promising drugs we identified have 

not been studied for their cardio-protective effects. However, the results of our 

simulations could lead to studies that repurpose drugs for use in post-MI treatment. For 

example, Siltuximab, which was approved by the FDA in 2014 to treat Castleman’s 

disease (Barquero, 2015), is currently being studied as a potential chemotherapy drug 

(Chen and Chen, 2015; Hunsucker et al., 2011) and, based on the results of our work, 

could be studied as a collagen enhancing drug as well.  

 One of the limitations of our signaling network is its complete focus on 

fibroblasts. Other cell types, such as macrophages, play a critical role in collagen 

degradation and synthesis post-MI. Studies such as Yano et al. showed that injecting 

macrophage colony-stimulating factor into rats that recently had an MI increased the 

levels of CI and CIII in the heart (Yano et al., 2006).  

 Future work will involve expanding the network to include other proteins and 

signaling molecules involved in collagen production/deposition. It is likely that 

computational modeling’s role in drug screening will expand in the coming years.  
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