

The Competitive Subculture of Cryptocurrency Mining

A Technical Report

presented to the faculty of the

School of Engineering and Applied Science

University of Virginia

by

Kevin Chen

March 20, 2023

On my honor as a University student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Kevin Chen

Technical advisor: Rosanne Vrugtman, Advisor, Department of Computer Science

Creating Dynamic Mock API Responses for UI Testing

CS4991 Capstone Report, 2022

Kevin Chen

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

kyc4mr@virginia.edu

Abstract

A large software company was planning to

undergo large changes in their API

contracts. However, this meant that they

needed to create a way to smoothly integrate

the current UI tests with the new API

contracts without having to retype all their

UI tests. UI tests use the API responses to

execute different commands by mimicking

human interactions. The idea was to create

dynamic mock API responses to accomplish

this. Instead of mocktail files storing API

responses for testing, code done directly in

Swift could easily be modified if changes

occurred to API response structures. Our

team interviewed teams for possible

approaches, then implemented the code in

Swift before creating robots using the newly

created dynamic mock API responses. This

code was eventually pushed to the main

code repository. For next steps, dynamic

API mocks will eventually be implemented

in more teams across the company.

1. Introduction

Imagine you are working at a large

company, conducting hundreds of thousands

of tests to make sure your application works.

However, one day you need to change every

single one of these tests. This is what

happened at the large company I worked at.

API contracts, which receive application

requests to perform third party functions,

were going to change and the existing UI

tests had to change in order to account for

the testing of these third-party API calls.

Our goal during the internship was to create

dynamic mock API responses, as the

solution.

2. Related Works

Creating API responses using Swift code is

not a new thing (Mainguy, 2019) [1].

Creating these responses utilizes aspects of

Swift, particularly “NetworkManager,” to

intercept API calls to the network and return

the mocked API response. This is the

approach we took in the internship project.

However, the difference is that all previous

mocks will also have to bypass a UI testing

manager used in the company.

Another approach that has been used before

was to create an entirely new architecture

(Tirodkar and Khandpur, 2019) [2]. This

approach builds upon Apple’s own UI

testing framework, XCUITest. It fixes

several issues with the way user interactions

were mimicked such as flakiness in the

testing and adding more robust testing. In

our project, we did not create a new

architecture but instead used the existing

framework’s UI testing options and creating

the dynamic mocks off the framework.

3. Process Design

Because the software company was large,

creating a process for changing all of the UI

tests would require several steps. We split

the task into four parts: 1) asking other

teams what kind of approaches might work;

2) creating the response format; 3) designing

robots to use the new mock API responses;

and 4) creating robots using the new mock

API responses to do UI testing

automatically.

3.1 Interviewing Teams

The first step was the consult via Zoom

other teams that were also working on iOS

development. Our intern team had four

interns. We split into two teams and

interviewed other teams pursuing different

methods. Suggestions on possible

approaches included bypassing the current

method of API responses. At the time, API

response went through a company-

developed tool to store API responses and

return them whenever a method used an API

for testing. This would be necessary since

the changing of API responses would go to

the tool and return the old API responses

unless we re-recorded every single one

through the tool, which would take a lot of

time and would not be sustainable in the

long-term. So several meetings were

scheduled on ways to bypass this tool.

3.2 Creating the Response Format

Once we had an idea of the approach, we

presented our findings to the team and began

working on the response format. The four of

us worked through peer-coding with our

mentor. During the few coding days, we

took a room in the office and worked

through one person’s laptop projected on the

large screen in the room. We made several

modifications to the current repository in

CocoaPods, which was the dependency

manager for the application. We also made a

sample for this by removing the .tail file we

used for holding a mock API response for

email authentication and replacing it with

the dynamic mock stub we created.

3.3 Creating Robots

Once we had sufficient evidence that our

dynamic mock API response was working,

we presented our approach to the team along

with the intention of creating robots using to

make UI testing easier. These robots

functioned to execute certain UI tests on

command, which allowed for testing of

small snippets of the code such as individual

functions without needing to test the whole

code.

The structure of the robots were:

• a main, “orchestrating” robot which

would be in charge of other robots and

could direct them to do certain tasks

such as make a change in the dynamic

mock API response or execute a certain

task;

• Robots directed by the orchestrating

robot that would use the dynamic mock

API response created and execute tests.

4. Results

Our solution is now being used in most of

the iOS code and has been pushed to the

main code repository. Before, one would

need to manually change each .tail file if a

certain aspect of the call is changed;

however, if an API contract changes in the

future, one only needs to make a change in

one of the mock API stubs, and all the API

calls that use that stub will change, saving

hours for UI testing changes.

5. Conclusion

This project reduced the amount of work

needed to maintain UI tests involving mock

API responses. At the time, the large

software company needed a way to continue

mocking API responses in their UI tests for

their iOS app. Creating dynamic mock API

responses was the optimal solution that

allowed for long-term use with relatively

low effort. After this solution was

implemented, there was time to create robots

that utilized these new dynamic mock API

responses to automate the iOS app’s UI

tests.

6. Future Work

The next phase of this work would be to

scale this for the whole iOS app at the

company. Once this is completed, its

integration would allow UI tests to be done

more seamlessly and prevent errors in the

application when API contracts are edited.

This way, robots can also work together to

do tests across the whole application;

allowing for faster testing.

References

[1] Mainguy, J. 2019. Painless UI Testing in

iOS (Part 1) - Mocking the Network | by

Jean. Medium. Retrieved November 8, 2022

from https://code.egym.de/painless-ui-

testing-in-ios-part-1-mocking-the-network-

ffbd6ab4809a

[2] Tirodkar, A. and Khandpur, S. 2019.

EarlGrey: iOS UI Automation Testing

Framework. IEEE. Retrieved November 18,

2022 from https://ieeexplore-ieee-

org.proxy1.library.virginia.edu/document/88

16871

https://code.egym.de/painless-ui-testing-in-ios-part-1-mocking-the-network-ffbd6ab4809a
https://code.egym.de/painless-ui-testing-in-ios-part-1-mocking-the-network-ffbd6ab4809a
https://code.egym.de/painless-ui-testing-in-ios-part-1-mocking-the-network-ffbd6ab4809a

