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Executive Summary 

As machine learning models grow increasingly powerful driven by big-data and the scaling 

law, the environmental sustainability of artificial intelligence research becomes an alarming issue. 

My Capstone Project leverages deep learning techniques to improve rainfall-runoff modeling in 

hydrology, addressing the challenge of accurately predicting floods and managing water resources. 

Additionally, my research generalizes a data-driven approach to tackle large-scale scientific 

challenges where neural networks outperform traditional methods. My STS research investigates 

how governmental funding decisions in AI research have profound environmental impacts. 

Despite the enormous energy consumption of computationally intensive models, it is often 

overlooked in the grant approval process. My Capstone Project provides a basis for quantifying 

the energy usage of machine learning research, as well as exploring how government funding 

directly impacts environmental research projects like mine. This study emphasizes the importance 

of integrating sustainability into AI research at a high level, ensuring that technological 

advancements are pursued responsibly and ethically. 

My Capstone Project, Deep Learning in Hydrology, provides a computational solution to 

rainfall-runoff modeling by employing the Long Short-Term Memory (LSTM) neural network. 

Traditional hydrological models, though effective, are computationally expensive and limited by 

data availability. In this work, we analyzed hydrology time series using the CAMELS and Caravan 

global datasets. These datasets include up to 6 time series variables and 209 environmental features 

collected from around 8,000 locations worldwide.  

We found that including environmental data in training significantly boosts model 

accuracy, reducing the error by 40% when tested on the largest dataset. Additionally, including 

encoding techniques that captures the relationship between catchments and some periodic 



hydrological patterns further improves model performance. When compared to state-of-the-art 

time series foundation models that require huge computational resources to train, our domain-

specific LSTM model outperforms all of them in a benchmark experiment. These results advocate 

for the use of domain-specific knowledge in large-scale scientific time series research to improve 

efficiency and reduce environmental footprint. 

My STS research paper examines how government funding impacts AI development and 

environmental sustainability. My research question explores the effects government funding has 

on academic research topics and the extent to which agencies like National Science Foundation 

(NSF) and the Department of Energy (DOE) incorporate environmental considerations into AI 

project evaluations. Utilizing a systematic literature review and ethical frameworks, this study 

highlights the critical oversight of energy efficiency and environmental impact within 

governmental AI funding strategies. 

The analysis reveals a significant gap: governmental funding processes prioritize 

immediate economic and societal benefits, often neglecting long-term environmental 

consequences. Case studies of large-scale AI projects illustrate substantial environmental costs due 

to high GPU usage and energy consumption. The conclusion calls for integrating sustainability 

metrics into government funding criteria, advocating a balanced approach guided by both 

utilitarian and environmental ethics to incentivize energy-efficient AI innovations. 
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Abstract—This research is part of a systematic study of
scientific time series. In the last three years, hundreds of papers
and over fifty new deep-learning models have been described
for time series models. These mainly focus on the key aspect
of time dependence, whereas in some scientific time series, the
situation is more complex with multiple locations, each location
having multiple observed and target time-dependent streams and
multiple exogenous (known) properties that are either constant
or time-dependent. Here, we analyze the hydrology time series
using the CAMELS and Caravan global datasets on catchment
rainfall and runoff. Together, these have up to 6 observed streams
and up to 209 static parameters defined at each of about 8000
locations. This analysis is fully open source with a Jupyter
Notebook running on Google Colab for both an LSTM-based
analysis and the data engineering preprocessing. Our goal is to
investigate the importance of exogenous data, which we look at
using eight different choices on representative hydrology tasks.
Increasing the exogenous information significantly improves the
data representation, with the mean square error decreasing
to 60% of its initial value in the largest dataset examined.
We present the initial results of studies of other deep-learning
neural network architectures where the approaches that can use
the full observed and exogenous observations outperform less
flexible methods, including Foundation models. Using the natural
annual periodic exogenous time series produces the largest
impact, but the static and other periodic exogenous streams are
also important. Our analysis is intended to be valuable as an
educational resource and benchmark.

I. INTRODUCTION

A. Spatio-temporal Series Datasets

Scientific data is frequently represented as spatio-temporal
series, where time series data are often influenced by geo-
graphical factors. The language of spatio-temporal series is
used as a common application type, where the ”series” can
refer to any ordered sequential data points. These sequences
can belong to any collection (bag), not restricted to Euclidean
space-time, as long as sequences are labeled in some way and
have properties that are consequent to the label. In the case
of COVID-19 data [1], [2], daily case / death statistics are
grouped by location (e.g. city, county, country) and influenced
by demographic characteristics of these locations [3]. In the
case of earthquake data [4], the earthquakes are grouped
by 11 km x 11 km regions [5]. Similarly, in the case of
hydrology data, daily precipitation and streamflow are grouped
by catchments and are affected by environmental attributes and
locations of these sites.

Typically, the data in these contexts are recorded as space-
time-stamped events. Fig 1. However, data can be converted
into spatio-temporal series by binning in space and time.
Comparing deep learning for time series with coupled ordinary
differential equations for multi-particle systems motivates the
use of an evolution operator to describe the time dependence
of complex systems. Our research views deep learning applied
to spatio-temporal series as a method for identifying the
time evolution operator governing the behavior of complex
systems. Metaphorically, the training process uncovers hidden
variables representing the system’s underlying theory, similar
to Newton’s laws. Previous studies on COVID-19 [3] and
earthquakes [5] show neural networks’ ability to learn spa-
tiotemporal dependencies in spatio-temporal series data. This
work extends this approach to hydrology, demonstrating deep
learning’s ability to model the rainfall-runoff process.

Fig. 1. Spatio-temporal series layout.

B. Rainfall-Runoff Problem
Rainfall-runoff modeling, a key challenge in hydrology,

aims to model the physical process by which water on land
surface (precipitation or snowmelt) moves to streams [6].
As part of the hydrologic cycle, precipitation on land either
evaporates, transpires, infiltrates to recharge groundwater, or
becomes surface runoff entering a catchment [6]. A catchment,
or watershed, is an area where all precipitation collects and
drains into a common outlet, such as a river, lake, or reservoir
[6]. Surface runoff contributes to streamflow, which is defined
as the volumetric discharge that takes place in a stream or
channel. Runoff RO can be estimated with Equation. 1, where
Q is streamflow, and GWout is ground-water outflow. Stream



outflow Q can be estimated with Equation. 2, where P is
precipitation, GWin is ground-water inflow, ET is evapo-
transpiration, !S is the change in liquid and solid forms of
storage. Eventually, this streamflow and ground water outflow
reaches the ocean, where it evaporates, condenses into clouds,
and returns as rainfall on land, completing the hydrologic cycle
[6].

RO = Q+GWout (1)

Q = P +GWin →GWout → ET →!S (2)

Rainfall, like many natural phenomena, is periodic, with
daily patterns that follow consistent seasonal cycles. While
streamflow result from precipitation, it is also influenced by
static environmental factors such as soil type, land cover, slope,
etc. Based on this, we hypothesize that daily streamflow in
a catchment can be predicted using a combination of daily
meteorological forcing data, and the spatially and temporally
distributed hydrologic, climatologic, geologic, pedologic, and
land-use data [6]. Additionally, a neural network can learn the
seasonal patterns of these hydrological processes to produce
accurate forecasts.

C. Related Work
Traditional rainfall-runoff modeling has typically focused on

individual catchments. The first documented model, introduced
in 1851, used linear regression to predict discharge from
precipitation intensity and runoff [7]. Since then, scientific
advancements have led to more sophisticated models based
on mathematical formulas and physical laws. The advent of
computers brought digital hydrological models. At a time
when computers are expensive, slow, and low in memory,
the Stanford Watershed Model [8] was proposed. It was seen
as one of the first and most successful digital computer
models [9]. As computers become more powerful, distributed
models [10], [11] emerged, allowing for hydrological models
to closely couple to geographical information systems for the
input data [9]. Taking advantage of the number of parame-
ters offered, these physical-based distributed models perform
exceptionally well. However, the high computational cost to
calibrate these parameters, and the limited availability of data
hinder their use in large-scale forecasting applications [12].

Groundbreaking advancements in deep learning models and
the publication of structured large-sample Hydrology dataset
have overcome this limitation, enabling the study of nation or
global scale rainfall-runoff modeling [13], [14]. In the 1990s,
Artificial Neural Network (ANN) based rainfall-runoff model
was proposed [15]–[17]. Although scientists were initially
hesitant to embrace this novel “black box” approach due to
the lack of extensive studies, deep learning based Hydrology
models proved successful [17]. Its exceptional capability in
simulating complex non-linear systems is particularly advan-
tageous for Hydrology modeling. In 2018, the focus of the
field shifted towards Long Short-Term Memory (LSTM) based
models, which excelled in learning sequential dependencies
within time series data [13] [18]. These models have shown

great success in large-scale hydrological time series predic-
tions. Further studies explored the interpretability of such
LSTM models within physics context [19]. Since then, an open
source library for the LSTM based rainfall-runoff model was
published [20].

II. DATA AND METHODS

A. Datasets selection

Hydrology data comprises of both time series and static
exogenous features. It falls within the scope of spatio-temporal
series since all time series properties (eg. mean temperature,
streamflow) are collected and organized by catchment. Hydrol-
ogy data is collected by gauges, which are stations that collect
measurements at each catchment. Static attributes for each
catchment refers to environmental conditions (eg. dominant
land cover, soil aridity), as well as spatial extent and locations
(eg. coordinates).

Recent deep learning studies on Hydrology have been driven
by the advent of CAMELS (Catchment Attributes and Meteo-
rology for Large-sample Studies) datasets, which established a
standard for organizing big Hydrology data at different nations
across the globe. The first CAMELS dataset [21], initially
proposed with 671 catchments in the U.S., benchmarked the
types of static and time series properties necessary for large
sample hydrology datasets containing hundreds of catchments
or more. The high dimensionality of static data along with the
20-year duration of daily time series data made it suitable
for nation-scale Hydrology modeling using neural network
models. Since then, CAMELS-standard datasets have been
published for countries including the United Kingdom [22],
Chile [23], Australia [24], Brazil [25], Switzerland [26],
Sweden [27], France [28], etc.

B. Three-Nation Combined CAMELS Data

Similarities shared by CAMELS-standard national datasets
allow for the combination of national datasets into a large
global dataset, which can be used for global-scale training. In
this study, the experimental dataset was produced by combin-
ing CAMELS data from three nations: the United States [21],
United Kingdom [22], and Chile. These datasets were selected
as they provide the earliest available CAMELS-structured data
during the data preprocessing phase of this study. We select
static features and time series targets that are shared across
the three datasets prior to combination.

TABLE I
THREE-NATION COMBINED CAMELS DATA SOURCE

CAMELS-US CAMELS-GB CAMELS-CL

Forcing a Maurer [29] CEH-GEAR [30] CR2MET [31]

CHESS-met [32]

Streamflow USGS [33] NRFA [34] CR2 [35]

a Time series targets such as precipitation and temperature.



Although CAMELS-US, CAMELS-GB, CAMELS-CL fol-
low the same standards, the exact choice of static attributes
they include vary slightly, prohibiting simple concatenation of
data. For instance, the “Land Cover” section of CAMELS-US
only contains “% cover of forest” data for each catchment,
while that section of CAMELS-GB contains the percent cover
of all plantation types like woodland, crops, shrublands, etc.
Without further details on the data measurement process for
these properties, arithmetic manipulations to forge “percent
cover of forest” for the CAMELS-GB dataset from the given
“percent cover of woodland, crops, shrublands, etc” cannot be
performed. To address this issue, the three-nation combined
CAMELS dataset used in this study only contains static
properties shared across the US, GB, and CL datasets. The
processed dataset includes 1858 catchments, 3 dynamic, and
29 static variables.

C. CAMELS Preprocessing

For dynamic variables, we selected the common interval
of 7,031 days, spanning from October 2, 1989, to December
31, 2008. The start date of a water year, as defined by the
U.S. Geological Survey, is October 1st [6]. To account for
time differences between the nations, we shifted the training
data by one day, beginning on October 2nd. An analysis of
NaNs in data revealed no NaN values in time series data,
yet some exists in the static features. Since missing data
constitutes only a small percentage of total static data and
occurs miscellaneously, it is filled with the mean value of that
attribute from all catchments. Categorical variables are only
present in the form of months from January to December.
We encode them with ordinal encoding between 0 and 1 to
preserve the natural order of months.

D. Caravan

Published in 2023, the Caravan dataset [36], consists of
seven preprocessed CAMELS-standard national datasets that
contain identical static exogenous features and time series
properties. Caravan aggregates data from 6,830 catchments
across 16 nations spanning four continents, making it ideal for
global rainfall-runoff modeling with large-scale hydrological
data.

TABLE II
CARAVAN SUB-DATASETS

Sub-dataset Catchments

CAMELS (US) [21] 482

CAMELS-AUS [24] 150

CAMELS-BR [25] 376

CAMELS-CL [23] 314

CAMELS-GB [22] 408

HYSETS (North America) [37] 4621

LamaH-CE [38] 479

The Caravan dataset is not constructed by identifying com-
mon static and time series properties shared by previously
published versions of each sub-dataset. Instead, it is derived
from data sources that differ significantly from those used in
the original CAMELS datasets for various nations. While the
catchments included in the Caravan sub-datasets are the same
as those in the original versions, the actual data is sourced
from global hydrological sources rather than the local sources
used in the original publications. This shift to global sources
enables the collection of more standardized and abundant data,
making it suitable for global-scale comparative hydrological
studies—one of the key motivations behind the creation of
Caravan. However, it is important to note that data from
global sources may vary slightly from local sources, which
are often more precise. For example, in the CAMELS-US
sub-dataset within Caravan, all forcing data is sourced from
ERA5-Land [39], streamflow data from GSIM [40] [41],
and static properties from HydroATLAS [42]. In contrast,
the original CAMELS-US [21] dataset included static and
time series data from three sources: NLDAS [43], Maurer
[29], and DayMet [44], with streamflow data from USGS
[33]. After comparison, only the streamflow data remains
consistent between CAMELS-US in the original publication
and in Caravan. The correlation coefficient for precipitation
time series data between different data sources is presented
in III. Nevertheless, the Caravan paper [36] addresses this
concern, noting that the correlations between Caravan and each
of the three CAMELS-US data products are not consistently
lower than the correlations within the individual CAMELS-US
data products.

TABLE III
CAMELS-US CARAVAN COMPARISON

Maurer Daymet NLDAS

Caravan 0.71532 0.60720 0.75441

III. METHODS

A. Long Short-Term Memory

The Long Short-Term Memory (LSTM) network [45] is
a specialized variant of a Recurrent Neural Network (RNN)
designed to address the vanishing gradient problem through its
unique memory cell structure. In an LSTM block (as shown in
the figure below), the cell state (denoted by C) serves as long-
term memory. Minimal weight updates to the cell state during
backpropagation effectively mitigate the vanishing gradient
problem, making LSTM particularly well-suited for time series
tasks involving long sequences of data. Additionally, the
hidden state (denoted by h) serves as short-term memory.
Weights (denoted by W ) and biases (denoted by b) are applied
to the input and passed through sigmoid and tanh activation
functions. The output from the hidden state is then used to
update the cell state, while the updated cell state, in turn,
informs the hidden state during the final stage of computation
within the LSTM block.



Fig. 2. LSTM network.

Forget gate. Initially, the input Xt is combined with the
previous hidden state ht→1 through the forget gate, which
determines how much of the long-term memory is preserved.
As shown in Equation 3, ft represents the forget gate value,
Wf denotes the input weights for the forget gate, Uf refers
to the recurrent weights for the forget gate, and bf is the bias
term for the forget gate.

Input gate. Next, the input Xt passes through the input
gate, which determines the specific information to be incor-
porated into the long-term memory. As shown in Equation 4,
it represents the input gate value, Ĉt denotes the temporary
cell state value, Wi represents the input weights for the input
gate, Ui refers to the recurrent weights for the input gate, and
bi is the bias term for the input gate.

Output gate. Lastly, the input Xt passes through the output
gate, which updates the short-term memory. As shown in
Equation 6, Ot represents the output gate value, Wo is the
input weights for the output gate, Uo is the recurrent weights
for the output gate, and bo is the bias term for the output gate.

Cell state and hidden state. The outputs from the forget
gate, input gate, and output gate are applied to the previous
cell state and hidden state to calculate the new ”long-term” and
”short-term” memory values. As shown in Equations 7 and 8,
Ct represents the updated cell state (long-term memory), and
ht represents the updated hidden state (short-term memory).

ft = sigmoid(Wf ↑ xt + Uf ↑ ht→1 + bf ) (3)

it = sigmoid(Wi ↑ xt + Ui ↑ ht→1 + bi) (4)

Ĉt = tanh(Wi ↑ xt + Ui ↑ ht→1 + bi) (5)

Ot = sigmoid(Wo ↑ xt + Uo ↑ ht→1 + bo) (6)

Ct = Ct→1 ↑ ft + it ↑ Ĉt (7)

ht = Ot ↑ tanh(Ct) (8)

B. Model Setup
The LSTM model used in this study is implemented using

the Tensorflow framework, which allows for customization of
layer parameters. The baseline model architecture is shown in
Fig. 3. Detailed activation function setup is shown in Tab. IV.
To prevent overfitting, a dropout rate of 20% is applied to the
layers.

Fig. 3. CAMELS-US model architecture and layer size.

TABLE IV
MODEL ACTIVATION SETUP

Dense Encoder Activation SELU

LSTM Recurrent Activation Sigmoid

LSTM Layer Activation SELU

Dense Decoder Activation SELU

C. Model Training and Evaluation

Inputs to the model can be classified into known inputs
and observed inputs [5]. Known inputs refer to features that
are known in both the past and future. In this hydrology
study, static known inputs are the exogenous features such
as climatic signatures, hydrologic signatures, and catchment
topography. Additionally, time series known inputs exist in the
form of seasonal patterns hidden in all time series features.
Observed inputs are features known only for the past time
periods but unknown in the future. In hydrology, those features
include precipitation, temperature, and streamflow. Model
output, known as targets, are the time-dependent predicted
properties. In this study, predicted targets are precipitation,
temperature, and streamflow.

The input data is divided into batches with a sequence
length of 21 days, selected after testing various other lengths,
including 7, 14, and 365 days. The 3-week sequence length
was chosen to effectively capture subtle hydrological patterns.
The total number of batches processed during one epoch is
calculated using Equation 9, while the batch size is determined
by Equation 10. In these equations, Daytotal represents the
total duration of the input data in days, lseq denotes the
sequence length, #Gauges refers to the total number of
gauges in the input data, and #Input properties indicates
the total number of input features, including both static and
time series properties.

#batch/epoch = Daytotal → lseq + 1 (9)

Sbatch = lseq ↑#Gauges↑#Input properties (10)

Symbolic Window. A key challenge encountered during
LSTM model training was the space complexity associated



with handling the training data. Under the previously men-
tioned batch size configuration, storing all batches prior to
training requires RAM space of O(Sbatch ↑#batch/epoch).
To address this issue, we leverage a symbolic window to
dynamically generate batches during each epoch of train-
ing. Instead of storing the entire training set, including all
batches, before training, we only store the original input
data with a space complexity of O(Daytotal ↑ #Gauges ↑
#Input properties). During each epoch, we track the start
index i for the current batch and extract the corresponding data
for the batch from the input data using Data[dayi : dayi+lseq ].
This batch is then trained, and the index i is incremented
before proceeding to extract the next batch. This process is
repeated #batch/epoch times to complete a full epoch of
training. Note: This technique is environment-dependent and
may not be applicable to all frameworks.

Spatial and Temporal Encodings. Like many fields of
science, hydrology time series data exhibit strong seasonal
patterns. It can reasonably be assumed that, at a specific
gauge location, the precipitation and streamflow in October
of one year will be similar to those recorded in October of
the previous year. Furthermore, research has identified the
approximate water residence times in various reservoirs, such
as rivers, lakes, soil, and the atmosphere [46]. To effectively
capture these known dependencies within the time series
properties, spatial and temporal encodings are incorporated
into the model during training.

1) Linear Space: a linear function with length equaling
total number of catchments in input data.

2) Linear Time: a linear function with length equaling
total number of days in input time series.

3) Annual Fourier Time: a basic sine and cosine function
with period equaling one year.

4) Extra Fourier Time: basic sine and cosine functions
with period equaling 8, 16, 32, 64, 128 days.

5) Legendre Time: Legendre functions of degree 2, 3, and
4 with range equaling total number of days in input time
series.

Spatial Validation. We employ location-based rather than
temporal-based validation as the catchments in the CAMELS
and Caravan datasets are uncorrelated. The training and valida-
tion datasets are randomly selected on an 8:2 ratio by location,
given the extensive number of catchments included in the
datasets used in this study. For example, out of the 671 catch-
ments included in CAMELS-US dataset, 537 catchments are
used for training and 134 catchments are used for validation.

NNSE. Model fit is quantified using normalized Nash-
Sutcliffe Efficiency (NNSE) scores [47], calculated using
Equation 11, where T represents the total number of days,
Q

t
m represents the modeled discharge on day t, Qt

o represents
the observed discharge on day t, and Qo is the mean observed
discharge over T days. NNSE values range from 0 (poor
performance) to 1 (perfect fit), with a score of 0.5 indicating
that the model’s predictions are equivalent to the time-averaged
mean of the observations. In this study, the NNSE value is

calculated for each gauge over time T , and the average NNSE
across all gauges in the input data is reported.

NNSE =
”T

t=1(Q
t
m →Qo)

2

”t
t=1(Q

t
o →Qt

m)2 + (Qt
o →Qo)

2
(11)

IV. LSTM BENCHMARK RUNS

A. Experiment Setup

All experiments are conducted using the model architecture
shown in Fig. 3 and the activation functions listed in Table
IV. The benchmark runs utilize Linear Space, Linear Time,
and Annual Fourier Time encodings. Streamflow time series
data is not trained but predicted as target.

B. Three-Nation Combined Benchmark Run

This run evaluates model performance on the combined
CAMELS dataset from three nations: the US, UK, and Chile.
The input data include static properties that are common
across all three regions, whereas predicted targets consist of
precipitation, mean temperature, and streamflow. Results are
demonstrated in Table V.

TABLE V
CAMELS THREE-NATIONS COMBINED BENCHMARK RUN

MSE NNSE

Train 0.002764 0.847
Precipitation

Val 0.003200 0.836

Train 0.000212 0.933Mean
Temperature Val 0.000356 0.933

Train 0.000432 0.697
Streamflow

Val 0.000613 0.654

Train 0.003438 -
Total

Val 0.004325 -

C. CAMELS Caravan US Benchmark Runs

The runs compare model performance between the original
CAMELS-US dataset and the US sub-dataset within the Cara-
van dataset. The CAMELS-US model is trained using selected
static and time series data from the original CAMELS-US
dataset, while the Caravan-US model is trained using selected
static and time series data from the US sub-dataset within
Caravan. For both runs, we utilize the same time series
features—precipitation and mean temperature—for training
and predict the same targets: precipitation, mean temperature,
and streamflow. Results are presented in Table VI.

D. Caravan PCA Runs

This experiment explores the use of Principal Component
Analysis (PCA) [48] to reduce the dimensionality of static
properties in the Caravan input data. The Caravan sub-datasets
contain over 200 static properties, nearly seven times more



TABLE VI
CAMELS CARAVAN US COMPARISON

CAMELS-US Caravan US

MSE NNSE MSE NNSE

Train 0.003508 0.820 0.002920 0.851
Precipitation

Val 0.003585 0.819 0.004307 0.801

Train 0.000276 0.961 0.000468 0.967Mean
Temperature Val 0.000283 0.960 0.000573 0.963

Train 0.000287 0.806 0.000525 0.814
Streamflow

Val 0.000296 0.812 0.000955 0.703

Train 0.004111 - 0.003982 -
Total

Val 0.004203 - 0.005987 -

than the number of static input properties used in the orig-
inal CAMELS studies. While this extensive range of static
properties enhances model training, it significantly increases
computational demands and GPU usage. To address this,
we apply PCA, a widely adopted dimensionality reduction
technique, to reduce the number of static input features to
a level comparable with that in the CAMELS studies. In
this experiment, we set the explained variance threshold to
90%, resulting in the reduction of static input features to
approximately 30.

The first part of the experiment assesses the effect of
PCA on model trained on US sub-dataset within the Caravan
dataset, representing a small-scale input. The second part of
the experiment examines the effect of PCA on model trained
on North America regional data (HYSETS) [37] within the
Caravan dataset, representing a large-scale input.

Results, shown in Table VII and Table VIII, indicate that
the models trained with static properties obtained from PCA
perform comparably to the models trained with original static
properties, demonstrating that the reduction in input static
dimensionality does not significantly compromise model ac-
curacy. These findings validate PCA as an effective approach
for train hydrology time series models with high static dimen-
sionality.

E. Caravan Global Benchmark Run

This study provides insights into the model’s applicability
to large-scale global hydrology datasets. The input data is
compiled by concatenating all seven Caravan sub-datasets,
which encompass catchments from four continents. As shown
in Table IX, accuracy decreases slightly compared to small-
scale, individual nation fits (Table VI), yet overall model per-
formance remains relatively high, demonstrating its robustness
on global datasets.

TABLE VII
CARAVAN US PCA EXPERIMENT

Original Static PCA Static

MSE NNSE MSE NNSE

Train 0.002920 0.851 0.002994 0.848
Precipitation

Val 0.004307 0.801 0.004264 0.800

Train 0.000468 0.967 0.000468 0.967Mean
Temperature Val 0.000573 0.963 0.000548 0.965

Train 0.000525 0.814 0.000569 0.799
Streamflow

Val 0.000955 0.703 0.000989 0.703

Train 0.003982 - 0.004075 -
Total

Val 0.005987 - 0.005871 -

TABLE VIII
CARAVAN HYSETS PCA EXPERIMENT

Original Static PCA Static

MSE NNSE MSE NNSE

Train 0.002714 0.835 0.002809 0.830
Precipitation

Val 0.002960 0.826 0.003055 0.821

Train 0.000372 0.968 0.000386 0.967Mean
Temperature Val 0.000385 0.966 0.000397 0.965

Train 0.000614 0.825 0.000699 0.813
Streamflow

Val 0.000876 0.798 0.000397 0.799

Train 0.003470 - 0.003611 -
Total

Val 0.003897 - 0.003926 -

TABLE IX
CARAVAN GLOBAL FIT

MSE NNSE

Train 0.003115 0.809
Precipitation

Val 0.003223 0.808

Train 0.000357 0.953Mean
Temperature Val 0.000357 0.952

Train 0.000675 0.781
Streamflow

Val 0.000740 0.768

Train 0.003965 -
Total

Val 0.004133 -

*Model trained with PCA static features.



Fig. 4. CAMELS US experiment (MSE loss). Each run configuration is utilized in 2 runs (left: static features not trained, right: static features trained).

Fig. 5. CAMELS three-nations combined experiment (MSE loss). Each run configuration is utilized in 2 runs (left: static features not trained, right: static
features trained).

Fig. 6. Caravan US experiment (MSE loss). Each run configuration is utilized in 2 runs (left: static features not trained, right: static features trained).

Fig. 7. Caravan combined experiment (MSE loss). Each run configuration is utilized in 2 runs (left: static features not trained, right: static features trained).



V. STATIC PROPERTIES AND SPATIAL TEMPORAL
ENCODINGS EXPERIMENT

A. Experiment Setup

This set of experiments examines the influence of static
properties and spatial-temporal encodings on rainfall-runoff
modeling accuracy, demonstrated through eight run configura-
tions on four datasets. The first experiment uses the original
CAMELS-US dataset [21], representing a traditional, locally-
sourced small-scale dataset. Results are presented in Fig. 4.
The second experiment utilizes the Three-Nation Combined
CAMELS dataset [21]–[23], representing a locally-sourced
mid-scale dataset. Results are shown in Fig. 5. The third
experiment is conducted on the US sub-dataset of the Car-
avan dataset [36], representing a globally-sourced small-scale
dataset. Results are shown in Fig. 6. The fourth experiment
uses the full Caravan concatenated dataset [36], representing a
globally-sourced large-scale dataset. Results are shown in Fig.
7. All four spatial-temporal encoding configurations tested are
presented in Table X. For each configuration, we conduct runs
with and without static features as input to highlight the impact
of static features. The model architecture remained consistent
across all runs.

TABLE X
STATIC PROPERTIES AND ENCODINGS EXPERIMENT CONFIGURATIONS

Config 1 Config 2 Config 3 Config 4

Time Series Input ↭ ↭ ↭ ↭
Linear Space ↭ ↭ ↭
Linear Time ↭ ↭ ↭

Annual Fourier Time ↭ ↭
Extra Fourier Time ↭

Legendre Time ↭

B. Experiment Findings

Results suggest that while the addition of static features
in training has a marginal effect, the LSTM network gen-
erally benefits from their inclusion. This is demonstrated
by the slightly lower training and validation losses in the
runs conducted with static input features for each encoding
configuration, as shown in Fig. 4, Fig. 5, Fig. 6, and Fig.
7. Furthermore, the figures indicate that static input features
have a greater impact on large-scale datasets compared to
small-scale ones, and they appear to be more beneficial for
models trained on the Caravan dataset than those trained on
the CAMELS datasets. We hypothesize that this is due to
the greater number of static properties used in the Caravan
runs—approximately five times more than in the CAMELS
runs—and that larger datasets, covering a greater number of
catchments, introduce more complexity.

This study further demonstrates that spatial and temporal
encoding are crucial for effectively training time series data
that follow seasonal patterns. The incorporation of linear

spatial-temporal encoding, as evidenced by the drop in loss
from run configuration 1 to run configuration 2 in the plots,
captures both the spatial relationships of catchments and the
time dependence of the data. The inclusion of annual Fourier
temporal encoding, shown by the drop in loss from run
configuration 2 to run configuration 3, captures the yearly
seasonality of hydrological data. The addition of extra Fourier
and Legendre temporal encoding, indicated by the drop in loss
from run configuration 3 to run configuration 4, captures both
known and unknown hydrological patterns of varying lengths,
thereby enhancing model performance.

In hydrology, it is reasonable to assume that interrelated
time series targets are highly dependent on static properties,
such as land characteristics at individual gauges. Additionally,
the water cycle is governed by processes with both known
and unknown periodicities, ranging from atmospheric to micro
scales. However, deep learning-based time series studies often
overlook the significance of these characteristics, as they
are typically application-specific. Notably, recent studies tend
to focus on developing state-of-the-art time series forecast-
ing models that rely solely on raw time series data. While
these foundational models allow for broad applicability across
various fields, they may compromise prediction accuracy in
specialized downstream applications if static features or known
patterns are not incorporated into the training process.

VI. COMPARISON WITH FOUNDATION MODELS

Recent studies in time series analysis have focused on a
foundation model approach, inspired by the success of large
language models [49]. Since 2022, there has been a spike
in publications on pre-trained time series foundation models,
with the majority built on Transformers [50] and multi-layer
perceptrons (MLPs) [51] architectures. Some models support
the use of static exogenous variables as input [52], [53], while
others only accept time series input [54].

In this experiment, we present a performance compari-
son between our LSTM-based rainfall-runoff model and the
TSMixer foundation model [52] on CAMELS-US [21] data.
We leverage the Nixtla Neuralforecast framework [55] to train
the TSMixerx model, a variant of the TSMixer model that
allows static exogenous features along with multivariate time
series as input. The results, shown in Fig. 8, Fig. 9, Fig. 10,
and Fig. 11, demonstrate that the LSTM model outperforms
the TSMixerx model. In future work, we will expand this by
looking at other time series models and a new foundation
model MultiFoundationPattern discussed for earthquakes [56].

VII. CONCLUSION AND FUTURE WORK

Often, one thinks about deep learning models discovering
hidden variables that control observables that one wishes to
predict. In this paper, we explored CAMELS and Caravan,
which together offer large datasets covering many (about 8000)
spatial locations and a long time period (around 30 years).
Further, there are multiple (6 in CAMELS and 39 in Caravan)
observed dynamic streams and up to 209 static (exogenous)
parameters for each location. Some of these exogenous and



Fig. 8. TSMixer precipitation fit (left: training set, right: validation set).

Fig. 9. LSTM precipitation fit (left: training set, right: validation set).

Fig. 10. TSMixer streamflow fit (left: training set, right: validation set).

Fig. 11. LSTM streamflow fit (left: training set, right: validation set).

observed data would be natural inputs into a physics model
for the catchments. A priori, it is not obvious which exogenous
or even endogenous data should be used as they could implied
by the large datasets used in the training and implicitly learned
by the training. However, most likely, it is a mixed situation
where the combination of observed and exogenous data will
give the best results, with the exogenous data declining in
importance as the observed dataset grows in size. We clearly
show in this paper with the CAMELS and Caravan data that
using exogenous data makes significant improvements in the
model fits where both static physical quantities and dynamical
mathematical functions have value as exogenous information.
In future papers, we hope to understand the trade-off better
as it varies in the nature and size of exogenous data. We also

will present further study of different deep learning models
using the compilation of hundreds of papers and around 100
models in [57]–[61]. We aim to study a range of time series
problems to build a taxonomy so that benchmark sets can
be built covering the essentially different cases [62]. Another
interesting feature of science time series is that they naturally
vary in magnitude by large factors, and this seems not to be
very consistent with neural network activation functions at
fixed values independent of the stream. We will present a study
of new activation functions in the LSTM using a PRELU-like
(Parametric Rectified Linear Unit, or PReLU) structure, which
naturally deals with magnitude changes in stream values.
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1. Introduction 

The advent of big data and powerful machine learning models has facilitated a data-driven 
approach to solving complex scientific challenges such as disaster prevention, climate modeling, 
and weather forecasting (Choudhary et al., 2022; Wang, H. et al., 2023). The success of large 
language models like GPT has spurred widespread interest in developing large-scale models for 
global-scale modeling and prediction tasks across various domains. 

From tech companies to the research communities in academia, an arms race for graphics 
processing unit (GPU) and computing power has begun, often rarely accounting for the enormous 
energy usage and environmental footprint of the systems that power machine learning innovations 
(Crawford, 2021). If computational optimization techniques fail to lower the energy usage of these 
models, if a worldwide AI political battle begins, or if clean energy supply cannot meet the energy 
demand of machine learning innovations, we will soon witness environmental damages that 
outweigh the benefits of these advanced models. 

Regardless, no research or product development can be conducted without adequate funding. The 
sponsors are responsible for considering the negative consequences before approving grants or 
fundings. In the industry, the primary source of funding comes from investors and venture 
capitalists, while in academia, research grants usually come from government agencies (Metha et 
al., 2021). This research focuses on the academic side and studies the sociotechnical problem of 
how the environmental impacts of AI projects are considered or overlooked in the grant approval 
processes of government agencies funding scientific research. Through literature review, this study 
aims to highlight the potential impact that the government could have on the environment through 
research funding in the midst of the accelerating AI revolution. 

2. Background 

Modern machine learning primarily focuses on deep learning, enabled by neural networks, large-
scale annotated datasets, and advancements in computing hardware (LeCun et al., 2015). In 2012, 
Prof. Geoffrey Hinton’s team trained the first image classification model using deep neural 
networks with GPU (Krizhevsky et al., 2012). The success of this study ignited the deep learning 
revolution, inspiring the predominant use of deep neural networks to train models with large 
amount of input data. The popularization of deep learning inspired developments in computer 
architecture as scientists looked for ways to speed up the training process of these neural networks. 
They soon discovered that GPUs are well-suited to the highly parallelizable nature of neural 
network training, which relies on large-scale linear algebra operations (LeCun et al., 2015). As 
networks and datasets continue to grow in size, the demand for more powerful GPU clusters has 
increased exponentially. Many research laboratories and technology companies rushed to invest 
in specialized data centers, high-performance computing (HPC) infrastructure, and GPUs (Reuther 
et al., 2021). 

Two of the most predominant areas of deep learning research that requires the most computation 
power are natural language processing and computer vision. In natural language processing, the 
introduction of the transformer architectures (Vaswani, A. et al., 2017) has led to unprecedented 
progress in language reasoning and generation. This enabled the development of large language 
models such as GPT-3 (Brown, T. et al., 2020), which demonstrated the ability to perform complex 
reasoning tasks using text. These large language models (LLMs) often contain millions to billions 
of parameters, which require enormous computational resources like GPUs for both training and 



inference (Raffel, C. et al., 2020). Similarly, the computer vision research community has also 
embraced larger, more complex architectures to approach tasks like generative AI for vision 
(Wang, W. et al., 2024), object detection (Zou et al., 2023), 3D reconstruction (Wang, S. et al., 
2024), etc. Inspired by the success of transformers (Vaswani, A. et al., 2017) in natural language 
processing, the Vision Transformer (ViT) was invented (Han et al., 2022) to apply transformer-
based mechanisms to images. Unlike language models, vision models require more computational 
power to train due to an image being a larger data modality. 

These breakthroughs are reinforced by the scaling law (Kaplan et al., 2020), which states that large 
language model performance will improve predictably with increased model size, larger datasets, 
and higher compute budgets. This has incentivized researchers to train larger models, further 
increasing GPU usage. This trend is evident in the training process behind the state-of-the-art 
LLMs proposed by companies like OpenAI. Given that performance increases are slower than 
expected, the continued pursuit of higher intelligence is likely to further drive GPU demands 
(Kaplan et al., 2020). 

Growing awareness of this technological trajectory and potential environmental impact has given 
rise to the Green AI movement. Green AI, which focuses on data efficiency, carbon footprint, and 
the ecological footprint of AI, has gained popularity over the past few years as awareness has 
grown regarding the energy challenges we must address before the next stage of mass AI 
innovations can proceed (Verdecchia et al., 2023; Budennyy et al., 2022). A literature review 
revealed that most efforts toward Green AI focus on developing more efficient models and training 
techniques, while others work on quantifying the energy consumption of training machine learning 
models (García-Martín et al., 2019). In areas where energy consumption is exploding, such as large 
language models, scientists have warned and provided recommendations for reducing energy 
expenditure (McDonald et al., 2022). 

In the United States, most academic research in machine learning is funded by agencies like the 
National Science Foundation (NSF) and the Department of Energy (DOE). While numerous other 
agencies are increasing their AI research spending, these two are traditionally the main funders of 
research at universities in the U.S. On the NSF funding website, sustainability is one of the funding 
areas. However, the broad topic of sustainability, as explained on their website, focuses on 
sustainable manufacturing and green buildings. Artificial Intelligence is not mentioned under this 
topic, nor is Green AI (NSF, n.d.). Similarly, the DOE has funded the AI for Energy initiative, 
supporting research that utilizes AI to fuel the growth of clean energy in all key sectors of 
renewable energy (Daniel et al., 2024). Although it has funding available for research in this area, 
they do not emphasize the energy consumption of AI research itself. Not only is the government 
yet to derive a substantial fund for Green AI research, but it has also failed to allocate sufficient 
funding for energy research in general compared to other categories, even though energy is one of 
the most important contributors to the global GDP (Murray, 2017). 

Taken together, these strands reveal a tension at the heart of contemporary machine-learning 
research: every architectural breakthrough and dataset expansion is powered by ever-larger GPU 
clusters, yet the institutional mechanisms that finance such progress have not evolved at the same 
pace to safeguard sustainability. The scaling law promises continued accuracy gains, but its 
unchecked application risks locking the field into an energy-intensive trajectory just as 



governments struggle to prioritise Green AI. Consequently, the environmental cost of deep 
learning is no longer a peripheral issue—it is a structural one, rooted in how models are designed, 
benchmarked, and, crucially, funded. Recognising this systemic interplay sets the stage for the 
next sections of this paper, which examine how policy levers and ethical frameworks can redirect 
research incentives toward computational efficiency without stalling scientific momentum. 

3. Methodology 

To evaluate government impact on recent machine learning developments, this study begins with 
a systematic literature review of quantitative reports of machine learning energy consumption, as 
well as government policy and funding initiatives. Quantitative data include estimates of energy 
usage in various machine learning tasks, particularly the language and vision tasks that involve 
large models (Strubell et al., 2019). Furthermore, funding reports from federal agencies are 
analyzed to examine patterns in how governmental resources have been allocated to ML research 
(Artificial Intelligence, 2025). Primary sources, including policy documents and official legislative 
records, will be employed to investigate the intentions behind funding decisions. 

The potential impact of such government actions will be discussed through the lens of utilitarian 
ethics, environmental ethics, and the Social Construction of Technology (SCOT) framework. 
Utilitarian ethics evaluates the morality of an action by its outcome (Quinton, 1973). 
Environmental ethics underscores humanity’s moral responsibility to preserve the natural 
environment (Rolston, 1988). This study examines the tension between these two ethical 
frameworks in the context of funding allocation for machine learning research.  

Utilitarian ethics is centered around the belief that the moral value of an action is determined by 
its consequences, specifically its impact on overall happiness or well-being (Mill, 2016). Under 
this scope, the decision-making process involves careful consideration of how benefits and harms 
are distributed across the society (Quinton, 1973). In the context of this study, a utilitarian 
assessment would consider whether investments in high-energy-consuming ML research would 
lead to breakthroughs in economic growth, healthcare, work efficiency, etc., which ultimately lead 
to increased social wellbeing. The outcomes will be compared to the outcomes of other possible 
uses of the same energy resources.  

Unlike utilitarian ethics, environmental ethics emphasizes human’s moral responsibility to 
safeguard the nature. Rolston argued that the ecosystems have intrinsic value and urged humans 
not to make decisions solely based on their values to human well-being (Rolston, 1988). In the 
context of this study, environmental ethics investigates whether the carbon footprint of large-scale 
machine learning training are justifiable against the potential harm to the environment. This is the 
hidden motive behind the development of Green AI. 

The SCOT framework argues that technological artifacts are shaped by social and political factors. 
Human attribute meaning to technologies and influence their uses (Pinch, 2012). From a SCOT 
perspective, government grants and policies play a crucial role in guiding the development of large 
machine learning models. By prioritizing funding in powerful general intelligence models that 
incur high computational demands, policymakers can steer the trajectory of AI development 



toward models with greater number of parameters. While most researchers examine the exact 
energy consumption of machine learning training for different tasks, few investigate the topic of 
Green AI from a higher level: the role of government funding. Academic research cannot proceed 
without research grants. Therefore, understanding how government agencies consider 
environmental impacts in their funding decisions is crucial. If the government has not placed 
significant emphasis on this topic through the grant approval process, few research groups will 
work towards Green AI. 

4. Literature Review 

The environmental footprint of contemporary AI research is a rapidly escalating reality. Empirical 
measurements reported by Strubell et al. show that training a single BERT-Base model on 
64 NVIDIA V100 GPUs for 79 hours consumes about 1507 kWh of electricity and releases 
roughly 719 lb (326 kg) of CO₂, which is comparable to driving an average gasoline car from 
New York to Chicago (Strubell et al., 2020). Hyper-parameter tuning and iterative experimentation 
amplify that baseline dramatically. The Linguistically-Informed Self-Attention project 
required 9998 days of GPU time, equivalent to 60 GPUs running continuously for six months, 
costing nearly 10,000 kWh and about 9 tons of CO₂ before the model was deployed (Strubell et al., 
2020). Strubell’s group ends the paper by highlighting the ethical imperative for funding agencies 
to balance machine learning model performance gains against planetary limits. 

Studies have shown that government funded patents have profound impact on AI innovation in the 
US, with funding on projects existing primarily in the earlier stages of AI innovation to leave room 
for privately funded research when the field is more mature (Iori et al., 2022). This suggests that 
the government plays a significant role in initiating and directing the development of AI with its 
“start-up funds”. Scholars have also examined the effect of government funding on scientific 
research output. According to Goldfarb, government grants are often mission oriented and can lead 
to scientific research adopting commercial goals (Goldfarb, 2008). According to research on 
NASA grants and the projects funded by them, research labs do not always use the funding for 
research that aligns with the goals of the grant (Goldfarb, 2008).  Although published in 2007 when 
AI was still in the early stages, this paper addresses the bias inherent in government funded 
scientific research and the extent to which researchers’ publications are influenced by their 
sponsors. Besides, surveys into whether researchers are aware of the unintended consequences of 
their research have also been assessed. Do et al. demonstrate that researchers do not formally 
consider the unintended societal consequences of their research. This lack of awareness is caused 
by both an academic practice promoting fast progress and a lack of guidelines for considering 
those consequences (Do et al., 2023). Academic researchers face substantial pressure from grant 
conditions, publication quotas, and competitive innovation dynamics that often prioritize rapid 
development and immediate results over environmental considerations (Do et al., 2023). Although 
most funding agencies request authors to submit broader impact statements, these statements are 
mostly used for advertisement rather than reflection on negative consequences (Do et al., 2023). 
Government grants directly frame the direction of academic research. Its generous support in the 
early growth of AI comes at the cost of freedom of research. This facilitates the emergence of 
academic research topics and proposals carefully designed to secure government funding. This 
situation is further exacerbated by a lack of formal requirement to consider negative AI societal 
consequences and an academic practice that cherishes fast innovation.  



5. Results and Discussion 

The current barrier to controlling the environmental impact of academic AI research is rooted in 
the intense global competition between nations to achieve artificial general intelligence (AGI) and 
pursue advanced military capabilities. This incentivizes heavy government investments in GPU-
intensive AI research, often disregarding environmental considerations (Haner et al., 2019). 
Moreover, the relentless pursuit of more sophisticated models is deeply embedded in contemporary 
machine learning research culture, driven by the scaling law. This has created an environment 
where researchers and companies perceive extensive computational investments as necessary for 
groundbreaking innovations, thereby escalating energy demands (Kaplan et al., 2020). Labs intend 
to fulfill this government intention by orientating their research toward these goals to seek funding. 

Recent shifts in government policies, notably the executive orders signed by President Trump to 
reduce federal funding for scientific research, have significantly altered the trajectory of AI 
development (Witze et al., 2025). Research grants are rescinded, and scientists are laid off in 
response to the immediate orders which greatly shakes the research landscape across US colleges. 
These rapid contractions not only stalled ongoing deep learning projects but also discouraged 
prospective graduate students to pursue research. This underscores the vulnerability of AI research 
to political fluctuations, where funding strategies are deeply influenced by differing party agendas 
and priorities. It also highlights the importance of SCOT (Pinch, 2012), where technological 
breakthroughs are often guided by human intentions. In this case, executive goals facilitate 
academic research in a mutual beneficial relationship. 

The existing approach in government funding frameworks also reveals a lack of considerations for 
energy efficiency and environmental impacts. Research grants typically prioritize innovations 
capable of immediate societal or economic returns, with less emphasis on potential environmental 
consequences. This trend suggests that current funding mechanisms do not adequately incentivize 
the implementation of environmentally sustainable AI practices (Goldfarb, 2008). Until federal 
agencies integrate sustainability metrics into peer review and grant approval processes, the 
research community will continue to sacrifice environmental cost for performance. 

On the technical side, researchers have increasingly focused on computational optimization 
strategies designed to enhance energy efficiency. Recent projects like DeepSeek’s LLM 
(DeepSeek-AI et al., 2025) raised the awareness of research aimed at reducing GPU dependency 
by employing more efficient training techniques, thereby decreasing energy consumption during 
training without compromising model accuracy or performance. Similarly, emerging concepts of 
training a powerful large AI model to instruct smaller specialized AI agents offer a more 
environmentally friendly solution with lowered computational demands (Hinton et al., 2015). 

Integrating ethical frameworks into AI research and funding policies is a crucial step towards 
sustainable AI. Employing utilitarian ethics, policymakers should systematically evaluate the 
societal impacts of funded AI projects, balancing immediate benefits against long-term 
environmental harms, and design grants accordingly to reflect these goals. Conducting rigorous 
cost-benefit analyses of energy-intensive AI initiatives could reveal scenarios where societal and 
political benefits, such as improved healthcare or national defense, might justify certain levels of 
environmental trade-offs (Mill, 2016). In contrast, adopting an environmental ethics approach 



necessitates that policymakers and researchers acknowledge the inherent value of our nature that 
outweighs the benefits that we seek from large AI models. Funding agencies could prioritize AI 
projects aimed at minimizing environmental footprint (Green AI). Under strict governmental 
funding policies, the academic AI research community will almost certainly shift to emphasize 
environmental accountability as an essential component of innovation (Rolston, 1988). Funding 
strategies that combine utilitarian and environmental considerations could guide research towards 
technological breakthroughs that not only preserve societal interests but also maintain 
environmental resilience in the long term. 

Governments and funding agencies must proactively integrate sustainability criteria into their grant 
evaluation processes. Funding decisions should explicitly prioritize projects that incorporate 
energy-efficient AI methods and promote innovations that challenge the existing reliance on the 
scaling law (Kaplan et al., 2020). Introducing such criteria will incentivize researchers to develop 
sustainable AI practices systematically (Iori et al., 2022). 

6. Conclusion 

Government funding profoundly influence which research directions flourish. The funding 
decisions can either perpetuate energy-intensive AI developments or catalyze a transformation 
towards energy efficient AI or Green AI. In an age where countries compete for intelligent agents 
and researchers compete for funding, the responsibility of the government in shaping potential 
negative effects of new AI innovations is increasingly vital. 

For stakeholders inside the government and the academia, the next steps involve more than just 
model efficiency breakthroughs. Government agencies should specify environmental 
considerations in their grant calls and research frameworks. Such requirements would encourage 
universities and labs to pursue alternative approaches, from efficient model architectures to novel 
high performance computing techniques. The collaborative efforts between AI researchers, 
policymakers, and environmental experts can ensure that state-of-the-art research incorporate 
sustainability as a design principle. By relying on the ethical frameworks like Utilitarianism, 
Environmental ethics, and Social Construction of Technology, government agencies can setup 
more adequate AI innovation goals. Finally, schools should incorporate ethics courses to make 
engineers and researchers reflect on the environmental challenges that AI advancements may pose.  

Modern AI research requires collaboration and accountability. Government agencies and 
universities each have a role in forging a sustainable technological development. The future lies in 
harnessing AI’s transformative potential while withholding our collective responsibility to 
safeguard our planet. 
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Introduction  

The advent of big data and powerful machine learning models has facilitated a data-driven 

approach to solving complex scientific challenges such as disaster prevention, climate modeling, 

and weather forecasting (Choudhary et al., 2022; Wang et al., 2023). The success of large language 

models like GPT has spurred widespread interest in developing large-scale models for global-scale 

modeling and prediction tasks across various domains. From tech companies to the 

supercomputing communities in academia, an arms race for GPUs and computing power has 

begun, often rarely accounting for the enormous energy usage and environmental footprint of the 

systems that power machine learning innovations. 

Regardless, no research or product development can be conducted without adequate 

funding. In the industry, the primary source of funding comes from investors and venture 

capitalists, while in academia, research grants usually come from government agencies (Metha et 

al., 2021). In this research, I aim to focus on the academic side and study the sociotechnical 

problem of how the environmental impacts of AI projects are considered or overlooked in the grant 

approval processes of government agencies funding scientific research. Specifically, I aim to 

examine the intentions and priorities of stakeholders behind university research, and whether they 

have thoroughly considered the potential environmental harm that their actions may bring. 

My capstone research involves developing a deep learning model to revolutionize the 

rainfall-runoff modeling problem in hydrological science and studying various methods for 

increasing prediction accuracy and computational efficiency. While the project contributes to the 

greater challenge of flood prediction and water resource management, it also provides a basis for 

quantifying the energy usage of machine learning research, as well as exploring how government 

funding directly impacts environmental research projects like mine. By connecting the 



environmental considerations in AI project funding with my technical work, this study emphasizes 

the importance of integrating sustainability into AI research at a high level, ensuring that 

technological advancements are pursued responsibly and ethically. 

 

Technical Topic: Deep Learning in Hydrology 

My capstone research is part of a broader investigation into scientific time series data and 

an effort to study data-driven approaches to natural science challenges. The project specifically 

examines a deep learning approach to the rainfall-runoff problem in hydrology. Time series data 

is data that is time dependent and varies based on time. Examples of such data include stock market 

data, product sales data, heartrate data, etc. Unlike other fields, time series data in natural science 

involve environmental features and data that are collected from multiple locations. In hydrology, 

time series data include precipitation, temperature, streamflow, etc. Daily values are collected from 

thousands of gauging stations around the world, with time series data being heavily influenced by 

geographical factors of these locations. For instance, the relationship between precipitation and 

runoff (amount of water that flows over land surface as result of precipitation) is highly dependent 

on vegetation, soil or rock type, and other environmental factors. Therefore, simply inputting time 

series data into a machine learning model to make predictions might lead to poor outcomes in a 

field of natural science like hydrology. We claimed that it is crucial to train models with 

environmental factors to help them grasp the hidden relationships within time series data. 

Rainfall-runoff modeling, a key challenge in hydrology, aims to model the physical process 

by which water on land surface (precipitation or snowmelt) moves to streams (Dingman, 2015). 

As part of the hydrologic cycle, precipitation on land either evaporates, transpires, infiltrates to 

recharge groundwater, or becomes surface runoff entering a catchment. A catchment, is an area 



where all precipitation collects and drains into a common outlet, such as a river, lake, or reservoir 

(Dingman, 2015). Surface runoff contributes to streamflow, which is defined as the volumetric 

discharge that takes place in a stream or channel. Eventually, this streamflow and ground water 

outflow reaches the ocean, where it evaporates, condenses into clouds, and returns as rainfall on 

land, completing the hydrologic cycle (Dingman, 2015).  

Traditional rainfall-runoff modeling has typically focused on individual catchments. The 

first documented model, introduced in 1851, used linear regression to predict discharge from 

precipitation intensity and runoff (Mulvaney, 1851). Since then, scientific advancements have led 

to more sophisticated models based on mathematical formulas and physical laws. The advent of 

computers brought digital hydrological models (Crawford, 1966). Taking advantage of the number 

of parameters offered, these physical-based digital models perform exceptionally well. However, 

the high computational cost to calibrate these parameters, and the limited availability of data hinder 

their use in large-scale forecasting applications (Sitterson et al, 2017). Groundbreaking 

advancements in deep learning models and the publication of structured large-sample Hydrology 

dataset have overcome this limitation, enabling the study of nation or global scale rainfall-runoff 

modeling. In 2018, the focus of the field shifted towards Long Short-Term Memory (LSTM) based 

models, which excelled in learning sequential dependencies within time series data (Kratzert et al, 

2018). These models have shown great success in large-scale hydrological time series predictions.  

In this work, we analyzed hydrology time series using the CAMELS and Caravan global 

datasets. These datasets include up to 6 time series variables and 209 environmental features 

collected from around 8,000 locations worldwide. We constructed a model based on the LSTM 

architecture and tested eight different training configurations. We found that including 

environmental data in training significantly boosts model accuracy, reducing the error by 40% 



when tested on the largest dataset. Additionally, including encoding techniques that captures the 

relationship between catchments and some yearly periodic We also present initial results from 

studies on other deep learning neural network architectures. We show that methods trained using 

environmental features of the locations perform better than less flexible methods, including 

Foundation models. Our analysis is intended to serve as an educational source and benchmark for 

future studies. 

 

STS Topic: Environmental Considerations in AI Project Funding 

My research aims to understand how funding behind machine learning research in 

academia relates to the environmental harm caused by AI. This question is important because the 

significant energy consumption of AI research contributes to environmental degradation, and 

addressing this issue at the funding level could lead to more sustainable AI practices. Modern 

machine learning research is usually big data-driven. In the realm of large language models, 

billions of parameters and vast amounts of text inputs require enormous amounts of energy to train. 

In scientific domains, global-scale predictions necessitate training on years of data. While simple 

machine learning models can be run directly on laptops without significant GPU usage, most 

studies require the use of supercomputers that have access to hundreds of computing units and 

GPUs, resulting in unprecedented energy usage and environmental impact. 

Green AI, which focuses on data efficiency, carbon footprint, and the ecological footprint 

of AI, has gained popularity over the past few years as awareness has grown regarding the energy 

challenges we must address before the next stage of mass AI innovations can proceed (Verdecchia 

et al., 2023; Budennyy et al., 2022). A literature review revealed that most efforts toward Green 



AI focus on developing more efficient models and training techniques, while others work on 

quantifying the energy consumption of training machine learning models (García-Martín et al., 

2019). In areas where energy consumption is exploding, such as large language models, scientists 

have warned and provided recommendations for reducing energy expenditure (McDonald et al., 

2022). 

While most researchers examine the exact energy consumption of machine learning 

training for different tasks, few investigate this topic from a higher level: the role of government 

funding. Academic research cannot proceed without research grants. Therefore, understanding 

how government agencies consider environmental impacts in their funding decisions is crucial. If 

the government has not placed significant emphasis on this topic through the grant approval 

process, few research groups will work towards Green AI. 

Most academic research in machine learning is funded by agencies like the National 

Science Foundation (NSF) and the Department of Energy (DOE). While numerous other agencies 

are increasing their AI research spending, these two are traditionally the main funders of research 

at universities in the U.S. On the NSF funding website, sustainability is one of the funding areas. 

However, the broad topic of sustainability, as explained on their website, focuses on sustainable 

manufacturing and green buildings. Artificial Intelligence is not mentioned under this topic, nor is 

Green AI (NSF, n.d.). Similarly, the DOE has funded the AI for Energy initiative, supporting 

research that utilizes AI to fuel the growth of clean energy in all key sectors of renewable energy 

(Daniel et al., 2024). Although it has funding available for research in this area, they do not 

emphasize the energy consumption of AI research itself. Not only is the government yet to derive 

a substantial fund for Green AI research, but it has also failed to allocate sufficient funding for 



energy research in general compared to other categories, even though energy is one of the most 

important contributors to the global GDP (Murray, 2017). 

Even if research grants are targeted for Green AI, they might not correspond to direct 

efforts toward reducing the environmental harm AI brings. According to research on NASA grants 

and the projects funded by them, research labs do not always use the funding for research that 

aligns with the goals of the grant (Goldfarb, 2008). Nevertheless, government funding has a 

profound impact on fueling AI innovation in general, especially in the early stages of development 

(Iori, 2022). Therefore, these government grants are influential in powering early stages of Green 

AI research. 

This research explores the problem through the lens of utilitarian ethics and environmental 

ethics. Utilitarian ethics evaluates the morality of an action by its outcome (Quinton, 1973). 

Environmental ethics underscores humanity’s moral responsibility to preserve the natural 

environment (Rolston, 1988). This study examines the tension between these two ethical 

frameworks in the context of funding allocation for machine learning research. Evidence will be 

presented through literature review on journal articles, funding reports, and government policies. 

Furthermore, a case study on the computational demands of large-scale machine learning models 

will provide a detailed analysis, quantifying the environmental impacts caused by AI development.  

 

Conclusion 

My capstone research on deep learning in hydrology aim to demonstrate how machine 

learning can be effectively applied to solve scientific problems involving time series data. It serves 

as a benchmark and an example pipeline for what others should focus on when applying machine 



learning to solve scientific challenges. my STS research will present the potential environmental 

harm caused by future large-sample and large-model AI studies. By evaluating the importance of 

government funding in efforts toward Green AI, this research will analyze how grants can 

effectively contribute to promoting environmentally sustainable AI practices. The expected 

outcome is to urge policymakers and funding agencies to allocate more resources to Green AI 

initiatives, encouraging research groups to prioritize energy efficiency and reduce the ecological 

footprint of AI developments. 
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