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Abstract 

 

Torsion introduces additional shearing in the structural element’s cross section, 

which may potentially produce failure in structures or damage their serviceability. Thus, 

the torsional deformation mode, characterized by the twisting of a structural element about 

its axis, plays an important role in structural engineering design. In this thesis, a new 

approach to Saint Venant’s torsion problems has been developed for the first time based 

on the finite-volume method. The approach employs the displacement formulation 

expressed in terms of the warping function subject to Neumann-type boundary condition 

to ensure traction-free lateral surface. The finite-difference method was also implemented 

as a reference for comparison and validation of the developed finite-volume method. 

Homogenous isotropic rectangular cross sections employed in structural engineering 

problems were analyzed by the finite-volume and finite-difference methods and validated 

against exact elasticity solutions. The convergence and accuracy of the finite-volume 

method relative to elasticity solutions were also demonstrated for composite cross sections 

made up of two symmetrically joined rectangular regions filled with different materials. 

Three typical homogenous cross sections employed in structural engineering were then 

analyzed in order to assess the accuracy of the membrane analogy widely used in the 

design. The finite-volume method’s strength lies in its superior ability to handle 

heterogeneous material cross sections, by inherently satisfying traction and displacement 

continuity conditions at the interfaces separating different materials, whereas the finite-

difference method requires more refined grids to yield converged results. This strength was 

further demonstrated for composite cross sections with isotropic and orthotropic materials 

in the form of discontinuous and continuous reinforcement of concrete T-beam and box-

beam cross sections. This thesis lays the foundation for the implementation of the finite-

volume method in a large range of applications involving the design of composite structural 

elements with complex heterogeneous microstructures. 

 

Keywords: Saint Venant’s torsion; finite-volume method; finite-difference method.  
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Chapter 1 

1. Introduction 

1.1. Motivation 

Long structural elements such as beams may be loaded by a combination of axial 

and transverse loads. These loads typically produce deformations that may be separated 

into extension, pure bending, flexure and torsion. Under combined loading, the different 

deformation modes are typically analyzed separately when linear elastic analysis is 

applicable, and the individual contributions are summed algebraically. 

In mechanics, moments created by forces that produce twisting of structural 

elements about their longitudinal axes are called torques or twisting moments, as opposed 

to bending moments that produce bending of the structural element about an axis that lies 

in the element’s cross section. If these forces are couples, they produce self-equilibrating 

shear stress distributions in the structural element’s cross section. Torsion is the twisting 

of a structural element with constant cross section, typically called a prismatic bar, when it 

is loaded by a torque that produces rotation of the cross section about the bar’s axis as the 

only deformation mode. When analyzing the torsion of prismatic bars, the quantities of 

interest are the relationship between torque and angle of twist of the cross section, related 

through the torsional rigidity, and the internal stresses. The torsional rigidity is a measure 

of the cross-section’s resistance to torsion that involves material and geometric properties 

discussed in Chapter 2. 

Torsion of prismatic bars plays an important role in structural engineering problems. 

If the resistance to torsion is insufficient, torsion may cause excessive deformation 

resulting in failure of structural elements. For instance, in aircraft wing design, torsional 

rigidity is essential in ensuring limited torsional deformation and hence proper lift function. 

Some structural components such as shafts in power trains with circular cross sections are 

designed specifically for torque transmission. In others whose primary load-bearing 

function does not involve torsion specifically, torsion may not always be avoided and hence 
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the torsional analysis of such members is required for safe design. For instance, torsion of 

beams subjected to transverse loading arises from the action of shear stress distributions 

which create an internal shear force whose resultant does not coincide with the shear center. 

This could happen when the load is applied eccentrically to a beam with T-cross section or 

a box-cross section, or when the cross section does not possess planes of symmetry with 

an easily identifiable shear center, such as a beam with channel-cross section. 

The shear center is especially important for thin-walled structures since resultant 

loading through this center only creates pure bending, which prevents structural failure due 

to the torsion. Katori (2001) computed the shear center of thin-walled open/closed cross 

sections by the finite-element method. Romano and Barretta (2012) investigated the torsion 

and shear stress fields of Saint-Venant beams and evaluated its shear as well as the twist 

center. Barretta (2012) then investigated the relationship between twist and shear centers 

for orthotropic fiber-reinforced beams with homogenized elastic moduli.  

Torsion introduces additional shearing in the structural component’s cross section 

whose impact depends on material make-up. In concrete structures, the effect of shearing 

cannot be neglected since the strength of concrete in tension is considerably lower than its 

strength in compression. Shear is a dramatic, rather than ductile, failure mode in concrete 

beams which causes diagonal cracks that are significantly wider than flexural cracks. Shear 

failure mechanisms are understood but the quantitative theory is not well developed. In 

large concrete structure construction, torsion occurs primarily when the load acts at a 

perpendicular distance from the longitudinal axis of the structural member. The moments 

occasionally cause excessive shearing stresses due to massive cross sections. As a result, 

severe cracking can develop well beyond the allowable serviceability limits unless special 

torsional reinforcement is provided. In actual spandrel beams of a structural system, the 

extent of damage due to torsion is not severe, it is the redistribution of stresses in the 

structure that dominates the serviceability. Necessary torsional reinforcement in structural 

design should be taken seriously to avoid the loss of integrity. In contrast, in thin-walled 

metal structures widely used in the industry, additional shearing produced by torsion 

contributes to wall buckling, impacting stability. 
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1.2. A Historical Perspective and Analysis Approaches 

In addition to technologically important applications involving the analysis and 

design of structural components that may experience twisting, the solution to elastic torsion 

problems occupies an important place in the theory of elasticity. Specifically, it 

demonstrates an important solution technique that reduces a seemingly three-dimensional 

elasticity problem to a two-dimensional one involving just one governing differential 

equation. This solution approach was first introduced by Saint Venant in 1853, and is now 

universally called the semi-inverse method. Saint Venant derived explicit functional forms 

of displacement components in the cross section of a prismatic bar loaded by pure twisting 

moments from geometric considerations and then, based on the argument of the constancy 

of the twisting torque along the bar’s axis, assumed a functional form of the remaining 

(out-of-plane) displacement component. The proposed displacement field satisfied exactly 

two of the three governing equilibrium equations of elasticity. He then used the third 

equilibrium equation to impose a constraint on the out-of-plane displacement component 

that produces warping of cross sections perpendicular to the prismatic bar’s longitudinal 

axis. This constraint took the form of Laplace equation that the out-of-plane displacement 

had to satisfy subject to boundary condition that ensured the bar’s lateral surface is traction 

free. The traction-free boundary condition reduces to the statement that the normal 

derivative of the out-of-plane displacement is equal to a function in the cross section’s in-

plane coordinates that are defined by the bar’s lateral boundary. Problems defined by the 

Laplace equation subject to the above boundary condition are known as Neumann-type 

potential problems and are not readily solvable using standard techniques using the real 

function approach. 

Prandtl subsequently reformulated the torsion problem in 1903 by introducing a 

stress function which satisfied exactly the third equilibrium equation. Taking advantage of 

the Saint Venant’s displacement-based formulation he then showed that the stress function 

must satisfy Poisson’s equation. The advantage of the stress formulation is the 

simplification of the boundary condition to Dirichlet type where the sought function itself 

is taken as an arbitrary constant on the cross section’s lateral boundary. This facilitates the 

analytical solution of torsion problems for cross sections that are circular, elliptical, 
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equilateral triangular and rectangular. For the first three cross sections, simple analytical 

solutions are generated by deducing the Prandtl’s stress function such that it is zero on the 

cross section’s lateral boundary while adjusting a parameter that ensures satisfaction of the 

governing Poisson’s equation. For rectangular cross sections, solution in the form of an 

infinite Fourier series is obtained that converges relatively fast with the number of 

harmonic terms.  

The Prandtl’s stress function reformulation also enables an analogy to be drawn 

between the torsion problem and a deflection of a pressurized flexible membrane over an 

opening of the same shape as the bar’s cross section. The governing differential equation 

for the membrane problem is the same as that for the torsion problem, demonstrating the 

physical significance of the mathematical formulation of the latter and a means of obtaining 

approximate solutions. Prandtl’s reformulation establishes particular relationships between 

the deflected surface of the pressurized membrane and the distributions of torsional stresses 

in a bar subjected to twisting moments known as the membrane analogy as will be 

discussed in Chapter 4. 

Membrane analogy serves as an efficient approximation for torsion of thin-walled 

structures. One classical membrane analogy was presented by Prandtl showing a similarity 

between the geometry of membrane and torsional stress fields. The other one is a second 

membrane analogy involving non-pressurized membrane in terms of conjugate warping 

function developed by Heinrich (1996). Troyani et al. (2007) presented a selectively 

refining procedure based on the membrane analogy in finite-element torsional problems.  

Li and Easterbrook (2014) developed an elasticity-based method for torsion of open/closed 

thin-walled inhomogeneous structures based on membrane analogy and equilibrium and 

compatibility equations. 

Analytical solutions to torsion problems of cross sections other than circular, 

elliptical, equilateral and rectangular may be obtained by re-casting the torsion problem 

using the complex potential approach wherein a complex potential that governs the stress 

field may be obtained by evaluating an integral that involves the mapping transformation 

of the bar’s cross section in one complex plane onto a circle in another complex plane. The 

problem then reduces to finding the required mapping transformation. This approach has 
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limited utility as it is limited to homogeneous prismatic bars. Moreover, mapping 

transformations may not be easily determined for complicated cross sections, including 

those with cut-outs. 

Hence, numerical methods have been employed to solve torsion problems of 

structural members of different cross sections mentioned earlier employed in structural 

engineering applications. These include the finite-difference, boundary-element and finite-

element methods. The finite-difference method is straightforward to use and converges 

relatively fast, but complications arise for cross sections with complicated lateral 

boundaries or cross sections made up of different materials separated by interfaces along 

which traction and displacement components must be continuous. The boundary-element 

and finite-element methods do not suffer from these shortcomings, but displacement-based 

variational approaches require substantial mesh refinement at interfaces separating 

different materials of composite cross sections in order to achieve solution convergence. 

This is particularly true for reinforced concrete cross sections where stress concentrations 

may arise at the interface boundaries between discrete reinforcement rods and the 

surrounding concrete matrix. 

 

1.3. A Concise Literature Review 

Due to the pioneering work of Saint Venant and Prandtl, and others who followed 

the semi-inverse solution strategy, the torsion problem of prismatic homogeneous bars 

made of isotropic materials is very-well established. It is typically discussed in a separate 

chapter in standard elasticity and structural mechanics books, including Timoshenko and 

Goodier (1970), Boresi and Schmidt (1985), Ugural and Fenster (2003) and Sadd (2009). 

The recent contributions to the literature have focused on prismatic bars made of 

anisotropic materials and composite cross sections in light of the rapid development of 

composite materials during the past 30 years. Mushkhelishvilli (1963) was the first to 

develop an exact elasticity solution for torsion of a prismatic bar with a rectangular cross 

section composed of two bonded isotropic rectangular parts with different shear moduli. 

The solution is an extension of the elasticity solution to the problem of a rectangular 

homogeneous cross section given in terms of an infinite Fourier series representation of 
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the Prandtl’s stress function. Savoia and Tullini (1993), followed by Swanson (1998), 

subsequently extended this solution to rectangular orthotropic multi-layer beams composed 

of rectangular sub-layers. Most recently, Teimoori et al. (2016) investigated the torsion of 

a rectangular cross section coated on top and bottom by thin isotropic using finite Fourier 

cosine transform. 

The analytical approach has also been applied to torsion of circular and elliptical 

cross sections with anisotropic properties and cylindrical reinforcement or voids. For 

instance, Chen et al. (2002) derived an exact elasticity solution to the problem of a 

composite cylinder reinforced by a continuous inclusion or fiber, following the CCA model 

proposed by Hashin and Rosen (1964). Subsequently, Chen (2005) developed a theoretical 

framework for torsion of anisotropic composite bars and identified anisotropic elliptical 

bars that did not warp. Tsai and Chen (2012) subsequently generalized the solution to the 

CCA model containing a single fiber to accommodate a number of coated fibers. Karimi 

et al. (2017) developed an analytical solution in the finite Fourier sine transform for hollow 

cylinders with cracks in an orthotropic coating with the aid of a distribution dislocation 

technique. 

In order to obtain solutions to torsion of cross sections with complicated shapes for 

which analytical solutions may not be easy to generate, finite-difference, boundary-element 

and finite-element methods had been employed. The finite-difference method had already 

been employed by Ely and Zienkiewicz (1960) to solve the Poisson’s equation for arbitrary 

and multiply-connected cross sections with isotropic materials characterized by spatially 

variable or piece-wise uniform shear moduli. Continuity conditions were developed for 

sharp interfaces separating regions with different moduli, but the actual finite-difference 

implementation was not given. This is perhaps the first paper that discusses materials with 

spatially variable moduli, a topic of interest some twenty-five years later when functionally 

graded materials were first introduced and subsequently intensively investigated. 

Nonetheless, the finite-difference method is not typically employed to solve torsion 

problems involving composite or heterogeneous cross sections as suggested by the small 

number of publications based on this approach. 
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The boundary-element method appears to be employed with greater frequency than 

the finite-difference method in the solution of the torsion problem. Sapountzakis (2001) 

developed a boundary-element method for the nonuniform torsion of composite bars and 

applied it to the solution of two-boundary value problems. Sapountzakis and Mokos (2003) 

further extended the boundary-element approach to composite bar consisting of inclusions 

embedded in a homogeneous matrix. Tsiatas and Katsikadelis (2011) employed a 

microstructure-dependent couple stress model to solve a torsion problem using the direct 

boundary-element method. 

The finite-element method is by far the most widely employed technique in the 

solution of torsion problems, and new approaches based on this method continue to be 

proposed. Xiao et al. (1999) developed a hybrid-stress finite element method based on 

Hellinger-Reissner principle to deal with torsion problems. Li et al. (2000) applied the 

finite-element approach based on Galerkin’s method with additional continuity conditions 

to study torsional rigidity of composite bars with arbitrary shape using the warping function 

formulation, whereas Saygun et al. (2007) employed Prandtl’s stress function in their 

finite-element formulation of the torsion problem. Jog and Mokashi (2014) presented a 

finite element formulation capable of dealing with multiply-connected compound 

anisotropic bars. A finite-element method based on linear and quadratic triangular elements 

was developed by Purnomo et al. (2018), which was capable of accommodating either 

homogenous or non-homogenous, anisotropic materials and arbitrary shape cross sections, 

in contrast with the stress function approach applicable to open cross sections composed 

of isotropic materials. Most recently, Beheshti (2018) proposed a finite-element approach 

based on strain-gradient elasticity to analyze torsion problems involving prismatic bars of 

very small dimensions. 

Functionally graded materials became popular in recent years because their 

spatially variable microstructures enable to tailor and optimize structural performance to 

given applications, including torsion problems. Horgan (2007) proved that some 

anisotropic graded elliptical cross sections do not warp under pure torsion. Xu et al. (2010) 

derived an exact solution to torsion of an orthotropic, inhomogeneous or graded rectangular 

cross section where the shear modulus obeys an exponential law. Darilmaz et al. (2018) 
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adopted a Hellinger-Reissner based hybrid finite-element method to obtain torsional 

rigidity and shear stresses of composite or graded cross sections. 

 

1.4. The Finite-Volume Method in Structural Analysis 

An attractive alternative to the solution of the Saint Venant’s torsion problem is 

offered by the finite-volume method which has gained popularity in the past thirty years. 

The finite-volume method is a well-established numerical technique for the solution of 

boundary-value problems in fluid mechanics, cf. Leveque (2002), Versteeg and 

Malalasekera (2007). Satisfaction of the governing (transport or equilibrium) field 

equations within subvolumes of the investigated discretized domain in an integral sense is 

a key feature of the finite-volume method which distinguishes it from variational 

techniques such as the finite-element method. In the context of fluid mechanics 

applications, this is done upon first expressing the field equations in a finite-difference 

form, and then extrapolating the grid point field variables to the subvolume surfaces 

surrounding each point to enable the required surface integration, thereby ensuring local 

field equation satisfaction in the integral sense. 

The simplicity and demonstrated stability of the finite-volume method in fluid 

mechanics applications have motivated the transition of this technique to solid mechanics 

problems during the past 30 years as an alternative to the finite-element approach. For static 

elasticity-type problems, this reduces to the satisfaction of the equilibrium equations in the 

integral sense within subvolumes of the discretized analysis domain, 

∫ (
𝜕𝜎𝑗𝑖

𝜕𝑥𝑗
+ 𝐹𝑖)𝑑𝑉𝑞 = ∫ 𝜎𝑗𝑖𝑛𝑗𝑑𝑆𝑞

𝑆𝑞

+ ∫ 𝐹𝑖𝑑𝑉𝑞
𝑉𝑞

= 0
𝑉𝑞

 

where 𝑛𝑗  are components of the unit normal to the bounding surface 𝑆𝑞 of the subvolume 

𝑉𝑞, and Gauss's Theorem was employed to convert the volume integral of stress divergence 

to the surface integral of traction components. Three versions of this technique can be 

identified in the analysis of solid mechanics problems, as discussed by Cavalcante et al. 

(2012). These versions are characterized by different subvolume discretizations of the 

investigated domain and different displacement field representations within subvolumes, 
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which lead to a different manner of approximating field variables along subvolume 

surfaces. 

The first two approaches, known as the cell-centered and cell vertex finite-volume 

techniques originally developed for homogeneous materials and structures, were motivated 

by the established finite-volume technique for fluid mechanics problems and elements of 

the finite-element method. The cell-centered finite-volume method is similar to the original 

fluid mechanics version and employs subvolumes which are centered around grid points at 

which field variables are defined. Initially, structured meshes based on rectangular or 

cylindrical subvolumes had been used for domain discretization, which was subsequently 

generalized to unstructured meshes with arbitrary subvolume topology based on polyhedral 

shapes. The cell vertex or vertex-based, the finite-volume approach leverages elements of 

the finite-element method in domain discretization and displacement field approximation. 

The domain is first discretized into finite elements, and the common vertices of adjacent 

elements provide grid points at which field variables are defined using shape functions 

borrowed from the finite-element approach. Subvolumes centered around grid points are 

then constructed taking contributions from elements with common vertices and using 

element and face centers as subvolume corners. Thus the subvolume geometry and 

displacement field approximation are directly linked to element discretization and 

employed shape functions. Satisfaction of the local equilibrium equations is carried out 

over all subvolumes containing every common vertex shared by adjacent elements forming 

grid points. Arbitrarily shaped polygonal control volumes may thus be constructed based 

on the chosen element type used to mesh the analysis domain. 

The third version of the finite-volume method evolved independently and nearly in 

parallel to model materials with heterogeneous microstructures, including periodic and 

functionally graded materials, cf. Suquet (1985), Charalambakis and Murat (2006), 

Buryachenko (2007), Birman and Byrd (2007), Chatzigeorgiou et al. (2008), and Paulino 

et al. (2008). The structural finite-volume theory has its origins in the so-called Higher-

Order Theory for Functionally Graded Materials (HOTFGM), developed in a sequence of 

papers in the 1990s and summarized in Aboudi et al. (1999). This theory provided the main 
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framework for the construction of its homogenized counterpart initially named the Higher-

Order Theory for Periodic Multiphase Materials by Aboudi et al. (2001). 

The structural and homogenized versions of these so-called higher-order theories 

were subsequently reconstructed in a sequence of papers by Bansal and Pindera (2003, 

2005, 2006) and Zhong et al. (2004) by simplifying the discretization of analysis domain 

which, in turn, facilitated implementation of the efficient local/global stiffness matrix 

approach, Bufler (1971), Pindera (1991). The re-constructed theories were further extended 

by Cavalcante et al. (2006, 2007a,b), Gattu et al. (2008) and Khatam and Pindera (2009a,b) 

by incorporating parametric mapping to enable efficient modeling of complex 

microstructures using quadrilateral subvolumes. These significant re-constructions 

revealed the above higher-order approaches to be in fact finite-volume methods, which in 

turn motivated corresponding name changes in order to correctly reflect the fundamental 

character of these re-constructed theories. 

The re-constructed finite-volume theories are similar to the cell-centered 

techniques that evolved in parallel for homogeneous materials and structures during the 

same time frame. However, in contrast with the early cell-centered techniques, the re-

constructed theories employ explicit displacement field approximation within individual 

subvolumes, and follow an elasticity-based approach in satisfying interfacial displacement 

and traction continuity conditions in a surface-averaged sense. This is consistent with the 

satisfaction of equilibrium equations in a surface-averaged sense and leads to an explicit 

construction of local stiffness matrices for individual subvolumes which, in turn, 

substantially reduces the number of unknown variables, and allows direct comparison with 

the finite-element method. Assembly of local stiffness matrices into the global stiffness 

matrix is then performed such that continuity of surface-averaged tractions and 

displacements is satisfied. The satisfaction of both traction and displacement continuity 

across subvolume faces produces a robust solution technique that naturally accommodates 

heterogeneous material microstructures. 

A review of the finite-volume method in solid mechanics applications has been 

recently provided by Cardiff and Demirdzic (2019). While the method has been used 

extensively in the solution of plane problems in structural mechanics, including contact 
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and crack problems, there appear to be no papers that address the use of the finite-volume 

method in the solution of Saint Venant’s torsion problems. The present thesis fills this void 

and provides a powerful alternative to the wide-spread use of variational techniques for 

this class of problems. 

 

1.5. Objectives 

The main objective of this thesis is to demonstrate the utility of the finite-volume 

approach in the solution of Saint Venant’s torsion problems of prismatic bars of arbitrary 

cross section and composition. Hence the finite-volume theory developed by Pindera and 

co-workers is extended to the solution of torsion problems of structural components of 

different shapes, and employed to demonstrate its utility in structural engineering 

applications. The extension is carried out to accommodate prismatic bars with both 

homogeneous and composite cross sections. Arbitrary cross sections bounded by surfaces 

that are parallel to the Cartesian coordinate axes are most easily accommodated by the 

extension since the version of the finite-volume method based on rectangular subvolume 

discretization of the analyzed domain, first developed by Bansal and Pindera (2003), is 

employed. Hence cross sections of structural components such as T-beams, box-beams or 

channel-beams that are either homogeneous or composite may be analyzed, including 

beams reinforced by continuous inserts. 

The displacement-based formulation is employed in constructing the solution 

methodology by adopting the elasticity-based results in approximating the functional form 

of the displacement field in individual subvolumes. A finite-difference solution approach 

is also developed for validating the extended theory in the analysis of homogeneous cross 

sections for which analytical solutions are not available. The finite-difference solution 

approach involves both displacement-based and stress-based formulations. 

 

1.6. Thesis Outline 

The thesis is organized as follows. The extension of the finite-volume technique to 

the solution of Saint Venant’s torsion problems is described in Chapter 2. The theory is 
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validated in Chapter 3 using known elasticity solutions for homogeneous and composite 

rectangular cross sections, and compared with the accuracy and performance of the finite-

difference solution for homogeneous cross sections. Chapter 4 presents results for typical 

homogeneous cross sections employed in structural engineering applications, including T-

beams, box-beams and channel-beams, and examines the accuracy of the membrane 

analogy in analyzing these cross sections. Composite cross sections are analyzed in Chapter 

5, including cross sections reinforced with thin wraps and graded cross sections. The main 

contributions and conclusions of this investigation are summarized in Chapter 6. 
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Chapter 2 

2. Saint Venant’s Torsion Problem 

2.1. Introduction 

A new finite-volume based approach to the solution of Saint Venant's torsion 

problems of homogeneous and composite prismatic bars subjected to pure torsion is 

developed in this chapter. The approach leverages the elasticity formulation of the torsion 

problem based on the Saint Venant’s semi-inverse method which provides the correct 

displacement field approximation within the rectangular subvolumes of the beam's 

discretized cross section. The remaining governing differential equation for the warping 

function is then locally satisfied in each subvolume in a surface-average sense, enabling 

the construction of the local stiffness matrix that relates surface-averaged displacements to 

surface-averaged tractions on the subvolume’s boundaries. Orthotropic subvolumes are 

admitted in the formulation to enable analysis of prismatic bars reinforced with composite 

materials or bars made up of composite cross sections. Continuity of both displacements 

and tractions across subvolumes' interfaces is satisfied in a surface-average sense, together 

with the traction-free lateral boundary conditions, upon the construction of the global 

stiffness matrix whose solution determines the local stress fields, torque-twist angle 

relationship and hence the cross section’s torsional rigidity. 

The remainder of this chapter is structured as follows. Section 2.2 provides an 

overview of Saint Venant's torsion problem based on the semi-inverse method. The torsion 

problem is first formulated in terms of displacements and the warping function in order to 

provide a foundation for parallel formulation and solution strategy based on the finite-

volume method. Then the torsion problem is reformulated in terms of the Prandtl’s stress 

function in Section 2.3. The stress formulation facilitates the development of closed-form 

solutions to several important cross sections of homogeneous and to lesser extent 

composite bars. One such solution is employed in Chapter 3 in validating the displacement-

based finite-volume solution methodology developed subsequently in Section 2.4. For 
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comparison with the finite-volume solution to the torsion problem, finite-difference 

solutions are also developed in Section 2.5. Both displacement-based and stress function 

approaches are developed for comparison with finite-volume solutions of homogeneous 

and composite cross sections. Summary and discussion of the developed solution strategies 

are provided in Section 2.6. 

 

2.2. Displacement Formulation and Warping Function 

Analysis of the deformation of a prismatic bar subjected to pure twisting moments 

along the 𝑧 axis in the 𝑥 − 𝑦 plane situated at an arbitrary elevation 𝑧 from the face relative 

to which the relative rotation angle of the cross section is measured, Fig. (2.1), produces 

the displacement components 𝑢 and 𝑣 in the form 

 𝑢(𝑦, 𝑧) = −𝜃𝑦𝑧, 𝑣(𝑥, 𝑧) = 𝜃𝑥𝑧 (2.1) 

where 𝜃 is the angle of twist of the cross section per unit length along the bar’s axis. 

               

Figure 2.1. Saint Venant’s torsion problem showing the deformation of planes passing through the 

prismatic bar’s centroidal axis due to twisting moment applied to the end faces (left), and the displacement 

of a material point in the plane orthogonal to the bar’s axis (right). 
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Eq. (2.1) is based on the assumption of infinitesimal in-plane deformations employed in 

the kinematic analysis and the fact that the torsional center of the cross sections at any 

elevation does not displace in 𝑥 or 𝑦 direction. Each cross section rotates as a rigid body 

about the same axis, since the in-plane projection of the cross section in the deformed 

configuration has the exact same shape as that of the undeformed cross section implied by 

the above two equations. The remaining out-of-plane displacement component 𝑤, which 

characterizes the cross-section’s warping, is then assumed to depend only on the in-plane 

coordinates (𝑥, 𝑦) because the twisting moment does not vary along the bar’s axis. It is 

expressed in terms of the warping function 𝜓 as follows 

 𝑤 = 𝜃𝜓(𝑥, 𝑦) (2.2) 

where 𝜃 has been included for consistency with the in-plane displacement field. 

The above displacement field produces vanishing normal and transverse shear 

strains, namely 𝜀𝑥𝑥 = 𝜀𝑦𝑦 = 𝜀𝑧𝑧 = 0 and 𝛾𝑥𝑦 = 0. The surviving strains are those shear 

strains that occur in the planes which contain the 𝑧 axis, namely 𝑥 − 𝑧 and 𝑦 − 𝑧 planes. 

 𝛾𝑦𝑧 =
𝜕𝑤

𝜕𝑦
+ 𝑥𝜃, 𝛾𝑥𝑧 =

𝜕𝑤

𝜕𝑥
− 𝑦𝜃 (2.3) 

Consequently, assuming isotropic cross section the normal and transverse shear stresses 

vanish, 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎𝑧𝑧 = 0 and 𝜎𝑥𝑦 = 0, and the only stresses that survive are the shear 

stresses in the above two planes. Using Hooke’s law, the corresponding non-vanishing 

shear stress components are then, 

 𝜎𝑦𝑧 = 𝐺𝜃 (
𝜕𝜓

𝜕𝑦
+ 𝑥) , 𝜎𝑥𝑧 = 𝐺𝜃 (

𝜕𝜓

𝜕𝑥
− 𝑦) (2.4) 

This stress field satisfies exactly the first two equilibrium equations 

 

𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜎𝑥𝑦

𝜕𝑦
+

𝜕𝜎𝑥𝑧

𝜕𝑧
= 0 

𝜕𝜎𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦𝑦

𝜕𝑦
+

𝜕𝜎𝑦𝑧

𝜕𝑧
= 0 

(2.5) 
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𝜕𝜎𝑥𝑧

𝜕𝑥
+

𝜕𝜎𝑦𝑧

𝜕𝑦
+

𝜕𝜎𝑧𝑧

𝜕𝑧
= 0 

with the third equation reducing to 

 
𝜕𝜎𝑥𝑧

𝜕𝑥
+

𝜕𝜎𝑦𝑧

𝜕𝑦
= 0 (2.6) 

which, based on the stresses in Eq. (2.4), produces the condition on 𝜓(𝑥, 𝑦) 

 
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
= 0 (2.7) 

This equation is solved subject to the traction-free boundary condition on the prismatic 

bar’s lateral surface 

 𝑡𝑧 = 𝜎𝑥𝑧𝑐𝑜𝑠(𝑛, 𝑥) + 𝜎𝑦𝑧𝑐𝑜𝑠(𝑛, 𝑦) = 0 (2.8) 

where 𝑛 is the normal axis to the cross-section’s boundary, and 𝑥,𝑦 are local Cartesian 

coordinates parallel to the fixed coordinate system centered at the centroid of the cross 

section. The components of the unit normal to the lateral boundary can be expressed in 

terms of the normal derivatives of the local boundary Cartesian coordinates, 

 

𝑛𝑥 = cos(𝑛, 𝑥) =
𝑑𝑥

𝑑𝑛
 

𝑛𝑦 = cos(𝑛, 𝑦) =
𝑑𝑦

𝑑𝑛
 

           

Using the above relations in Eq. (2.8) the traction-free boundary condition is then expressed 

in terms of the normal derivative of 𝜓(𝑥, 𝑦) on the lateral boundary, 

 
𝑑𝜓

𝑑𝑛
= 𝑦

𝑑𝑥

𝑑𝑛
− 𝑥

𝑑𝑦

𝑑𝑛
 (2.9) 

Once the solution for 𝜓(𝑥, 𝑦) is obtained for a given cross section, the angle of twist per 

unit length 𝜃 may be related to the resulting torque produced by the shear stresses 𝜎𝑥𝑧 and 

𝜎𝑦𝑧, 
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 𝑇 = ∬(𝜎𝑦𝑧𝑥 − 𝜎𝑥𝑧𝑦)𝑑𝐴 (2.10) 

 

2.3. Stress Formulation and Prandtl’s Stress Function 

The torsion problem may be reformulated in terms of stresses by noting that the 

surviving third equilibrium equation, see Eq. (2.6), is exactly satisfied by the potential 

function 𝜙(𝑥, 𝑦) called Prandtl’s stress function defined by, 

 𝜎𝑥𝑧 =
𝜕𝜙

𝜕𝑦
, 𝜎𝑦𝑧 = −

𝜕𝜙

𝜕𝑥
 (2.11) 

Using these definitions in the expressions for the two stress components expressed in terms 

of 𝜓(𝑥, 𝑦), Eq. (2.4), differentiating appropriately and adding the two equations we obtain 

the governing differential equation for 𝜙(𝑥, 𝑦) 

 
𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
= −2𝐺𝜃 (2.12) 

with the corresponding boundary condition on 𝜙 

 𝜙(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 on 𝑥, 𝑦 ∈ 𝑆 (2.13) 

The boundary condition is thus simplified at the expense of a slight complication in the 

governing differential equation. However, because the shear stress resultant is tangent to 

the family of lines 𝜙(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, the traction-free boundary condition may be used 

to construct closed-form potential functions 𝜙(𝑥, 𝑦) using simple polynomials for circular, 

elliptical and equilateral triangle cross sections through appropriate choice of the constant 

that defines the boundary. For solid rectangular cross sections, 𝜙(𝑥, 𝑦) is constructed using 

an infinite Fourier series representation.  

The construction of  𝜙(𝑥, 𝑦) leads to the torque-angle of twist relationship directly 

in terms of the potential function itself, 

 𝑇 = 2∬ 𝜙(𝑥, 𝑦)𝑑𝐴 (2.14) 
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2.4. Finite Volume Formulation and Solution 

The displacement-based formulation is employed to construct the finite-volume 

method (FVM) for the torsion problem of cross sections of arbitrary shape and 

composition. Towards this end, the same global coordinate system (𝑥, 𝑦, 𝑧) is used as that 

employed in the elasticity solution, which is centered at the cross section’s centroid with 

the coordinate 𝑧 along the prismatic bar’s axis, and the coordinates 𝑥 and 𝑦 in the bar’s 

cross section. It is necessary to use the same global coordinate system in order to correctly 

capture the stress field that arises from the application of the pure twisting moment. This 

contrasts with the previous constructions of the finite-volume theory employed in the 

analyses of functionally graded and periodic materials. The cross section is then discretized 

into (𝛼, 𝛽)  subvolumes, Fig. (2.2), with 𝛼 = 1,…𝑁𝛼 , 𝛽 = 1,…𝑁𝛽  along the 𝑥  and 𝑦 

directions, such that the local subvolume dimensions (ℎ𝛼, 𝑙𝛽) sum up to the overall cross 

section’s dimensions 𝐻 and 𝐿, where 

 𝐻 = ∑ ℎ𝛼

𝑁𝛼

𝛼=1
, 𝐿 = ∑ 𝑙𝛽

𝑁𝛽

𝛽=1
 (2.15) 

   

 

Figure 2.2.  A view of 6×6 subvolumes with indices for four corner subvolumes. 

 

In order to approximate the displacement field in each subvolume, local coordinate 

systems (𝑥̅(𝛼), 𝑦̅(𝛽)) are set up at the subvolumes’ centers in the bar’s cross section, where 
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the coordinates (𝑥̅(𝛼), 𝑦̅(𝛽)) of an arbitrary point within the subvolume (𝛼, 𝛽) relative to 

the global coordinate system are given by 𝑥(𝛼) = 𝑥𝑜
(𝛼)

+ 𝑥̅(𝛼) and 𝑦(𝛽) = 𝑦𝑜
(𝛽)

+ 𝑦̅(𝛽), and 

the subvolume centers are  

 𝑥𝑜
(𝛼)

= (𝛼 −
1

2
−

𝑁𝛼

2
) ℎ𝛼 , 𝑦𝑜

(𝛽)
= (𝛽 −

1

2
−

𝑁𝛽

2
)𝑙𝛽 (2.16) 

The exact expressions for the displacement components in the bar’s cross section along the 

𝑥  and 𝑦 directions given by (2.1) are then expressed in the (𝛼, 𝛽) subvolume in terms of 

the local coordinates, 

 𝑢(𝛼,𝛽) = −𝜃(𝑦𝑜
(𝛽)

+ 𝑦̅(𝛽))𝑧, 𝑣(𝛼,𝛽) = 𝜃(𝑥𝑜
(𝛼)

+ 𝑥̅(𝛼))𝑧 (2.17) 

whereas the out-of-plane component is approximated in each subvolume using a second-

order expansion in the local coordinates by 

 

𝑤(𝛼,𝛽) = 𝑊(00)
(𝛼,𝛽)

+ 𝑥̅(𝛼)𝑊(10)
(𝛼,𝛽)

+ 𝑦̅(𝛽)𝑊(01)
(𝛼,𝛽)

+
1

2
(3(𝑥̅(𝛼))

2
−

ℎ𝛼
2

4
)𝑊(20)

(𝛼,𝛽)
+

1

2
(3(𝑦̅(𝛽))

2
−

𝑙𝛽
2

4
)𝑊(02)

(𝛼,𝛽)
 

(2.18) 

Using the strain-displacement relations, the above displacement field representation 

produces two non-zero out-of-plane shear strains expressed in terms of the unknown 

coefficients 𝑊(𝑚𝑛)
(𝛼,𝛽)

 and the applied loading 𝜃 

 

𝜖𝑥𝑧
(𝛼,𝛽)

=
1

2
(
𝜕𝑤(𝛼,𝛽)

𝜕𝑥̅(𝛼)
+

𝜕𝑢(𝛼,𝛽)

𝜕𝑧
)

=
1

2
[𝑊(10)

(𝛼,𝛽)
+ 3𝑥̅(𝛼)𝑊(20)

(𝛼,𝛽)
− 𝜃 (𝑦𝑜

(𝛽)
+ 𝑦̅(𝛽))] 

𝜖𝑦𝑧
(𝛼,𝛽)

=
1

2
(
𝜕𝑤(𝛼,𝛽)

𝜕𝑦̅(𝛽)
+

𝜕𝑣(𝛼,𝛽)

𝜕𝑧
)

=
1

2
[𝑊(01)

(𝛼,𝛽)
+ 3𝑦̅(𝛽)𝑊(02)

(𝛼,𝛽)
+ 𝜃(𝑥𝑜

(𝛼)
+ 𝑥̅(𝛼))] 

(2.19) 

For wide-ranging applicability, cross sections comprised of linear elastic 

orthotropic materials are admitted in the formulation. For this class of materials, the 

relationship between stresses and strains in each subvolume is given by the generalized 

based on Hooke’s Law referred to the  principal material coordinate system, 
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[
 
 
 
 
 
𝜎𝑧𝑧

𝜎𝑥𝑥
𝜎𝑦𝑦

𝜎𝑥𝑦

𝜎𝑦𝑧

𝜎𝑥𝑧 ]
 
 
 
 
 
(𝛼,𝛽)

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13

𝐶12 𝐶22 𝐶23

𝐶13 𝐶23 𝐶33

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐶44 0 0
0 𝐶55 0
0 0 𝐶66]

 
 
 
 
 
(𝛼,𝛽)

[
 
 
 
 
 
𝜖𝑧𝑧

𝜖𝑥𝑥
𝜖𝑦𝑦

2𝜖𝑥𝑦

2𝜖𝑦𝑧

2𝜖𝑥𝑧]
 
 
 
 
 
(𝛼,𝛽)

 (2.20) 

Thus in the case of torsional loading, the material response of each subvolume is 

characterized by the shear moduli 𝐶55
(𝛼,𝛽)

 and 𝐶66
(𝛼,𝛽)

 in the 𝑦 − 𝑧  and 𝑥 − 𝑧  plane, 

respectively, that may vary from subvolume to subvolume. Hence the two non-zero shear 

stress components in these planes in each subvolume are expressed in terms of the 

unknown coefficients 𝑊(𝑚𝑛)
(𝛼,𝛽)

 as follows, 

 

𝜎𝑥𝑧
(𝛼,𝛽)

= 𝐶66
(𝛼,𝛽)

[𝑊(01)
(𝛼,𝛽)

+ 3𝑦̅(𝛽)𝑊(02)
(𝛼,𝛽)

+ 𝜃(𝑥𝑜
(𝛼)

+ 𝑥̅(𝛼))] 

𝜎𝑦𝑧
(𝛼,𝛽)

= 𝐶55
(𝛼,𝛽)

[𝑊(10)
(𝛼,𝛽)

+ 3𝑥̅(𝛼)𝑊(20)
(𝛼,𝛽)

− 𝜃 (𝑦𝑜
(𝛽)

+ 𝑦̅(𝛽))] 

(2.21) 

2.4.1. Local Stiffness Matrix 

The unknown coefficients 𝑊(𝑚𝑛)
(𝛼,𝛽)

 in the out-of-plane displacement representation 

in Eq. (2.18) may be determined by satisfying displacement and traction continuity 

conditions between adjacent subvolumes, the external traction-free boundary conditions on 

the lateral surface of the bar's cross section, and the remaining equilibrium equation that 

ensures the equilibrium of each subvolume. These equations are satisfied in a surface-

average and/or volume-average sense. Hence given 𝑁𝛼 × 𝑁𝛽 subvolumes, each containing 

5 unknown coefficients in the out-of-plane displacement representation, 5𝑁𝛼 × 𝑁𝛽 

equations are needed. Along each row, there are two traction and displacement continuity 

conditions that are imposed on common vertical interfaces separating adjacent subvolumes 

for a total of 𝑁𝛽 × 2 × (𝑁𝛼 − 1) equations. Similarly, proceedings along each column we 

have 𝑁𝛼 × 2 × (𝑁𝛽 − 1)  equations. Finally, there are  (2 × 𝑁𝛼 + 2 × 𝑁𝛽) boundary 

subvolumes with as many external surfaces. Finally, one equilibrium equation needs to be 

satisfied in each subvolume for the total of 𝑁𝛼 × 𝑁𝛽 additional equations. Summing up 

these equations, we obtain the required number of 5𝑁𝛼 × 𝑁𝛽 equations. 
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The number of unknowns, and hence equations, may be reduced by almost 50% for 

cross sections discretized into a large number of subvolumes by reformulating the problem 

in terms of surface-averaged displacements on the four faces of each subvolume. This 

reformulation is convenient because of the surface-averaging approach employed in 

satisfying both the interfacial continuity conditions and the equilibrium of the (α,β) 

subvolume. Towards this end, we construct a local stiffness matrix for each subvolume by 

relating the surface-averaged tractions to the corresponding surface-averaged 

displacements. We start by defining the surface-averaged displacements as follows, 

 𝑤̂±1(𝛼,𝛽)
=

1

𝑙𝛽
∫ 𝑤±1(𝛼,𝛽)

𝑙𝛽
2

−
𝑙𝛽
2

(±
ℎ𝛼

2
, 𝑦̅(𝛽))𝑑𝑦̅(𝛽) (2.22) 

 𝑤̂±2(𝛼,𝛽)
=

1

ℎ𝛼
∫ 𝑤±2(𝛼,𝛽)

ℎ𝛼
2

−
ℎ𝛼
2

(𝑥̅(𝛼), ±
𝑙𝛽

2
)𝑑𝑥̅(𝛼) (2.23) 

Using Eq. (2.18), the surface-averaged interfacial displacements are obtained in terms of 

the unknown variables 𝑊(𝑚𝑛)
(𝛼,𝛽)

 

 𝑤̂±1(𝛼,𝛽)
= 𝑊(00)

(𝛼,𝛽)
±

ℎ𝛼

2
𝑊(10)

(𝛼,𝛽)
+

ℎ𝛼
2

4
𝑊(20)

(𝛼,𝛽)
 (2.24) 

 𝑤̂±2(𝛼,𝛽)
= 𝑊(00)

(𝛼,𝛽)
±

𝑙𝛽

2
𝑊(01)

(𝛼,𝛽)
+

𝑙𝛽
2

4
𝑊(02)

(𝛼,𝛽)
 (2.25) 

Hence, the first and second-order coefficients 𝑊(𝑚𝑛)
(𝛼,𝛽)

 can be expressed in terms of the 

surface-averaged displacements and the zero-order coefficient. 

 

𝑊(10)
(𝛼,𝛽)

=
1

ℎ𝛼
(𝛼,𝛽)

(𝑤̂+1(𝛼,𝛽)
− 𝑤̂−1(𝛼,𝛽)

) 

𝑊(01)
(𝛼,𝛽)

=
1

𝑙
𝛽

(𝛼,𝛽)
(𝑤̂+2(𝛼,𝛽)

− 𝑤̂−2(𝛼,𝛽)
) 

(2.26) 



22 
 

 
 

𝑊(20)
(𝛼,𝛽)

=
2

(ℎ𝛼
(𝛼,𝛽)

)
2 (𝑤̂+1(𝛼,𝛽)

+ 𝑤̂−1(𝛼,𝛽)
) −

4𝑊(00)
(𝛼,𝛽)

(ℎ𝛼
(𝛼,𝛽)

)
2 

𝑊(02)
(𝛼,𝛽)

=
2

(𝑙
𝛽

(𝛼,𝛽)
)
2 (𝑤̂+2(𝛼,𝛽)

+ 𝑤̂−2(𝛼,𝛽)
) −

4𝑊(00)
(𝛼,𝛽)

(𝑙
𝛽

(𝛼,𝛽)
)
2 

Similarly, surface-averaged interfacial tractions are defined as follows, 

 𝑡̂𝑧
±1(𝛼,𝛽)

=
1

𝑙𝛽
∫ 𝑡𝑧

±1(𝛼,𝛽)

𝑙𝛽
2

−
𝑙𝛽
2

(±
ℎ𝛼

2
, 𝑦̅(𝛽))𝑑𝑦̅(𝛽) (2.27) 

 𝑡̂𝑧
±2(𝛼,𝛽)

=
1

ℎ𝛼
∫ 𝑡𝑧

±2(𝛼,𝛽)

ℎ𝛼
2

−
ℎ𝛼
2

(𝑥̅(𝛼), ±
𝑙𝛽

2
)𝑑𝑥̅(𝛼) (2.28) 

where the traction vector associated with a surface characterized by the unit normal 

vector 𝒏 is 𝑡𝑖
𝑛(𝛼,𝛽)

= 𝜎𝑗𝑖
(𝛼,𝛽)

𝑛𝑗
(𝛼,𝛽)

. The superscripts ±1 and ±2 in the above definitions 

are associated with the positive and negative faces with the unit normal vector along the 

𝑥̅(𝛼) and 𝑦̅(𝛽) axes, respectively. Hence the traction vector on any of the four subvolume 

faces becomes, in terms of the two out-of-plane stress shear components, 

 𝑡𝑧
𝑛(𝛼,𝛽)

= 𝜎𝑧𝑧
(𝛼,𝛽)

𝑛𝑧
(𝛼,𝛽)

+ 𝜎𝑥𝑧
(𝛼,𝛽)

𝑛𝑥
(𝛼,𝛽)

+ 𝜎𝑦𝑧
(𝛼,𝛽)

𝑛𝑦
(𝛼,𝛽)

 (2.29) 

which may be expressed in terms of the corresponding shear strains 

 𝑡𝑧
𝑛(𝛼,𝛽)

= 2𝐶66
(𝛼,𝛽)

𝜖𝑥𝑧
(𝛼,𝛽)

𝑛𝑥
(𝛼,𝛽)

+ 2𝐶55
(𝛼,𝛽)

𝜖𝑦𝑧
(𝛼,𝛽)

𝑛𝑦
(𝛼,𝛽)

 (2.30) 

Using the strain-displacement relation, Eq. (2.19), and performing surface averaging on 

each of the four subvolume faces, the corresponding surface-averaged tractions are 

obtained in terms of the unknown first and second-order coefficients  𝑊(𝑚𝑛)
(𝛼,𝛽)

 as follows, 
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𝑡̂𝑧
±1(𝛼,𝛽)

= 𝐶66
(𝛼,𝛽)

[±𝑊(10)
(𝛼,𝛽)

+ (
3ℎ𝛼

2
)𝑊(20)

(𝛼,𝛽)
∓ 𝜃𝑦𝑜

(𝛽)
] 

𝑡̂𝑧
±2(𝛼,𝛽)

= 𝐶55
(𝛼,𝛽)

[±𝑊(01)
(𝛼,𝛽)

+ (
3𝑙𝛽

2
)𝑊(02)

(𝛼,𝛽)
± 𝜃𝑥𝑜

(𝛼)
] 

(2.31) 

These traction equations are then expressed in terms of the surface-averaged interfacial 

displacements and the remaining unknown coefficient 𝑊(00)
(𝛼,𝛽)

 through the use of Eq. 

(2.26). Therefore, we have, 

 

𝑡̂𝑧
+1(𝛼,𝛽)

= 𝐶66
(𝛼,𝛽)

[(4𝑤̂+1(𝛼,𝛽)
+ 2𝑤̂−1(𝛼,𝛽)

− 6𝑊(00)
(𝛼,𝛽)

) ℎ𝛼⁄ − 𝜃𝑦𝑜
(𝛽)

] 

𝑡̂𝑧
−1(𝛼,𝛽)

= 𝐶66
(𝛼,𝛽)

[(2𝑤̂+1(𝛼,𝛽)
+ 4𝑤̂−1(𝛼,𝛽)

− 6𝑊(00)
(𝛼,𝛽)

) ℎ𝛼⁄ + 𝜃𝑦𝑜
(𝛽)

] 

𝑡̂𝑧
+2(𝛼,𝛽)

= 𝐶55
(𝛼,𝛽)

[(4𝑤̂+2(𝛼,𝛽)
+ 2𝑤̂−2(𝛼,𝛽)

− 6𝑊(00)
(𝛼,𝛽)

) 𝑙𝛽⁄ + 𝜃𝑥𝑜
(𝛽)

] 

𝑡𝑧̅
−2(𝛼,𝛽)

= 𝐶55
(𝛼,𝛽)

[(2𝑤̂+2(𝛼,𝛽)
+ 4𝑤̂−2(𝛼,𝛽)

− 6𝑊(00)
(𝛼,𝛽)

) 𝑙𝛽⁄ − 𝜃𝑥𝑜
(𝛽)

] 

(2.32) 

The last step in the construction of the local stiffness matrix is to express the 

remaining unknown coefficient 𝑊(00)
(𝛼,𝛽)

 in terms of the four interfacial surface-averaged 

displacements associated with the (𝛼, 𝛽) subvolume. The surface tractions associated with 

each face of the (𝛼, 𝛽)  subvolume are related to each other through the equilibrium 

equation satisfied in a volume-average sense. Using the Gauss Theorem, the equilibrium 

equation may be expressed in terms of surface averaging of the traction components, 

 ∫(
𝜕𝜎𝑥𝑧

𝜕𝑥
+

𝜕𝜎𝑦𝑧

𝜕𝑦
)

(𝛼,𝛽)

𝑑𝑣(𝛼,𝛽) = ∫(𝜎𝑥𝑧𝑛𝑥 + 𝜎𝑦𝑧𝑛𝑦)
(𝛼,𝛽)

𝑑𝑠(𝛼,𝛽) = 0 (2.33) 

or, in terms of the traction component 𝑡𝑧
(𝛼,𝛽)

, 

∫𝑡𝑧
(𝛼,𝛽)

𝑑𝑠(𝛼,𝛽) = 0 

Integrating over the (𝛼, 𝛽) subvolume faces, the above equilibrium equation becomes, 
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 𝑙𝛽 (𝑡̂𝑧
+1(𝛼,𝛽)

+ 𝑡̂𝑧
−1(𝛼,𝛽)

) + ℎ𝛼 (𝑡̂𝑧
+2(𝛼,𝛽)

+ 𝑡̂𝑧
−2(𝛼,𝛽)

) = 0 (2.34) 

Using the expressions for the surface-averaged tractions in terms of the surface-averaged 

interfacial displacements and the remaining unknown coefficient, Eq. (2.32), the above 

equilibrium equation yields the zero-order coefficient solely in terms of the surface-

averaged displacements, 

 

𝑊(00)
(𝛼,𝛽)

=
𝐶66

(𝛼,𝛽)
𝑙𝛽
2

2𝐶66

(𝛼,𝛽)
𝑙𝛽
2 + 2𝐶55

(𝛼,𝛽)
ℎ𝛼

2
(𝑤̂+1(𝛼,𝛽)

+ 𝑤̂−1(𝛼,𝛽)
)

+
𝐶55

(𝛼,𝛽)
ℎ𝛼

2

2𝐶66

(𝛼,𝛽)
𝑙𝛽
2 + 2𝐶55

(𝛼,𝛽)
ℎ𝛼

2
(𝑤̂+2(𝛼,𝛽)

+ 𝑤̂−2(𝛼,𝛽)
) 

(2.35) 

Hence the four surface-averaged tractions in Eq. (2.32) are expressed solely in terms of the 

corresponding surface-averaged displacements, which may be related through the local 

stiffness matrix, 

 

[
 
 
 
 
𝑡̂𝑧
+1

𝑡̂𝑧
−1

𝑡̂𝑧
+2

𝑡̂𝑧
−2]

 
 
 
 
(𝛼,𝛽)

= [

𝐿11 𝐿12

𝐿21 𝐿22

𝐿13 𝐿14

𝐿23 𝐿24

𝐿31 𝐿32

𝐿41 𝐿42

𝐿33 𝐿34

𝐿43 𝐿44

]

(𝛼,𝛽)

[

𝑤̂+1

𝑤̂−1

𝑤̂+2

𝑤̂−2

]

(𝛼,𝛽)

+

[
 
 
 
 
 −𝐶66

(𝛼,𝛽)
𝑦𝑜

(𝛽)

𝐶66
(𝛼,𝛽)

𝑦𝑜
(𝛽)

𝐶55
(𝛼,𝛽)

𝑥𝑜
(𝛼)

−𝐶55
(𝛼,𝛽)

𝑥𝑜
(𝛼)

]
 
 
 
 
 

𝜃 (2.36) 

where the elements 𝐿𝑖𝑗
(𝛼,𝛽)

 are given explicitly in terms of subvolume moduli and geometry 

in Appendix A in closed form. 

2.4.2. Global Stiffness Matrix 

The solution for the unknown surface-averaged displacements is obtained by 

constructing a system of equations such that the interfacial displacement and traction 

continuity conditions are satisfied together with the traction-free boundary conditions. 

Towards this end, proceeding along each row across adjacent (𝛼, 𝛽)  and (𝛼 + 1, 𝛽) 

subvolumes, and along each column across adjacent (𝛼, 𝛽) and (𝛼, 𝛽 + 1) subvolumes, 

the vertical and horizontal surface-averaged interfacial displacements, respectively, are set 

to common values at the common interfaces. 
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 𝑤̂+1(𝛼,𝛽)
= 𝑤̂−1(𝛼+1,𝛽)

= 𝑤̂1(𝛼+1,𝛽)
 (2.37) 

 𝑤̂+2(𝛼,𝛽)
= 𝑤̂−2(𝛼,𝛽+1)

= 𝑤̂2(𝛼,𝛽+1)
 (2.38) 

These common surface-averaged interfacial displacements are then employed in the 

interfacial traction equilibrium conditions 

 𝑡̂𝑧
+1(𝛼,𝛽)

+ 𝑡̂𝑧
−1(𝛼,𝛽)

= 0 (2.39) 

 𝑡̂𝑧
+2(𝛼,𝛽)

+ 𝑡̂𝑧
−2(𝛼,𝛽)

= 0 (2.40) 

expressed in terms of the common interfacial displacements, 

 

𝐿12
(𝛼,𝛽)

𝑤̂1(𝛼,𝛽)
+ (𝐿11

(𝛼,𝛽)
+ 𝐿22

(𝛼+1,𝛽)
) 𝑤̂1(𝛼+1,𝛽)

+ 𝐿21
(𝛼+1,𝛽)

𝑤̂1(𝛼+2,𝛽)

+ 𝐿14
(𝛼,𝛽)

𝑤̂2(𝛼,𝛽)
+ 𝐿13

(𝛼,𝛽)
𝑤̂2(𝛼,𝛽+1)

+ 𝐿24
(𝛼+1,𝛽)

𝑤̂2(𝛼+1,𝛽)

+ 𝐿23
(𝛼+1,𝛽)

𝑤̂2(𝛼+1,𝛽+1)
= (𝐶66

(𝛼,𝛽)
− 𝐶66

(𝛼+1,𝛽)
)  𝜃𝑦𝑜

(𝛽)
 

(2.41) 

 

 

𝐿32
(𝛼,𝛽)

𝑤̂1(𝛼,𝛽)
+ 𝐿31

(𝛼,𝛽)
𝑤̂1(𝛼+1,𝛽)

+ 𝐿42
(𝛼,𝛽+1)

𝑤̂1(𝛼,𝛽+1)

+ 𝐿41
(𝛼,𝛽+1)

𝑤̂1(𝛼+1,𝛽+1)
+ 𝐿34

(𝛼,𝛽)
𝑤̂2(𝛼,𝛽)

+ (𝐿33
(𝛼,𝛽)

+ 𝐿44
(𝛼,𝛽+1)

) 𝑤̂2(𝛼,𝛽+1)
+ 𝐿43

(𝛼,𝛽+1)
𝑤̂2(𝛼,𝛽+2)

= (−𝐶55
(𝛼,𝛽)

+ 𝐶55
(𝛼,𝛽+2)

) 𝜃𝑥𝑜
(𝛼)

 

(2.42) 

The above equations apply within the beam’s cross section. On the bar’s lateral 

boundary, the traction-free condition, Eq. (2.9), must be satisfied along the vertical and 

horizontal cross-section boundaries. The components of the unit vector normal to the right 

and left vertical boundaries of the bar’s cross section in Eq. (2.9) are [±1,0,0], and the 

normal derivative of 𝜓, 𝑑𝜓/𝑑𝑛 is replaced by 𝑑𝜓/𝑑𝑥. The corresponding components 

along the top and bottom horizontal boundaries are [0, ±1,0] and the normal derivative of 

𝜓, 𝑑𝜓/𝑑𝑛, is replaced by 𝑑𝜓/𝑑𝑦. Applying the traction-free boundary condition in a 
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surface-averaged sense along the exterior surfaces of boundary subvolumes, the following 

conditions are obtained which are expressed in terms of the exterior and interior surface-

averaged displacements associated with boundary subvolumes. Along the left and right 

vertical boundaries with the unit normals [−1,0,0] and [1,0,0], respectively, the traction-

free conditions simplify to, 

 𝑤̂+1(1,𝛽)
− 𝑤̂−1(1,𝛽)

= 𝜃𝑦𝑜
(𝛽)

ℎ𝛼  (2.43)  

 𝑤̂+1(𝑁𝛼,𝛽)
− 𝑤̂−1(𝑁𝛼,𝛽)

= 𝜃𝑦𝑜
(𝛽)

ℎ𝛼 (2.44) 

where 𝛽 = 1, … , 𝑁𝛽.  

Similarly, the bottom and top horizontal boundaries with the unit normals [0, −1,0] 

and [0,1,0], respectively, the traction-free conditions are, 

 𝑤̂+2(𝛼,1)
− 𝑤̂−2(𝛼,1)

= −𝜃𝑥𝑜
(𝛼)

𝑙𝛽 (2.45) 

 𝑤̂+2(𝛼,𝑁𝛽)
− 𝑤̂−2(𝛼,𝑁𝛽)

= −𝜃𝑥𝑜
(𝛼)

𝑙𝛽 (2.46) 

where 𝛼 = 1, … , 𝑁𝛼. 

The global system of equations for the unknown surface-averaged interfacial and 

boundary displacements may be expressed in terms of the global stiffness matrix as 

follows, 

  [
𝐺11 𝐺12

𝐺21 𝐺22
] [𝑤̂

1

𝑤̂2] = [
Δ𝐶66

Δ𝐶55
] 𝜃 (2.47) 

where the structure of the first submatrix 𝐺11 is shown below, with similar results for the 

remaining submatrices. 

  𝐺11 =

[
 
 
 
 
 𝐿12

(1,1)
𝐿11
(1,1)

+ 𝐿22
(2,1)

𝐿21
(2,1)

∙ ∙ ∙

∙ 0 𝐿12
(𝛼,𝛽)

0 ∙ ∙       ∙

∙ ∙ ∙       ∙

𝐿11
(𝛼,𝛽)

+ 𝐿22
(𝛼+1,𝛽)

𝐿21
(𝛼+1,𝛽)

0      ∙

∙                ∙                 ∙
∙                ∙                 ∙

     ∙ ∙ ∙                 ∙

    0 𝐿12

(𝑁𝛼−1,𝑁𝛽)
𝐿11

(𝑁𝛼−1,𝑁𝛽)
+ 𝐿22

(𝑁𝛼,𝑁𝛽)
𝐿21

(𝑁𝛼,𝑁𝛽)
]
 
 
 
 
 

 (2.48) 
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The above system of equations is singular, with the rank of 𝑁𝛼 × 𝑁𝛽 − 1, thereby requiring 

an additional constraint equation that eliminates rigid body motion along the prismatic 

bar’s axis. To summarize, each subvolume has four unknown surface-averaged 

displacements, and due to displacement continuity, traction continuity, and boundary 

conditions, each subvolume is assigned with four equations. With 4𝑁𝛼𝑁𝛽  sets of four 

equations, it is possible to solve for the solution upon elimination of the rigid body motion 

along the out-of-plane axis.  

2.4.3. Constraints 

One additional condition is necessary to eliminate the effect of rigid body motion and hence 

the singularity of the global stiffness matrix. The centroid is the rotation center in each 

cross section without any in-plane displacement. One approach is to constrain the out-of-

displacement 𝑤(𝑥, 𝑦)  by requiring that 𝑤(0,0) = 0  at the cross-section centroid. This 

constraint cannot be employed, however, for hollow cross sections with the centroid 

located outside the cross section itself. A more general and rigorous fixation condition 

specifically for the torsion problem requires the integral along the contour of the cross 

section to be zero, 

 ∮𝑤(𝑥, 𝑦)𝑑𝑠 = ∑𝑤̂(𝛼,𝛽)

𝑠

= 0 (2.49) 

The solution of the above augmented global system of equations yields the unknown 

interfacial surface-averaged displacements which yield the corresponding surface-

averaged tractions as well as the pointwise displacements, strains and stresses in each 

subvolume. 

 

2.5. Finite Difference Formulation and Solution 

The same rectangular shape cross section with the dimension 𝐻 along the 𝑥 direction 

and the dimension 𝐿 along the 𝑦 direction employed in the FVM analysis is considered in 

this section using the finite-difference method (FDM). The FDM analysis is limited to 

homogeneous cross sections made of linearly elastic isotropic materials. In contrast with 

the FVM analysis, the FDM-based solution to the Saint Venant’s torsion problem is 
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obtained independently for both the warping and Prandtl’s stress functions using the 

displacement and stress formulations, respectively. 

2.5.1. Discretization 

The FDM analysis is based on approximating the partial derivatives appearing in 

the governing differential equation at different points within the analyzed domain by finite 

differences involving unknown values of the function itself evaluated at the given and 

adjacent points. Therefore, the analyzed domain is discretized into a grid of points or nodes 

such that the entire domain is spanned. Typically for convergence reasons, the nodes are 

equally spaced in the interior of the analyzed domain. In order to compare the FVM and 

FDM solutions on the same footing, the FDM grid is constructed based on the subvolume 

discretization of the analyzed cross section into equally dimensioned subvolumes along the 

x and y axes. Then the nodes are inserted in the center of each (𝛼, 𝛽) subvolume, producing 

uniform node spacing between interior nodes which is the same as the subvolume 

dimensions. Additional nodes are inserted in the middle of the exterior faces of all the 

boundary subvolumes in order to satisfy the governing equation along the boundary and be 

able to apply the boundary conditions on the rectangular cross section’s lateral surfaces. 

Therefore the node spacing between the boundary nodes and the adjacent interior nodes is 

half of the distance between interior nodes. This discretization scheme produces a grid 

containing (𝑁𝛼 + 2) × (𝑁𝛽 + 2) nodes. The indices of these nodes follow the subvolume 

convention and hence are numbered 1 to (𝑁𝛼 + 2) from the left to the right, and 1 to (𝑁𝛽 +

2)  from the bottom to the top. Fig. (2.3) illustrates the above-described domain 

discretization. 
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Figure 2.3. Depiction of an 8×8 node FDM grid on a square domain. 

 

2.5.2. Displacement Formulation 

The Laplace equation that the warping function 𝜓(𝑥, 𝑦) must satisfy, Eq. (2.7) 

repeated below for convenience, 

 
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
= 0 (2.50) 

is discretized by approximating the partial derivatives of the warping functions by their 

values at the given and adjacent nodes. Using the Taylor series expansions along the 𝑥 axis 

at the (𝛼 − 1, 𝛽)  and (𝛼 + 1, 𝛽)  nodes, the second partial derivative of 𝜓(𝑥, 𝑦)  with 

respect to x at the (𝛼, 𝛽) node is obtained in terms of the nodal values of the warping 

function at the three horizontal node in the finite difference form, 

 
𝜕2𝜓

𝜕𝑥2
=

𝜓(𝛼+1,𝛽) − 2𝜓(𝛼,𝛽) + 𝜓(𝛼−1,𝛽)

𝑑2
 (2.51) 

Similarly, the first partial derivative with respect to x employed in the calculation of the 

shear stress component is 

 
𝜕𝜓

𝜕𝑥
=

𝜓(𝛼+1,𝛽) − 𝜓(𝛼,𝛽)

𝑑
 (2.52) 
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Performing the same Taylor series expansions along the 𝑦 axis, the following results are 

obtained for the second and first partial derivatives of 𝜓(𝑥, 𝑦) with respect to 𝑦 

 
𝜕2𝜓

𝜕𝑦2
=

𝜓(𝛼,𝛽+1) − 2𝜓(𝛼,𝛽) + 𝜓(𝛼,𝛽−1)

𝑑2
 (2.53) 

 
𝜕𝜓

𝜕𝑦
=

𝜓(𝛼,𝛽+1) − 𝜓(𝛼,𝛽)

𝑑
 (2.54) 

Combining Eq. (2.51) and Eq. (2.53), the finite difference approximation of the Laplace 

equation for the warping function involving five inner nodes becomes, 

 𝜓(𝛼+1,𝛽) + 𝜓(𝛼−1,𝛽) + 𝜓(𝛼,𝛽+1) + 𝜓(𝛼,𝛽−1) − 4𝜓(𝛼,𝛽) = 0 (2.55) 

 

Figure 2.4. Depiction of an FDM inner node and its adjacent nodes. 

Special treatment is needed for the boundary nodes owing to the lack of four 

adjacent nodes required for the satisfaction of both the equilibrium and traction-free 

conditions on the lateral surface. One way to accomplish this is to use forward or backward 

differencing at each boundary node to satisfy the above two conditions. Another way is to 

use the central difference scheme since it produces a second-order error, while 

forward/backward difference yields a first-order error. To accomplish this, imaginary 

nodes outside of the cross-section’s domain are introduced because it is impossible to apply 

the central difference scheme for the boundary nodes directly. Using the imaginary 

boundary nodes, the Laplace’s equation for boundary nodes may still be formulated thanks 

to imaginary nodes.  

The imaginary nodes are identified by the superscripts 0 and (𝑁𝛼 + 3) associated 

with the 𝑥 axis, and 0 and (𝑁𝛽 + 3) associated with the 𝑦 axis. Using this convention, the 
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boundary nodes have to satisfy the following traction-free conditions along each of the four 

cross section sides, 

Bottom boundary nodes 𝜓(𝛼,2) − 𝜓(𝛼,0) = −𝑥(𝛼,1)𝑑 (2.56) 

Top boundary nodes 𝜓(𝛼,𝑁𝛽+3) − 𝜓(𝛼,𝑁𝛽+1) = −𝑥(𝛼,𝑁𝛽+2)𝑑 (2.57) 

Left boundary nodes 𝜓(2,𝛽) − 𝜓(0,𝛽) = 𝑦(1,𝛽)𝑑 (2.58) 

Right boundary nodes 𝜓(𝑁𝛼+3,𝛽) − 𝜓(𝑁𝛼+1,𝛽) = 𝑦(𝑁𝛼+2,𝛽)𝑑 (2.59) 

where 𝑑 is the distance between the boundary nodes and the adjacent interior nodes. The 

edges of the cross section require the use of an imaginary node only in the direction normal 

to the face, while the corner nodes require the use of two imaginary nodes, in the 𝑥 and 𝑦-

directions. The unknown values of the warping function associated with the imaginary 

nodes appearing in the finite-differenced equilibrium equations for the boundary nodes, 

Eq. (2.53),  are eliminated using the above traction-free conditions. Hence all the finite-

differenced equilibrium equations at every node, including the boundary nodes, are 

expressed in terms of the unknown values of the warping function associated with interior 

and boundary nodes. These equations form a (𝑁𝛼 + 2) × (𝑁𝛽 + 2) system of equations 

for as many unknown nodal values of the warping function. The rigid body motion along 

the 𝑧 axis is eliminated by applying the contour integral in Eq. (2.51).  

Once the solution of the global system of equations for the unknown nodal values 

of 𝜓(𝑥, 𝑦)  is obtained, it is possible to take advantage of the stress and out-of-plane 

displacement relationship, Eq. (2.4) to generate the shear stress fields. Shear stress 

components for every interior node can be expressed in the central difference form, 

 

𝜎𝑥𝑧
(𝛼,𝛽)

= 𝐺𝜃(
𝜓(𝛼+1,𝛽) − 𝜓(𝛼−1,𝛾)

𝑑
− 𝑦(𝛼,𝛽)) 

𝜎𝑦𝑧
(𝛼,𝛽)

= 𝐺𝜃(
𝜓(𝛼,𝛽+1) − 𝜓(𝛼,𝛽−1)

𝑑
+ 𝑥(𝛼,𝛽)) 

(2.60) 

Applying forward or backward difference method to the left boundary nodes gives 
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 𝜎𝑦𝑧
(1,𝛽)

= 𝐺𝜃(
𝜓(2,𝛽)−𝜓(1,𝛽)

𝑑
− 𝑦(1,𝛽)),      𝜎𝑥𝑧

(1,𝛽)
= 0 (2.61) 

whereas the right boundary nodes yield, 

 𝜎𝑦𝑧
(𝑁𝛼+2,𝛽)

= 𝐺𝜃(
𝜓(𝑁𝛼+2,𝛽)−𝜓(𝑁𝛼+1,𝛽)

𝑑
− 𝑦(𝑁𝛼,𝛽)),      𝜎𝑥𝑧

(𝑁𝛼+2,𝛽)
= 0 (2.62) 

Similarly, applying forward or backward difference method to the bottom boundary 

nodes gives 

 𝜎𝑥𝑧
(𝛼,2)

= 𝐺𝜃(
𝜓(𝛼,2)−𝜓(𝛼,1)

𝑑
+ 𝑥(𝛼,1)),      𝜎𝑦𝑧

(𝛼,1)
= 0 (2.63) 

and the top boundary nodes yield, 

 𝜎𝑥𝑧

(𝛼,𝑁𝛽+2)
= 𝐺𝜃(

𝜓
(𝛼,𝑁𝛽+2)

−𝜓
(𝛼,𝑁𝛽+2)

𝑑
+ 𝑥(𝛼,𝑁𝛽)),      𝜎𝑦𝑧

(𝛼,𝑁𝛽+2)
= 0 (2.64) 

2.5.3. Stress Formulation 

Alternatively, it is also possible to obtain the solution to the Prandtl’s stress function 

from the governing differential equation for 𝜙(𝑥, 𝑦), rewritten here for convenience, 

 
𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
= −2𝐺𝜃 (2.65) 

Applying the same procedure in finite-differencing the above equations as that employed 

in finite-differencing the Laplace’s equation for the warping function, we obtain for the 

interior nodes the following result, 

 𝜙(𝛼+1,𝛽) + 𝜙(𝛼−1,𝛽) + 𝜙(𝛼,𝛽+1) + 𝜙(𝛼,𝛽−1) − 4𝜙(𝛼,𝛽) = −2𝐺𝜃𝑑2 (2.66) 

The advantage of the stress formulation is that the traction-free boundary condition at each 

node involves only the values of the Prandtl’s stress function itself, 



33 
 

 
 

 𝜙(𝛼,𝛽) = 0 (2.67) 

Moreover, the finite-differenced Poisson’s equation at the boundary nodes does not need 

to be explicitly employed and hence there is no need to introduce imaginary nodes as in 

the case of the corresponding Laplace equation. This is because the 𝑁𝛼 × 𝑁𝛽  unknown 

values of the Prandtl’s stress function at the interior nodes may be determined by applying 

the finite-differenced Poisson’s equation at each node whilst eliminating the values at each 

boundary node associated with the set of nodes directly adjacent to the boundary using the 

traction-free condition. This produces the required 𝑁𝛼 × 𝑁𝛽 equations for the same number 

of unknown nodal Prandtl’s stress function values. 

 

Figure 2.5. Depiction of an FDM inner node and its adjacent nodes. 

Applying the above equations at each node produces the global system of equations 

for the unknown nodal values of the Prandtl’s stress function whose solutions enables 

calculation of the corresponding stresses using the finite-differenced form of Eq. (2.11). 

Shear stress values for the inner nodes were determined using the central difference scheme 

as follows, 

 𝜎𝑥𝑧
(𝛼,𝛽)

=
𝜙(𝛼,𝛽+1) − 𝜙(𝛼,𝛽−1)

𝑑
 (2.68) 

and  

 𝜎𝑦𝑧
(𝛼,𝛽)

= −
𝜙(𝛼+1,𝛽) − 𝜙(𝛼−1,𝛽)

𝑑
 (2.69) 
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whereas the corresponding stresses at the boundary nodes were calculated using the 

forward or backward finite-difference scheme. As readily seen in the above equations, at 

the left and right boundary nodes, 

 𝜎𝑥𝑧
(𝛼,𝛽)

= 0 (2.70) 

and similarly at the top or bottom boundary nodes 

 𝜎𝑦𝑧
(𝛼,𝛽)

= 0 (2.71) 

because in both cases the nodal values of the Prandtl’s stress function were explicitly set 

to zero in order to satisfy the traction-free boundary conditions. 

The stresses are related to the partial derivatives of the warping function through 

Eq. (2.4), which can be written in terms of the shear stress components as follows, 

 
𝜕𝜓

𝜕𝑥
=

𝜎𝑥𝑧

𝐺𝜃
+ 𝑦,

𝜕𝜓

𝜕𝑦
=

𝜎𝑦𝑧

𝐺𝜃
− 𝑥 (2.72) 

In the finite-difference sense, using the central difference scheme Eq. (2.70) becomes 

 

𝜓(𝛼+1,𝛽) − 𝜓(𝛼−1,𝛽)

𝑑
=

𝜎𝑥𝑧
(𝛼,𝛽)

𝐺𝜃
+ 𝑦(𝛼,𝛽) 

𝜓(𝛼,𝛽+1) − 𝜓(𝛼,𝛽−1)

𝑑
=

𝜎𝑦𝑧
(𝛼,𝛽)

𝐺𝜃
− 𝑥(𝛼,𝛽) 

(2.73) 

Eq. (2.71) can be used for at the inner nodes to determine the interior nodal out-of-plane 

displacements. Otherwise, applying the forward or backward difference scheme to the 

left and right boundary nodes, respectively gives, 

 

𝜓(2,𝛽) − 𝜓(1,𝛽)

𝑑
− 𝑦(1,𝛽) = 0 

𝜓(𝑁𝛼+2,𝛽) − 𝜓(𝑁𝛼+1,𝛽)

𝑑
− 𝑦(𝑁𝛼+2,𝛽) = 0 

(2.74) 
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Similarly, applying the forward or backward difference scheme to the bottom and 

top boundary nodes, respectively, gives 

 

𝜓(𝛼,2) − 𝜓(𝛼,1)

𝑑
+ 𝑥(𝛼,1) = 0 

𝜓(𝛼,𝑁𝛽+2) − 𝜓(𝛼,𝑁𝛽+1)

𝑑
+ 𝑥(𝛼,𝑁𝛽+2) = 0 

(2.75) 

The constraint is zero total out-of-plane displacement along the contour of the cross 

section. Each contour segment is assumed to have the average out-of-plane displacement 

as the nearby point-wise out-of-plane displacement.  

Eqs. (2.71)-(2.73) make up a system of linear equations. Solving this system of equations 

generates the values for the out-of-plane displacement at each node. 

 

2.6. Summary and Discussion 

The two methods developed in this chapter in order to solve the Saint Venant’s 

torsion problem of rectangular cross section members, namely the finite-volume and finite-

difference methods, have been implemented in MATLAB computer codes. The 

formulations developed using rectangular subvolume/grid domain discretizations are 

sufficiently general to be employed for cross sections such as T-shaped, channel-shaped 

and box-shaped prismatic bars. The results that these methods are able to generate include 

the displacement field, shear stress fields, and torsional rigidity. 

Both methods will be validated in Chapter 3 against the elasticity solution for 

rectangular cross section bars of any aspect ratio. The finite-difference method is well-

suited for the solution of Saint Venant’s torsion problems involving homogenous linear 

elastic isotropic material cross sections, while the finite-volume method is also capable of 

solving torsion problems involving heterogeneous, linear elastic orthotropic material cross 

sections. In the finite-volume approach, subvolumes that make up any shape cross section 

are rectangular with their own material property. Each subvolume is in stress equilibrium 

and satisfies traction and displacement continuity with its adjacent neighbors in a surface-
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averaged sense. This property is one of the remarkable advantages of the finite-volume 

method where extremely fine meshing is not required for the interfaces separating 

composite materials as required by the finite-difference and finite-element methods. 

Extended programs have also been developed for more general shapes of open/closed 

cross sections through appropriate coding. These will be employed in Chapters 4 and 5 in 

the context of membrane analogy assessment and analysis of prismatic with composite 

cross sections. 
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Chapter 3 

3. Finite Volume Technique Validation 

3.1. Introduction 

Prior to applying the finite volume technique derived in Chapter 2 to Saint Venant’s 

torsion problems involving cross sections of arbitrary shape and composite construction, 

we must validate the new method through comparison with cross sections whose elasticity 

solutions are already available. One benchmark for the validation process is the solid 

rectangular cross section composed of a homogenous isotropic material for which exact 

analytical solution in the form of an infinite Fourier series is available. Rectangular cross 

sections with different aspect ratios are employed in the validation. Out-of-plane 

displacements and shear stress resultants at specific locations within the cross-sectional 

area are calculated using the elasticity solution and compared with the finite-volume and 

finite-difference results as a function of the domain discretization refinement. 

At each mesh discretization employed in the finite-volume analysis, a finite-

difference grid is set up with one node centered in each subvolume. This enables 

comparison of the finite-volume and finite-difference results at the same points in the cross 

section. In both methods, the displacement formulation had been employed to generate the 

out-of-plane displacement field from which the shear stress fields are obtained using 

Hooke’s law. Least square difference values at all grid points are also calculated to quantify 

the overall difference between the two numerical methods and the elasticity solution. The 

convergence of torsional rigidity calculated from the stress field is also examined to 

provide additional validation support. The rate of convergence with mesh refinement also 

sheds light on the effectiveness of the two numerical methods. The other benchmark is a 

composite bar consisting of two different rectangular regions for which exact elasticity 

solution in Fourier series form is also available. Comparison of the finite volume solution 

with the exact analytical solution as well as with the finite difference solution yields critical 

analysis of the accuracy of the finite-volume theory.  
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3.2. Rectangular Homogenous Cross Section 

We validate the developed finite-volume solution first by comparison with the exact 

analytical solution for the 2𝑎 × 2𝑏  rectangular solid cross section, and compare its 

convergence performance relative to the finite-difference solution to the same problem. 

Mesh discretization with the same equally-dimensioned subvolumes/grid spacing had been 

employed for consistency. 

3.2.1. Elasticity Solution 

The analytical solution for the Prandtl’s stress function 𝜙(𝑥, 𝑦)  is obtained in 

closed form in terms of an infinite Fourier series taken over the odd harmonics of 

sin(𝑛𝜋 2𝑎⁄ ),  

 𝜙(𝑥, 𝑦) =
32𝐺𝜃𝑎2

𝜋3
∑

1

𝑛3
(−1)

𝑛−1
2 (1 −

cosh
𝑛𝜋𝑦
2𝑎

cosh
𝑛𝜋𝑏
2𝑎

) sin
𝑛𝜋𝑥

2𝑎

∞

𝑛=1,3,5,…

 (3.1) 

from which we obtain the shear stresses 𝜎𝑥𝑧 and  𝜎𝑦𝑧 

 𝜎𝑥𝑧(𝑥, 𝑦) =
𝜕𝜙

𝜕𝑦
= −

16𝐺𝜃a

𝜋2
∑

1

𝑛2
(−1)

𝑛−1
2 (

sinh
𝑛𝜋𝑦
2𝑎

cosh
𝑛𝜋𝑏
2𝑎

)cos
𝑛𝜋𝑥

2𝑎

∞

𝑛=1,3,5,…

 (3.2) 

 

 𝜎𝑦𝑧(𝑥, 𝑦) = −
𝜕𝜙

𝜕𝑥

=
16𝐺𝜃𝑎

𝜋2
∑

1

𝑛2
(−1)

𝑛−1
2 (1 −

cosh
𝑛𝜋𝑦
2𝑎

cosh
𝑛𝜋𝑏
2𝑎

) sin
𝑛𝜋𝑥

2𝑎

∞

𝑛=1,3,5,…

 

(3.3) 

and thus calculate the shear stress resultant field according to 𝜏(𝑥, 𝑦) = √𝜎𝑥𝑧
2 + 𝜎𝑦𝑧

2 . The 

out-of-plane displacement 𝑤 is obtained by integrating Eq. (3.2) and Eq. (3.3), multiplied 

by the angle of twist per unit length. This yields, 

 𝑤 = 𝜃𝑥𝑦 −
32𝜃𝑎2

𝜋3
∑

1

𝑛3
(−1)

𝑛−1
2 (

sinh
𝑛𝜋𝑦
2𝑎

cosh
𝑛𝜋𝑏
2𝑎

) sin
𝑛𝜋𝑥

2𝑎

∞

𝑛=1,3,5,…

 (3.4) 
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Finally, the angle of twist-torque relationship is obtained by integrating 𝜙(𝑥, 𝑦) over the 

cross section, yielding 

 

𝑇 = 2∫ 𝜙(𝑥, 𝑦)
𝐴

𝑑𝑥𝑑𝑦

=
1

3
𝐺𝜃(2𝑎)3(2𝑏) (1 −

192

𝜋5

𝑎

𝑏
∑

1

𝑛5
tanh

𝑛𝜋𝑏

2𝑎

∞

𝑛=1,3,5,…

) 

(3.5) 

The above analytical solution converges fast with the number of harmonics for a wide 

range of aspect ratios 𝑎/𝑏 . Twenty-five harmonics are sufficient to obtain converged 

solutions in the aspect ratio range [1, 20] which have been employed in assessing the 

predictive capability of the finite-volume solution of the Saint Venant’s torsion problem. 

Fig. (3.1) presents the analytical full-field distributions of the out-of-plane 

displacement 𝑤(𝑥, 𝑦)  and shear stress resultant 𝜏 = √𝜎𝑥𝑧
2 + 𝜎𝑦𝑧

2  employed in the 

assessment of the finite-volume method for a square and rectangular cross section with 

aspect ratios of 1, 5, 10. The distributions have been normalized by the corresponding 

maximum values so that the results are valid for any applied angle of twist per unit length 

for angles small enough to be consistent with the infinitesimal deformation assumption. 

For the square cross section, the maximum and minimum out-of-plane displacements occur 

along the edges at some distance away from the corners. The shear stress resultants also 

occur along the edges halfway between the plate’s corners. As required, the shear stress 

resultant vanishes at the four corners in order to satisfy the traction-free boundary 

condition. The twenty-five harmonics used in the infinite Fourier series representation of 

the Prandtl’s stress function are sufficient to very accurately capture this condition. 

As the plate’s aspect ratio increases, the maximum and minimum out-of-plane 

displacements along the edges shift towards the plate’s corners, whereas the shear stress 

resultant becomes more uniform along the edges. Concomitantly, the Prandtl’s stress 

function calculated using Eq. (3.1) becomes increasingly independent of the long direction, 

and may at sufficiently large aspect ratios be approximated by a parabolic function, and 

illustrated in Fig. (3.2) for the aspect ratios a/b = 1,5, 10 and 20. This is the basis for the 



40 
 

 
 

membrane analogy-based approximation for thin-walled cross sections discussed in 

Chapter 4. 

 

Square cross section 

 

Rectangular cross section with the aspect ratio a/b = 5 

 

Rectangular cross section with the aspect ratio a/b = 10 

Figure 3.1. Normalized out-of-plane displacement (left column) and shear stress resultant distributions for 

rectangular cross sections with different aspect ratios. 
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       a/b = 1                                                                     a/b = 5 

                     

 a/b = 10                                                                   a/b = 20 

Figure 3.2. Normalized Prandtl’s stress function distributions for rectangular cross sections with different 

aspect ratios. 

3.2.2. Comparison  

We first compare the convergence of the finite-volume solution with mesh 

refinement to the elasticity solution for the rectangular cross-section torsion problem. 

Towards this end, the cross-section domain is initially divided into 𝑁𝛼 × 𝑁𝛽  equally-

dimensioned (ℎ𝛼 = 𝑙𝛽)  subvolumes, then successively split into more equally-

dimensioned subvolumes in order to obtain finer meshes. Holding the cross section’s 

horizontal dimension fixed, rectangular cross sections with aspect ratios of 1, 5, 10 and 20 
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were generated and initially subdivided into 10 × 10 , 20 × 4 , 30 × 3  and 40 × 2 , 

respectively, uniformly sized subvolumes at the coarsest level of discretization. Note that 

the aspect ratio of each rectangular cross section is obtained from the  ratio of the number 

of subvolumes along the horizontal and vertical dimensions, 𝑁𝛼/𝑁𝛽, since the subvolume 

dimensions are equal. Dividing the original equally-dimensioned subvolumes by an odd 

arithmetic sequence ensures that the centers of the original subvolumes remain centers of 

the smaller subvolumes in each finer discretization. This ensures that the stress field is 

compared at the same points with mesh refinement. Comparison of the convergence with 

mesh/grid refinement of the full-field finite-volume and finite-difference 𝑤(𝑥, 𝑦),

𝜏(𝑥, 𝑦) distributions to the elasticity solution was made in the least-squared sense, where 

the differences were calculated in the center of each subvolume and summed according to, 

 ∆𝑤 =
1

𝑛2
√∑∑[𝑤𝑎𝑝𝑝𝑟𝑜𝑥(𝑥𝑖, 𝑦𝑖) − 𝑤𝑒𝑙𝑎𝑠𝑡(𝑥𝑖, 𝑦𝑖)]2

𝑁𝛽

𝑗=1

𝑁𝛼

𝑖=1

 (3.6) 

and subsequently normalized by the maximum out-of-plane displacement or shear stress 

resultant value obtained from the elasticity solution at the same locations. The same process 

is applied for the finite-difference solutions at exactly the same locations in the initial grid. 

This is the reason why the finite-difference nodes in the partial differential equation 

discretization were placed in the center of each subvolume. 

The results of the least square differences of the out-of-plane displacements at the 

initial nodes are presented in Fig. (3.3). As observed, the finite-volume technique does not 

converge as fast as the finite-difference method for all the aspect ratios. It should be noted 

that the convergence of the finite-difference method on homogeneous domains with 

isotropic properties has been extensively studied and is well-established. It is relatively fast 

because the governing partial differential equation is solved directly and a discretized form 

in a pointwise manner at increasing closer points rather through a particular approximation 

of the displacement field in discretized subvolumes. In contrast, the finite-volume method 

has been developed explicitly for heterogeneous materials characterized by multiple 

homogeneities embedded in a matrix material. Hence its strength lies in producing stable 
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solutions to problems involving materials with microstructures that require satisfaction of 

both displacement and traction continuity across common interfaces, an application for 

which the finite-difference method is not naturally suited. Nonetheless, comparison with 

the finite-difference results provides a demanding test of the finite-volume method’s 

convergence behavior. 

 

a/b = 1                                                                                a/b = 5  

 

a/b = 10                                                                                a/b = 20 

Figure 3.3. Convergence of the finite-difference and finite-volume out-of-plane displacement field calculated 

at selected subvolume centers with mesh refinement to the elasticity solution for the torsion problem of 

rectangular cross sections with different aspect ratios. 

Specifically, for the square place, the normalized least square error in the out-of-plane 

displacement field based on 100 initial nodal values is less than 1% for the relatively coarse 

plate discretization into 30 × 30 subvolumes. This error decreases to below 0.5% for the 
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100 × 100 subvolume domain discretization. Progressively smaller errors are observed in 

the case of the remaining aspect ratios. For instance, in the case of the aspect ratio of five, 

the coarse mesh of 40 × 12 subvolumes yield an error just above 0.1% which is reduced 

to less than 0.05% for the finest mesh of 220 × 44  subvolumes. The reason for the 

decreasing errors with increasing plate aspect ratio is because the mesh density also 

increases since the plate area decreases because of the manner in which the different aspect 

ratios were generated. Nonetheless, the continuous refinement of the subvolume 

discretization produces monotonically decreasing errors predicted by the finite-volume 

method which is desirable behavior. These errors are very small at sufficiently small 

subvolume refinement. When the mesh density remains constant, the error for the different 

cross section aspect ratios remains in the same order of magnitude range with increasing 

mesh refinement. 

 

a/b = 1                                                                            a/b = 5 

 

a/b = 10                                                                                a/b = 20 
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Figure 3.4. The convergence of the finite-difference and finite-volume shear stress resultant field calculated 

at selected subvolume centers with mesh refinement to the elasticity solution for the torsion problem of 

rectangular cross sections with different aspect ratios. 

 

The corresponding results for the convergence of the shear stress resultant with 

mesh refinement are shown in Fig. (3.4). The convergence behavior is similar to that 

observed for the out-of-plane displacement except that the error does not decrease as 

rapidly with increasing aspect ratio.  Nonetheless, errors less than 1% are achievable with 

relatively coarse mesh discretizations for the square cross section which halfway further 

with increasing aspect ratio. 

The results presented in Figs. (3.3)-(3.4) provide a global picture of the finite-

volume method’s convergence behavior with mesh refinement. To get an idea of how well 

the method converges to the elasticity solution throughout the entire cross section’s domain 

in a pointwise manner, the error distributions have been calculated for mesh sizes for which 

the global differences between the elasticity and finite-volume solutions are acceptably 

small. Using Figs. (3.3)-(3.4) as a basis for this mesh selection, the mesh sizes for the cross 

sections with the aspect ratios 𝑎 𝑏⁄ = 1,5, 10, 20 were 110 × 110, 220 × 40, 330 × 30, 

440 × 20, respectively. The spatial error distributions of the out-of-plane displacement and 

shear stress resultant for the first three aspect ratios are presented in Fig. (3.5). These 

distributions have been calculated in the center of each subvolume for the respective 

meshes and compared with the corresponding values at the same points obtained from the 

elasticity solution. As observed, the maximum pointwise differences occur in the regions 

of high gradients of the respective displacement and stress fields. For the out-of-plane 

displacement, this occurs along the cross-section’s edges in the vicinity of the corners. For 

the shear stress resultant, the maximum differences occur directly at the four corners where 

the shear stress resultant has to vanish. The finite-volume method approximates the stress 

field linearly using local coordinates. Hence in order to capture the large stress gradients 

at the corners, large mesh density is required in these regions. Elsewhere throughout the 

cross-section’s domain where the displacement and stress fields vary less rapidly, the error 

distributions are very small as suggested by the global calculations. This includes large 

aspect ratio cross sections for which the Prandtl’s stress function varies approximately 
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parabolically as seen in Fig. (3.2), with concomitant shear stress resultant variation in Fig. 

(3.1). Full-field differences between the elasticity and finite-difference solutions, which are 

much smaller than those presented in Fig. (3.5) are illustrated for completeness in 

Appendix B. 

       

a/b = 1 

       

a/b = 5 

    

a/b = 10 

Figure 3.5. Full-field difference of displacement and shear stress (FVM vs Elasticity). 

 

Finally, we present a comparison of the convergence behavior of the finite-volume 

and finite-difference methods with mesh refinement to the elasticity results for the torsional 
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rigidity of rectangular bars with different aspect ratios. The torsional rigidity may be 

calculated using either Eq. (2.10) using the shear stress field or Eq. (2.14) using the 

Prandtl’s stress function. For the elasticity solution, the torsional rigidity has been 

calculated using the known Prandtl’s stress function for which Eq. (2.14) is obtained in 

closed form as given by Eq. (3.5). Since the finite-volume and finite-difference solutions 

are displacement-based, the torsional rigidity for these methods has been calculated using 

Eq. (2.10). The calculations were performed by evaluating the moments produced by each 

shear stress component at same locations within each subvolume. 

 

a/b = 1                                                                            a/b = 5 

 

a/b = 10                                                                                a/b = 20 

Figure 3.6. Convergence of the torsional rigidity with mesh refinement for rectangular cross sections with 

different aspect ratios. 
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Fig. (3.6) illustrates the convergence behavior of torsional rigidity with mesh 

refinement for the four cross section aspect ratios. As observed, the finite-volume theory 

performs very well when the cross-section domain is discretized sufficiently well. 

3.2.3. Force Equilibrium Verification 

As an additional check, we examine the requirement that the shear stress distributions 

𝜎𝑥𝑧(𝑥, 𝑦) and 𝜎𝑦𝑧(𝑥, 𝑦) are self-equilibrating and thus produce zero force resultants in the 

𝑥 and 𝑦 directions, 

 

𝐹𝑥 = ∫𝜎𝑥𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 0,  

𝐹𝑦 = ∫𝜎𝑦𝑧(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 0 
(3.7) 

Tables (3.1)-(3.4) present the two forces calculated using the finite-volume method for the 

four aspect ratios of the rectangular cross sections as a function of the mesh refinement. As 

observed, the two forces 𝐹𝑥 and 𝐹𝑦 at different subvolume discretization calculated from 

the shear stress fields are essentially zero, illustrating excellent satisfaction of the above 

equilibrium conditions which does not depend on the mesh refinement. This is a 

remarkable strength of the finite-volume theory which makes it especially suitable for 

torsion problems involving composite cross sections with heterogeneous microstructures. 

 

Table 3.1. Resultant forces 𝐹𝑥 and 𝐹𝑦 for the rectangular cross section with the aspect ratio of 1. 

Mesh 10x10 30x30 50x50 70x70 90x90 110x110 

𝐹𝑥 
1.1413
× 10−13 

1.0748
× 10−11 

8.0611
× 10−12 

5.2626
× 10−11 

1.2675
× 10−10 

4.2352
× 10−10 

𝐹𝑦 
−5.1625
× 10−14 

1.0745
× 10−11 

8.6374
× 10−11 

1.1413
× 10−10 

−6.5468
× 10−10 

8.0932
× 10−10 

 

Table 3.2. Resultant forces 𝐹𝑥 and 𝐹𝑦 for the rectangular cross section with the aspect ratio of 5. 

Mesh 4x20 12x60 20x100 28x140 36x180 44x220 

𝐹𝑥 
−7.0655
× 10−13 

−4.7046
× 10−12 

8.3648
× 10−11 

−4.2473
× 10−9 

−2.3096
× 10−9 

4.5626
× 10−9 

𝐹𝑦 
−1.2793
× 10−13 

1.5232
× 10−11 

−2.5175
× 10−11 

2.2869
× 10−10 

−2.3839
× 10−10 

9.6941
× 10−10 
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Table 3.3. Resultant forces 𝐹𝑥 and 𝐹𝑦 for the rectangular cross section with the aspect ratio of 10. 

Mesh 3x30 9x90 15x150 21x210 27x270 33x330 

𝐹𝑥 
7.6933
× 10−13 

1.8015
× 10−10 

1.7214
× 10−10 

−1.9204
× 10−9 

1.2976
× 10−8 

1.4292
× 10−8 

𝐹𝑦 
−1.8402
× 10−14 

3.7996
× 10−12 

−1.4711
× 10−11 

−7.0878
× 10−11 

1.1855
× 10−10 

−1.6834
× 10−9 

 

Table 3.4. Resultant forces 𝐹𝑥 and 𝐹𝑦 for the rectangular cross section with the aspect ratio of 20. 

 

 

3.3. Rectangular Composite Cross Section 

As previously mentioned, the strength of the finite-volume method lies in its ability 

to analyze composite and heterogeneous cross sections. Therefore, in this section, the 

predictive capability of the developed finite-volume method is first verified by comparison 

with the exact elasticity solution to the torsion problem of a cross section composed of two 

rectangular isotropic materials. This verification focuses on the convergence behavior of 

the torsional rigidity with mesh refinement to the elasticity solution as in the preceding 

section, and also includes the effect of the subvolume aspect ratio which was not considered 

previously. Upon establishing the necessary mesh discretization for sufficiently accurate 

results, the predictions of the finite-volume method are compared with the reported finite-

element results for composite cross sections with different elastic shear modulus contrast 

and geometry. 

3.3.1. Elasticity Solution 

The torsion of a composite rectangular cross section, consisting of two rectangular regions 

with different material properties was solved analytically by Muskhelishvili (1963), Fig. 

(3.7). The following formula for the torsional rigidity 𝐺𝐼 was reported for cross sections 

whose overall aspect ratio 𝑎/𝑏 is equal or less than 5, 

Mesh 2x40 6x120 10x200 14x280 18x360 22x440 

𝐹𝑥 
7.0610
× 10−14 

−3.1175
× 10−10 

2.2632
× 10−9 

9.3190
× 10−9 

−3.6739
× 10−10 

6.0207
× 10−8 

𝐹𝑦 
−3.1808
× 10−14 

6.5122
× 10−12 

−3.1045
× 10−11 

−9.1891
× 10−11 

−4.1239
× 10−10 

9.0672
× 10−10 
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 𝐷 = 𝑇/𝜃 =
8

3
(𝐺1 + 𝐺2)𝑎𝑏3 − 3.361𝑏4

𝐺1
2 + 𝐺2

2

𝐺1 + 𝐺2
 (3.8) 

where 𝐺1 and 𝐺2 are the shear moduli of the different rectangular regions. This formula 

was obtained from the Fourier series solution by approximating the sums accordingly for 

the above aspect ratio range. 

 

Figure 3.7. Composite cross section comprised of two homogeneous isotropic materials with different shear 

moduli. 

3.3.2. Convergence Study 

As in the preceding section, the torsional rigidity was calculated using the shear 

stress field obtained from the finite-volume solution in Eq. (2.10), given that the Prandtl’s 

stress function is not available. The moments about the 𝑧 axis produced by the two shear 

stresses in each subvolume were determined and summed up. Two approaches of taking 

into account the shear stress contributions to the moment were employed. In the first 

approach, shear stresses located at the center of each subvolume, which are the average 

shear stresses within the subvolume, are employed in calculating their moments about the 

𝑧 axis and summed up. Alternatively, in the second approach, each subvolume is further 

subdivided into a 5 × 5 grid and the shear stresses at the grid intersections are employed 

in calculating their moments about the 𝑧  axis. The alternative approach is more 

computationally demanding and hence the extent of increase in the accuracy of moment 

calculations is of interest. 

For the convergence study, a rectangular composite cross section with the overall 

aspect ratio a/b = 5 (with a = 5, b = 1) and isotropic shear moduli 𝐺1 = 5862.07 MPa and 

𝐺2 = 279.33 MPa was analyzed. Using these numbers in Eq. (3.8), the torsional rigidity 

from the elasticity solution is calculated as 63036.3  MPa·m4. Fig. (3.8) illustrates 
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convergence behavior with mesh refinement of the finite-volume results for the torsional 

rigidity normalized by the elasticity solution. Five different subvolume aspect ratios were 

employed in the calculations, ranging from 0.2 to 5 producing rectangular discretizations. 

The results indicate that the differences in the manner of moment calculation within each 

subvolume based on the average shear stress value or multiple values at nine locations 

vanish with increasing mesh refinement. It is only for coarse mesh discretizations that 

relatively small differences in the calculated torque are observed. Moreover, the 

convergence to the elasticity solution depends on the subvolume aspect ratio. The quickest 

convergence occurs when the subvolumes are square. When the subvolumes are elongated 

(either horizontally or vertically) with aspect ratios of 5 or 0.2, the convergence is slow and 

there is an error of approximately 5% between the finite-volume and elasticity result at the 

most refined domain discretization into 9,000 subvolumes. This error reduces to less than 

1% and 2% when the subvolume aspect ratio is 2 and 0.5, respectively. The square 

subvolumes generate the torsional rigidity of 62,495.0 MPa·m4 at 9,000 subvolumes which 

produces an error of 0.86% relative to the elasticity result. It should be noted, however, 

that for the square subvolume the torsional rigidity reaches most of its asymptotic value at 

4,000 subvolumes, with little additional increase occurring between 4,000 and 9,000 

subvolumes. 

 

Figure 3.8. Torsional rigidity of two symmetrically placed composite cross section normalized by the 

elasticity solution. 
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For comparison, using the same shear moduli and cross section geometry Li et al. 

(2000) report the torsional rigidity of 60955.6 MPa·m4 with an error of 3.3% relative to 

the elasticity solution. Similarly, Saygun et al. (2007) employed 200 × 20  linear 

rectangular finite elements and calculated this value as 62894.1 MPa·m4 with a smaller 

error of 0.23%. 

3.3.3. Comparison with Numerical Results from the Literature 

A more extensive comparison with numerical results based on the finite-element 

method reported in the literature is provided in Table (3.5) and Table (3.6). These were 

generated by Darılmaz et al. (2018), Rongqiao et al. (2010), Sapountzakis (2001), Jog and 

Mokashi (2014), among others, for a wide range of shear modulus contrast of the composite 

cross section’s components shown in Fig. (3.7). Torsional rigidity factors are listed in Table 

(3.5) and maximum shear stress factors are listed in Table (3.6). As observed, the finite-

volume method’s results compare very favorably with the finite-element results reported 

by different researchers in wide parameter space. Differences in most cases are less than 

1%. 

Table 3.5. Torsional rigidity factor for a composite square section (𝛽 = 𝐷/(𝑎𝑏3𝐺1)) 

𝐺1/𝐺2 𝛽 Present 𝛽 [1] 𝛽 [2] 𝛽 [3] 𝛽 [4] 

1 0.1388 0.1405 0.1406 0.1405 0.1407 

2 0.1949 0.1968 0.1970 0.1969  0.1972 

5 0.3101 0.3104 0.3105  0.3105 – 

10 0.4698 0.4658 0.4661 0.4661 – 

 

Table 3.6. Maximum shear stress factor for a composite square section 𝜏𝑚̅𝑎𝑥 = 𝜏𝑚𝑎𝑥/(𝑎𝐺1𝜃) 

G1/G2 𝜏̅𝑚𝑎𝑥 Present 𝜏̅𝑚𝑎𝑥 [1] 𝜏̅𝑚𝑎𝑥 [2] 𝜏̅𝑚𝑎𝑥 [3] 

1 0.6583 0.6608 0.6755 0.6751 

2 1.1780 1.1945 1.2108 1.2101 

5 2.6082 2.6206 2.6764 2.6752 

10 4.9053 4.9570 5.0321 5.0321 

 
[1] Darılmaz et al. (2018); [2] Rongqiao et al. (2010); [3] Sapountzakis (2001); [4] Jog & Mokashi (2014). 
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3.4. Summary and Discussion 

For rectangular cross sections made of homogenous and isotropic materials for 

which exact elasticity solutions are available in an infinite Fourier series form, the 

convergence of the finite-volume predictions with mesh refinement to the elasticity results 

for a wide range of cross section aspect ratios is slower relative to the finite-difference 

convergence. Yet the fact remains that the differences between the finite-volume and exact 

elasticity results are still within an acceptable range even with relatively coarse meshes. A 

differentiating feature of the finite-volume method is the satisfaction of equilibrium 

equations at any level of mesh discretization in a surface-averaged sense. One consequence 

of this is the generation of self-equilibrating shear stress fields for the investigated torsion 

problems at all levels of domain discretization, illustrated by the vanishing of the horizontal 

and vertical shear forces produced by the shear stresses acting on the cross section. The 

finite-volume method’s strength lies in its superior ability to handle heterogeneous 

microstructures where the satisfaction of interfacial displacement and traction continuity 

across subdomains with large modulus contrast requires large finite-difference grids, in 

contrast with the finite-volume method.  

The convergence and accuracy of the finite-volume method to the elasticity solution 

was also confirmed in the study of a composite cross section made up of two symmetrically 

placed rectangular sections filled with different materials. Comparison with the finite-

element results from the literature also showed that the finite-volume results were very 

close. 

The two types of cross sections investigated by the finite-volume method relative 

to both the finite-difference and finite-element methods confirm the applicability of the 

extended finite-volume method to torsional structural engineering problems. This provides 

confidence in the application of this technique to more complicated cross sections 

involving thin-walled and composite structures investigated in Chapters 4 and 5, 

respectively. 
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Chapter 4 

4. Critical Assessment of the Membrane Analogy 

4.1. Introduction 

Prandtl was the first to notice a relationship between torsion and membrane 

problems, which became the foundation for experimental solutions of torsion problems 

involving arbitrarily shaped cross sections. This relationship became known as the 

membrane analogy. Specifically, the differential equation for the stress function in Saint-

Venant’s torsion problem is of the same form as that describing the deflection of a 

pressurized membrane, so the shape of that pressurized membrane also describes the 

Prandtl’s stress function surface. The membrane analogy also serves as the basis for 

approximate analytical solutions to Saint Venant’s torsion problems involving narrow or 

thin-walled closed or open cross sections. 

In this chapter, the theoretical basis for the membrane analogy is reviewed and three 

common types of cross sections in structural engineering are selected for the assessment of 

the membrane analogy’s accuracy in the calculation of torsional rigidity. The solutions to 

torsion of these cross sections are first conducted by means of the membrane analogy based 

on the assumption that the wall thickness of the individual components is small enough for 

the thin rectangular approximation to be valid. The three types of cross sections with 

different wall thicknesses are then analyzed both by the finite-difference and finite-volume 

methods. Comparison between results generated by the different methods is conducted 

with the aim of establishing the range of validity of the membrane analogy. 

 

4.2. The Membrane Analogy 

An edge-supported homogenous membrane placed over a plate with a hole 

illustrates the membrane analogy for the torsion of a solid cross section. The membrane 

covers exactly the hole cut in the plate, whose shape is the same as that of the cross section 

of the prismatic bar subjected to torsion in this analogy. The governing differential equation 
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for membrane deflection 𝑧 is derived from the vertical equilibrium considerations where 

the weight of the membrane is neglected, 

 
𝜕2𝑧

𝜕𝑥2
+

𝜕2𝑧

𝜕𝑦2
= −

𝑝

𝑆
 (4.1) 

In the above equation, 𝑝 denotes the pressure the membrane subjected to and 𝑆 is the 

tensile force per unit membrane length  Eq. (4.1) is identified as the Poisson’s equation 

with the Laplacian of the membrane deflection always a constant value. Comparing it with 

the governing differential equation of Prandtl’s stress function Eq. (2.12), it is observed 

that quantities in these two equations are analogous. Specifically, the Prandtl’s stress 

function 𝜙 is analogous to the membrane deflection 𝑧. The shear module 𝐺 of isotropic 

material and the reciprocal of tensile force per unit length 𝑆 are another analogy pair. In 

addition, twice the angle of twist per unit length 𝜃 is analogous to the pressure 𝑝 to which 

the membrane is subjected. 

4.2.1. Membrane Analogy for Thin-Walled Open Cross Sections 

Applying the membrane analogy to a narrow rectangular cross section shown in 

Fig. (4.1), it is assumed that the shape of the membrane deflection 𝑧 is cylindrical along 

the entire span of the cross section. In other words, the end effects are neglected and no 

dependence on the 𝑥 coordinate is assumed. 

 

 

Figure 4.1. Membrane Analogy for a torsional member of narrow rectangular cross section. 
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Subject to the approximation that 𝑧(𝑦) only, and hence 𝜕𝑧 𝜕𝑥⁄ = 0, Eq. (4.1) may be 

readily integrated twice to determine the membrane deflection which assumes a parabolic 

shape. Considering the boundary condition 𝑑𝑧 𝑑𝑦 = 0⁄  at 𝑦 = 0, and 𝑧 = 0 at 𝑦 = ± 𝑡 2⁄ , 

the integration of Eq. (4.1) yields the following deflection equation for the narrow 

rectangular cross section, 

 𝑧 =
1

2

𝑝

𝑆
[(

𝑡

2
)
2

− 𝑦2] (4.2) 

Eq. (4.2) is employed to calculate the volume bounded by the parabolic cylindrical 

membrane and its projection onto 𝑥 − 𝑦 plane 

 𝑉 = 𝑝𝑏𝑡3 12𝑆⁄  (4.3) 

Replacing 2𝜃 with 𝑝 and 1/𝑆 with 𝐺, the resultant torque can be expressed as 

 𝑇 = 2𝑉 =
1

3
𝑏𝑡3𝐺𝜃 (4.4) 

where 𝑏 is the longer edge of the narrow rectangular cross section and 𝑡 is the shorter edge. 

Rearranging the above equation, the torsional rigidity for a thin rectangular cross section 

is 

 𝐶 =
𝑇

𝜃
=

1

3
𝑏𝑡3𝐺 (4.5) 

Furthermore, the dominant shear stress along the long edge of the rectangular cross section 

is obtained by differentiating the membrane deflection by y, 

 𝜏𝑧𝑥 = −
𝜕𝑧

𝜕𝑦
= 2𝐺𝜃𝑦 (4.6) 

Using Eq. (4.4) to express 𝐺𝜃  in terms of the torque and rectangular cross section’s 

geometry, the  maximum shear, which occurs at 𝑦 = ±𝑡/2, is obtained as, 

 𝜏𝑚𝑎𝑥 = 𝐺𝜃𝑡 =
3𝑇

𝑏𝑡2
 (4.7) 

Eq. (4.7) is also applicable to thin-walled open cross sections wherein long rectangular 

members can be identified. For such cross sections, the torsional rigidity can be 

approximated as the sum of the individual torsional rigidities of the individual members, 
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 𝐽𝑒 = ∑
1

3
𝑏𝑡3 (4.8) 

The validity of this method depends on the similarity between the parabolic 

membrane shape and that of the geometry of each component section. Note that the 

exceptions of this application are those points near the corners of the cross section, since 

the effect of stress concentration is neglected in the membrane analogy. 

4.2.2. Membrane Analogy for Thin-Walled Closed Cross Sections 

The membrane analogy may also be applied to thin-walled multiply-connected (or 

closed) cross sections based on additional assumptions. Inside hollow areas, the stress must 

be zero because no material is there. This zero-stress requirement may be consequently 

satisfied by a constant 𝜙 over the hollow area. Therefore, each inner boundary is a line of 

constant 𝜙 characterized by a different value for multiply-connected regions. The absolute 

value of 𝜙 is meaningless, and 𝜙 at one boundary can be equated to zero and the others 

then are adjusted accordingly. By convention, this zero 𝜙 boundary is usually assigned as 

the outermost boundary of the cross section. 

The membrane representing the thin-wall cross section area is attached to the outer 

boundary of the fixed cross section and the inner weightless plates which have the exact 

same shapes as each of the voided areas. The membrane is then pressurized, bridging the 

inner and outer contours over a short distance 𝑡. One assumption for thin-walled closed 

cross sections is the constant shear stress 𝜏 over the given thickness 𝑡, since the shear stress 

represents the slope of ℎ, the resisting force per unit length along the mean perimeter, 

yielding 

 𝜏 =
ℎ

𝑡
 (4.9) 

The difference of the membrane deflection on the outer and inner contour 𝑧 is the 

counterpart of ℎ in the membrane analogy. The thickness of the thin-walled cross section 

may vary circumferentially, however, Eq. (4.9) still holds true for every infinitesimal 

circumferential section. The mean perimeter enclosing an area 𝐴 is used to determine the 

volume bounded by the membrane. Thus, the analogy gives the torque expression 
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 𝑇 = 2𝐴ℎ (4.10) 

If the thickness of the thin wall is a constant, combining Eq. (4.8) and Eq. (4.9), the uniform 

shear stress is  

 𝜏 =
𝑇

2𝐴𝑡
 (4.11) 

Vertical equilibrium yields 

 𝑝𝐴 = ∮(
ℎ

𝑡
𝑆) 𝑑𝑠 ⟹

𝑝

𝑆
=

ℎ

𝐴
∮

𝑑𝑠

𝑡
 (4.12) 

where 𝑠 is the length of the mean perimeter of the thin-walled cross section. 

In the thin-walled structure, tan (
ℎ

𝑡
) ≈

ℎ

𝑡
, because the difference in the membrane 

deflection along the outer and inner contour is relatively smaller than the thickness of the 

thin wall 𝑡. Substituting the other analogous pairs, 𝑝 with 𝜃, and 1/𝑆 with 𝐺, 

 

 2𝐺𝜃 =
1

𝐴
∮𝜏 𝑑𝑠 (4.13) 

Rearranging the Eq. (4.13), the angle of twist per unit length is expressed in terms of the 

uniform shear stress. Eq. (4.11) and Eq. (4.13) are known as Bredt’s formulae. 

4.2.3. Structural Problems Solved by Membrane Analogy 

With the help of the membrane analogy, the torsional rigidity of thin-walled open 

cross sections consisting of several narrow rectangular members can be easily calculated 

by using Eq. (4.8), where the shear stress resultant is theoretically at its maximum in the 

middle of the longer edge of each rectangular section. Eq. (4.7) can be used to calculate 

the maximum shear stress resultant either given the angle of twist or the applied torque. 

As for closed rectangular cross sections, a table in Advanced Strength and Applied 

Elasticity (Ugural and Fenster) presents membrane analogy based calculations for the 

shear stress and angle of twist values for hollow rectangular cross sections subject to 

torsion for reference. 
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Figure 4.2. Depiction of a general hollow rectangular cross section. 

Using the membrane analogy, the torque and angle of twist per unit length 𝜃 relationship 

is obtained in the form, 

 𝑇 =
2𝑡𝑡1𝑎

2𝑏2𝐺𝜃

𝑎𝑡 + 𝑏𝑡1
 (4.14) 

Membrane analogy also indicates that the maximum shear stress resultant of this 

sort of hollow rectangular cross sections is always in the middle of its outermost edges 

without shear stress variation along the thickness. Taking advantage of the relationship 

between the angle of twist per unit length and torque, Eq. (4.14), the maximum shear stress 

occurs on the horizontal or vertical outermost edge. The corresponding expressions are, 

 𝜏𝐴 =
𝑡𝑎𝑏𝐺𝜃

𝑎𝑡+𝑏𝑡1
         𝜏𝐵 =

𝑡1𝑎𝑏𝐺𝜃

𝑎𝑡+𝑏𝑡1
 (4.15) 

 

4.3. Critical Assessment 

T-beams, channel-beams, and box-beams are three commonly used types of beams 

in structural engineering. These beams sometimes are subjected to twist in practice, which 

may be modeled as a pure torsion problem. The analysis of a T-beam, channel-beam and 

box-beam subjected to Saint Venant’s torsion is first conducted numerically using the 

developed FVM and FDM approaches. In order to evaluate the effect of the wall thickness 

of the structure on torsional rigidity and maximum shear stress, each type of cross section 

with three different thicknesses are analyzed. The membrane analogy may be used to 
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approximate torsional rigidity and maximum shear stress resultant for each T-beam, 

channel-beam and box-beam, if the thickness of the structure is small enough compared to 

their full dimension as the assumption basis. In this section, the FVM and FDM analyses 

are employed to determine the limits of applicability of the membrane analogy regarding 

both the torsional rigidity estimate as well as the maximum shear stress resultant 

magnitudes and locations. This involves an examination of the full-field shear stress 

distributions. 

All cross sections analyzed in this section are homogenous and isotropic. Moreover, 

the same shear modulus is employed in the analyses of each cross section. Since the shear 

stress resultant is directly dependent on the shear modulus, it is convenient to introduce the 

non-dimensional shear stress resultant 𝜏(𝑥, 𝑦)  as the ratio of shear stress resultant 

𝜏𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡(𝑥, 𝑦) and the shear modulus 𝐺. Furthermore, the angle of twist per unit length 

also appears as a linear coefficient in the expressions for torsional rigidity and shear stress 

resultant, so the results are also normalized by the angle of twist. Hence the normalized 

results have to be multiplied by the applied angle of twist to obtain actual values. 

4.3.1. T-Beam Cross Section 

The cross section of a T-beam is made up of two perpendicular rectangular 

members. The 𝑥 − 𝑦 coordinate system coincides with the centroid of each cross section 

and hence needs to be re-calculated when the flange and web wall thickness is changed, 

which is done uniformly. However, the centroid locations change very little with 

decreasing wall thickness. Both the flange and web portions of the T-beam are discretized 

into uniform square subvolumes, with 40 subvolumes spanning the thickness of each 

member initially set at 2, and then decreased to 1.5, 1.0 and 0.5. The discretizations for 

each wall thickness were carried out such that the subvolume/grid density was preserved 

for each cross section. Fig. (4.3) illustrates the two T-beam cross sections with the thickest 

and thinnest member walls. 
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Figure 4.3. Schematics of T-beam cross sections with wall thickness of 2 (left) and 0.5 (right). 

 

The finite-difference and finite-volume methods were employed to generate the 

shear stress fields from which the shear stress resultant distributions were calculated. These 

distributions were also employed to calculate the torsional rigidity using Eq. (2.10). The 

distributions include shear stresses calculated along the cross-section’s boundary. Fig. (4.4) 

and Fig. (4.5) compare the shear stress resultant distributions generated using the FDM and 

FVM approaches for the thickest and thinnest wall thicknesses, respectively. As observed, 

both numerical methods predict very similar distributions characterized by stress 

concentrations at the re-entrant corners of the T-section formed by the intersection of the 

flange and the web. At the remaining corners, the shear stress resultants vanish as required 

by the traction-free boundary conditions. With the exception of the corner regions, the 

shear stress resultant distributions are nearly uniform along the boundaries of the flange 

for both configurations, as approximated by the membrane analogy. The region over which 

the uniform shear stress resultant occurs is greater for the thinnest wall cross section, 

confirming the membrane analogy approximation for open cross sections with long 

rectangular members. Greater differences in the shear stress distributions between the two 

T-beam cross sections are observed along the flange boundary, where substantial 

departures from uniform distribution occur for the largest wall thickness of 2.0. 

Specifically, the maximum shear stress resultant along the upper flange boundary occurs 

in the middle and decreases slowly to a nearly uniform value with increasing distance 

towards the flange ends. As the flange thickness decreases to 0.5 this maximum value 



62 
 

 
 

remains in the middle of the flange, but its influence is limited to this region with the rest 

of the upper flange boundary experiencing uniform shear stress distribution. 

 

Figure 4.4. Distributions of shear stress resultant generated by the FDM & FVM approaches for a T-beam 

with wall thickness of 2.0. 

 

Figure 4.5. Distributions of shear stress resultant generated by the FDM & FVM approaches for a T-beam 

with wall thickness of 0.5. 
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Figure 4.6. Differences in the shear stress resultant distributions between FDM & FVM results for T-beam 

cross sections with wall thickness of 2.0 (left) and 0.5 (right). 

 

 The shear stress resultant distributions predicted by the two numerical methods 

differ only in the immediate vicinity of the corners, both external and re-entrant. In 

particular, the FVM calculations produce greater stress concentrations at the re-entrant 

corners and much smaller (nearly zero) shear stress resultants at the external corners 

relative to the FDM approach for the two T-beam cross sections with the largest and 

smallest flange/web thickness. These differences in the full-field distributions are 

illustrated in Fig. (4.6). They were generated by calculating point-wise differences between 

the two methods and then normalizing by the maximum shear stress resultant obtained by 

the FVM approach according to, 

 𝑑(𝑥, 𝑦) = (𝜏𝐹𝑉𝑀(𝑥, 𝑦) − 𝜏𝐹𝐷𝑀(𝑥, 𝑦)) 𝑚𝑎𝑥(𝜏𝐹𝑉𝑀(𝑥, 𝑦))⁄ × 100% (4.16) 

As observed in the figure, the substantial differences in the shear stress resultants predicted 

by the two methods are positive at the re-entrant corners and their vicinity, and positive or 

negative at the external corners. These difference distributions support the preceding 

statement that the FVM approach generates higher stress concentrations at the re-entrant 

corners. The occurrence of the large stress concentrations at the re-entrant corners seen in 

the above figures is discussed in the sequel. 
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The membrane analogy assumes that the shear stress distribution is uniform along 

the perimeter of a long rectangular member except near the ends or connections with other 

sections, as indeed observed in Fig. (4.5) for the smallest flange/web wall thickness. 

However, even in this case, the stress concentrations at the re-entrant corners do not vanish, 

requiring further analysis based on elasticity considerations. In the case of a circular shaft 

with a square cutout at the outer radius with two 90-degree (re-entrant) corners, the shear 

stress field is singular as reported by Sinclair (2004). The shear stress field has a singularity 

of the order of -1/3 characterized by the variation 𝑇𝑟−1/3 where the distance r is measured 

from the corner using a local coordinate system and 𝑇 is the applied torque. Therefore, the 

local or dominant shear stress dependence on the distance r from the re-entrant corner 

exhibits a linear dependence when graphed as 𝑙𝑛(𝜎) versus 𝑙𝑛(𝑟) with the slope of -1/3. It 

is reasonable to assume that the same functional dependence occurs in the immediate 

vicinity of the re-entrant corners for the T-beam.  

For the T-shape cross section, there are two singular points at the re-entrant corners 

formed by the flange and web intersections. Only one of them is analyzed because the other 

one is symmetric about the centerline of the web. Fig. (4.7) and Fig. (4.8) illustrate the 

local shear stress resultant dependence on the distance from the re-entrant corner along the 

flange and web boundaries of the two cross sections predicted by the two numerical 

approaches. Along the bottom surface of the flange, the shear stress resultant 𝜏 is in fact 

𝜎𝑥𝑧 whereas along the left surface of the web it is 𝜎𝑦𝑧. The results have been graphed for 

both 𝜏 vs 𝑟 and 𝑙𝑛(𝜏) vs 𝑙𝑛(𝑟) to investigate whether the near-corner behavior is indeed 

singular, characterized by the -1/3 order singularity. Included in the graphs of ln(τ) vs ln(r) 

in both figures are straight lines with the slope of -1/3 for comparison with the predicted 

results. As observed, the calculated shear stress resultants exhibit behavior at the re-entrant 

corners that is singular for both cross sections regardless of the wall thickness. This 

behavior is outside of the membrane analogy assumptions and may affect the torsional 

rigidity and maximum non-singular shear stress calculations for sufficiently thick flange 

and web walls. 
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Figure 4.7. Shear stress resultants versus distance from the re-entrant corner (left) and the corresponding 

logarithmic counterparts (right) for a T cross section with wall thickness of 2.0. 

 

Figure 4.8. Shear stress resultants versus distance from the re-entrant corner (left) and the corresponding 

logarithmic counterparts (right) for a T cross section with wall thickness of 0.5. 

 

The results for the remaining two cross sections with the flange and web wall 

thickness of 1.5 and 1.0 follow the trends consistent with those presented in the foregoing. 

Specifically, the shear stress resultant distributions become more uniform along the long 

dimensions of the flange and web members of the T-beam with increasing wall thickness, 

with the order of shear stress singularity at the re-entrant corners remaining the same. 
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Figure 4.9. Torsional rigidity for the T cross section as a function of the flange/web wall thickness. 

 

The torsional rigidity of the T-beam cross section as a function of the flange/web 

wall thickness calculated using the two numerical methods is compared with the 

corresponding membrane analogy results in Fig. (4.9). Interestingly, there is very little 

difference between the results based on the detailed numerical calculations which exhibit 

large stress gradients and magnitudes and the approximate membrane analogy based on 

shear stress fields that do not vary along the flange and web lengths. Hence the membrane 

analogy appears to hold for aspect ratios (length over thickness) as large as five in the case 

of T-beam cross sections. The same conclusions do not apply in its entirety for the 

calculation of non-singular maximum shear stress resultants as illustrated and discussed in 

the sequel. 

Fig. (4.10) presents a comparison of the non-singular maximum shear stress 

magnitudes that occur in the flange and web at points A and B, respectively, halfway along 

the members’ lengths, see Fig. (4.3), as a function of the wall thickness. In contrast with 

the torsional rigidity comparison, the membrane analogy underestimates the shear stress 

resultant at point A of the flange to an extent that depends on the flange/web thickness. For 

the wall thickness of 2.0, the difference is approximately 17%. This error decreases with 

decreasing wall thickness as expected, and becomes small, but not zero, when the wall 

thickness is 0.5. Apparently, the proximity of the flange/web junction to point A affects 

the local shear stress resultant. On the other hand, the membrane analogy predicts 

accurately the non-singular maximum shear stress resultant at the point B of the web for 
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the four analyzed wall thicknesses because it is sufficiently removed from the junction and 

hence not affected by it to the same extent as the point A. 

 

Figure 4.10. Maximum shear stress at the points A (left) and B (right) of the T-beam cross section as a 

function of the wall thickness. 

4.3.2. Channel-Beam Cross Section 

Channel-beam cross sections are made up of three rectangular sections connected 

at right angles. Fig. (4.11) illustrates two channel-beam cross sections with the largest and 

smallest wall thickness of 2.0 and 0.5, respectively, analyzed using the FDM and FVM 

approaches for comparison with the membrane analogy predictions. The centroid of the 

cross section with the largest wall thickness lies at the intersection of the right boundary of 

the web and the cross section’s horizontal plane of symmetry, whereas the thinnest cross 

section’s centroid lies outside. The centroids also coincide with the center of twist and 

hence the origin of the 𝑥 − 𝑦 coordinate systems as verified by summing up the forces 

along the x and y directions produced by the corresponding shear stresses. As in the case 

of the T-beam cross section, the analyzed channel-beam cross sections have been 

discretized using square subvolumes, with 40 subvolumes spanning the cross section with 

the largest flange and web wall thickness. The remaining cross sections were discretized 

such that the same subvolume density was retained in each case. 
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Figure 4.11. Schematics of channel-beam cross sections with wall thickness of 2 (left) and 0.5 (right). 

 

Fig. (4.12) and Fig. (4.13) present full-field distributions of the shear stress resultant 

in the thickest and thinnest channel-beam cross sections calculated using the finite-

difference and finite-volume methods. Similar to the T-beam cross sections, large stress 

concentrations are evident at the re-entrant corners which indicate shear stress singularities 

that are not taken into account by the membrane analogy. At the remaining corners, the 

shear stress resultant vanishes as expected. The finite-difference method underestimates 

the magnitude of the shear stress resultant at the re-entrant corners relative to the finite-

volume method, as also observed in the T-beam results. Hence the differences in the point-

wise shear stress distributions defined in Eq. (4.14) and illustrated in Fig. (4.14) are positive 

at these points and negative at the external corner, indicating that the traction-free boundary 

condition in these locations is better satisfied by the finite-volume method. 

The shear stress resultant distributions for cross sections with intermediate flange and web 

wall thickness of 1.5 and 1.0 exhibit similar trends and hence they are not shown. The same 

mesh density was also employed in analyzing their response. Torsional rigidity and 

maximum shear stress resultant of these cross sections will be employed in the sequel for 

comparison with the membrane analogy predictions. 
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Figure 4.12. Distributions of shear stress resultant generated by the FDM & FVM approaches for a 

channel-beam with wall thickness of 2.0. 

 

 

Figure 4.13. Distributions of shear stress resultant generated by the FDM & FVM approaches for a 

channel-beam with wall thickness of 0.5. 



70 
 

 
 

      

Figure 4.14. Differences in the shear stress resultant distributions between FDM & FVM results for 

channel-beam cross sections with wall thickness of 2.0 (left) and 0.5 (right). 

 

The full-field shear stress resultant distributions for the thickest cross section, Fig. 

(4.12), are more uniform along the long dimensions of the individual members of the 

channel-beam, in contrast with the distributions observed in Fig. (4.4) for the 

corresponding T-beam cross section. Apparently, the singular-like shear stress behavior in 

the re-entrant corner regions does not have as much effect on the stress distributions along 

the top and bottom flanges as in the case of the T-beam. As the wall thickness decreases to 

0.5, Fig. (4.13), the distributions become nearly uniform, with the deviations occurring in 

the immediate vicinity of the re-entrant and external corners. These results suggest that the 

torsional rigidity and non-singular maximum shear stress differences between the 

numerical and membrane analogy results will be very small in the range of the analyzed 

flange and web wall thicknesses. 

The torsional rigidity and maximum shear stress resultants at points A and B 

calculated using the two numerical methods as a function of the member wall thickness are 

compared with the corresponding membrane analogy results in Fig. (4.15) and Fig. (4.16). 

As suggested by the preceding stress distributions, there is indeed very little difference 

between the three sets of results, indicating that the membrane analogy is applicable for 

channel-beams even when the member wall thickness is as large as 2.0 for the investigated 

channel-beam configuration. In contrast with the T-beam cross section, the shear stress 
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resultant in the middle of the top/bottom flange (point A) is as accurately predicted as that 

in the middle of web edge (point B) due to little variation along the members’ lengths. 

 

Figure 4.15. Torsional rigidity for the channel cross section with different thickness. 

 

Figure 4.16. Maximum shear stress (left & right) for the channel beam cross sections with different wall 

thickness. 

4.3.3. Box-Beam Cross Section 

The last cross section analyzed for comparison with the membrane analogy is a 

box-beam made up of four rectangular members (two flanges and two webs) to produce a 

square hollow cross section. Fig. (4.17) illustrates two such configurations with the largest 

and smallest wall thickness of 2.0 and 0.5, respectively. The two remaining configurations 

analyzed had wall thicknesses of 1.5 and 1.0. Because of symmetry, the origin of the 𝑥 − 𝑦 
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coordinate system coincides with the cross-section’s centroid. The wall thickness of the 

four configurations was adjusted such that the distance from the origin of the coordinate 

system to the middle of each member remained the same. Hence the dimensions a and b 

that appear in the relations torque vs angle of twist and shear stress resultants at points A 

and B vs angle of twist, Eqs. (4.14)-(4.15), respectively, for the four configurations 

analyzed do not change. As for the T-beam and channel-beam configurations, uniform 

square subvolumes were employed in the cross sections’ discretizations, with 40 

subvolumes along the largest wall thickness of 2.0, with the smaller wall thickness 

discretized so as to maintain the same subvolume density. 

      

Figure 4.17. Schematics of box-beam cross sections with wall thickness of 2 (left) and 0.5 (right). 

 

Figure 4.18. Distributions of shear stress resultant generated by the FDM & FVM approaches for a box-

beam with wall thickness of 2.0. 
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Figure 4.19. Distributions of shear stress resultant generated by the FDM & FVM approaches for a box-

beam with wall thickness of 0.5. 

      

Figure 4.20. Differences in the shear stress resultant distributions between FDM & FVM results for box-

beam cross sections with wall thickness of 2.0 (left) and 0.5 (right). 

 

 Fig. (4.18) and Fig. (4.19) present full-field distributions of the shear stress resultant 

in the thickest and thinnest channel-beam cross sections calculated using the finite-

difference and finite-volume methods. Cross sections with wall thickness of 1.5 and 1.0 

produced similar results. For both configurations, the stress concentrations at the re-entrant 

corners predicted by the finite-volume method are substantially larger than those predicted 

by the finite-difference method. These differences do not appear to depend on the member 
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wall thickness as seen in Fig. (4.20) which illustrates the differences in the shear stress 

resultant distributions between the two techniques. 

 The presence of four external and re-entrant corners has a larger effect on the 

uniformity of shear stress resultant distributions along the individual members of the 

thickest wall box-beam than of the thinnest. The effect is limited to the corner regions 

whereas elsewhere the shear stress distribution along the lateral boundary is uniform. 

Nonetheless, because the corner influence extends further into the box-beam’s members of 

the thickest wall configuration, its effect on the torsional rigidity relative to the membrane 

analogy prediction will be noticeable. This is indeed the case as observed in Fig. (4.21) 

which illustrates the relationship between torque and wall thickness predicted by the two 

numerical methods and the membrane analogy. The difference between the numerical 

methods and membrane analogy approximation does not vanish until the wall thickness 

decreases to 0.5, in contrast with the corresponding results for the T-beam and channel-

beam cross sections. It is also worthwhile to point out that while the torsional rigidity vs 

wall thickness dependence is nonlinear for the T-beam and channel-beam cross sections, 

the membrane analogy predicts a linear relationship with the wall thickness, Eq. (4.14) 

when the dimensions a and b are kept the same for each configuration. This is indeed the 

case as observed in Fig. (4.21). The finite-difference and finite-volume calculations also 

predict a nearly linear relationship, albeit with a somewhat different slope producing 

deviations from the membrane analogy predictions until the wall thickness becomes 0.5. 

      

Figure 4.21. Torsional rigidity (left) and maximum shear stress (right)  for the box-beam cross sections 

with different wall thickness. 
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Fig. (4.21) also includes a comparison of the non-singular maximum shear stress 

resultants at points A and B situated in the middle of the flange and web members of the 

box-beam predicted by the two numerical methods and the membrane analogy. Because of 

symmetry, points A and B produce the same shear stress resultant magnitudes. Moreover, 

because the box-beam is square and the dimensions a and b remain fixed as the wall 

thickness decreases, the membrane analogy predicts no variation of the shear stress 

resultants at those points with wall thickness, Eq. (4.15). In contrast, both numerical 

techniques indicate a linear decrease with decreasing wall thickness of the shear stress 

resultants at the two locations, with substantial deviations from the membrane analogy 

predictions at larger wall thicknesses. Even for the thinnest wall box-beam configuration, 

the difference is substantial, illustrating the membrane analogy limited applicability for this 

particular cross section. 

 

4.4. Summary and Discussion 

For each set of the analyzed T-beam, channel-beam and box-beam cross sections, 

the finite-difference and finite-volume methods produce comparable results for the shear 

stress resultant distributions and the ensuing torsional rigidity. In addition, both methods 

are capable of capturing the singular stress field character at re-entrant corners of the 

analyzed cross sections with sufficiently refined discretization or meshing. However, the 

finite-volume method yields 35% to 45% larger shear stress values at those singular points 

relative to the finite-difference calculations. The singular character of the shear stress field 

at the re-entrant corners was determined by graphing the shear stress values along the 

lateral boundaries of the flange and web members with decreasing distance from the corner, 

and subsequently demonstrated to possess an -1/3 order singularity consistent with the 

reported elasticity results. The higher shear stress resultants directly at the corner calculated 

by the finite-volume method are likely due to the better approximation of the traction-free 

boundary condition relative to the finite-difference method which requires the use of 

fictitious nodes outside of the cross section in approximating partial derivatives of the 

warping function along the boundary. While outstanding differences exist at the re-entrant 



76 
 

 
 

corners of the analyzed cross sections, the shear stress fields obtained from the finite-

difference and finite-volume calculations are essentially the same outside of these regions. 

Although the membrane analogy cannot capture the singular-like stress fields at re-

entrant corners of the investigated configurations, it is still a good tool in estimating the 

torsional rigidity and non-singular maximum shear stress resultants. For the T-beam and 

channel-beam cross sections, no significant differences were observed for the torsional 

rigidity calculations using the two numerical and membrane analogy approaches for the 

entire range of wall thicknesses considered. The torsional rigidity for the box-beam cross 

section was underestimated by the membrane analogy for larger wall thicknesses, but the 

differences became increasingly smaller as the walls became progressively thinner. 

The non-singular maximum shear stress resultants calculated using the membrane 

analogy are also generally accurate. For the T-beam cross sections, no differences were 

observed at the midpoint of the web member in the range of wall thicknesses considered, 

whereas the differences decreased with decreasing wall thickness at the mid-point of the 

flange member. For the channel-beam configurations, the membrane analogy predictions 

practically coincided with the numerical results at the corresponding midpoints in the entire 

range of wall thicknesses. The box-beam configuration was the only exception where 

substantial differences in the shear stress resultant at the flange/web midpoints were 

observed even for the thinnest wall configuration. This indicates that each analyzed cross 

section shape exhibits its only behavior and needs to be analyzed independently. 

Although the membrane analogy does not account for singular stress fields which 

may influence the results of torsional rigidity calculations to some extent, and to a greater 

extent failure initiation, it is still a useful alternative for estimating torsional rigidity and 

non-singular maximum shear stress resultants of thin-walled structures with a reasonably 

tolerable error. Hence the membrane analogy has its own place in solving torsion problems 

involving differently shaped cross sections, and is particularly attractive in design because 

of easy and simple calculations which yield good estimates of torsional rigidity and non-

singular maximum shear stress resultants in the absence of exact elasticity solutions.  
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Chapter 5 

5. Composite Cross Sections 

5.1. Introduction 

Cross sections comprised of homogeneous isotropic materials, including those with 

thin walls, have been analyzed in the previous chapter. The finite-volume formulation 

presented in Chapter 2 is also capable of dealing with the torsion of orthotropic material 

cross sections, whereas the finite-difference solution approach is more suitable for isotropic 

materials. In fact, the finite-volume technique had been originally developed for the 

analysis of heterogeneous materials wherein the displacement and traction continuity 

conditions are explicitly satisfied in a surface-averaged sense between adjacent 

subvolumes, including any two adjacent subvolumes with different material properties. In 

contrast, the finite-difference and finite-element techniques require some special 

treatments at the interfaces separating domains comprised of different materials, which are 

not as easy to apply as in the finite-volume formulation. 

Members made up of composite materials have wide-ranging applications in the 

structural industry. For instance, reinforced concrete beams or columns are typical 

composite sections where structural steel arrangement is embedded in a concrete matrix. 

Recently, light mixed materials with high strength or steel panels have been combined with 

traditional concrete beams as bridge girders. These reinforced concrete members, which 

serve as main structural components, are usually subjected to tension, compression, 

bending and shearing. However, torsion may also act in combination with any of these 

loadings. Sometimes torsion plays a secondary role if, for example, the external loading 

does not pass through the shear center of a beam. Because torsion is not regarded as such 

an important part of structural design like bending, its impact in design is typically 

absorbed in the overall safety factor. However, structural engineers often design structural 

members to resist torsion when the resultant torques produce the dominant loading effect, 

such as eccentrically loaded spandrel beams and helical stairway slabs. Thus, it is essential 
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to analyze the torsional behavior, such as shear stress distribution and torsional rigidity, of 

these members with transverse torsional reinforcement. 

In this chapter, the finite-volume method is employed to analyze the effect of 

strengthening concrete members with different cross sections to resist torsion using 

different types of reinforcement, focusing on the stress fields and torsional rigidity. Note 

that, following the validation results presented in Chapter 3, uniform square mesh 

continues to be employed to ensure reliable results and fast convergence rates. 

 

5.2. Open Cross Sections with Isotropic Reinforcement 

For homogenous isotropic cross sections, the center of twist is sometimes defined 

as the point at rest in every cross section of a bar in which one end is fixed and the other 

twisted by a couple. The out-of-plane displacement components depend on the center of 

twist, about which the cross section rotates during twisting. However, note that while the 

center of twist is referred to in the derivations of the basic relationships, it is not dealt with 

explicitly in the solution of shear stress or torsional rigidity (Page 244, Ugural and Fenster, 

2003). Since the Prandtl’s stress function is not altered by a shift of the origin from the 

center of twist to any point within the cross section, it has been proved that every equation 

in the stress formulation described in Chapter 2 from Eq. (2.11) to Eq. (2.14) still holds 

true. This demonstrates that the shear stress and resultant torque remain the same for 

arbitrary locations of the center of twist in cross sections whose deformation is consistent 

with the displacement field assumptions of the Saint Venant’s torsion problem. 

This statement may be further extended to heterogeneous cross sections comprised 

of several isotropic material regions, in different colors shown in Fig. (5.1), adopting the 

requirement presented by Ely and Zienkiewicz (1960). Their statement indicates that the 

shear stresses normal to the interface are the same in each region, which can be satisfied 

by making the Prandtl’s stress functions share a common value along the interface 

separating two materials. In this way, the Prandtl’s stress function stays continuous within 

the cross-sectional area, though its normal derivative is discontinuous across the interfaces. 
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Figure 5.1. Cross section of a prismatic bar comprised of four regions with different elastic properties 

 

If a new center of twist is defined by 𝑥 = 𝑎  and 𝑦 = 𝑏 , where 𝑎  and 𝑏  are 

constants, then the displacements are expressed as 𝑢 = −𝜃𝑧(𝑦 − 𝑏), 𝑣 = 𝜃𝑧(𝑥 − 𝑎), 𝑤 =

𝑤(𝑥, 𝑦). As a consequence, the shear stress components are expressed as 

 𝜎𝑥𝑧 = 𝐺 [
𝜕𝑤

𝜕𝑥
− 𝜃(𝑦 − 𝑏)]                  𝜎𝑦𝑧 = 𝐺 [

𝜕𝑤

𝜕𝑥
+ 𝜃(𝑥 − 𝑎)] (5.1) 

Differentiating these two stress expressions with 𝑦 and 𝑥, respectively, yields  

 
𝜕𝜎𝑥𝑧

𝜕𝑦
−

𝜕𝜎𝑦𝑧

𝜕𝑥
= −2𝐺𝜃 (5.2) 

for each individual region with its own shear modulus. 

Since the Poisson’s equation, Eq. (2.12), still holds true inside the outermost region 

bounded by the lateral surface, Fig. (5.1), and the Prandtl’s stress function is conventionally 

set to zero on the surface (𝜙1 = 0), the Prandtl’s stress function value on the first interfaces 

counting from the outside, 𝜙2 or 𝜙3, is preserved even if the center of twist is altered. We 

can further infer that the Prandtl’s stress function on every interface including 𝜙4 would 

not change upon changing the center of twist location. Concomitantly, the shear stress 

components are not affected since they are defined as partial derivatives of the Prandtl’s 

stress function. Thus, it is confirmed again that the summation of horizontal forces over 

the cross-sectional area is zero in pure torsion problems involving heterogeneous cross 

sections. Specifically, 
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∬𝑝𝑥 𝑑𝑥𝑑𝑦 = ∬𝜎𝑥𝑧 𝑑𝑥𝑑𝑦 = ∬
𝜕𝜙

𝜕𝑦
𝑑𝑥𝑑𝑦 = ∫𝑑𝑥 ∫

𝜕𝜙

𝜕𝑦
𝑑𝑦

𝑦2

𝑦1

= ∫[𝜙]𝑦1

𝑦2 𝑑𝑥 = 0 

(5.3) 

where 𝑦1 and 𝑦2 represent the 𝑦 coordinates of points located on the surface. 

Similarly, it may be shown that  

 ∬𝜎𝑦𝑧𝑑𝑥𝑑𝑦 = 0 (5.4) 

As for the resultant torque summed in each region with constant 𝜙 along its boundary 

 

𝑇 = ∑𝑇𝑖

𝑛

𝑖=1

= ∑∬[(𝑥 − 𝑎)𝜎𝑦𝑧 − (𝑦 − 𝑏)𝜎𝑥𝑧]𝑑𝑥𝑑𝑦

𝑛

𝑖=1

= ∑(∬(𝑥 − 𝑎)𝜎𝑦𝑧𝑑𝑥𝑑𝑦 − ∬(𝑦 − 𝑏)𝜎𝑥𝑧𝑑𝑥𝑑𝑦)

𝑛

𝑖=1

= ∑(−∫𝑑𝑦 ∫(𝑥 − 𝑎)
𝜕𝜙

𝜕𝑥
𝑑𝑥 − ∫𝑑𝑥 ∫(𝑦 − 𝑏)

𝜕𝜙

𝜕𝑦
𝑑𝑦)

𝑛

𝑖=1

= ∑(−∫(𝑥 − 𝑎) [𝜙]𝑥𝑖1

𝑥𝑖2𝑑𝑦 + ∬𝜙𝑑𝑥𝑑𝑦

𝑛

𝑖=1

− ∫(𝑦 − 𝑏) [𝜙]𝑦𝑖1

𝑦𝑖2𝑑𝑥 + ∬𝜙𝑑𝑥𝑑𝑦) 

(5.5) 

where 𝑖 is the index defining each distinct material region of the n-material cross section. 

Since the Prandtl’s stress function is zero on the outermost boundary of the cross section, 

the above resultant torque expression may be simplified as 

 
𝑇 = ∑2∬𝜙𝑑𝑥𝑑𝑦

𝑛

𝑖=1

 
(5.6) 

The above derivation proves that the resultant torque calculated based on the original center 

of twist does not change when it is translated. 
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In the investigated cross sections, both concrete and structural steel are assumed to 

be isotropic materials with shear moduli of 1.8 𝑀𝑠𝑖 and 11.5 𝑀𝑠𝑖 respectively. Reinforced 

concrete columns and T-beams are analyzed under pure torsion loading, in spite of the fact 

that these elements are originally designed for axial compression or flexure in structural 

engineering applications. When the deformation is small enough, the reinforced concrete 

would not crack, the resultant torque is linear with the twist, Fig. (5.2). Upon cracking, the 

torsional resistance of concrete drops to about one-half of the uncracked member, with the 

remainder resisted by the reinforcement. This redistribution of internal resistance is 

reflected in the torque-twist curve, which illustrates continued twist at constant torque 

during cracking until the internal forces have been redistributed from concrete to steel 

reinforcement. When the section approaches the ultimate status, the concrete outside the 

reinforcing cage cracks and begins to spall off, no longer contributing to the torsional 

rigidity of the member. As Saint-Venant’s torsion is a linear elasticity problem, only small 

deformation is allowed, in which a small angle of twist per unit length (0.0001 radian per 

inch) is applied and analyzed. 

 

Figure 5.2. A torque-twist response of reinforced concrete members, 

from Design of Concrete Structures, Darwin et al. (2016). 

5.2.1. Reinforced Concrete Column 

The column in Fig. (5.3) is reinforced with ten No.11 rebars, whose diameter is 

1.41 inch, distributed around the perimeter. This reinforced concrete column is designed to 

support an eccentric vertical load with an eccentricity 𝑒 about the strong axis. Suppose 

there is a pair of torques accidentally applied to the top and bottom ends of this column. In 
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such a scenario, the column’s torsional response must be analyzed as combined loading 

may cause concrete to crack or lead to structural failure. 

In this section, the contribution of the longitudinal rebars in resisting torsional 

loading is analyzed for three different cross sections reinforced with different numbers of 

rebars, starting with the configuration shown in Fig. (5.3), and gradually removing rebars 

until only four are left. The results are compared with the unreinforced homogeneous 

concrete cross section. The mesh density is 400 square subvolumes per square inch, and it 

is consistently used in all analyzed cross sections. 

  

Figure 5.3. The cross section of a short column (Page 228, Design of Concrete Structures). 

 

A) Fig. (5.4) illustrates the subvolume discretization employed in the first cross section 

with the largest number of rebars, including an enlarged detail of the regions 

containing single rebar. The cross-sectional area of the ten rebars is 5% of the 

rectangular column’s area, or just 0.05 volume fraction of the composite member 

using composite materials terminology. This relatively small volume fraction is not 

expected to produce a large increase in the cross section’s torsional rigidity, but the 

reinforcement’s effect on the shear stress distribution and in particular the shear 

stresses carried by the reinforcing rods are of interest and worthy of quantification. 

 The shear stress resultant distribution produced by the applied angle of twist of 

0.0001 𝑟𝑎𝑑/𝑖𝑛 is shown in Fig. (5.5), and the resulting torque calculated from this 

distributions is 2033.1 𝑘 ∙ 𝑖𝑛. Hence the torsional rigidity, calculated as the ratio of 

torque and angle of twist, is 2.0331 × 107 𝑘 ∙ 𝑖𝑛2. The presence of the ten reinforcing 
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bars alters the shear stress resultant distributions in the vicinity of the bars as well as in 

the concrete matrix along the cross section’s periphery. This is visible along the long 

dimensions at the boundary where three local maximum points are evident. Because 

the shear modulus of the reinforcing steel bars is more than six times greater than that 

of concrete, substantially greater shear stress resultants are carried by the 

reinforcement, with the maximum shear stress of 3.22 𝑘𝑠𝑖 occurring in the rebar at the 

steel/concrete interface. The shear stress rapidly decreases to a much smaller value in 

the concrete matrix directly adjacent to the reinforcing rebars. Nonetheless, it is 

continuous at the rebar/concrete interface and the transition across the interface is 

smooth. 

 

Figure 5.4. Subvolume discretization of the cross section A with ten reinforcing rebars. 

 

Figure 5.5. The shear stress resultant distribution in the cross section A. 
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B) Removing four rebars along the long dimension of the cross section and filling their 

area with concrete, a new rebar arrangement illustrated in Fig. (5.6) is constructed. If 

this new member is subjected to the same angle of twist as the cross section A, the 

torque calculated from the shear stress resultant distribution shown in Fig. (5.7) is 

1963.8 𝑘 ∙ 𝑖𝑛, a small decrease from the torque carried by the cross section A. This 

produces the concomitantly smaller torsional rigidity of 1.9638 × 107 𝑘 ∙ 𝑖𝑛2. The 

maximum shear stress that occurs in the middle rebars along the short dimension of 

the cross section is 2.619 𝑘𝑠𝑖  at the steel/concrete interface within the rebars 

themselves. This is substantially smaller than the maximum value 3.22 𝑘𝑠𝑖  in the 

cross section A because of the difference in the locations which does not allow the 

shear stress to develop along the short dimension to the same extent as along the long 

dimension.   

 

Figure 5.6. Subvolume discretization of the cross section B with six reinforcing rebars. 

 

Figure 5.7.  The shear stress resultant distribution in the cross section B. 
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C) Two more rebars are removed from the middle of the short dimension of the rebar 

arrangement B to produce a new cross section shown in Fig. (5.8). Subjecting this 

cross section to the same angle of twist as in the preceding cases, maximum shear 

stress of 2.1714 𝑘𝑠𝑖  is obtained. This occurs within the four corner rebars at the 

steel/concrete interface observed in the shear stress distribution shown in Fig. (5.9). 

This maximum shear stress is again substantially smaller than the corresponding stress 

in the cross section B because of the four rebars’ proximity to the cross-section’s 

corners where the shear stress resultant vanishes. Hence the maximum magnitude of 

the shear stress resultant that may be introduced into the rebar reinforcement situated 

close to the corners is limited. The resulting torque calculated from the shear stress 

distributions at the applied angle of twist is 1942.4 𝑘 ∙ 𝑖𝑛 which produces the torsional 

rigidity of 1.9424 × 107 𝑘 ∙ 𝑖𝑛2, a small decrease from the rigidity of the preceding 

cross section. 

 

Figure 5.8. Subvolume discretization of the cross section C with four reinforcing rebars. 

 

Figure 5.9. The shear stress resultant distribution in the cross section C. 
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D) Finally, removing the remaining four rebars to produce a homogeneous cross section, 

and subjecting it to the same angle of twist as before, the maximum shear stress that 

occurs in the middle of the longer dimension is 2.0360 𝑘𝑠𝑖 . The resultant torque 

calculated from the shear stress distribution shown in Fig. (5.10) is 1909.1 𝑘 ∙ 𝑖𝑛, 

yielding the torsional rigidity of 1.9091 × 107 𝑘 ∙ 𝑖𝑛2. This configuration provides a 

reference against which the results presented in the foregoing may be gauged as 

discussed in the sequel with regard to the effect of rebar reinforcement of the torsional 

rigidity of the composite cross section and the concomitant stress distributions. 

 

Figure 5.10. The shear stress resultant distribution in the cross section D. 

 

The finite-volume analysis of the four rectangular cross sections with various 

degrees of rebar reinforcement indicates that the torsional rigidity is enhanced at most by 

6.5% when ten longitudinal rebars are employed that take up 5% of the entire cross-

sectional area. This is consistent with the known micromechanics reinforcement principles 

which indicate an initially linear improvement in effective properties of composite 

materials under shear loading transverse to the reinforcement direction when the 

reinforcement volume fraction is small. To obtain greater torsional rigidity enhancement, 

greater reinforcement volume fraction are required. Alternatively, from a structural 

reinforcement perspective, the small increase in the torsional rigidity implies the 

importance of the use of stirrups in resisting torsional deformation. 
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As previously mentioned, reinforced concrete columns are typically designed to 

resist bending and related shear deformation due to lateral loading. Under such external 

loading, they carry substantial internal loads due to their high stiffness even at low volume 

fractions. Hence the stresses that arise in the reinforcement itself are important in the design 

of these structural components. The additional shear stresses that may arise in the rebars 

themselves under torsional loading (due to eccentricity, for example) may contribute to 

failure in the presence of additional stresses cause by primary loads, and hence must be 

calculated. The results presented in this section indicate that the placement of rebars is 

important. Specifically, in order to maximize the rebars’ contribution to torsional 

resistance, they must be placed at the outer periphery of the long dimension of the analyzed 

cross section. Such placement will maximize the shear stresses that the rebars carry, 

thereby producing the greatest torsional rigidity enhancement. 

5.2.2. Reinforced Concrete T-beam 

The reinforced concrete T-beam shown in Fig. (5.11) contains two No. 11 rebars 

near the bottom of the web. Its primary purpose is to increase the beam’s bending stiffness 

in order to prevent large tensile deformations in the concrete matrix. The concrete cover is 

2.5-inch thick for the two rebars, which are symmetric about the centerline of the web. 

Mesh density of 100 subvolumes per square inch is employed to analyze this T-beam cross 

section, Fig. (5.12). 

 

Figure 5.11. The cross section of a T-beam (Page 126, Design of Concrete Structures). 
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Figure 5.12. The mesh of the cross section of a T-beam. 

 

Figure 5.13. The shear stress of the reinforced concrete T-beam cross section. 

               Fig. (5.13) illustrates the shear stress resultant distribution in the reinforced T-

beam’s cross section produced by the angle of twist of 0.0001 𝑟𝑎𝑑/𝑖𝑛. The maximum 

shear stress which occurs at the re-entrant corners is 3.0698 𝑘𝑠𝑖 for the employed level of 

subvolume discretization. Because the stress field is singular in this location, further 

subvolume discretization would produce a larger magnitude without fundamentally 

altering the stress distribution features elsewhere. Moreover, as the reinforcing rebars are 

close to the external bottom corners of the web, the shear stress that develops in the rebars 

is relatively small. The rebars’ presence only alters the shear stress field locally upon 

comparison with the shear stress distribution in the unreinforced T-beam cross section 

illustrated in Fig. (5.14), with the maximum shear stress at the re-entrant corners 
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unchanged. The reinforced T-beam carries a torque of  1080.9 𝑘 ∙ 𝑖𝑛 when subjected to the 

aforementioned angle of twist. Thus, the torsional rigidity is calculated as 1.0809 ×

107 𝑘 ∙ 𝑖𝑛2. For comparison, the unreinforced T-beam carries the torque of 1.0745 𝑘 ∙ 𝑖𝑛, 

which results in the torsional rigidity of 1.0745 × 107 𝑘 ∙ 𝑖𝑛2. As a result, the torsional 

rigidity is improved just by 0.60% in the presence of the two longitudinal rebars, which 

make up 0.78% of the entire cross-sectional area. These two longitudinal rebars clearly do 

not resist torsional deformation to any significant extent, which reflects the need for 

additional web reinforcement. 

 

Figure 5.14. The shear stress resultant distribution in the plain concrete T-beam cross section. 

 

5.3. Reinforcement of Closed Cross Sections 

The center of twist of a composite orthotropic cross section coincides with its 

geometric centroid if its layout and material property are symmetric about two orthogonal 

axes. In this section, we focus on rectangular box-beams with various levels of 

reinforcement by external wraps. It is obvious that the center of twist of such rectangular 

composite box-beams should be at the geometric centroid, which is exactly in the middle 

of these cross sections. 

We first analyze the torsional behavior of a plain concrete box-beam which serves 

as a reference. Then we strengthen it by wrapping layers other than the concrete around its 
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outer boundary, and finally evaluate the enhancement of the torsional resistance capacity 

due to the wraps. One hundred square subvolumes per square inch are employed consistent 

with the preceding studies. 

5.3.1. Homogeneous Concrete Box-Beam 

The reference concrete beam has the wall thickness of 2 inches and outer dimensions of 

12×12 inches, Fig. (5.16). The applied angle of twist of 0.0001 𝑟𝑎𝑑/𝑖𝑛  produces 

maximum shear stress of 2.1472 𝑘𝑠𝑖 at the re-entrant corners of the box-beam, Fig. (5.17). 

For the given angle of twist, this member carries a torque of 399.4035 𝑘 ∙ 𝑖𝑛, resulting in 

the torsional rigidity of 3.9940 × 106 𝑘 ∙ 𝑖𝑛2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16. Subvolume discretization of the cross section of a plain concrete box-beam.  

 

Figure 5.17. The shear stress distribution in the reference homogeneous concrete box-beam. 
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5.3.2. Glass/Epoxy-Wrapped Concrete Box-Beam 

Two sets of layers of unidirectional glass/epoxy composite are wrapped around the 

outermost surface of the reference concrete box-beam, Fig. (5.18). The orientation of the 

glass reinforcement in the inner layers is along the axis of the box-beam whereas the outer 

layers have fibers oriented perpendicular to the beam’s axis. The shear moduli of the 

innermost layer in the two orthogonal planes containing the longitudinal axis are therefore 

the same along the entire composite wrap, with 𝐺𝑥𝑧 = 𝐺𝑦𝑧 = 𝐺𝐴, where 𝐺𝐴, is called axial 

shear modulus in the composite materials community. In contrast, the shear moduli of the 

outer wrap are different, with the differences depending on whether horizontally or 

vertically oriented layers are considered. For the horizontally oriented outer layers, 𝐺𝑥𝑧 =

𝐺𝐴 , whereas 𝐺𝑦𝑧 = 𝐺𝑇  with 𝐺𝑇  called transverse shear modulus. For vertically oriented 

layers the roles are reversed and 𝐺𝑥𝑧 = 𝐺𝑇 while 𝐺𝑦𝑧 = 𝐺𝐴. The volume fraction of the 

glass fibers in both sets of layers is 0.60 (60% by volume) and the thickness of each set 

comprised of 60 layers each is 0.3 inches based on the standard pre-impregnated tape 

thickness of 0.005 used to lay up the wrap. 

 

Figure 5.18. Subvolume discretization of the cross section of a glass/epoxy-concrete box-beam. 

 

The two shear moduli of the glass/epoxy composite wraps were determined using 

the locally-exact homogenization theory originally developed by Drago and Pindera (2007) 

and further extended by Wang and Pindera (2016). Using the Young’s modulus of 10 𝑀𝑠𝑖 
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and shear modulus of 4 𝑀𝑠𝑖  for the reinforcing glass fibers, and Young’s modulus of 

0.5 𝑀𝑠𝑖 and shear modulus of 0.19 𝑀𝑠𝑖  for the epoxy matrix, the axial and transverse 

shear moduli for the glass/epoxy composite with fiber volume fraction of 0.60 are 

calculated as 0.6828 𝑀𝑠𝑖  and 0.4897 𝑀𝑠𝑖 . These values were employed in the finite-

volume analysis of the composite box-beam. 

 The shear stress resultant distribution in the composite box-beam due to the applied 

angle of twist of 0.0001 𝑟𝑎𝑑/𝑖𝑛 are shown in Fig. (5.19). This shear stress distribution 

produces a torque of 474.3387 𝑘 ∙ 𝑖𝑛  which yields the torsional rigidity of 4.7434 ×

106 𝑘 ∙ 𝑖𝑛2. This torsional rigidity is 1.19 times that of the reference homogeneous concrete 

box-beam, due to the larger cross-sectional area given that the composite wrap has much 

smaller shear moduli than that of concrete at 1.8 𝑀𝑠𝑖. Hence the shear stress carried by the 

composite wraps in pure torsion is much smaller than that of the concrete itself. It is 

interesting, however, to note that the maximum shear stress at the re-entrant corners of the 

composite box-beam is 2.2204 𝑘𝑠𝑖 which is a small increase relative to the reference box-

beam. Composite wrap reinforcement in the manner considered in this example is more 

effective in increasing the bending stiffness of the box-beam than torsional stiffness. 

 

Figure 5.19. The shear stress distribution in the glass/epoxy wrapped concrete box-beam. 
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5.3.3. Steel-Wrapped Concrete Box-Beam 

The above example indicates that in order to effectively increase the torsional 

rigidity of a concrete box-beam using a wrap, the stiffness of the wrap should be larger 

than that of concrete. Hence a steel cage may be a good candidate. Thin steel panels may 

be more effective with concrete than reinforcing rebars, especially when they are wrapped 

completely around the box-beam to produce an integrated, continuously reinforced 

structure. This is the configuration analyzed in this section using the finite-volume method. 

Fig. (5.20) illustrates such a concrete box-beam reinforced with four thin steel panels joined 

at the corners and tightly adhering to the entire outer surface of the beam, thereby encasing 

it completely. 

 

 

 

 

 

 

Figure 5.20. Subvolume discretization of the cross section of a steel case-reinforced concrete box-beam. 

 Fig. (5.21) illustrates the shear stress resultant distribution in the steel case-

reinforced concrete box-beam produced by the applied angle of twist of 0.0001 𝑟𝑎𝑑/𝑖𝑛. 

At this level of subvolume discretization, the maximum shear stress no longer occurs at the 

re-entrant corners where singular-like behavior continues to be observed with comparable 

magnitudes as in the preceding two cases. Indeed, the maximum shear stress resultant is 

8.6988 𝑘𝑠𝑖 and this occurs in the middle of the outer steel layer. As observed, the steel 

layer carries large magnitudes of the shear stress resultant which contributes to the majority 

of the resultant torque. Specifically, the torque calculated from the shear stress distributions 

is 1,588.9 𝑘 ∙ 𝑖𝑛 for the applied angle of twist. Therefore, the resulting torsional rigidity is 

1.5889 × 107 𝑘 ∙ 𝑖𝑛2, which is 3.98 times that of the reference homogeneous concrete box-

beam. 
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 It is worthwhile to point out that the shear stress resultant distribution varies 

continuously within the steel and concrete regions, with a visible jump at the steel/concrete 

interface due to the large jump in the shear moduli of the two materials. 

 

Figure 5.21. The shear stress resultant distribution in the steel case-concrete box-beam. 

 

5.3.4. Glass/Epoxy and Steel-Wrapped Concrete Box-Beam 

As stated before, the finite-volume method has been developed specifically for 

applications involving both heterogeneous materials and structures. Hence the method may 

be used to analyze the effect of reinforcement of a box-beam by any number of different 

materials arranged in many different ways. Therefore, it is also possible to use both the 

glass/epoxy and steel layers wrapped around the concrete box-beam as reinforcement 

without additional difficulty or changes in the actual coding of the equations underpinning 

the theory. It is sufficient to simply assign different elastic moduli to different subvolumes 

that belong to a region characterized by a set of shear moduli through the material 

assignment matrix. Any number of different materials may be employed to produce cross 

sections with arbitrary and exotic microstructures. 

To demonstrate this capability, Fig. (5.22) illustrates the cross section of the 

analyzed composite box-beam that combines the reinforcement of the two previous 

examples.  The steel layer placed on the outside is 0.5-inch thick. The glass/epoxy layers 

between the concrete and steel regions of the composite beam contain two fiber orientations 



95 
 

 
 

as before. That is, the fiber orientation of the inner glass/epoxy layers is along the box-

beam’s longitudinal axis, producing the same shear moduli in both in-plane directions. In 

the outer glass/epoxy plies the fibers are perpendicular to this axis, forming a square pattern 

resulting in two distinct shear moduli in the orthogonal planes containing the beam’s 

longitudinal axis. 

 

Figure 5.22. Subvolume discretization of the cross section of a glass/epoxy and steel-wrapped concrete 

box-beam. 

 Fig. (5.23) illustrates the shear stress resultant distribution produced by the applied 

angle of twist of 0.0001 𝑟𝑎𝑑/𝑖𝑛. As in the preceding case, the maximum shear stress 

occurs in the middle of the outer steel layer and its magnitude of 8.6171 𝑘𝑠𝑖 is slightly 

lower. In contrast, the torque carried by the composite beam is higher, 1686.6 𝑘 ∙ 𝑖𝑛 , 

yielding the concomitantly larger torsional rigidity of 1.6866 × 107 𝑘 ∙ 𝑖𝑛2, which is 4.22 

times that of the reference homogeneous concrete box-beam. The majority of the torque is 

carried by the outer steel layer. 
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Figure 5.23. The shear stress resultant distribution in the glass/epoxy and steel-wrapped concrete box-

beam. 

 

5.4. Summary and Discussion 

The examples presented in this chapter demonstrate that the finite-volume method 

has a great potential for solving Saint-Venant’s torsion problems of composite beams 

comprised of both isotropic and orthotropic regions with high efficiency. Convergence 

studies of the resultant torque and force equilibrium have not been presented in this chapter. 

Instead, the focus has been on validating the applicability of the finite-volume technique 

in applications involving composite cross sections. With this in mind, structural 

engineering applications have been chosen involving both open and closed cross sections 

of beams of different cross sections containing discontinuous and continuous 

reinforcement. Based on the chosen examples, several conclusions listed below are 

summarized. 

Longitudinal rebars do increase the torsional rigidity of concrete structures yet not 

in a remarkable manner. Web reinforcement is thus necessary to support shear stress and 

torque to a greater extent in structures subjected to torsional loading. Therefore, it would 

be a useful effort to construct a three-dimensional version of the finite-volume method to 

analyze torsional resistance in the presence of web reinforcement in the future. Although 

some composite materials such as glass/epoxy may not have large shear modulus relative 
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to the concrete itself, they can still increase the torsional rigidity because of additional 

cross-sectional area. The advantage of composite wraps lies in the low weight gain of the 

beams due to the additional layers that are relatively easy to add. 

In contrast, thin steel layers have a substantially greater impact in strengthening 

box-beams under torsional loading by increasing the torsional rigidity almost three times 

in the considered examples. Therefore, wrapping a concrete member with a thin steel layer 

is an efficient way to resist twist. Actually, wrapping a concrete layer first with thin steel 

and then glass/epoxy is a win-win strategy, since steel is able to carry a tremendous portion 

of torque for the entire beam and glass/epoxy can protect the steel from corrosion in the 

open air. 
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Chapter 6 

6. Contributions and Conclusions 

6.1. Summary and Conclusions 

Under combined loading, the different deformation modes of structural elements 

are typically analyzed separately. One of the distinct deformation modes produced by pure 

torsion, characterized by twisting of a structural element with a constant cross section, 

plays an important role in structural engineering design. Not only can applied torque 

produce twisting, but shear stress distributions created by bending deformations can also 

result in torsional effects. Torsion introduces additional shearing in the structural 

component’s cross section, which may potentially produce failure in concrete structures or 

damage their serviceability. Therefore, the torsion problem requires critical analysis to 

ensure stability and safety of structural designs, and to determine whether necessary 

torsional reinforcement should be taken in order to avoid structural collapse or loss of 

integrity. 

 Saint Venant developed an exact elasticity solution framework to torsion problems 

of prismatic members that reduces a seemingly three-dimensional problem to a two-

dimensional one involving just one governing differential equation based on the constancy 

of the twisting deformation pattern along the members’ longitudinal axis. This framework 

is universally called the semi-inverse method. Torsion problems were defined by the 

Laplace equation subject to Neumann-type boundary condition which ensured that the 

lateral surface of the member was traction free. Prandtl subsequently reformulated the 

torsion problem by introducing a stress function that satisfied equilibrium equations and 

showed that this stress function must satisfy Poisson’s equation. Specifically, Prandtl’s 

stress function satisfies exactly the third equilibrium and simplifies the traction-free 

boundary condition to a Dirichlet type where the function has a constant value on the cross 

section’s lateral boundary. Due to the pioneering work of Saint Venant and Prandtl, 

Timoshenko (1970), Boresi and Schmidt (2003), Ugural and Fenster (2003), Sadd (2005) 
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and many others who followed the semi-inverse solution approach made the torsion of 

prismatic homogenous isotropic bars well established. The developed analytical techniques 

are limited to a relatively small number of cross sections mainly composed of isotropic 

materials. It is only recently that prismatic bars made of anisotropic materials and 

composite cross sections have been studied analytically, cf., Mushkhelishvilli (1975), 

Savoia andTullini (1993), Swanson (1998) and Chen (2004). For complicated cross 

sections, however, numerical techniques must be employed.  

 Three popular numerical methods, namely the finite-difference method (Ely and 

Zienkiewicz, 1960), the boundary element method (Sapountzkis and Mokos, 2003) and the 

finite-element method, have been employed to solve torsion problems of composite cross 

sections. Each class of these methods has its own advantages and disadvantages. The finite-

element method is the most widely used technique in the solution of torsion problems based 

on the warping or stress function approaches, cf., Xiao et al. (1998), Li et al. (2000) and 

Saygun (2007).  

An alternative to the solution of structural problems, including the Saint Venant’s 

torsion problem, is the finite-volume method originally developed for fluid mechanics 

boundary-value problems, cf. Lveque (2002), Versteeg and Malalasekera (2007). 

Satisfaction of the governing equilibrium field equations within subvolumes of the 

discretized domain in an integral sense is its key feature. Three versions of the finite-

volume technique can be identified in the analysis of solid mechanics problems, as 

discussed by Cavalcante et al. (2012). The first two approaches, cell-centered and cell-

vertex finite-volume technique, were motivated by the established finite-volume technique 

for fluid mechanics and elements of the finite-element method. The third approach evolved 

independently to deal explicitly with heterogenous microstructures, Bansal and Pindera 

(2003, 2005, 2006) and Zhong et al. (2004). This version employs explicit displacement 

field approximation within individual subvolumes, and follows an elasticity-based 

approach in satisfying interfacial displacement and traction continuity conditions in a 

surface-averaged sense. The main objective and contribution of this thesis were to 

demonstrate the utility of the finite-volume approach in the solution of Saint Venant’s 

torsion problems of prismatic bars of arbitrary cross section and composition. 
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In this thesis, the finite-volume theory developed by Pindera and co-workers has 

been extended to the solution of Saint Venant’s torsion problems, assessed, validated and 

applied to the analysis of cross sections employed in structural engineering problems. The 

displacement-based formulation has been employed in constructing the solution 

methodology. In the developed finite-volume approach, subvolumes that make up any 

shape cross sections are rectangular with their own elastic properties. Each subvolume is 

in a state of force equilibrium and satisfies traction and displacement continuity with its 

adjacent neighbors in a surface-averaged sense. In order to provide a standard for 

comparison and validation of the developed finite-volume method, finite-difference 

solutions have also been developed using both displacement-based and stress-based 

formulations. These approaches are well-suited for the solution of Saint Venant’s torsion 

problems involving homogenous linear elastic isotropic material cross sections, and exhibit 

quick convergence behavior, but are not easily extended to cross sections composed of 

complicated heterogeneous regions containing different materials. The finite-volume and 

finite-difference methods have been implemented in MATLAB computer codes capable of 

generating displacement and shear stress fields, as well as torsional rigidity of the analyzed 

cross sections. 

Both the finite-volume and finite-difference techniques have been validated against 

the elasticity solution for homogenous isotropic rectangular cross section bars of any aspect 

ratio based on an infinite Fourier series representation of the Prandtl’s stress function. It 

has been demonstrated that the convergence of the finite-volume predictions with mesh 

refinement to the elasticity results for a wide range of cross section aspect ratios is slower 

relative to the finite-difference method, while the differences between the finite-volume 

and elasticity results are still within an acceptable range. It has also been demonstrated that 

at any level of subvolume discretization of the analyzed cross section, the horizontal and 

vertical shear forces produced by the torsion-induced shear stresses vanish, ensuring that 

the analyzed member is indeed subjected to pure torsion. This is a distinct feature of the 

finite-volume method which also applies to torsion problems. 

The convergence and accuracy of the finite-volume method relative to exact 

elasticity solutions were also demonstrated for composite cross sections made up of two 



101 
 

 
 

symmetrically joined rectangular regions filled with different materials. The developed 

finite-volume technique yielded results which were close to those calculated by the exact 

elasticity solution of Mushkhelishvilli. The finite-volume method was also demonstrated 

to be more accurate than some of the finite-element method results available in the 

literature. The validation of the developed finite-volume method’s accuracy in the analysis 

of both homogeneous and composite cross sections relative to exact elasticity solutions 

confirms the method’s applicability in structural engineering applications. 

Prandtl’s stress function reformulation also enables an analogy to be drawn between 

torsion problems and a deflection of a pressurized flexible membrane over an opening of 

the same shape as the bar’s cross section. The analogy demonstrates the physical 

significance of the mathematical formulation of torsion problems and a means of obtaining 

approximate solutions. This analogy has been assessed in this thesis for torsion of thin-

walled structures for which closed-form results for torsional rigidity are available based on 

the approximation of torsional shear stresses that develop in thin-walled cross sections. 

Three typical homogenous cross sections employed in structural engineering, namely T-

beams, channel-beams and box-beams, have been analyzed and the accuracy of the 

membrane analogy was assessed for each cross section using the corresponding results 

generated by the finite-difference and finite-volume methods. The membrane analogy was 

shown to be an efficient and accurate tool in estimating the torsional rigidity of open-

section members such as T-beams and channel-beams with good accuracy relative to the 

finite-difference and finite-volume calculations. The torsional rigidity of the box-beam 

cross section was underestimated by the membrane analogy for larger wall thickness, but 

the difference became increasingly smaller as the walls became thinner. 

The shear stress fields employed in the membrane analogy applied to thin-walled 

structures, that are used in the torsional rigidity calculations, are approximations that 

neglect the effect of junctions between different cross section members and the 

corresponding re-entrant corners that give rise to large stress concentrations which exhibit 

singular-like behavior. This local singular-like behavior was captured with good accuracy 

by the finite-volume and finite difference methods upon comparison with an exact 

elasticity solution, but is outside of the membrane analogy’s predictive capability. For 
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closed-section structures like the box-beam, the presence of several such corners affects 

the torsional rigidity calculations for sufficiently thick walls based on the membrane 

analogy, leading to the observed differences. These differences are rooted in the substantial 

differences in the shear stress resultant distributions in the four corner regions. Outside of 

the stress concentration regions, and regions where the cross-section’s members terminate, 

the shear stress fields predicted by the membrane analogy are generally accurate. 

Specifically, the non-singular maximum shear stress resultants predicted by the membrane 

analogy were accurate at the midpoints of the T-beam’s web and the three walls of the 

channel-beam, whereas the maximum shear stress difference decreased with decreasing 

wall thickness at the midpoint of the T-beam’s flange but did not vanish even for the 

thinnest wall configurations. The difference was affected by the web/flange junction that 

produced shear stress fields with large deviations from the membrane analogy’s 

approximation. 

In summary, the membrane analogy has its place in the design of thin-walled 

structures subjected to torsion because of easy and simple calculations which yield good 

estimates of torsional rigidity and non-singular maximum shear stress resultants in the 

absence of exact elasticity solutions. However, caution must be exercised when identifying 

potential failure initiation sites produced by large stress concentrations, particularly at re-

entrant corners created by junctions of two adjacent members of the cross section.  

Finally, the finite-volume method’s strength lies in its superior ability to handle 

heterogeneous microstructures. This strength was demonstrated in this thesis for composite 

cross sections with isotropic or orthotropic materials in the form of discontinuous and 

continuous reinforcement of concrete T- beam and box-beam cross sections. This thesis 

lays the foundation for the implementation of the finite-volume method in a large range of 

applications involving the design of composite structural elements with complex 

heterogeneous microstructures. 

  



103 
 

 
 

6.2. Proposed Future Work 

Functionally graded materials became popular in recent years, including 

application to torsion problems. Cross sections comprised of functionally graded regions 

are easily amenable to analysis using the developed finite-volume method. Xu et al. (2010) 

and Darilmaz (2017) have generated results for such cross sections subjected to torsional 

loading using analytic and finite-element methods, providing abundant data for future 

comparison. 

In this thesis, composite cross sections reinforced by circular rebars were mimicked 

using discretization based on square subvolumes. This is not as efficient as using 

quadrilateral subvolumes employed in the parametric version of the finite-volume method. 

The results generated in this thesis provide the foundation for further extension of the 

developed finite-volume approach to the solution of torsion problems based on the 

parametric version of the theory. This will facilitate the analysis of torsion problems 

involving circular, elliptical and other cross sections reinforced by differently shaped 

materials. 

Determination of the shear center of prismatic bars is also essential for thin-walled 

structure design since resultant loading through this center creates pure bending, thereby 

avoiding additional torsion that may produce the phenomena of wall buckling. For 

instance, Natori (2001) computed the shear center of thin-walled cross sections by the 

finite-element method. The determination of the shear center of composite cross sections 

is still a largely unexplored area. A three-dimensional version of the finite-volume theory 

for structural engineering applications is required to accomplish this and this will be 

pursued in the future. 
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Appendix A 

The coefficients in Eq. (2.36), Surface-averaged tractions expression with respect to 

surface-averaged displacements: 
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Appendix B 

       

a/b = 1 

       

a/b = 5 

    

a/b = 10 

Figure 3.6. Full-field difference of displacement and shear stress (FDM vs Elasticity). 
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