
Proactive Resource Management to Ensure
Predictable End-to-End Performance for

Cloud Applications

A Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

in partial fulfillment
of the requirements for the degree

Doctor of Philosophy

by

In Kee Kim

May 2018

APPROVAL SHEET

This Dissertation
is submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Author Signature:

This Dissertation has been read and approved by the examining committee:

Advisor: Marty Humphrey

Committee Member: Alfred C. Weaver

Committee Member: Yanjun Qi

Committee Member: Hongning Wang

Committee Member: Byungkyu Brian Park

Committee Member:

Accepted for the School of Engineering and Applied Science:

Craig H. Benson, School of Engineering and Applied Science

May 2018

Proactive Resource Management to Ensure
Predictable End-to-End Performance for Cloud

Applications

A Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

in partial fulfillment

of the requirements for the degree

Doctor of Philosophy

by

In Kee Kim

May

2018

APPROVAL SHEET

The dissertation

in submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

In Kee Kim

AUTHOR

The dissertation has been read and approved by the examining committee:

Marty Humphrey (Advisor)

Alfred C. Weaver (Committee Chair)

Yanjun Qi

Hongning Wang

Byungkyu Brian Park

Accepted for the School of Engineering and Applied Science:

Craig H. Benson, Dean, School of Engineering and Applied Science

May
2018

Abstract

Public IaaS clouds have become an essential infrastructure for enterprises and re-

search organizations to run applications/services because of attractive capabilities

from the public clouds. i.e., scalability, elasticity, resource diversity, and cost effi-

ciency. Predictive resource management systems are developed to fully leverage such

cloud infrastructures with two interrelated goals: maximizing SLA (Service Level

Agreement) satisfaction and minimizing execution cost. However, existing predictive

approaches are not sufficient to meet these two goals due to two uncertainties in pub-

lic IaaS clouds – workload uncertainty and performance uncertainty –, and often show

insufficient performance and adaptability in predicting future workloads and guaran-

teeing performance SLA. As a result, existing methods incur frequent SLA violations

and require high execution cost.

This dissertation is to address such problems to achieve proactive resource man-

agement that assures end-to-end performance of cloud applications on public IaaS

clouds. This research includes three important mechanisms for this direction.

The first mechanism is CloudInsight that addresses the workload uncertainty.

CloudInsight is a novel prediction framework for forecasting real-world cloud work-

loads, leveraging the combined power of multiple workload predictors. More specifi-

cally, CloudInsight predicts future workload changes by creating an ensemble model

with multiple workload predictors. The weights of the predictors are determined at

runtime based on their accuracy for current workload using multi-class regression.

We evaluated CloudInsight with various workload traces from real-world cloud ap-

plications. The results show that CloudInsight has 13% – 27% better accuracy than

state-of-the-art predictors for all traces. Moreover, the results from a trace-based

simulation with a representative resource management module show that CloudIn-

sight has 15% – 20% less under-/over-provisioning periods, resulting in better cost

efficiency and lower SLA violations than existing predictors.

The second mechanism is Orchestra that handles the performance uncertainty.

Orchestra is a cloud-specific framework for controlling multiple cloud applications in

the user space, aiming at meeting corresponding SLAs. Orchestra takes an online

approach with lightweight monitoring and creates performance models for multiple

cloud applications on the fly. It then optimizes the allocations of shared resources

(e.g., CPU, memory, IO, network) and controls the resources to satisfy SLAs. We

evaluated the performance of Orchestra on a production cloud (Amazon EC2) with a

diverse range of SLA requirements. The results show that Orchestra guarantees the

performance of latency-sensitive/user-facing cloud applications (e.g., Web, DBMS)

to meet the SLA requirements at all times. Moreover, we measured the accuracy of

performance models in Orchestra framework, and the results often show less than

10% errors in estimating the performance of cloud applications.

In addition to the mechanisms that solve two main uncertainties in the public

clouds, we present a new cloud simulator – PICS – that supports large-scale perfor-

mance evaluation of cloud applications and resource management systems in a short

amount of time. PICS enables the cloud end-users to evaluate the cost and perfor-

mance of public IaaS clouds along with such dimensions like VM and storage service,

resource scaling, job scheduling, and diverse workload patterns. We extensively val-

idated PICS by comparing its results with the data acquired from real public IaaS

cloud using real cloud-applications. We show that PICS provides highly accurate

simulation results (less than 5% average simulation errors) under a variety of use

cases. Furthermore, we evaluated PICS’ sensitivity with imprecise simulation param-

eters. The results show that PICS still provides very reliable simulation results with

inaccurate simulation parameters and performance uncertainty.

Acknowledgements

The six years at the University of Virginia were the best time of my life, but it was

not so easy. I could not finish this long journey without support, advice, devotion,

and sacrifice of many people. I would like to express my gratitude to them in this

section.

First of all, my sincere gratitude goes to my adviser, Marty Humphrey. Without

his guidance and help, I would never be able to finish my dissertation. I am fortunate

to have him as my advisor. He gradually trained and taught me with insightful ideas

and questions, rather than just providing answers. He was patient, always stood

with me, and encouraged me. Working with Marty was very enjoyable and wonderful

learning experience, and it made me an independent researcher. Marty is not only

a research advisor but also a great mentor for my life. Now he is the role-model for

rest of my life in academia.

I would like to thank Yanjun Qi for her help and contribution to this dissertation.

This dissertation started with a small idea from her Advanced Machine Learning

class. I am very lucky to have a long collaboration with her. She helped me and

encouraged me to come up with new ideas for research problems I had.

I would like to thank Alfred C. Weaver for serving as the dissertation committee

chair. I really enjoyed numerous hallway talks with Alf on the fifth floor at Rice

Hall. Chatting with him was an excellent refreshment, and he gave me great and

constructive advice for my research, life, career development.

I would like to thank Hongning Wang for being my committee. He gave me

sharp questions and comments on my dissertation. I learned a lot from his respectful

personality, research, and teaching. It was my honor to be his first TA at UVA.

I would like to thank Byungkyu Brian Park for being my dissertation committee.

He gave me invaluable suggestions, supports, and questions when I had trouble to

develop ideas for this dissertation project. Also, I respect his devotion to Korean

Scientist Community at UVA.

I would express special thanks to Kevin Skardon, the chairperson of Computer

Science department. Kevin is the best department chair and leader I have ever met,

and his strong leadership keeps developing this department. He gave me great advice

when I made the most difficult decision for my future career. Also, he was the

committee chair for my qualifying defense. Without his support and encouragement,

I would not complete my degree program.

It was my honor to contribute this department as TA for many semesters. Some-

times I complained it, but TA was a wonderful experience in understanding students

from different cultures and learning how efficiently teach them. Also, I would like

to thank my UVA teachers for giving me such opportunities. Thank you, Marty

Humphrey, Hongning Wang, Mark Floryan, Aaron Bloomfield, Ahmed Ibrahim, Mark

Sherriff, and David Edwards.

I would like to mention Wei Wang for his truthful friendship. Wei and I had

shared the same office for years, and he is my best friend and mentor. I remember

many days and nights we discussed and exchanged ideas about our research and life.

We both have the same difficulty as an old graduate student with family and were

struggling for the work and life balance. He was my comrade who fights with the

same research problems as well. I hope he has a very successful career in academia.

I would like to say thank you to Jinho Hwang at IBM Research. I met him during

my internship at IBM T.J. Watson Research Center in 2016 summer. We became

a good friend and started a collaboration for Orchestra project. He is progressive,

hard-working and brilliant.

I would also like to thank Sai Zeng at IBM Research. She was my mentor during

my internship and gave me a very interesting and challenging research problem in

enterprise cloud computing. Working with her was very pleasant because she is

insightful, smart and goal-oriented.

For the last six years at UVA CS, I am so grateful to have many friends who are

humorous, elegant, smart, and hard-working. They are Avinash, Ritambhara, Dezhi,

Chong, Jack, Lin, Anindya, Sarah, Xinfei, Sourav, Nathan, Vanamala, Swaroopa,

Abu Mondol, Asif, Jake, Yann, Samyukta, Akshay, Chi, Mohsin, Nipun, Ifat, Yong,

Haoran, David, Rohan, Essex, Chunkun, and so many friends that I cannot list them

all. Thank you all for your friendship, support, and peer pressure.

Also, I would like to thank my Korean friends here in Charlottesville. Thank

you, Min-Kyu’s family, Gwansik’s family, Chaeyoon’s family, Seungwook’s family,

Cholkyu’s family, Changbum’s family, Minjae’s family, Taeyoung, Sung-In, Austin,

Francis, and Hyewon Jin.

My friends in Korea should be mentioned here. They always encouraged me by

Facebook and Kakao talk messages. Thank you, Ji Seong, Seokju, Boknam, Seongsoo,

Kirk, Seungchan, Ji-ae, Sungho, Insik, Hyunghoon, James Song, Jungmin, and many

others. And, I would like to thank my former advisor, Jong Sik Lee, for his help when

I decided to start the doctorate program in the U.S.

I would never be able to accomplish anything in my life without endless support

from my family and family-in-law. Thank you, my parents – Wan Young Kim and

Jongrye Park –, for their love, understanding, support, and advice during this long

journey. I would also like to thank my older sister’s family – Hyejin Kim, Yongjae

Kim, Chris –, and my younger sister’s family – Haejoo, Wonwook, Eden –, for their

endless love and encouragement.

My family-in-law always stood with me. Their love and support are always in my

heart. Thank you, my parent-in-law – Duck-ki Moon and Youngsook Park –, for their

love and encouragement. Especially, my father-in-law is now in heaven though, I am

sure that he will be very pleased with this achievement. I would also like to thank

sister-in-law – Dr. Yuri –, and brother-in-law’s family – Jongil, Jeongmi, Jiwoo –, for

their support, encouragement, and truthful advice.

Last but not least, my deepest gratitude goes to my wife Jihye and my daughter

Yubin. 6 years ago, I made a crazy decision that I quit my job and started a doctorate

degree in the U.S. I am still wondering. If I could go back to 2012, would I make

the same decision? Jihye had never complained about this decision although she

already knew our life would be in trouble. She just gave up her stable life in Korea

and came to the U.S. with me and two years old baby. Our life in Charlottesville

was tough and nothing was easy. She has endured all the difficulties. Thank you for

her love, patience, and understanding during this long journey. Yubin is the most

delightful part of my family. Yubin has cheered me up to finish this dissertation and

found several typos in my papers. Without Jihye and Yubin, this achievement is

meaningless.

To Yubin and Jihye

Contents

1 Introduction 2

1.1 Background: Cloud Computing . 3

1.1.1 Cloud Service Models . 4

1.2 Cloud Resource Management Problem 6

1.3 Research Challenges . 8

1.3.1 Challenge 1: Uncertainty in Future Workload Pattern 8

1.3.2 Challenge 2: Uncertainty in Cloud Application Performance . 9

1.3.3 Challenge 3: Difficulty in Large-scale Evaluation of Resource

Management Systems and Cloud Applications 10

1.4 General Approach . 11

1.5 Contributions . 12

1.6 Thesis Statement . 13

1.7 Dissertation Organization . 14

2 Related Work 15

2.1 Cloud Workload Prediction . 15

2.2 Cloud Performance Model . 17

2.3 Cloud Performance Interference . 18

2.3.1 Cloud/Infrastructure provider-centric approach 18

2.3.2 Cloud user-centric approach 19

2.4 Cloud Simulation . 20

3 Empirical Evaluation of Workload Forecasting Techniques for Pre-

dictive Cloud Resource Scaling 23

3.1 Introduction . 23

3.1.1 Chapter Organization . 26

3.2 Workload Predictors . 26

3.2.1 Naive Workload Predictors . 26

i

3.2.2 Regression-based Workload Predictors 27

3.2.3 Temporal (Time-Series)-based Workload Predictors 28

3.2.4 Non-temporal Workload Predictors 29

3.3 Experiment Design . 30

3.3.1 Design of Cloud Resource Management System 30

3.3.2 Cloud Workload Patterns . 33

3.3.3 Implementation Details . 34

3.4 Evaluation . 35

3.4.1 Evaluation of Accuracy for Workload Predictors 35

3.4.2 Performance of Different Styles of Predictive Scaling 37

3.5 Discussion . 45

3.5.1 Mixing Workload Predictors 45

3.5.2 Ensemble of Top Predictors 46

3.6 Chapter Summary . 46

4 CloudInsight: Addressing Dynamic and Multi-Type Cloud Work-

loads in Predictive Scaling 48

4.1 Introduction . 48

4.1.1 Chapter Organization . 50

4.2 Approach: CloudInsight . 50

4.2.1 Workflow of CloudInsight . 51

4.2.2 Predictor Pool . 52

4.2.3 Workload Repository . 53

4.2.4 Ensemble Predictor Builder 54

4.2.5 Implementation of CloudInsight 56

4.3 Performance Evaluation . 57

4.3.1 Evaluation Setup . 57

4.3.2 Evaluated Workloads . 59

4.3.3 Prediction Accuracy of CloudInsight 60

4.3.4 Overhead of CloudInsight . 66

4.3.5 Case Study: Predictive Resource Management 67

4.4 Sensitivity Analysis of CloudInsight with More Predictors 69

4.5 Chapter Summary . 71

ii

5 Orchestra: Guaranteeing Performance SLA for Cloud Applications

by Avoiding Resource Storms 73

5.1 Introduction . 73

5.1.1 Chapter Organization . 76

5.2 Background . 76

5.2.1 Enterprise Cloud Instances . 76

5.2.2 Can Autoscaling be a Solution for Resource Storms? 77

5.2.3 User Space Resource Control 78

5.3 Orchestra Framework . 79

5.3.1 Orchestra Overview . 79

5.3.2 Response Time Estimator for Foreground Applications 81

5.3.3 Performance Models for Background Services 84

5.3.4 Orchestra Resource Optimizer and Controller 86

5.4 Implementation . 88

5.5 Performance Evaluation . 89

5.5.1 Evaluation Setup . 89

5.5.2 Overall Performance with Foreground Workloads 90

5.5.3 Orchestra Accuracy . 96

5.5.4 Orchestra Overheads . 100

5.6 Chapter Summary . 100

6 PICS: A Public IaaS Cloud Simulator 102

6.1 Introduction . 102

6.1.1 Chapter Organization . 104

6.2 Simulator Design . 105

6.2.1 Simulator Design Overview 105

6.2.2 Simulator Internals . 107

6.3 Simulator Validation . 111

6.3.1 Experiment Setup . 111

6.3.2 Horizonal Scaling Cases . 114

6.3.3 Vertical Scaling Cases . 118

6.4 Discussion . 120

6.5 Chapter Summary . 122

7 Conclusion and Future Work 124

7.1 Conclusion . 124

iii

7.2 Future Work . 126

7.2.1 Support for Cloud Function and Serverless Architecture 126

7.2.2 Assuring Application Performance for Large-scale Data Science

Pipelines . 127

7.2.3 Distributed Resource Management for Cloud IoT and Edge

Computing . 128

1

Chapter 1

Introduction

For many organizations today, the issue is not whether to use public IaaS (Infrastruc-

ture as a Service) clouds1 [5, 67, 144, 167], but rather how best to use public IaaS

clouds [171]. Public IaaS clouds offer a diverse type of virtualized computing and

storage resources, cost efficient pay-as-you-go pricing models, and higher availability,

scalability and elasticity of resources than other traditional computing platforms [16,

81]. These advantages make public IaaS clouds as the primary computing infrastruc-

ture for hosting diverse cloud applications2 and services3 in industry, research and

academic institutions.

To effectively leverage public IaaS clouds, application service providers employ

resource management systems that control virtualized cloud resources to handle dy-

namic changes of workloads. i.e, job4 and request arrivals. Figure 1.1 illustrates a

cloud application operation model with a resource management system. Three enti-

ties are involved in this model; 1) cloud end-users, 2) public IaaS clouds, and 3) a

resource management system.

Cloud end-users generate workloads or resource demands to target cloud applica-

tions and include diverse groups with their interests in cloud applications. i.e., users

for big data analytics, web services, scientific application, etc. Public IaaS clouds

are the infrastructure that provides on-demand cloud resources such as VMs (Virtual

Machines), containers, storage, network, and others. These on-demand resources host

cloud applications that process jobs from the cloud end-users. Resource management

1The public IaaS clouds includes Amazon Web Services [5], Microsoft Azure [144], Rackspace
[167], Google Compute Engine [67], etc.

2These cloud applications include business, scientific and big data analytics applications.
3The cloud services include web search (e.g. Microsoft Bing), social networks (e.g. Facebook),

e-commerce services (e.g. eBay), and on-demand video streaming services (e.g. Netflix).
4In this dissertation, we use the term “job” and “request”, interchangeably.

2

Figure 1.1: Application Operation Model in Public IaaS Clouds.

system plays the most important role in this cloud application operation model. This

system is responsible for finding proper cloud resources (in public IaaS clouds) to ex-

ecute the jobs (from cloud end-users) with the objectives of satisfying SLA (Service

Level Agreement) targets and minimizing execution cost [6, 15, 60, 64, 68, 94, 140].

The real-world examples of SLA targets are maintaining a response time/tail latency

of user requests or completing job execution within a user-defined deadline [40, 94, 95,

114, 122, 186]. With these two goals, the resource management system adopts various

mechanisms that automatically scales clouds resources for the cloud applications to

process the jobs from cloud end-users.

1.1 Background: Cloud Computing

Cloud computing is the latest evolution of distributed computing technologies, and it

delivers various computing resources – servers, storage, network, databases, contain-

ers, even applications – as a service over the Internet [16, 135]. A collective power

with the massive amount of computing resources provided by “cloud computing and

its underlying data center technologies” handles the resource needs of diverse (and

globally deployed) applications from enterprise and research organizations.

Elasticity is a key characteristic of cloud computing and differentiates clouds from

existing large-scale computing infrastructure like grid or cluster computing [75]. This

characteristic allows cloud applications to dynamically adjust the amount/type of

resources according to the fluctuation of workloads to them. For instance, cloud

3

applications provision the minimal amount of up-front servers when the number of

requests to the applications is very low. And, the applications provision potentially

unlimited amount of servers when the user requests are extremely high. According to a

recent report [184], Netflix (hosted by Amazon Web Services) occupied approximately

37% of Internet traffic during peak hours in 2015.

Moreover, the elasticity of cloud computing reduces TCO (Total Cost of Owner-

ship)5 for applications and service infrastructure because application service providers

and users are only responsible for paying cloud cost while the resources are provi-

sioned. This is called “pay-as-you-go” pricing model [16]. According to a cost anal-

ysis report [146], migrating applications and infrastructures to a cloud provider can

save nearly 40% of TCO for three years. Due to these advantages of cloud comput-

ing, many enterprise and research organizations can dramatically save the up-front

investment and management cost for on-premise infrastructures.

1.1.1 Cloud Service Models

Cloud computing provides different service models to cloud users and applications

service providers. These services can be classified into four different models such as

IaaS (Infrastructure-as-a-Service), PaaS (Platform-as-a-Service), SaaS (Software-as-

a-Service), and XaaS (Everything-as-a-Service). Figure 1.2 illustrates key differences

of legacy on-premise model, IaaS, PaaS, and SaaS cloud models. Among three cloud

models, IaaS requires substantial management efforts to users and SaaS requires the

least efforts to the underlying infrastructures. In other words, IaaS cloud users have

more freedom to manage and control the underlying infrastructure and SaaS users

least access to these infrastructures.

Infrastructure-as-a-Service (IaaS): The IaaS model offers diverse virtualized and

infrastructure resources as a form of services to cloud users. The infrastructure re-

sources include VM (Virtual Machine), storage, network, and other on-demand re-

sources. Common types of cloud resources provided by IaaS model is VM. Users and

customers for IaaS model are responsible for managing software stacks for running the

resources. i.e., OS, software installation. The IaaS model is the closest to traditional

on-premise infrastructure. The providers for this model are Amazon Web Services [5],

Microsoft Azure [144], Google Compute Cloud [67], and Rackspace [167]. Moreover,

5TCO includes CapEX (Capital Expenses), OpEX (Operating Expenses), and indirect busi-
ness/management costs.

4

Figure 1.2: The key differences between three cloud models (IaaS, PaaS, and
SaaS) and on-premise model. Green boxes are users’ responsibility, and
orange boxes are cloud service providers’ responsibility. Figure courtesy
of BMC software [197].

users, companies, and many other organizations can create IaaS infrastructure by us-

ing open-source softwares. OpenStack [158] and Apache CloudStack [14] are widely

used to build IaaS infrastructure.

Platform-as-a-Service (PaaS): The PaaS model provides a platform service that

allows users to develop, test, debug, and run applications without managing infras-

tructures and software stacks. The platforms commonly include OS, development/test

environments, databases, storage, and middlewares for running applications. The

most important characteristic of PaaS model is that users can develop and execute

applications and have no needs for managing underlying infrastructure. However, be-

cause PaaS model is built on top of different infrastructures, it often limits the type

of programming languages and software stacks (OS or databases). The providers of

PaaS model are Google App Engine [65], IBM Bluemix6 [84], and Heroku [79].

6As of October 2017, IBM Bluemix is changed to IBM Cloud [84].

5

(a) Autoscaling Operation (b) Under/Over-Provisioning

Figure 1.3: Autoscaling Operation and Under/Over-Provisioning Problem.
The dotted line (red) indicates the resource demands/number of requests
from cloud end-users and the bold line (blue) means the number of cloud
instances.

Software-as-a-Service (SaaS): The SaaS model provides on-demand softwares over

the Internet. Cloud users for the SaaS model have no requirement for software in-

stallation and development as well as infrastructure management. The SaaS model

providers are Salesforce [175], Box [23], AWS EMR (Elastic MapReduce) [7], and

others.

Everything-as-a-Service (XaaS): The XaaS models are a more specialized form

of delivering platform or services over the Internet. Typical examples are Storage-

as-a-Service, DB-as-a-Service, API-as-a-Service, Container-as-a-Service, Function-as-

a-Service, and others. As the readers guess with the names, these services are more

focused on specific delivery models and applications like databases, storages, contain-

ers, and even cloud functions. As clouds have become more dominant for IT industry

and application delivery models, new XaaS model will appear.

In this subsection, we discussed four representative service models in cloud com-

puting. While all these models are contributing to cloud evolution, this dissertation

work is focused on application and resource management in IaaS clouds. The next

subsection will discuss resource management problems in IaaS clouds.

1.2 Cloud Resource Management Problem

To fully utilize the elasticity of cloud computing, horizontal and vertical scalings have

been proposed for the resource scaling and management operations for cloud appli-

cations. Horizontal scaling is a scale-in/out approach that changes the size/amount

6

Figure 1.4: Predictive Resource Management System.

of cloud resources (e.g., VM) to handle fluctuation of workloads (job arrivals) [6, 68,

131, 132, 140]. Vertical scaling7 is a scale-up/down approach that changes type of

cloud resources with workload dynamics [15]. Between these two scaling approaches,

horizontal scaling is more widely adopted [12, 35, 44, 50, 73, 78, 80]. Unfortunately,

vertical scaling has narrowed applicability and can easily reach to the capacity lim-

itation [173, 205, 211]. Vertical scaling thus is more likely used for limited resource

management domains (e.g., DVFS [115], CPU [189] and memory scaling [185]) rather

than general cloud application and resource management domains.

Due to the limitation of vertical scaling, autoscaling [6, 68, 140] is a de facto

approach for horizontal scaling in cloud applications and is applied to various real-

world cloud applications/services like Netflix’s Fenzo [149] and Facebook [204]. Fig-

ure 1.3(a) illustrates a fundamental mechanism of this scaling approach. Autoscaling

mechanisms and triggers monitor the utilization and behavior of current resources

and adjust the size/amount of resources according to the fluctuation of workloads

and user-defined rules (e.g., upper-/lower-bound of CPU usage). However, as shown

in Figure 1.3(b), autoscaling can often be sub-optimal because of its reactive na-

ture [150]. The reactive nature often results in over- and under-provisioning of cloud

resources that causes low cost efficiency and high SLA (violations. To overcome such

limitations, many predictive resource management systems have been proposed [21,

28, 31, 47, 60, 61, 64, 92, 154, 161, 162, 174, 181, 203, 207].

7Vertical scaling replaces a low-performance instance (eg., an instance with less CPU cores) with
a high-performance instance (e.g., an instance with more CPU cores) when workload increases.
Vertical scaling also changes an instance type from a high-performance VM to a low-performance
VM when workload decreases.

7

Figure 1.4 depicts a typical predictive resource management system. The predic-

tive resource management systems commonly consist of three modules; a workload

predictor, application performance model, and resource management module. The

workload predictor forecasts future job arrival time/rate from the cloud end-users.

The application performance model estimates execution/processing time of the work-

loads. The last component – resource management module – allocates/deallocates

cloud resources and maps user workloads to specific cloud resources. To achieve

desired SLA satisfaction and cost efficiency of cloud applications, the decision and

operation of the predictive resource management system are heavily relying on the

results from two predictive modules. The workload predictor and application perfor-

mance model provide crucial information to when or what to scale cloud resources.

However, state-of-the-art approaches are still sufficient to achieve the desired perfor-

mance for cost efficiency and SLA satisfaction due to deficient performance of these

two predictive modules. The main causalities are two uncertainties in public IaaS

clouds, namely workload uncertainty and performance uncertainty.

Therefore, the overall goal of this research is to mitigate such uncertainties and

create new predictive resource management system for cloud application providers.

This work first focuses on designing highly accurate workload predictor and applica-

tion performance models, then combining them with a resource management module

to assure predictable performance of cloud applications.

1.3 Research Challenges

To achieve the goal of predictive resource management, there are three research chal-

lenges. These three research challenges involve prediction of future workload patterns

from real-world cloud applications, prediction of performance of cloud applications, as

well as efficient evaluation of large-scale cloud applications. The following subsections

describe the details of three challenges.

1.3.1 Challenge 1: Uncertainty in Future Workload Pattern

A widely used assumption, when developing/deploying cloud applications, is that

cloud workload can be one of the following four patterns [58, 131, 193]. These four pat-

terns are increasing/decreasing, on/off, cyclic bursty, and random (bursty) pattern.

The increasing pattern is often observed for very successful start-up cloud applica-

tions. (the decreasing workload is opposite case.) The on/off pattern is modelled with

8

batch or scientific applications like Hadoop/MapReduce and MPI applications. The

cyclic bursty represents cloud application scenarios of e-commerce and on-demand

video-streaming services. i.e., Amazon, eBay, Netflix, Hulu. The random (bursty)

can be shown in cloud applications when unexpected social events happen.

With the above assumption, cloud practitioners may determine the workload pat-

tern to their applications. Although the workload pattern is known a priori, designing

a workload predictor for predictive resource management is still difficult for many rea-

sons. First, long-term observation and measurement efforts are required to correctly

understand the behaviors of user workloads. Such observation and measurement steps

are necessary for selecting a proper model and tuning parameters in the prediction

model. Also, the user workload may contain a certain level of burstiness and ran-

domness that can easily degrade the performance of the workload predictor [2, 88].

Furthermore, many large-scale cloud applications (e.g., SNS, web search, multi-

media streaming, big data) are globally deployed and handle workloads coming from

all around the world, so that their workload patterns are the mixture of individual

patterns and can be continuously fluctuating over time [33, 34, 169, 170, 187, 200,

201]. Thus, the above assumption is no longer valid for such applications and the

dynamics in cloud workloads makes this challenge even harder.

There are several approaches for predicting future workloads [28, 46, 76, 89, 125,

127, 154, 164, 181, 203]. However, these approaches are inaccurate, because they did

not consider the dynamics and mixture of cloud workloads.

1.3.2 Challenge 2: Uncertainty in Cloud Application Perfor-

mance

Performance uncertainty has become a norm for cloud applications in public IaaS

clouds [62, 71, 85, 101, 120, 130, 160, 178]. This performance uncertainty can be

caused by diverse factors. i.e., complex workloads to data centers, multi-tenancy on

shared servers, and hardware heterogeneity in cloud data centers. In our previous

work [104], it is observed that AWS (Amazon Web Services) has approximately 20%

in performance uncertainty (variability) when a cloud (MapReduce) application ex-

ecutes the same jobs on the same type of VMs in the same data center. Due to

the performance uncertainty, it is very challenging for a resource manager and cloud

applications to satisfy SLA requirements from the cloud users.

Another causality of the performance uncertainty, which many cloud practition-

9

ers may neglect, is co-runners on the same VM instance. Due to the evolution of

microservice and orchestration infrastructures, it is prevalent for VM instances to

run multiple Docker containers [4, 51, 52, 69, 116, 137, 141]. The execution of these

Docker container is not coordinated, and one or more Docker containers can sud-

denly consume the substantial portion of VM resources (e.g., CPU, memory, IO,

network). Therefore, services/applications on other containers do not provide desired

performance for satisfying their SLA requirements due to the lack of resources and

performance interferences from the containers with high resource consumption.

There are several approaches to minimize this performance uncertainty to assure

the performance of cloud applications. Unfortunately, these approaches rely on the

host machine’s system/HW-level statistics (e.g., program counter and cache miss

rate) [43, 102, 148, 156, 208, 214, 216]. Therefore, it is not feasible for cloud service

providers to apply such mechanisms to cloud resource/application management due

to the unobservability problem [62].

1.3.3 Challenge 3: Difficulty in Large-scale Evaluation of Re-

source Management Systems and Cloud Applications

Cloud applications on public IaaS clouds and the resource management systems are

typical large-scale distributed systems that should potentially handle the massive

amount of jobs/requests from cloud end-users and diverse types/sizes of cloud re-

sources. Unfortunately, evaluation approach to such large-scale cloud applications is

still under-developed.

A typical approach for evaluating such large-scale cloud applications, taken by

many organizations today, getting started is that a few cloud experts and application

developers within the organization deploy a small-scale test cloud-application on the

public cloud of choice. Then, the next steps are to scale-up the test cloud-application

to better assess the capabilities and viability in the context of the organization’s

particular goals and requirements. However, this approach is time-consuming, too

specific to one cloud, and hardly addressing longer-term issues.

Cloud simulators can be alternative to this approach and several cloud simula-

tors [26, 111, 157] are proposed from the research community. These simulators are

generally leveraged for testing diverse use-cases in data center’s design/management

and provide diverse capabilities for addressing infrastructure and data center issues.

However, such simulators have little consideration for handling issues and concerns

10

of perspectives from the cloud service providers, so that these approaches are still

insufficient to be used for evaluating large-scale cloud applications and the resource

management.

To support the large-scale evaluation of cloud applications and resource manage-

ment, the following capabilities are required for a new evaluation platform:

• Being able to answer performance, reliability, and cost concerns from application

service providers.

• Being able to provide a trustworthy simulation/evaluation with performance

and workload uncertainty in public IaaS clouds.

• Being able to simulate/evaluate of a broad range of resource management poli-

cies. i.e., horizontal/vertical scaling, job scheduling, and job failure policies.

1.4 General Approach

The dissertation presents a comprehensive solution that manages diverse cloud re-

sources to assure end-to-end performance of cloud applications by addressing the

challenges discussed in the previous section. More specifically, the approaches are:

1. A holistic evaluation of the performance of existing cloud workload predictors

to determine the best workload predictors for well-known cloud workload pat-

terns. This evaluation is performed with diverse performance metrics including

model accuracy and overhead, cost efficiency and SLA satisfaction rate. Fur-

ther evaluation is performed to determine the best predictive scaling styles (e.g.,

predictive scaling-out, predictive scaling-in, or both) that achieve best cost and

performance benefits of cloud resource/application management.

2. A framework that predicts future variation for real-world cloud workloads, which

have a variety of patterns and dynamic fluctuations. Due to the dynamic nature

and variability of real-world cloud workloads, this framework employs a number

of existing workload predictors and automatically ensembles the best predic-

tors with their unique contribution. To determine the best predictors and the

contribution, this framework employs a SVM (Support Vector Machine)-based

multiclass regression mechanism.

11

3. A model that estimates the performance (e.g., response time, job execution

time) of cloud applications with a set of resource utilization. Based on this

model, a new application/resource control framework is developed to guarantee

the performance SLA (e.g., response time SLA/constraint) of the cloud appli-

cations under the performance uncertainty. More specifically, this framework is

designed to manage a cloud application’s performance when it is running with

other co-runners (e.g., different cloud applications, containers) on the same VM

instances and is competing with them to consume shared resources.

4. A simulator that supports large-scale evaluation of cloud applications and re-

source management and is designed based on the perspectives from cloud ap-

plication service providers. This simulator enables cloud practitioners and ap-

plication designers to test diverse real-world use-cases with different resource

management policies and cloud configurations as well as assess cloud cost and

application performance in a short amount of time without actual applications’

deployment. To provide trustworthy evaluation results, the simulation results

are validated against the measurement results from the real public IaaS clouds.

1.5 Contributions

The most important contribution of this research is that we introduce an innovative

approach for proactive resource management for assuring end-to-end performance of

cloud applications on public IaaS clouds. To this end, we design and develop three

essential components in the resource management system – workload predictor, appli-

cation performance model, and resource scaling and control model, which address the

workload and performance uncertainty with highly accurate prediction and resource

control. More specifically, this research makes the following contributions.

• To determine the best workload predictor for different cloud workload patterns

and best predictive scaling styles (chapter 3), we perform an extensive evalu-

ation of 21 existing workload predictors in prediction accuracy for forecasting

future workload patterns (e.g., job arrivals). Also, we conduct a comprehensive

valuation of workload predictors regarding cost and deadline miss rates. This

evaluation considers various workload patterns, three styles of scaling opera-

tions, and two different billing models. Finally, we determine the best workload

predictor and the best style for predictive resource scaling operations.

12

• To address the workload uncertainty (chapter 4), we create a new workload

prediction framework that is an online, multi-predictor based approach that

performs highly accurate workload prediction with low overhead under dynamic

cloud workloads with various patterns. We also introduce a novel online mecha-

nism to create an ensemble workload predictor. This mechanism assigns weights

to each predictor by accurately estimating that predictor’s relative accuracy for

the next time interval using multi-class regression.

• To address the performance uncertainty caused by co-runners (chapter 5), we

create a cloud application control framework that employs multiple online pre-

diction algorithms with multi-variant regression to proactively monitor the per-

formance and execution of different cloud applications on the same cloud in-

stance. This control framework leverages a user-space resource control frame-

work that aims the fast resource adjustment to violated SLAs and a lightweight

control loop to manage multiple applications/services with SLA constraints on

cloud instances.

• To address the difficulty in large-scale evaluation of resource management sys-

tems and cloud applications (chapter 6), we create a new public IaaS cloud

simulator that is versatile and satisfies cloud user’s various needs of evaluating

cloud-scale applications, resource management mechanisms as well as public

IaaS clouds without actual cloud deployment. This is a first simulator that

supports both horizontal and vertical cloud resource scaling, to the best of our

knowledge. A thorough validation and analysis are performed against the actual

measurement from the public IaaS clouds in order to confirm the correctness of

the simulation results and the simulator’s sensitivity/reliability to the perfor-

mance uncertainty.

1.6 Thesis Statement

Proactive resource management to ensure the predictable end-to-end performance

of public cloud IaaS applications can be achieved through improved cloud workload

predictions and improved cloud application performance modeling.

13

1.7 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 discusses related work

of this research. Chapter 3 presents the performance evaluation of existing workload

forecasting techniques and mechanisms of cloud resource scaling. Chapter 4 presents

CloudInsight framework for predicting diverse, real-world cloud workload patterns.

Chapter 5 presents Orchestra framework to guarantee performance SLA for cloud

application under performance uncertainty and interferences. Chapter 6 presents

PICS simulation framework for evaluating resource management systems and cloud

applications. Chapter 7 summarizes this research and provides directions for future

exploration.

14

Chapter 2

Related Work

This chapter discusses related research work. First, we describe workload predic-

tion techniques for cloud applications (Section 2.1). Then, we discuss research on

building a performance model (Section 2.2) and addressing performance interference

(Section 2.3) for cloud infrastructure and cloud application management. Lastly, this

chapter describes evaluation platform focusing on cloud simulator (Section 2.4).

2.1 Cloud Workload Prediction

A large body of work has been conducted for developing workload predictor to address

dynamic workload patterns in predictive cloud resource management. There are

two major directions in workload predictor research. The first direction is to focus

on predicting the future resource usages (e.g. CPU, memory, and I/O) based on

past resource usage [18, 49, 64, 181, 206]. The second direction is to forecast next

job arrivals to target cloud applications. This direction focuses on predicting the

future job arrival rate/time by applying various workload predictors and is what this

dissertation work is to address.

A wide variety of predictive models/approaches has been proposed to accurately

forecast temporal and other properties (e.g., resource needs, data size) from user

requests. Most notably, employing a static workload predictor is the main stream

of such proposals. Various models from statistical and machine learning domains

are used to design the workload predictor. These models are generally relying on

regression, time-series, and machine learning [18, 46, 89, 153]. Among them, time-

series approaches are the most popular approach (ES [21, 138, 154, 217], AR [30,

31, 49, 202], ARMA [55, 100, 161, 174, 190], ARIMA [28, 47, 213] and others [61,

15

113, 164]) because cyclic bursty is known as a typical workload pattern for cloud

applications [1, 97]. Such time-series-based approaches are based on an assumption

that cloud workloads are repeating over time. However, such static predictor based

approaches are not sufficient to address the dynamics cloud workloads. In particular,

a short-term burstiness [88] can easily degrade the accuracy/performance of such

predictors, so that static approaches often show insufficient performance for unknown

or dynamic workload patterns.

Furthermore, several custom predictive approaches are developed to address dy-

namic cloud workload patterns. PRESS [64] and CloudScale [181] employ a custom

predictor that consolidates FFT (Fast Fourier Transform) and Markov model. FFT

is used to detect a signature of workload patterns, and Markov model is to address a

short-term change of the workloads. However, in practice, it is challenging for cloud

users to determine the transition probability of the Markov model correctly. Wood

et al. [203] developed a hybrid approach, combining robust linear stepwise regression

and the model refinement. This technique requires an offline profiling for the initial

linear model creation.

To overcome the limitations of above approach, multi-predictor approaches are

also proposed. These methods are in the spirit similar with our work in chapter 4

because they are designed to provide more generic and adaptive nature to their tar-

get applications and resource management infrastructure. Khan et al. [103], Herbst

et al. [76], and Liu et al. [125] proposed an adaptive model for workload prediction.

These approaches employ a classification and clustering (e.g., decision tree) of in-

coming workloads and statically allocate the best predictor for the particular type of

workloads to increase the performance of workload prediction. However, for real work-

loads without clear seasonality and trend, it is hard to enumerate all possible classes

a priori. Therefore, these approaches are not general enough to handle unknown,

varying and/or non-typically-patterned real workloads. Our work in chapter 4, on

the other hand, makes no assumption about the class/type/patterns, and thus can

handle these real workloads. Moreover, the extra step of classification and clustering

adds additional overhead to each job arrival prediction.

ASAP [96] and Vadara [127] are two ensemble approaches with multiple workload

predictors. However, these two approaches use a simple assumption to determine

contributions from each individual predictor, i.e., recent the best predictors (e.g., the

lowest cumulative error during the previous monitoring interval [60]) will perform the

best for the near-future. However, we observe that this assumption is not always true.

16

Especially, the workloads with short-term burstiness [88] can break this assumption.

Unlike these approaches, we plan to utilize a much longer history, and employ multi-

class regression model to predict the future accuracy of local predictors. Therefore,

our work aims at providing more robust weights and more accurate predictions.

2.2 Cloud Performance Model

Modeling and estimating performance of cloud application and infrastructure are crit-

ical factors for managing cloud resources. i.e capacity planning, resource allocation,

job scheduling, cost optimization, and system anomaly detection. Existing works

have tried to create performance models that predict various performance aspects

(e.g. I/O, CPU, memory usage, disk usage) of target cloud systems by utilizing var-

ious techniques such as SVM [36, 119, 165, 207], regressions (e.g. linear, logistic,

quantile) [139, 155, 196], queueing theory [24], and ANN [118, 119]. These models

are also adopted to predict the performance of various cloud application. i.e. Big

Data processing framework (Hadoop [41], Spark [212], Storm [191], Heron [117]),

Web (n-tier), DBMS, even holistic VM performance. However existing works have

the following limitations.

First, the existing works often require both detailed knowledge and huge profiling

effort on cloud infrastructure [118, 119]. However, cloud users have very limited

access to cloud infrastructure and host machines/servers (e.g. holistic workload to

data center, I/O usage, hardware specification, hypervisor), it is infeasible to build a

performance model, which requires infrastructure information details.

Second, these approaches are often too specific to certain applications [77, 94, 194,

215], so that these approaches do not reflect general cloud applications/infrastructure.

Moreover, some other works are only concentrated on modeling small parts of execu-

tion steps/pipelines rather than modeling an end-to-end performance of whole execu-

tion step of application pipelines. These works may not be a useful indicator to cloud

resource manager. Last, the existing works still not enough to address performance

uncertainty in cloud applications and infrastructure due to lack of information on

multi-tenancy [24, 36, 48, 118, 119, 139, 155, 165, 196, 207].

17

2.3 Cloud Performance Interference

2.3.1 Cloud/Infrastructure provider-centric approach

There are significant works from the research community to detect, prevent, mitigate,

and manage the performance interference caused by multiple co-located tasks and

applications on the same physical hardware.

Designing an intelligent QoS management framework: This direction to detect

the performance interference and schedules multiple tasks to avoid SLA violation from

foreground (FG) applications. Q-Cloud [148] is a QoS-aware scheduler that mitigates

resource contention and performance interference. Q-Cloud predicts a SLA violation

of a task by an online feedback controller with a discrete time MIMO (Multi-Input

and Multi-Output) model and it allocates more resources if SLA violation is expected.

DejaVu [192] is a framework to detects performance interference with performance

index by comparison of the performance from a production VM and the sandbox

execution. Once SLA violation from the interference is detected, DejaVu mitigates

it by adding more resources. DeepDive [156] detects and manages performance in-

terference with a warning system. If interference is detected, it performs VM cloning

with workload duplication and migrates the most aggressive VMs to another physical

machine. Dirigent [216] is a lightweight QoS control framework for co-running of mul-

tiple tasks. Dirigent is designed to support cloud-offloaded tasks from user devices.

Its control policy is to improve the tail latency of SLA (e.g., 95% latency) rather than

minimizing the execution time of FGs. Dirigent also considers improving throughputs

of backgrounds (BGs) and co-running tasks/processes rather than employing simple

management policies (stopping or killing the BGs).

Determining the safe task placement: Bubble-up [134] is a mechanism to find

a safe colocation of FG and BG, running on the same physical machine. Bubble-

Up performs an offline/static profiling of FG tasks to create a sensitivity curve,

representing how FG’s QoS degrades as resource contention is increased. Bubble-

Flux [208] is a dynamic and online QoS management mechanism and addresses the

limitations from off-line profiling-based approach (e.g., Bubble-Up). Dynamic Bubble

is to create the current sensitivity curve for FGs by generating a short-term burst of

memory-intensive workloads. Online Flux Engine is a feedback controller with PIPO

(Phase-in/Phase-out) that manages BGs when the FG violates SLA. Paragon [43]

is an interference/QoS-aware scheduler for data centers. Paragon relies on minimal

18

offline profiling for the new workload (e.g., 1 min. on two servers) and a collabora-

tive filtering to place tasks on the particular hardware (HW) platform where incurs

low interference of co-located tasks. CPI2 [214] is a mechanism that suggests CPI

(cycle-per-instruction) as a performance indicator to detect performance interference

of victim FG tasks. If an antagonist (causing the performance interference) is identi-

fied, CPI2 forcibly reduces CPU usage of it by CPU hard-capping. Heracles [126] is a

feedback controller that supports safe collocation of multiple tasks relying on modern

performance isolation mechanism like Intel’s cache allocation and qdisc.

However, the approaches mentioned above have the following limitations and dif-

ferences; they often require 1) an on/off-line profiling to model the performance in-

terference, 2) HW information (e.g., CPI, cache miss rate.), and 3) an expensive VM

cloning and sand-box executions. On the other hand, our work in chapter 5 does

not perform/require such profiling; rather our approach employs an online model

to determine the optimal resource allocation to both FG and BGs on the same

VM. Moreover, we aim at not collecting HW information, but periodically gath-

ers system/application-level statistics. i.e., CPU, IO, and RT. This policy is because

we consider that our target users are consumers for public IaaS clouds where provide

limited access to the hypervisor layer and host machines [62].

2.3.2 Cloud user-centric approach

There are several attempts to address the performance interference from different

applications in the user space. IC2 [129] and DIAL [93] mitigate the performance

interference for web server clusters. The performance interference is detected by re-

source monitoring or statistic inference model. Once the interference is identified,

the approaches change application configurations or reduce request flows to the low-

performed web nodes. However, these approaches are application-specific (web ser-

vice), but our work in chapter 5 aims at supporting diverse types of FGs. Moreover,

our approach does not change any application configuration. Such modifications could

result in high overhead and only mitigate a short-term performance interference [128].

Stay-away [168] manages process containers (LXC or Docker) and mitigates the in-

terference by throttling BGs. However, the control mechanism depends on a diurnal

pattern of user-workloads, having a clear period of low intensity. This may not be true

for modern cloud applications [11, 88] and, more importantly, we aim at designing an

agnostic approach/framework to user workload patterns.

19

2.4 Cloud Simulation

Cloud simulations (e.g. CloudSim [26], iCanCloud [157], GreenCloud [111]) are widely

used in cloud research community and many industry organizations to evaluate var-

ious aspects1 of cloud infrastructures and applications. Since cloud applications and

data center infrastructures are typically large-scale, actual deployment-based eval-

uation for these cloud systems are often technically infeasible (time and cost). To

facilitate this evaluation and development process, cloud simulations have become a

promising alternative for many cloud users and builders because the cloud simulations

allow to evaluate various configurations for cloud applications and infrastructures in

repeatable and controllable manners [26].

CloudSim [26] is the most successful simulation framework for cloud computing

and is designed to support various simulation cases across three major cloud service

models (e.g. SaaS, PaaS, and IaaS). CloudSim offers various capabilities for cloud

simulations such as VM allocation and provisioning, energy consumption, network

management, and federated clouds. It also has several extensions [25, 32, 63, 183, 198]

due to its extensible simulation architecture. These extensions support simulations

for large-scale cloud applications according to the geographical distribution of users

and data centers [198], a network-based application model [63], complex scientific

workflows [32], resource failure model during task executions [25], and SDN (Software-

Defined Network) for data centers [183].

iCanCloud [157] is a holistic simulation platform for cloud computing and offers

various simulation functionalities including resource provisioning, energy consump-

tion, and user-defined resource broker model. The goal of iCanCloud is to predict a

tradeoff point between cost and performance of cloud applications. iCanCloud offers

a unique feature to configure various storage systems and a pre-defined IaaS model

based on Amazon EC2 [5]. Moreover, iCanCloud supports large-scale simulation on

distributed environments by employing MPI/POSIX-based API.

GreenCloud [111] is a packet-level simulator for data centers focusing on data

communication and energy cost in cloud computing. This simulator is implemented

based on NS-2 [87] and offers extensive network and communication capabilities (e.g.

full implementation of TCP/IP model) to simulate data center operations. However,

due to its narrow focus of simulation for cloud systems, it lacks many simulation

1Cloud simulators are often used to evaluate infrastructure/application performance, cost effi-
ciency, and resource management policies of cloud systems.

20

capabilities. i.e. cloud resource management evaluations.

Even though existing cloud simulators offer many capabilities to facilitate cloud

users and builders’ evaluation tasks to cloud infrastructure and application, these

existing works still have the following limitations.

First, existing cloud simulators tend to employ “bottom-up” approach to create

simulation model, building the simulation model from low-level components (e.g.

cloud infrastructures – network, storage, shared physical servers) [166]. Although, this

bottom-up approach has several advantages (e.g. flexibility and extensibility), it is

very hard for cloud users to build accurate simulation models for cloud infrastructure

because cloud providers [5, 67, 144, 167] do not reveal their infrastructure details.

Table 2.1 summaries the representative capabilities of three major cloud simula-

tors. We categorize the capabilities according to the layers of cloud infrastructure

(data center) and applications. As Table 2.1 shows, existing predictors mostly sup-

port test cases and evaluations for data centers (e.g., physical and network resource

management, power consumption management) and have less support for cloud ap-

plications and resource management. We believe that the less support for application

layer is a disadvantage of bottom-up style simulation approaches.

Moreover, the results from the existing simulators are not validated with mea-

surement from real-world cloud environment. When using existing cloud simulators,

it is very hard to verify that simulation environments and configurations correctly

represent the actual clouds (infrastructures and applications) [19]. Cloud simulations

often generate different results with evaluation on actual clouds and user mechanisms

(evaluated by cloud simulations) often cannot be reproducible in the actual cloud

environments.

21

Table 2.1: Simulation Capabilities of Existing Cloud Simulators.

Simulation Capability CloudSim [26] iCanCloud [157] GreenCloud [111]

Data center/

Infrastructure

Layer

VM management

(allocation,

provisioning,

scheduling,

migration)

Yes Yes No

Physical resource

management and

scaling

Yes Yes Limited

Network resource

management
Yes Yes Yes

Power

consumption

management

Yes Yes Yes

Federated cloud

management
Yes No No

Data center

workload

management

Yes No Yes

Application

Layer

Horizontal VM

autoscaling

(scaling-in/out)

Limited No No

Vertical VM

autoscaling

(scaling-up/down)

No No No

Storage service

management
No Limited No

Job/application

scheduling
Yes Yes No

Billing

management

(cost optimization)

Limited Limited No

Application/job

failure

management

No No No

Performance

uncertainty
No No No

22

Chapter 3

Empirical Evaluation of Workload

Forecasting Techniques for

Predictive Cloud Resource Scaling

This chapter provides a detailed analysis of the performance of existing workload

prediction techniques for cloud workloads. We begin this chapter with fundamental

concerns/questions from cloud practitioners when designing/developing cloud appli-

cations with a predictive resource management system. And, we discuss the detail

mechanisms of existing workload predictors applied to previous predictive approaches.

We then evaluate the performance (e.g., statistical and cloud metrics) of these tech-

niques with well-known workloads, and determine the best workload predictors for

different cloud workloads as well as best predictive scaling styles through performance

study with predictive resource management model.

3.1 Introduction

When and how to scale-out and scale-in a cloud application can be one of the most

difficult challenges for a cloud application designer/deployer. Fundamentally, basing

this decision on the current state of resources (e.g., VMs) for a given cloud application

is usually simple and can be effective but is limited due to its reactive nature. For

example, a standard use of Amazon Web Services’ autoscaling mechanism is to con-

figure it to add more “worker VMs” when the average current CPU utilization stays

above a certain threshold for a short period time. However, fluctuating or generally

unpredictable workload patterns can quickly eliminate any potential performance or

23

monetary improvements of such a policy/mechanism. In other words, intuitively any

changes to the cloud application system state/configuration assume that the near-past

workload will continue for the near-future.

Next-generation scaling approaches attempt to move beyond the limitations of

such reactive systems by instead attempting to predict the near-future workloads.

Over the past years, many studies have proposed predictive scaling approaches [21,

28, 31, 47, 60, 61, 64, 92, 154, 161, 162, 174, 181, 203, 207]. In general, due to

the complexity of cloud environments, these approaches were often forced to make

significant limiting assumptions in either the operating conditions/requirements or

expected workload patterns. As such, it is extremely difficult for cloud users to know

which – if any – existing workload predictor will work best for their particular cloud

activity, especially when considering highly-variable workload patterns, non-trivial

billing models, variety of resources to add/subtract, etc.

The goal of this chapter is to comprehensively evaluate existing cloud workload

predictors, holistically, and often in a broader context than in the authors’ evaluation

methodology. Because the most common metric to evaluate workload predictors is

accuracy for the future job arrivals, the first question we seek to answer is:

Question #1: Which existing workload predictor has the highest accuracy for job

arrival time prediction, when applied for different workload patterns?

After considering the workload predictor in isolation, we evaluate it in combination

with the resource scaling component. Therefore, the second question we seek to

answer is:

Question #2: Which existing workload predictor has the best cost efficiency

and deadline miss rate (which represents performance and SLA requirements), when

applied for different workload patterns, different scaling styles and different pricing

models?

Furthermore, some previous work employed predictive scaling-out, some employed

predictive scaling-in, and some employed both. Given these choices of applying pre-

dictive scaling, the third question we seek to answer is:

Question #3: Which style of predictive scaling (predictive scaling-out, predic-

tive scaling-in, or both) achieves the best cost and performance benefit for particular

cloud configurations (e.g. billing model, job deadline)? And how much benefit can be

achieved?

To answer these questions, we conducted comprehensive evaluations with a wide

24

range of configurations of predictive cloud resource scaling using 15 existing workload

predictors [21, 22, 28, 45, 47, 112, 123, 133, 138, 154, 174, 176, 180, 190, 209]. We also

included 6 well-known machine learning predictors that have not been used for the pre-

dictive scaling before. In total, we examined 21 predictors, covering naive, regression,

temporal (time series) and non-temporal methods. We used 24 randomly generated

workloads covering four common types of job arrival patterns [58, 193], which are

growing, on/off, bursty and random. We also examined scaling operations including

RR (Scaling-out: Reactive + Scaling-in: Reactive), PR (Scaling-out: Predictive +

Scaling-in: Reactive), RP (Scaling-out: Reactive + Scaling-in: Predictive) and PP

(Scaling-out: Predictive + Scaling-in: Predictive). We also considered both hourly

and minutely pricing models. In our experiments, each configuration then covered

one workload predictor, one workload, one scaling operation and one billing model.

As a result, more than 4K (21 × 24 × 4 × 2) configurations were examined. We run

each configuration using the PICS [104] simulators to evaluate each configuration’s

cost and deadline miss rate. We chose PICS because it can accurately simulate real

public IaaS clouds in short amount of time. Without PICS, it is both timely and

financially infeasible to conduct such extensive experiments on real IaaS clouds.

Based on the experimental results, we successfully answer the three questions

posed previously. Here we summarize our findings and answers to each question:

To find the best workload predictor in terms of the accuracy for diverse

workload patterns (Question #1): the accuracies of different workload predic-

tors vary considerably. The best workload predictors in terms of statistical accuracy

are usually orders of magnitudes more accurate than the worst ones. However, no

workload predictor is universally the best for all workload patterns. Each workload

pattern has its own best workload predictor. We show the best workload predictors

for each workload pattern in Section 3.4.1.

To find the best workload predictor in terms of cloud metrics such as

cost efficiency and SLA satisfaction (Question #2): the workload predictor

with the highest accuracy is not necessarily the best in terms of cost and deadline

miss rate. Additionally, no workload predictor is universally the best for any workload

pattern and billing model. However, we observe that the best predictor (in terms of

cost and deadline miss rate) for a particular workload pattern is always one of the

top 3 most accurate predictors (in terms of statistical accuracy) of that workload

pattern. We also show the best workload predictors for each workload pattern in

terms of cloud metrics in Section 3.4.2.

25

To find the best style of predictive resource scaling in terms of provid-

ing the best cost and performance benefits (Question #3): both predictive

scaling-out (PR) and predictive scaling-in/out (PP) significantly reduces cost and

deadline miss rate over purely reactive scaling (RR). However, predictive scaling-in

(RP) performs similarly to RR. Overall, PP always provides the lowest cost and

deadline miss rate for all workload patterns and billing models. On average, PP

provides 30% less cost and 80% less deadline miss rate compared to RR or RP, and

PP offers 14% less cost and 39% less deadline miss rate compared to PR.

A key finding from the answering those questions is that users, who want to

design new algorithm for predictive resource scaling, should consider top 3 workload

predictors depending on workload patterns, and use PP for their scaling operations

in order to archive better cost efficiency and deadline miss rate.

3.1.1 Chapter Organization

The rest of this chapter is organized as follows: Section 3.2 describes workload pre-

dictors used in this work. Section 3.3 contains the experimental design of this work.

Section 3.4 provides evaluation results for all predictors. Section 3.5 provides a dis-

cussion and future work. Section 3.6 summarizes this chapter.

3.2 Workload Predictors

We collect a total of 21 workload predictors via an extensive survey of previous

research on predictive resource scaling. Each predictor is categorized into one of the

following classes: 1) naive, 2) regression, 3) temporal, and 4) non-temporal predictor.

3.2.1 Naive Workload Predictors

There exist two types of naive workload predictors that are mean and recent mean-

based (kNN) methods.

1. The mean job arrival time-based predictor forecasts a next job arrival time

based on a mean arrival time of all previous jobs. For the scaling-out operation,

the cloud application prepares cloud resources as if the next job will be arrived

at the predicted result based on mean. For the scaling-in operation, the cloud

application waits until the predicted next job’s arrival time when a VM running

26

by the cloud application is idle in order to increase a possibility of reuse of this

VM.

2. The recent mean job arrival time-based predictor (kNN) is a similar

approach with mean-based predictor, but this uses the arrival time of recent k

jobs and predicts the next job’s arrival time based on a mean arrival time of

those recent jobs.

3.2.2 Regression-based Workload Predictors

Regression-based approaches can be split into category of global and local regressions.

Each category can include linear (1-degree) or polynomial (2 or more degrees) models.

In total, we use 6 regression-based predictors, which are global and local regression

with linear, quadratic, and cubic models.

1. Global regression predictors – linear and polynomial regression mod-

els forecast the next job arrival time by creating a linear or polynomial regres-

sion model [72] using features including all previous job arrival time. Here we

only consider job arrival time as the main variable. Therefore, these approaches

are a single variable regression models.

2. Local regression predictors – local linear and polynomial regression

models use locally weighted regression models [72] to estimate the next job

arrival time. These approaches consist of two steps: 1) applying a kernel func-

tion to select job arrival samples and 2) creating linear or polynomial regression

model based on the samples. In this chapter, we use kNN (k Nearest Neighbor)

as the kernel function for the local regression models to select proper samples.

kNN calculates a distance between a target object (e.g. next job arrival time)

and all possible samples (e.g. past job arrival time) by using absolute or Eu-

clidean distance function. kNN then selects proper local samples (e.g. k recent

jobs). Based on the selected samples from the kNN, a linear or polynomial

regression model is created, and predicts the next job arrival time. The ma-

jor difference between the global and local regression is the size and similarity

of job arrival samples used for creating a regression model. Local regression

uses smaller number of samples that are more similar to the prediction target.

The local regression models often have less overhead for model creation and

workload prediction.

27

3.2.3 Temporal (Time-Series)-based Workload Predictors

There exist various temporal (time-series) methods for the future workload prediction

because these predictors [21, 28, 30, 45, 47, 112, 123, 133, 138, 154, 174, 176, 180, 190]

are widely used to analyze workload patterns for cloud computing as well as other

domains of computer systems research. We use four categories of temporal models: 1)

ES (Exponential Smoothing), 2) AR (Autoregressive), 3) ARMA (Autoregressive

and Moving Average), and 4) ARIMA (Autoregressive Integrated Moving Average).

1. ES includes four methods: WMA (Weighted Moving Average), EMA (Expo-

nential Moving Average), and DES (Double Exponential Smoothing).

• WMA [206] is a weighted sum of observed dataset (e.g. past job arrival

information) and sum of weight for each observed data is 1.

WMA =
∑k

n=1wnxt+1−n, s.t.
∑k

n=1wn = 1 (3.1)

• EMA is a similar approach as WMA, but it gives more weight to the most

recent observation of job arrivals. We modeled EMA predictor based on

[176]. EMA predicts the future job arrival time by st = αxt + (1− α)st−1.

α is a smoothing factor (0 < α < 1). If α is close to 1, EMA has less

smoothing effect and gives more weight to the recent data, and vice versa.

• DES is used when the observed data show clearer seasonal trend. We use

Holt-Winters and Brown’s DES.

(a) Holt-Winters DES predicts the next job arrival time by capturing a

smoothing value at time t (st = αxt+(1−α)(st−1 + bt−1), where s1 =

x1) and estimating the trend at time t (bt = β(st − st−1) + (1 −
β)bt−1, where b1 = x1− x0). x0 is the first observation of raw data, α

is a smoothing factor (0 < α < 1) and β is a trend smoothing factor

(0 < β < 1). Then, the next job arrival time is calculated by st + bt.

st = αxt + (1− α)(st−1 + bt−1), where s1 = x1 (3.2)

bt = β(st − st−1) + (1− β)bt−1, where b1 = x1 − x0 (3.3)

28

(b) Brown’s DES predicts the next job arrival time by calculating (2 +
α

1−α)s
′
t− (1+ α

1−α)s
′′
t . s

′
t is the first order exponential smoothing model

and is expressed by s
′
t = αxt + (1− α)s

′′
t . xt is current job arrival and

α is a smoothing factor (0 < α < 1). s
′′
t is double-smoothed statistics

and is expressed by s
′′
t = αs

′
t + (1− α)s

′′
t−1.

TNextJobArrival = (2 +
α

1− α
)s

′

t − (1 +
α

1− α
)s

′′

t (3.4)

2. AR is a linear combination of previous data of the target object (e.g. job

arrival time). [49] we model AR(p) based on [21]. AR(p) model is expressed

in Xt = c +
∑p

i=1 ϕiXt−1 + εt. p is the order of AR model, ϕi is the set of

parameters of the model, c is constant, and εt is white noise.

Xt = c+
∑p

i=1 ϕiXt−1 + εt (3.5)

3. ARMA is a combined model of AR and MA (Moving Average) and ARMA(p, q)

is expressed in Xt =
∑p

i=1 ϕiXt−1 +
∑q

i=1 θiεt−i+ c+εt. The first term is AR(p)

model with the order of p. The second term is MA(q) model with the order of

q. We modeled ARMA for workload prediction using [45, 123, 174, 180, 190].

Xt =
∑p

i=1 ϕiXt−1 +
∑q

i=1 θiεt−i + c+ εt (3.6)

4. ARIMA is a generalization of ARMA and provides a reliable prediction for

non-stationary time-series data by integrating AR and MA models. ARIMA is

expressed as ARIMA(p, d, q), where p is the order of AR, q is the order of MA,

and d is the order of differencing model. We modeled ARIMA for workload

prediction based on [28, 47].

3.2.4 Non-temporal Workload Predictors

Non-temporal workload predictors have not been applied to the cloud resource scaling

before. These predictors, however, have provided accurate prediction results within

a deterministic amount of time. We consider several non-temporal approaches to

29

predict the next job arrival time and select three categories of non-temporal prediction

approaches: SVM (Support Vector Machine), decision tree, and ensemble methods.

1. SVM is an optimal margin-based classifier that tries to find a small number of

support vectors (data points) that separate all data points of two classes with

a hyperplane in a high-dimensional space [72]. With kernel tricks, it can be ex-

tended as a nonlinear classifier to fit more complex cases. SVM can be applied

to the case of regression as well which contains all the main features that char-

acterize the maximum margin based algorithm. At testing time, the (positive or

negative) distance of a data point to the hyper-plane is output as the prediction

result. We consider both linear and non-linear SVM. We use linear kernel for

Linear-SVM and Gaussian kernel for non-linear-SVM (Gaussian-SVM). Linear-

SVM is to focus on the workloads that have relatively clear trend factors and

Gaussian-SVM is to predict the workloads with non-linear characteristics.

2. Decision tree is a non-parametric learning algorithm and it has also been used

for both classification and regression problems [72]. Decision tree creates a clas-

sification or regression model by applying decision rules derived from features

of dataset. Decision tree is known as its simple (tree-based) structure and fast

execution time for numerical data.

3. Ensemble prediction methods employ multiple numbers of predictors to

obtain better generalizability and increase performance. Ensemble methods use

bagging or boosting approaches to reduce variance (bagging) or bias (boosting)

on prediction results. We select three ensemble methods including gradient

boosting, extra-trees, and random forest [72].

3.3 Experiment Design

3.3.1 Design of Cloud Resource Management System

To evaluate all workload predictors, we designed a cloud management system for

resource scaling as shown in Figure 3.1. This system consists of three modules: job

portal, resource management module (RMM) and predictive scaling module (PSM).

The job portal is an entry for the workloads (jobs from end-users). A job’s arrival

triggers two other modules. A newly arrived job is passed to the RMM. The RMM

selects a proper VM based on the job’s duration and deadline. More specifically, the

30

Figure 3.1: Cloud Resource Management System with Predictive Scaling.

Algorithm 1 Predictive Scaling-Out

Require: A new job arrives
1: samples ← get samples for prediction ()
2: next job ← predict next job arrival (samples)
3: vm type ← select proper vm type (next job)
4: vm list ← current running vms (vm type)
5:

6: if vm list is empty then
7: create vm (vm type, time to start)
8: else
9: do nothing ()

10: end if

RMM creates a list of VMs that meets the deadline of the job by comparing the

performance of different VM types with the job’s duration and deadline. the RMM

then selects the most cost efficient VM (i.e., cost/performance-ratio [107]) from the

candidates. Note that the algorithm, used in this cloud resource management, focuses

primarily on improving the job deadline satisfaction than reducing the cloud cost.

Once a proper VM is selected, the RMM schedules the job to the selected VM via

“Earliest Deadline First” scheduling. The selected VM is then used to execute the

job. A new job’s arrival activates the PSM as well. The job’s arrival information is

stored in the workload repository. The workload information from this repository is

used by both predictive scaling-out and scaling-in.

1. Predictive Scaling-out Operation (Algorithm 1) is triggered when a job

31

arrives. A prediction obtains proper amount of job arrival samples for prediction

(line 1) and forecasts the next job’s arrival time in the future (line 2). Based

on the prediction result, this operation chooses a proper type of VM for the

future job (line 3) as explained in the previous paragraph (In Algorithm 1,

we assume that the duration and deadline of the future job are known). This

operation selects a list of currently running VMs to execute the next job (line

4). If the list is empty (line 6), then a new VM will be created for the next

job (line 7).

Algorithm 2 Predictive Scaling-In

Require: vm is idle
1: samples = get samples for prediction (vm)
2: next job = predict next job arrival (samples)
3:

4: if next job arrival ≤ max startup delay then
5: scale in time ← next billing boundary after next job arrival
6: else
7: scale in time ← this billing boundary
8: end if
9:

10: repeat
11: if next job arrives then
12: go to new job processing routine()
13: end if
14: until scale in time
15:

16: terminate (vm)

2. Predictive Scaling-in Operation (Algorithm 2) is triggered when a VM

is idle – no jobs in both processor and work queue. The workload predictor for

scaling-in operation estimates the next job arrival time to the idle VM (line 1–

2). Then we compare the predicted job arrival time with maximum VM startup

delay [130]. If the job arrival time is smaller than the max startup delay, we

choose to keep this VM for at least max startup delay time; otherwise, we choose

to terminate this VM (line 4–8). The rationale behind this choice is explained

as follows. For any new job, starting a new VM for it takes (startup time + job

duration) to execute it. However, if we use existing idle VM, it takes (job arrival

time + job duration) to execute it. Therefore, if job arrival time is smaller than

startup time, it is faster and cheaper to use the existing VM; otherwise, it

32

of

 J
ob

 R
eq

ue
st

s

Time

(a) Growing Pattern

of

 J
ob

 R
eq

ue
st

s

Time

(b) On/Off Pattern

of

 J
ob

 R
eq

ue
st

s

Time

(c) Bursty Pattern

of
 J

ob
 R

eq
ue

st
s

Time

(d) Random Pattern

Figure 3.2: Cloud Workload Patterns. X-axis means time and Y-axis means
the number of requests (e.g. the number of jobs)

is cheaper to use new VM. Moreover, we choose to terminate a VM only at

nearest billing boundary, because we have already paid for this billing cycle. If

the next job arrives within the predicted time, the job is assigned/processed by

this VM (line 12). If there is no more jobs until the predicted time, this VM

is terminated (line 16).

3.3.2 Cloud Workload Patterns

We generate synthetic workloads based on four well-known cloud workload patterns

(shown in Figure 3.2). We create six workloads for each workload pattern with dif-

ferent mean and standard deviation of job arrival time/duration to reflect various

and realistic cloud usage scenarios. (in total, we use 24 workload patterns for the

evaluation.) The detail of each dataset is described in Table 3.1. For the growing

workload pattern, we first generate a quadratic base function and then apply Poisson

distribution to randomize the arrival time of a particular job. The on/off workload

pattern has four active periods and three inactive periods. For the active periods of

the on/off workload pattern, we use growing and declining quadratic functions. The

bursty workload pattern has 6 – 7 peak spikes periods and other stable periods. To

33

Table 3.1: Workload Dataset Information

Workload
of

Jobs

Mean Job

Arrival Time

Std. Dev. of Job

Arrival Time

Job1

Duration

Job

Deadline

Growing 60.5 Average: Average:

On/Off 10K 25s 375.5 450s, 500s,

Bursty 35.3 Std.Dev.: Std.Dev.:

Random 270 270 250

generate the random workload pattern, we use Poisson distribution for the random

job arrivals.

3.3.3 Implementation Details

We implemented the cloud resource management system on top of PICS [104], a

Public IaaS Cloud Simulator. In addition to the simulation model, we implement

all the predictors (described in Section 3.2) and scaling-in/out mechanisms using

numpy2, Pandas (Python Data Analysis Library)3, Statsmodels4, and scikit-learn

machine learning packages5.

Choosing the parameters and the training sample size are very crucial to all work-

load predictors in order to provide the best possible prediction performance. For the

decision of the training sample size for predictors, it is obvious that a predictor should

use as many sample as possible to maximize the accuracy of the prediction. However,

large size of training samples increases the overhead of prediction. A constraint for

the prediction is that the predictors should be able to forecast the next job arrival

time before the actual job comes to our cloud application. To this end, we tested

a wide range of sample size and determine the size based on a tradeoff between the

prediction overhead and the prediction accuracy. In this chapter, all predictors (ex-

cept global regression approach) uses 50 – 100 of most recent job arrival samples for

forecasting the future job arrival time prediction.

For the parameter selection of the workload predictors, we use either a performance-

based or a grid search approach [20]. For AR, ARMA, and ARIMA model, we employ

1This is job duration on smallest (worst performance) VM instance (small EC2 instance [5] in
our experiment design). By using the job duration and deadline, the cloud resource management
system (Section 3.3.1) determines a proper VM type that can meet deadline.

2http://www.numpy.org/
3http://pandas.pydata.org/
4http://statsmodels.sourceforge.net
5http://scikit-learn.org/

34

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

G
-SVM

L-SVM

W
M

A

AR
M

A

BR
D
ES

AR R
andForest

EM
A

H
W

D
ES

Ext.Trees

Loc.Lin.R
eg

kN
N

Lin.R
eg

AR
IM

A

Loc.C
ubicR

eg

C
ubicR

eg

G
radBoost

D
ec.Tree

Loc.Q
uad.R

eg

Q
uad.R

eg

M
ean

M
A

P
E

Figure 3.3: MAPE Results of All 21 Predictors.

the performance-based parameter selection, and we choose the first order of these

three models. i.e., AR(1), ARMA(1, 1), ARIMA(1, 1, 1) Higher-order of these models

is not desirable because these three workload predictors require high computation

time. It is often impossible for the higher order of these models to predict the next

job arrival time before the actual job arrives. For other temporal-based workload

predictors (e.g. EMA and DES), we leverage a grid search approach for the param-

eter selection that tries every possible parameter within its range constraints (e.g.

0 < α < 1 and 0 < β < 1 for Holt-Winters DES). Moreover, SVM predictors require

soft and kernel parameters (e.g. Gaussian-SVM needs both parameters and Linear-

SVM requires only the soft margin parameter). We choose these parameters that

result in best prediction performance. The range we have considered is from 10e−6

to 10e3 for both parameters.

3.4 Evaluation

3.4.1 Evaluation of Accuracy for Workload Predictors

As the first evaluation of this chapter, we measure all 21 workload predictors’ accuracy

for predicting the future job arrival time under four different workload patterns. We

employ MAPE (Mean Absolute Percentage Error) [72] to statistically measure the

prediction accuracy.

MAPE =
1

n

n∑
i=1

∣∣∣∣∣Tactual,i − Tpredicted,iTactual,i

∣∣∣∣∣ (3.7)

Figure 3.3 shows MAPE results of all 21 predictors. Average of the MAPE for all

35

21 predictors is 0.6360. Overall, two SVM approaches have the best MAPE results.

Other three best predictors are WMA, ARMA, and Brown’s DES. The MAPE value of

Gaussian-SVM predictor (the best predictor) is 0.3665, which is 42% less result than

average of all predictors. However, the best predictors in overall do not necessarily

mean the best predictor for each workload pattern, so we also present the performance

of all predictors for each workload pattern.

Table 3.2: The MAPE Results of Workload Predictors Under Four Different
Workload Patterns. (WL: Workload, GR: Growing, OO: On/Off, BR:
Bursty, RN: Random)

WL Rank Predictor MAPE WL Rank Predictor MAPE

1 L-SVM 0.28 1 G-SVM 0.22

2 AR 0.29 2 ARMA 0.30

GR 3 ARMA 0.30 OO 3 L-SVM 0.44

Avg. – 0.51 Avg. – 0.69

Worst Qua.Reg 2.75 Worst Loc.Cub.Reg 1.25

1 ARIMA 0.38 1 G-SVM 0.45

2 BRDES 0.41 2 Lin.Reg 0.46

BR 3 L-SVM 0.43 RN 3 L-SVM 0.46

Avg. – 0.75 Avg. – 0.52

Worst mean 3.35 Worst Dec.Tree 0.62

Table 3.2 shows the MAPE results for each workload pattern. Due to page limi-

tation, Table 3.2 only contains the best 3 predictors, average results, and the worst

predictor. As shown in Table II, different workload patterns have different best pre-

dictors: Linear-SVM (growing), Gaussian-SVM (on/off), ARIMA (bursty), and

Gaussian-SVM (random). Table 3.2 also shows that the MAPE results of the top

three predictors are very similar to each other for growing and bursty workloads.

These workloads have clear trend patterns, and many good workload predictors can

successfully detect these patterns when using enough job arrival samples. The MAPE

results of random workload are lower compared to other workloads, indicating ran-

dom workload is the most difficult to predict. This difficulty is primarily caused by

the fact that job arrival times in random workloads do not have clear trend pattern

for predictors to discover.

Moreover, obtaining the prediction results in a deterministic amount of time is

a critical issue for the predictive resource scaling. We also measured computation

overhead of predictors (Figure 3.4). kNN, WMA, and EMA are the fastest predictors.

36

10
-1

10
0

10
1

10
2

10
3

kN
N

W
M

A

EM
A
BR

D
ES

Loc.Q
uad.R

eg

H
W

D
ES

Loc.C
ubic.R

eg

Loc.Lin.R
eg

M
EAN

L-SVM

G
-SVM

Lin.R
eg

Q
uad.R

eg

D
ec.Tree

C
ubicR

eg

AR G
radBoost

Ext.Tree

R
andForest

AR
IM

A

AR
M

A

(L
o

g
 S

c
a

le
d

)
O

v
e

ra
ll

P
re

d
ic

ti
o

n
 O

v
e

rh
e

a
d

(U
n

it
:

S
e

c
.)

Figure 3.4: Prediction Overhead (Log-Scaled Sum of Total Prediction Time)
for All the 21 Workload Predictors. (Sample Size: 50 recent jobs)

The overall prediction time for 10K jobs of these three predictors are 0.48 (kNN), 0.96

(WMA), and 1.86 seconds (EMA). However, some temporal approaches (AR, ARMA,

and ARIMA) and ensemble methods (extra trees, gradient boosting, and random

forest) have longer prediction time. The highest overhead predictor is ARMA, which

takes 6031.52 seconds for 10K jobs.

3.4.2 Performance of Different Styles of Predictive Scaling

We measure the performance of four different styles of scaling operations for cloud

resource management:

• Baseline: RR (Scale-Out: Reactive + Scale-In: Reactive)

• PR (Scale-Out: Predictive + Scale-In: Reactive)

• RP (Scale-Out: Reactive + Scale-In: Predictive)

• PP (Scale-Out: Predictive + Scale-In: Predictive)

PR is the most common style of predictive scaling for cloud application. PR

predictively scales out cloud resources and reactively scales in cloud resources. RP

is another way of predictive scaling, and it uses a reactive way for scaling-out and

a predictive approach for scaling-in. PP is a combination of PR and RP, and it

leverages a workload predictor for both scaling-out and scaling-in operations. For

this evaluation, we use RR (Scaling-Out: Reactive + Scaling-In: Reactive) as a

baseline. RR adds a new VM (scaling-out) when a new job needs an extra VM, and

37

terminates an idle VM (scaling-in) at its billing boundary. (i.e., hourly bound or

minutely bound).

Due to page limitation, we only show the results of the predictive scaling op-

erations with the most accurate 8 workload predictors from Section 3.4.1. These

predictors are Linear-SVM, Gaussian-SVM, ARMA, AR, WMA, ARIMA, Brown’s

DES, Linear regression, which cover the overall best 5 predictors and the best 3

predictors for each workload pattern.

To evaluate the predictive scaling operations, we use two common cloud metrics

(cost and job deadline miss rate) and two different billing models (hourly and minutely

pricing model). Cost is to evaluate each scaling operations’ cost efficiency, and job

deadline miss rate represents the SLA-satisfaction requirement. We use two different

billing models for cloud infrastructure, because major commercial IaaS clouds employ

either hourly (e.g. AWS) or minutely (e.g. MS Azure) pricing model. We also use

four different workload patterns (growing, on/off, bursty, and random workload).

The goals of this evaluation are:

• Measuring the actual benefits from predictive scaling.

• Determining the best style of predictive scaling.

• Finding the best workload predictor for each workload pattern in terms of cloud

metrics.

Case #1 – PR (Scale-Out: Predictive + Scale-In: Reactive): Figure 3.5 shows a

normalized cost and job deadline miss rate (all results are normalized to RR) of PR

for hourly pricing model. The results show that PR can improve 47%–58% of cost

efficiency for growing, on/off, and bursty workloads. However, for random workload,

PR has 11% of worse cost efficiency over the baseline. In terms of job deadline

miss rate, PR has 50%–88% of less job deadline miss rate over the RR (baseline).

For the hourly pricing model, PR shows relatively deficient performance for random

workload in both cost efficiency and job deadline miss rate. This is because random

workload is harder to predict than the other workload patterns. We rank the workload

predictors for the PR based on the deadline miss rate, because it is more important

to ensure that jobs meet their deadlines. Only after the deadline requirements are

met, our cloud resource manager in Section 3.3.1 optimizes for cost efficiency. The

best workload predictors for PR are: Linear-SVM (13.7%) for growing, Gaussian-

SVM (8.2%) for on/off, ARIMA (15.2%) for bursty, and Gaussian-SVM (47.3%)

for random workload.

38

 0
 20
 40
 60
 80

 100
 120
 140
 160

Growing On/Off Bursty Random

37
.6

50
.1

38
.2

44
.0

37
.9

38
.3

50
.2

38
.1

41
.8

44
.7

42
.8

42
.6

42
.9

42
.8

43
.1

43
.6

43
.6

43
.3 61

.1
52

.3
52

.5
51

.7
53

.0
52

.2
53

.6
48

.7
53

.1
11

3.
6

11
4.

1
11

4.
4

11
3.

8
90

.6
11

3.
8

11
3.

6
11

3.
6

11
0.

9

N
or

m
. C

os
t (

%
)

Lin.Reg.
WMA

BRDES
AR

ARMA
ARIMA

G-SVM
L-SVM

Average

(a) Normalized Cost.

 0
 10
 20
 30
 40
 50
 60
 70
 80

Growing On/Off Bursty Random

23
.3

16
.0

16
.8

19
.0

16
.0

14
.4

22
.1

13
.7

17
.7

11
.7

13
.5

16
.2

12
.4

11
.7

14
.0

8.
2

9.
2

12
.1 23

.6
16

.8
20

.6
19

.9
23

.7
15

.2
15

.4
17

.9
19

.1
54

.9
48

.2
54

.6
47

.8
48

.8
48

.9
47

.3
48

.8
49

.9

N
or

m
. D

ea
dl

in
e

M
is

s
Ra

te
 (%

) Lin.Reg.
WMA

BRDES
AR

ARMA
ARIMA

G-SVM
L-SVM

Average

(b) Normalized Job Deadline Miss Rate.

Figure 3.5: Case #1 – Normalized Cost and Job Deadline Miss Rate of PR
(Scaling-Out:Predictive + Scaling-In:Reactive) – Hourly Pricing Model.

Figure 3.6 shows evaluation results of PR for minutely pricing model under four

workload patterns. PR has similar cost efficiency with RR, but it has 41%–87% of

less job deadline miss rate than the baseline. Thus, PR provides better job deadline

satisfaction without dramatically increasing cost. The reason that PR has similar

cost efficiency with RR is that the minutely pricing model is designed to provide

better cost efficiency than hourly model to the user. So it is very hard to improve the

cost efficiency for the minutely pricing model even though we have a good predictor.

The best workload predictors for RP with minutely pricing model are: AR (41.3%)

for growing, ARMA (11.4%) for on/off, WMA (42.6%) for bursty, and Gaussian-

SVM (58.6%) for random workload.

Case #2 – RP (Scale-Out: Reactive + Scale-In: Predictive): Figure 3.7 and 3.8

show the evaluation results of RP for both pricing models under four workload pat-

terns. The results indicate that RP’s benefit to the cloud system is not as much

39

 0
 20
 40
 60
 80

 100
 120
 140
 160

Growing On/Off Bursty Random

10
7.

9
10

3.
1

10
3.

5
10

3.
9

10
3.

1
10

4.
0

10
3.

5
10

4.
7

10
4.

2

10
0.

1
98

.5
99

.0
98

.5
10

0.
1

98
.4

99
.4

99
.2

99
.2

96
.6

97
.7

97
.7

98
.1

98
.0

98
.3

96
.5

95
.8

97
.3 10

6.
9

10
6.

8
10

5.
9

10
6.

5
10

4.
7

10
6.

7
10

6.
2

10
6.

1
10

6.
3

N
or

m
. C

os
t (

%
)

Lin.Reg.
WMA

BRDES
AR

ARMA
ARIMA

G-SVM
L-SVM

Average

(a) Normalized Cost.

 0
 10
 20
 30
 40
 50
 60
 70
 80

Growing On/Off Bursty Random

42
.4

42
.3

43
.3

41
.3

42
.3

42
.0

42
.8

42
.8

42
.4

12
.2

14
.6

14
.3

13
.4

11
.4

14
.0

12
.9

12
.8

13
.2

43
.7

42
.6

43
.1

45
.2

44
.7

44
.2

43
.0

42
.9

43
.6 59

.4
59

.3
59

.2
59

.2
59

.1
59

.2
58

.6
59

.0
59

.1

N
or

m
. D

ea
dl

in
e

M
is

s
Ra

te
 (%

) Lin.Reg.
WMA

BRDES
AR

ARMA
ARIMA

G-SVM
L-SVM

Average

(b) Normalized Job Deadline Miss Rate.

Figure 3.6: Case #1 – Normalized Cost and Job Deadline Miss Rate of PR
(Scaling-Out:Predictive + Scaling-In:Reactive) – Minutely Pricing Model.

as the benefits from PR. The only benefit from the RP is the improved cost effi-

ciency (on/off and random workloads for hourly pricing model, random workload for

minutely pricing model). The improvement of cost efficiency is 12%–25%, but it has

no benefits for job deadline miss rate.

Case #3 – PP (Scale-Out: Predictive + Scale-In: Predictive): Figure 3.9 shows

normalized costs and job deadline miss rates of PP for hourly pricing model under

four workload patterns. The results show that PP improves 48%–69% of cost effi-

ciency for the four workloads over RR, and has 78%–93% of less job deadline miss

rate than RR. The best workload predictors for the PP with hourly pricing model

are: Linear-SVM (5.5%) for growing, Gaussian-SVM (7.8%) for on/off, Brown’s

DES (5.1%) for bursty, and Linear-SVM (18.1%) for random workload.

Figure 3.10 shows evaluation results of PP for minutely pricing model under four

workload patterns. The results show that PP slightly improves cost efficiency (≤

40

 0

 50

 100

 150

 200

Growing On/Off Bursty Random

10
0.

4
10

0.
5

10
0.

6
10

0.
5

10
0.

5
10

0.
6

10
0.

5
10

0.
4

10
0.

5

74
.5

71
.1

71
.1

83
.4

77
.6

76
.9

71
.1

76
.9

75
.3

13
3.

5
13

3.
9

13
8.

1
14

9.
6

13
7.

4
13

7.
6

13
3.

9
13

7.
5

13
7.

7
77

.6
77

.6
77

.5
77

.7
77

.6
77

.6
77

.6
77

.5
77

.6

N
or

m
. C

os
t (

%
)

Lin.Reg.
WMA

BRDES
AR

ARMA
ARIMA

G-SVM
L-SVM

Average

(a) Normalized Cost.

 0
 20
 40
 60
 80

 100
 120
 140
 160

Growing On/Off Bursty Random

98
.9

99
.6

99
.2

99
.9

99
.4

99
.3

99
.1

98
.5

99
.2

99
.6

98
.7

99
.5

99
.1

97
.6

99
.2

99
.7

98
.5

99
.0

99
.9

10
0.

3
98

.4
10

1.
3

97
.5

97
.4

99
.5

99
.4

99
.2 99
.5

99
.3

10
0.

3
10

0.
0

11
0.

8
99

.3
99

.5
99

.0
10

1.
0

N
or

m
. D

ea
dl

in
e

M
is

s
Ra

te
 (%

) Lin.Reg.
WMA

BRDES
AR

ARMA
ARIMA

G-SVM
L-SVM

Average

(b) Normalized Job Deadline Miss Rate.

Figure 3.7: Case #2 – Normalized Cost and Job Deadline Miss Rate of RP
(Scaling-Out:Reactive + Scaling-In:Predictive) – Hourly Pricing Model.

11%) of the cloud system and has huge improvement (60%–87%) for the job deadline

miss rate. The best workload predictors of PP with minutely pricing model for each

workload pattern are: AR (27.5%) for growing, ARMA (11.4%) for on/off, Brown’s

DES (19.7%) for bursty, and Gaussian-SVM (39.5%) for random workload.

Comparison of Three Predictive Scaling Styles: So far, we have separately

evaluated three predictive scaling styles of the cloud resource management. In the

following paragraphs, we present the overall benefit of predictive scaling. And we

compare the results of these three predictive scaling styles to determine the best one

for cloud resource management. Figure 3.11 shows that the comparison of average

results of normalized cost and job deadline miss rate for PR, RP, and PP in both

hourly and minutely pricing models.

For the hourly pricing model (Figure 3.11(a)), we found that PP is the best style

for cloud resource management in terms of better cost efficiency and less job deadline

41

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

Growing On/Off Bursty Random

10
4.

4
10

6.
8

10
8.

0
10

8.
3

10
5.

4
10

7.
4

10
4.

9
10

9.
7

10
6.

9

12
2.

1
12

2.
4

12
1.

2
12

3.
3

12
0.

1
12

3.
2

12
1.

4
12

0.
7

12
1.

8
10

9.
0

10
9.

0
10

7.
1

11
0.

4
10

8.
3

10
9.

1
10

8.
4

10
8.

9
10

8.
4

85
.3

85
.9

85
.9

90
.1

89
.2

85
.4

85
.9

85
.9

86
.7

N
or

m
. C

os
t (

%
)

Lin.Reg.
WMA

BRDES
AR

ARMA
ARIMA

G-SVM
L-SVM

Average

(a) Normalized Cost.

 0
 20
 40
 60
 80

 100
 120
 140

Growing On/Off Bursty Random

98
.9

99
.3

99
.5

99
.2

99
.4

99
.0

98
.9

10
0.

7
99

.5

99
.3

99
.2

99
.2

99
.9

99
.5

99
.3

99
.4

99
.2

99
.5

99
.2

99
.3

99
.2

99
.3

99
.6

99
.3

10
0.

6
99

.0
99

.5
99

.4
99

.4
99

.4
99

.7
99

.6
99

.4
99

.4
99

.3
99

.5

N
or

m
. D

ea
dl

in
e

M
is

s
Ra

te
 (%

) Lin.Reg.
WMA

BRDES
AR

ARMA
ARIMA

G-SVM
L-SVM

Average

(b) Normalized Job Deadline Miss Rate.

Figure 3.8: Case #2 – Normalized Cost and Job Deadline Miss Rate of RP
(Scaling-Out:Reactive + Scaling-In:Predictive) – Minutely Pricing Model.

miss rate. PP’s cost efficiency is 20% (compared to PR) and 56% (compared to

RP) better than other two approaches. Moreover, PP’s job deadline miss rate is

13% (compared to PR) and 88% (compared to RP) lower than others. This result is

interesting, because although predictive scaling-in does not improve cost and deadline

miss rate by itself (as shown in Case #2), it provides considerable improvement for

both metrics when combined with predictive scaling-out. These results show that

predictive scaling in/out approach (PP) (with a good workload predictor) helps to

improve the performance of the cloud resource management.

For the minutely pricing model (Figure 3.11(b)), the job deadline miss rate of PP

outperforms other two styles of predictive scaling operations. PP has 12% (compared

to PR) and 72% (compared to RP) of less job deadline miss rate. PP also improves

cost efficiency over PR and RP. These results suggest PP can significantly reduce

deadline miss rate without cost overhead.

42

 0
 10
 20
 30
 40
 50
 60
 70
 80

Growing On/Off Bursty Random

32
.6

32
.0

32
.1

30
.2

33
.1

30
.1

30
.0

30
.3

31
.3 33

.9
33

.2
35

.2
39

.3
34

.1
37

.7
34

.2
33

.8
35

.2
56

.4
55

.6
45

.1
56

.3
51

.5
51

.9
49

.7
46

.4
51

.6
48

.2
48

.2
48

.2
47

.9
48

.3
47

.8
48

.0
47

.8
48

.0

N
or

m
. C

os
t (

%
)

Lin.Reg.
WMA

BRDES
AR

ARMA
ARIMA

G-SVM
L-SVM

Average

(a) Normalized Cost.

 0

 10

 20

 30

 40

 50

Growing On/Off Bursty Random

12
.6

6.
9

6.
8

6.
5

6.
3

5.
7

9.
2

5.
5

7.
4

8.
9

11
.9

14
.1

11
.8

8.
3

11
.5

7.
8

9.
4

10
.5

7.
3

8.
7

5.
1

9.
4

11
.6

11
.8

9.
3

6.
1

8.
7

20
.4

21
.7

20
.3

23
.6

20
.3

26
.6

21
.6

18
.1

21
.6

N
or

m
. D

ea
dl

in
e

M
is

s
Ra

te
 (%

) Lin.Reg.
WMA

BRDES
AR

ARMA
ARIMA

G-SVM
L-SVM

Average

(b) Normalized Job Deadline Miss Rate.

Figure 3.9: Case #3 – Normalized Cost and Job Deadline Miss Rate of PP
(Scaling-Out:Predictive + Scaling-In:Predictive) – Hourly Pricing Model.

To understand the reasons of 1) PP significantly improves cost efficiency (hourly

pricing model) and deadline miss rate (both pricing model) and 2) RP does not

improve the performance by itself, we analyze the number of created VMs and VM

utilization of three styles. Figure 3.12 represents the VM numbers and utilization of

three scaling styles for both pricing models. For the both pricing models, PP creates

the less number of VMs and has higher utilization than others. The reasons that PP

has high VM utilization and lower number of created VMs are:

• Predictive scaling-out of PP uses more currently running VMs for the (near)

future jobs, and creates less VMs for the (near) future jobs.

• Predictive scaling-in of PP keeps VMs alive for (further) future jobs, which

further reduces the new VM creations, and increases the utilizations of existing

VMs.

43

 0
 20
 40
 60
 80

 100
 120
 140

Growing On/Off Bursty Random

96
.7

98
.4

97
.4

97
.4

97
.5

98
.6

98
.3

97
.9

97
.8

99
.8

99
.4

99
.7

99
.2

10
0.

4
99

.1
98

.7
99

.1
99

.4
92

.3
94

.1
94

.6
96

.2
97

.3
95

.8
94

.1
93

.5
94

.7
85

.9
86

.1
88

.7
94

.0
88

.5
89

.4
90

.2
88

.6
88

.9

N
or

m
. C

os
t (

%
)

Lin.Reg.
WMA

BRDES
AR

ARMA
ARIMA

G-SVM
L-SVM

Average

(a) Normalized Cost.

 0
 10
 20
 30
 40
 50
 60

Growing On/Off Bursty Random

30
.9

28
.3

27
.9

27
.5

28
.9

28
.1

29
.4

27
.9

28
.6

12
.5

14
.5

14
.3

12
.9

11
.4

14
.5

12
.9

12
.5

13
.2

29
.6

30
.9

19
.7

32
.9

36
.5

33
.0

31
.2

27
.2

30
.1

39
.8

39
.8

39
.6

39
.8

40
.5

39
.6

39
.5

39
.8

39
.8

N
or

m
. D

ea
dl

in
e

M
is

s
Ra

te
 (%

) Lin.Reg.
WMA

BRDES
AR

ARMA
ARIMA

G-SVM
L-SVM

Average

(b) Normalized Job Deadline Miss Rate.

Figure 3.10: Case #3 – Normalized Cost and Job Deadline Miss Rate of
PP (Scaling-Out:Predictive + Scaling-In:Predictive) – Minutely Pricing
Model.

Moreover, the reason that RP cannot improve the cloud metrics is related to

reactive scaling-out of RP. Reactive scaling-out operation creates VMs when jobs

actually arrive, so RP has to create better performance VMs (more expensive VMs)

in order to meet the jobs’ deadline. This is because RP has no advance preparation

for eliminating the overhead of the VM creation (e.g. startup delay). Also, most of

VMs should be terminated after processing the current job because they are not used

for future jobs. So, predictive scaling-in of RP does not help in this case because

most of VMs should be destroyed.

44

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

PR RP PP

N
or

m
. C

os
t/D

L
M

is
s

R
at

e

Norm. Cost
Norm. DL Miss

(a) Hourly Pricing Model

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

PR RP PP

N
or

m
. C

os
t/D

L
M

is
s

R
at

e

Norm. Cost
Norm. DL Miss

(b) Minutely Pricing Model

Figure 3.11: Comparison of Average Results of Normalized Cost and Job
Deadline Miss Rate of Three Scaling Styles (PR, RP, and PP).

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

PR RP PP

N
or

m
. V

M
 #

/U
til

s

Norm. # VMs
Norm. VM Utils

(a) Hourly Pricing Model

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

PR RP PP

N
or

m
. V

M
 #

/U
til

s

Norm. # VMs
Norm. VM Utils

(b) Minutely Pricing Model

Figure 3.12: Comparison of VM Numbers/Utilization of Three Scaling
Styles.

3.5 Discussion

3.5.1 Mixing Workload Predictors

In Section 3.4.2, we observed that the predictive scaling should be used for both

scaling-out and scaling-in for the best results. However, this observation raises an-

other question: Should we always use the same workload predictor for both scaling-in

and scaling-out? Or, is there any benefit of using two different workload predictors

for scaling-in and out? Because scaling-in and scaling-out use different standard to

manage VMs, they may prefer different workload predictors.

To answer these questions, we conducted additional experiments for PP using

the 8 best workload predictors mentioned in Section 3.4.2. As we vary the workload

45

predictors for scaling-in and scaling-out, there are 64 possible combinations of predic-

tors. Limited by space, we cannot provide results for all 64 combinations. Instead, we

present the results of the best combinations for each workload pattern in Table 3.3(a)

and 3.3(b). As these Tables show, except for the growing and random workloads

under hourly pricing model, mixing two workload predictors has better results than

using only one predictor. However, it is still unclear how to properly choose the best

combination. We plan to solve this problem in the future.

3.5.2 Ensemble of Top Predictors

As shown in Section 3.4, no workload predictor is universally the best for every

workload pattern and pricing model, in terms of both prediction accuracy and cloud

metrics. Furthermore, the most accurate workload predictor does not necessarily

provide the lowest cost and deadline miss rate. These two observations, along with the

fact that mixing workload predictor is better than a single workload predictor, indicate

that predictive scaling cannot simply rely on one workload predictor to achieve the

best result. Instead, an ensemble method that combines top workload predictors may

be the best for predictive scaling. For best results, this ensemble method may also

have to dynamically weight its workload predictors based on workload pattern. We

plan to investigate this ensemble method in the future.

3.6 Chapter Summary

To design proactive cloud resource management system, it is non-trivial for cloud

users to determine the best workload predictor of predictive resource scaling due to

the enormous number of predictor proposed, diverse workload patterns, and various

cloud configurations.

In order to help the cloud users select the best workload predictor, we comprehen-

sively evaluated 21 (existing) workload predictors using statistical and cloud metrics.

For the performance evaluation of all workload predictors, we simulated a cloud re-

source management system with all 21 workload predictors using PICS simulator. We

then evaluated the prediction accuracy of all workload predictors, and cost/deadline

miss rate of three styles of predictive scaling (PR, RP, and PP) for diverse workload

patterns and different cloud configurations.

The evaluation results show that:

46

Table 3.3: Normalized Cost and Deadline Miss Rate of Mixed Workload
Predictors.

(a) Hourly Pricing Model.

Workload
Mixed Workload Predictor Normalized Normalized

Scale-Out Scale-In Cost DL Miss Rate

Growing L-SVM L-SVM 30% 4%

On/Off G-SVM L-SVM 30% 7%

Bursty BRDES ARIMA 47% 4%

Random L-SVM L-SVM 48% 18%

(b) Minutely Pricing Model.

Workload
Mixed Workload Predictor Normalized Normalized

Scale-Out Scale-In Cost DL Miss Rate

Growing AR BRDES 98% 27%

On/Off ARMA AR 102% 9%

Bursty BRDES Lin. Regression 93% 16%

Random G-SVM BRDES 88% 38%

• In terms of statistical metrics, the accuracies of different workload predictors

vary considerably. However, no predictor is universally the best for all workload

patterns. Each workload pattern has its own best predictor.

• The most accurate workload predictor is not necessarily the best in terms of

cloud metrics. Moreover, no predictor is universally the best for all workload

patterns and billing models. However, we observe that the best predictor for a

particular workload pattern is always one of the top 3 most accurate predictors

(with statistical metric) of that workload.

• PR and PP approaches significantly reduce cost and deadline miss rate over

RR. Overall, PP always provides the lowest cost and deadline miss rate for all

workload patterns and billing models.

In summary, to design a new predictive cloud resource scaling, the cloud users

should consider top 3 workload predictors depending on their workload patterns, and

use PP approach for their scaling operations in order to maximize the scaling perfor-

mance. Moreover, we examined the benefit of using different predictors for scaling-out

and scaling-in in PP. Our results show that mixing workload predictors has lower cost

and deadline miss rate than using a single predictor. These results further suggest

that ensemble of top workload predictors may be the best for predictive scaling.

47

Chapter 4

CloudInsight: Addressing Dynamic

and Multi-Type Cloud Workloads

in Predictive Scaling

4.1 Introduction

As discussed in Chapter 3, different cloud workload patterns have different best pre-

dictors, and top three predictors often show similar performance in predicting future

workload changes. Therefore, cloud application designers/deployers may develop a

predictive resource management system by using a single static (or “one-size-fits-all”

style) workload predictor with the simplifying assumption that their workload has

a stable pattern (e.g., increasing, cyclic bursty, and on-and-off) over time. And the

similar approach is widely leveraged by many existing predictive systems [21, 28, 31,

47, 55, 61, 100, 113, 138, 154, 161, 164, 174, 190, 202, 203, 213, 217].

However, the “one-size-fits-all” approach is insufficient to address real-world

cloud workloads because the patterns of real-world cloud workloads are usually un-

known a priori because the real workloads are complicated in that they may experience

dynamic pattern-shift/fluctuation over time. This dynamic nature of real workloads

can be confirmed with traces from real-world cloud applications [33, 34, 169, 170].

Figure 4.1 illustrates the job/request arrival rate of the traces within Google [200]

and Facebook [187]. Neither trace follows regular patterns and both traces are more

likely to be composed of interleaving short-lived patterns that have different char-

acteristics. This dynamic fluctuation makes it difficult for a single static predictor

to achieve high prediction accuracy through the lifetime of a cloud application. As

48

0
1K
2K
3K
4K
5K

0 200K 400K 600K

of

 J
ob

 R
eq

ue
st

s

Time (Second)

(a) Google WL

100
200
300
400
500

0 20K 40K 60K 80K
Time (Second)

(b) Facebook WL

Figure 4.1: Job arrival rate from cloud workload traces; (a) Google clus-
ter trace [200] with 30 min. of time interval and (b) Facebook Hadoop
trace [187] with 5 min. of time interval.

Figure 4.1 shows, real workloads may not have clear and stable trend/seasonality.

The lack of trend/seasonality implies that time-series models may not be the best

choice for the cloud workloads in practice.

Consequently, a new approach is required to improve the accuracy of workload

prediction for real-world workloads that have a variety of workload patterns and dy-

namic fluctuations. To this end, we have created the CloudInsight framework, inspired

by a “mixture of experts” problem [90, 91]. Observing that different predictors excel

at predicting different workload patterns, CloudInsight leverages the combined power

of a diverse set of workload predictors. More specifically, CloudInsight dynamically

creates an ensemble model that combines multiple predictors to predict the job ar-

rival rate for the next time interval in the future. The weight of a predictor in the

ensemble model is calculated at runtime based on the predictor’s accuracy for the

current workload at previous time intervals. To determine the weights, we design a

novel evaluation approach based on a SVM (Support Vector Machine) multiclass re-

gression model. The ensemble model is recreated periodically to handle the dynamic

fluctuations in a workload. Since CloudInsight is an open-architecture, any different

predictors from users’ choice can be used in it.

We have conducted comprehensive evaluations of the performance of CloudIn-
sight with diverse real-world workload traces collected from cluster [187, 200], HPC

(High-Performance Computing) [86], and web applications [17]. The experiment re-

sults show that CloudInsight outperforms existing time-series, machine learning, and

specific custom predictors in every workload. CloudInsight has 13% to 27% better pre-

diction accuracy with low overhead. Moreover, we also perform a trace-based simula-

tion in combination with a representative resource management module. The results

49

CloudInsight Workload Predictor

Predictor Pool

Predictor #1

Predictor #2

. . .

Ensemble Model Builder

Creating Train/Test Dataset

Soft-Min Normalization

Predictor Evaluation

Ensemble Model Creation
Predictor #N

Workload

Repository

Resource Management Component (e.g. VM Scaling)

Update Local Prediction History

Ensemble

Model

Request for

Ensemble Model

Local

Predictions

Local

Pred.

History

Job

Arrival Workload Prediction

Job

Arrival

Update

Job Arrival

Info.

Workload

Figure 4.2: Architecture of CloudInsight.

from the simulation study show that CloudInsight incurs 15% – 20% less under-/over-

provisioning, resulting in 16% better cost efficiency and 17% fewer SLA violations.

4.1.1 Chapter Organization

We structure the rest of the chapter as follows. We present the framework details and

implementation of CloudInsight in Section 4.2. In Section 4.3, we evaluate CloudIn-
sight with real-world workload traces. Section 4.4 provides sensitivity analysis of

CloudInsight with more predictors. Lastly, Section 4.5 summarizes this chapter.

4.2 Approach: CloudInsight
This section gives a detailed description of CloudInsight. Figure 4.2 illustrates an over-

all architecture of CloudInsight. This framework consists of four main components:

1) a predictor pool, 2) a workload repository, 3) a model builder and 4) CloudInsight
workload predictor. The input of this framework is the actual/current workloads

(e.g., job arrivals) and the output is the prediction for a near-future workload. The

predictor pool is a collection of workload predictors. The workload repository stores

the job history of the workload and the prediction history of all local predictors in

predictor pool. The model builder is responsible for creating an ensemble prediction

50

Start of

Workload

Initial Step
Model

Creation

Prediction
End of

Workload

Initial step is finished

Initial

Ensemble model

Workload prediction

at every prediction interval

Ensemble

model

Model

re-creation

request

Figure 4.3: Workflow of CloudInsight.

model by evaluating the performance of the predictors in the predictor pool. CloudIn-
sight workload predictor provides the forecast for the near-future workload using an

ensemble model created by the model builder. This prediction will be utilized by

resource managers for predictive resource (e.g., VM) scaling.

4.2.1 Workflow of CloudInsight

Figure 4.3 depicts the workflow of CloudInsight. The workflow of CloudInsight runs

through the following steps; 1) initial prediction and measurement (“initial step”

in Figure 4.3), 2) ensemble model creation (“model creation” in Figure 4.3), and

3) workload prediction (“prediction” in Figure 4.3). Once the first step is finished,

CloudInsight repeats the second and the third steps until the end of workload.

CloudInsight has two temporal interval parameters: 1) a prediction interval and

2) a model re-creation interval. The former is the interval to make a new future

workload prediction, and the latter is the interval to re-create the ensemble model

used by CloudInsight. Users set both intervals when CloudInsight starts; normally the

prediction interval is shorter than the model creation interval.

Initial Prediction and Measurement: when jobs begin to arrive in a cloud appli-

cation, a prediction for the future workload is also initiated. But, for the initial period

(e.g., the first 30 minutes or 1 hour), CloudInsight either uses a simple ensemble work-

load prediction model that all local predictors1 have the equal contribution (weight)

1The local predictors indicate the predictors in predictor pool. Section 4.2.2 explains the local
predictors in detail.

51

or relies on user’s selection of the weights (the user can allocate a higher weight for

a particular predictor). The use of simple ensemble model here is because, during

the initial period, CloudInsight does not have enough accuracy history for the local

predictors. It is impossible to meaningfully assign weights to the predictors without

this history.

Ensemble Model Creation: once the initial (measurement) step finishes and initial

accuracy history is collected, CloudInsight creates an ensemble prediction model based

on the procedure described in Section 4.2.4. This ensemble model is used to predict

future workload. After the expiration of the model re-creation interval, the ensemble

model will be re-created.

Workload Prediction: the workload prediction is performed at every pre-defined

prediction interval with the ensemble model, which is created from the previous step.

The ensemble model combines the predictions from the local predictors in the predic-

tor pool. This prediction can then be used by a resource management component for

resource scaling.

4.2.2 Predictor Pool

The predictor pool contains a variety of workload predictors, called “local predictors.”

CloudInsight is designed to be generic and does not have any special dependency with

a particular predictor. Consequently, its predictor pool can contain any predictors

as long as those predictors can provide predictions for future workloads (e.g., job

arrival rates). We have experimented with various workload predictors, including

time-series, regressions, and machine-learning models. As shown later in Section 4.3,

CloudInsight can properly handle all these types of predictors and considerably im-

prove workload prediction accuracy. Other types of workload predictor (e.g., Neural

Network [89], Markovian Arrival Process [64, 181], Bayesian Model [46]) can also be

used for the predictor pool. Because of CloudInsight’s generality, users can add any

workload predictors to the predictor pool. Note that, more local predictors may in-

crease the overhead of workload prediction and ensemble model creation. Although

CloudInsight’s overhead is negligible in our evaluation with 21 predictors, users may

want to limit the size of predictor pool when there are hundreds of potential local

predictors and the overhead becomes non-trivial.

When actual workload comes to our target applications, all local predictors in the

predictor pool make their predictions for future job arrival rates. However, because

52

different local predictor works best for different workload patterns (or a particular

part of dynamic real-world workloads), the model builder would selectively consider

the best ones and combine them with different contributions (weights). The model

builder is responsible for properly selecting and combining them. We will describe

how we address this issue.

4.2.3 Workload Repository

Workload repository contains the prediction history of the all local predictors in the

predictor pool. This history is represented as a normalized performance vector, which

is described in the following paragraphs.

Performance Vector (PV): the PV is a fundamental element of training and

prediction input datasets for the evaluation step and is a feature matrix composed of

prediction errors of all local predictors for past prediction history. The performance

vector is an n×m matrix as formulated below:

PV =



PE1,1 PE1,2 · · · PE1,m−1 PE1,m

PE2,1 PE2,2 · · · PE2,m−1 PE2,m

...
...

. . .
...

...

PEn−1,1 PEn−1,2 · · · PEn−1,m−1 PEn−1,m

PEn,1 PEn,2 · · · PEn,m−1 PEn,m


(4.1)

, where n is the number of the local predictors and m is the past (consecutive)

prediction points. PEi,j, an element of PV matrix, is the prediction error of ith local

predictor at jth prediction point. PEi,j is measured by squared error ((Predictioni,j−
Actuali,j)

2). A single PV represents a set of prediction errors of all n local predictors

for past m prediction points. (In our evaluation, CloudInsight uses 50 for m of PV .

This configuration works well for our case.)

Soft-Min Normalization: an issue of PV is that each element (PE) of the PV

matrix is the absolute squared error of each local predictor at certain prediction point.

Since a PE represents the absolute prediction errors at a particular time interval,

two PEs from two different time intervals cannot be directly compared to determine

which is more accurate (i.e., which has smaller error). Therefore, we normalize PEs

so that they can be directly compared. To normalize all PEs in a PV , we use a soft-

min normalization function that transforms each element (PE) into a real number

53

between 0 and 1. The soft-min function is shown in Equation (4.2).

Soft−Min(PEi,j) = 1− e−PEi,j∑n
k=1 e

−PEk,j
(4.2)

The input of Equation (4.2) is an element (PEi,j) of PV . The numerator of the

function is the exponentially inverse transform of the PE that we want to normalize.

The dominator is the sum of exponentially inverse transforms for all PEs at a par-

ticular prediction point (a single column in the PV .) Also, this normalized value is

subtracted from 1 so that higher values mean better performance (smaller prediction

errors) of the local predictors. The upper bound of the normalized soft-min value is

1, while the lower bound is 0. A local predictor always has a soft-min value between

0 and 1. After this normalization, the sum of each column in a PV is 1. Intuitively,

the soft-min value for a local predictor at particular prediction point can be viewed

similarly as the probability of it being the best predictor for this prediction point.

4.2.4 Ensemble Predictor Builder

The model builder evaluates the local predictors, determines the best predictors

among them, and creates an ensemble prediction model of top predictors with different

weights. This model builder is inspired by a mixture of experts (MOE) problems [90,

91]. The essential insight of the MOE is that a collective result (e.g., ensemble) of

all local experts is often better than a decision from a single expert [83]. In our case,

each local predictor can be considered as a local expert in the MOE problem. Unlike

a general MOE approach, which leverages a simple linear combination of all local

experts, we create an ensemble model combined by the local predictors with different

weights, because different local predictors work best for different workload patterns

(or a particular part of dynamic real-world workloads). A higher weight of a local

predictor indicates better performance for the current workload, and thus potentially

better for the future.

Evaluating the local predictor is the most important step of the model builder to

create an ensemble prediction model. We formulate this evaluation as a multiclass

regression problem and use Gaussian SVM regression model [72]. The following para-

graphs give a detailed description of how the ensemble model is trained and used to

make workload predictions.

Training Dataset and Prediction Inputs: both training dataset and the predic-

54

t-1t-2t-3t-m-1t-m-2t-m-3t-m-lt-m-l-1

Training PVl

Length = m

Testing PV

Training PVl-1

Training PV2

Training PV1

l Vectors

for Training

Length = m

.

. . .

Time

Figure 4.4: Temporal coverage of PV s for training and prediction input
dataset. (m: length of row for PV , meaning m temporal points for past
predictions, l is the size of training dataset, meaning the number of PVs
in training dataset.

tion input dataset are represented as a collection of PV s as discussed in Section 4.2.3.

However, these two datasets use separable PV s that cover different temporal windows.

Suppose time t indicates current prediction point, l is the size of training dataset, and

m means the length of columns in PV s. The training dataset covers the history of

the local predictors’ performance between at t −m − l − 1 and t − 2. The training

dataset is expressed as {PVt−m−l−1, PVt−m−l, ..., PVt−3, PVt−2}. The prediction input

data-set, which is used to predict the job arrival rate at time t, is the PV at t − 1

prediction point and is expressed as {PVt−1}. Figure 4.4 illustrates the temporal

coverage of training data set and prediction input data set.

Evaluation of Local Predictors: as we mentioned previously, we reduce the “eval-

uating local predictors” problem to the “multiclass regression” problem. A multiclass

regression problem gives the probabilities of whether an observation belongs to a set

of categories. Consequently, with a “multiclass regression” model, we can evaluate

the probability that a local predictor is the most accurate predictor for the future

workload. More specifically, we employ Gaussian SVM model for this classification

problem. The evaluation with the SVM model follows a typical machine learning

process; training and prediction. The SVM model is trained with the aforementioned

training dataset. After training, this model can provide its projection for all local

predictors. The output vector of this model is shown below.

55

Y =



ω1

ω2

...

ωn−1

ωn


(4.3)

The output of this SVM model is a n × 1 matrix. Thanks to the soft-min nor-

malization, all items in this output matrix are real numbers (ω) between 0 and 1. A

higher value of ωi (close to 1) indicates that ith predictor has higher possibility to be

the best predictor for workload prediction. Likewise, lower value of ωj (close to 0)

suggests that jth predictor has a lower probability of being the best.

Creating an Ensemble Model for Workload Prediction: the ensemble workload

predictor directly uses the output from the evaluation results of the local workload

predictors. This ensemble model is constructed with Equation (4.4).

Ensemble Model:

∑n
i=1 ωipi∑n
i=1 ωi

(4.4)

ωi is the output from the previous step and pi is the prediction from a local predictor.

By employing ωi, this ensemble model gives higher weights to potentially more accu-

rate local predictors and lowers weights to potentially less accurate local predictors.

The result from this ensemble model is the prediction of the current and near-future

job arrive rates, which can be utilized by other resource management components

(e.g., VM scaling). Also, the predictions of the local predictors used in this ensemble

model will be updated to the workload repository to be used for further evaluation of

the local predictors. Note that the ensemble model is not necessarily created at every

prediction point since this model requires the entire process of evaluating the local

predictors, which is time-consuming. The ensemble model will be re-created periodi-

cally with a predefined time interval. In our evaluation (Section 4.3), we recreate the

ensemble model after finishing every five predictions, which works well for our case.

4.2.5 Implementation of CloudInsight

We implemented CloudInsight with Python 2.7 on Ubuntu 16.04 LTS. To implement

the local predictors in the predictor pool and the evaluation step of the model builder,

the following statistics and machine learning libraries are used; NumPy, Statsmodels,

56

Pandas, and scikit-learn.

For implementing the local predictors, while our goal is to improve/maximize the

prediction accuracy, deterministic processing time of the local predictors is desirable.

This requirement is because CloudInsight collaborates with a resource manager that

should adequately prepare cloud resources before the actual job arrives. We use a grid

search [20] to determine the parameters for the local predictors with a tradeoff between

the accuracy and the prediction overhead. We consider parameters of 0 < α < 1 for

BDES, 1st to 3rd order for other time-series models (AR, ARMA, ARIMA) and 10e−3

to 10e3 for soft margin and kernel parameters in SVMs.

For the implementation of the ensemble predictor builder (the SVM multi-regression

model), we aim more at improving the performance of an ensemble model. To this

end, we also take the same approach (grid search) with the way of tuning the local

predictors, but we examine broader range for soft margin and kernel parameters of

SVM model 10e−6 to 10e6 to yield better results.

We use various synthetic workloads [58, 193] to guide the above two parameter

selection processes. To ensure fair evaluation and avoid over-fitting, we did not use

real workloads in parameter selection. Real workloads [17, 34, 86, 169] are only used

to evaluate CloudInsight.

4.3 Performance Evaluation

4.3.1 Evaluation Setup

Workload Datasets: to evaluation CloudInsight, we used three categories of work-

load traces from real-world cloud applications: 1) Cluster workload traces from

Google [200] and Facebook [187], 2) Scientific/HPC workloads from the Grid Work-

loads Archive [42] and 3) Wikipedia web traces from WikiBench [199]. These three

groups of workload datasets allow us to evaluate CloudInsight with diverse scenarios of

application deployment on clouds. We provide details on the characteristics of these

workloads in Section 4.3.2.

Local Predictors: in this evaluation, the predictor pool has eight well-known work-

load predictors; linear regression [22, 125, 147, 162, 210], WMA [61, 113, 164],

BDES [21, 138, 154], AR [30, 31, 49, 202], ARMA [55, 100, 161, 174, 190], ARIMA [28,

47, 213], and two SVMs (both linear and Gaussian models) [18, 153, 207]. These eight

predictors are chosen because they have shown decent performance for four different

57

simulated workloads from the measurement in Chapter 3. These predictors are de-

scribed in Section 3.2.

Evaluation Goals: our goal is to evaluate four properties of Cloud-Insight. Firstly,

we measure the accuracy of CloudInsight regarding the forecasting future job arrival

rate in above datasets (Section 4.3.3). Secondly, we evaluate the overhead of CloudIn-
sight since prediction within deterministic time is a prerequisite of any workload

predictors (Section 4.3.4). We then will perform a trace-based simulation of CloudIn-
sight in combination with resource scaling components to measure how much benefit

it can bring to cloud resource management (Section 4.3.5).

Performance Metrics: to measure the prediction accuracy of job arrive rate, we

employ RMSE (Root Mean Square Error), which is formulated as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(Predictedi − Actuali)2 (4.5)

Once we obtain RMSE results, all results are normalized over the result from

CloudInsight to see the relative differences clearly. 1.0 means the results from CloudIn-
sight. Lower RMSE results mean the better performance and vice versa.

To evaluate the overhead of CloudInsight, we define the processing overhead as

the time for “job arrival rate prediction process” and “ensemble model recreation

process.” We measure the actual processing time on a Linux Server with 8 CPUs

(AMD Opteron Processor 4386) and 16G RAM.

For the evaluation with a representative resource management module, we employ

general cloud metrics, including cloud cost, job deadline miss rate, and over-/under-

provisioning time.

Baselines: we compare CloudInsight against four predictors; ARIMA, SVM, FFT

(Fast Fourier Transform), and RSLR (Robust Stepwise Linear Regression). We choose

ARIMA and SVM from the local predictors because they are widely used in many

predictive approaches [18, 28, 47, 153, 207] as well as the two best “one-size-fits-all”

predictors that we have experimented with. We choose FFT [64, 181] and RSLR [203]

from state-of-the-art approaches, which provide a robust and accurate prediction for

cloud resource scaling.

58

4.3.2 Evaluated Workloads

While the workload datasets contain various characteristics, this chapter focuses on

its temporal characteristics. i.e., job arrival rate. We extract temporal behaviors

of job submissions in the workloads and Table 4.1 describes the summary of the

characteristics of the workloads. We also choose workloads with variable length of

duration (lifetime) and density of job arrivals to show the generality of CloudInsight.
The following paragraphs outline the backgrounds of such workloads.

Table 4.1: Statistics of evaluated workloads.

Workload Duration # Jobs
Predictor Setting

Prediction

Interval

Model Recreat.

Interval

Cluster

Google 1 month 2M

30 to

1200 sec.

At every

5 Predictions

Facebook #1

1 day

5.9K

Facebook #2 6.6K

Facebook #3 24K

Facebook #4 25K

Web

Wiki Global

3 days

823K
30 to

1200 sec.

At every

5 Predictions
Wiki Germany 76.5K

Wiki Japan 51K

HPC

Grid 5000 22 days 62.5K 30 to

1200 sec.

or

1 to 12 hrs

(AuverGrid)

At every

5 Predictions

NorduGrid 60 days 122K

AuverGrid 365 days 2.3M

SHARCNet 11 days 188K

LCG 33 days 435K

Cluster Workloads: these workloads represent the behaviors of cloud applications

for cluster and big data analytics (e.g., Hadoop). We use several workloads from

Google Cluster trace [200] and Facebook Hadoop traces [187]. Google workload con-

tains 2 millions of job arrival data for a one-month period. Facebook dataset contains

1 millions of job submissions. Particularly for the Facebook workload, we use 4 sam-

ple traces (two traces from 2009 and two traces from 2010), each represents 1-day job

submissions. The examples of visualizing such workloads are shown in Figure 4.1 in

Section 4.1. We only show two of cluster workload, but other three workloads from

Facebook have similar characteristics with Figure 4.1(b). The cluster workloads are

varying significantly and have dynamic nature of job submissions.

59

0
0.3K
0.6K
0.9K
1.2K
1.5K

0 1 2 3#
of

 U
se

r A
cc

es
se

s

Time (Day)

(a) Wiki Global WL

 0
 50

 100
 150
 200

0 1 2 3
Time (Day)

(b) Wiki German. WL

 0
 50

 100
 150
 200
 250
 300
 350

0 1 2 3
Time (Day)

(b) Wiki Japan. WL

Figure 4.5: Wikipedia traces with 5 min. of time interval.

Web Workloads: these workloads represent the behaviors of web applications,

which is a common application model on clouds. We use three days of Wikipedia

traces in September 2007. We focus on access log for (global) Wikipedia pages2,

German3, and Japanese main page4 of Wikipedia. The datasets have 823K (global),

76.5K (German), and 51K (Japanese) of user accesses. These Wikipedia workloads

are illustrated in Figure 4.5. Wikipedia workloads generally show strong seasonality

and trend characteristics, but Japanese main page has an unexpected spike of user

access.

HPC Workloads: the clouds are also actively used by many HPC applications

to support diverse areas of scientific computing. Five workloads are used for HPC

scenarios on the clouds. i.e., Grid50005, NorduGrid6, AuverGrid7, SHARCNet8, and

LCG (LHC Computing Grid)9. These workloads respectively contain 62.5K jobs,

122K jobs, 2.3-million jobs, 188K jobs, and 435K jobs for various periods. These

workloads are illustrated in Figure 4.6. HPC workloads have similar characteristics

with two previous workloads but have more dynamic natures.

4.3.3 Prediction Accuracy of CloudInsight

To compare the accuracy of CloudInsight, with the baselines, we use various time

interval for the workload prediction as shown in Table 4.1. This prediction interval

2https://www.wikipedia.org
3http://de.wikipedia.org
4http://jp.wikipedia.org
5https://www.grid5000.fr
6http://www.nordugrid.org
7http://www.auvergrid.fr
8https://www.sharcnet.ca
9http://wlcg.web.cern.ch

60

0
0.2K
0.4K
0.6K
0.8K
1.0K
1.2K

5 10 15 20

Jo

b
Re

qu
es

ts

Time (Day)

(a) Grid 5000 WL

0
0.4K
0.8K
1.2K
1.6K
2.0K

1 2 3 4 5 6 7 8
Time (Week)

(b) NorduGrid WL

0
2.0K
4.0K
6.0K
8.0K

2 4 6 8 1012

Jo

b
Re

qu
es

ts

Time (Month)

(c) AuverGrid WL

0
1K
2K
3K
4K
5K

 6 12 18 24 30
Time (Day)

(d) SHARCNet WL

0
0.1K
0.2K
0.3K
0.4K
0.5K

 0 2 4 6 8 10
Time (Day)

(e) LCG WL

Figure 4.6: HPC workload traces. (Grid 500 with 3600 sec. of time interval,
NorduGrid with 7200 of time interval. AuverGrid with 12 hrs. of time
interval, LCG with 600 sec. of time interval and SHARCNet with 900 sec.
of time interval.)

may affect its prediction accuracy because a longer prediction interval may provide a

smoothing effect on the workload patterns. Evaluation with the various time interval

minimizes this impact and averaging them offsets the variation. In general, we use

the prediction intervals from 30 seconds to 1200 seconds with a step of 30 seconds.

Especially for AuverGrid with one-year period, we use the prediction intervals with a

range from 3600 seconds (1 hour) to 86400 (24 hours) with a step of 3600 seconds. For

the model re-creation interval, we recreate and update the SVM model for evaluating

the local predictors at every five predictions of future workloads.

Cluster workload: the RMSE results of job arrival rate predictions of the five

approaches are shown in Figure 4.7(a) (all results are normalized to CloudInsight).
Overall, CloudInsight is 13% – 27% more accurate than the four baselines. Because

the cluster workloads do not have a stable seasonality and a trend, it is difficult for

a single model (ARIMA, SVM, FFT, or RSLR) to accurately detect certain patterns

from the cluster workloads to predict future changes. However, CloudInsight can keep

adjusting the weights for each predictor and create new ensemble model periodically to

61

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

Google Facebook#1 Facebook#2 Facebook#3 Facebook#4 Average

1.
14 1.
21

1.
19 1.

28

1.
13 1.
20

1.
16 1.

25

1.
14 1.

22
1.

18 1.
30

1.
12 1.

24
1.

19 1.
26

1.
13 1.
19

1.
20 1.
25

1.
13 1.
21

1.
19 1.
27

CloudInsight
(1.00)

N
or

m
. R

M
SE

CloudInsight ARIMA SVM FFT RSLR

(a) Normalized RMSE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800

C
D

F

Absolute Error

(a) Google WL

CloudInsight
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120

Absolute Error

(b) Facebook #1 WL

CloudInsight
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120

Absolute Error

(c) Facebook #2 WL

CloudInsight
ARIMA

SVM
FFT

RSLR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120

C
D

F

Absolute Error

(d) Facebook #3 WL

CloudInsight
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120 150

Absolute Error

(e) Facebook #4 WL

CloudInsight
ARIMA

SVM
FFT

RSLR

(b) CDF of prediction errors

Figure 4.7: Prediction accuracy in cluster workloads. Normalized RMSE
results in cluster workloads. (1.00 means the result from CloudInsight and
higher values indicate worse performance.), (b) CDF of prediction errors
in cluster workloads. (Absolute Error = |Predictiont − Actualt|)

62

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

Wiki Global Wiki German Wiki Japan Average

1.
11 1.
22

1.
12

1.
14

1.
09 1.
16

1.
11

1.
13 1.
16

1.
17

1.
11

1.
12

1.
12 1.
17

1.
12

1.
13

CloudInsight
(1.00)

N
or

m
. R

M
SE

CloudInsight
ARIMA

SVM
FFT

RSLR

(a) Normalized RMSE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400

C
D

F

Absolute Error

(a) Wiki Global WL

CloudInsight
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200

Absolute Error

(b) Wiki German WL

CloudInsight
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 25 50 75 100

Absolute Error

(c) Wiki Japanese WL

CloudInsight
ARIMA

SVM
FFT

RSLR

(b) CDF of prediction errors

Figure 4.8: Normalized RMSE results and CDF of prediction errors in web
workloads.

fit the changes in the workload. Therefore, CloudInsight can show better performance

for workload prediction.

Figure 4.7(b) shows the CDF (Cumulative Distribution Function) of prediction

errors in cluster workloads. The x-axis represents absolute prediction error, calculated

by |Predictiont − Actualt|, while the y-axis gives the cumulated probability of the

errors. As Figure 4.7(b) shows, the curves for CloudInsight are skewed to the left than

the baselines, meaning the majority of CloudInsight’s prediction errors are smaller

than the baselines. Also, the results from the baselines have longer tails, indicating

they yield more extreme prediction errors.

Web workload: the RMSE results for web workloads are shown in Figure 4.8-(a)

and CloudInsight outperforms the baselines again. On average, CloudInsight has 12%

– 17% of fewer errors than the baselines. Because web workloads usually have strong

seasonality and trends, all baselines perform better than when predicting cluster

workloads. Especially, both FFT and LRSR have a significant improvement in their

accuracy. However, although web workloads have relatively stable seasonality and

trends, the seasonality and trends can still change over time, albeit less abruptly.

63

Also, as shown in Wiki Japanese workload, web workload could have a sudden spike

of user accesses. CloudInsight can identify the seasonality and trends as well as detect

the changes (or spikes) in them. Thus, it can provide better prediction results.

Figure 4.9(b) shows the CDF distribution of the prediction errors in the HPC

workloads. The results are similar with the two previous cluster and web work-

load types. The curves for CloudInsight are more skewed to the left, indicating that

CloudInsight has less errors than other baselines.

Figure 4.8-(b) illustrates the CDF of prediction errors in web workloads. Similarly,

the majority of CloudInsight’s errors are still smaller than those of the baselines.

HPC workload: Figure 4.9(a) shows the normalized RMSE results in the five HPC

workloads; Grid 5000, NorduGrid, AuverGrid, LCG, and SHARCnet. On average,

CloudInsight is 19% more accurate than the four baselines with all the five HPC

workloads. Our HPC workloads exhibit a broad range of characteristics. The Grid

5000, AuverGrid, and SHARCNet workloads are bursty and random. They also lack

seasonality and trends. The NorduGrid and LCG workloads have relatively clearer

seasonality (among HPC workloads), although it is much more bursty and noisier

than web workloads. The measurement results with various HPC workloads indicate

that CloudInsight can correctly assign weights to the local predictors based on current

workloads behaviors so that it can predict with the best predictors for the future

workload.

Summary: we evaluated the prediction accuracy and the (CDF) error distribu-

tions of three approaches in three different real-world workloads. In all workloads,

CloudInsight shows 4% to 20% of better accuracy than ARIMA and SVM. The CDF

distribution of prediction errors clearly show the errors from CloudInsight are more

skewed to the left, meaning that it generates smaller errors and closer predictions to

the real workload changes.

64

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

Grid 5000 NorduGrid AuverGrid SHARCNet LCG Average

1.
14 1.
19 1.
26 1.
29

1.
12 1.

19
1.

14 1.
21

1.
17 1.
20

1.
16 1.
22

1.
19

1.
13 1.
15

1.
11 1.
13 1.
20

1.
18 1.

30

1.
15 1.
18

1.
18 1.
23

CloudInsight
(1.00)

N
or

m
. R

M
SE

CloudInsight ARIMA SVM FFT RSLR

(a) Normalized RMSE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800

C
D

F

Absolute Error

(a) Google WL

CloudInsight
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120

Absolute Error

(b) Facebook #1 WL

CloudInsight
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120

Absolute Error

(c) Facebook #2 WL

CloudInsight
ARIMA

SVM
FFT

RSLR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120

C
D

F

Absolute Error

(d) Facebook #3 WL

CloudInsight
ARIMA

SVM
FFT

RSLR
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120 150

Absolute Error

(e) Facebook #4 WL

CloudInsight
ARIMA

SVM
FFT

RSLR

(b) CDF of prediction errors

Figure 4.9: Normalized RMSE results and CDF of prediction errors in HPC
workloads.

65

4.3.4 Overhead of CloudInsight

Forecasting future workloads within a short and deterministic amount of time is also a

very critical property for all predictive resource scaling systems. Here, we evaluate the

overhead of CloudInsight and the four baselines. For the baselines, we only consider

“prediction overhead” for this evaluation as there is no additional overhead due to

the ensemble model reconstruction for them. We define “prediction overhead” as

the time that it takes to make predictions at given time point. For CloudInsight,
we measure both “prediction overhead” and “modeling overhead.” We define the

modeling overhead as the time that CloudInsight takes to create a new ensemble

prediction model.

Table 4.2: Prediction overhead of five approaches.

Cluster

Workload

Web

Workload

HPC

Workload
Average

CloudInsight 29 ms 37 ms 36 ms 34 ms

ARIMA 25 ms 24 ms 29 ms 26 ms

SVM 0.35 ms 0.4 ms 0.4 ms 0.38 ms

FFT 4.2 ms 5.9 ms 8.8 ms 6.3 ms

RSLR 22 ms 18 ms 22 ms 21 ms

Prediction Overhead: Table 4.2 gives the average prediction overhead for all the

approaches. On average, CloudInsight takes 34ms to make a prediction, while other

methods show lower prediction overhead. i.e., ARIMA takes 26ms, RSLR takes

21ms, FFT takes, 6.3ms and SVM takes 0.38ms. Although SVM has the lowest

overhead among the approaches, it has less accuracy than CloudInsight and the others

for the majority of our workloads. Even though CloudInsight leverages eight local

predictors, it takes only 12ms more time as compared to ARIMA. The reason is that

these eight predictors compute the prediction in parallel. The prediction overhead of

CloudInsight is determined by the highest prediction time of its eight local predictors.

It is worth noting that although CloudInsight has the longest prediction time among

five predictors, the absolute prediction time (34ms) is still negligible compared to

workload prediction intervals and resource reconfiguration intervals. Because the

overhead from cloud infrastructure is usually higher than 30 seconds (e.g., VM startup

time [130]), autoscaling resource managers often reconfigure their resources at an

66

interval higher than 30 seconds. As CloudInsight’s prediction time is much smaller

than the prediction interval, it imposes very limited impact to an autoscaling resource

manager.

 0
 200
 400
 600
 800

 1000
 1200
 1400

(Cluster)
Google

(Web)
Wiki Glob.

(HPC)
AuverGrid

1105

805.7
955.7

M
od

el
in

g
O

ve
rh

ea
d

(m
s) (a) Max Overhead

 0

 50

 100

 150

 200

(Cluster)
Google

(Web)
Wiki Glob.

(HPC)
AuverGrid

155 150 147

(b) Average Overhead

Figure 4.10: Modeling overhead of CloudInsight.

Ensemble Modeling Overhead: the ensemble modeling overhead of CloudInsight
is defined as the time to create a new ensemble model. The results of this overhead

are shown in Figure 4.10. Limited by space, we only show the results from the largest

workload for each type of workloads: Google, Wiki Global Main, and AuverGrid.

This overhead for the other workloads is usually smaller than these three workloads.

In the worst cases, it takes 0.8-1.1 seconds to create a new ensemble model. The

average modeling time is less than 155ms. This overhead is still negligible in practice

because CloudInsight can create a new ensemble model and make predictions within

the autoscaling resource reconfiguration intervals as stated previously.

Summary: we evaluated the overhead of CloudInsight with diverse workloads. CloudIn-
sight has a higher overhead for both prediction and modeling as compared to the

baselines. However, CloudInsight can provide prediction within 100 ms and create

a new ensemble model within about 1.1 seconds. This overhead is tolerable by any

predictive scaling since it has longer prediction interval, and this overhead can be

compensated by the accuracy that CloudInsight shows.

4.3.5 Case Study: Predictive Resource Management

To evaluate the benefits brought by CloudInsight to cloud resource management, we

conducted additional experiments where CloudInsight is applied to an elastic resource

manager. We also applied the baselines to the same resource manager as a comparison.

67

 0.6

 0.8

 1

 1.2

 1.4

Google FB#1 FB#2 FB#3 FB#4 Grid
5000

Nordu
Grid

Auver
Grid

SHARC
Net

LCG Average

CloudInsight (1.00)

Cluster Workloads HPC Workloads

N
or

m
al

iz
ed

 C
lo

ud
 C

os
t

ARIMA SVM FFT RSLR

Figure 4.11: Cost usage of the resource management with five approaches.

All these experiments are conducted on a trace-based simulator that closely resembles

the behaviors of real cloud applications on public clouds. Our simulation model

is composed of three sub-components; workload generator, resource manager, and

cloud infrastructure (public cloud). The workload generator creates user requests

(job arrivals) according to the workload traces (e.g., cluster and HPC workloads)

and uses the same configuration with Table 4.1. Each job is also associated with

a randomly generated deadline. The resource manager is responsible for predictive

scaling-out and reactive scaling-in to handle the workloads. The workload predictors

(e.g., CloudInsight, the four baselines) are part of this resource manager. For the

scaling-out operation, the workload predictor forecasts the future job arrival rate,

and the manager adds more resources if the demand is higher than the currently

available VM resources. For the scaling-in operation, the manager checks the status

of VMs in every minute and terminates the VM if the VM has no further jobs to

process. For the public cloud setting, we use an on-demand homogeneous VM type

for the simplicity of this evaluation and use minute-based pricing model for the cost

calculation.

We used three metrics to evaluate the effectiveness of the resource manager; 1)

cloud usage cost, 2) job deadline miss rate, and 3) under-/over-provisioning time. A

higher cloud usage cost means that the VMs are more likely to be over-provisioned

(lower cost efficiency). A higher job deadline miss rate suggests that the VMs are

more like to be under-provisioned (more SLA violations). Figure 4.11 and 4.12 give

the costs and job deadline miss rates of all approaches under cluster and HPC work-

loads. The results show that the resource manager using CloudInsight has the lowest

cost and lowest job deadline miss rate. On average, CloudInsight shows 14% – 22%

68

 0.6

 0.8

 1

 1.2

 1.4

Google FB#1 FB#2 FB#3 FB#4 Grid
5000

Nordu
Grid

Auver
Grid

SHARC
Net

LCG Average

CloudInsight (1.00)

Cluster Workloads HPC Workloads

N
or

m
al

iz
ed

 J
ob

 D
L

M
is

s
Ra

te ARIMA SVM FFT RSLR

Figure 4.12: Job deadline miss rate of the resource management with five
approaches.

better cost efficiency and 12% – 21% less job deadline miss rate as compared to the

baselines. Table 4.3 shows the normalized under-/over-provisioning time of baselines.

These accumulate both under-/over-provisioning periods and are normalized over the

results from CloudInsight. As the results show, CloudInsight has 15% – 19% less under-

/over-provisioning times compared to the baselines. These results indicate that as

CloudInsight increases the accuracy of future job arrival rate predictions, it can sig-

nificantly reduce the under-/over-provisioning of the cloud resources. The low under-

and over-provisioning periods also suggest that the resource manager with CloudIn-
sight always provisions the proper and accurate amount of VM resources according

to the actual workload changes while retaining high SLA satisfaction rate and cost

efficiency.

4.4 Sensitivity Analysis of CloudInsight with More

Predictors

In the previous evaluations, we only use eight local predictors to measure the perfor-

mance of CloudInsight. However, the group of local predictors may affect the accuracy

of CloudInsight. As CloudInsight has no limitation in leveraging the number of pre-

dictors, we perform a sensitivity analysis of CloudInsight with more number of local

predictors to confirm how this change affects its performance.

To evaluate the impact of the composition of local predictors, we measured the

accuracy and overhead of CloudInsight by adding 13 more local predictors (in total

21 local predictors) that are mentioned in Section 3.2. As shown in Figure 3.3 and

69

Table 4.3: Normalized sum of under-/over-provisioning time.

ARIMA SVM FFT RSLR

Google 18% 27% 18% 32%

Facebook #1 9% 14% 13% 18%

Facebook #2 14% 13% 14% 17%

Facebook #3 17% 20% 17% 18%

Facebook #4 15% 17% 22% 27%

Grid 5000 13% 16% 12% 14%

NorduGrid 14% 15% 12% 16%

AuverGrid 16% 18% 14% 16%

SHARCNet 20% 17% 18% 14%

LCG 15% 16% 14% 19%

Average 15% 18% 15% 19%

Table 3.2 in Section 3.4, these 13 predictors have lower average accuracy than the

eight predictors used by CloudInsight in the previous evaluations. In practice, it may

be difficult for a user to know which predictors are better than the others for his/her

workload. Therefore, a user may be inclined to include all known predictors, many

of which could have low accuracy. By including more predictors, this evaluation aims

at determining whether CloudInsight can still correctly pick the best predictors from

a large pool of mixed predictors. The normalized accuracy of using 21 predictors

is reported in Figure 4.13. CloudInsight with 21 predictors has similar or even bet-

ter accuracy than using eight predictors. Further analysis of the results shows that

the model builder of CloudInsight can correctly evaluate the accuracy of local predic-

tors and correctly assign higher weights for good predictors and lower weights for

poor predictors. Furthermore, for certain parts of a workload, a predictor from the

additional 13 predictors may perform better than any of the eight averagely-best pre-

dictors. The better accuracy in web and HPC workloads indicates that CloudInsight
can correctly catch the accuracy benefits from the additional 13 predictors for certain

parts of the workloads and utilize their better accuracy to improve overall prediction

results. These results also show that CloudInsight is a generic framework that can be

used with a myriad of types of predictors.

While using more predictors does not hurt (sometimes even improves) prediction

accuracy, using more predictors increases the prediction overhead of CloudInsight.
With 21 predictors, CloudInsight was 3.85x slower than only using eight predictors.

We observe that most overhead comes from re-creating the ensemble model: more

70

 0.5

 0.75

 1

G
oo

gl
e

Fa
ce

bo
ok

 #
1

Fa
ce

bo
ok

 #
2

Fa
ce

bo
ok

 #
3

Fa
ce

bo
ok

 #
4

W
ik

i G
lo

ba
l

W
ik

i G
er

m
an

Au
ve

rG
rid

LC
G

SH
AR

C
N

et

Re
la

tiv
e

Pe
rfo

rm
an

ce
(N

or
m

al
iz

ed
 R

M
SE

) with 8 predictors with 21 predictors

Figure 4.13: Result of sensitivity analysis of CloudInsight with the more
number of local predictors. Note that lower values mean better accuracy
and vice versa.

local predictors exponentially increase the overhead for model re-creation. It is worth

noting that even though using 21 predictors is slower, the absolute time for prediction

and model re-creation is still much smaller than the prediction and model re-creation

intervals (or resource reconfiguration interval). Therefore, the overhead of 21 pre-

dictors has limited impact in practical usage. However, if a user has a much larger

set of potential local predictors, he/she may want to limit the number of predictors

employed to reduce overhead. In the future, we will investigate how to determine the

optimal types/numbers of local predictors for CloudInsight.

4.5 Chapter Summary

This chapter presents CloudInsight, which is an online workload prediction frame-

work to address dynamic and highly variable cloud workloads. CloudInsight employs

a number of local predictors and creates an ensemble prediction model with them

by dynamically determining the proper weights (contributions) of each local predic-

tor. To determine the weights, we formulate this problem as a multi-class regression

problem with a SVM classifier.

We have performed a comprehensive study to measure the performance and over-

head of this framework with a broad range of real-world cloud workloads (e.g., clus-

ter, web, and HPC workloads). Our evaluation results show that CloudInsight has

13% – 27% of better accuracy than state-of-the-art one-size-fits-all style predictors

71

and it also has low overhead for predicting future workload changes (< 100ms) and

(re)creating a new ensemble model (< 1.1sec.).

In summary, the mechanism and evaluation results of CloudInsight show that our

approach is capable of addressing real-world cloud workloads that have dynamic and

high variable nature. This chapter will help other cloud researchers and practition-

ers design a new predictive method for managing and scaling cloud resources au-

tonomously.

72

Chapter 5

Orchestra: Guaranteeing

Performance SLA for Cloud

Applications by Avoiding Resource

Storms

Chapter 3 and 4 solve the workload uncertainty in cloud computing by CloudInsight,
which is a multi-predictor-based online prediction framework. In this chapter, we

are focused on addressing the performance uncertainty with user-space application

control framework. We begin this chapter by investigating the resource storm problem

that causes the performance uncertainty in enterprise cloud environments. Then,

we design an accurate performance model for real-world applications and develop

an application control framework for modern micro-service architecture that ensures

application performance under the performance uncertainty.

5.1 Introduction

In modern data centers, enterprise cloud instances (i.e., VM) are not only serving user-

facing (foreground or FG) applications, but also running diverse types of background

(BG) services1 – backup, security compliance, virus scan, patching, and batch tasks –

in order to securely and reliably manage such instances, and improve overall resource

utilization/cost efficiency. Since the BG services frequently perform very critical

missions for the management purposes, they have to be executed as planned in many

1In this chapter, we use the term “application,” “task,” and “service” interchangeably.

73

 0

 2

 4

 6

 8

 10

No BG 1 BG 2 BGs 3 BGs

24x

33x
36x

7.2x
10x 11x

Re
sp

on
se

 T
im

e
(S

ec
.)

(a) FG Response Time

Web
DB

 0

 2

 4

 6

 8

 10

No FG WLx1 WLx2 WLx3

1.0x
1.6x

3.3x

7.5x

N
or

m
. S

lo
w

do
w

n

(b) BG Execution Slowdown

Figure 5.1: Performance variation of FG and BG applications. (a) the
slowdown of FGs (Web and DB) response time (98%tile) when running
together with BGs; (b) the slowdown of a 10G data backup duration as
the FG workloads increase.

cases [11]. This requirement incurs resource storms that create high peaks of resource

usage without knowing when the FGs need more resources. Such resource storms can

retard processing time of FG applications and in turn the response time.

Figure 5.1(a) illustrates the performance degradation of two FGs (Olio Web ap-

plication and MongoDB) when they co-run with BGs. We show that the tail latency

(98%tile) of response time could be as slow as 36x. The degraded performance has

a significant impact on the QoS of the FGs, resulting in frequent SLA violation and

poor user experiences. For instance, Amazon has reported that every 100ms delay

loses 1% of the sales profit [124], and video streaming (e.g., YouTube) users start

abandoning videos after 2 seconds of buffering time [114].

However, the current cloud instances are not well designed to handle the resource

storms. Specifically, stock operating system schedulers such as completely or weighted

fair scheduler (CPU, IO) and network queueing (FIFO) mechanisms are designed

without considering the resource storms [121, 214], so that SLAs of FGs suffer while

parts of shared resources are consumed by BGs [38, 57]. OS modifications – changing

task priority [159] or designing a biased OS scheduler [39] – have been proposed, but

such tweaks are not feasible for normal users in the cloud environments due to the

technical difficulties. Moreover, intuitive approaches – terminating or suspending the

BGs – to guarantee the FGs’ SLA are not sufficient in practice since particular BG

tasks (e.g., backup and security checks) could have SLAs2 to finish the tasks due to

the importance of such services [11]. As shown in Figure 5.1(b), the BGs’ execution

2These SLAs are often very relaxed as compared to the SLAs for the FGs. i.e., once in a day.

74

time is also highly affected by the amount of FG workloads. Such coarse-grained

approaches – minimizing the resource allocation – are hard to guarantee the BG’s

SLAs (or completion of the tasks) and often underutilize the cloud instances by overly

controlling the BGs.

The research community has performed significant work, especially when one or

more FG applications – normally latency-sensitive – are running together with other

BGs such as batch jobs [195]. Previous approaches mainly focus on enhancing perfor-

mance isolation [102, 156, 192, 214], designing intelligent scheduling policies [43, 126,

148, 216] or determining safe co-locations [134, 188, 208]. These techniques often rely

on either or both of monitoring the host machine’s system/HW-level statistics (e.g.,

program counter and cache miss rate) and profiling the behaviors of FGs and BGs.

While AWS recently started to provide PMU (Performance Monitoring Unit) capa-

bility to the dedicated instance users [70], this information is not yet accessible by

the users of more general resource provisioning models like on-demand and spot. In

general, only cloud providers (e.g., AWS, Azure, or data center operators) are allowed

to leverage such information [62, 129], so we do not consider using such information

in this chapter. The profiling-based approaches aim to create the performance in-

terference models through off/online measurements. However, the offline models do

not provide the flexibility required in highly dynamic cloud environments and work-

loads [88, 169, 187, 200]. The offline models need profiling of target applications with

different constraints – virtual resources (vCPU, memory, network, disk) and even HW

architectures –, and different combinations of placement with other types of appli-

cations. It is apparent to imagine how much profiling effort needs with all possible

combinations. As a result, the online models are more desirable in practice, yet the

required computation and monitoring power are very challenging.

To solve this problem, we have created Orchestra, a framework for controlling the

FG applications and BG services in the user space, aiming at meeting both SLAs.

Orchestra relies on an online approach with very lightweight monitoring at runtime.

With the monitoring, Orchestra estimates the response time of FGs using a multi-

variate polynomial model [72] with a wide range of resource options and predicts a

BG’s execution time from a multivariate linear regression [72] powered by its resource

usage and application-assisted hints. It then optimizes the allocations of diverse re-

sources on cloud instances to both FG and BGs for guaranteeing their SLAs. The

resource control by Orchestra leverages the knobs provided by modern OS’s improve-

ment such as cgroups [136]. Orchestra is complementary to widely used approaches

75

for cloud application management. Orchestra components of performance monitoring

and resource controlling offer finer-grained mechanisms than off-the-shelf monitor-

ing/management tools like cloud autoscaling and CloudWatch3 and help cloud users

automatically determine when to scale.

We have implemented and evaluated Orchestra with real workloads on the pro-

duction clouds. Our main workloads are a web service and a NoSQL database (Mon-

goDB [145]) for FG applications, and backup (AWS Sync [10]) and virus/malware

scanner (ClamAV [37]) for BG services. Our evaluation shows that Orchestra can com-

ply with various SLA targets for FG applications with 70% performance improvement

of the BG services. Moreover, Orchestra has a very high overall correctness (less than

5% error), 16.5% of MAPE (Mean Absolute Percentage Error) for the FGs’ response

time estimation, and over 90% accuracy for the BGs’ performance prediction.

5.1.1 Chapter Organization

The rest of this chapter is organized as follows: Section 5.2 contains background

of this chapter. Section 5.3 describes the Orchestra framework including the overall

architecture, performance models, and its control mechanism. Section 5.4 explains

how Orchestra is implemented. Section 5.5 provides the performance evaluation of

Orchestra with real-world workloads. Section 5.6 summarizes this chapter.

5.2 Background

5.2.1 Enterprise Cloud Instances

Enterprise or managed cloud instances require high standards for the infrastructure

service management such as backup, monitoring, compliance, and patching. The

services are typically built by a diverse set of providers. Service vendors often have

agent processes running in the background, and they run commands from a central

manager or report data to the central location. There has been significant research

focus on the resource contention with BG services, especially batch jobs. Although

the research community has been mainly focusing on the cloud resource contention

problem among VMs as to resource over-provisioning, in practice it is unlikely as

cloud providers have reported that the average utilization of cloud instances is about

3https://aws.amazon.com/cloudwatch/

76

 0
 20
 40
 60
 80

 100

 0 50 100 150 200 250 300 350 400
 0

 2

 4

 6

 8

 10
(a) Backup (b) Compliance (c) Virus Scan (d) Batch

CPU Usage
Response Time

C
PU

 U
sa

ge
 (%

)

Re
sp

on
se

 T
im

e
(s

ec
)

Time (Seconds)

Figure 5.2: Resource and performance metrics of a managed cloud instance

20% – 30% [29, 44, 105, 109, 169]. Therefore, over-provisioning resources do not solve

the resource contention for cloud applications.

However, each managed cloud instance often runs 5 – 10 BG service agents and

their operations are not coordinated as they are from different vendors. Thus, it is

highly likely that agents run simultaneously and saturate resources abruptly. This

is called resource storm. In each cloud instance, resource storms generated from BG

management services have a significant impact on the performance of FG applica-

tions. Figure 5.2 demonstrates resource and performance metrics of a managed cloud

instance that runs a web server (FG) with multiple management services (BGs) such

as backup, compliance scan, virus scan, and batch jobs. The response time increases

significantly as the BGs preempt shared resources. It is easy to imagine that simul-

taneous executions could worsen the FG’s performance.

5.2.2 Can Autoscaling be a Solution for Resource Storms?

Autoscaling [6, 68, 140] is a widely used approach for the application management on

the cloud that fully leverages the benefit – elasticity [75, 88] – of cloud infrastructure.

Intuitively, the autoscaling might be considered as an approach to this problem by

adding more resources to cloud applications when the resource storms happen. (Note

that autoscaling is different from the resource over-provisioning in Section 5.2.1.) The

autoscaling relies on VMs’ resource utilization, and its scaling mechanism could be

automatically triggered with high peaks of resource utilization by the resource storms.

However, the autoscaling is not sufficient for the following reasons.

First, the resource storms can occur at any time on any cloud instances (VMs).

77

The VMs, newly added by the autoscaling, are often exposed to the resource storms

as well. The BG tasks – security, compliance, and patch – are inevitable for even for

the new VMs in practice. A worst-case scenario is that cascading resource storms

can incur poor QoS for the entire service from a cloud application. Therefore, it

is more appropriate to design an avoidance mechanism for resource storms inside

VMs. Furthermore, it is often very challenging for the autoscaling to immediately

respond to the resource storms. The autoscaling relies on tools like CloudWatch that

monitors the resource utilization on the VMs and catches an unusual resource spike.

Unfortunately, a previous work [182] reported that CloudWatch has 1 to 5 minutes

of delay to obtain proper monitoring results. Also, a VM provisioning has a delay of

3 to 5 minutes [130]. Enterprise cloud instances generally contain various SW stacks

(e.g., web server, DBMS, Memcached) and would take a longer provisioning time

than that of vanilla VMs. In the measurement for Figure 2, we observed that the

resource storms often have a short-duration and abruptly happen, indicating that the

autoscaling is not sufficient to promptly address the resource storms.

5.2.3 User Space Resource Control

The resource controls in user space for each resource type has been developed sepa-

rately thus far. A CPU control, nice directly maps to a kernel system call to manually

adjust the task’s priority level of a process, and yet another CPU resource control,

cpulimit4 repeatedly curbs the CPU usage of a process by stopping the process at

different intervals to keep it under the defined ceiling. A disk resource control, ionice

gets and sets program IO scheduling class and priority to adjust the disk usage of

processes. There are network traffic shaping tools such as trickle [54], force bind5,

and damper 6 that throttle the traffic bandwidth of processes.

With the emergence of cloud computing, there have been demands for the user

space resource control mechanisms because otherwise users have to create custom

kernels. Especially, the control groups (cgroups) have gained large attention recently

under container virtualization dominance. The Linux’s built-in cgroups is a mech-

anism which tells OS schedulers to limit the amount of resources (e.g., CPU time,

system memory, disk IO, network bandwidth, or combinations of these resources)

available to processes from user space, and this allows users to specify how the kernel

4http://cpulimit.sourceforge.net/
5http://kernel.embedromix.ro/us/
6https://github.com/vmxdev/damper

78

Master Controller

(Online)
Foreground
Perf. Model

(Online)
Background
Perf. Model

Optimizer
(at every 5
seconds)

Resource
Controller

Data

Collection

Node

Requests

Resource Monitor/Controller

Background Exec. Monitor

Resource Util. and
BG Exec. Progress

Background (or Batch)
Workloads

Foreground Workloads

Sidecar
(Proxy
Agent)

Response Time Changes
Workload Changes

Resource Control Signal
(CPU, Disk, Memory, Network)

Figure 5.3: Overall architecture of Orchestra.

should allocate specific resources to a group of processes. In particular, reconfiguring

resources dynamically on a running system is amenable to user space resource control

with fine-grained control over allocating, prioritizing, denying, managing, and moni-

toring system resources. The advantage of cgroups over prior implementations is that

the limits are applied to a set of processes, rather than to just one. Orchestra adopts

the user space resource control mechanisms.

5.3 Orchestra Framework

5.3.1 Orchestra Overview

Overall Architecture: We design Orchestra with a two-layer, distributed architec-

ture, of managed nodes and a master controller. Figure 5.3 illustrates the design of

Orchestra.

A managed node (VM instance) has two components in Orchestra– sidecar and

node agent. The sidecar – a traffic forwarder used as an online performance monitor

– is designed to watch performance variation of the FGs, i.e., a response time of web

requests and DB transactions. It measures the FG’s processing time by capturing the

79

ingress and egress time of user requests. Moreover, the sidecar can monitor a diverse

set of FG workloads as long as they use general purpose protocols (e.g., HTTP, TCP)

to communicate with end-users. The measured FG’s performance is reported to the

data collector in the master controller.

The node agents are used for 1) monitoring the resource usage of the target appli-

cations, 2) monitoring the progress of BG’s execution, and 3) reconfiguring resources

allocation to both FG and BGs. The monitoring of the resource usage focuses on

collecting the general system statistics, i.e., vCPU, memory, disk and network IO.

The BG’s execution progress is relying on probing the application-assisted hints such

as retrieving logfiles. All the collected statistics – resource utilization and application

progress – are reported to the data collector in the master controller. The resource

reconfiguration is to manage subsystems of control knobs (e.g., cgroups) with the

decision made by the master controller.

The master controller plays the most important role in Orchestra by determin-

ing the adjusted resource allocations to both FG and BGs with the goal of satisfying

FG’s SLA requirement and maximize BG’s executions. To this end, with various

statistics – response time, resource utilization, and application progress – from the

node agents, the master controller creates a response time estimator (Section 5.3.2)

and performance model (Section 5.3.3) for both applications on the fly. With these

models, the master controller optimizes the resource allocations to achieve the man-

agement goal. The detailed mechanisms will be explained in Section 5.3.4.

Orchestra Workflow: Figure 5.4 shows the workflow of Orchestra. Orchestra starts

with monitoring diverse statistics of the FG and BG applications’ performance and

the instance’s resource utilization. And it creates feature vectors with the statistics,

and these feature vectors are used to train and create two predictive models that

forecast the FG’s response time and BG’s execution duration. If a response time

of the FG application is close to or violates a SLA target (defined by Orchestra
operator), Orchestra adjusts the resource allocations to both applications through

an optimization with two predictive models. Once the proper resource allocation

is determined, the decision is sent to a node agent that will change resource usage

to both applications. If the performance of FG becomes stable (meeting the SLA

targets), then Orchestra stops controlling the resource allocation and comes back to

the steady monitoring state that collects the essential statistics to tune two predictive

models.

80

Monitoring

Control

Predictor
(Model

Creation/
Training)

Optimizer

Best Resource
Configuration

SLA under control
Feature Vector (VM Usage, #

Reqs, FG's Res, BG's progress)

Prediction Models
(FG RT, BG Exec Time)

Meet FG's SLA
While maximizing BGs'

throughput

If FG's SLA
violated

init

Figure 5.4: Orchestra state diagram.

5.3.2 Response Time Estimator for Foreground Applications

A key component of the master controller is the RT (Response Time) estimator that

predicts (the near future) web response time or DB transaction time with a broad

range of resource utilization. Since Orchestra’s decision on the resource control relies

upon this estimation model and the resource control should be made at runtime, high

accuracy and low overhead are an essential prerequisite.

Feature Selection: We observe the behaviors of two FGs (Web and MongoDB) by

running benchmark tools (CloudSuite [59] and TPC-C [163]) without BGs’ execution.

We then calculate the Pearson Correlation Coefficient between the FG’s RT and the

following features including the number of requests and various system resources –

CPU, memory, disk and network IOs.

Figure 5.5 reports the measured correlation. Three factors show the highest cor-

relation with the RT of web application (FG) – CPU, MEM (Memory) and NRX

(Network RX Bytes). The coefficients are between 0.6 and 0.75. Note that we do not

measure disk IO for the web application since it has very negligible disk operations.

In the MongoDB benchmark, the all features show relatively weaker correlations.

Four factors – REQN (the request numbers/sec.), CPU, NRX, and NTX (Network

81

 0

 0.2

 0.4

 0.6

 0.8

 1

REQN CPU MEM NRX NTX

Ideal Linear Correlation

W
ea

k
M

od
er

at
e

St
ro

ng

C
or

re
la

tio
n

C
oe

ffi
ci

en
t (
ρ

)

(a) Web Application

 0

 0.2

 0.4

 0.6

 0.8

 1

REQN CPU MEM NRX NTX DWT DRD

Ideal Linear Correlation

W
ea

k
M

od
er

at
e

St
ro

ng

(b) MongoDB

Figure 5.5: Correlation coefficient of factors that could affect FG’s response
time. (NRX: Network RX Bytes/sec. NTX: Network TX Bytes/sec.,
DWT: Disk Write Bytes/sec., DRD: Disk Read Byte/sec.)

Table 5.1: Correlation between the selected factors. (1: weak, 2: moderate,
3: strong correlation)

(a) Web Application (b) MongoDB

CPU MEM NRX NTX CPU MEM NRX NTX

CPU - 2 3 3 CPU - 1 3 3

MEM 2 - 2 1 MEM 1 - 1 1

NRX 3 2 - 3 NRX 3 1 - 3

NTX 3 1 3 - NTX 3 1 3 -

TX Bytes) – show a moderate correlation with the MongoDB’s RT. The coefficients

are slightly over 0.3. While the MongoDB has weaker factors, we decide to consider

all these (correlated) factors to model the RT estimator because the RT estimator

aims to handle both or potentially more types of FGs. The selected factors are CPU,

MEM, NRX, and NTX. We exclude REQN from this feature selection since NRX is

a more comprehensive metric that covers REQN. For the other FGs, users may add

other factors if necessary.

Moreover, we measure the correlation coefficient among these four factors since

there could be a certain possibility that one factor can be correlated with other

factors. i.e., a correlation of CPU and Network IO. We report the correlations among

the factors represented by 1 to 3 of scale (1: weak, 2: moderate, and 3: strong

correlation) and the results are reported in Table 5.1. CPU and Network IO are

strongly correlated each other for both FGs. MEM is moderately (Web) or lightly

(MongoDB) correlated with other two factors. MEM also shows low variance over

82

 0
 5

 10
 15
 20
 25

Order(2) Order(3) Order(4) Order(5) Order(10)

2.1ms 3.3ms
7.8ms

14ms

326ms

Av
g.

 O
ve

rh
ea

d
(m

s)

Figure 5.6: Computational overhead of MVPR model with different poly-
nomial orders.

the RT’s fluctuation. i.e., (µ of 13, σ of 11) for Web, (µ of 23, σ of 2) for MongoDB.

Model Selection: We chose MVPR (Multivariate Polynomial Regression) [72] ap-

proach to model the RT estimator because MVPR considers both 1) multiple factors’

contribution to the estimation target and 2) the correlation among the selected fac-

tors. The MVPR model is expressed as below:

f(x1, x2, ..., xp) =
N∑
i=0

βiφi (5.1)

where p indicates the number of independent variables, βi is coefficient, φ1 = 1,

φN = xn1 · xn2 · xn3 · · ·xnp , and n is the order of the MVPR.

When applying a polynomial model to a runtime system, the computational over-

head is highly concerned. The overhead depends on both the number of the inde-

pendent variables (p) and the order (n) of the model. With this concern, we use a

harmonic mean7 of NTX and NRX, both representing network-IO statistics and it

helps to reduce the number of equation terms. i.e., with a quadratic model, 3 in-

dependent variables require 27 terms and 4 variables generate 64 terms. Regarding

the order of the model, we empirically test the overhead with a training dataset (1

hour of Web RT data) and various polynomial orders from two to ten. The overhead

exponentially increases as the order of the polynomial model increases as shown in

Figure 5.6. However, the overhead is not too high in the model with the orders less

than 5. For example, the quartic model (order of 4) has the average computational

overhead of 7.8 ms and, its highest overhead of prediction is just as high as 87 ms.

We limit the order of the model with this observation. Moreover, the overhead of

MVPR can be determined by the size of the training dataset. The RT estimation

72/(1/NTX + 1/NRX).

83

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

Re
sp

on
se

 T
im

e
(s

ec
.)

Time (Second)

(a) Web Application

Ground Truth
Prediction

 0

 0.2

 0.4

 0.6

 0.8

 1

Re
sp

on
se

 T
im

e
(s

ec
.)

Time (Second)

(b) MongoDB

Ground Truth
Prediction

Figure 5.7: Prediction results from MVPR model (order of 2) for RTs of
Web and MongoDB.

model with MVPR incorporates with a sliding window technique [89] to limit the size

of the training dataset as well as leverage the most recent observations.

Model Accuracy: We measure the performance of the RT estimation model with

Web and MongoDB. Figure 5.7 illustrates the RT (ground truth) from both FGs

and prediction from the model with an order of 2. While this evaluation is performed

with less challenging condition (without BGs), it is obvious that the model accurately

estimates the RT of the FGs. The prediction shape from the model successfully

catches the trend of the RT variation for the web application. For the MongoDB, the

model has more errors than the case of the web application, but it also shows robust

predictions except for some outliers. We perform more comprehensive evaluations for

the accuracy of the RT estimation model with the BGs’ executions in the evaluation

section.

5.3.3 Performance Models for Background Services

Orchestra requires a performance model that predicts BGs’ execution time. The

model is essential for monitoring and controlling BGs services because Orchestra needs

to assure BGs’ SLA satisfaction and/or minimizing their execution time. So this

model performs a critical role in optimizing the resource allocation with an accurate

prediction of difference resource usages. To create such a model, we consider ClamAV8

and AWS Sync9 as the examples of BGs.

8ClamAV is an open-source anti-virus engine used to defend user instance (e.g., VM) from com-
puter viruses, Trojan, and other malicious threats [37].

9AWS Sync is a backup application for Amazon EC2 instances similar with rsync [10]. Sync
recursively copies new or updated files from a source directory on an EC2 instance to S3 [9] storage.

84

Table 5.2: Statistics of measurement results for understanding BG applica-
tions’ characteristics on two EC2 instances.

(a) ClamAV (b) Sync

Dataset 35G 106G 35G 106G

CPU11 73.8% 86.5% 78.6% 95.2%

Memory
14.2%

(0.53G)

19.5%

(0

73G)

3.3%

(0.12G)

3.9%

(0.15G)

Disk Read 8.3 MB/s 40 MB/s 51 MB/s 133 MB/s

Disk Write 79 KB/s 301 KB/s 2.2 KB/s 159 KB/s

Network TX - 55 MB/s 141 MB/s

Network RX - 1.4 MB/s 3.7 MB/s

Feature Selection: We perform a profiling study on two different Amazon EC2

instances10 – m3.medium and c4.large – of Ubuntu 16.04 LTS with 35G (10K files)

and 106G (50K files) dataset. In this measurement, we use the default configuration of

Ubuntu OS and run these two BG services individually without any FGs’ execution.

The statistics and results from this profiling are shown in Table 5.2. ClamAV is

observed as a CPU and Disk-IO (Read) bound application and moderately consumes

memory resources. Sync mostly consumes CPU, Disk-IO (Read) and Network (TX)

resources on the instances. Since both CPU and Disk-IO (Read) are common resource

factors that can potentially affect the performance of the BGs, we decide these two

resources as main features for the performance models of these two BGs.

Also, we consider leveraging application-assisted hints from these two applications.

Intuitively, the BGs’ performance could be highly related to the size and number of

files they manage. Fortunately, the BGs, like many other applications, support a

capability to write log files that saved how many files they scanned or backed up.

To test such hints’ applicability, we measure the correlation between the size and

numbers of files saved in the logs and the execution progress of two BGs. Figure 5.8

represents the progress of file size and numbers scanned or backed up by ClamAV

and Sync according to the BGs’ execution. Compared to the ideal progress (black

line in Figure 5.8), while the progress of the processed numbers and size of files are

slightly different from the progress of ideal case, it is obvious that the processed files

(numbers and size) are correlated with the ideal progress of BGs. On average, the

10m3.medium instance has 1 vCPU, 3.75G RAM, and SSD drive [3]. c4.large instance has 2
vCPUs, 3.75G RAM, and SSD Drive [3].

11100% of CPU means the full usage of 1 vCPU.

85

 0

 20

 40

 60

 80

 100

Ex
ec

ut
io

n
Pr

og
re

ss
 (%

)

Time (Second)

(a) ClamAV

Ideal Prog.
File Size

File Num.

 0

 20

 40

 60

 80

 100

Ex
ec

ut
io

n
Pr

og
re

ss
 (%

)

Time (Second)

(b) Sync

Ideal Prog.
File Size

File Num.

Figure 5.8: Changes of file size and numbers managed by BG services.
(Comparison with the ideal progress.)

progress by the number and size of processed files has 4.85 and 4.93 of MAE12 (Mean

Absolute Error) and a harmonic mean13 of two factors has just 2.9 of MAE over the

ideal progress. Thus, we consider such hint as a feature for the performance model

of BGs and use the harmonic mean of them.

Model Selection: We design the performance models with a multivariate linear

regression [72] that models the linear relationship between independent variables (the

features) and the corresponding variable y (BG’s execution time). The model is

formulated as below:

y =
n∑
i=1

αixi + β (5.2)

where x is the independent variables (x ∈ [CPUbg, DRDbg, HINTbg]) and β is a

constant. The corresponding variable y means the (predicted) execution time of the

BGs. In this chapter, we consider three features to design the performance models,

and users can add/remove more features according to the performance characteristics

of other BGs.

5.3.4 Orchestra Resource Optimizer and Controller

Now we explain how Orchestra determines the resource allocation to both applications

with two predictive models described in the previous sections. The primary objective

of this decision is to satisfy the FG’s SLA, so the RT estimation model (Equation (5.1)

in Section 5.3.2) should have the following condition. Suppose SLAfg indicates a SLA

12|Progressideal − Progresslog|.
132/(1/file size + 1/file numbers).

86

target for a FG:

f(CPU fg,MEM fg, NET fg) ≤ SLAfg (5.3)

To simplify this equation, we can consider MEM fg as a constant because the

memory resource has a weak correlation with other factors (shown in Table 5.1) as

well as it has no significant variance with the fluctuations of FG’s performance. We

replace MEM fg with the average memory utilization of the FG. We can also estimate

NET fg from EMA (Exponential Moving Average) [216]. This estimation may result

in slightly inaccurate prediction for the RT estimation, but it greatly reduces the

computation overhead for the RT estimation. i.e., O(n2) to O(n). Now we transform

the RT estimation model from multivariate to univariate model, depending on CPU fg.

We can obtain the minimum value of CPU fg that satisfies the SLAfg from the below

equation:
ˆCPUfg = arg min

CPUfg

f(CPUfg) ≤ SLAfg (5.4)

where 0 < CPUfg < CPUmax. CPUmax is the maximum amount of CPU resources in

the VM. If CPUfg from Equation (5.4) is greater than CPUmax, this means that the

FG is impossible to meet SLA requirement with 100% CPU utilization on the instance.

Thus, in this case, Orchestra provisions more resources to the FG by collaborating

with cluster or application management techniques (e.g., autoscaling) to ensure the

SLA satisfaction. With CPUfg, Orchestra can determine the CPU allocation for the

BGs by:

CPUbg = CPUmax − (CPUfg + ε) (5.5)

where ε is the CPU utilization for a third application or the reserved amount of CPU

for unknown processes.

Next, Orchestra performs an optimization to minimize Equation (5.2), which is

the performance model of the BGs.

minimize:
3∑
i=1

αixi + β, where

xi ∈ {CPUbg, DRDbg, HINTbg}

(5.6)

subject to: CPUbg = CPUmax − (CPUfg + ε) (5.7)

0 ≤ DRDbg ≤ DRDmax (5.8)

HINTbg = 1, (100% prog. of BG) (5.9)

87

The solution of this optimization determines the desired utilization of Disk IO for

the BGs. From Equation (5.3) to (5.9), Orchestra determines all resource allocations

to both FG and BGs. The set of resource allocation to both the FG and the BGs are

sent to a node agent on the VM instance, which reconfigures resource allocation with

cgroups.

5.4 Implementation

The implementation of Orchestra follows the architectures of recent cluster manage-

ment frameworks such as Kubernetes [116] and Docker Swarm [52] as shown in Fig-

ure 5.3 (in Section 5.3). The main components of these architectures include a master

and nodes to manage and orchestrate virtual machines, and the sidecar component is

used in the micro-service architecture such as Netflix OSS and Istio as a packet for-

warder in both/either ingress and/or egress14. In the master controller of Orchestra,

two predictive models – the RT estimator (FG) and performance model (BG) – are

implemented with various statistics and machine learning libraries. i.e., scikit-learn,

statsmodels, Pandas and others.

The implementation of node agent focuses on the resource monitoring and control.

Sysstat15 is used to periodically monitor the changes of resource utilization on the

VM instances. To control multiple resources, Orchestra consults with two subsystems

of cgroups [136] – cpu and blk io – to control the CPU and disk IO, and utilizes

tc16 for network IO. Whenever the new resource allocations are decided, Orchestra
reconfigures a different set of tunable values to cpu.shares and cfs period us (for

CPU control) and read iops in blk io (for disk IO control). While Orchestra can

determine the proper reconfiguration for network IO and is fully implemented to

utilize tc, according to our experience, reconfiguring tc is often unnecessary because

applying the updated value of cfs period us automatically adjusts network IO as well.

(Moreover, in Section 5.3.2, we discussed that both CPU and network IO are highly

correlated.)

The sidecar – a performance monitor for the FG – is based on Nginx’s reverse

proxy [152] and load-balancing [151] functionality. Currently, the sidecar supports

multiple protocols for the FG workloads – HTTP and data stream (TCP and UDP)

requests – and it forwards the requests to the corresponding FG applications. With

14https://istio.io/
15http://sebastien.godard.pagesperso-orange.fr/
16http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html

88

the Nginx’s recent improvement, the sidecar can capture ingress and egress time of

each request, and the statistics of the FG’s RT are reported to the master controller

in a real-time manner.

5.5 Performance Evaluation

We evaluate Orchestra on the real cloud environment. We first demonstrate the per-

formance of Orchestra for controlling both FG and BGs to satisfy the FG’s SLA goals

under the resource storms (Section 5.5.2). Section 5.5.3 analyzes the overall accuracy

of Orchestra as well as the accuracy of the RT estimator (FG) and performance models

(BG). We then report the overhead of Orchestra (Section 5.5.4).

5.5.1 Evaluation Setup

Evaluation Infrastructure: We use general purpose m417 instances of Amazon

EC2 clouds since Orchestra aims to provide fine-grained control mechanisms of vari-

ous VM resources to general cloud users (of course, all controls are performed in the

user space). As several works reported [56, 120, 160], Amazon EC2 has performance

variance due to the resource contentions and HW heterogeneity on the base infras-

tructure. We use EC2 spot instances in this evaluation (Spot may have even higher

level of the performance variance.) – multiple runs and averaging them offset the

variance.

17m4 instances are the latest generation of VM instances and have balanced resource combinations,
i.e., the ratio between CPU and memory is 1:4 [3].

89

FG Workloads: We consider Web application and MongoDB as representatives

of FGs and use two different benchmarks for each FG to generate real workloads;

CloudSuite 3.0 [59] - Web Serving benchmark and TPC-C [163] for MongoDB. For the

Web application, we generate web serving workloads from 50 to 250 concurrent users

to create a sufficient level of workload fluctuation. We set up different VMs for the

web server (m4.large18) and back-ends – Memcached and DBMS – (m4.xlarge19) and

focus on the resource controls for the front-end (web server) VM. For MongoDB, we

install the latest version of MongoDB on m4.large instance and continuously change

the number of concurrent users from 2 to 20 to generate the realistic workloads.

BG Workloads: A 5GB of a dataset is used for BG workloads. i.e., ClamAV (virus

scan) and AWS Sync (backup). This dataset has approximately 25K of files with

various sizes (µ of 1024K, σ of 1495.6). We use a different dataset from the dataset

we used in Section 5.3.3 for a fair comparison.

Performance Metric: In Section 5.5.2, meeting a broad range of SLAs is the pri-

mary metric. We focus on tail latency – 95%tile – for this measurement and define

that a SLA requirement is satisfied if a 95%tile of a FG’s response time is equal to or

less than the SLA target. In Section 5.5.3, we use two well-known metrics of measur-

ing the model accuracy; MAPE (Mean Absolute Percentage Error) and RMSE (Root

Mean Square Error). In general, lower values of both metrics mean better accuracy.

The overhead of Orchestra (Section 5.5.4) measures CPU usage of the master con-

troller and the managed nodes (including the overhead from the sidecar and node

agent) when they monitor, predict, and control target applications and resources.

5.5.2 Overall Performance with Foreground Workloads

This section focuses on the overall performance of Orchestra; meeting the SLA goals

while minimizing the BGs’ execution time. Before we start this evaluation, we need

to recognize the range (the upper and lower bound) of SLA targets that Orchestra
should meet. We quantify RTs (Table 5.3) of four different scenarios when a FG runs

with BGs (resource storms) and without BGs. We pick SLAs for each case within

the range of between “RT without a BG” and “RT with BG(s)”. Three SLAs – 25%,

37.5%, and 50% ∈ [RT without a BG, RT with BG(s)] – are chosen for evaluations

18m4.large has 2 vCPUs, 8GB RAM, and SSD storage.
19m4.xlarge has 4 vCPUs, 16GB RAM, and SSD storage.

90

 0.6

 0.8

 1

w/ 1 BG
(ClamAV)

w/ 1 BG
(Sync)

w/ 2 BGs
(ClamAV
+ Sync)

SLA Target
13%
diff.

4% diff.

N
or

m
. R

T
(9

5%
til

e)

(a) Web Application
Reactive Orchestra

 0.6

 0.8

 1

w/ 1 BG
(ClamAV)

w/ 1 BG
(Sync)

w/ 2 BGs
(ClamAV
+ Sync)

18%
diff.

3% diff.

N
or

m
. R

T
(9

5%
til

e)

(b) MongoDB
Reactive Orchestra

Figure 5.9: Normalized RT (95%tile) of Web and MongoDB over a set of
SLA targets (The best result should be 1.0.)

with resource storms. We define these three SLA requirements as a “tight SLA (with

25% padding)”, “moderate SLA (with 37.5% padding)”, and “loosed SLA (with 50%

padding).”

Table 5.3: 95%tile response time (RT) of Web and MongoDB with and
without resource storms from BGs.

Number of BGs Web MongoDB

FG Only 0 0.92s 0.86s

FG + ClamAV
1

5.88s 2.71s

FG + Sync 8.65s 3.57s

FG + ClamAV + Sync 2 11.78s 4.31s

We use a reactive approach from other works [208, 214] as the baseline. This

reactive system relies on a dynamic adjustment of maximum resource capping. The

reactive one sets a low value of the maximum cap (e.g., 5% of CPU utilization)

for BGs’ resource consumption when the FG’s RT violates the SLA goals, and it

allocates more resources to the BGs by releasing this cap when the FG shows a stable

performance. Also, we add a warning system to this baseline, and the warning system

sets a threshold (e.g., 10% gap from the SLAs). When the FG’s 95%tile RT exceeds

the threshold, the warning system alerts to the master controller, and the reactive

framework reduces the resource usage of the BGs with a pre-defined step function. If

the FG’s RT violates the SLAs, the reactive one uses the resource capping explained

above to quickly restore the FG’s performance with the SLA.

Figure 5.9 shows the RT (95%tile) of the FG applications managed by Orchestra

91

 0

 0.5

 1

 1.5

 2

w/ 1 BG
(ClamAV)

w/ 1 BG
(Sync)

w/ 2 BGs
(ClamAV
+ Sync)

1.5x

1.2x

1.7x

1.3x

2.0x

1.3x

BG
 S

lo
w

do
w

n

(a) Web Application
Reactive Orchestra

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

w/ 1 BG
(ClamAV)

w/ 1 BG
(Sync)

w/ 2 BGs
(ClamAV
+ Sync)

2.2x

1.4x

3.4x

1.3x

2.7x

1.5x

BG
 S

lo
w

do
w

n

(b) MongoDB
Reactive Orchestra

Figure 5.10: Slowdown of BG’s execution under two different control frame-
works.

and reactive approach when the FGs are running with the BGs. All results are

normalized over the SLA targets. If a result is equal to or less than 1.0, then the

RT meets the SLA goals and vice versa. As shown in Figure 5.9, both frameworks

can successfully control the FGs’ RT with the SLAs. But Orchestra’s results are

much closer to the SLAs, and it only has 2 – 5% difference with the SLAs. However,

the reactive system has about 15% differences with the SLA targets. These results

indicate that the FGs controlled by Orchestra consumes significantly less amount of

resources to meet the SLA targets as compared to the FGs with the reactive system.

Again, the goal of Orchestra is not maximizing a FG’s performance, rather meeting

the FG’s SLA as well as augmenting the performance of a BG(s). These results have

a huge impact on the BGs’ performance since Orchestra can allow the BGs to utilize

more resources to boost their execution (more importantly, without SLA violations).

Figure 5.10 reports the difference of the BG(s)’s performance and obviously shows the

benefits from Orchestra. While Orchestra only has 1.25x (with Web) and 1.39x (with

MongoDB) slowdown20 of the BGs’ execution, the reactive approach requires more

sacrifice to the BGs, i.e., 1.73x (with Web) and 2.77x (with MongoDB) slowdown of

the BGs. These results are because Orchestra’s predictive ability and optimization

mechanism could successfully determine the proper level of resource allocation to

multiple applications so that Orchestra allows the BGs to consume as high resource

as if the FG meets the SLAs.

Figure 5.11 shows resource utilization on the VMs with both approaches. We

only show CPU utilization since it is the most representative resource of the VMs.

20This is normalized over the BGs’ execution without FG workloads.

92

 0

 20

 40

 60

 80

 100

(with
ClamAV)

(with
Sync)

(with
Both)

75%
84% 82%

91%
83%

96%

RE OR RE OR RE OR

C
PU

 U
til

. (
%

)

(a) Web Application
FG-CPU(%) BG-CPU(%)

 0

 20

 40

 60

 80

 100

(with
ClamAV)

(with
Sync)

(with
Both)

86%
95%

87%
94%

88%
96%

RE OR RE OR RE OR

C
PU

 U
til

. (
%

)

(B) MongoDB
FG-CPU(%) BG-CPU(%)

Figure 5.11: Resource utilization (CPU) of VM with two control frame-
works. (RE: reactive framework, OR: Orchestra)

For the Web application case (Figure 5.11(a)), Orchestra utilizes over 90% of CPUs,

which is leveraging 10% more resources than the reactive approach. Interestingly,

Orchestra uses the similar amount of CPU (compared to the reactive one, only 2%

difference) for the Web (FG) and increases the overall utilization by allocating more

resources to the BGs. In the evaluation with MongoDB (Figure 5.11(b)), Orchestra
improves CPU utilization over 95% and provides balanced resource allocations to the

both, implying Orchestra is not only able to meet the FG’s SLAs, but also boost the

BG’s performance, resulting in high resource utilization on the VMs. However, the

reactive one allocates more than 75% of CPU to the FG, indicating it overly assigns

the resources that lead to retard the BGs’ execution.

Figure 5.12 and 5.13 illustrate Orchestra’s behavior for managing FG’s RT and

controlling VM resources. The top graph shows the changes in the FG’s RT and the

SLA target. The middle graph reports the CPU control for the FG, and the bottom

graph shows the CPU control for the BG. For the use case of Web (Figure 5.12),

while Orchestra controls the CPU resources based on its estimation mechanism, the

most critical SLA violation happens in the first 100 seconds (the top left graph).

This violation is because the RT estimation model for FG does not have enough

training dataset to build a robust model. After this initial training period, Orchestra
performs the successful control in the CPU resources. The middle and bottom graphs

in Figure 5.13 show that Orchestra increases CPU resources for the FG and, at the

same time, decreases the resource for the BG when the FG’s RT is close to or violates

the SLA target. i.e., at 220, 250, 400, and 580 second. Similar behaviors are shown in

the MongoDB case (Figure 5.13). The first 350 second period (top right graph) can be

93

 0
 2
 4
 6
 8

 10

 0 100 200 300 400 500 600

Training
 Period

3.0s

SLA

W
eb

 R
T

(S
ec

.)
(a) 95%tile RT

0
20
40
60
80

100

 0 100 200 300 400 500 600

Foreground (Web) CPU Control Points

C
PU

 (%
)

(b) FG CPU (%)

0
20
40
60
80

100

 0 100 200 300 400 500 600

Background CPU Control Points

C
PU

 (%
)

Time (Sec.)

(c) BG CPU (%)

Figure 5.12: Change of CPU resources for both a FG and BGs from Orchestra
and the changes of 95%tile RT of the FG. Web (FG) and Sync (BG) with
a SLA of 3.0 sec.

94

 0
 1
 2
 3
 4
 5

 0 200 400 600 800 1000 1200

Training Period

2.5s

SLA

D
B

RT
 (S

ec
.)

(a) 95%tile RT

0
20
40
60
80

100

 0 200 400 600 800 1000 1200

Decreasing FG (MongoDB)
CPU Allocation

Increasing FG
CPU Allocation

C
PU

 (%
)

(b) FG CPU (%)

0
20
40
60
80

100

 0 200 400 600 800 1000 1200

Increasing BG
CPU Allocation Decreasing BG

CPU Allocation

C
PU

 (%
)

Time (Sec.)

(c) BG CPU (%)

Figure 5.13: Change of CPU resources for both a FG and BGs from Orchestra
and the changes of 95%tile RT of the FG. MongoDB (FG) and 2 BGs (Sync
and ClamAV) with a SLA of 2.5 sec.

95

considered as the training period. After this training period, Orchestra shows stable

adjustments in CPU resources for both applications regarding the SLA satisfaction.

For instance, during the period between 600- and 800-second, Orchestra reduces the

CPU allocation to the FG (middle graph) and allocates more to the BGs (bottom

graph) as the MongoDB’s RT is a lot faster than the SLA goal. Another example

can be shown in the period between 900- and 1100-second. Orchestra increases the

CPU allocation to the FG while the CPU allocation for the BG decreases since the

MongoDB’s RT is close or slight violates the SLA goal. Then, the FG’s RT becomes

stable.

5.5.3 Orchestra Accuracy

Performance evaluations of Orchestra’s accuracy include the overall model accuracy

of Orchestra and the accuracy of two predictive models. i.e., the RT estimator (FG)

and the BG performance model.

Overall Orchestra Accuracy: We first collect various system/application statistics

(including RT, utilization, and throughput from FGs, and BG’s execution) with a set

of different resource configuration between a FG and a BG. We manually assign fixed

resource ratios to the FG and BG(s) from 1:1 to 1:5. We then generate the identical

FG workloads to Orchestra with SLA targets obtained from the static resource alloca-

tion. We compare the results/statistics from Orchestra with the ones from the static

resource allocation and calculate the accuracy (normalized over the static allocation)

of both cases.

Table 5.4: Orchestra’s accuracy (MAPE) over the static resource allocation.
The results show FG statistics.

FG BG
RT Statistics (%tile) Throughput

(Requests/sec.)Average 90% 95% 97%

Web Application
ClamAV 0.050 0.061 0.038 0.011 0.007

Sync 0.132 0.008 0.029 0.028 0.020

MongoDB
ClamAV 0.010 0.015 0.006 0.013 0.036

Sync 0.003 0.012 0.014 0.003 0.015

First, we show the accuracy of Orchestra regarding FG behaviors. The results are

shown in Table 5.4 and Figure 5.14. The changes in FG’s RT with Orchestra are very

close to the RT variations in static resource allocations. On average, Orchestra can

96

 0

 1.5

 3

 4.5

 6

 7.5

Avg. 90% 93% 95% 98%

W
eb

 R
es

po
ns

e
Ti

m
e

(S
ec

.)

Response Time Percentile

(a) Web Application

Static
Orchestra

 0

 0.5

 1

 1.5

 2

 2.5

Avg. 90% 93% 95% 98%

D
B

Re
sp

on
se

 T
im

e
(S

ec
.)

Response Time Percentile

(b) MongoDB

Static
Orchestra

Figure 5.14: Accuracy for the FG’s RT; comparison with the static resource
allocation.

control a FG with 2.7% errors in RT and 1.95% error for its throughput.

Then, we observe the difference in the resource utilization of the VM instance

between Orchestra and the static resource allocations. Figure 5.15 illustrates the

comparison results. Figure 5.15(b) and (d) have a “NET” (network IO) filed since

the Sync (backup BG) is a network-bound application. For all comparison cases,

Orchestra shows only 3% errors in CPU, 7% errors in disk IO (read), and 2% errors

in disk IO (write), indicating that Orchestra is very accurate for FG applications.

However, for the BGs, Orchestra shows slightly different statistics. Especially when

Orchestra manages the Web application as a FG, it allows BGs to consume 17% to 20%

more resources. This difference results in distinct execution time of BGs. With more

resources, Orchestra could reduce the execution time of BGs (15% – 17% reduction

for both BGs). The differences in BG’s utilization are due to the following reasons.

Orchestra mechanism to manage BGs naturally allocates more resources to the BGs if

the FG’s RT meets a SLA and the VM has residue resources possibly being consumed

by the BGs. Furthermore, this is also related to the FG’s workloads. The workloads

generated by CloudSuite have higher variation than DB workloads from TPC-C. This

high variance is not only relevant to the changes in the number of requests but also

associated with the diverse types of the requests, i.e., from simple web renderings

to complex social activities in web sites. Given the high fluctuating workloads, it is

evident that Orchestra tries to minimize the execution duration of BGs and this is a

clear indication that Orchestra works correctly under such workloads. Similarly, the

higher amount of network TX in Figure 5.15(b) is because of the same reason that

the BG (Sync) sends the larger amount of backup data per second to S3 with more

allocated resources.

Accuracy of RT Estimator (FG): Next, we measure the accuracy for the RT

97

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

CPU DR DW CPU DR DW

Baseline (Static)

FG BG

N
or

m
. R

es
ou

rc
e

U
til

.

(a) Web + ClamAV

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

CPU DR DW CPU DR DW RX TX

Baseline (Static)

FG BG NET

(b) Web + Sync

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

CPU DR DW CPU DR DW

Baseline (Static)

FG BG

(c) MongoDB + ClamAV

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

CPU DR DW CPU DR DW RX TX

Baseline (Static)

FG BG NET

(d) MongoDB + Sync

Figure 5.15: Accuracy comparison of VM utilization between Orchestra
and the static resource allocation. (NET: Network IO, DR: Disk Read
bytes/sec., DW: Disk Write byte/sec., TX: Network TX bytes/sec., RX:
Network RX bytes/sec.)

estimator (described in Section 5.3.2) in Orchestra. We calculate the accuracy of the

RT estimator by comparing its prediction results with the actual RT (the ground

truth) from the FGs. The results are that Orchestra shows 0.17 of MAPE and 0.45

of RMSE.

To validate these results are sufficient, we compare the performance of the RT

estimator with a SVM (Support Vector Machine)-based predictor. SVM [72] is a

well-known classifier widely used in data mining and machine learning area, but it

shows very robust performance for regression (prediction) problems, i.e., application

performance modeling [36]. To optimize the performance of the baseline, we employ

RBF (Radial Basis Function) as the kernel of the SVM and test a broad set of (soft-

margin and kernel) parameters with a grid approach [20]. Figure 5.16 illustrates the

comparison results of both models. The RT estimator of Orchestra outperforms the

98

 0
 0.05
 0.1

 0.15
 0.2

 0.25

Web
(Clam)

Web
(Sync)

MDB
(Clam)

MDB
(Sync)

0.15 0.14
0.19 0.18

M
AP

E

(a) MAPE Accuracy

SVM
Orchestra

 0
 0.2
 0.4
 0.6
 0.8

 1

Web
(Clam)

Web
(Sync)

MDB
(Clam)

MDB
(Sync)

0.65 0.60

0.33
0.25

R
M

SE

(b) RMSE Accuracy

SVM
Orchestra

Figure 5.16: Accuracy comparison of RT estimation of Orchestra with SVM.
Lower values mean better accuracy.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

Overall Critical
Section

Overall Critical
Section

0.14

0.07 0.06 0.04

ClamAV Sync

M
AP

E

(a) MAPE Accuracy

ASP
Orchestra

 0
 50

 100
 150
 200
 250
 300

Overall Critical
Section

Overall Critical
Section

150

59 73 55

ClamAV Sync

R
M

SE

(b) RMSE Accuracy

ASP
Orchestra

Figure 5.17: Accuracy comparison of the BG performance model in Orches-
tra with the application-specific predictor.

SVM and has approximately 40% lower prediction errors than the results from the

SVM model. The SVM model just shows 0.23 of MAPE and 0.64 of RMSE.

Accuracy of BG Performance Model: We also measure the accuracy of the BG

performance model (described in Section 5.3.3) in Orchestra. The model predicts

the BGs’ execution time whenever Orchestra changes the resource allocation to the

FG and BGs. If the workloads have high fluctuations, Orchestra predicts the BGs’

execution time more often. With considering a life-cycle of a BG’s execution, the

prediction model can show higher accuracy when the BG is approaching to the end

of the execution. However, it is important for Orchestra to accurately predict the

BGs’ execution time (or finishing time), particularly when it reconfigures resource

allocations to the BG at the middle of its life-cycle. We thus measure accuracy at two

different points, i.e., 1) the overall accuracy – averaging all predictions during BG’s

execution and 2) the performance in the critical section. We define “30% – 70%” of a

BG’s execution as the critical section. For this evaluation, we employ an application-

99

specific predictor as a baseline. This predictor only relies on application-assisted

hints (execution progress) and forecasts the BG’s execution time by calculating the

progress ratio.

Figure 5.17 shows the accuracy results. While both predictors show good accuracy,

Orchestra outperforms the baseline in all cases. On average, Orchestra has 0.11 of

MAPE and 112 of RMSE, indicating that it has 67% and 50% less error than the

baseline. More interestingly, Orchestra produces more accurate predictions in the

critical section, and it only makes 0.06 of MAPE and 59 of RMSE, showing 2x better

accuracy than the overall results.

5.5.4 Orchestra Overheads

Orchestra’s overhead is also a significant characteristic in the evaluation. Since Or-
chestra dynamically controls VM resources at runtime, it is also desired that the

framework should not interfere the performance of FG and BGs. (Orchestra should

not generate resource storms.) The overheads are measured from two different com-

ponents in Orchestra, i.e., the managed node and the master controller.

Figure 5.18 reports the overhead (CPU usage) in Orchestra. The result measured

in the managed node includes the overhead in performance monitoring from the side-

car, and resource usage monitoring and reconfiguring cgroups from the node agent.

The master controller’s results focus on the computational overheads for the manage-

ment including prediction and optimization cost. The CPU consumption increases as

the frequency of management operation in Orchestra increases. Orchestra consumes

1% – 5% of CPU resources on the managed node and 2% – 7% on the master con-

troller. In the previous evaluation with FG workloads (Section 5.5.2), while Orchestra
performs such monitor and control operations in every 5 seconds, it shows a desirable

performance in managing both FG and BG’s performance, indicating that 1% – 2%

of CPU resources is sufficient to Orchestra.

5.6 Chapter Summary

Resource storms in enterprise cloud environments become a significant challenge for

managing the performance of cloud applications. To improve this situation, we pre-

sented Orchestra, cloud-specific framework for controlling both FG and BGs in the user

space to guarantee the FG’s performance while minimizing the performance penalty

100

 0
 2
 4
 6
 8

 10

O
p.

/1
0

se
c.

O
p.

/9
 s

ec
.

O
p.

/8
 s

ec
.

O
p.

/7
 s

ec
.

O
p.

/6
 s

ec
.

O
p.

/5
 s

ec
.

O
p.

/4
 s

ec
.

O
p.

/3
 s

ec
.

O
p.

/2
 s

ec
.

O
p.

/1
 s

ec
.C

PU
 U

sa
ge

 (%
)

Node Agent
Master Controller

Figure 5.18: Orchestra Overhead.

of BGs. Orchestra measures a FG’s performance (RT) in a real-time manner, and it

creates a lightweight RT estimation and performance models for both applications on

the fly. With the resource statistics and such predictive models, Orchestra optimizes

the resource allocation to multiple cloud applications with SLA targets.

We have implemented and evaluated Orchestra with real workloads on Amazon

EC2. Our primary workloads are a web service and a NoSQL database (MongoDB)

for FGs and AWS Sync (backup) and ClamAV (virus and malware scanner) for BGs.

We also presented the performance of Orchestra with a number of SLA constraints.

Orchestra guarantees the FG’s SLA satisfaction at all times with 70% performance

improvement of BGs. Moreover, Orchestra shows a very high overall correctness (less

than 5% error), 16.5% of MAPE for the FGs’ response time estimation, and over 90%

accuracy for the BGs’ performance prediction.

101

Chapter 6

PICS: A Public IaaS Cloud

Simulator

In chapter 3 and 4, we introduced a solution to address the workload uncertainty

by designing a novel ensemble approach that predicts future workload changes in di-

verse cloud applications. Chapter 5 presented an application control framework that

addresses the performance uncertainty caused by a modern cloud deployment model

in enterprise clouds. This chapter discusses a solution for the last challenge in this

research, which is the difficulty in the large-scale evaluation of cloud applications and

infrastructure. We begin this chapter by discussing the concerns and questions from

the cloud application providers/developers for this challenge, then describe the limi-

tations of existing approaches proposed by research community and industry. After

which, we introduce new cloud simulator that enables the users (application providers

and developers) to evaluate diverse aspects/performance metrics of the cloud appli-

cations and infrastructure. Lastly, we validate the correctness of our simulator by

comparing with the measurement results from deploying cloud applications on a pro-

duction cloud (AWS).

6.1 Introduction

As we stated in Chapter 1, when cloud application developers and deployers evaluate

the performance of large-scale cloud applications and public cloud infrastructure, the

key limitation they are facing is that there does not appear to be a viable alternative

for evaluating the cloud other than to actually use the cloud. This approach is prob-

lematic for a number of reasons. First, the time-consuming and sometimes tedious

102

learning of idiosyncratic cloud APIs can distract from the real issue, which centers

around specific application logic and requirements. Second, the evaluation tends to

be specific to one cloud and not readily generalizable to other clouds. Third, to eval-

uate at scale via this approach, the cloud-application typically requires significant

changes to its architecture. Fourth, the evaluation is geared toward the present time,

whereas longer-term issues/concerns are often more important than short-term issues

of today’s cloud – there is little opportunity to ask what-if questions of performance,

reliability or cost.

There are a number of cloud simulators that exist (e.g. CloudSim [26], iCanCloud

[157], GreenCloud [111]). They have the potential to aid in this evaluation. However,

in general, these simulators are designed to answer questions related to datacenter

management (e.g., how many concurrent users can I support if I deploy a private cloud

on my existing hardware?) Furthermore, typical tools [5, 144, 172, 177] provided by

commercial cloud vendors only address a small part of the concerns, which is an

overall cost in the aggregate based on resource utilization (e.g., how much does it

cost to run 100 small VMs for one month and to store 10 TB in long-term cloud

storage for 1 year?) These existing cloud simulators and vendor tools do not broader,

end-to-end concerns such as:

1. What is the average/worst response time for a particular application and a

particular arrival pattern, when servicing via a specific VM type and a specific

set of autoscaling rules?

2. Which public IaaS cloud provides the best cost efficiency for a particular ap-

plication, given the different VM configurations, storage services and pricing

models?

3. Which resource management and job scheduling policy maximize the cost effi-

ciency and minimize the response time for a particular application?

4. Above all, if a simulator can provide answers for above questions, another ques-

tion the cloud users could have is how reliable are the simulation results? or

how accurately can the simulator resemble actual clouds’ behavior?

To enable potential public IaaS cloud users to address these and other challenging

concerns without actually deploying the cloud-application, we have created the PICS1,

1Source code of PICS is publicly available at http://www.cs.virginia.edu/∼ik2sb/PICS

103

a trace-based public IaaS cloud simulator. PICS provides following capabilities to

address the potential cloud user’s concerns:

• Assessing a wide range of properties of cloud services and the cloud-applications,

including the cloud cost, job response time, and VM utilization.

• Allowing the simulation users to specify different workload types, including

varying job arrival patterns and SLA requirements (e.g. deadline).

• Simulation of a broad range of resource management policies: i.e., horizon-

tal/vertical2 autoscaling, job scheduling and job failure policies.

• Enabling the users to evaluate the performance of different types of public

IaaS cloud configurations such as a variety of resource types (VM and storage),

unique billing models, and performance uncertainty [160, 178, 179].

We validated the correctness of PICS by focusing on following capabilities: cloud

cost, the number of created VMs, VM utilization, horizontal and vertical scaling of

cloud resources, and job deadline satisfaction rate. We compare the simulation re-

sults of PICS with the actual measurements from real-world cloud-applications on

Amazon Web Services (AWS). The results show that PICS provides very accurate

simulation results (less than 5% of average errors) in every validation cases. Fur-

thermore, we conduct a sensitivity test of PICS with ±10% and ±20% of imprecise

simulation parameter by considering of the performance uncertainty of IaaS clouds.

The results show that PICS with imprecise simulation parameters still provides very

reliable simulation results.

6.1.1 Chapter Organization

The rest of this chapter is organized as follows: Section 6.2 describes the design

and implementation of PICS. Section 6.3 contains validation of PICS. Section 6.4 is

discussion focusing on sensitivity of simulation parameters and Section 6.5 provides

the summary of this chapter.

2Vertical scaling means “scale-up” or “scale-down” operations for the cloud resources. i.e., mi-
grating the user-applications to higher (scale-up) or lower (scale-down) performance instances. [15]

104

6.2 Simulator Design

6.2.1 Simulator Design Overview

Goal: The goal of PICS is to correctly simulate the behaviors of public clouds from the

cloud users’ perspectives as if they deploy a particular cloud-application on public IaaS

cloud. From the potential cloud users’ perspective, the cloud cost, the job response

time and the resource usages (VM utilization and size) are the most important criteria

to evaluate cloud service for their cloud-applications. Key challenges to design PICS
are:

• How to correctly model the behavior of public clouds. More specifically, how to

handle a variety of resources (e.g. VM, storage, and network).

• How to properly model the behavior of the cloud-application. More specifically,

how to handle varying workload patterns and performance uncertainty [160,

178, 179].

• How to correctly model the behavior of cloud users’ resource management policy.

For the first challenge, we designed a convenient configuration interface for the

simulation users to define diverse types of cloud resources as an input of the sim-

ulator. For the second challenge, we collected data from real public clouds, profile

performance uncertainty, and leverage these results to design the simulator. For the

last challenge, we provided abundant configuration options to let user define various

custom resource management policies.

Input: PICS requires five types of inputs: VM configurations, storage and network

configurations, workload information, job scheduling policies, and cloud resource man-

agement policies.

• The VM configuration includes detailed specifications of VMs, such as cost

(including public cloud’s billing model), machine performance (CPU, RAM),

network performance, and the range of startup delays [130] of cloud resources.

This configuration is designed to simulate various VM types of current public

clouds because public clouds have a diversity of VM types based on performance,

cost, and the VM’s purpose.

• The storage and network configuration has detailed information on storage and

network service on public IaaS clouds. We model storage services to reflect

105

current public clouds’ actual characteristics based on Amazon S3 [9] and Azure

Storage [143]. To model network service, we collect data from actual network-

I/O test by using various types of VM on real cloud services. We then reflect

the data to simulator configurations.

• The workload information contains detailed configurations on job generation

such as job arrival time, job execution time, job deadline, size of network I/O,

etc. This input reflects end users requests to a particular cloud-application.

• The job scheduling policy defines various cloud user job scheduling policy for end

users’ requests. PICS includes three types of job scheduling policies, i.e., EDF

(Earliest Deadline First), Round-Robin, and Greedy scheduling mechanisms.

In the future, PICS will support more complicated job scheduling policies and

APIs. Furthermore, the simulation users can configure recovery policies for

job failures, which enable the users to conduct realistic tests for public cloud

services.

• The cloud resource management policy contains detailed specifications for the

cloud resource management. This input supports simulation configurations for

maximum number of concurrent VMs, and horizontal and vertical scaling poli-

cies. Moreover, the simulator users can configure various ways to monitor and

analyze an end user’s job request patterns such as linear and time-series meth-

ods. The simulator users are able to leverage this mechanism to design and test

their own resource management mechanisms.

Output: PICS provides three types of output: cost, resource usage, and job process-

ing results.

• Cost results provide overall cost for total cloud usage, cost trace at fine grained

time interval, and usage cost per cloud resource type. Overall cost means how

much cost the simulation users are expected to spend on servicing a particular

cloud-application under a particular job arrival pattern. Cost trace provides

fluctuation and accumulation of usage cost at fine grained time interval. For

example, expected usage cost for time at t is $100 and $200 for time at t+1. The

usage cost per cloud resource type provides a detailed cost based on resource

types such as how much cost they spent on each type of resources (e.g. VM,

storage, network).

106

• Resource usage results provide detailed information on resource usage such as

how many VMs created, how much storage space spent, and how many network

data sent and received. Moreover, these results offer fine-grained traces for both

horizontal and vertical scaling. These traces help users determine the number

and types of VMs running at time t and t+1. The users also check when (time)

and how (scaling-up/down) the vertical scaling decisions are made.

• Job processing results provide specific information on job processing, such as the

job arrival/start/finish time, as well as whether the job deadlines are satisfied

(if specified). These results are basic metrics to evaluate the user job scheduling

and resource management policies. Moreover, these results include the analysis

of job arrival patterns (min, max, and average of job arrival time, as well as

predictions for the next job arrivals) using linear and time-series methods.

6.2.2 Simulator Internals

PICS is composed of three hierarchical layers: simulation configuration layer, simu-

lation entity layer, and simulation core layer as shown in Fig. 6.1. The simulation

configuration layer is responsible for accepting the user inputs which are passed on to

the simulation entity layer. The simulation entity layer contains the simulation logic

and is driven by the events generated from the simulation core layer. The simulation

core layer is also responsible for producing simulation reports. Because the simulation

configuration layer has already been covered by the previous section, we focus on the

two remain layers here.

Simulation Core Layer: The simulation core layer consists of Simulation Wall

Clock, Simulation Event Processor and Simulation Report Generator.

1. Simulation Wall Clock is working as a heart for PICS by managing simulation

clock. (Basic time unit is a second.) To manage the simulation clock, Simulation

Wall Clock collaborates with Simulation Event Processor. When the simulation

clock is updated, this component sends a clock update event to Simulation Event

Processor to notify an update of clock.

2. Simulation Event Processor handles every event generated in a simulation.

After receiving the clock update event from Simulation Wall Clock, this compo-

nent passes on this event to simulation entities, which advance their simulation

107

Figure 6.1: Design overview of PICS.

108

of the behaviors of public cloud services and cloud-application to the new clock

cycle. This component also manages simulation timer events. Simulation en-

tities use these events to register timers within Simulation Event Processor.

This component is responsible for notifying the corresponding simulation entity

when a timer expires. Moreover, this component handles all simulation com-

mand events, all invoked events between simulation entities, in order to validate

the authentication of the command events. Because this component can mon-

itor all events in the simulation, this plays a main role to generate real-time

traces for the simulation.

3. Simulation Report Generator is used to generate output reports for the

simulation results such as simulation trace and overall reports. Reporting sim-

ulation results at fine-grained time interval is an important capability for sim-

ulators. Simulation Report Generator is responsible for generating real-time

traces called simulation trace reports. These reports contain simulation results

at user-defined time interval for cost, resource scaling, and job processing infor-

mation.

Simulation Entity Layer: Simulation entity layer are composed of three entities,

which are Workload Generator Entity, Cloud Application Management Entity, and

IaaS Cloud Entity. These entities reflect three main components of cloud-applications

and public clouds.

1. Workload Generator Entity generates jobs and sends them to the Cloud

Application Management Entity to process, based on the workload file from the

simulation user. The workload file includes job arrival time, job execution time,

job deadlines, I/O data specification, and data transfer specification to support

various types of possible end user’s job requests.

2. Cloud Application Management Entity is designed to resemble the cloud-

application’s behaviors. There are sub-components in this entity: job manage-

ment module, resource management module and workload monitoring module.

• The job management module is designed to simulate job management poli-

cies of a cloud-application. This module conducts three operations for the

simulation; job scheduling, job response time estimation, and job failure

management. Job scheduling is used to perform job scheduling policies of

109

the cloud users and assign an arrived job from Workload Generator Entity

to a selected VM from IaaS Cloud Entity. Job response time estimation

predicts the job response time, which is defined as the clock time when

a particular job finishes. The prediction of job response time is based on

job execution time and the current load of available cloud resources, and

is used for the job scheduling. Job failure management is used for job

failure simulation in the case of application failure or cloud infrastructure

problem (e.g. VM down). Job failure management supports four types of

recovery policies for job failure simulations.

• The resource management module is designed to simulate the resource

management policies of a cloud-application. It handles three types of

cloud resources of public IaaS clouds, i.e., VM, storage and network. For

the VM management, this module enables the simulation users to examine

their VM selection mechanisms (e.g. cost, performance, cost/performance-

balanced) and VM scaling mechanisms (e.g. horizontal, vertical scal-

ing). For storage and network resources, this module can simulate File

Read/Write operations to cloud storage and data transmissions by collab-

orating with IaaS Cloud Entity.

• The workload monitoring module is designed to analyze workload arrival

patterns from Workload Generator Entity. The simulation users can lever-

age this module to improve their policies for job scheduling and resource

management for variable workload patterns.

3. IaaS Cloud Entity is used to simulate the public cloud’s behavior. It has sub-

modules to simulate public clouds, which include cost calculation, VM manage-

ment, storage service and network service module.

• The cost calculation module calculates all cloud cost used by Cloud Ap-

plication Management Entity. It generates the cost traces based on user-

defined time interval and creates the final results when the simulation is

completed.

• The VM repository module manages the configurations of all VM types

defined by the users and resembles the on-demand VM service of IaaS

clouds. This module stores VM information to correctly measure VM

usage cost and simulate job execution on VMs. Moreover, this module

110

generates startup-delay for new VM creations based on user input, and

simulates all operations of the VMs. This module also handles workloads

on VM such as job execution and failure generation.

• Storage service and network service module simulates file I/O and data

transmission operations based on their configurations and the workload

information. It generates the overall and real-time traces of the usage of

storage and network services for the workloads.

6.3 Simulator Validation

6.3.1 Experiment Setup

In order to validate the simulation results of PICS, we compared PICS results with

a real cloud application on AWS. We design and implement a cloud-application that

executes user-applications with three different types of MapReduce [41] jobs and two

job arrival patterns. The workflow of the cloud-application goes through the following

five key steps: 1) Job execution time prediction via recent execution history, 2) EDF

job scheduling, 3) Cost-based VM selection, 4) Deadline-based horizontal and vertical

autoscaling, and 5) Job Execution.

The cloud-application starts with receiving jobs from the end users. It conducts

job execution time prediction via recent execution history for incoming jobs.

The cloud-application schedules them by the EDF job scheduling and sends them

to the work queue in the VMs of choice. For VM selection, this cloud-application

uses cost-based VM selection that selects the cheapest VM type that meets the

deadline for a job. For the VM scaling, the cloud-application makes the scaling

decision based on the deadline-based horizontal and vertical autoscaling. The

cloud-application first determines the fastest possible response time for the new job

based on the load of the job queues of active VMs. If the fastest possible response

time still misses the job deadline, horizontal or vertical scaling is engaged. In the case

of horizontal scaling, a new VM is created for the new job. In the case of vertical

scaling, an active VM is “scaled-up” to a higher performance VM for the new job.

Note that vertical scaling happens when there is a limit on the number of active VMs

which prevents the creation of new VMs. Additionally, after each job finishes, the

cloud-application checks active VMs. If the active VMs provide more than enough

computation power to satisfy deadline requirements, then a “scale-down” happens

111

to improve the cost efficiency. Once the current VM type is determined, the job is

assigned to that VM for job execution.

For the validation of PICS, we use three types of MapReduce jobs (Word count,

PI calculation, and Terasort) [13]. Word count is an I/O- and memory-bound job,

and it uses S3 storage to download input dataset and upload the final result. PI

calculation is a fully-parallelized CPU-bound job. Terasort is a standard Hadoop

benchmark application. These jobs were randomly generated based on two arrival

patterns (Poisson and Bursty). Poisson arrival pattern has an average job arrival

interval of 30 seconds with a standard deviation of 29.63. Bursty pattern has an

average job arrival interval of 15 seconds with a standard deviation of 11.50.

We deployed the cloud-application on AWS. The reasons that we use AWS for the

PICS validation are as follows: 1) AWS is widely used public IaaS cloud; 2) according

to recent works [120, 160, 178, 179], AWS EC2 performance fluctuates a lot and

AWS has less predictability (higher variance) than other public IaaS clouds, therefore

AWS is better than other IaaS clouds when evaluating the sensitivity of PICS to

the performance uncertainty of public clouds. Our cloud-application uses four types

of on-demand EC2 VM instances, which are m3.medium, m3.large, m3.xlarge, and

m3.2xlarge. These four types of EC2 on-demand instances are general purpose VMs

and commonly used by the cloud users.

Based on the above experimental configurations, we created 16 validation work-

loads as shown in Table 6.1. These workloads are categorized based on job arrival

patterns (Poisson and bursty), job types, single or multiple VM types, and scaling

policies. WL #1 – #6, #13, and #14 are for the tests under Poisson job arrival

pattern, and others are for bursty arrival pattern. WL #1, #2, #7, #8 and #13

process word count jobs, WL #3, #4, #9, #10 and #14 handles PI calculation jobs,

and WL #5, #6, #11 and #12 deal with Terasort jobs. WL #1, #3, #5, #7, #9,

and #11 only use a single VM type (e.g. m3.medium, m3.large, or m3.xlarge) in order

to validate a case when a cloud-application uses a single type of VM. The others use

all four types of general purpose EC2 instances. This is to test more complicated

use cases for the VM resource management. For scaling validation, WL #1 – #12

are for horizontal scaling and WL #13 – #16 are for vertical scaling use cases. We

submitted these 16 workloads to PICS and the cloud-application running on AWS,

and measured the cloud cost, the total number of created VMs, VM utilization, and

job deadline satisfaction rate. These metrics are expressed as equation – (6.1), (6.2),

and (6.3). We then measured the simulation error by equation – (6.4).

112

Table 6.1: Validation Workloads for PICS. Poisson pattern has 30s of average
job arrival rate and 29.63 of standard deviation. Bursty pattern has 15s
of average job arrival rate and 11.50 of standard deviation. (WC: Word
Count, PI: PI Calculation, TS: TeraSort)

W
o
rl

o
a
d

s
S

c
a
li
n

g
J
o
b

A
rr

iv
a
l

P
a
tt

e
rn

s

J
o
b

T
y
p

e

#
o
f

C
o
n

c
u

rr
.

V
M

s

V
M

T
y
p

e
s

#
o
f

J
o
b

s

A
v
g
.

J
o
b

D
L

S
td

.

D
e
v

W
L

#
1

H
o
ri

zo
n
ta

l

S
ca

li
n

g

P
o
is

so
n

W
C

U
n

li
m

it
ed

m
3.

m
ed

iu
m

20
0

27
2s

12
9.

55
W

L
#

2
A

ll
T

y
p

es

W
L

#
3

P
I

m
3.

la
rg

e
53

8s
26

6.
10

W
L

#
4

A
ll

T
y
p

es

W
L

#
5

T
S

m
3.

x
la

rg
e

10
65

s
53

1.
09

W
L

#
6

A
ll

T
y
p

es

W
L

#
7

B
u

rs
ty

W
C

m
3.

m
ed

iu
m

50
0s

12
7.

60
W

L
#

8
A

ll
T

y
p

es

W
L

#
9

P
I

m
3.

la
rg

e
51

5s
26

3.
50

W
L

#
1
0

A
ll

T
y
p

es

W
L

#
1
1

T
S

m
3.

x
la

rg
e

11
02

s
55

9.
75

W
L

#
1
2

A
ll

T
y
p

es

W
L

#
1
3

V
er

ti
ca

l

S
ca

li
n

g

P
o
is

so
n

W
C

3

A
ll

T
y
p

es
50

0

51
0s

26
5.

03

W
L

#
1
4

P
I

7
10

29
s

55
6.

50

W
L

#
1
5

B
u

rs
ty

W
C

5
52

3s
27

9.
38

W
L

#
1
6

P
I

10
10

45
s

56
3.

15

113

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

N
or

m
al

iz
ed

 C
os

t

Time (min.)

Actual
PICS

(a) Cost Trace for WL #4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

N
or

m
al

iz
ed

 C
os

t

Time (min.)

Actual
PICS

(b) Cost Trace for WL #6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

N
or

m
al

iz
ed

 C
os

t

Time (min.)

Actual
PICS

(c) Cost Trace for WL #8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60
N

or
m

al
iz

ed
 C

os
t

Time (min.)

Actual
PICS

(d) Cost Trace for WL #10

Figure 6.2: Cost trace for horizontal scaling cases.

Cost =
n∑
i=1

costVMi
(6.1)

VM Utilization =

∑n
i=1 TimeJobExec.,V Mi∑n
i=1 TimeTotalRun.,V Mi

(6.2)

Job Deadline Satisfaction Rate =
NDeadlineSatisfiedJobs

NAllJobs

(6.3)

Simulation Error =

∣∣∣∣Actual − SimulationActual

∣∣∣∣× 100% (6.4)

6.3.2 Horizonal Scaling Cases

We use 12 workloads (WL #1 – #12) for the validation of horizontal scaling cases.

The “Cost” column of Table 6.2 shows PICS simulation error of the overall cloud

cost over the actual measurements on AWS. The average error of the cloud cost from

PICS is only 2.6% compared to the actual results. The highest error is only 6.1% (WL

#12). A more important metric is the cost trace because it shows how accurately PICS

114

Table 6.2: Simulation errors in horizontal scaling cases.

Workloads Cost # of VMs VM Util. Job DL.

WL #1 3.1% 3.4% 1.1% 0.6%

WL #2 2.4% 1.8% 1.4% 1.1%

WL #3 1.8% 2.3% 0.7% 0.6%

WL #4 5.2% 4.7% 2.2% 3.2%

WL #5 2.2% 7.1% 1.6% 2.1%

WL #6 0.8% 2.4% 2.4% 2.6%

WL #7 2.6% 3.6% 0.5% 2.5%

WL #8 3.6% 0.0% 1.0% 1.1%

WL #9 1.5% 1.5% 0.7% 0.6%

WL #10 0.9% 1.5% 0.9% 3.9%

WL #11 1.0% 0% 2.2% 0.5%

WL #12 6.1% 1.4% 1.3% 3.8%

Average Error 2.6% 2.4% 1.3% 1.9%

 0

 0.2

 0.4

 0.6

 0.8

 1

WL#4 WL#6 WL#10 WL#12

N
or

m
. V

M
 N

um
be

rs

Workloads

M
L

XL
2XL

Figure 6.3: The VMs numbers per VM type, normalized over the actual
measurement (M: m3.medium, L: m3.large, X: m3.xlarge, XL: m3.xlarge)

simulates the behavior of the cloud-application and public IaaS cloud at fine-grained

intervals. To show these traces, we select four complicated workloads, which are WL

#4, #6, #8, #10. Figure 6.2 shows these four cost traces. The other workloads have

similar results. As shown in Figure 6.2, PICS is able to accurately calculate the cloud

cost at each time interval, demonstrating that PICS correctly resembles the behavior

of the cloud-application and public IaaS cloud for each step of execution.

The simulation error of created VM numbers over the actual measurements are

shown in the “# of VMs” column of Table 6.2. PICS can highly accurately calcu-

late the number of created VMs with an average error of 2.4%. The highest error is

only 7.1% (WL #5). For the workloads that use multiple types of VMs, a precise

simulation of the number of VMs for each VM type is also critical to the cloud users

115

 0

 0.2

 0.4

 0.6

 0.8

 1

WL#4 WL#6 WL#10 WL#12
N

or
m

. V
M

 U
til

.

Workloads

M
L

XL
2XL

Figure 6.4: The VM utilizations per VM type, normalized over the actual
measurement (M: m3.medium, L: m3.large, X: m3.xlarge, XL: m3.xlarge)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

N
or

m
. J

ob
 D

ea
dl

in
e

S
at

is
fa

ct
io

n
R

at
e

Job Sequence

Actual
PICS

(a) WL #10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

N
or

m
. J

ob
 D

ea
dl

in
e

S
at

is
fa

ct
io

n
R

at
e

Job Sequence

Actual
PICS

(b) WL #12

Figure 6.5: Job deadline satisfaction traces for horizontal scaling cases.

to determine if PICS can accurately resemble the cloud-application’s resource man-

agement policies (VM selection and scaling) and public cloud’s behaviors. Figure 6.3

shows the result of the number of created VMs for each VM type for four workloads

(WL #4, #6, #10, #12). The other workloads have similar results. As Figure 6.3

shows, PICS can also accurately simulate the VM numbers for each type of VMs. For

the horizontal scaling cases, the cloud-application created an average of 42.5 VMs

and the range of the created number of actual VMs is from 15 (WL #5) to 70 (WL

#12).

Similarly, the overall simulation error of VM utilization are shown in the “VM

Util.” column of Table 6.2, while the detailed per-VM type utilization results are

shown in Figure 6.4. Average error of overall VM utilization results between the

actual measurements and the simulations is only 1.3%. For the detailed results, PICS
is able to accurately simulate the utilization for each VM type with 0.5 – 2.4% of

simulation error for most cases. The worst case is m3.large instance of WL #4 and

the simulation error is only 5.8%.

In addition, we conducted a validation focusing on job deadline satisfaction rate.

116

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120 150

N
or

m
. V

M
 N

um
be

r

Time (min.)

Actual
PICS

(a) VM scaling trace for WL #4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120 150

N
or

m
. V

M
 N

um
be

r

Time (min.)

Actual
PICS

(b) VM scaling trace for WL #8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

N
or

m
. V

M
 N

um
be

r

Time (min.)

Actual
PICS

(c) VM scaling trace for WL #10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100
N

or
m

. V
M

 N
um

be
r

Time (min.)

Actual
PICS

(d) VM scaling trace for WL #12

Figure 6.6: Horizontal VM scaling traces.

Deadline satisfaction rate is an important metric for a cloud-application to ensure

the cloud-application’s job scheduling and resource management policy meets certain

temporal requirements, such as those found in SLA. We measured the job deadline

satisfaction rates of PICS, and compared them with the results of the actual cloud-

application on AWS. Note that the deadlines in our workload are generated randomly.

The overall results are shown in the “Job DL.” column of Table 6.2. The average

error of PICS is only 1.9%. The worst case error is about 4% (WL #10, #12).

More importantly, we measured the traces for job deadline satisfaction because we

want to determine if PICS can precisely simulate whether a particular job satisfies its

deadline or not. Figure 6.5 shows the job traces for two worst workloads (WL #10,

#12). Figure 6.5 shows that, even for the worst cases, PICS accurately simulates the

behavior of AWS at every phase of the execution.

We also measured the VM scaling of the actual cloud-application on AWS and

PICS, over the whole course of the execution. Due to space limitation, Figure 6.6

shows the scaling traces for only four workloads (WL #4, #8, #10, #12). The other

workloads have similar behaviors. As shown in Figure 6.6, traces from PICS and

the actual cloud-application closely match each other, which means PICS accurately

117

simulates horizontal scaling at every phase of the execution. For the VM scaling

traces, the average number of running VMs in parallel (by the cloud-application) is

39 and the cloud-application runs from 12 (WL #5) to 70 VMs (WL #12) in parallel.

6.3.3 Vertical Scaling Cases

Due to the importance of vertical scaling in the near future, PICS also supports

vertical scaling simulation. We validate the results involving vertical scaling using

four workloads (WL #13 – #16). Note that for these experiments, both horizontal

and vertical scaling are enabled, similar to real-life usages of cloud services. Table 6.3

shows the overall simulation errors for vertical scaling cases. The results show that

PICS can accurately simulate the overall results for vertical scaling workloads: for the

cloud cost, the average error is only 5.5% (“Cost” column); for the number of created

VMs, the average error is only 3.6% (“# of VMs” column); for the VM utilization,

the average error is only 2.9% (“VM Util.” column); for deadline satisfaction, the

average error is only 2.6% (“Job DL.” column).

Table 6.3: Simulation errors in vertical scaling cases.

Workloads Cost # of VMs VM Util. Job DL.

WL #13 6.1% 7.1% 4.3% 0.8%

WL #14 3.1% 1.9% 2.4% 4.6%

WL #15 3.2% 3.4% 1.7% 1.9%

WL #16 9.7% 1.9% 3.3% 3.2%

Average Error 5.5% 3.6% 2.9% 2.6%

To demonstrate the accuracy of PICS simulation at fine-grained time intervals and

resource types, we present the detailed results for these measurements, which are the

cost traces, the number of created VMs per VM type, the VM utilizations for each

VM type, and the deadline satisfaction traces. Figure 6.7 shows the cost traces for

WL #13 and #16, which are two worst cases for the vertical scaling validations.

Even for these two worse cases, the cost trace results from PICS closely resemble

with the actual measurements. Figure 6.8(a) shows the normalized results for the

number of created VM for other two workloads (WL #14, #15). The results show

that PICS has only 8.3% simulation error in the worst case (m3.medium instance of

WL #15). Figure 6.8(b) represents the utilization for each VM type. In the worst

cases (m3.large of WL #14), PICS has 7.3% simulation error. Figure 6.9 gives the

118

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

N
or

m
al

iz
ed

 C
os

t

Time (min.)

Actual
PICS

(a) VM Cost Trace for WL #13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120 150 180

N
or

m
al

iz
ed

 C
os

t

Time (min.)

Actual
PICS

(b) VM Cost Trace for WL #16

Figure 6.7: Cost traces for vertical scaling cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

WL#14 WL#15

N
or

m
. V

M
 U

til
.

Workloads

M L XL 2XL

(a) Vertical Scaling VM Numbers

 0

 0.2

 0.4

 0.6

 0.8

 1

#14 #15

N
or

m
. V

M
 U

til
.

Workloads

M L XL 2XL

(b) Vertical Scaling VM Utilization

Figure 6.8: The VM numbers (a) and utilizations (b) per VM type, nor-
malized over the actual measurement (M: m3.medium, L: m3.large, X:
m3.xlarge, XL: m3.xlarge)

job deadline satisfaction rate traces for the two worse cases workloads (WL #14 and

#16). Both the PICS and real measurement trace curves in Figure 6.9 closely match

each other. Based on the results in Figure 6.7 to 6.9, we can conclude that PICS can

also accurately simulate the detailed results of the cloud cost, the VM creation, the

VM utilization and the deadline satisfaction rate for each VM type and at fine-grained

time intervals.

For the last validation of the vertical scaling cases, we measured the number of

vertical scaling decisions for the four workloads. These results are used to show how

PICS accurately simulates the vertical scaling operations. The results are shown in

Figure 6.10. For the total number of vertical scaling decisions, PICS has only 3.5%

average error. Average error for scaling-up is 6.7% and average error for scaling down

decision is 6.3%. PICS also has less than 10% of simulation errors in every scaling

decision for all four workloads. These results imply that PICS can precisely simulate

the vertical scaling operations of the cloud-application on real public cloud. For the

119

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

N
or

m
. J

ob
 D

ea
dl

in
e

S
at

is
fa

ct
io

n
R

at
e

Job Sequence

Actual
PICS

(a) WL #14

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

N
or

m
. J

ob
 D

ea
dl

in
e

S
at

is
fa

ct
io

n
R

at
e

Job Sequence

Actual
PICS

(b) WL #16

Figure 6.9: Job deadline satisfaction traces for vertical scaling cases

 0

 2

 4

 6

 8

 10

WL#13 WL#14 WL#15 WL#15

V
er

tic
al

 S
ca

lin
g

S
im

ul
at

io
n

E
rr

or
(%

)

Workloads

Total
Scale-Up

Scale-Down

Figure 6.10: Simulation errors for the numbers of vertical scaling decisions.

best of our knowledge, PICS is the first cloud simulator that supports the vertical

resource scaling simulation.

6.4 Discussion

The previous section demonstrates that PICS accurately simulates the behavior of

cloud-application and public IaaS. However, the accuracy of PICS depends on the

accuracy of user-provided parameters and configurations. Although users can provide

accurate values for most parameters and configurations with ease, one parameter – the

job execution time – may be difficult to acquire precisely. The difficulty comes from

the performance uncertainty of real public clouds [160, 178, 179]. In our experiments,

we used the average execution time from 800 samples (i.e., 800 executions on AWS)

for each job type and VM type. However, in real practice, it may not be feasible for

the users to acquire such high number of samples. That is, the users may provide

inaccurate job execution time to the simulator. In this section, we analyze the impact

of imprecise job execution time on simulation accuracy. More specifically, we seek the

answers to the following questions:

120

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0 20 40 60 80 100

N
or

m
al

iz
ed

 C
os

t

Time (min.)

+20%
+10%

Actual
-10%

-20%

(a) WL #6 with imprecise parameter

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0 10 20 30 40 50 60

N
or

m
al

iz
ed

 C
os

t

Time (min.)

+20%
+10%

Actual
-10%

-20%

(b) WL #10 with imprecise parameter

Figure 6.11: Cost traces of simulations with ±10% and ±20% of imprecise
job execution time parameter.

1. How much error should we expect from the use-provided parameter of job exe-

cution time?

2. What is the accuracy of PICS if the parameter of job execution time has certain

errors?

Table 6.4: Simulation Errors when the job execution time parameter has
±10% and ±20% errors.

Error in Parameters Cost # of VMs VM Utilization Job Deadline

-20% 16.2% 13.5% 0.9% 5.96%

-10% 7.5% 6.3% 0.9% 4.25%

+10% 4.6% 4.7% 0.2% 3.31%

+20% 13.8% 11.7% 1.9% 2.01%

To answer the second question, we simulated the 16 workloads again using job exe-

cution times with ±10% and ±20% errors. These errors represent the aforementioned

expected and maximum errors from user inputs. Table 6.4 shows the average errors

for the 16 workloads with imprecise job execution time parameter in PICS. Fig 6.11

and Fig 6.12 show the cost and horizontal scaling traces of selected two workloads

with imprecise parameters. (The other workloads have similar results.) These table

and figures show that the errors of PICS are considerably smaller than the errors in

the job execution time parameter, and PICS retains high accuracy even when user

provides imprecise job execution time parameter.

We observed that PICS has lower errors than the parameter of job execution time

for two reasons: The first reason is that the running times of low-load VMs are less

susceptible to input errors. Because of we used large workloads with varied job arrival

121

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0 30 60 90 120 150N
or

m
al

iz
ed

 V
M

 N
um

be
r

Time (min.)

+20%
+10%

Actual
-10%

-20%

(a) WL #6 with imprecise parameter

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0 20 40 60 80 100N
or

m
al

iz
ed

 V
M

 N
um

be
r

Time (min.)

+20%
+10%

Actual
-10%

-20%

(b) WL #11 with imprecise parameter

Figure 6.12: Horizontal VM Scaling Traces of simulations with ±10% and
±20% of imprecise job execution time parameter.

times, many VMs have only a small number of jobs to execute. These VMs are usually

created during periods with low job arriving rates. The running times of these low-

load VMs have large fluctuations due to real cloud’s unstable performance. Because

of this fluctuation, the running time of many low-load VMs is close to the simulation

based on the imprecise job execution time. Moreover, the execution time of a low-load

VM is also considerably affected by the VM start-up time, which further reduces the

impact of the imprecise parameter. The second reason is the horizontal “scale-in”

policy of our resource manager. Our resource manager keeps VMs alive for some time

in the anticipation of new jobs. Thus, the total running time of a VM is longer than

the total execution time of its jobs, which reduces the impact of imprecise parameter

of the job execution time.

In summary, due to the performance uncertainty in real clouds, user-provided job

execution time usually has less than 10% errors, with a maximum error of 22%. With

these potential input errors, the PICS simulator can provide reliable results to help

users to assess their cloud application and services.

6.5 Chapter Summary

In order to answer for potential cloud users’ questions about evaluating the public

clouds without actually deploying the cloud-application, we have created PICS, a pub-

lic IaaS cloud simulator. PICS provides the capabilities for accurately evaluating the

cloud cost, resource usages (VM scaling, utilization, and the number of VMs), and

job deadline satisfaction rate. In this chapter, we describe the configurations and

architecture of PICS, and validate the accuracy of PICS by comparing it with actual

122

measurements from a real cloud-application on real public IaaS cloud. The valida-

tion results show that PICS very accurately simulates the behaviors of the cloud-

application and public IaaS clouds (with less than 5% of average errors). Moreover,

we show the sensitivity of PICS with an imprecise simulation parameter (job execu-

tion time with ±10% and ±20% errors). The results show PICS still provides very

reliable simulation results with the imprecise parameter. These results demonstrated

that PICS is both versatile and reliable for cloud user to evaluate the public clouds

without actually deploying the cloud-application.

In the near future, we will have more comprehensive validations of PICS with

three different directions. The first direction is to show the correctness of PICS with

cloud-applications on other public cloud services such as Microsoft Azure [144] and

Google Compute Engine [67]. Validating PICS on the different cloud providers is

particularly important to demonstrate the simulation correctness and generalizability

of PICS, because these cloud providers have different performance of VMs and cloud

services (e.g. storage and network) as well as different cost models for cloud usages

(e.g. minute-based billing model). The second direction is validating PICS with

other cloud-applications and resource management policies. We will use n-tier web

and scientific/big-data analytics applications with various management configurations

because these are the common cloud-application deployment models for industry and

research community. Furthermore, we will validate PICS based on the other metrics

such as storage and network I/O usage.

123

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Because public IaaS cloud provides many attractive capabilities, it has become a

standard computing infrastructure that executes diverse applications including web

search, social network, multimedia streaming, business, and scientific applications

and services. Maximizing SLA satisfaction (or application performance target) with

minimizing cloud cost is a primary objective of managing cloud resources. Various

mechanisms, such as reactive autoscaling and predictive scaling, have been proposed

from industry and research community to achieve this goal with elastic resource man-

agement. However, these approaches are still insufficient to determine when or what

to scale cloud resources and often has resource under-/over-provisioning that results

in poor SLA satisfaction and cost efficiency.

The workload uncertainty is because of dynamic nature of cloud workload pat-

terns. Based on the analysis of real-world workload traces, it turns out that cloud

workloads are actively fluctuating over time and are highly likely to be composed of

interleaving short-lived/bursty patterns that have different characteristics. The per-

formance uncertainty can be caused by several reasons. The most common causal-

ities are multi-tenancy, hardware heterogeneity in data centers, and co-running ap-

plications/containers on cloud resources. Among these reasons, the performance un-

certainty/interference from co-running applications/containers is becoming the very

common phenomenon in enterprise clouds due to increasing popularity of container

technologies. Unfortunately, addressing the co-running applications/containers is in-

adequately researched in the research community and industry. In addition to these

two uncertainties, the last challenge most cloud application service providers face

124

when they develop cloud applications and a resource management system is difficulty

in a large-scale evaluation of such management mechanisms, applications, and infras-

tructures. This challenge is because there does not appear to be a viable alternative

for evaluating the cloud other than to actually deploy the applications and use the

public clouds.

This dissertation solves these three problems and introduces new resource man-

agement mechanisms that ensure the predictable end-to-end performance of cloud

applications. Both Chapter 3 and 4 focus on addressing the workload uncertainty,

Chapter 5 provides a solution for the performance uncertainty, and Chapter 6 presents

a new evaluation platform that supports the large-scale evaluation for cloud applica-

tions and resource management mechanisms. More specifically,

• Chapter 3 performed a holistic evaluation of existing workload predictors and

predictive scaling styles. In this chapter, we collected well-known existing work-

load predictors from an extensive literature survey and quantified the perfor-

mance of all 21 predictors based on the model accuracy and overhead. Moreover,

we evaluated the benefits/performance from different predictive scaling styles

(e.g., predictive scaling-out, predictive scaling-in, or both) and determines the

best scaling styles for cloud resource management. This chapter was presented

in 2016 IEEE International Conference on Cloud Computing [108].

• Chapter 4 presented CloudInsight– an online workload prediction framework that

addresses dynamic and highly variable cloud workloads. CloudInsight relies on

multiple workload predictors of choice, and it periodically creates an ensemble

workload prediction model of them with dynamic predictor selection and weight

decision, calculated at runtime based on the predictor’s accuracy for the current

workload at previous time intervals. To select predictors with proper weight, the

chapter also described a novel decision mechanism based on a SVM multiclass

regression model. Part of this chapter is accepted for publication in 2018 IEEE

International Conference on Cloud Computing [106].

• Chapter 5 confirmed and quantified the impact of one of the major causalities

– resource storm – in performance uncertainty. and presented Orchestra frame-

work, a cloud-specific framework for controlling multiple cloud application in

user-space to guarantee the performance SLA requirements. Orchestra employs

real-time, lightweight monitoring agents that collect diverse aspects of applica-

tion performance and resource consumption, then creates performance models

125

for target applications. Orchestra also contains optimizer for VM resource al-

locations (e.g., CPU, memory, IO, and network) and controls the resources to

multiple target applications by leveraging the knobs provided by modern OS

such as control groups. Part of this chapter is accepted for publication in 2018

IEEE International Symposium on Parallel and Distributed Computing [110].

• Chapter 6 discussed PICS, which a new cloud simulator to support various and

trustworthy evaluation of cloud applications, resource management, and cloud

infrastructure. PICS supports diverse resource management mechanisms (e.g.,

horizontal and vertical scaling) for diverse cloud resources like VM, storage,

network, and others. We thoroughly validated PICS’ correctness by comparing

the simulation results with the measurement dataset from actual cloud applica-

tions (MapReduce application and its management system) and infrastructure

(AWS). Furthermore, we conduct a sensitivity test of PICS with imprecise simu-

lation parameter by considering of the performance uncertainty of IaaS clouds.

The results show that PICS with imprecise simulation parameters still provides

very reliable simulation results. This chapter was presented in 2015 IEEE In-

ternational Conference on Cloud Computing [104].

7.2 Future Work

7.2.1 Support for Cloud Function and Serverless Architec-

ture

Regarding the resource management dimensions, this work focuses on the IaaS cloud

resources – VMs and containers – the computing platform for current cloud applica-

tions. Today, cloud functions and serverless architectures – AWS Lambda [8], Azure

Functions [142], Google Cloud Functions [66], Open Lambda [74], PyWren [98, 99] –

have great attention from the research and development community as the next evo-

lution of cloud computing. In particular, cloud functions and serverless architectures

have:

• No requirement for computing infrastructure that reduces cloud engineer’s work-

load and burden to manage cloud instances like VMs.

• Fewer worries for over-provisioning due to finer-grained resource and application

provision.

126

• Less execution cost (cloud cost) because users pay the cost while only functions

execute.

The future direction of this research is to improve the mechanisms presented in

this dissertation to support the new evolution of cloud computing and address new

research problems. The emerging research problems in this new domain are func-

tion/event scheduling, launching overhead, resource scaling, high-latency compatibil-

ity with legacy application models. Some of these problems can be directly addressed

by this dissertation work without any modifications, but there are lots of research

opportunity based on this dissertation work. The focus will be enhancing usabil-

ity in cloud function/serverless architecture such as programming models and APIs,

debugging and testing, and deployment models.

7.2.2 Assuring Application Performance for Large-scale Data

Science Pipelines

The next direction of future work is to create a new cloud-scale infrastructure that as-

sures predictable application performance for large-scale data science pipelines. This

dissertation work is highly relevant to this future research direction. Emerging in-

frastructure management systems for data sciences pipelines, such as Mesos [82],

Kubernetes [116], Docker Swarm [52], and others, highly require capabilities of ac-

curate workload prediction (CloudInsight in Chapter 4) and the strong performance

isolation/guarantee (Orchestra in Chapter 5).

The first step to support the large-scale data science pipeline is to apply both

CloudInsight and Orchestra to those frameworks and develop them as open-source

projects. Once the techniques are applied to those frameworks, there will be more

challenging research problems due to the maturity of container technologies in data

science and scientific computation. Furthermore, it is easily witnessed that hundreds

of Docker containers are running together on the same host (in either physical or

virtual machine). Therefore, the critical challenges will be how to understand the

performance implications of many contributors (containers and application processes)

to a composed service/application scenario and how to design a mechanism that

provides strong performance guarantee of all the containers.

127

7.2.3 Distributed Resource Management for Cloud IoT and

Edge Computing

For the last decade, cloud computing has been a dominant infrastructure and its

centralized management allows enormous resources to provide a collective power to

address many applications scenarios such as analyzing large-scale (or “cloud-scale”)

data and handling a traffic surge to user-facing services. However, due to the large

deployment of IoT, sensor and smart devices, cloud computing may not be the best

option for applications with such devices. These devices generate tremendous data

every second, and it is often infeasible to transfer the data to cloud data center in a

real-time manner due to the bandwidth limitation, battery life, and privacy concerns.

Edge computing [27, 53] helps to bridge the gap between the devices and cloud

computing by placing a small or medium-size cluster with computing and storage

nodes at the Internet’s edge near the sensors. Edge computing is an emerging research

area with many opportunities especially related to resource management including

micro datacenter, middleware (for edge resource management), and serverless/cloud

function. This future work will focus on making the edge computing more intelligent

and autonomous, and provide better collaboration techniques between the edge and

traditional cloud infrastructure.

128

Bibliography

[1] A. Ali-Eldin, A. Rezaie, A. Mehta, S. Razroev, S. S. de Luna, O. Seleznjev, J.

Tordsson, and E. Elmroth. “How will your workload look like in 6 years? An-

alyzing Wikimedia’s workload”. In: IEEE International Conference on Cloud

Engineering (IC2E). Boston, MA, USA, 2014.

[2] A. Ali-Eldin, O. Seleznjev, S. S. de Luna, J. Tordsson, and E. Elmroth. “Mea-

suring Cloud Workload Burstiness”. In: IEEE/ACM International Conference

on Utility and Cloud Computing (UCC). London, UK, 2014.

[3] Amazon Web Services. Amazon EC2 Instance Types. https://aws.amazon.

com/ec2/instance-types/. [online]. 2018.

[4] Amazon Web Services. Amazon Elastic Container Service. https://aws.

amazon.com/ecs/. [online].

[5] Amazon Web Services. Amazon Web Services. http://aws.amazon.com.

[6] Amazon Web Services. AWS Auto Scaling. https://aws.amazon.com/

autoscaling. [online]. 2018.

[7] Amazon Web Services. AWS EMR – Elastic MapReduce. https://aws.

amazon.com/emr/. [online].

[8] Amazon Web Services. AWS Lambda – Serverless Compute - Amazon Web

Services. https://aws.amazon.com/lambda/. [online].

[9] Amazon Web Services. AWS S3 - Amazon Simple Storage Service. https:

//aws.amazon.com/s3/. [online]. 2018.

[10] Amazon Web Services. AWS sync. http://docs.aws.amazon.com/

cli/latest/reference/s3/sync.html. [online]. 2018.

[11] G. Amvrosiadis, A. D. Brown, and A. Goel. “Opportunistic Storage Mainte-

nance”. In: ACM Symposium on Operating Systems Principles (SOSP). Mon-

terey, CA, USA, 2015.

129

[12] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan, S. Rao, and I. Stoica.

“True Elasticity in Multi-Tenant Data-Intensive Compute Clusters”. In: ACM

Symposium on Cloud Computing (SoCC). San Jose, CA, USA, 2012.

[13] Apache. Apache Hadoop. http://hadoop.apache.org. [online].

[14] Apache CloudStack. Open Source Cloud Computing. https://cloudstack.

apache.org/. [online]. 2018.

[15] R. Appuswam, C. Gkantsidis, D. Narayanan, O. Hodson, and A. Rowstron.

“Scale-up vs Scale-out for Hadoop: Time to Rethink?” In: ACM Symposium

on Cloud Computing (SoCC). Santa Clara, CA, USA, 2013.

[16] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G.

Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. “A View of Cloud

Computing”. In: Communications of the ACM 53.4 (2010).

[17] E.-J. van Baaren. “WikiBench: A Distributed, Wikipedia based Web Applica-

tion Benchmark”. In: Master Thesis, VU University Amsterdam (2009).

[18] A. A. Bankole and S. A. Ajila. “Cloud Client Prediction Models for Cloud

Resource Provisioning in a Multitier Web Application Environment”. In: IEEE

International Symposium on Service Oriented System Engineering (SOSE).

San Francisco, CA, USA, 2013.

[19] A. Barker, B. Varghese, J. S. Ward, and I. Sommerville. “Academic Cloud

Computing Research: Five Pitfalls and Five Opportunities”. In: USENIX Work-

shop on Hot Topics in Cloud Computing (HotCloud). 2014.

[20] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl. “Algorithms for Hyper-

Parameter Optimization”. In: Neural Information and Processing Systems (NIPS).

Granada, Spain, 2011.

[21] N. Bobroff, A. Kochut, and K. Beaty. “Dynamic Placement of Virtual Ma-

chines for Managing SLA Violations”. In: IFIP/IEEE Symposium on Inte-

grated Network and Service Management (IM). Munich, Germany, 2007.

[22] P. Bodik, R. Griffith, C. A. Sutton, A. Fox, M. I. Jordan, and D. A. Patterson.

“Statistical Machine Learning Makes Automatic Control Practical for Inter-

net Datacenters”. In: USENIX Workshop on Hot Topics in Cloud Computing

(HotCloud). Santa Diego, CA, USA, 2009.

[23] box.com. Secure File Sharing, Storage, and Collaboration — Box. https:

//www.box.com. [online]. 2018.

130

[24] F. Brosig, F. Gorsler, N. Huber, and S. Kounev. “Evaluating Approaches for

Performance Prediction in Virtualized Environments”. In: IEEE International

Symposium on Modeling, Analysis and Simulation of Computer and Telecom-

munication Sstems (MASCOTS). 2014.

[25] M. Bux and U. Leser. “DynamicCloudSim: Simulating Heterogeneity in Com-

putational Clouds”. In: Future Generation Computer Systems 46 (2015).

[26] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R. Buyya.

“CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Envi-

ronments and Evaluation of Resource Provisioning Algorithm”. In: Software:

Practice and Experience 41.1 (2011), pp. 23–50.

[27] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R. Buyya.

“The Emergence of Edge Computing”. In: IEEE Computer 50.10 (2017),

pp. 30–39.

[28] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyy. “Workload Prediction

Using ARIMA Model and Its Impact on Cloud Applications’ QoS”. In: IEEE

Transactions on Cloud Computing 3.4 (2015).

[29] M. Carvalho, W. Cirne, F. Brasileiro, and J. Wilkes. “Long-term SLOs for Re-

claimed Cloud Computing Resources”. In: ACM Symposium on Cloud Com-

puting (SoCC). Seattle, WA, USA, 2014.

[30] A. Chandra, W. Gong, and P. Shenoy. “Dynamic Resource Allocation for

Shared Data Centers Using Online Measurements”. In: International Work-

shop on Quality of Service (IWQoS). Berkeley, CA, USA, 2003.

[31] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao. “Energy-

Aware Server Provisioning and Load Dispatching for Connection-Intensive In-

ternet Services”. In: USENIX Symp. on Networked Systems Design and Im-

plement. (NSDI). San Francisco, CA, USA, 2008.

[32] W. Chen and E. Deelman. “WorkflowSim: A Toolkit for Simulating Scientific

Workflows in Distributed Environments”. In: IEEE International Conference

on eScience (eScience). Chicago, IL, USA, 2012.

[33] Y. Chen, S. Alspaugh, and R. Katz. “Interactive Analytical Processing in Big

Data Systems: A Cross-Industry Study of MapReduce Workloads”. In: the

VLDB Endowment 5.12 (2012), pp. 1802–1803.

131

[34] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. “The Case for Evaluat-

ing MapReduce Performance Using Workload Suites”. In: IEEE International

Symposium on Modelling, Analysis, and Simulation of Computer and Telecom-

munication Systems (MASCOTS). Singapore, 2011.

[35] L. Cheng, J. Rao, and F. C. Lau. “vScale: Automatic and Efficient Proces-

sor Scaling for SMP Virtual Machines”. In: ACM European Conference on

Computer Systems (EuroSys). London, UK, 2016.

[36] R. C. Chiang, J. Hwang, H. H. Huang, and T. Wood. “Matrix: Achieving

Predictable Virtual Machine Performance in the Clouds”. In: International

Conference on Autonomic Computing (ICAC). Philadelphia, PA, USA, 2014.

[37] Clam AntiVirus. ClamAV. https://www.clamav.net/. [online]. 2018.

[38] Daniel Shelepov and Juan Carlos Saez Alcaide and Stacey Jeffery and Alexan-

dra Fedorova and Nestor Perez and Zhi Feng Huang and Sergey Blagodurov

and Viren Kumar. “HASS: A Scheduler for Heterogeneous Multicore Systems”.

In: ACM SIGOPS Operating Systems Review 43.2 (2009), pp. 66–75.

[39] David Koufaty and Dheeraj Reddy and Scott Hahn. “Bias Scheduling in Het-

erogeneous Multi-core Architectures”. In: ACM European Conference on Com-

puter Systems (Eurosys). Paris, France, 2010.

[40] J. Dean and L. A. Barroso. “The Tail at Scale”. In: Communications of the

ACM 56.2 (2013), pp. 74–80.

[41] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on Large

Clusters”. In: USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI). San Francisco, CA, USA, 2004.

[42] Delft University of Technology. The Grid Workloads Archive. http://gwa.

ewi.tudelft.nl. online. 2018.

[43] C. Delimitrou and C. Kozyrakis. “Paragon: QoS-aware Scheduling for Hetero-

geneous Datacenters”. In: Int’l Conf. on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS). Houston, TX, USA, 2013.

[44] C. Delimitrou and C. Kozyrakis. “Quasar: Resource-Efficient and QoS-Aware

Cluster Management”. In: Int’l Conf. on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS). Salt Lake City, UT, USA,

2014.

132

[45] M. Dhingra, J. Lakshmi, S. K. Nandy, C. Bhattacharyya, and K. Gopinath.

“Elastic Resources Framework in IaaS, preserving performance SLAs”. In:

IEEE Int’l Conf. on Cloud Computing (CLOUD). Santa Clara, CA, USA,

2013.

[46] S. Di, D. Kondo, and W. Cirne. “Host Load Prediction in a Google Compute

Cloud with a Bayesian Model”. In: International Conference on High Perfor-

mance Computing Networking, Storage and Analysis (SC). Salt Lake City, UT,

USA, 2012.

[47] H. X. Di Niu, B. Li, and S. Zhao. “Quality-Assured Cloud Bandwidth Auto-

Scaling for Video-on-Demand Applications”. In: IEEE International Confer-

ence on Computer Communications (INFOCOM). Orlando, FL, USA, 2012.

[48] D. Didonaand, F. Quagliaand, P. Romanoand, and E. Torre. “Enhancing Per-

formance Prediction Robustness by Combing Analytical Modeling and Ma-

chine Learning”. In: ACM/SPEC International Conference on Performance

Engineering (ICPE). 2015.

[49] P. A. Dinda and D. R. O’Hallaron. “Host Load Prediction using Linear Mod-

els”. In: Cluster Computing 3.4 (2000), pp. 265–280.

[50] B. Ding, L. Kot, A. Demers, and J. Gehrke. “Centiman: Elastic, High Perfor-

mance Optimistic Concurrency Control by Watermarking”. In: ACM Sympo-

sium on Cloud Computing (SoCC). Kohala Coast, Hawaii, USA, 2015.

[51] Docker. Docker – Build, Ship, and Run Any App, Anywhere. https://www.

docker.com/. [online].

[52] Docker. Swarm: a Docker-native clustering system. https://github.com/

docker/swarm. [online].

[53] A. R. Elias, N. Golubovic, C. Krintz, and R. Wolski. “Where’s The Bear?: Au-

tomating Wildlife Image Processing Using IoT and Edge Cloud Systems”. In:

International Conference on Internet-of-Things Design and Implementation

(IoTDI). Pittsburgh, PA, USA, 2017.

[54] M. A. Eriksen. “Trickle: A Userland Bandwidth Shaper for UNIX-like Sys-

tems”. In: USENIX Annual Technical Conference, FREENIX Track. 2005.

[55] W. Fang, Z. Lu, J. Wu, and Z. Cao. “RPPS: A Novel Resource Prediction and

Provisioning Scheme in Cloud Data Center”. In: IEEE International Confer-

ence on Services Computing (SCC). Honolulu, HI, USA, 2012.

133

[56] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D. Bowers, and M.

M. Swift. “More for Your Money: Exploiting Performance Heterogeneity in

Public Cloud”. In: ACM Symposium on Cloud Computing (SoCC). San Jose,

CA, USA, 2012.

[57] A. Fedorova, M. Seltzer, and M. D. Smith. “Improving Performance Isola-

tion on Chip Multiprocessors via an Operating System Scheduler”. In: In-

ternational Conference on Parallel Architecture and Compilation Techniques

(PACT). Brasov, Romania, 2007.

[58] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter. “Cloud

Computing Patterns: Fundamentals to Design, Build, and Manage Cloud Ap-

plications”. In: (2014).

[59] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C.

Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. “Clearing the Clouds – A

Study of Emerging Scale-out Workloads on Modern Hardware”. In: Int’l Conf.

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS). Bordeaux, France, 2012.

[60] H. Fernandez, G. Pierre, and T. Kielmann. “Autoscaling Web Applications in

Heterogeneous Cloud Infrastructures”. In: IEEE International Conference on

Cloud Engineering (IC2E). Boston, MA, USA, 2014.

[61] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch. “Au-

toScale: Dynamic, Robust Capacity Management for Multi-Tier Data Cen-

ters”. In: ACM Transactions on Computer Systems 30.4 (2012).

[62] A. Gandhi, P. Dube, A. Karve, A. Kochut, and H. Ellanti. “The Unobservabil-

ity Problem in Clouds”. In: International Conference on Cloud and Autonomic

Computing (ICCAC). Cambridge, MA, USA, 2015.

[63] S. K. Garg and R. Buyya. “NetworkCloudSim: Modelling Parallel Applications

in Cloud Simulations”. In: IEEE International Conference on Utility and Cloud

Computing (UCC). Melbourne, Australia, 2011.

[64] Z. Gong, X. Gu, and J. Wilkes. “PRESS: PRedictive Elastic ReSource Scal-

ing for cloud systems”. In: International Conference on Network and Service

Management (CNSM). Niagara Falls, Cadana, 2010.

[65] Google. App Engine. https://cloud.google.com/appengine/. [on-

line]. 2018.

134

[66] Google. Cloud Functions - Event-driven Serverless Computing. https://

cloud.google.com/functions/. [online].

[67] Google. Compute Engine - Google Cloud Platform. https://cloud.google.

com/compute/. [online].

[68] Google. Google Cloud Platform – Autoscaling Groups of Instances. https:

//cloud.google.com/compute/docs/autoscaler. [online]. 2018.

[69] Google Cloud Platform. Google Kubernetes Engine. https://cloud.google.

com/kubernetes-engine/. [online].

[70] B. Gregg. The PMCs of EC2: Measuring IPC. http://www.brendangregg.

com/blog/2017-05-04/the-pmcs-of-ec2.html. [online]. 2018.

[71] J. Gupta, P. Faraboschi, F. Gioachin, L. V. Kale, R. Kaufmann, B.-S. Lee, V.

March, D. Milojicic, and C. H. Suen. “Evaluating and Improving the Perfor-

mance and Scheduling of HPC Applications in Cloud”. In: IEEE Transactions

on Cloud Computing 4.3 (2014), pp. 307–321.

[72] T. Hastie, R. Tibshirani, and J. Friedman. “The Element of Statistical Learn-

ing: Data Mining, Inference, and Prediction”. In: (2011).

[73] T. Heinze, L. Roediger, A. Meister, Y. Ji, Z. Jerzak, and C. Fetzer. “Online

Parameter Optimization for Elastic Data Stream Processing”. In: ACM Sym-

posium on Cloud Computing (SoCC). Kohala Coast, Hawaii, USA, 2015.

[74] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-

Dusseau, and R. H. Arpaci-Dusseau. “Serverless Computation with Open-

Lambda”. In: USENIX Workshop on Hop Topics in Cloud Computing (Hot-

Cloud). Denvor, CO, USA, 2016.

[75] N. R. Herbst, S. Kounev, and R. Reussner. “Elasticity in Cloud Computing:

What It Is, and What It Is Not”. In: International Conference on Autonomic

Computing (ICAC). San Jose, CA, USA, 2013.

[76] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn. “Self-Adaptive Work-

load Classification and Forecasting for Proactive Resource Provisioning”. In:

ACM/SPEC International Conference on Performance Engineering (ICPE).

Prague, Czech Republic, 2013.

[77] H. Herodotou and S. Babu. “Profiling, What-if Analysis, and Cost-based Op-

timization of MapReduce Programs”. In: the VLDB Endowment 4.11 (2011).

135

[78] H. Herodotou, F. Dong, and S. Babu. “No One (Cluster) Size Fits All: Au-

tomatic Cluster Sizing for Data-intensive Analytics”. In: ACM Symposium on

Cloud Computing (SoCC). Cascais, Portugal, 2011.

[79] Heroku. Cloud Application Platform. https://www.heroku.com/. [on-

line]. 2018.

[80] T. H. Hetherington, M. O’Connor, and T. M. Aamodt. “MemcachedGPU:

Scaling-up Scale-out Key-value Stores”. In: ACM Symposium on Cloud Com-

puting (SoCC). Kohala Coast, Hawaii, USA, 2015.

[81] Z. Hill and M. Humphrey. “A quantitative analysis of high performance com-

puting with Amazon’s EC2 infrastructure: The death of the local cluster?” In:

IEEE/ACM International Conference on Grid Computing (GRID). 2009.

[82] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S.

Shenker, and I. Stoica. “Mesos: A Platform for Fine-Grained Resource Sharing

in the Data Center”. In: USENIX Symp. on Networked Systems Design and

Implement. (NSDI). Boston, MA, USA, 2011.

[83] Y. H. Hu, S. Palreddy, and W. J. Tompkins. “A Patient-Adaptable ECG Beat

Classifier Using a Mixture of Experts Approach”. In: IEEE Transactions on

Biomedical Engineering 44.9 (1997).

[84] IBM. IBM Cloud. https://www.ibm.com/cloud/. [online]. 2018.

[85] A. Iosup, N. Yigitbasi, and D. Epema. “On the Performance Variability of Pro-

duction Cloud Services”. In: IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGrid). Newport Beach, CA, USA, 2011.

[86] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and D. H.

Epema. “The Grid Workloads Archive”. In: Future Generation Computer Sys-

tems 24.7 (2008), pp. 672–686.

[87] ISI, USC. The Network Simulator – ns-2. http://www.isi.edu/nsnam/

ns. [online].

[88] S. Islam, S. Venugopal, and A. Liu. “Evaluating the Impact of Fine-scale

Burstiness on Cloud Elasticity”. In: ACM Symposium on Cloud Computing

(SoCC). Hawaii, USA, 2015.

[89] S. Islam, J. Keung, K. Lee, and A. Liu. “Empirical Prediction models for

Adaptive Resource Provisioning in the Cloud”. In: Future Generation Com-

puter Systems 28.1 (2012).

136

[90] R. A. Jacobs. “Methods for Combining Experts’ Probability Assessments”. In:

Neural Computation 7.5 (1995), pp. 867–888.

[91] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. “Adaptive Mix-

tures of Local Experts”. In: Neural Computation 3.1 (1991), pp. 79–87.

[92] D. Jacobson, D. Yuan, and N. Joshi. Scryer: Netflix’s Predictive Auto Scal-

ing Engine. The Netflix Tech Blog. http://techblog.netflix.com/

2013/11/scryer-netflixs-predictive-auto-scaling.html.

Nov. 2013.

[93] S. A. Javadi and A. Gandhi. “DIAL: Reducing Tail Latencies for Cloud Ap-

plications via Dynamic Interference-aware Load Balancing”. In: International

Conference on Autonomic Computing (ICAC). Columbus, OH, USA, 2017.

[94] H. Jayathilaka, C. Krintz, and R. Wolski. “Response Time Service Level Agree-

ments for Cloud-hosted Web Applications”. In: ACM Symposium of Cloud

Computing (SoCC). 2015.

[95] M. Jeon, Y. He, S. Elnikety, A. L. Cox, and S. Rixner. “Adaptive Parallelism

for Web Search”. In: ACM European Conference on Computer Systems (Eu-

rosys). Prague, Czech Republic, 2013.

[96] Y. Jiang, C.-S. Perng, T. Li, and R. N. Chang. “ASAP: A Self-Adaptive Pre-

diction System for Instant Cloud Resource Demand Provisioning”. In: IEEE

International Conference on Data Mining (ICDM). Vancouver, BC, Canada,

2011.

[97] Y. Jiang, C.-S. Perng, T. Li, and R. N. Chang. “Cloud Analytics for Capacity

Planning and Instant VM Provisioning”. In: IEEE Transactions on Network

and Service Management 10.3 (2013), pp. 312–325.

[98] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. “Encoding, Fast

and Slow: Low-Latency Video Processing Using Thousands of Tiny Threads”.

In: USENIX Symp. on Networked Systems Design and Implement. (NSDI).

Boston, MA, USA, 2017.

[99] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. “Occupy the Cloud:

Distributed Computing for the 99%”. In: ACM Symposium on Cloud Comput-

ing (SoCC). Santa Clara, CA, USA, 2017.

137

[100] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu. “Mistral:

Dynamically Managing Power, Performance, and Adaptation Cost in Cloud

Infrastructures”. In: International Conference on Distributed Computing Sys-

tems (ICDCS). Genova, Italy, 2010.

[101] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim. “Measuring Interference

Between Live Datacenter Applications”. In: International Conference on High

Performance Computing Networking, Storage and Analysis (SC). Salt Lake

City, UT, USA, 2012.

[102] H. Kasture and D. Sanchez. “Ubik: Efficient Cache Sharing with Strict QoS

for Latency-Critical Workloads”. In: Int’l Conf. on Architectural Support for

Programming Languages and Operating Systems (ASPLOS). Salt Lake City,

UT, USA, 2014.

[103] A. Khan, X. Yan, S. Tao, and N. Anerousis. “Workload Characterization and

Prediction in the Cloud: A Multiple Time Series Approach”. In: IEEE Network

Operations and Management Symposium (NOMS). Maui, Hi, USA, 2012.

[104] I. K. Kim, W. Wang, and M. Humphrey. “PICS: A Public IaaS Cloud Sim-

ulator”. In: IEEE International Conference on Cloud Computing (CLOUD).

New York, NY, USA, 2015.

[105] I. K. Kim, S. Zeng, C. Young, J. Hwang, and M. Humphrey. “A Supervised

Learning Model for Identifying Inactive VMs in Private Cloud Data Centers”.

In: ACM/IFIP/USENIX International Middleware Conference (Middleware).

Trento, Italy, 2016.

[106] I. K. Kim, W. Wang, Y. Qi, and M. Humphrey. “CloudInsight: Utilizing a

Council of Experts to Predict Future Cloud Application Workloads”. In: IEEE

International Conference on Cloud Computing (CLOUD). San Francisco, CA,

USA, 2018.

[107] I. K. Kim, J. Steele, Y. Qi, and M. Humphrey. “Comprehensive Elastic Re-

source Management to Ensure Predictable Performance for Scientific Appli-

cations on Public IaaS Clouds”. In: IEEE/ACM International Conference on

Utility and Cloud Computing (UCC). London, UK, 2014.

[108] I. K. Kim, W. Wang, Y. Qi, and M. Humphrey. “Empirical Evaluation of Work-

load Forecasting Techniques for Predictive Cloud Resource Scaling”. In: IEEE

138

International Conference on Cloud Computing (CLOUD). San Francisco, CA,

USA, 2016.

[109] I. K. Kim, S. Zeng, C. Young, J. Hwang, and M. Humphrey. “iCSI: A Cloud

Garbage VM Collector for Addressing Inactive VMs with Machine Learning”.

In: IEEE International Middleware Conference on Cloud Engineering. Van-

couver Canada, 2017.

[110] I. K. Kim, J. Hwang, W. Wang, and M. Humphrey. “Orchestra: Guaranteeing

Performance SLAs for Cloud Applications by Avoiding Resource Storms”. In:

IEEE International Symposium on Parallel and Distributed Computing (IS-

PDC). Geneva, Switzerland, 2018.

[111] D. Kliazovich, P. Bouvry, and S. U. Khan. “GreenCloud: a Packet-level Sim-

ulator of Energy-Aware Cloud Computing Data Centers”. In: Journal of Su-

percomputing 62.3 (2013), pp. 1263–1283.

[112] S. Koyano, S. Ata, I. Oka, and K. Inoue. “A High-grained Traffic Prediction

for Microseconds Power Control in Energy-aware Routers”. In: IEEE/ACM

International Conference on Utility and Cloud Computing (UCC). Chicago,

IL, USA, 2012.

[113] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. E. Culler, and R. H. Katz.

“NapSAC: Design and Implementation of a Power-Proportional Web Cluster”.

In: Computer Communication Review 41.1 (2011).

[114] S. S. Krishnan and R. K. Sitaraman. “Video Stream Quality Impacts Viewer

Behavior: Inferring Causality Using Quasi-Experimental Designs”. In: ACM

SIGCOMM Internet Measurement Conference (IMC). Boston, MA, USA, 2012.

[115] J. Krzywda, A. Ali-Eldin, T. E. Carlson, P.-O. Ostberg, and E. Elmroth.

“Power-performance tradeoffs in data center servers: DVFS, CPU pinning,

horizontal, and vertical scaling”. In: Future Generation Computer Systems 81

(2018), pp. 114–128.

[116] Kubernetes. Kubernetes – Production-Grade Container Orchestration. https:

//kubernetes.io/. [online]. 2018.

[117] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M.

Patel, K. Ramasamy, and S. Taneja. “Twitter Heron: Stream Processing at

Scale”. In: ACM SIGMOD International Conference on Management of Data

(SIGMOD) (2014).

139

[118] S. Kundu, R. Rangaswami, K. Dutta, and M. Zhao. “Application Performance

Modeling in a Virtualized Environments”. In: International Symposium on

High-Performance Computer Architecture (HPCA). 2010.

[119] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta. “Modeling Vir-

tualized Applications using Machine Learning Techniques”. In: International

Conference on Virtual Execution Environments (VEE). 2012.

[120] P. Leitner and J. Cito. “Patterns in the Chaos–A Study of Performance Vari-

ation and Predictability in Public IaaS Clouds”. In: ACM Transactions on

Internet Technology 16.15 (2016).

[121] J. Leverich and C. Kozyrakis. “Reconciling High Server Utilization and Sub-

millisecond Quality-of-Service”. In: ACM European Conference on Computer

Systems (Eurosys). Amsterdam, Netherlands, 2014.

[122] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble. “Tales of the Tail:

Hardware, OS, and Application-level Sources of Tail Latency”. In: ACM Sym-

posium on Cloud Computing (SoCC). Seattle, WA, USA, 2014.

[123] S.-P. Li and M.-H. Wong. “Data Allocation in Scalable Distributed Database

Systems Based on Time Series Forecasting”. In: IEEE International Congress

on Big Data (BigData Congress). Santa Clara, CA, USA, 2013.

[124] G. Linden. Make Data Useful. http://www.gduchamp.com/media/

StanfordDataMining.2006-11-28.pdf. [online].

[125] C. Liu, C. Liu, Y. Shang, S. Chen, B. Cheng, and J. Chen. “An Adaptive

Prediction Approach based on Workload Pattern Discrimination in the Cloud”.

In: Journal of Network and Computer Applications 80 (2017).

[126] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis. “Her-

acles: Improving Resource Efficiency at Scale”. In: Int’l Symp. on Computer

Architecture (ISCA). Portland, OR, 2015.

[127] J. Loff and J. Garcia. “Vadara: Predictive Elasticity for Cloud Applications”.

In: IEEE International Conference on Cloud Computing Technology and Sci-

ence (CloudCom). Singapore, 2014.

[128] A. K. Maji, S. Mitra, and S. Bagchi. “ICE: An Integrated Configuration Engine

for Interference Mitigation in Cloud Services”. In: International Conference on

Autonomic Computing (ICAC). Grenoble, France, 2015.

140

[129] A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma. “Mitigating in-

terference in cloud services by middleware reconfiguration”. In: International

Middleware Conference (Middleware). Bordeaux, France, 2014.

[130] M. Mao and M. Humphrey. “A Performance Study on the VM Startup Time in

the Cloud”. In: IEEE international Conference on Cloud Computing (CLOUD).

Honolulu, HI, USA, 2012.

[131] M. Mao and M. Humphrey. “Auto-Scaling to Minimize Cost and Meet Appli-

cation Deadlines in Cloud Workflows”. In: International Conference for High

Performance Computing, Networking, Storage and Analysis (SC). Seattle, WA,

USA, 2011.

[132] M. Mao and M. Humphrey. “Scaling and Scheduling to Maximize Application

Performance within Budget Constraints in Cloud Workflows”. In: IEEE Inter-

national Symposium on Parallel and Distributed Processing (IPDPS). Cam-

bridge, MA, USA, 2013.

[133] C. C. T. Mark, D. Niyato, and T. Chen-Khong. “Evolutionary Optimal Vir-

tual Machine Placement and Demand Forecaster for Cloud Computing”. In:

IEEE International Conference on Advanced Information Networking and Ap-

plications (AINA). Biopolis, Singapore, 2011.

[134] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. “Bubble-up: In-

creasing utilization in modern warehouse scale computers via sensible co-

locations”. In: International Symposium on Microarchitecture (Micro). Porto

Alegre, Brazil, 2011.

[135] P. Mell and T. Grance. The NIST Definition of Cloud Computing. https://

nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-

145.pdf. [online]. 2011.

[136] P. Menage. CGROUPS. https://www.kernel.org/doc/Documentation/

cgroup-v1/cgroups.txt. [online]. 2018.

[137] Mesosphere. Marathon: A container orchestration platform for Mesos and

DC/OS. https://github.com/docker/swarm. [online].

[138] H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, and L. Yuan. “Online Self-reconfiguration

with Performance Guarantee for Energy-efficient Large-scale Cloud Comp.

Data Centers”. In: IEEE International Conference on Services Computing

(SCC). Miami, Florida, 2010.

141

[139] R. Mian, P. Martin, F. Zulkernine, and J. L. Vazquez-Poletti. “Toward Build-

ing Performance Models for Data-Intensive Workloads in Public Clouds”. In:

ACM/SPEC International Conf. on Performance Engineering (ICPE). 2013.

[140] Microsoft. Azure Autoscale. https://azure.microsoft.com/en-us/

features/autoscale. [online]. 2018.

[141] Microsoft. Azure Container Service (AKS). https://azure.microsoft.

com/en-us/services/container-service/. [online].

[142] Microsoft. Azure FunctionsServerless Architecture. https://azure.microsoft.

com/en-us/services/functions/. [online].

[143] Microsoft. Azure Storage. http://azure.microsoft.com/en-us/

services/storage. [online].

[144] Microsoft. Microsoft Azure. http://azure.microsoft.com. [online].

[145] MongoDB. MongoDB. https://www.mongodb.com/. [online]. 2018.

[146] Moor Insights and Strategy. TCO Analysis Demonstrates How Moving To The

Cloud Can Save Your Company Money. https://www.forbes.com/

sites/moorinsights/2016/04/11/tco-analysis-demonstrates-

how-moving-to-the-cloud-can-save-your-company-money/\#

1c30177d7c4e. [online]. 2016.

[147] S. Muppala, X. Zhou, and L. Zhang. “Regression Based Multi-tier Resource

Provisioning for Session Slowdown Guarantees”. In: IEEE International Per-

formance Computing and Communications Conference (IPCCC). Albuquerque,

NM, USA, 2010.

[148] R. Nathuji, A. Kansal, and A. Ghaffarkhah. “QClouds: Managing Performance

Interference Effects for QoS-Aware Clouds”. In: ACM European Conference on

Computer Systems (Eurosys). Paris, France, 2010.

[149] Netflix. Fenzo: Extensible Scheduler for Mesos Frameworks. https://github.

com/Netflix/Fenzo. [online].

[150] M. A. S. Netto, C. Cardonha, R. L. F. Cunha, and M. D. Assuncao. “Evalu-

ating Auto-scaling Strategies for Cloud Computing Environments”. In: IEEE

International Symposium on Modelling, Analysis and Simulation of Computer

and Telecommunication Systems (MASCOTS). Paris, France, 2014.

142

[151] NGINX. Nginx Load Balancing – TCP and UDP Load Balancer. https://

www.nginx.com/resources/admin-guide/tcp-load-balancing/.

[online]. 2018.

[152] NGINX. Nginx Reverse Proxy. https://www.nginx.com/resources/

admin-guide/reverse-proxy/. [online]. 2018.

[153] A. Y. Nikravesh, S. A. Ajila, and C.-H. Lung. “Towards an Autonomic Auto-

Scaling Prediction System for Cloud Resource Provisioning”. In: International

Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS). Firenze, Italy, 2015.

[154] S. Niu, J. Zhai, X. Ma, X. Tang, and W. Chen. “Cost-effective Cloud HPC

Resource Provisioning by Building Semi-Elastic Virtual Clusters”. In: Interna-

tional Conference for High Performance Computing, Networking, Storage and

Analysis (SC). Denver, CO, USA, 2013.

[155] Q. Noorshamsand, A. Buschand, A. Rentschlerand, D. Bruhnand, S. Kounevand,

P. Tumaand, and R. Reussner. “Automated Modeling of I/O Performance and

Interference Effects in Virtualized Storage System”. In: International Work-

shop on Big Data and Cloud Perf. (DCPerf). 2014.

[156] D. Novakovic, N. Vasic, S. Novakovic, D. Kostic, and R. Bianchini. “DeepDive:

Transparently Identifying and Managing Performance Interference in Virtual-

ized Environments”. In: USENIX Annual Technical Conference (ATC). San

Jose, CA, USA, 2013.

[157] A. Nunez, J. L. Vazquez-Poletti, A. C. Caminero, G. G. Castane, J. Carretero,

and I. M. Llorente. “iCanCloud: A Flexible and Scalable Cloud Infrastructure

Simulator”. In: Journal of Grid Computing 10.1 (2012), pp. 185–209.

[158] Openstack. OpenStack is open source software for creating private and public

clouds. https://www.openstack.org/. [online]. 2018.

[159] OpenSUSE. Tuning the Task Scheduler. https://doc.opensuse.org/

documentation/leap/tuning/html/book.sle.tuning/cha.

tuning.taskscheduler.html. [online]. 2017.

[160] Z. Ou, H. Zhuang, J. K. Nurminen, and A. Yla-Jaaski. “Exploiting Hardware

Heterogeneity within the Same Instance Type of Amazon EC2”. In: USENIX

Workshop on Hop Topics in Cloud Computing (HotCloud). Boston, MA, USA,

2012.

143

[161] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,

and A. Merchant. “Automated Control of Multiple Virtualized Resources”.

In: ACM European conference on Computer systems (Eurosys). Nuremberg,

Germany, 2009.

[162] N. Park, I. Ahmad, and D. J. Lilja. “Romano: Autonomous Storage Manage-

ment using Performance Prediction in Multi-Tenant Datacenters”. In: ACM

Symposium on Cloud Computing (SoCC). San Jose, CA, USA, 2012.

[163] A. Pavlo. Python TPC-C. https://github.com/apavlo/py-tpcc.

[online]. 2018.

[164] Y. Peng, K. Chen, G. Wang, W. Bai, Z. Ma, and L. Gu. “HadoopWatch: A

First Step Towards Comprehensive Traffic Forecasting in Cloud Computing”.

In: IEEE Conference on Computer Communications (INFOCOM). Toronto,

ON, Canada, 2014.

[165] E. Pettijohn, Y. Guo, P. Lama, and X. Zhou. “User-Centric Heterogeneity-

Aware MapReduce Job Provisioning in the Public Cloud”. In: International

Conference on Autonomic Computing (ICAC). 2014.

[166] A. Pucher, E. Gul, R. Wolski, and C. Krintz. “Using Trustworthy Simulation

to Engineer Cloud Schedulers”. In: IEEE International Conference on Cloud

Engineering (IC2E). 2015.

[167] Rackspace. Rackspace: Managed Dedicated and Cloud Computing Services.

http://www.rackspace.com/. [online].

[168] N. Rameshan, L. Navarro, E. Monte, and V. Vlassov. “Stay-Away, protecting

sensitive applications from performance interference”. In: ACM/IFIP/USENIX

International Middleware Conference (Middleware). Bordeaux, France, 2014.

[169] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. “Hetero-

geneity and Dynamicity of Clouds at Scale: Google Trace Analysis”. In: ACM

Symposium on Cloud Computing (SoCC). San Jose, CA, USA, 2013.

[170] Z. Ren, X. Xu, J. Wan, W. Shi, and M. Zhou. “Workload Characterization

on a Production Hadoop Cluster: A Case Study on Taobao”. In: IEEE Inter-

national Symposium on Workload Characterization (IISWC). Portland, OR,

USA, 2013.

[171] RightScale. 2017 State of the Cloud Report. https://www.rightscale.

com/lp/state-of-the-cloud. [online]. 2017.

144

[172] RightScale. RightScale. http://www.rightscale.com. [online].

[173] R. da Rosa Righi, V. F. Rodrigues, C. A. da Costa, G. Galante, L. C. E.

de Bona, and T. Ferreto. “AutoElastic: Automatic resource elasticity for high

performance applications in the cloud”. In: IEEE Transactions on Cloud Com-

puting 4.1 (2016).

[174] N. Roy, A. Dubey, and A. Gokhale. “Efficient Autoscaling in the Cloud using

Predictive Models for Workload Forecasting”. In: IEEE International Confer-

ence on Cloud Computing (CLOUD). Washington DC, USA, 2011.

[175] Salesforce.com. Salesforce.com: The Customer Success Platform To Grow Your

Business. https://www.salesforce.com. [online]. 2018.

[176] P. Saripalli, G. Kiran, R. S. R, H. Narware, and N. Bindal. “Load Prediction

and Hot Spot Detection Models for Autonomic Cloud Computing”. In: IEEE

International Conference on Utility and Cloud Computing (UCC). Melbourne,

Australia, 2011.

[177] SCALR. SCALR – The Hybrid Cloud Management Platform. http://www.

scalr.com. [online].

[178] J. Schad, J. Dittrich, and J.-A. Quiane-Ruiz. “Runtime Measurements in the

Cloud: Observing, Analyzing, and Reducing Variance”. In: the VLDB Endow-

ment 3.1–2 (2010), pp. 460–471.

[179] M. Schwarzkopf, D. G. Murray, and S. Hand. “The Seven Deadly Sins of

Cloud Computing Research”. In: USENIX Workshop on Hop Topics in Cloud

Computing (HotCloud). Boston, MA, USA, 2012.

[180] U. Sharma, P. Shenoy, and S. Sahu. “A Flexible Elastic Control Plane for Pri-

vate Clouds”. In: ACM Cloud and Autonomic Computing Conference (CAC).

Miami, FL, USA, 2013.

[181] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. “CloudScale: Elastic Resource Scal-

ing for Multi-Tenant Cloud Systems”. In: ACM Symposium on Cloud Com-

puting (SoCC). Cascais, Portugal, 2011.

[182] M. Smit, BradleySimmons, and M. Litoiu. “Distributed, application-level mon-

itoring for heterogeneous clouds using stream processing”. In: Future Genera-

tion Computer Systems 29.8 (2013).

145

[183] J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, and R. Buyya.

“CloudSimSDN: Modeling and Simulation of Software-Defined Cloud Data

Centers”. In: IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGrid). Shenzhen, China, 2015.

[184] T. Spangler. Netflix Bandwidth Usage Climbs to Nearly 37% of Internet Traf-

fic at Peak Hours. http://variety.com/2015/digital/news/

netflix- bandwidth- usage- internet- traffic- 1201507187/.

[online]. 2015.

[185] S. Spinner, N. Herbst, S. Kounev, X. Zhu, L. Lu, M. Uysal, and R. Griffith.

“Proactive Memory Scaling of Virtualized Applications”. In: IEEE Interna-

tional Conference on Cloud Computing (CLOUD). New York, NY, USA, 2015.

[186] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. “C3: Cutting Tail Latency

in Cloud Data Stores via Adaptive Replica Selection”. In: USENIX Symp. on

Networked Systems Design and Implement. (NSDI). Oakland, CA, USA, 2015.

[187] SWIMProjectUCB. Workloads repository. https://github.com/SWIMProjectUCB/

SWIM/wiki/Workloads-repository. online. 2018.

[188] L. Tang, J. Mars, W. Wang, T. Dey, and M. L. Soffa. “ReQoS: Reactive

Static/Dynamic Compilation for QoS in Warehouse Scale Computer”. In: Int’l

Conf. on Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS). Houston, TX, USA, 2013.

[189] S. K. Tesfatsion, E. Wadbro, and J. Tordsson. “Autonomic Resource Man-

agement for Optimized Power and Performance in Multi-tenant Clouds”. In:

International Conference on Autonomic Computing (ICAC). Wurzburg, Ger-

many, 2016.

[190] J. M. Tirado, D. Higuero, F. Isaila, and J. Carretero. “Predictive Data Group-

ing and Placement for Cloud-based Elastic Server Infrastructures”. In: IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid).

Newport Beach, CA, USA, 2011.

[191] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-

rni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and D.

Ryaboy. “Storm @ Twitter”. In: ACM SIGMOD International Conference on

Management of Data (SIGMOD) (2014).

146

[192] N. Vasic, D. Novakovic, S. Miucin, D. Kostic, and R. Bianchini. “DejaVu:

Accelerating Resource Allocation in Virtualized Environments”. In: Int’l Conf.

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS). Bordeaux, France, 2012.

[193] Veenhof. Workload Patterns for Cloud Computing. http://watdenkt.

veenhof.nu/2010/07/13/workload- patterns- for- cloud-

computing/. [online].

[194] A. Verma, L. Cherkasova, and R. H. Campbell. “ARIA: Automatic Resource

Inference and Allocation for MapReduce Environments”. In: International

Conference on Autonomic Computing (ICAC). Karlsruhe, Germany, 2011.

[195] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes.

“Large-scale Cluster Management at Google with Borg”. In: ACM European

conference on Computer systems (Eurosys). Bordeaux, France, 2015.

[196] B. J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, and Z. Wang.

“Probabilistic Performance Modeling of Virtualized Resource Allocation”. In:

International Conference on Autonomic Computing (ICAC). 2010.

[197] S. Watts. BMC Blog – SaaS vs PaaS vs IaaS: Whats The Difference and How

To Choose. http://www.bmc.com/blogs/saas-vs-paas-vs-iaas-

whats-the-difference-and-how-to-choose/. [online]. 2018.

[198] B. Wickremasinghe, R. N. Calheiros, and R. Buyya. “CloudAnalyst: A CloudSim-

based Visual Modeller for Analysing Cloud Computing Environments and

Applications”. In: IEEE International Conference on Advanced Information

Networking and Applications (AINA). Perth, Western Australia, 2010.

[199] WikiBench. Wikipedia Access Traces. http://www.wikibench.eu. 2018.

[200] J. Wilkes. More Google cluster data. Google research blog. Posted at http:

/ / googleresearch . blogspot . com / 2011 / 11 / more - google -

cluster-data.html. Nov. 2011.

[201] R. Wolski and J. Brevik. Eucalyptus IaaS Cloud Workload. https://www.

cs.ucsb.edu/˜rich/workload/. online. 2018.

[202] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. “Black-box and Gray-

box Strategies for Virtual Machine Migration”. In: USENIX Symp. on Net-

worked Systems Design and Implement. (NSDI). Cambridge, MA, USA, 2007.

147

[203] T. Wood, L. Cherkasova, K. M. Ozonat, and P. J. Shenoy. “Profiling and Mod-

eling Resource Usage of Virtualized Applications”. In: The 9th ACM/IFIP/USENIX

Middleware Conference (Middleware). Leuven, Belgium, 2008.

[204] Q. Wu. Making Facebook’s software infrastructure more energy efficient with

Autoscale. https://code.facebook.com/posts/816473015039157/

making-facebook-s-software-infrastructure-more-energy-

efficient-with-autoscale/. [online].

[205] S. Wu, B. Li, X. Wang, and H. Jin. “HybridScaler: Handling Bursting Work-

load for Multi-tier Web Applications in Cloud”. In: International Symposium

on Parallel and Distributed Computing (ISPDC). FuZhou, China, 2016.

[206] Z. Xiao, W. Song, and Q. Chen. “Dynamic Resource Allocation Using Vir-

tual Machines for Cloud Computing Environment”. In: IEEE Transactions on

Parallel and Distributed Systems 24.6 (2013).

[207] N. J. Yadwadkar, G. Ananthanarayanan, and R. Katz. “Wrangler: Predictable

and Faster Jobs using Fewer Resources”. In: ACM Symposium on Cloud Com-

puting (SoCC). Seattle, WA, USA, 2014.

[208] H. Yang, A. Breslow, J. Mars, and L. Tang. “Bubble-Flux: Precise Online

QoS Management for Increased Utilization in Warehouse Scale Computers”.

In: Int’l Symp. on Computer Architecture (ISCA). Tel-Aviv, Israel, 2013.

[209] J. Yang, C. Liu, Y. Shang, B. Cheng, Z. Mao, C. Liu, L. Niu, and J. Chen. “A

Cost-aware Auto-scaling Approach Using the Workload Prediction in Service

Clouds”. In: Information Systems Frontiers 16.1 (2014).

[210] J. Yang, C. Liu, Y. Shang, Z. Mao, and J. Chen. “Workload Predicting-Based

Automatic Scaling in Service Clouds”. In: IEEE International Conference on

Cloud Computing (CLOUD). Santa Clara, CA, USA, 2013.

[211] L. Yazdanov and C. Fetzer. “Lightweight Automatic Resource Scaling for

Multi-tier Web Applications”. In: IEEE International Conference on Cloud

Computing (CLOUD). Alaska, USA, 2014.

[212] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. “Spark:

Cluster Computing with Working Sets”. In: USENIX Workshop on HotTopics

in Cloud Computing (HotCloud). 2010.

148

[213] Q. Zhang, M. F. Zhani, S. Zhang, Q. Zhu, R. Boutaba, and J. L. Hellerstein.

“Dynamic Energy-Aware Capacity Provisioning for Cloud Computing Envi-

ronments”. In: International Conference on Autonomic Computing (ICAC).

San Jose, CA, USA, 2012.

[214] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes. “CPI2:

CPU Performance Isolation for Shared Compute Clusters”. In: ACM European

Conference on Computer Systems (Eurosys). Prague, Czech Republic, 2013.

[215] Z. Zhang, L. Cherkasova, and B. T. Loo. “Benchmarking Approach for Design-

ing a MapReduce Performance Model”. In: ACM/SPEC International Confer-

ence on Performance Engineering (ICPE). 2013.

[216] H. Zhu and M. Erez. “Dirigent: Enforcing QoS for Latency-Critical Tasks on

Shared Multicore Systems”. In: Int’l Conf. on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS). Atlanta, GA, USA,

2016.

[217] E. Zohar, I. Cidon, and O. Mokryn. “The Power of Prediction: Cloud Band-

width and Cost Reduction”. In: ACM SIGCOMM Conference on Applica-

tions, Technologies, Architectures, and Protocols for Computer Communica-

tions (SIGCOMM). Toronto, ON, Canada, 2011.

149

