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Abstract

This dissertation describes the construction, validation and applications of a stable and
quickly converging elasticity-based locally exact homogenization theory for unidirectionally-
reinforced composites. Elasticity-based homogenization approaches offer a number of
advantages relative to finite-element, finite-difference or finite-volume homogenization schemes,
including extremely fast input data construction, ability to investigate composites with very thin
coatings or interphases without experiencing convergence issues common to finite-element
analyses, and ability to efficiently accommodate phases with cylindrically orthotropic
constituents without much effort. The constructed homogenization theory enables efficient
analysis of the elastic and viscoelastic response of unidirectional composite materials with
rectangular, square, hexagonal and tetragonal periodic microstructures comprised of isotropic,
transversely isotropic, and (cylindrically or circumferentially) orthotropic phase constituents, and
third phases such as coatings or interphases.

The success of this homogenization theory is rooted in the balanced variational principle
which plays a key role in the implementation of non-separable periodic boundary conditions,
leading to quickly-converging homogenized moduli and stable local stress distributions. This
variational principle, originally proposed by Drago and Pindera (2008) for rectangular unit cell
architectures, was extended herein to hexagonal and tetragonal unit cells and demonstrated to
produce quickly converging homogenized moduli and local stress fields regardless of phase
modulus contrast, orthotropy type or viscoelasticity effects.

The constructed homogenization theory has been validated upon comparison with known
elasticity solutions and micromechanics models. These include the solution to the Eshelby
problem which was used as a benchmark to demonstrate the robustness and stability of the
developed unit cell solution approach, and the finite volume direct averaging micromechanics
(FVDAM) theory which produces high-fidelity results comparable to the finite-element method.
Comparison with the classical composite cylinder assemblage (CCA) and Mori-Tanaka
micromechanics models establishes applicability and limitations of these approaches based on
simplified geometric representation of composite material microstructures. Selected numerical

results are generated to provide insight into the efficiency and robustness of the theory. To



demonstrate its advantage, the key component of the theory, namely the balanced variational
principle, is compared with recently adopted approaches based on a derivative variational
principle proposed originally in the context of locally-exact finite-element solutions. Finally, the
elastic problem has been extended to viscoelastic domain via the elastic-viscoelastic
correspondence principle, validated at the homogenized and local field levels at different times,
and employed to investigate thus-far undocumented features of time-dependent response of
polymeric matrix composites. The significant findings include the effect of array type on the
creep response which increases dramatically with increasing time for certain loading directions.
The theory’s utility in support of constructing homogenized response functions of polymeric
matrix composites from experimental data was also demonstrated.

Because of its analytical nature, the constructed theory may easily be incorporated into
larger structural analysis algorithms in a multi-scale computational setting. This capability is
illustrated herein in the context of laminated plate and functionally graded tube analyses, wherein
local homogenized elastic moduli of the investigated structural components are generated on the
fly for use in the governing equations at the structural level.

The theory’s efficiency and stability in generating homogenized moduli and stress fields
with very simple input data construction make it readily accessible to professionals and non-
professionals alike. Hence it is expected that this approach will quickly gain popularity and
become not only a design and research tool used by diverse communities involved in materials
characterization, design and development, but also a comparison standard for bench mark

purposes.
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Chapter 1

Introduction

1.1 Motivation

All solid materials can be treated as composite materials if the scale is small enough. A
composite material is a material made from two or more constituent phases with significantly
different physical or chemical properties that, when combined, produce a material with
characteristics different from the individual components. The definition cited from Wikipedia
suggests the reason why composite materials experience ever increasing applications: they may
be lighter or cheaper than the individual constituents, but the combination might be stronger or
more durable.

The history of man-made composite materials may be traced to biblical times when straw
was added to clay to make more durable bricks. In the 12" century ancient Mongols developed
more advanced weapons, which were smaller and more powerful archery bows in their days, by
combining cattle tendons, horns, bamboo and silk bonded with natural pine resin. The most
common applications of composite materials in recent human history were also in the military
arena. During World War [ (WWI), military aircraft benefited greatly from composite wing skins
made of laminated wood, which made the wing frames lighter and stronger. Metal matrix
composites (MMCs) based on boron fibers were developed for modern military aircraft in the
1960’s and 1970’s for use in control surfaces such as the vertical stabilizer on the F-15 Eagle jet
fighter. Introduction of new fibers developed in research labs, such as carbon, graphite and
Kevlar, and subsequent rapid growth of the fiber-reinforced plastics industry, stimulated new
demand from markets across diverse areas, including commercial aircraft, civil infrastructure,
automotive and electrical engineering industries, as well as biomedical engineering. Composite
materials, in the long run, are playing and will play increasingly greater and more significant

roles. Taking Boeing 787 as an example, fifty percent of the airplane body is comprised of



composite materials, whereas the dominant material used in Boeing 747 and 777 airplanes is
aluminum. Different forms of composite materials such as particle-reinforced composites,
fiber-reinforced composites and their laminates, woven composites, etc., are usually tailored to
different applications based on structural requirements.

Two basic mechanical properties are needed in the analysis and design of structural
components that utilize combinations of diverse material systems, namely: (1) thermo-elastic
properties and strength; and (2) time-dependent response. There are two approaches in
characterizing these properties, one of which is experimental characterization aimed at specific
composites. The other approach, which is broadly called micromechanics or homogenization,
plays the role of a virtual laboratory which is used to identify potential material systems for
given applications through a validated analysis procedure. This approach eliminates the
trial-and-error procedure often used in developing new materials, and the associated laborious
and expensive preparation and manufacturing steps. Micromechanics involves analysis of
composite or heterogeneous media with the aim of predicting average or macroscopic behavior
on the basis of geometric arrangement and mechanical properties of individual phases. For
materials with periodic (repeating) microstructures, it is also called homogenization.
Micromechanics or homogenization techniques aid in the rapid identification of material systems
for specific structural application, as well as in the development of new materials.

A variety of micromechanical models have been developed by researchers and scientists
during the past fifty years. This development continues and is motivated by advances in the
computational technology. In the next section, three conceptual categories of micromechanics
and homogenization techniques are reviewed and discussed with the aim of providing motivation

for the developments and contributions described in this dissertation.
1.2 Literature Review

Micromechanics theories of heterogeneous materials can be separated into three categories:
1) microstructural detail-free strategies; 2) theories for statistically homogeneous composites
based on the representative volume element (RVE) concept; and 3) theories developed for
periodic composites based on the repeating unit cell (RUC) concept, see Fig. 1.1, in which (b)
and (c) are referred to Pindera et al. (2009).

The key step in a micromechanical or homogenization procedure is to determine Hill’s



strain (or stress) concentration tensors — A"’ which relate the average strains (or stresses) in
each individual phase to the average or macroscopic strain imposed on the heterogeneous
medium, Hill (1963), through so-called localization relations, which can be expressed as
g0 — AWF (1.1)
in which k represents the kth phase, e.g. fiber, coating, matrix.
These local concentration tensor are employed in the definition of the average stress given
in terms of the phases averages, expressed in terms of the phase average strains through Hooke’s

law, to obtain the homogenized stiffness matrix for the composite shown as follows
. N
C' =) v,CPAY (1.2)
k=1

in terms of the elastic moduli C'* and phase volume fractions v, , respectively. This concept

will percolate through this entire dissertation.

Homogenized medium

(a)

e

(c)
Figure 1.1 Three geometric representations of a material microstructure: (a) detailed-free
microstructure (Three-phase model); (b) statistically homogeneous microstructure characterized
by an RVE; (¢) periodic microstructure characterized by an RUC.



1.2.1 Microstructure Detail-Free Estimates

The early micromechanics calculations of average moduli of composite materials are based
on Voigt (Voigt, 1889) and Reuss (Reuss, 1929) estimates which were established for uniform
dispersions of isotropic constituents or phases. For the Voigt estimate, the strain concentration
tensors for the matrix and inclusion phases are taken as unity; whereas for the Reuss estimate the
stress concentration tensors for the matrix and inclusion phases are taken as unity. These
estimates originally were used for the predictions of homogenized moduli of polycrystalline
metals wherein the modulus contrast between individual grains was small. Hence poor results are
obtained for composite materials for which the phase moduli differ by more than a factor of two.

The Reuss and Voigt estimates provided the foundation for the rule-of-mixtures formula,
which were applied preferentially to mimic the oriented microstructures of
unidirectionally-reinforced composites. For instance, the average strain in the fiber and matrix
phases was taken to be the same as that of the composite along the fiber direction, while
transverse to the fiber direction the average stresses were equal. Hence an accurate estimate of
the Young’s modulus along the fiber direction may be obtained due to the correct kinematic
constraint, but the remaining moduli associated with transverse normal and shear loading, as well
as with axial shear loading, are typically inaccurate especially for large mismatch of fiber/matrix
moduli.

In the 1950’s, the self-consistent scheme (Hershey, 1954; Kroner, 1958) was proposed as
an alternative to Voigt and Reuss estimates to calculate stress or strain concentration matrices in
polycrystalline metals, with a single anisotropic grain playing the role of an inclusion phase
embedded in a homogenized medium of sought properties. An orientational averaging over all
grains of a polycrystal provided implicit self-consistent relations for the unknown homogenized
moduli.

This scheme was subsequently adopted to the calculation of average properties of
particulate and unidirectionally-reinforced composites by assuming that the concentration
matrices calculated for a single fiber were the same as those of all fibers, (Hill, 1963). This
scheme was shown to suffer from several shortcomings as it did not explicitly take into account
the presence of the matrix phase around a fiber inclusion. This shortcoming was overcome by the

method proposed by Mori and Tanaka (Mori and Tanaka, 1973), who provided a different
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interpretation of the embedding approach based on the average stress in the matrix phase
determined from the solution of an Eshelby-type problem for a two-phase composite with
isotropic or transversely isotropic macroscopic moduli. Some problems with this approach
remained, however, including: 1) the matrix phase was taken into account, but only in an average
sense; 2) the loss of homogenized stiffness matrix symmetry would occur under certain
circumstances. In order to overcome these shortcomings the three-phase model was proposed by
Christensen and Lo (1979), wherein a composite fiber/matrix inclusion was embedded in an
equivalent homogenized medium.

The above approaches do not take into account the actual microstructural details of
heterogeneous materials, and may be viewed as vehicles for calculating Hill’s stress or strain
concentration matrices necessary for the determination of the homogenized moduli. More
detailed information on the homogenized moduli and local stress fields that account explicitly for
the microstructural details may be obtained using microstructural analysis of heterogeneous
materials based on two different concepts of material microstructures: representative volume
element (RVE) and repeating unit cell (RUC), as discussed by Drago and Pindera (2007).
Representative volume element is the smallest subvolume of the statistically homogeneous
microstructure that contains the same phase volume fractions and statistical distribution as the
material-at-large, and also responds in a manner identical to that of the entire assemblage under
either homogeneous displacement or homogeneous traction boundary conditions. Repeating unit
cell is the smallest element of periodic microstructure that serves as the basic building block for
the material through replication regardless of its content. Thus, the response of the entire array
under macroscopically uniform loading is identical to that of an arbitrary RUC subjected to the

same loading.
1.2.2 RVE-Based Approaches

Composite spherical assemblage (CSA) and Composite cylinder assemblage (CCA)
(Hashin, 1962; Hashin and Rosen, 1964) were the earliest and most classic geometric
RVE-based models that provided closed-form expressions for the average or effective moduli.
The composite was viewed as an assemblage of inclusion/matrix spheres or fiber/matrix
cylinders of varying sizes but fixed radii ratio of fiber/matrix. This allowed the entire space to be
completely filled by such composite inclusions while maintaining a fixed inclusion volume

content. Taking the CCA model as an example, for axisymmetric and longitudinal shear loading,



exact expressions for the moduli are obtained by applying continuity conditions and boundary
conditions of displacements and stresses in cylindrical coordinates. However, the homogeneous
boundary condition equivalence no longer holds under transverse normal and shear loading, only
bounds on the moduli may be obtained by applying a variational principle because a single
composite cylinder ceases to respond as an RVE. Similar situation occurs in the case of the
three-dimensional counterpart, the CSA model. Furthermore, because an isolated composite
sphere or cylinder was considered in the calculation of effective moduli, direct particle-particle
interaction remained absent in this approach.

The CCA model was extended by Pindera and co-workers, (Pindera et al., 1993a,b), by
developing solutions to a multiple concentric cylinder of arbitrarily layered geometry with
elastic-plastic phases subjected to axisymmetric and axial shear loading by a combination of a
uniform temperature change, axial deformation and externally applied transverse pressure. This
model was employed to study the evolution of residual stresses in metal matrix composites,
taking into account the complex microstructures of the titanium matrix in SiC/T1 composites, and
engineered interfaces introduced to mitigate excessively high residual stresses.

The models mentioned above are easy-to-use and produce comparatively accurate
predictions of the homogenized moduli (such as the CCA model), as discussed in more details in
this dissertation (Chapter #6). Hence they continue to be employed by the composite mechanics
and materials communities. However, because they are based in simple geometric
representations of a composite material, they do not always capture local stress fields with high
accuracy because of the absence of fiber-fiber interactions that occur in real microstructures.
Moreover, the CCA model is limited to transversely isotropic composites due to its geometric
representation of the composite microstructure. The above limitations have given rise to the
development of techniques based on the concept of periodicity and the concomitant unit cell
representation of the material microstructure. These techniques continue to develop and form a

dominant part of the micromechanics field.
1.2.3 RUC-Based Approaches

Much research has been done in simulating the response of periodic composites in the
elastic and inelastic regions based on the RUC concept. The semi-analytical approaches include
the method of cells (MOC) and its generalization (GMC), (Aboudi, 1989; Paley and Aboudi,

1992), wherein the composite material’s microstructure was discretized into rectangular rows



and columns with the resulting subcells assigned properties that mimic the microstructural details.
Pindera and Bednarcyk (1997) showed that the intrinsic assumptions on the form of the
displacement field in each subcell in these two models produced essentially spring models
wherein each column and row behaved either like two-dimensional springs capable of supporting
uniform normal stress components or one-dimensional springs independently supporting axial or
transverse shear stress components. These shortcomings led to a more accurate model based on a
two-level discretization of the unit cell into generic cells and subcells, with a higher-order
displacement field representation in each subcell, called high-fidelity generalized method of cells
— HFGMC, (Aboudi et al., 2003). The explicit solution for the strains and stress fields in the unit
cell was obtained by satisfying 0" 1% and 2" moments of equilibrium equations in each subcell,
in addition to the interfacial traction and displacement continuity conditions within each, and
between adjacent, generic cells and the periodic boundary conditions on the external faces of
boundary generic cells. The two-level unit cell discretization complicated the theoretical
framework and created a large system of equations that governed the unit cell response.
Subsequently, this approach was substantially re-constructed and simplified by Bansal and
Pindera (2005), and the re-construction revealed that the method was really a finite-volume
technique.

At present, most homogenization techniques for periodic materials continue to rely on
numerical solutions of the unit cell boundary-value problem using mainly finite-element and
finite-volume techniques, and to a lesser extent techniques based on finite-difference and Fourier
transform approaches (Michel et al., 1999; Pindera et al., 2009; Charalambakis, 2010;
Cavalcante et al., 2012; Tu and Pindera, 2014). The finite-element technique is the dominant
method mainly because of the easy-to-use character and wide availability of commercial
packages. However, because commercial finite-element codes are general structural analysis
codes, the implementation of periodic boundary conditions under general loading is not readily
achievable, and the geometric representation of unidirectional composites under
three-dimensional loading requires full three-dimensional models. Hence new techniques
continue to be developed. The finite-volume method, first used to investigate fluid mechanics
problems (Versteeg and Malalasekera, 2007), is one such technique that is rapidly developing.

Cavalcante et al. (2006a,b) incorporated parametric mapping into the finite-volume direct

averaging micromechanics (FVDAM) theory developed by Bansal and Pindera (2003), which



resulted from the re-construction of HFGMC, that enabled modeling of complex microstructures
using quadrilaterals rather than rectangular subvolumes. The use of quadrilateral subvolumes
made possible by the mapping facilitated efficient modeling of microstructures with arbitrarily
shaped heterogeneities, and eliminated artificial stress concentrations produced by the
rectangular subvolumes employed in the standard version. Closed-form expressions were
constructed for the elements of a local stiffness matrix for each subvolume that related the
surface-averaged fluctuating displacements to the surface-averaged tractions on each face of the
subvolume used in the assembly of the global system of equations.

Interest in elasticity-based methods has revived within the past 15 years in light of
advances in computational technology, as well as due to the potential advantages offered by
these techniques (Crouch and Mogilevskaya, 2006; Wang et al., 2005). For instance,
microstructural optimization will profit from analytical solutions of unit cell problems due to the
significantly smaller design variable space, more efficient specification of objective functions
and implementation of more efficient search procedures. Another application is the
reconstruction of local fields from homogenized-based results within a multi-scale analysis of
local failure modes (Lipton, 2003), and material development which relies on rapid answers to
what/if questions. Theoretical issues concerning the use of approximations in homogenization
schemes may also be addressed by elasticity solutions (Mogilevskaya et al., 2012).

Elasticity solutions for the homogenized moduli of periodic heterogeneous materials had
been developed by a number of investigators with various degrees of success since the early
development stage of composite materials. For unidirectional composites with circular fibers or
porosities the main obstacle to an accurate solution is the inseparable nature of the problem due
to the different coordinate systems required to solve the interior and exterior unit cell problems.
The interior problem involves satisfaction of the elasticity field equations subject to the
fiber/matrix continuity conditions most conveniently implemented in the cylindrical coordinate
system, whereas the exterior problem involves enforcement of periodicity conditions on the
boundary of the unit cell in the Cartesian coordinate system. The interior problem is readily
handled using Fourier series representations of stress or displacement fields, (Chen and Cheng,
1967; Heaton, 1968; Leissa and Clausen, 1968; Pickett, 1968), or complex potential methods for
plane problems, (Koiter, 1960; Fil’shinskii, 1964; Wilson and Hill, 1965; Grigolyuk and

Fil’shinskii, 1966). The more difficult exterior problem had been tackled in an approximate



manner through the use of collocation or least-squares techniques in the implementation of
periodic boundary conditions on the unit cell’s bounding surfaces. While this approach has
produced reasonable estimates of the homogenized moduli, convergence of stress fields with
increasing number of terms in the series representation of the displacement field remains
problematic.

To circumvent the problem with the implementation of periodic boundary conditions,
series expansions of the displacement field have been employed that reflect the overall
microstructural periodicity using the eigenstrain device to represent inclusion strains, thereby
avoiding the problem of explicitly enforcing continuity conditions at the fiber/matrix interface
while a priori ensuring displacement field periodicity (Nemat-Nasser et al., 1982; Luciano and
Barbero, 1995). This approach has been applied to both square and hexagonal arrays of
inclusions in the matrix phase by Guinovart-Diaz et al. (2010). An alternative approach to
implement periodic boundary conditions into the exact elasticity solution of the interior unit cell
problem for unidirectionally reinforced composites has been proposed by Drago and Pindera
(2008) in the form of a balanced variational principle. This variational principle produces rapid
convergence of the coefficients in the series representation of the displacement fields which
satisfy both the Navier’s equations and fiber/matrix continuity conditions in the interior of the
unit cell representative of rectangular or square arrays of isotropic inclusions. As a result,
converged homogenized moduli and local stress fields are obtained with relatively few terms in

the displacement field representation.
1.3 Significance of Elasticity-Based Homogenization Techniques

Despite the widespread use of numerical techniques in the homogenization of composites
due to their ability to model complex microstructures and accommodate inelastic behavior of
constituent phases, there are number of instances where the elasticity approach has certain
advantages. The construction of an input data file for an elasticity-based homogenization
algorithm is at least an order-of-magnitude faster relative to numerical methods based on
geometric discretization, and may be quickly automated for use in parametric or optimization
studies. In the case of numerical analyses, model construction which defines the input data
consumes a major part of the simulation effort. Moreover, studies aimed at the important effects

of fiber/matrix interfaces on the homogenized moduli and local stress fields are much more



efficiently carried out using the elasticity approach due to both mesh construction and
convergence issues. Similar comments apply to the modeling of cylindrically orthotropic fiber
microstructures such as those found in graphite fibers. These two important areas in the
mechanics of composite materials which continue to be explored with numerical techniques that
account for the local fiber interactions absent in the simple geometric models are discussed in
detail in the following subsections.

Lastly, an analytical solution to an elasticity problem of a unit cell subjected to macroscopic
loading provides solution to the corresponding linearly viscoelastic problem in the
Laplace-transform domain through replacement of the constituent phase moduli by their Carson
transforms, and elastic variables by their Laplace transforms. This is known as the
elastic-viscoelastic correspondence principle. Inversion of the Laplace-transformed solution to
the time domain may be obtained numerically, enabling investigations into little explored
time-dependent response of unidirectional polymeric matrix composites with different
architectures. The success of the inversion procedure is very much dependent on the particular

inversion scheme which must be chosen carefully.
1.3.1 Interfaces

Interfaces play a key role in stress transfer between fiber and matrix phases of a
fiber-reinforced composite, which is at the core of reinforcement principles in the mechanics of
composite materials. They take different forms that depend on the fiber/matrix system and hence
different names have been used to describe them. Examples include regions with variable
properties, or interphases, due to altered chemical bond structure of the matrix phase adjacent to
the fiber’s surface in polymeric matrix composites; fabrication-induced reaction zones with
degraded properties in metal matrix composites reinforced by ceramic fibers; as well as coatings
that promote fiber/matrix adhesion, control fracture toughness or reduce residual stresses. The
effect of interfaces or interphases on the homogenized and local response of unidirectional
composites has been investigated by many researchers using different modeling approaches
within various micromechanics or homogenization theories, including distinct interfacial layers
with properties different from those of the adjacent fiber or matrix, and spring and cohesive zone
models. For very thin interface/interphase regions the latter two models offer an attractive
alternative to finite-thickness interfacial layers especially when variational techniques requiring

detailed geometric discretization are employed.
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Review of the early approaches based on simple geometric models of unidirectional
composites such as the CCA, Mori-Tanaka and GSC (generalized self-consistent) models was
provided by Jasiuk and Kouider (1993). A more recent discussion of the various approaches may
be found in Duan et al. (2005). The simple geometric models based on a single fiber embedded
in the matrix phase, which may in turn be embedded in the homogenized medium of sought
properties, yield estimates of homogenized moduli in the presence of interphases or coatings
with uniform or variable (so-called graded) properties, but do not provide accurate estimates of
stress fields that account for adjacent fiber interaction. To gauge the effect of coatings or
interphases on the homogenized moduli without sacrificing local stress field accuracy critical in
failure analysis, the finite-element approach has been, and continues to be, employed by a
number of investigators, (Lagache et al., 1994; Veazie and Qu, 1995; Asp et al., 1996; Shen and
Li, 2003; Maligno et al., 2010; Wang et al., 2011; Sideridis et al., 2015). In the presence of thin
coatings, however, detailed mesh discretization is required for converged stress fields.
Alternative approaches to the homogenization of unidirectional composites include
elasticity-based solutions for periodic microstructures and finite-volume techniques. A recent
focus on the incorporation of interphase and spring models into elasticity-based solutions has
been highlighted by several researchers, (Mogilevskaya et al., 2010; Sevostianov et al., 2012;
Guinovart-Diaz et al., 2013). Optimization of interfacial properties will profit from the use of
analytical techniques in the solution of unit cell problems due to the significantly smaller design
variable space, more efficient specification of objective functions and implementation of more
efficient search procedures. Another benefit is the efficient reconstruction of local fields from
homogenized-based results within a multi-scale analysis of local failure modes, and material

development which relies on rapid answers to what/if questions.
1.3.2 Cylindrically Orthotropic Fiber Microstructures

Materials and structures with cylindrically orthotropic architectures are found in nature as
well as in man-made constructs. Examples include tree trunks, biological tissues and bones,
masonry structures and graphite/carbon fibers used as reinforcement in advanced composites.
Leknitskii and Fern (1963) were perhaps the first to provide solutions to cylindrically orthotropic
materials and structural components under certain geometric and loading constraints, including
cylinders subjected to axisymmetric and bending loads. The problem with singular stress fields

that occur at the origin of radially orthotropic fibers was sidestepped by focusing on structural
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components that were hollow. To gauge the impact of cylindrical orthotropy in graphite fibers on
the homogenized moduli and local stress fields in unidirectional graphite/epoxy composites,
simplified models based on the concentric cylinder geometry had been employed by several
investigators. For instance, Avery and Herakovich (1986) employed the composite cylinder
geometry to investigate the impact of graphite fiber's cylindrically orthotropic microstructure on
residual stresses that arise during the fabrication process and the potential failure modes in the
graphite fiber induced by these stresses. In a follow-up investigation, Knott and Herakovich
(1991) calculated four of the fiver transversely isotropic moduli of graphite/epoxy unidirectional
composites and related stress fields using the CCA model. Similar investigation was carried out
by Hashin (1990) and Christensen (1994) using the CCA and three-phase models wherein the
cylindrically orthotropic moduli of graphite fibers were replaced by equivalent homogenized
transversely isotropic moduli, thereby sidestepping the singular nature of stress fields in radially
orthotropic fibers. The issue of stress singularity in cylindrically orthotropic solid cylinders has
been discussed by Antman and Negron-Marrero (1987), Tarn (2002), Cowin and Fraldi (2005).
The simple geometric models based on a single fiber embedded in the matrix phase such as
the CCA model, which may in turn be embedded in the homogenized medium of sought
properties, e.g., three-phase model, yield estimates of homogenized moduli but do not provide
accurate estimates of stress fields that account for adjacent fiber interaction. Hence the
finite-element approach continues to be employed in predicting both the homogenized moduli
and local stress fields necessary for local failure analysis. Thus far, however, little work can be
found dealing with finite-element analysis of unidirectional composites with cylindrically
orthotropic fibers, although results on the homogenized moduli and local stress fields in
unidirectional composites with nano-fibrils which effectively act as cylindrically orthotropic
fiber coatings have recently become available, (Chatzigeorgiou et al., 2011, 2012). Hence the
micromechanics community would benefit from a unified elasticity-based homogenization
approach that accounts for cylindrically orthotropic fibers in both the homogenization process

and local stress field calculations, while admitting local fiber interactions.
1.4 Objectives

The main objective, and achievement, of this dissertation is the construction of a

comprehensive set of homogenization theories for unidirectional composite materials based on
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the elasticity approach, with the following features and modeling capabilities:

® Transversely isotropic constituent phases, extending the previous work of Drago and Pindera
(2008) with isotropic phases;

® Radially and circumferentially orthotropic fibers to study the effect of graphite fiber
morphology on composite properties and local stress fields within a unified framework;

® Three-phase microstructures through inclusion of coatings or interphases (interfaces)
between fiber and matrix;

® Three types of microstructural representations based on rectangular (square), hexagonal and
parallelogram (tetragonal) arrays that mimic different arrangements of fibers in the matrix
phases;

® Viscoelastic response of polymeric matrices to study the effect of unit cell architectures on
the time-dependent homogenized response and the transmission of phase time-dependent

characteristics to the macro-level.

1.5 Approach and Outcomes

The construction of the locally exact homogenization theory with the aforementioned
features follows the framework of the original theory for rectangular arrays containing isotropic
elastic phases developed by Drago and Pindera (2008). The solution to the unit cell problem is
carried out in two steps. The displacement fields are represented using Fourier series expansions
in cylindrical coordinates which satisfy equilibrium and continuity conditions in the fiber,
interface and matrix phases. This is the interior unit cell problem which is separable. The
inseparable periodic boundary conditions in the Cartesian coordinates are implemented using the
variational principle proposed by Drago and Pindera (2008) which is demonstrated to work
extremely well for hexagonal and tetragonal unit cell architectures incorporated in this
dissertation.

The theory is validated against exact elasticity solutions in the limit as the fiber volume
fraction becomes dilute and shown to reduce to the classical solution of Eshelby (1957)
regardless of the number of harmonics employed in the displacement field approximation,

demonstrating also its robustness and stability. In the non-dilute case, the homogenized moduli
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and local stress fields are compared with those of the FVDAM theory previously demonstrated to
be of the same fidelity as the finite-element method. Convergence studies indicate that
homogenized moduli converge rapidly to their values with relatively small number of harmonics,
whereas local stress fields require somewhat greater, but not large, number of harmonics for
convergence. This rapid convergence is due to the balanced variational principle originally
proposed by Drago and Pindera (2008) for rectangular periodic arrays, and extended herein to
hexagonal and tetragonal arrays.

The capability and efficiency of the developed locally exact homogenization theory are
illustrated throughout the dissertation with the aim of highlighting the following outcomes and

features:

® Comparison of stress distributions and homogenized moduli predicted locally exact
homogenization theory (LEHT) and FVDAM illustrates the robustness and accuracy of this
method;

® The stability of the method and its quick convergence in predicting homogenized moduli and
local stress fields in a wide range of volume fractions, phase moduli contrasts and fiber
arrays sets this method apart from other elasticity-based homogenization theories;

® The total time required for problem definition and execution is an order of magnitude smaller
relative to wvariational or finite-volume techniques because time-consuming mesh
discretization is not required, while post-processing of output data is easily automated. This
facilitates rapid visualization of stress distributions, and applications involving optimization
and multiscale modeling, etc.;

® The input data construction requires a few geometric and material parameters, facilitating use
by specialists and non-specialists alike;

® Rapid assessment of widely employed classical models such as the CCA and Mori-Tanaka
models for both elastic and viscoelastic behavior;

® Assessment of recently proposed elasticity-based models that employ a related variational
principle, and the related problem of the effect of boundary condition implementation on the

resulting homogenized moduli and stress fields.

The advantages of the locally-exact homogenization theory relative to other numerical and
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analytical techniques extend beyond those discussed above. Taking the cylindrically orthotropic
fiber case as an example, hundreds if not thousands of elements or subvolumes need to be
employed to accurately capture the local fiber stresses near the origin because of the very high
stress gradients produced by singular nature of the stress field. Moreover, a small transversely
isotropic core is needed to eliminate the difficulties of simulating the singularity. This problem
does not appear in the locally-exact theory. The unknown coefficients that govern the
displacement and stress distributions are easily obtained upon rapidly solving the unit-cell
boundary value problem, thereby leading to explicit expressions for stress distributions and
homogenized moduli.

Based on the theoretical framework and validation described and conducted in this
dissertation, the constructed locally exact homogenization theory may be used as a standard
against which other microstructural analytical and numerical models may be compared due to the

ease-of-implementation, solution stability, quick convergence and accuracy.
1.6 Outline

This dissertation has the following organization. In Chapter 2, the basic theoretical
framework is presented for both two-phase and three-phase composite materials with continuous
reinforcement along one direction. The derivation is valid for transversely isotropic fiber and
matrix phases, which may be easily degenerated to isotropic phases, as well as cylindrically
orthotropic fibers. Three types of periodic microstructures (rectangular, hexagonal, tetragonal
arrays) may be simulated by the developed theory which may be used to study microstructures
with resultant transversely isotropic, orthotropic or monoclinic homogenized moduli.

In Chapter 3, several cases are used to validate the theory developed in Chapter 2. First,
rapid convergence of the homogenized moduli and local stress fields is demonstrated with
increasing number of harmonics employed in the displacement field representation in the fiber
and matrix phases. For dilute fiber volume fractions, stress distributions are compared with
Eshelby and Kirsch problems for stiff fibers and cylindrical porosities. Chapter 4 presents a
number of numerical results and examples which demonstrate the advantages of the locally-exact
homogenization theory in dealing with different applications. The homogenized moduli in a wide
range of fiber and cylindrical porosity volume fractions are compared with Mori-Tanaka and

CCA models, as well as with the FVDAM theory shown previously to be as accurate as the
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finite-element calculations in both Chapter 3 and 4. The elastic unit cell solution for different
array types is extended to viscoelastic domain using the correspondence principle in order to
study the time-dependent behavior of polymeric matrix composites in Chapter 5. The method
proposed by Zakian (1969), which is chosen for inverting Laplace-transformed homogenized
moduli, is proven to be a stable and accurate inversion technique from Laplace domain to the
time domain. Two types of assumptions on the time-dependent response of a polymeric matrix —
constant Poisson’s ratio and constant bulk modulus cases, are employed in simulating
homogenized creep compliances of unidirectional graphite/epoxy composites and compared with
experimental data. Chapter 6 compares LEHT with CCA and Mori-Tanaka models for both
elastic and viscoelastic behavior. By comparing the homogenized moduli and stress distributions,
it 1s concluded that even if the CCA model can just provide bounds on the transverse shear
modulus which the Mori-Tanaka model can predict precisely, it is still an easy-to-use and
efficient method which gives accurate homogenized moduli and stress distributions relative to
LEHT. In Chapter 7, the balanced variational principle is compared with Jirousek’s constrained
variational approach in dealing with periodic boundary conditions for different types of
microstructural arrays, showing its quickly convergent and more stable characteristics. At last,
summary and conclusions are presented in Chapter 8, and future work is proposed with the aim

of further enhancing the theory’s computational and predictive capabilities.
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Chapter 2

Theoretical Framework

2.1 Unit Cell Solution Overview

We consider a periodic material with continuous reinforcement along the x, axis,

characterized by a repeating unit cell that defines the material’s microstructure. Fig 2.1 shows
three types of two-phase microstructures: rectangular, hexagonal, parallelogram arrays; while Fig
2.2 shows three-phase microstructures with additional coating or interphase between fiber and
matrix (parallelogram array not shown). The unit cell, which contains an inclusion offset from
the center to demonstrate the approach’s robustness, is loaded by homogenized strain

components &;. The solution for the displacement field is obtained subject to the periodic

boundary conditions imposed on the external surface displacements and tractions

ui (Xo +d) = ui (Xo) + 8yd] and ti (Xo +d) = _ti (Xo) (2 1)
where (x,,x,+d)e S, S is the unit cell boundary, d is a characteristic distance that defines the
unit cell microstructure, and £, =0 ,n, from Cauchy’s relations, with n, denoting the ith

component of the unit normal to S.

The boundary-value problem is first solved in the interior of the unit cell for the
displacement fields in the fiber, coating and matrix phases such that local equilibrium equations
and interfacial continuity conditions are satisfied exactly. The problem is separable in the
cylindrical coordinate system, facilitating exact solution. The exterior problem involves
satisfaction of the periodic boundary conditions in the Cartesian coordinate system and hence is
inseparable using the interior solution in cylindrical coordinates. To solve the exterior problem,
the balanced variational principle proposed by Drago and Pindera (2008) for rectangular unit

cells comprised of isotropic phases is adapted herein for hexagonal or tetragonal (or
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Figure 2.1 Repeating unit cells of hexagonal (a), rectangular (b) and parallelogram (c) arrays

Figure 2.2 Repeating unit cells of hexagonal (a), rectangular (b) arrays with coated fibers



parallelogram) arrays comprised of transversely isotropic phases. Solution of exterior problem

involves minimization of the functional
_1 0 0 _
Hyp= [ o,8,a7 - js,, tu'ds — jsl t'u.dS =0 (2.2)

where t=t’ and u=u" are periodic traction and displacement constraints imposed on S, and
S, , respectively. Taking the first variation of H, ,, and using the fact that the interior

elasticity solution satisfies the stress equilibrium equations a priori, so that

i

1 1
> [ o,8,a7 = E'L tu.dS (2.3)
The variational principle is obtained in the final form
[, w6, —€)dS+|_t,(u,—u))ds =0 (2.4)
The displacement and traction components on the six surfaces of the hexagonal unit cell,
Figs. 2.1-2.2, are obtained from the periodicity conditions, Eq. (2.1), in the form,

u,(S)=u(S,)+&,d, u,(S,)=u,(S;)+&,d, u,(S;)=u,(S,)+&,d
I.(S,) =-T(S,), T.(S,) =-T(Ss), T.(S;) =-T,(Sy)

where d = \/gL.

(2.5)

In the case of rectangular (Drago and Pindera, 2008) or parallelogram unit cell with length
d, and height d,, these components are
u,(Sy) = u,(S5) +E,dy, u(S,) =u,(S,)+E;d,
T(S) =-T,(S5), T.(Sy) =-T,(S,)

The solution for the displacement and stress fields in the fiber, coating and matrix phases is

(2.6)

carried out within the homogenization theory’s framework wherein the global coordinates

X =(x,,X,,x;) describe the average response of the entire periodic array, and the local
coordinates y =(y,,y,,»,) describe the interior unit cell response (Suquet, 1985; Bensoussan et

al., 2011). Accordingly, a two-scale displacement field expansion is employed within the unit

cell,
U (x,y) = Epx, +u Y (y) 2.7)
where the fluctuating displacement components #” induced by the medium’s heterogeneity are

functions of local coordinates (y,,,), in light of the constraint along the x, direction by the

continuous reinforcement, and the superscripts k = f,c,m denote fiber, coating (interphase)
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and matrix phases, respectively. The above displacement field generates the local strains,
eV ()=, +€(y) (2.8)
Once the solution for the unknown fluctuating displacement components u’(r,6),
u (r,0) , u,(r,0) is obtained in each phase in the cylindrical coordinate system, the

corresponding strains are determined from the strain-displacement relations. To implement
periodicity conditions in the variational principle, the fluctuating displacements in the cylindrical

coordinate system are transformed to the Cartesian system using the standard transformation

equations
u =u., u,=u. cos@—u,sin6, u, =u sin@+u;, cosd (2.9)
Similarly the fluctuating Cartesian strains are obtained from the transformations,
Out of plane:
g,=¢ cos@—¢,sin6
S ; (2.10)
£,=€E,sinf+¢,cosl
Inplane:
7’ 1 4 4 1 7’ 4 ’ :
€2=7 (& +€4)+ 5 (&) —€,5)c08260—¢,s5in26
4 1 ’ 4 1 4 4 V4 .
=7 (& +€5)— 5 (& —&,)c0s26+¢,5in26 (2.11)

4 1 4 4 . 4
€3 =7 (&) —€,)sin 20+ €., cos 20

which are subsequently used in the calculation of stresses and then tractions in the Cartesian

coordinate system through Hooke’s law and Cauchy’s relations.
2.2 The Interior Problem

2.2.1 Transversely Isotropic Phases

The solution of the interior problem for unit cells with transversely isotropic phases follows
the solution procedure by Drago and Pindera (2008). Hence only the main results are stated here
with appropriate modifications accounting for transversely isotropic phases possessing plane of

1sotropy perpendicular to the reinforcement direction x,. The generalized Hooke’s law for such

materials takes the uncoupled form
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where the stiffness elements are given in terms of the axial Young’s and shear moduli £, 1,

and Poisson’s ratio v,, and the transverse plane strain bulk and shear moduli k,,u, :

A
C,=E,+4kVv:,C, =2k v,, Cy, =k, + 1, Cp =k, —ut,, Coc = 11,. The use of the generalized

Hooke’s law and strain-displacement relations

_oul  _
8ZZ=€ZZ+a =gZZ
Iz
e,
grr _grr + a}’ - grr +€rr
o~ ou lou, _ o,
Ego 869+r+;a =&y T Epy
’ ’ ’ (213)
e —F Jr1 18ur+8u9 Uy \_z g
ré ré 2 rag ar " ré ré
o lou .,
grz _grz+5 a]" _grz+grz
__lou ,
892_862+;ag_892+892

in the equilibrium equations in the cylindrical coordinate system yields the Navier’s equations

for the three unknown fluctuating displacements in each phase

u’ 1du’ 1 9%/
z — z 4 z :0
or* r or r* o6’
ul 10ou u )\ u 0u k. u, 2(k,+2u)u, (2.14)
k + ry 27 T +_T r+_T 6 _ T T 6 _
Uer 'UT)( or*  r or rzj r* 060*  r 0rdé r’ 00 (2-16)
Ou, 1o, ) (kp+u)0%u, k, 0u’ 20k, +24,) ou '
+——-= |+ +——=+ —=0
ﬂT[aﬁ ror r? 060> r 9rod P’ 00

Since the out-of-plane and in-plane displacements u, and u/,u,, respectively, are

uncoupled in the differential equations above, the two problems are solved independently for the

displacement field that generates homogenized moduli associated with respective loading.
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2.2.1.1 Axial shear loading
The displacement field u/(r,8) for the fiber, coating and matrix phases has the same form
as that for isotropic phases

W =H, +ia[(§"H"l +E"H, Jcosn+(E"H,, +£"H,, )sinnd | (2.17)

n=l1

where &=r/a is the nondimensionalized radial coordinate with respect to the fiber radius a,
and H,E,f ™ (j=1,2,3,4) are unknown coefficients. Setting H'’ =H'}’=0 to ensure that the

out-of-plane displacement remains bounded in the fiber.

(a) For two-phase (fiber/matrix) material system, the coefficients H'"”, H'" H'" H" are

nl >%%n2 57 n3 >
obtained in terms of H '/’ and H'/’ from the fiber/matrix interfacial displacement and traction
continuity conditions
W (a,0)=u/" (a.60), 0 (a,0)=0""(a,6) (2.18)
(b) For three-phase (fiber/coating/matrix) material system, the matrix coefficients

HY HY HY H'"" and coating coefficients H',H),H'),H') are obtained in terms of

nl > n2 > n3 > n2 n3 n4

H'Y) and H']’ from the fiber/coating/matrix interfacial displacement and traction continuity

conditions
fiber/coating interface: ' (a,0)=u"(a,0), 6 (a,0)=0"(a,0)
coating/matrix interface: u'(b,0)=u" (b,6), 0 (b,0)=0""(b,6)

(2.19)

The shear stress components ¢ in the fiber, coating and matrix regions are obtained

from Hooke’s law, Eq. (2.12), and the strain-displacement relations, Eq. (2.13),
0, =2G &, +G,Yn| (& H, ~& " H, )cosnd+ (& H,, + &7 H,, )sinng]|  (2.20)
n=l1
where £ =¢g,cosf+E,sin@, since the periodic boundary conditions imposed on a hexagonal

unit cell are given in terms of the macroscopic axial strain &, and g, in Cartesian

coordinates.
Applying the interfacial continuity conditions and using the orthogonality of cosnf and

sinn@ terms, we obtain the following expressions for the matrix coefficients (two-phase model)

22



or coating coefficients (three-phase model): HY,HY HY HW:

nl n2 2 n3 2
H, 17 T¢ 077 -1 0
f) —
H, 0 ¢ H, T 1o -1([2z2
m| — N Y ! 12 221
H, ¢, 0 [Hnj e [2513} (2.21)
H, 0 ¢ 0 1

where ¢ =(uP +u'")/2u and " =1-c"". Here k=m for two-phase model,

k =c for three-phase model.
For the three-phase composite materials, another set of interfacial continuity conditions are

employed to set up relationship of coefficients between coating and matrix at »=5b:

(r=b)

H, 1" ¢ 0 (a/b)*"c, 0 H, 19 -1 0
H, _ 0 G 0 (a/b)zn & H, +5.cr= 0 -1 2,
Hn} (b/a)2n Cz 0 C] 0 Hn} e (b/a)2 0 2‘§13
H, 0 (bla)c, 0 ¢ H, 0 (bla)

(2.22)

where ¢ = (u\” +u) /24" and T =1-c"".

2.2.1.2 Axial normal and transverse loading
Similarly, the fully coupled displacement field u/(r,0), u,(r,0) that accommodates unit

cells without planes of material symmetry in the »—6 plane and specified loading is obtained

in the form,

o 4
u =Fyal+F,al™" +F,cos0+G,sin6+ ZZafp"’ [Fn/ cosnf+G,, sin n@]
n=2 j=1

(2.23)
o 4
=—F,sin6+G,,cos0+» > aff, & [Fm sinn@ -G, cos m9]

n=2 j=1

and p =n+lp,=n-1,p,=—(n+l), p,, =—(n—1) are the four eigenvalues with the

corresponding eigenvectors f3,.

(k, +G)(1- pnzj) + GTn2
n(kTpr;/ - kT - 2GT)

and F/" GJ"(j=1,2,3,4) are unknown coefficients. Setting Fy/’=0 and F;’ =

(2.24)

an/ =

F'"=0,G =G =0 to ensure that the fiber displacement field remains bounded,

(a) For two-phase composite materials, the remaining matrix coefficients F,” and G." are
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obtained in terms of the fiber coefficients E;f) and nyf) from the fiber/matrix interfacial

displacement and traction continuity conditions
u!"(a,0)=u/"(a,0), u;"(a,0) =u;" (a,6)

(2.25)
0(a,0) = 6"(a,6), 6(a,6) =% (a,6)

(b) For three-phase composite materials, the matrix coefficients F," and G, as well as the
coating coefficients F\” and G| are obtained in terms of the fiber coefficients F/’ and
nyf) from the displacement and traction continuity conditions between fiber/coating and

coating/matrix interfaces.

u!(a,0)=u"(a,0), u;" (a,0) =u;" (a,6)

fiber/coating: (2.26)
0(a,0)=0'"(a,0), 0')(a,0)=0%)(a,0)
"Va.)=u"(a.0 "Va.0)=u"""(a.0

coating/matrix: u,"(a,0)=u,"(a,0), uy”(a,6) =u;" (a,6) (2.27)

0'(a,6)=0"(a,0), 0 (a,0) =03 (a,6)
The radial and shear stress components ¢, and o, in the fiber, coating, and matrix

regions are obtained from the Hooke’s law, Eq. (2.12), and the strain-displacement relations, Eq.
(2.13),
O-rr = 2kTVAgzz + (kT +ILlT )(ar + 8:)) + (kT _ll'lT )(EHH + 8;9)
=2k v &, +(kp + 1y )E, +(ky — 1 )€,

o 4
+2k, Fy =24, F &7 + 2 2 Ry.fp”f_l (Fn]. cosnd+G,, sin né?)

n=2 j=1

o 4
O, =2l (E,+E,)=2U,E,+ ZZanfp”’_l (Fnj sinng—G,; cos nﬁ)

n=2 j=1

(2.28)
where P, = (ky + 1ty D, + (ky — )1+ nﬁn/')’ and R, =y I:(pr!/’ _1)ﬂnj - n:l'

Interfacial continuity at »=a:

Applying the four interfacial continuity conditions at » =a, and using orthogonality of

cosnf and sinnf terms, we obtain systems of equations for the coefficients F,;’") and GIEJ’.”)

(or coating coefficients F,” and G\’ for three-phase composites) in terms of the

corresponding fiber coefficients. From the n =0 contributions, we have
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(k) (r=a) (r=a) (r=a)
E)l b01 D Co = d = =
— FU) 4| ~o +| 7ot + 2.29
{F } [boz o Coz “ dy, (EntEs) ( )

02
where
) (k) (g, () (k) ,(k)
N i ) _ kg Vi =k vy 4= :_lb(r:w
01 k k) > 01 k k 4 01 02
KT e 2 -
(k) (@] :
(r=a) __ k kT (r=u) _ C(r a) d(r:a) — _d(rzu)
02 k > o2 o1 02 01
R
From the n>2 contributions:
Aizk)Fz:k) = Aflf)F}if) + 5n2AO (&, _533)
A(k)G(k) _A(f)G(f) S .A2E (2'31)
n n ~ ‘tn n + n2* 20 823
where
1 1 1 1® 1 1 0
A(k) ﬁnl ﬂnZ ﬂn3 ﬂn4 A(f) IBnl ﬁnZ Aér:a) _ 0
n > ? - o _ (C)
F, F, B; B, F, F, (Uy
f) _ (6)
Rnl Rn2 Rn3 Rn4 Rnl RnZ (ﬂ
(2.32)

in which k=m for two-phase model, and k =c¢ for three-phase model.

Interfacial continuity at »=5:
For fiber/coating/matrix three-phase composite materials, the additional interfacial

continuity at r=5b can be applied to obtain the relationship between coating coefficients
F“,G'” and matrix coefficients F",G'™.

For n=0 contributions:

(m) (r=b) 7 (r=b) (r=b) (r=b)
F, } {b } [b } c _|d _
01 —| o1 Flo 4| 7o F© 4| o - gy (€, +E,)
01 ’ 02 1 »n TEéx
|:sz by, by, Coo dy

(2.33)
where

() (m) (©)y,(c) _ g.(m)y (m) (¢) _ 7.(m)

=y _ Ky R coen TV kY vy _ K =Ky
9

01 k(m) +‘Ll(m) 01 k(m) +u;m) 01 2(k(m) +N(M))

k(m) k(c)
(r= b) (r b) (r b) (r:b) (r=b)
po =t by (= ) dy " ==dy " (— )

02 k(m) + ‘u(m)
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(&) _ pym () 4 g (m)
B — _ = Uy (2)2 Bo=b) = My +k;

(R O * (O NN )
T +‘uT T +‘uT

For n>2 contributions:

(m)p(m) _ A ()p(c) ra ra
Anm an - Anc Fn + §n2A0(€22 _833)

Afzm)Gim) = AE’lC)GE'lC) +0,,A,28),
where
N ) L 7 N () A
AP B.la)™  B,0b/a)™  B(b]a)™

B, (b a)™
B, (bfa)

P,(b/a)™™  P,(b/a)’" P, (bla)"
Rnl(b/a)pnl_1 an(b/a)prﬂ_l Rn3 (b/a)pn3_1 Rn4 (b/a)pn4_l

in which k=c¢,m.

N

2L

, Aér:b) _

(a) Transversely isotropic

(2.34)

(2.35)

0
0

() —
(1" — ™

(2.36)

(b) Circumferentially orthotropic (c) Radially orthotropic
x2

Figure 2.3 Repeating unit cell of a hexagonal array of fibers with cylindrically orthotropic
microstructures.

2.2.2 The Interior Problem with Cylindrically Orthotropic Fibers

The Hooke’s law for such materials naturally expressed in the cylindrical coordinates takes
the form,
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O-zz sz Czr C29 gzz O-rB lLl ré 0 O 28r0
O-rr = Czr Crr Cr0 grr 2 O-zr = O ll'l zr O 2gzr (2 . 3 7)
O-HH CzB CrB C99 899 O-ZB O 0 ﬂ z6 2820

Two distinct types of cylindrically orthotropic microstructures can be identified which give

rise to different stress fields. For radially orthotropic materials, the ratio C,/C,, >1 with the
concomitant microstructure resembles a bicycle wheel, whereas C,/C, <1 for

circumferentially orthotropic materials whose microstructure resembles an onion. Fig 2.3
illustrates different types of microstructures found in graphite fibers characterized by differently
oriented basal planes aligned with the fiber’s axis which produce radially and circumferentially
orthotropic effective behavior (Huang, 2009). A random dispersion of these planes perpendicular
to the fiber axis produces transversely singular stress fields at the origin while those with
circumferentially orthotropic moduli do not. The different graphite fiber microstructures have
different impacts on the homogenized moduli, stress fields and fracture characteristics at both the
single ply and laminated plate levels (Herakovich, 1989).

The solution of interior problem for unit cells with cylindrically orthotropic fibers whose
elastic response is governed by Eq. (2.37), and (transversely) isotropic matrices follows the
solution procedure described in Section 2.2.1. Hence only results which focus on the
displacement field in cylindrically orthotropic fibers that require special treatment will be

highlighted. The equilibrium equations in the cylindrical coordinate system yields the Navier’s

equations for the three unknown fiber displacements u_,u, and u,,

2 2
_a uzz +l%+@%_a uzz =0
or- ror u, r-o06

’u. 10du u p,0u C,+u, du, Cup+i,ou, C,—C. _
C R TS _C _r+ ré r + ré ré 6 _ 60 re [ — z6 zr z
o o’ r ar) “2 4t 96? r droé P’ 00 r =
P (82”6 +l%_”_9)+%82”9 +Crt9+ll’lr9 o’u, +C9¢9+ﬂre %:O
ré 2

o’ ror r r* 06° r 0roé r 00
(2.38)

2.2.2.1 Displacement and stress fields
Assuming solutions for the fiber out-of-plane and in-plane displacements u. and u_,u,,

respectively, in the separable form:
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uif)(,,’g) ~E z= Z[h”(r)cos né + h:(r)sin no|
n=0

ul” (r,0)= i [f,(r)cosn@+ g, (r)sinnf] and ufgf) (r,0)= i [g: (r)cosnf+ f,:= (r)sinné],

n=0 n=0
substituting into Eq. (2.38), and using orthogonality for each harmonic contribution we obtain

the fiber displacement field in the final form,
ul(r,0) = Za [(57’ HY + ERHD )cos né+ (f’T”Hg) +ERHD )sin né?}
n=l1

o 4 _
ul (r,0)= F\al™ + FaE™ + ZZaé‘ﬁ“" [Fn;f) cosné+ G,Ejf) sin nﬁ} +Hrg_,

n=2 j=lI
- 4
u(r,0)=33 aB, & [Fny) cosnf—G\/sin né?]
n=2 j=1

(2.39)
where H=(C,-C,)/(C, —C,,). We note that rigid body terms associated with n=0 term

N

z

)

in the expression for u_’’, and n=1 terms in the expressions for u, ,ué’ ) have been

excluded by fixing the fiber at the origin. For the out-of-plane displacement uif ), the two
eigenvalues are obtained in closed form (21)152 =+(n\/i, /1L, ). For the in-plane displacements
u,ul’, when n=0 the two eigenvalues that characterize the axisymmetric displacement

field are (A4)),,=%4, =+(n/C,/C,). When n>2, the four eigenvalues A,,..4, are
obtained from the characteristic equations,
C rﬂi‘eﬂ': - [nz (CrrCGH - CFZB - ZCrHﬂrH) + (Crr + CBG )ﬂrg]ﬂ’nz + (7’12 - 1)2 CHHILer = O (240)

with the corresponding eigenvectors ' given by

= C@H - ﬂ’n_zjcrr + nzll’lrﬁ (2 41)
K n[(Cp+ Ly )an —(Cyo + 1,9)]

Figure 2.4 presents the four eigenvalues as a function of the harmonic number in a wide

range of cylindrical orthotropy ratios that define radially (C, /C,, >1) and circumferentially
(C,/C,, <1) orthotropic microstructures, illustrating that they are real for the graphite fiber

considered herein.
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Figure 2.4 Eigenvalues for the inplane displacement field representation in fibers with different
cylindrical orthotropy ratios as a function of harmonic number.

The unknown coefficient H\/,F\’,G\/(j=1,2,3,4) are the fundamental unknowns in

terms of which the corresponding matrix coefficients will be expressed using the continuity

conditions, and &=r/a is the nondimensionalized radial coordinate with respect to the fiber

radius a. To ensure that the displacements remain bounded in the fiber, we still set

HY'=HY =0 for n>1 in the case of the out-of-plane displacement, and F\’ =0 and

FY=F7=0,G7 =G =0 for n>2 in the case of the in-plane displacements.

The stress components derived from the above displacement field employed in satisfying

the continuity conditions at the fiber/matrix interface for cylindrically orthotropic fibers are

oV (r,0)=u"> 2, [5’1"71Hf1{') cosnf+&EM H' D sin nO}
n=l1
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o 2
0 (r.0)=LVE_+(JC,Cpp +CIFET+Y Y PE [ F cosnd+G ) sinn |

n=2 j=1

o (r,0)= ZZng [ F sinne -G cosnd |

n=2 j=1
(2.42)

where L_=C_ +H(C,+C,), P,=C,A,+C,,(1+p,),and R =u,[(4, -1)p, —n].

r’nj

2.2.2.2 Interfacial displacement and traction continuity
The coefficients H(”,F\™ and G\ that characterize the displacement field in the

matrix phase given in the below are subsequently obtained in terms of the fiber coefficients
H,El/ ), Fﬁ.f ) and Gijf ) from the interfacial displacement and traction continuity conditions at the
fiber/matrix interface r=a,
u(a,0)=u"(a,0), u’’(a,0)=u"(a,0), ui’(a,0)=u)"(a,o)
0! (a,6)=0""(a,8), 0 (a,6) = 0" (a,6), 0J(a,6)=0"(a,6)

where the traction components at the common interface on the cylindrically orthotropic fiber side

(2.43)

are given in the preceding section and the corresponding tractions on the (transverse) isotropic
matrix side are given in Egs. (2.20) and (2.28) in Section 2.2.1.
The axial shear problem is decoupled from the transverse normal and shear problems.

Hence applying the two interfacial continuity conditions on the axial displacement u_(r,6) and
axial shear stress o (r,6) at r=a and using the orthogonality of cosn@ and sinn6 terms,

we obtain the following relations between fiber and matrix coefficients associated with
different-order harmonic terms forn >1,

H" =c¢-HY +6,d[28, 28] (2.44)
where HY) =[H\),HT, H™ =[H",H ,H"’,H""]", and the matrices ¢,d are given

nl > n2 > n3 >

below. The Kronecker delta term ¢, is present because the average strains are introduced only

through the n=1 terms cos@ and sin@. Eq. (2.44) can be re-expressed as follows:

(m)

H, ¢ O d 0
) _
H,, _ 0 ¢ |l H, iy 0 d ||2¢, (2.45)
H,; ¢ 0| H, ! d, 0] 2¢,
H, 0 ¢ 0 d,

30



in which ¢, = (Cg')zn(f) +,uﬁ1m)n)/2ﬂ§1”')n, ¢, =1-¢,d =-1,d,=0.
The transverse normal and shear problems in the »—6 plane are coupled. Hence applying
the four interfacial continuity conditions, and using orthogonality of cosn@ and sinné terms,

we obtain the following relations between matrix and fiber coefficients, for n=0

(m)
Fy by, | mry | Cor | = do |, = =
= F/+ + + 2.46
[ o [ »
where
(RO -2 LD H gy 1
! 2 B I (2.47)
O -CPAHCY) LDk '
02 ™ (m) (m) Cop = (m) (m) ,dy =0
20k + p17") 20k + 17)
For n>2
qum)F;m) :A;f)F;f)"'é:zon(Ezz_‘is) (2.48)
AEzm)ngm) = Aif)Ggif) +0,,A,28,, .
in which
11 1 1™ 1 1] 0
A,(lm): ﬂnl ﬁnz ﬁn3 ﬂn4 , Ay(lf): anl ﬂnz , AOZ O(m) (249)
Pnl PnZ Pn3 Pn4 Pnl PnZ —Hr
Rnl RnZ Rn3 Rn4 Rnl Rn2 ll'l7("m)

The Kronecker delta term ¢ , is present because the average strains are introduced only

through the n=2 terms cos26 and sin26.
2.3 The Exterior Problem

To complete the solution to the unit cell problem, the unknown coefficient comprising

F",GY) HY/) are determined by applying the variational principle, Eq. (2.2), with the surface

noo2 o
displacements and tractions on the opposite faces of the unit cell related through the periodic
boundary conditions. Use of the two-scale displacement representation given by Eq. (2.7) in the
periodic displacement boundary conditions, Eq. (2.1), reduces these periodicity conditions to
constraints on the fluctuating displacement components. For different geometrical arrays, we
have,

(a) Rectangular or parallelogram arrays:  u/(S,) =u/(S;), u/(S,)=u(S,)
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(b) Hexagonal array: w (S)=u(S,), u/(S,)=u(S;), u/(S,)=ul(S,)
(2.50)
Since the out-of-plane and in-plane problems are uncoupled, the coefficients comprising
F.",GY’and H/’ are found independently upon utilizing the reduced periodicity conditions
in the variational principle. Implementing these conditions for the inplane problem in the first

variation of the functional, Eq. (2.4), we obtain

(a) Rectangular or parallelogram arrays

i.[{5T2 (Sl)[u; (Si Sii :|+5T z)[“; (Si)_“; (Si+2 ):I}dS

(2.51)
+2J. ou; (S (S)+T(S, :|+5u3 [T )+ (S.,) :I}dS 0
(b) Hexagonal array
Z.[ {5T2 (S; )[u; (8:) =13 (S..) :|+ OT, (S z)[”; () =u; (S )]}dS
: (2.52)

+ZJ 6w, (ST (S)+ T3 (S,5) ]+ 65 (S)[ T3 (S,)+ T (S,) ]}dS =0

from which the system of equations for the unknown coefficients in F,’, G\’ are obtained in
the form

A[FG"] =Bg, (2.53)
where &, =[E,,&,,&,;,28, ] and FY,GY) are comprised of the individual vectors F',G\".
Similarly, for the out-of-plane loading, the first variation of the functional becomes

(a) Rectangular or parallelogram arrays

iLﬁTl(Si)[“f( ))=u; (Si.) ]d5+2j Su ( (S)+T(S,) s =0  (2.54)

(b) Hexagonal array

3 6
2{ LﬁTl(Sl,)[ul’(Si)—ul’(Si+3)]dS+§ J.S[Sul’(Si)[Tl(Si)+TI(SH)Ja’S:O (2.55)
from which the system of equations for the unknown coefficients in H/) are obtained in the
form

AHY =Bg (2.56)

out
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where &, =[2g,,28,] and H" contains the individual H'”s. The elements of A, A and

B, B are obtained in terms of surface integrals along the four or six sides S,,...5; of the unit

cell.

To implement periodicity conditions in the variational principle, the fluctuating
displacements in the cylindrical coordinate system are transformed to the Cartesian system using
the displacement transformation equations. Similarly the fluctuating Cartesian strains, used in the
calculation of stresses and tractions through Hooke’s law and Cauchy’s relations, respectively,
are obtained from the strain transformation equations, with the cylindrical fluctuating strains

determined from the corresponding fluctuating displacement components u.(r,6), u.(r,6),
u,(r,0) using strain-displacement relations (Wang and Pindera, 2015). The expressions for the

axial shear stresses and transverse normal and shear stresses in the Cartesian coordinate system
along the unit cell’s boundary obtained from Hooke’s law are

/(m)

O-l(;n) =2 (&, +€,
ol =241 (&, +&"
O = 2kIVIE + (K + ) En + X+ (K] — 7 )E +E (237
03 =2k VIE, + (ki — W&y + 37 + (k7' + 7 )&+ E5™)
0y =247 (8 + &)
where the fluctuating strain components are related to their counterparts in the cylindrical

coordinates.
2.4 Homogenized Constitutive Equations

2.4.1 Transversely Isotropic Phases

The homogenized Hooke’s law is obtained by averaging local constitutive equations in

each phase
=~ — 1 (k) n (k) — (k) &(k)
G= Vzkjc ePdv, =Y v, CYe (2.58)

1.

where the phase volume fractions obey the relationship Zv( b=
k

With the knowledge of the coefficients in FY’,G’and H!”, the remaining coating and

matrix phase coefficients may be calculated using Egs. (2.21)-(2.22), and (2.29)-(2.36). Hence
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the average strains £* (k= f,c,m) in the individual phases may be related to average
macroscopic strains through the localization relations
P =AWg (2.59)
where A® are Hill’s elastic strain concentration matrix for the each individual phase (Hill,
1963). The homogenized relationship between stress and strain averages then becomes
G=Y v, C"AYE=CE (2.60)

C®A®™ In light of the phase volume fraction relationship, the homogenized

where C =) v,
k

stiffness matrix for the unit cell may be written as

(a) Fiber/matrix two-phase material system:

C' =C" +y,, (C”-C™)AV (2.61)

(b) Fiber/coating/matrix three-phase material system:
*_ (m () (m) \ A () (c) (m) \ A (c)
C' =C" 4+, (C”-C")AY 4y, (CY-C™)A (2.62)
The average fiber strains are obtained in closed form upon integrating the local expressions

over the fiber strains contain only the applied average strains and the displacement coefficients

associated with the n=0,2 harmonics in the case of transverse normal and shear strains, and

the n=1 harmonic in the case of axial shear strains

3k(k)
k) _ & (k) k) T (k) (k)
822 - 822 + E)l + 7/( 2 k(k) (k) FZI + F22 —k _
( I ) £\ =g,
(k) (k) k) 3k(k) (k) (k) (k) 1 (k)
— = T — =
833 _833 +E)l _7( 03) (k) 21 _F'22 812 _812 +5H11 (263)
2(kT —Hr )
_ 1
3k(k) g(k) =z +_H(k)
=k _ & k) T (k) (k) 13 13 12
gy =8,+7 Gy +Gy, 2

(604

where k= f,c,and 7(” =1, 7(” :1+(b/a)2.
These relations reduce to the expressions reported by Drago and Pindera (2008) for
isotropic phases. The columns of the matrices AY” and A'“ are generated by solving the unit

cell problem for one non-zero average strain of a known magnitude applied at a time, with the

remaining average strains kept zero. The solution produces the unknown coefficients in

FY ,G%and H" for the applied loading, and thus the average fiber and coating strains. The

34



elements of the strain concentration matrix occupying the column that corresponds to the applied
non-zero average strain are then obtained by taking the ratio of the averaged strain in the fiber

phase and the average applied strain.
2.4.2 Orthotropic-Fiber Composites

Based on the special characteristics of orthotropic fiber constitutive equations, when
transformed from polar coordinate to Cartesian coordinate, the stiffness matrix in Cartesian
coordinate would have “@” effects. So the homogenized Hooke’s law for the unit cell is

obtained directly by averaging the local stresses

_ 1 _ .
a:;zkj'a“‘)(x)dl/k :Zkv(k)a“‘) =Cz (2.64)

This is in contrast with the approach based on averaging local constitutive equations in
each phase and then finding the relation between phase and composite strain averages through
Hill’s concentration factors. The present approach is preferable as it does not require a fourth
order stiffness tensor transformation from cylindrical to Cartesian coordinates.

To generate the elements of homogenized stiffness matrix C~, one non-zero homogenized

strain component is applied to the unit cell at a time, and the fiber phase coefficients F'/’,G!"
and HY ), are obtained for the particular loading upon solving the corresponding boundary-value

problem, with the matrix phase coefficients obtained from Egs. (2.44)-(2.49). Hence the local
stresses in the individual phases are obtained in cylindrical coordinates, transformed to Cartesian
coordinates using the standard 2"-order transformation equations, and subsequently averaged
throughout each phase domain. For the matrix phase, this is carried out numerically (and the
explicit expressions of which are expressed in Section 2.2.1 and Appendix A), while for the fiber
phase the following closed-form expressions are obtained analytically in the limit as the fiber

core which excludes singular stresses tends to zero,
=(/) _ ) ) Ny 7N . g
0, = Z(Czr lo +C, )/(2’0 +1)- Fl o+ L€,
=) — () o ) N 4 o )
0, = +C A+ CP + Gl +1)- By

2
+ (B =S 2R 22 +1)- B + (L + L)) 2,
J=l
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7 =€+ A+ CY Y, - F
2
+ D (=P +SD 2R [2A + 1) F + (LD + L)) )28,
J=1

2
5= 3 (B =8 - 2R) 200, +1)- G
j=1

G =(CL 1 +CD) 2+ H
G =(CL 1 +CD) O+ H
(2.65)
where L)) =C)+H(CY'+C"), i=zr,6 and S, =C 4, +Chu(1+25,)).
Hence for the particular loading by one non-zero homogenized strain component, taking
the ratio of the average stress to the applied average strain generates one column of the

homogenized stiffness matrix C . The accuracy of averaging the stress fields has been

confirmed by employing both volume and surface integration using the average stress theorem,

_ 1 1
G\ = _,[ o(x) dV(k) - V_Is(k>6(k)(x) on dS(k) (2.66)

Vv,
V(k) ) (k)

where xe€ §,, in the surface integral. Moreover, we have also confirmed by direct numerical

calculation that the stress and strain fields satisfy the Hill-Mandel energy equivalence between

the homogenized and local quantities,
1 R
;JVG(x)oe(x)dV=0'o£ (2.67)

which are discussed in details in next chapter. This provides additional confidence in the

extended theory and the associated implemented numerical procedure.
2.5 Summary

This chapter establishes the theoretical framework of the locally exact homogenization
theory. The displacement fields are expressed using Fourier series expansion representation with
unknown coefficients after solving the Navier’s equations. The relationship between the
unknown coefficients of fiber, coating (for three-phase composites) and matrix is derived by
applying the stress and displacement continuity conditions. Then two systems of equations, for

the decoupled inplane and out-of-plane problem, are set up to solve the remaining unknowns by
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employing the balanced variational principle proposed by Drago and Pindera (2008). Finally, the
homogenized constitutive relationship is obtained by averaging local constitutive equations in
each phase. Hill’s concentration matrix (Hill, 1963) is used for (transversely) isotropic properties
to simplify the process, but not preferred for orthotropic constituents that bring in “8” effect
during the fourth order stiffness tensor transformation from cylindrical to Cartesian coordinates.
The theory proposed can be treated as an efficient micromechanics tool to accommodate
fiber/matrix or fiber/coating/matrix composites, and cover different geometrical properties —
hexagonal, rectangular (square), parallelogram (tetragonal) arrays, as well as different material
properties — (transversely) isotropic, orthotropic constituents. The easy input constructions,
which are just geometrical and material properties of the composites, as well as the quick
execution that is explained later in this dissertation, are the most significant contributions for the
framework of LEHT. Compared with other models, this theory can be promoted among
professionals and non-professionals alike because of the characteristics discussed above. Next
chapter we will investigate the accuracy, stability and efficiency of the present theory against

other classical theories, analytical and numerical techniques.
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Chapter 3

Validation

3.1 Two-Phase Composite Materials

3.1.1 Convergence Study

We first demonstrate the extended theory’s convergence behavior by calculating
homogenized engineering moduli of graphite/epoxy and glass/epoxy unidirectional composites
as a function of the number of eigenfunctions used in the displacement field representation. The

elastic moduli of the fiber and matrix phases are listed in Table 3.1.

Material E,(GPa) E, (GPa) U, (GPa) U, (GPa) v,
AS4 graphite fiber 225 15 15 7 0.20
E-glass fiber 69.0 69.0 28.28 28.28 0.22
Boron fiber 420 420 175 175 0.20
3501-6 epoxy 4.2 4.2 1.567 1.567 0.34
Aluminum 69.0 69.0 25.94 25.94 0.33

Table 3.1 Elastic fiber and matrix properties employed in the calculations. Note that the AS4
graphite fiber is transversely isotropic with E,, =FE,,, v, =v,, and G, =E, /2(1+Vv,;) and
the remaining constituents isotropic.

While the graphite fibers are transversely isotropic, glass fibers are isotropic with a greater
in plane elastic modulus contrast relative to the epoxy matrix than in the case of graphite fibers.

Three fiber volume fractions are used in this convergence study to cover a wide range of
reinforcement content, namely 0.05, 0.30 and 0.60. Unit cells with centered fibers were
employed in the homogenized moduli calculations. The homogenized engineering moduli are
evaluated by using the homogenized compliance matrix obtained from the inverse of the

homogenized stiffness matrix established in Eq. (2.61) or (2.62), S"'=[C’]"'. Then the

homogenized moduli for transversely isotropic materials are obtained from the following
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relations,

o e T T T R
EA:Eu:S_*’ - -
1

u,=G, :ﬂu:S_*:S_*7 Ur =G =y =—

55 66 S44

(3.1)

Figs. 3.1-3.3 demonstrate convergence behavior of the homogenized Young’s and shear

moduli £, and G, of hexagonal, square and tetragonal arrays, respectively, for both the

graphite/epoxy and glass/epoxy composites. Similar behavior is observed for the homogenized
Poisson’s ratios v, and v, . The moduli of hexagonal and square arrays have been normalized

by the corresponding moduli generated using the finite-volume direct averaging micromechanics
(FVDAM) theory (Gattu et al., 2008; Khatam and Pindera, 2009), demonstrated to be
comparable to that of the finite element method (Cavalcante et al., 2012); while the moduli of
parallelogram array whose values have been normalized by moduli corresponding to harmonic
number N =16, which should be the converged values for their respective counterparts. Hence
converged values correspond to moduli ratio of 1.0. As observed, generally greater number of
eigenfunctions is required to obtain converged moduli with increasing fiber volume fraction for
all different fiber types. Nonetheless, converged moduli are obtained with as few harmonics as 8,
and at most 12 for both materials.

Figs. 3.4-3.6 compares the converged in-plane stress fields o&,,(y,,v;) ., 0;(0,,);)
0,(y,,y;) for hexagonal, square, and tetragonal arrays of unidirectional graphite/epoxy with

fiber volume fraction of 0.25 generated using 12 harmonics under unidirectional loading by the

homogenized stress &,, # 0. For these calculations offset fibers were employed placed at (0, —1,

—1) relative to the unit cells’ centroids. For the hexagonal array L = 6.204 while for the square

array L = H = 10, and for tetragonal array H = 10.746, L=9.306, and ¢ =7/3. For all of the

three arrays the fiber radius was 2.8209. Examination of stress fields generated using 4, 8 and 12
harmonics indicates that rapid stress field convergence is achieved with just 8 harmonics,
resulting in good estimates of stress field magnitudes and distributions. The higher transverse
stress in the fiber embedded in the square unit cell produces higher transverse Young’s modulus

than the hexagonal array. This well-known result is demonstrated in the following section.
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Figure 3.1 The convergence of homogenized moduli of hexagonal array with the number of
harmonic eigenfunctions for graphite/epoxy and glass/epoxy with fiber volume fractions of 0.05,
0.30 and 0.60 relative to FVDAM predictions.
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Figure 3.3 The convergence of homogenized moduli of parallelogram array with the number of
harmonic eigenfunctions for graphite/epoxy and glass/epoxy with fiber volume fractions of 0.05,
0.30 and 0.60 relative to the converged value predictions.
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Figure 3.4 Converged stress distributions ©,,(y,,y;)1n hexagonal, square and parallelogram

unit cells of a graphite/epoxy composite with the fiber volume fraction 0.25 subjected to the
unidirectional loading &,, #0 at the applied strain £, =0.01.

) H

Figure 3.5 Converged stress distributions ©,(y,,y,)in hexagonal, square and parallelogram

[=]

unit cells of a graphite/epoxy composite with the fiber volume fraction 0.25 subjected to the
unidirectional loading &,, #0 at the applied strain £, =0.01.
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Figure 3.6 Converged stress distributions ©,,(y,,y,)in hexagonal, square and parallelogram

unit cells of a graphite/epoxy composite with the fiber volume fraction 0.25 subjected to the
unidirectional loading &,, #0 at the applied strain £,, =0.01.

The utility of the analytical solution approach employed herein lies in its ability to ensure
continuity of both tractions and displacements at the fiber/matrix interface. This will be
important in our future investigations dealing with interfacial debonding as well as surface
effects in nanotechnology applications. Fig. 3.7 demonstrates the rapid convergence of in-plane

radial and circumferential tractions o (r=a,0) and o ,(r=a,0)with harmonic number

calculated around the fiber/matrix interface. We note that traction continuity is maintained for all
harmonics employed in the solution, with no visually discernible differences between traction
components on either side of the fiber/matrix interface. This is due to the explicit enforcement of
traction (and displacement) continuity in the unit cell solution. Similar results have been obtained
for the in-plane interfacial displacement components u (r=a,6), u,(r =a,6) and for the

out-of plane interfacial displacement u_(r=a,0) and traction o _(r=a,f) under the

corresponding loading.
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Figure 3.7 Convergence of the radial and tangential tractions, as well as the displacement
components at the fiber/matrix interface of a graphite/epoxy composite with 0.25 fiber volume
fraction with increasing number of harmonics by applying uniaxial loading.
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3.1.2 Stability of the Solution

Convergence of the homogenized moduli with the number of eigenfunctions demonstrated
in the foregoing implies convergence of the unknown coefficients in the Fourier series
representation of fluctuating displacements, Eqgs. (2.17) and (2.23). This has been demonstrated
by Drago and Pindera (2008) for square arrays of isotropic inclusion/matrix phases, and is also
the case in the present study. A demanding test of the solution’s stability is the demonstration
that in the limit as the fiber volume fraction becomes very small, the solution reduces to the
Eshelby solution (Eshelby, 1957) with just the first few terms remaining, and the higher-order
coefficients becoming vanishingly small.

To demonstrate this, we subject a hexagonal unit cell with 0.05% fiber content to uniaxial

loading by ©,, =100MPa. The material system is graphite/epoxy, Table 3.1. The solutions are

then generated using an increasing number of harmonics from »n =2, which corresponds to the
Eshelby solution as the fiber volume fraction tends to zero, to n=16. The inplane stresses

Oy (15, 13)> O3(1y,)3), Oy(y,,y,) areillustrated in Fig. 3.8 for n=2 and 16 harmonics and

compared with the exact Eshelby solution. The stress distributions have been plotted in the
square region in the vicinity of the fiber with the hexagonal boundaries outside of this region.
The locally-exact homogenization theory solution is seen to remain very stable regardless of the
number of harmonics employed (at least up to sixteen). Similar results are obtained for the
in-plane shear stress ©,,(y,,y,) distributions. Qualitative comparison with the Eshelby solution

is very favorable. Quantitative comparison shown in Fig. 3.9 in terms of the absolute differences

A, (1,,¥5) =0,(1) ys)—o'fhdby (»,,y;) for the inplane stress components is also favorable.
The differences are seen to be very small fractions of the maximum stresses observed in each

distribution. Examination of the leading coefficients £\, F)’ as a function of harmonics

vis-a-vis those of the Eshelby solution indicates insignificant differences, with the higher-order

coefficients practically zero.
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Eshelby

Figure 3.8 Stress distributions in a hexagonal unit cell with a dilute fiber volume fraction
solution as a function of the number of harmonics, mimicking the Eshelby and demonstrating the
locally-exact solution’s stability with increasing harmonic number.
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Figure 3.9 Distributions of stress differences in a hexagonal unit cell with a dilute fiber volume
fraction between the locally-exact homogenization theory results generated with 16 harmonics
and the Eshelby solution based on results in Fig. 3.8.

3.1.3 Comparison with Published Results

Results for the homogenized moduli of hexagonal (as well as square) periodic arrays are
available in the literature for quantitative comparison with present results. In particular, Eischen
and Torquato (1993) have calculated inplane moduli of hexagonal arrays comprised of phases
with a wide range of moduli contrast using the boundary-element method which have been used
as benchmark results by several investigators. Helsing (1995) has demonstrated that these results
may be obtained much more efficiently and with greater numerical resolution using an integral
equation approach. Most recently, Mogilevskaya et al. (2012, 2014) provided comparison
between the above results and the results generated using previously developed equivalent
inhomogeneity and multi-pole expansion techniques for hexagonal and square arrays,
respectively. These results are employed for quantitative comparison with our locally-exact
homogenization theory.

Tables 3.2-3.3 shows comparison of the normalized homogenized plane bulk modulus

k; [k and transverse shear modulus ./u"™ of an hexagonal array of stiff inclusions

embedded in a much softer matrix generated by the locally-exact homogenization theory (LEHT)
with the results reported in Refs. (Helsing, 1995; Mogilevskaya et al., 2012). This is case 2 with
1" =1,v" =035, 1" =135v"") =0.20 considered by Eischen and Torquato (1993) who
reported data with just two significant digits (not included in Table 3.2). We report our results

with five significant digits for direct comparison with those of Helsing (1995). In addition, we
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also verify the accuracy of our calculations by leveraging the relationship that must be satisfied

by transversely isotropic materials,

£

[y =
To231+v))
As observed, the results of Ref. (Helsing, 1995) and LEHT agree to five, four, three and

(3.2)

two significant digits in the low, medium, high and very high fiber volume fraction ranges,
respectively. Moreover, the LEHT transverse shear moduli generated by the unit cell analysis

coincide with those of Eq. (3.2) to five significant digits for all fiber volume fractions but one.

Similar results have been obtained for the homogenized plane strain bulk modulus %, /k{" . The

results reported in Ref. (Mogilevskaya et al., 2012) to three significant digits agree with the
LEHT and Ref. (Helsing, 1995) predictions in the low fiber volume fraction, but lose their
significant digit accuracy with increasing fiber volume fraction. The accuracy deteriorates
significantly at the highest fraction of 0.85. The above comparison provides additional evidence
of the accuracy of the locally-exact homogenization theory with the newly extended capability to

hexagonal periodicity.

Mogilevskaya Mogilevskaya

ke [ k™ Helsing N=7 N=37 LEHT
0.1 1.14137 1.141 1.141 1.14137
0.2 1.31725 1.317 1.317 1.31725
0.3 1.54202 1.543 1.543 1.54202
0.4 1.83948 1.843 1.842 1.83948
0.5 2.25228 2.262 2.260 2.25227
0.6 2.86670 2.895 2.888 2.86667
0.7 3.89641 3.978 3.959 3.89632
0.8 6.12145 6.372 6.337 6.12090
0.85 8.87779 9.347 9.370 8.87498

Table 3.2 Quantitative comparison of the normalized homogenized transverse shear modulus
k; / k"™ of a hexagonal array of stiff inclusions with the results of Mogilevskaya et al. (2012)

(both N=7 &37 cases) and Helsing (1995).

For completeness, we also compare our predictions with those reported by Mogilevskaya et
al. (2014) for a square array of inclusions. In this case, we focus on the homogenized transverse
Young’s and shear moduli, as well as axial shear modulus of a porous solid whose comparison is

presented in Table 3.4-3.5. Both sets of results are accurate to three significant digits upon
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round-off of the LEHT predictions with the exceptions of the transverse shear modulus at very

high porosity fractions. The result C, / Y7,

T

fraction of 0.75 appears to be erroneous as it increases relative to that at 0.70.

(" of Ref. (Mogilevskaya et al., 2014) at the porosity

Mogilevskaya Mogilevskaya

] Helsing N=7 N=37 LEHT G, = E, [[2(+Vv))]

0.1 1.17821 1.178 1.178 1.17821 1.17821

0.2 1.40186 1.402 1.403 1.40186 1.40186
0.3 1.69713 1.696 1.699 1.69715 1.69715

0.4 2.11487 2.106 2.118 2.11489 2.11489
0.5 2.75227 2.718 2.688 2.75232 2.75232
0.6 3.80628 3.721 3.823 3.80637 3.80636
0.7 5.74678 5.611 5.841 5.74688 5.74688
0.8 10.17840 10.463 11.213 10.17821 10.17821
0.85 15.64461 18.012 19.715 15.64173 15.64173

Table 3.3 Quantitative comparison of the normalized homogenized transverse shear modulus
Uy / 3" of a hexagonal array of stiff inclusions with the results of Mogilevskaya et al. (2012)

(both N=7 &37 cases) and Helsing (1995).

(e )/ 24" (6 + )/ 28

V, Mogilevskaya LEHT Mogilevskaya LEHT
0.05 0.774 0.77407 0.894 0.89364
0.10 0.619 0.61873 0.810 0.81003
0.15 0.505 0.50532 0.741 0.74083
0.20 0.419 0.41877 0.681 0.68105
0.25 0.350 0.35040 0.628 0.62755
0.30 0.295 0.29488 0.578 0.57813
0.35 0.249 0.24873 0.531 0.53124
0.40 0.210 0.20959 0.486 0.48569
0.45 0.176 0.17581 0.441 0.44056
0.50 0.146 0.14619 0.395 0.39508
0.55 0.120 0.11979 0.348 0.34850
0.60 0.096 0.09583 0.300 0.29990
0.65 0.074 0.07357 0.248 0.24782
0.70 0.052 0.05212 0.190 0.18913
0.75 0.029 0.03065 0.117 0.11012

Table 3.4 Quantitative comparison of the normalized homogenized transverse moduli of a square

(m) _

array of porosities with the results of Mogilevskaya et al. (2014), with @™ =

(m —m —)39. /) = ) =
v, =v," =039 1 =)’ =

50

le—6GPa, v’ =v{" =0.20.

T

1" =1GPa,

A



/1 cis /1

V, Mogilevskaya LEHT Mogilevskaya LEHT
0.05 0.878 0.87763 0.905 0.90476
0.10 0.757 0.75685 0.818 0.81818
0.15 0.641 0.64099 0.739 0.73910
0.20 0.533 0.53289 0.667 0.66653
0.25 0.435 0.43468 0.600 0.59962
0.30 0.348 0.34761 0.538 0.53758
0.35 0.272 0.27214 0.480 0.47971
0.40 0.208 0.20809 0.425 0.42535
0.45 0.155 0.15476 0.374 0.37387
0.50 0.111 0.11121 0.325 0.32466
0.55 0.076 0.07635 0.277 0.27705
0.60 0.049 0.04910 0.230 0.23032
0.65 0.028 0.02861 0.183 0.18343
0.70 0.013 0.01480 0.135 0.13456
0.75 0.034 0.00981 0.078 0.07885

Table 3.5 Quantitative comparison of the normalized homogenized transverse and axial shear
moduli of a square array of porosities with the results of (Mogilevskaya et al., 2014).

Material E,(GPa) E, (GPa) U, (GPa) U, (GPa) v,
Graphite fiber 214 14 7 5.83 0.25
3501-6 epoxy 3.5 3.5 1.3 1.3 0.35

Interface 5.25 5.25 2.059 2.059 0.275

Table 3.6 Elastic fiber and matrix properties employed in the calculations. Note that the AS4
graphite fiber is transversely isotropic with E,, =FE,,, v, =v,, and G, =E, /2(1+Vv,;) and
the remaining constituents isotropic.

3.2 Three-Phase Composite Materials

We validate the developed solution by first showing that in the limit as the fiber volume
fraction becomes very small, the results of Eshelby (1957); Kirsch (1898) are recovered
regardless of the number of terms employed in the displacement field representation in the fiber,
coating and matrix phases. This also demonstrates the solution’s stability with increasing number
of harmonics. In the first case, we take the coating Young’s modulus to be thousand times stiffer
than that of the matrix, while in the second case we take it thousand times softer. In both cases

the ratio of the coating to fiber outer radii is A/a=1.1. Then we study the convergence of the
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homogenized moduli and local stress fields as a function of the number of harmonic terms of
non-dilute fiber volume fractions with different coating thicknesses. Finally, we compare our
solution’s predictions with those reported in the literature based on finite-element and

elasticity-based calculations.
3.2.1 Stability of the Solution

To demonstrate the solution’s stability and reduction to known solutions, we subject a

hexagonal unit cell with the fiber volume fraction of 0.2% to uniaxial loading &,, =100MPa

with the remaining stresses zero. The material system is graphite/epoxy considered by Jasiuk and
Kouider (1993) with the fiber and matrix elastic moduli given in Table 3.6. The solutions are
then generated using an increasing number of harmoncis from »n =2, which corresponds to the
Eshelby solution as the fiber volume fraction tends to zeros, to n=16. The inplane stresses

0y (1,,13) » O0u(y,,»;) and 0,(y,,y,) are illustrated in Fig. 3.10 for n=2 and 16

harmonics and compared with the exact Eshelby solution for the coating that is thousand times
stiffer than the matrix. The stress distributions have been plotted in the square region in the
vicinity of the fiber with the hexagonal boundaries far outside this region. The locally-exact
homogenization theory solution is seen to remain very stable regardless of the number of
harmonics employed (at least up to sixteen). Comparison with the Eshelby solution is very

favorable. Moreover, examination of the leading coefficients £\, and £’ as a function of

harmonics vis-a-vis those of the Eshelby solution indicates insignificant differences, with the
higher-order coefficients practically zero.

The above results have been plotted using a color map that highlights the fiber and matrix
stresses at the expense of very large coating stresses owing to the large coating stiffness. Hence
these stresses are compared separately with the Eshelby solution along radial paths with the
largest stress gradients in Fig. 3.11 for the n=16 harmonic case, illustrating the locally-exact
solution’s ability to accurately capture stress fields in thin interfacial layers.

Setting the coating Young’s modulus to a very small value prevents stress transfer into the
fiber, thereby mimicking a dilute hexagonal array of non-interacting holes equivalent to an

infinite plate with a hole (Fig 3.12). For this problem, the maximum o,,(y,,y,) stress occurs at

the top and bottom of the hole whose magnitude is three time the far-field stress, or 300 MPa.

52



oY

o

(@) 0y (1,)3)

(®) 05(,,15)

©) O0x5(¥,,¥3)
N=2 N=16 Eshelby

Figure 3.10 Comparison of stress distributions in a hexagonal unit cell with a dilute fiber volume
fraction as a function of the number of harmonics with the Eshelby solution, demonstrating the

locally-exact solution's stability with increasing harmonic number for E /E"™ =10° and
b/a=1.1.
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Figure 3.11 Comparison of converged stress distributions in the stiff coating of a hexagonal unit

cell with a dilute fiber volume fraction with the Eshelby solution for E/E™ =10° and
b/a=1.1.
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Figure 3.12 Comparison of stress distributions in a hexagonal unit cell with a dilute fiber volume
fraction as a function of the number of harmonics with the Kirsch solution, demonstrating the
locally-exact solution's stability with increasing harmonic number for E\/E"™ =107 and
bla=1.1.
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Similarly, the minimum o©,,(y,,y,) stress which is compressive occurs along the load axis at

the hole boundary whose magnitude is equal to the far-field stress. These stresses are captured
very well by the locally exact theory regardless of the number of harmonics used in the

displacement fields.
3.2.2 Convergence Study

We consider hexagonal and square unit cells representative of graphite/epoxy composites
with non-dilute reinforcement, and investigate convergence of the homogenized moduli and local
stress fields with the number of harmonics in the displacement field representation for three
interfacial layer thicknesses. The elastic moduli of the fiber and matrix phases are the same as in
the preceding stability study listed in Table 3.6 which includes the coating Young's modulus 1.5
times that of the epoxy matrix. The non-dilute fiber volume fraction is 0.50 and the coating

thicknesses yield coating/ fiber radius ratios b/a of 1.01, 1.05 and 1.10, with the thinnest

coating providing a demanding test of the theory's computational capability.
The homogenized engineering moduli were calculated using the homogenized compliance

matrix obtained from the inverse of the homogenized stiffness matrix established in Eq. (2.62),

S"=[C'T", as described in (Wang and Pindera, 2015). Fig. 3.13 illustrates convergence behavior
of the homogenized transverse Young’s and shear moduli E, and G,, respectively, and axial
shear moduli G, for hexagonal and square unit cell architectures. Similar behavior (not shown)

is observed for the homogenized Poisson’s radios v, and v,. The moduli have not been

normalized to highlight the effect of the coating thickness whose increase yields stiffer response
given its greater Young’s modulus relative to that of the matrix. The result indicates that at the
considered fiber volume fraction, generally quicker convergence of the homogenized moduli is
observed for the hexagonal array, with as few as 5 harmonics yielding converged transverse and
axial shear moduli, and 10 yielding converged transverse Young’s modulus. Included in the

figure are the corresponding results in the absence of coating (b/a=1.0), illustrating that the

convergence behavior is not altered by the coating presence in the considered thickness range.
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Figure 3.13 Convergence of selected homogenized moduli with the number of harmonic
eigenfunctions for a graphite/epoxy composite with fiber volume fraction of 0.50 and coating
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Figure 3.14 Converged stress distributions generated with 12 harmonics in a hexagonal unit cell of a
graphite/epoxy composite with the fiber volume fraction 0.50 and two coating thicknesses with

modulus contrast £/ E" =1.5 subjected to the unidirectional loading &,, #0 at the applied
strain £, =0.01: (left) b/a =1.0, (middle) b/a=1.01; (right) b/a=1.1.
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Figure 3.15 Converged stress distributions generated with 12 harmonics in a square unit cell of a
graphite/epoxy composite with the fiber volume fraction 0.50 and two coating thicknesses with

modulus contrast contrast E”/E"™ =1.5 subjected to the unidirectional loading &,, #0 at the
applied strain £,, =0.01: (left) 6/a =1.0, (middle) b/a=1.01; (right) b/a=1.1.
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Fig. 3.14 compares the converged stress fields 0,,(y,,1;), 0y5(,,¥;) and 0,(y,, ;)

for hexagonal arrays of uncoated and coated fibers with the smallest and largest coating
thickness. Similar stress fields are obtained for the square array (Fig. 3.15), with the higher

transverse stress ©,,(),,),) in the fiber yielding higher transverse Young’s modulus than the

hexagonal array for all coating thickness (see Fig. 3.13). These stress fields were generated using

12 harmonics under unidirectional loading by the homogenized stress &,, #0 at the applied
strain of £, =0.01. Unidirectional loading was achieved by adjusting the homogenized strains
in Eq. (2.60) to obtain &,, as the only nonzero homogenized stress. When the coating stiffness

1s higher than that of the matrix, increasing coating thickness produces greater stress transfer into
the fiber for both hexagonal and square geometries for the loading, yielding increasingly greater
moduli seen in the convergence study of Fig. 3.13. Comparison of the stress distributions in both
arrays without and with the thinnest coating for the given coating/matrix modulus contrast
indicates very little difference, suggesting little effect on the homogenized moduli as observed in
Fig. 3.13 and further illustrated in next chapter. The locally-exact elasticity solution is sensitive
enough to accurately capture the small differences in stress distributions in the presence of very
think coatings, highlighting the method’s ruggedness. The rapid convergence of both the
homogenized moduli and local stress fields sets our method apart from other elasticity-based
solutions such as the eigenstrain expansion approach, cf. Caporale et al. (2015), which require

substantially greater number of harmonics for converged stress fields.
3.3.3 Comparison with Published Results

The results of an extensive investigation of the impact of interphases or coatings on
homogenized moduli of unidirectionally-reinforced composites have been reported by Lagache
et al. (1994). The authors employed the finite element method to generate the full set of
homogenized moduli of transversely isotropic composites based on a hexagonal array of coated
fibers with different coating moduli. The numerical solution was implemented following
elements of the 0™-order homogenization theory, including displacement decomposition into
average and fluctuating components within generalized plane strain framework, and periodic
boundary conditions applied on the faces of a hexagonal unit cell representative of the
transversely isotropic composite. Hence the numerical results of Lagache et al. (1994) may be

compared directly with the present results based on the same geometry and solution
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methodology applied within elasticity, rather than variational, framework.

The results used in the comparison were generated for a unidirectional composite with the
fiber volume fraction of 0.50 comprised of isotropic fibers embedded in an isotropic matrix with
the elastic moduli: E') =84GPa, v’ =0.22, and E"™ =4GPa, v =0.34. These moduli are
representative of a glass/epoxy composite. Four values of the interphase Young’s modulus were
used, namely 4, 6, 8 and 12 GPa with the Poisson’s ratio fixed at v'“ =0.34. The fiber radius

was 8.5 pm and the coating thickness 1.0 um with the unit cell dimensions adjusted

accordingly.

Homogenization 1 m N— - - . . Coating
Method ET/E( ) EA/E( ) GT/G( ) GA/G( ) Vr Vi E© (GPa)
LEHT 2.66358 11.00460 2.51952 2.69616 0.41647 0.27241 4
PMH 2.68875 11.00475 2.54948 2.71263 0.41321 0.27216 4
LEHT 2.92551 11.06774 2.78403 2.96176 0.40796 0.27216 6
PMH 291120 11.05735 2.77514 2.93674 0.40569 0.27191 6
LEHT 3.08409 11.13087 2.94736 3.11810 0.40203 0.27210 8
PMH 3.04255 11.10993 291075 3.06545 0.40067 0.27184 8
LEHT 3.26772 11.25710 3.13934 3.29485 0.39468 0.27217 12
PMH 3.19163 11.21508 3.06666 3.20829 0.39461 0.27187 12

Table 3.7 Comparison of selected homogenized moduli predicted by the locally-exact
homogenization theory with the PMH model (Lagache et al.,, 1994) for coated fiber
unidirectional composite with different coating moduli.

Table 3.7 presents comparison of the finite-element calculations and the present theory for

the whole set of homogenized moduli normalized by the corresponding matrix moduli. However,

three of them: E,/E™ , G,/G™ and G,/G™ are more sensitive to changes in the
coating’s stiffness than the axial Young’s modulus E: and axial and transverse Poisson’s ratios

v, and v,. Overall, the results in Table 3.7 are seen to agree to one significant digit, whereas

the axial and transverse Poisson’s ratios differ only in the third decimal place. We note that when
E'“ =4GPa, that is when the matrix and coating moduli are the same, we recover the results for
the uncoated fiber composite. For this case, the moduli produced by the present method have
been shown by Wang and Pindera (2015) to be accurate to 4 significant digits at the fiber volume
fraction of 0.50 upon comparison with the results of Helsing (1995), often employed as a gold

standard, which were generated using an integral equation method. In the present case, the
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discrepancy is likely due to a relatively coarse discretization of both the matrix and the coating,
with the coating discretized into a double-layer triangular element mesh as a compromise
between efficiency and accuracy. The recent finite-element results of Sideridis et al. (2015)

suggest that a larger number of elements is needed for fully converged results. Out results for the

transverse Young’s modulus E; also compare favorably with those of Mogilevskaya et al.

(2010) (reported in Table 1 of this reference in a different form) which were generated using the
authors’ elasticity-based equivalent inhomogeneity method under plain strain constraint.

We also compare our results with those of Sevostianov et al. (2012) based on the complex
potential representation of displacement and stress fields in an infinite series form for a square

array of isotropic fibers coated by a very thin interphase layer such that 5—a =0.001. The fiber,
coating and matrix moduli for this system are EY) =24GPa, v/’ =020; E'' =3.03GPa,
v©@=0.50and E" =2.7GPa, v =0.35. Table 3.8 presents comparison of the normalized
homogenized transverse shear modulus G; / G" in a wide fiber volume range predicted by the

two analytical methods, showing very good agreement to within graphical resolution accuracy of

the Sevostianov et al. data for this computationally demanding case.

v, 0.10 020 030 040 050 060 0.70 0.75

LEHT 1.139 1.287 1.455 1.662 1.939 2353 3.109 3.852
Sevostianov et al. 1.142 1293 1.461 1.671 1948 2360 3.129 3.817

Table 3.8 Comparison of the normalized homogenized transverse shear modulus G, /G"™

predicted by the locally exact homogenization theory with the three-phase square array
calculations of Sevostianov et al. (2012) for unidirectional composite with a very thin fiber
coating.

3.3 Validation for Composites with Cylindrically Orthotropic Fibers

We validate the developed solution by first showing that in the limit as the fiber volume
fraction becomes very small, the results of Eshelby (1957) are recovered regardless of the
number of terms employed in the displacement field representation in the fiber and matrix phases.
This also demonstrates the solution’s stability with increasing number of harmonics. First, we
take the radial Young’s modulus to be about twenty-eight times stiffer relative to the

circumferential modulus, and then we reverse this ratio, see Table 3.9 for the remaining moduli.
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These engineering moduli were calculated using the stiffness matrix coefficients of
experimentally determined single crystal graphite arranged in radial and circumferential patterns

considered by Christensen (1994).

Moduli C,/Cp>1 C,/Cp<1
E_(MPa) 1,025,161 1,025,161
E (MPa) 1,025,161 36,137
E,(MPa) 36,137 1,025,161

i1,(MPa) 4,500 4,500

1, (MPa) 440,000 4,500

1,(MPa) 4,500 440,000
V., 0.3432 0.0121
v, 0.1649 0.3432
V., 0.3432 0.1649

Table 3.9 Elastic moduli of radially and circumferentially orthotropic graphite fibers based on
single crystal graphite data reported in Christensen, (1994).

Moduli  C,/Chp>1 C,/C,<l
E,(MPa) 1,014,171 1,014,171

E.(MPa) 79,611 42,400
1. (MPa) 24,600 11,800
1,(MPa) 44,497 44,497
v, 0.6181 0.7966
v, 0.1928 0.1928

Table 3.10 Effective transversely isotropic elastic moduli of graphite fibers based on data in
Table 3.9 and equations provided by Christensen, (1994).

Subsequently, we study the convergence of the homogenized moduli as a function of the
number of harmonic terms for a non-dilute fiber volume fraction with the two E, /E,, ratios.
Included in the results are homogenized moduli based on equivalent transversely isotropic fiber

moduli calculated using the formula developed by Christensen, (1994). The homogenized

engineering moduli were calculated using the homogenized compliance matrix obtained from the

inverse of the homogenized stiffness matrix established in Eq. (2.64), S" =[C"]", as described
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in Wang and Pindera (2015). We also show later that regardless of the E, /E,, ratio the

homogenized stiffness matrix € for the graphite/epoxy composite with cylindrically
orthotropic fibers is characteristic of a transversely isotropic composite with the plane of isotropy

normal to the fiber direction that satisfies the relation C,, =(C,, —C,;)/2.

3.3.1 Hill-Mandell Energy Equivalence

The Hill-Mandell energy equivalence can be expressed as
1 =
;_[V 0,€,dV =0,E, (3.3)

in which local stress and strain distributions on the left side of the equation, for both fiber and
matrix, can be obtained by applying macroscopic strain on the right side. Numerical results
(Tables 3.11-3.12) are shown to prove the validity of the theory. Fiber volume fractions of 65%
and 25% are employed to cover a wider range of fiber content, and the material properties are

listed in Table 3.9.

C-0 &, €y €33 28, 2€, 2€, Sum/V’
Left 324.4292 8.2994 8.2975 7.3273 10.5535  10.5501  76.4412
Right 324.4293 8.3015 8.2994 7.3287 10.5562  10.5572  76.4444

R-O € €n &3 28, 2¢,, 2¢, Sum/V

Left 324.4296 8.7596 8.7582 9.1609 10.5535  10.5501  77.0112

Right 324.4296 8.7596 8.7582 9.1671 10.5516  10.5501  77.0121
Table 3.11 Numerical comparison of Hill-Mandel energy equivalence between left side and right
side of the equation for both circumferentially and radially orthotropic fibers with the fiber
volume fraction V, =0.65.

C-0O &, &5 &y 2¢,, 2g, 2g,; Sum/V
Left 328.3878 9.9249 9.9253 9.2121 10.5358 10.5353 30.1218
Right 328.3878 9.9221 9.9240 9.2101 10.5337 10.5304 30.1207

R-O & €y €3 28, 28, 28, Sum/V
Left 328.3877  10.0075 10.0082 9.5431 10.5358  10.5352  30.1613
Right 328.3877  10.0057 10.0051 9.5448 10.5325  10.5346  30.1607

Table 3.12 Numerical comparison of Hill-Mandel energy equivalence between left side and right
side of the equation for both circumferentially and radially orthotropic fibers with the fiber

volume fraction Vf =0.25.
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As we can observe in the Tables 3.11 — 3.12, each column stands for the energy
calculations for both left side and right side of the equation by apply the corresponding
individual strain, while the last column means the average energy (total energy divided by
volume) as shown in the Eq. (3.3). At least second decimal places are well matched for both

individual and total energy calculations, which is sufficient to provide the proof and confidence.
3.3.2 Stability of the Solution for the Dilute Case

To demonstrate the solution’s stability and reduction to known solutions, we subject a

hexagonal unit cell with the fiber volume fraction of 0.2% to uniaxial loading by &,, =100MPa

with the remaining stresses zero. The material system is graphite/epoxy with the fiber moduli
given in the Table 3.9 and the epoxy matrix taken as isotropic with the Young’s modulus
E =3.5GPa and Poisson’s ratio v=0.35. The solutions were generated using an increasing
number of harmonics from #n =2, which corresponds to the Eshelby solution as the fiber volume

fraction tends to zeros, to n=16 . The inplane stresses ©,,(y,,);) ., Oy(y,,y;) and
0,(y,,y;) obtained from the locally-exact solution remain stable as the number of harmonics is

increased to n=16. Comparison with the Eshelby solution is very favorable. This is illustrated

in Fig. 3.16 for the transverse normal stress field ©,,(y,,y;) generated with the locally-exact

theory using n =12 where the stress distributions in the matrix and cylindrically orthotropic

fibers with modulus ratios E /E,, =2837and 1/28.37 are illustrated separately. The stress

distributions in the matrix have been plotted in the square region in the vicinity of the fiber with
the hexagonal boundaries far outside this region. In the matrix region, the stress field is
unaffected by the cylindrical orthotropy type, with the same distributions obtained for both the
radially (E, /E, =28.37) and circumferentially (E_/E, =1/28.37) orthotropic fibers, Fig.

3.16a. In contrast, the cylindrically orthotropy type affects the fiber stress distributions
dramatically, producing a singular value at the fiber’s center for radially orthotropic fibers, Fig.
3.16b, and a finite value for circumferentially orthotropic fibers, Fig. 3.16c. No discernible

differences are observed between the locally-exact and Eshelby solutions. Moreover,

examination of the leading coefficients £, F") as a function of harmonics vis-a-vis those of
g R

the Eshelby solution indicates insignificant differences, with the higher-order coefficients

practically zeros.
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Figure 3.16 Comparison of converged stress distributions o,,(y,,y;) in a hexagonal unit cell
with a dilute fiber volume fraction subjected to uniaxial loading by &,, #0 only generated
using 12 harmonics.
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Figure 3.17 Convergence of selected homogenized moduli with the number of harmonics for a
graphite/epoxy composite with the fiber volume fraction 0.50 and modulus ratioE, /E,, as a

parameter.
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3.3.2 Convergence Study

Next, we consider a hexagonal unit cell representative of graphite/epoxy composites with

the non-dilute fiber volume fraction v, =0.50, and investigate convergence of the homogenized

moduli as a function of the harmonic number for the two fiber orthotropy ratios E,/E,,, as

well as the equivalent transversely isotropic properties. Figure 3.17 illustrates convergence

behavior of the homogenized axial Poisson’s ratio v, axial shear modulus G and transverse

Young’s modulus E; for hexagonal and square unit cell architectures at the fiber volume

fraction of 0.50. Convergence is rapid for the three moduli of both array types, attained with

typically fewer than eight harmonics. While the axisymmetric (£,v, and k) and axial shear

moduli converge to the same values for both cylindrical orthotropy types, the homogenized

moduli associated with transverse non-asymmetric loading (E;,v; and G;) converge to values

that depend on the orthotropy type. Regardless of the orthotropy type, the convergence is also

rapid in these cases, and similar to that observed for E; in Fig. 3.17. The differences in the

converged moduli due to array type are most pronounced for the transverse Young’s modulus

*®

E..
3.3.3 Applicability of the Fiber Moduli Replacement Scheme

In this section we first compare homogenized moduli of radially and circumferentially
orthotropic fiber composites generated as a function of fiber volume fraction using the
locally-exact theory with those of obtained from the composite cylinder assemblage (CCA)
model based on equivalent transversely isotropic properties of cylindrically orthotropic graphite
fibers. Hashin (1990) provides four of five equivalent transversely isotropic moduli for
cylindrically orthotropic fibers employed in the calculation of composite homogenized moduli
under axisymmetric and axial shear loading. Christensen (1994) provides formula for all five
equivalent fiber homogenized moduli which, however, are not used in the calculation of
homogenized moduli. Both authors used an energy-based replacement scheme for cylindrically
orthotropic fibers by the corresponding transversely isotropic moduli that produce the same

energy in the fiber under boundary conditions used to determine the particular modulus. The five

transversely isotropic moduli are E{”, v(”, k!, u{’ and u”. Closed-form expressions
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for the first four moduli were obtained in terms of the cylindrically orthotropic moduli listed by

Christensen (1994) as follows,

E_c _@+Ja)C, +24aC, C, +Qa+a)C: C,(C,, —C,)
v Na+1)’(aC,+C,) Na+1)’C,(eC, +C,)
Cﬁz + \/Eczr

VvV, =
" Na+hWacC,+C,)
1
K{ = E (\/ C.Coo +Cr)
ﬂA = \Y ll'lzrll’lzﬁ

(3.4)
where a:m . The equivalent transverse shear modulus g/’ is obtained from the
solution of a quadratic equation from the associated self-consistent scheme

U+ Bu, +y=0 (3.5)
where the lengthy parameters f are y are given by Christensen (1994). The expressions in

two extreme conditions, in which the contrasts between cylindrical and circumferential

properties become huge, are

oL [ CCa Cou, Gy o _ )
2 1 + 4 CHB / ﬂre Crr Crr Crr

ﬂf“l[”(w&)‘”}ﬂw Cos Can B e
2 re CH@ C@@ C0909

(3.6)

Christensen also provides asymptotic closed-form expressions for the equivalent
transversely shear moduli of radially and circumferentially orthotropic fiber with large moduli
contrasts which, however, exhibit very slow convergence. Hence the equivalent transversely
1sotropic moduli of radially and circumferentially orthotropic graphite fibers reported in Table
3.10 were obtained using the above equations. We also use these equivalent transversely
isotropic fiber moduli in the locally-exact homogenization theory to calculate the resulting
composite homogenized moduli as a function of fiber volume fraction for comparison with the

calculations that explicitly account for the cylindrical orthotropy of graphite fibers.
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Figure 3.18 Comparison of homogenized moduli of a unidirectional graphite/epoxy composite
with cylindrically orthotropic (both radially and circumferentially orthotropic) fibers predicted
by the locally-exact theory and Hashin’s CCA model based on equivalent transversely isotropic
fiber moduli.
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Figure 3.18 illustrates comparison of four of the five homogenized moduli of a
unidirectional graphite/epoxy composite comprised of radially and circumferentially orthotropic
fibers with elastic moduli given in Table 3.9 predicted by the locally-exact theory and Hashin’s
CCA moduli based on equivalent transversely isotropic fiber moduli given in Table 3.10. The
same homogenized moduli are obtained from the locally-exact homogenization theory for both
radially and circumferentially orthotropic fibers under axisymmetric and axial shear loading. As
will be shown in the sequel, these moduli are also the same as the corresponding moduli obtained

using the equivalent transversely isotropic fiber moduli. Moreover, practically no differences are

observed between moduli generated under axisymmetric loading, namely E:,vf1 and k;, as

well as under axial shear loading, ,UZ or G:, by the two homogenization approaches despite

differences in the microstructural representation of the unidirectional composite. This remarkable
result is rooted in the small differences in the stress fields in the matrix phase of both models and
similar values of the average fiber stresses under axisymmetric and axial shear loading despite

the absence of explicit adjacent fiber interactions in the CCA model. Figure 3.19 illustrates this

point for the homogenized axial shear modulus g, through comparison of the axial shear stress

fields in the hexagonal unit cell and the CCA model containing the same fiber volume fraction

and subjected to pure shear loading by &,, # 0. Radially orthotropic fiber moduli were used in

the locally-exact theory calculations. A higher fiber volume fraction was used for comparison to
highlight the effect of adjacent fiber interaction, namely v’ =0.65. Comparable axial shear
stress distributions are observed throughout the matrix phase of both the hexagonal unit cell that
accounts for adjacent fiber interaction through the periodicity conditions, and in the matrix phase
of the CCA model. Given comparable average axial shear stresses in the fiber phases of the
hexagonal unit cell and the CCA model, comparable homogenized axial shear moduli are
obtained as observed in Fig. 3.18.

Figure 3.20 illustrates results for the homogenized plane strain bulk, axial and transverse
shear moduli generated solely with the locally-exact homogenization theory using both radially
and circumferentially orthotropic fiber moduli taken from Table 3.9 and their transversely
isotropic counterparts from Table 3.10. No differences are observed between the homogenized
axisymmetric and axial shear moduli obtained from the four sets of cylindrically orthotropic

fiber moduli and their transversely isotropic equivalents. In the case of the homogenized
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Figure 3.19 Comparison of stress fields in the matrix phase of the hexagonal unit cell with a
radially orthotropic fiber and the CCA model with an equivalent transversely isotropic fiber of a
unidirectional composite with the fiber volume fraction v;=0.65 under pure axial shear

loading by &,, #0 at the applied axial shear strain of £, =0.01. Color bar in MPa.

72



8000 T T T 2% 104 T T T
R-O actual R-O actual
7000} ©  R.O equivalent _ 18f ©  R.O equivalent 1
C.0 actual C.0 actual
6000} © C0 equivalent ] 16+ O C-0 equivalent J
14+ 1
5000+ 1
u0< «xl— 121 i
4000 ]
1t ]
3000+ 1
08r 1
2000+ 1 06} |
1000 L : ! 04
0 0.2 04 06 08 0 08
Vf
7000 T T T 8000 T T T
RO R ﬁg actual |
R-0 E.2(1+ L -0 equivalent o |
6000} | © r2(0vy) 1 7000 C.0 actual
c-0 g ©  C.0 equivalent
o COE2(1+v) 6000 1
5000+ 1
5000 E
‘9~ 4000} 1 o
4000+ |
3000+ 1
3000+ R
2000+ 1 2000} |
1000 . L . 1000 L L L
0 0.2 04 0.6 08 0 0.2 04 0.6 08
Vf Vf

Figure 3.20 Transverse shear moduli predicted by the locally-exact theory based on cylindrically
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with predictions based on equivalent transversely isotropic graphite fiber moduli (right).
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transverse shear modulus 4, or G,, differences are expected and observed between the

predictions based on radially and circumferentially orthotropic moduli, with the radially
orthotropic fibers yielding noticeable greater homogenized transverse moduli than the
circumferentially orthotropic fibers at large fiber volume fractions. An additional check on the
correctness of the results is provided by comparing the homogenized transverse shear moduli

obtained from the direct calculation with the results based on the transversely isotropic relation

G, =E,/2(1+v;). These results are included in Fig. 3.20 with no differences observed.

Moreover, the homogenized transverse shear moduli based on cylindrically orthotropic fiber
moduli are somewhat more compliant than the corresponding moduli based on the transversely
isotropic fiber counterparts taken from Table 3.10, with greater differences observed for the
circumferentially orthotropic fibers at larger fiber volume fractions.

The differences in the homogenized transverse shear moduli are rooted in the matrix and

fiber transverse shear stress fields under pure shear loading by &,, =0.01 shown in Figs. 3.21

and 3.22, respectively, for both radially and circumferentially orthotropic fibers and their
transversely isotropic equivalents. The distributions were generated for a hexagonal unit cell
with the fiber volume fraction of v/) =0.65 where noticeable differences in the homogenized
transverse shear moduli are observed. The average matrix and fiber transverse shear stresses
calculated from these distributions are listed in Table 3.13 and reflect the differences in the
homogenized transverse shear moduli based on the four sets of cylindrically orthotropic fiber
moduli. Included in the table are the corresponding results for both ) =0.10 and v =0.65
where little differences in the homogenized transverse shear moduli are observed based on the

four sets of fiber moduli.

vf:O.lO vf:O.65

RO > TI CO > TI RO > TI CO > TI
Fiber (MPa) 44.16 44.93 42.45 43.03 113.77 117.99  88.25 95.83
Matrix (MPa) 28.44  28.54 28.20 28.28 59.55 62.52 52.70 54.52
Table 3.13 Average transverse shear stresses in the fiber and matrix phases of a hexagonal unit
cell under pure transverse shear loading.

74



' ' 100 100
. —

- 90 90

80 80

70 70

60 60

50 50

40 40

30 30

20 20

10 10
a a »

0 0

100 100

- - %0 y - %

}“"’l "..-\ 80 ,/" ‘\\; 80
70 70

60 60

50 50

40 40

' - 30 v 30
20 N y 20

10 . _— 10

“~— —
o o
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Figure 3.21 Matrix transverse shear stress fields ©,5(y,,y;) predicted by the locally-exact

theory based on cylindrically orthotropic graphite fibers (left) and their transversely isotropic
equivalents (right) in a unidirectional composite with the fiber volume fraction v =0.65
under pure transverse shear loading by &,,#0 at the applied transverse shear strain of

&,;=0.01. Color bar in MPa.
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(b) Circumferentially orthotropic fiber and transversely isotropic equivalent

Figure 3.22 Fiber transverse shear stress fields ©,,(y,,»;) predicted by the locally-exact theory

based on cylindrically orthotropic graphite fibers (left) and their transversely isotropic
equivalents (right) in a unidirectional composite with the fiber volume fraction v =0.65
under pure transverse shear loading by &,,#0 at the applied transverse shear strain of

&,;=0.01. Color bar in MPa.
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Finally, we demonstrate the effect of fiber array on the homogenized moduli of

cylindrically orthotropic fiber unidirectional composites. Figure 3.23 presents comparison of
G:,G;,E; and v, moduli of hexagonal and square arrays of radially and circumferentially
orthotropic graphite fibers generated using the locally-exact homogenization theory. The axial

moduli E: and v/, are not included as the effect of fiber array type is minimal in this case.
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Figure 3.23 Comparison of homogenized moduli of hexagonal and square arrays predicted by the
locally-exact theory.

77



3.4 Remarks

The convergence study of both two-phase (fiber/matrix) and three-phase
(fiber/coating/matrix) unidirectional composites has been firstly studied and compared with other
classical theories, by covering a wide range of fiber volume fractions. The theory has been
validated for different microstructural array types and material constituents, which proves the
robustness of the LEHT against other micromechanics models. Some extreme cases are
employed to show the advantage of the present theory. For instance, the converged homogenized
moduli and stress distributions of three-phase composites with very thin coatings are generated
to compare with the ones without any coatings.

Also, the extension of the locally exact homogenization theory to accommodate
cylindrically orthotropic fibers in periodic unidirectional composites with hexagonal and square
microstructures enables rapid identification of the effects of fiber orthotropy on homogenized
moduli and local stress fields. The efficiency with which the calculations are performed is rooted
in the balanced variational principle which ensures stable and very accurate solution with
relatively few terms in the Fourier series representation of the displacement fields in the
cylindrically orthotropic fiber and matrix phases of the unit cell representative of the composite’s
microstructures. Hence the results may be used as a gold standard to assess the accuracy of other
homogenization approaches. Herein, we have shown that the previously proposed replacement
scheme for cylindrically orthotropic fibers with very large moduli contrast by their transversely
isotropic homogenized equivalents implemented within the CCA model produces remarkably
accurate results for four of the five homogenized moduli associated with axisymmetric and axial
shear loading. These moduli differ very little from the corresponding moduli obtained by the
locally exact homogenization theory that explicitly accounts for radially and circumferentially
orthotropic graphite fibers. The advantage of the locally exact theory lies in its ability to generate
both the homogenized moduli and local stress fields that explicitly account for the cylindrically
orthotropic nature of graphite fibers within the same framework with great efficiency.

Perhaps most importantly, the unexplored effect of the fifth remaining modulus, namely the
equivalent transverse modulus of cylindrically orthotropic fibers, on the homogenized transverse
shear modulus of unidirectional composites has also been assessed using the self-consistent
based replacement scheme proposed by Christensen (1994). Unlike the equivalent axisymmetric

and axial shear fiber moduli, this replacement scheme produces equivalent transverse shear
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moduli for radially and circumferentially orthotropic graphite fibers that may differ substantially.
These differences translate into differences in the homogenized transverse shear moduli of the
unidirectional composite which increase with the fiber volume fraction, with radially orthotropic
fibers yielding stiffer response. Remarkably, Christensen’s replacement scheme produces
homogenized transverse shear moduli that closely follow the actual values based on cylindrically

orthotropic fiber moduli, with larger differences observed for circumferentially orthotropic fibers.
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Chapter 4

Numerical Results and Applications

4.1 Numerical Results

4.1.1 Two-Phase Composites: Homogenized Moduli vs Fiber Volume Fraction

In this section we employ the locally-exact homogenization theory to calculate
homogenized moduli of unidirectional composites comprised of constituents with different
moduli contrast in a wide fiber volume fraction range. These systems include graphite/epoxy,
glass/epoxy, boron/aluminum and aluminum with cylindrical porosities. Both hexagonal and
square arrays are employed and the results are compared with the FVDAM theory calculations as
well as the widely employed Mori-Tanaka scheme. We also discuss execution time for these
calculations and data file construction. Because some homogenized moduli exhibit behavior with
inclusion/porosity volume fraction which is not intuitive, we verify that the results do not violate

thermodynamic bounds.

We start with three of the five homogenized moduli, E;,V;, G:, calculated as a function of

the fiber volume fraction for the graphite/epoxy material system. The axial modulus E; is not

shown as it is approximated very well by the familiar rule-of-mixtures formula, with similar
result for the axial Poisson’s ratio V. The results are generated for hexagonal, square and
tetragonal arrays in the fiber volume interval [0.05,0.75] using increments of 0.05, normalized by
the corresponding matrix moduli in the case of the transverse Young’s modulus and axial shear
modulus, and compared with the corresponding results obtained from FVDAM and Mori-Tanaka
calculation in Fig. 4.1. As observed, there is no difference between the locally exact analytical

and FVDAM predictions for both hexagonal and square arrays. The array type only affects

moduli associated with transverse loading, E, and v,, with very little difference observed in

the axial shear moduli G, in most of the realistic fiber volume fraction range, and no difference
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in the axial Poisson’s ratio v,. The Mori-Tanaka results are close to the hexagonal array

predictions as would be expected from the model’s transversely isotropic framework. Fig. 4.2
presents the corresponding predictions for the glass/epoxy material system. The constituent
moduli contrast in glass/epoxy system is greater than for the graphite/epoxy composite, thereby
resulting in greater differences in the homogenized moduli for the hexagonal, square and
tetragonal arrays. The locally-exact analytical moduli and the FVDAM predictions are virtually
identical, but greater differences are now observed between the hexagonal array transverse

moduli and the corresponding Mori-Tanaka predictions. Since the angle between adjacent two
sides of the tetragonal array is chosen as ¢=m/3, resembling hexagonal array, the

homogenized moduli are identical to those of hexagonal array.
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Figure 4.1 Homogenized moduli as a function of fiber volume fraction for a graphite/epoxy
composite with hexagonal, square and tetragonal architectures. Comparison with FVDAM
predictions and the Mori-Tanaka method.
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Figure 4.2 Homogenized moduli as a function of fiber volume fraction for a glass/epoxy
composite with hexagonal, square and tetragonal architectures. Comparison with FVDAM
predictions and the Mori-Tanaka method.

Finally, we illustrate the effect of fiber/matrix moduli mismatch on the homogenized

moduli of graphite/epoxy, glass/epoxy, boron/aluminum and porous aluminum composites
generated by the locally exact homogenization theory as a function of the inclusion/porosity
content in Fig. 4.3. The results have been generated for hexagonal arrays. The homogenized
transverse Young’s and axial shear moduli trends with the fiber content reflect the respective
fiber/matrix moduli mismatch for the three fiber-reinforced composites. In the case of cylindrical
porosities in aluminum matrix, the results are expected with the exception of the transverse
Poisson’s ratio which increases above the value of 0.5 for porosity volume fractions greater than

approximately 0.6. This counter-intuitive result, however, is consistent with the thermodymanic

constraint v, <1-2v,x(E,/E’) obtained by requiring that the homogenized compliance

tensor S be positive-definite as dictated by the positive-definite constraint on the homogenized

complementary energy. In contrast, the homogenized transverse Poisson’s ratio v, for
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cylindrical porosities in a square array (not shown) decreases with increasing porosity content.
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Figure 4.3 Homogenized moduli as a function of fiber/porosity volume fraction for
unidirectional composites with hexagonal architectures with different constituent moduli
contrast.

The quick convergence of the developed analytical solution to the unit cell boundary-value

problem with relatively small number of harmonics makes the locally exact homogenization
theory extremely efficient in execution. This is demonstrated in Fig. 4.4 for the graphite/epoxy
composite wherein execution time needed to calculate the entire set of homogenized moduli or
0.6 fiber volume fraction have been recorded as a function of harmonic number for square and
hexagonal arrays. These calculations were performed on a PC platform running Windows 7
Ultimate 64-bit operating system with 16 GB RAM and Intel(R) Core(TM) 15-3320M CPU @2.6
GHz. As observed, hexagonal arrays are somewhat more computationally demanding because
the balanced variational principle is employed on six faces of the hexagonal unit cell instead of

just four faces for the square array. Nonetheless, the locally exact homogenization theory is very
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efficient, consuming less than one second to calculate the entire set of homogenized moduli for a
single volume fraction with very good accuracy using 15 harmonics. Similarly, less than 15s are
needed to calculate the entire set of homogenized moduli using 15 harmonics in the fiber volume
fraction range [0.05,0.75] with an increment of 0.05. Moreover, the negligible effort required to
construct an input data file describing the unit cell geometry (rectangular vs hexagonal), fiber
placement and radius which defines the fiber volume fraction, and the constituent elastic moduli
contributes to the method’s overall efficiency as well as accessibility by specialist and

not-specialist alike.
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Figure 4.4 Comparison of execution times as a function of harmonic number to generate one set
of homogenized moduli for hexagonal and square arrays: (a) single fiber volume fraction of 0.6;
(b) fiber volume fraction range [0.05-0.75] with an increment of 0.05.

4.1.2 Evaluation of Effective Material Properties for Composites with Rhombic or

Parallelogram Fiber Arrangements

The homogenized moduli of the composites generated by LEHT are compared with
another analytical technique — asymptotic homogenization method (AHM) and numerical
method (FEM) (Rodriguez-Ramos et al., 2012) in Tables 4.1 — 4.5. The calculation by AHM are
studied for N =10, where N, denotes the number of equations considered in the solution of
the algebraic system. The Young’s moduli and Poisson’s ratio employed in most of the tables

(except Table 4.3) are artificial values: EY) =312GPa, v’ =0.3; E"™ =2.6GPa, v'™ =0.3.
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*

*

*

*

Angle Vv Cl 1 sz C33 C23

0 / LEHT AHM FEM LEHT AHM FEM LEHT AHM FEM LEHT AHM FEM
0.1 34579 34579 34576 4.0379 4.0376 4.0384 4.1118 4.1106 4.1123 1.6974 1.6980 1.6977

30° 0.2 65.702 65.701 65.700 4.6548 4.6551 4.6567 5.1230 5.0999 5.1189 1.9046 1.9075 1.9047
0.3 96.948 96.920 96.940 5.3499 53531 5.3559 7.3099 7.0091 7.2488 2.1603 2.1539 2.1554

0.1 34578 34578 34577 4.0494 4.0494 4.0505 4.0573 4.0572 4.0582 1.7145 1.7145 1.7149

50° 0.3 96.853 96.853 96.851 5.5696 5.5696 5.5757 5.7070 5.7018 5.7117 2.3217 2.3232  2.3204
0.5 159.47 15946 15946 8.1646 8.1740 8.1918 9.1781 8.9916 9.1903 3.3691 3.3977 3.3528

0.1 34578 34.578 34577 4.0609 4.0609 4.0615 4.0594 4.0595 0.0600 1.7076 1.7075 1.7074

70° 0.3 96.851 96.851 96.850 5.7237 5.7209 5.7248 5.7002 5.6993 5.7027 2.2401 2.2425 2.2409
0.5 159.44 15944 15944 89680 89147 89571 8.8064 8.7726  8.8087 3.0084 3.0557 3.0137

Table 4.1 Comparison of the homogenized moduli between LEHT, AHM and FEM with rhombic periodic cells C;,, C;,, Cy;, C;:

*

*

*

*

Angle Vv Cy Gy Gy Cy
0 ! LEHT AHM FEM LEHT AHM FEM LEHT AHM FEM LEHT AHM FEM
0.1 -0.0064 -0.0063 -0.0061 0.0125 0.0124 0.0132 -0.0339 -0.0335 -0.0337 1.1620 1.1616 1.1622
30° 0.2 -0.0405  -0.0385 -0.0404 0.0442  0.0416  0.4346 -0.1792 -0.1699 -0.1783 1.3632 1.3629  1.3660
0.3 -0.1694 -0.1434 -0.1643  0.0680  0.0635  0.0627 -0.6326 -0.5416 -0.6108 1.6806 1.6642  1.6868
0.1 -0.0014 -0.0014 -0.0013  0.0056  0.0056  0.0054 -0.0102 -0.0103 -0.0098 1.1722 1.1722  1.1725
50° 0.3 -0.0244  -0.0236 -0.0244  0.0499  0.0479  0.0487 -0.1313 -0.1267 -0.1300 1.6904 1.6870  1.6928
0.5 -0.1807 -0.1461 -0.1778 0.0854  0.0753  0.0755 -0.6876 -0.5624 -0.6693 2.7931 2.7050 2.8006
0.1 0.0006  0.0006 0.0008 -0.0038 -0.0038 -0.0038 0.0057 0.0057 0.0060 1.1651 1.1651 1.1653
70° 0.3 0.0089  0.0089 0.0090 -0.0378 -0.0378 -0.0379 0.0675 0.0674 0.0681 1.6094 1.6085 1.6104
0.5 0.0616 0.0586 0.0622 -0.0985 -0.0987 0.1014 0.3039 0.2939 0.3089 2.4424 2.4261 2.4466
Table 4.2 Comparison of the homogenized moduli between LEHT, AHM and FEM with thombic periodic cells C,,, C;,, C;,, C,,.



e 7, Cfc C. /e Ca/Cs)

LEHT G&N AHM FEM LEHT G&N AHM FEM LEHT G&N AHM FEM

0.3 1.74 1.74 1.74 1.74 0.02 0.02 0.02 0.02 1.75 1.75 1.75 1.75
20 0.5 2.66 2.66 2.66 2.67 0.08 0.08 0.08 0.08 2.70 2.70 2.70 2.71
0.7 4.83 4.83 4.83 4.82 0.34 0.34 0.34 0.35 5.00 5.00 5.00 4.99
0.3 1.83 1.83 1.83 1.84 0.02 0.02 0.02 0.02 1.84 1.84 1.84 1.85
120 0.5 2.96 2.96 2.96 2.97 0.11 0.11 0.11 0.11 3.01 3.01 3.01 3.02
0.7 6.16 6.16 6.16 6.15 0.60 0.60 0.60 0.60 6.47 6.47 6.47 6.43

Table 4.3 Comparison of axial shear homogenized moduli between different approaches with rhombic periodic cell and
6 = arccos(1/4).

L / H Vf Cy Cy Cis Cu
LEHT AHM FEM LEHT AHM FEM LEHT AHM FEM LEHT AHM FEM
0.1 4.0623  4.0621 4.0651 1.7086 1.7086 1.7091 4.0561 4.0561 4.0585 1.1657 1.1657 1.1671
0.980 0.3 5.7484 577327 5.7547 2.2569 22659 22535 5.6471 5.6394 5.6557 1.6125 1.6077 1.6200
0.5 9.1818 89137 9.1901 3.0693 3.2075 3.0613 8.4733 8.3894 8.4835 2.4600 2.3723 2.4609
0.1 4.0742 4.0741 4.0755 1.7026 1.7026 1.7010 4.0565 4.0565 4.0594 1.1612 1.1607 1.1616
1.146 0.3 59451 59190 59508 2.1818 2.1924 2.1829 5.6288 5.6245 5.6339 1.5739 1.5625 1.5701
0.5 10.6786 10.0040 10.6754 2.7888 2.9316 2.7725 82374 8.2009 8.2491 23076 2.2560 2.3045
0.1 4.0862 4.0861 4.0889 1.6977 1.6978 1.6991 4.0551 4.0551 4.0572 1.1585 1.1570 1.1578
1.308 0.3 6.1826  6.1396  6.1886 2.1199 2.1311 2.1195 5.5898 5.5872 5.5945 1.5539 1.5344 1.5409
0.5 13.5180 11.7480 13.4746 2.5729 2.6968 2.5605 7.9532 7.9427 7.9665 2.2709 2.2087 2.2340

Table 4.4 Comparison of the in-plane homogenized moduli with parallelogram periodic cells for different ratios L/H and fiber
volume fractions.
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Cos /& Ca/ C

L/H v,
LEHT G&N AHM FEM LEHT G&N AHM FEM
0.3 1.8657 1.87 1.8657 1.8678 1.8110 1.81 1.8110 1.8130
0.980 0.5 3.1087 3.11 3.1088 3.1110 2.8088 2.81 2.8088 2.8095
0.6 4.3277 4.33 4.3300 4.3334 3.6258 3.63 3.6269 3.6273
1,146 0.3 1.9245 1.92 1.9245 1.9255 1.7675 1.77 1.7674 1.7688
0.5 3.5514 3.55 2.5288 2.5294 2.6197 2.62 2.6195 2.6207
1138 0.3 1.9998 2.00 1.9998 2.0032 1.7252 1.72 1.7252 1.7258
0.5 4.4012 4.40 4.4001 4.4188 2.4583 2.46 2.4578 24617

Table 4.5. Comparison of the out-of-plane homogenized moduli with parallelogram periodic cells for different ratios L/H and fiber
volume fractions.
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The results calculated by LEHT, AHM and FEM coincide in many different cases. Tables
4.1-4.3 exhibit composite materials with rthombic periodic unit cells. Tables 4.1-4.2 show the
inplane homogenized moduli and Table 4.3 shows out-of-plane homogenized moduli according
to three different fiber volume fractions. The composites shown belong to the monoclinic
material of symmetry. For instance, the C|,, Cj,, C,, in Table 4.3 are non-zero terms in
comparison with hexagonal or tetragonal unit cells. In order to validate the effect of the ratio of

C!/C™ on the out-of-plane homogenized moduli, three different fiber volume fractions are

used to cover a wide range of the fiber arrangement at a fixed angle ¢ =arccos(1/4). A new set

of results calculated using G&N (Golovchan and Nikityuk, 1981) are included to prove more
confidence of the new proposed method. An excellent agreement between all the approaches can
be observed.

Tables 4.4-4.5 study the homogenized moduli of composites with parallelogram arrays by
letting H =1 and @=arccos(0.5/L) with different values of L listed in the tables. As is well
noticed in the tables, the out-of-plane homogenized moduli are well matched between different
methods. However, smaller discrepancies are observed between LEHT and FEM than AHM,

especially when the fiber volume fraction is set to be high for different angles. For example,

LEHT provides much closer results compared with FEM than AHM for C,, corresponding to

L/H=14 and V,=0.5 in Table 4.4.

4.1.3 A Parametric Study for Composites with Coated Fibers

We illustrate the effects of coating’s thickness and stiffness for three of the five
homogenized moduli which exhibit the greatest sensitivity to these parameter variations, namely
E;,V; and G:, calculated as a function of the fiber volume fraction for the graphite/epoxy
material system. Fig. 4.5 illustrates the effect of coating thickness represented by the ratios
b/a=1.0,1.01 and 1.10, see Fig. 2.2, on the three homogenized moduli for the coating/epoxy
modulus contrast E/E"™ =15. The results were generated in the fiber volume interval

[0.05,0.75] using increments of 0.05, normalized by the corresponding matrix moduli in the case
of the transverse Young’s and axial shear moduli. The fiber volume fraction was incremented by
changing the unit cell dimensions in order to keep the coating thickness fixed. At this modulus

contrast, measurable increases in the homogenized transverse Young’s and axial shear moduli
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are observed for the largest ratio »/a =1.1, with a decrease observed in the transverse Poisson’s

ratio. The effect of coating increases with increasing fiber volume fraction, and appears to be
comparable for both arrays, accounting for the greater Young’s and axial shear moduli exhibited
by the square array at each fiber volume fraction. Within each array type, the coating tends to

enhance the axial shear modulus G: to a somewhat greater extent than the transverse Young’s

modulus E; for the considered coating/epoxy modulus contrast, suggesting more efficient

stress transfer mechanism into the coated fiber discussed in the sequel.
Next, we choose coating thickness with the largest ratio h/a=1.1 and investigate the

effect of both fiber volume fraction and coating stiffness on the homogenized transverse Young’s
and axial shear moduli. The results are presented in Fig. 4.6 as three-dimensional carpet plots,
highlighting the efficiency of generating homogenized moduli with our elasticity-based approach.
These results have been generated for hexagonal arrays and normalized by the respective moduli
of the matrix phase. Consistent with expectation, the effect of increasing coating’s Young’s
modulus on the homogenized moduli increases with increasing fiber volume fraction as the
coating volume fraction also increases even if the coating thickness remains fixed. Included in
the figure are two-dimensional projections of the carpet plots in a small range of E/E™
ratios, namely [0.0, 0.275], wherein rapid changes in the homogenized moduli values are
observed in the carpet plots. These projections illustrate the minimum values of the coating
Young’s modulus as a function of the fiber volume fraction which yield homogenized moduli
greater than the matrix modulus. This information may be useful in the design of engineered
coatings.

What needs to be mentioned is that less than 1.5 s was needed to generate the full set of
homogenized moduli with coated fibers as compared to less than 0.5s without the coating using
10 harmonics and a PC platform running Windows 7 Ultimate 64-bit operating system with
16GB RAM and Intel(R) Core(TM) 15-3320M CPU @2.6 GHz.

As observed in Fig. 4.5 and 4.6, the loading direction influences the effectiveness of fiber
reinforcement vis-a-vis respective homogenized moduli. For both arrays, the axial shear modulus

G, increases faster with fiber volume fraction relative to the matrix than the transverse Young’s

modulus E;, with the concomitant effectiveness increase of the coating. Fig. 4.7 illustrates the

effectiveness of stress transfer from the matrix into the fiber under uniaxial loading by transverse
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Figure 4.5 Homogenized moduli as a function of fiber volume fraction for a graphite/epoxy
composite with hexagonal and square architectures and modulus contrast E/E™ =15,
demonstrating the effect of coating thickness.
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(b)

Figure 4.6 Homogenized moduli as a function of fiber volume fraction for a graphite/epoxy
composite with hexagonal architecture and fiber/matrix radius ratio b/a=1.1, demonstrating the
effect of coating stiffness.
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(b) 0, (Y55 75)

Figure 4.7 Transverse normal and axial shear stress distributions in hexagonal unit cells of a
graphite/epoxy composite with fiber volume fraction 0.60 subjected to uniaxial loading &,, #0

and &,#0 at the applied strains £, =0.01 and £, =0.01, respectively, illustrating the

effect of modulus contrasts E“/E"™ =1.0 (left) and E/E" =1.5 (right) on stress transfer
mechanism for 6/a =1.0 (left)and b/a =1.1 (right).
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tension and axial shear in the presence of coating with the E / E™ =4.0 ratio relative to the

uncoated fiber when the fiber volume fraction is 0.6. The stress fields were calculated for the
respective macroscopic strains of 0.01 or 1% under corresponding unidirectional loading. Under

transverse tension, the coating experiences substantially larger normal stress ©,,(y,,y;) than

the fiber in the angular sectors away from the applied load, producing a uniform stress field
throughout most of the fiber which is greater relative to the uncoated fiber. In contrast, under

axial shear loading, the coating experiences smaller axial shear stress ©,,(»,,y,) than the fiber.

Nonetheless, the axial shear stress in the fiber is substantially enhanced by the coating’s presence

relative to the uncoated fiber, producing a concomitant increase in the homogenized axial shear

modulus G:. Overall, for the chosen parameters, the coating tends to promote greater stress

transfer into the fiber under axial shear loading relative to transverse normal loading.
4.2 Examples and Applications

4.2.1 Local Stress Recovery in a Multiscale FGM Application — Composite Cylinder

Fig 4.8 Circumferentially wound and functionally graded boron/aluminum cylinder subjected to
internal pressure.
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The locally exact theory’s computational efficiency facilitates its use in multiscale
applications. Herein, we demonstrate this capability by embedding the theory into the structural
analysis of a functionally graded metal matrix composite cylinder subjected to internal pressure
in order to generate homogenized and local stress fields. Specifically, we consider a thick-walled
aluminum cylinder reinforced by circumferentially wound born fibers with an inner radius of
0.025 m, outer radius of 0.050m and 100 MPa applied internally, and investigate how grading
may enhance the cylinder’s loading bearing capacity in the elastic region. The grading is
accomplished in a piece-wise fashion by dividing the cylinder into 10 sublayers with a constant
boron fiber volume fraction in each year, Fig. 4.8. Because the boron fiber diameter is small
relative to sublayer’s thickness, each sublayer may be homogenized for structural analysis.

The analysis proceeds as follows. First, the elastic moduli in each sublayer of the cylinder
are determined using the locally exact homogenization theory. These moduli are employed to
solve the Navier’s equations for the displacement field in each homogenized sublayer, which

reduce to the following equation for the axisymmetric radial displacement with %, =0, cf.
Pindera and Freed (1994),
d’u, ldu. C,u.

L Cal
a* rdr C.r? (4.2)

where C;, >C, in the light of the circumferential reinforcement by boron fibers. We consider
the plane strain case so that #_=0. The solution for the radial displacement field in each

sublayer takes the form

i (r)=Ar*+Br* 4.2)
where A=(C;,/C.)"* and the unknown coefficients A4,, B, in each layer are obtained from

the external boundary conditions

u @) =u*"@), o (r)=0""), k=1,.,n-1 (4.3)

where n is the number of sublayers, and 7, is the distance to the kth interface. The above
boundary and continuity conditions produce twenty equations for the unknown coefficients 4, ,

B, . The expressions for the homogenized radial, circumferential and axial stress components are

obtained from the Hooke’s law

94



k

O-rr = C £, + VHEHH

rrrr
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O-zz :C £, + 219806

zr —rr

where £ =du /dr and &, =u_/r. The following equivalence relations hold between the

homogenized moduli in the cylindrical coordinate system associated with the composite tube and

the Cartesian coordinate system of the unit cell used in the homogenization analysis,

c;;1 — cé,,, C% — C C% — C 45)
C,—>C,, C,—>C,, C;—>C_

The solution for the unknown coefficients produces homogenized strains at each radial
position in the composite cylinder that may be used to calculate the local fields within the unit
cell representative of the sublayer’s microstructure.

We consider composite cylinder with two grading patterns. First, we grade by decreasing
the boron volume fraction from 0.50 at the inner sublayer to 0.05 at the outer sublayer. Then we
reverse the grading pattern and compare the stress distributions produced by the two patterns
with the corresponding distributions in a pure aluminum cylinder. Both homogenized and
constituent phase stress distributions have been calculated. The homogenized stresses are
calculated from Egs. (4.3) and (4.4) upon solving for the displacement field in each homogenized
sublayer of the graded cylinder. The displacement field produces homogenized strains at
different radial locations that serve as input to the unit cell boundary-value problem solved using
the locally-exact homogenization theory described in Chapter 2. The unit cell solution produces
local stress fields in the fiber and matrix phases that vary along the graded cylinder’s radius. The

local stresses of interest are the fiber axial stress (or the circumferential stress in the cylinder’s

coordinate system) that may produce fiber fracture, as well as the effective stress
Oy = (3/ 25,5, )2, s; =0, —1/30,,0, , in the matrix phase that governs local matrix yielding.

Fig. 4.9 presents comparison of the radial, circumferentially, axial and effective stress
distributions in the graded and pure aluminum cylinders. Grading from high to low reduces the
homogenized radial stress relative to that in the pure aluminum cylinder with the opposite effect
for the reverse grading pattern. The importance of recovering local constituent stresses is
illustrated in the circumferential stress distribution. For this stress component, grading the
cylinder from low to high produces a nearly uniform homogenized stress which is substantially

lower than in the pure aluminum cylinder from low to high produces a nearly uniform
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Figure 4.9 Homogenized and local stress distributions as a function of the graded cylinder’s
radial coordinate.

homogenized stress which is substantially lower than in the pure aluminum cylinder in the inner
radius region, with the difference decreasing with increasing radial distance. In contrast, grading
from high to low produces a small reduction in the homogenized circumferential stress relative to
the pure aluminum case at the inner radius, which increases with increasing radial distance. The
substantial reduction in the homogenized stress due to grading from low to high vs high to low,

however, comes at the coat of large axial fiber stress in the inner radius region of the cylinder

which may potentially produce fiber fracture. The smaller homogenized elastic modulus C,, in

the low boron volume fraction range produces large circumferential strains which lead to high

axial fiber stresses. Conversely, small axial fiber stress is observed in the inner radius region of

the high to low grading pattern because of larger values of C,, due to larger boron volume

fractions, and hence smaller circumferential strains. The benefit of the high to low grading

96



pattern is also observed in the effective stress distribution in the matrix phase where substantially
lower maximum effective stress is observed in the inner radius region relative to both the pure
aluminum cylinder and the low to high grading pattern. Grading in this manner will enhance the
cylinder’s pressurization capacity in the elastic region while ensuring that the axial fiber stress is

not excessively large to cause fracture.
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0
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(b) Grading the boron fiber content from low to high

20

Fig 4.10 Effective stress distributions in the matrix phase of functionally graded B/Al cylinder in
the center of the inner layer (left column), middle layer (center column) and outer layer (right

column)

The constituent phase stress distributions illustrated in Fig. 4.9 were determined at the
center of each sublayer from the unit cell analysis. These local stresses are the maximum axial
fiber and effective matrix stresses that occur within the analyzed unit cells at each radial location.
While the axial fiber stress remains nearly uniform at each radial location, the effective matrix
stress varies substantially within the unit cell. These variation are shown in Fig. 4.10 in the
center of the inner, middle and outer sublayers for both grading patterns, and illustrate local
stress recovery capability in a multiscale analysis setting of the locally-exact homogenization

theory. Examination of the effective stress fields suggests greater capacity of the high to low

97



grading pattern to support internal pressure before the aluminum matrix is fully plasticized. This
observation provides guidance and motivation for further investigation by an elastic-plastic

analysis using other means.
4.2.2 Local Stress Recovery in a Multiscale Application — Laminate

Herein, we demonstrate this capability by embedding the theory into a laminate analysis
algorithm to generate the homogenized plate response and local stress fields under combined
inplane loading. Specifically, we consider a quasi-isotropic [0°/ i45°/ 90°], laminate laid up

with unidirectional graphite/epoxy plies containing 0.6 fiber volume fraction. The homogenized
elastic moduli of the unidirectional plies are calculated using the locally-exact homogenization
theory based on the constituent moduli given in Table 3.1. They are then employed to calculated

the reduced stiffness moduli O, of the plies used in constructing the laminate constitutive

equation in the form

QI Qi
<
NQ

ay, || € (4.6)

1 &= =
where a, :EZQU (O, 1, is the ply thickness, 2H is the laminate thickness, O, () are
k=1

transformed reduced stiffness moduli in the laminate coordinate system, and g}fx,e‘;;, ;/iy are the

uniform laminate strains that arise due to the uniform inplane laminate stress &,,,5,,,0,,. The

uniform inplane laminate strains obtained from the above equation are then transformed to the
principle material coordinate system of each ply, which then play the role of homogenized
strains employed in the calculation of local fields within the unit cell representative of the ply’s
microstructure. The missing homogenized strain normal to the laminate’s plane for each ply is
obtained from the homogenized Hooke’s law for the ply under the constraint of plane stress.

As an illustration, selected local stress fields in the 0°, +45° and 90° plies of the

considered quasi-isotropic laminate produced by the laminate stress vector [100,50,25] MPa

are presented in Fig. 4.11 in the principal material coordinate system of each ply. These include

two inplane stresses 0,,(y,,);) and 0,,(y,,»;), and two out-of-plane stresses ©,,(y,, ;)
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Figure 4.11 Local stress fields 0,(y,,y;), 0,(12,03), 0x(),,);) and 0y(y,,y;) in the

principal material coordinate system of the individual plies in a symmetric quasi-isotropic
laminate subjected to combined inplane state of stress ¢, =100, o, =50 and 0, =25 MPa.
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and 0,(y,,y,) which are not insignificant. The local stress fields may be used in a failure

criterion to efficiently generate homogenized laminate failure envelopes which account for the

three-dimensional stress state in the individual plies.
4.2.3 Efficiency of Nanotube Reinforcement

The developed solution (Chapter 2) may be specialized to composites reinforced by hollow
tubes by treating the coating as a hollow fiber upon setting the elastic moduli of the solid core to
very small values. This also demonstrates the method’s ruggedness. Hollow fiber reinforcement
of traditional composites has not been attempted on a large scale due to fabrication difficulties.
Fabrication techniques developed during the past decade for nanotechnology applications,
however, make possible reinforcement of different types of matrix materials by inorganic
nanotubes with precisely-controlled diameters, wall thickness and placement, such as
hexagonally-arrayed alumina nanotubes, that have potential applications in microelectronics,
nanofluidics, drug delivery and optical devices, amongst others. In light of the emerging
applications of these nanostructures, little data is available on their homogenized properties.

Herein, we illustrate the extended theory’s applicability by calculating homogenized
moduli of an epoxy resin reinforced by atomic layer deposited (ALD) alumina nanotubes
arranged in a hexagonal array. In particular, we consider alumina nanotubes 70 nm in diameter
with wall thickness ranging from 6 nm to 15 nm, fabricated successfully by Yang et al. (2012),
and calculate homogenized moduli as a function of effective nanotube volume fraction. Only
mechanical reinforcement effects are considered given that the present extension does not
include surface-energy effects that are important at very small scales. These will be incorporated
in our future work. We note, however, that Duan et al. (2006) did not find significant effect of
surface energy on homogenized plain strain and axial and transverse shear moduli of
nano-porous aluminum with cylindrical porosities having radii greater than 10 nm using the
CCA and GSC models. Hence continuum-level calculations remain valid for the considered size
ranges, with interaction effects from neighboring nanotubes afforded by our locally-exact

homogenization. The elastic moduli of the alumina nanotubes and epoxy matrix used in the
present calculations were: E, , =166GPa, v, , =0.20 and E =4GPa, v, =0.34, with the
former taken from (Lyytinen et al., 2014). The Young’s modulus and Poisson’s ratio of the solid

were E._ =10"GPa and v__ =0.34. These properties effectively produced a porosity in the

core core
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region occupied by the solid core which plays the role of the fiber in the analytical solution.

Fig. 4.12 presents homogenized transverse Young’s and shear moduli E, and G,

normalized by the respective moduli of the epoxy matrix for alumina nanotubes with three wall
thickness as a function of the volume fraction of an equivalent solid nanocylinder of the same
radius as the nanotube. The chosen mode of data display was motivated by the actual nanotube
dimensions that had been successfully realized using the ALD method. The results may also be
displayed as a function of the porosity volume fraction. As expected, the homogenized moduli
increase with increasing alumina nanotube wall thickness for a fixed volume fraction of an
equivalent solid nanocylinder. What is less expected, however, are the very small changes in the
homogenized moduli over a large nanotube volume fraction relative to the epoxy matrix modulus
when the nanotube wall thickness is 6 nm. In fact, while the transverse Young’s modulus

increases slightly, the transverse shear modulus initially decreases. In both instances the ratios
E,/E, and G,/G, remain in the vicinity of unity over a large volume fraction range. This

suggests that materials with enhanced functionality due to the presence of thin-walled tubes of

varying dimensions may be designed without altering the elastic moduli of the base material.
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Figure 4.12 Homogenized moduli of alumina nanotube-reinforced epoxy matrix as a function of
the nanotube’s apparent volume fraction based on the outer radius of 70 nm for different tube
thicknesses.
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Figure 4.13 Normal stress fields o,,(y,,v;) in the epoxy matrix and alumina nanotubes of
different thickness under uniaxial loading by &,, # 0 at the applied strain &,, =0.01.
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Figure 4.14 Tranverse shear stress fields o,(y,,y,) in the epoxy matrix and alumina nanotubes

of different thickness under uniaxial loading by &,, #0 at the applied strain £,, =0.01.
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Figs. 4.13 and 4.14 illustrate the normal and transverse shear stress fields that arise in the
nanotube reinforcement and epoxy matrix under respective uniaxial loadings in the case of
nanotubes with the smallest and largest wall thickness at the apparent volume fraction of 0.60
While the maximum normal and transverse shear stresses are comparable in the thick and thin
walled nanotubes, the wall thickness dramatically alters the epoxy matrix stress fields, thereby

producing large differences in the homogenized moduli seen in Fig. 4.12.
4.3 Summary

In this chapter, we use locally exact homogenization theory to investigate several
numerical results and applications of unidirectional composites. The homogenized moduli of
both two-phase and three-phase composites with constituents of different moduli contrast are
generated via a wide range of fiber volume fractions, and compared with FVDAM, FEM, and
other analytical results. The study of the quick convergent moduli and respective stress
distribution, as well as the execution time shows that the LEHT is an efficient and stable theory
that can be applied into other problems, such as multiscale modeling, nanotube applications...

Thus, three applications are then employed to illustrate the theory’s applicability:
composite cylinder, laminate, and nanotube reinforcement. The first two multiscale modeling
applications prove that LEHT is very efficient in the local stress recovery given certain loading
circumstances. Different patterns of structural designs can be accomplished by manipulating the
material constituents and geometrical properties of layers of composite cylinder and laminate.
Composites with hollow nanotubes that can be fabricated using atomic layer deposition
technique are also investigated. Avoiding the large detailed mesh discretization, the theory can
easily predict the effects of the thickness of coating/interphase on the homogenized moduli and
stress fields, giving researchers more insight about the composites with nanoscale.

The theory can be extended to a more robust tool by including more capabilities:
viscoelasticity is one of the most important perspectives. Thus, the LEHT with the consideration
of viscoelasticity is introduced in the next chapter to study the long-term behavior, especially for

the polymeric composites.
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Chapter 5

Locally Exact Homogenization of Viscoelastic

Unidirectional Composites

5.1 Introduction

The elasticity-based locally-exact homogenization theory for periodic materials with
hexagonal and tetragonal symmetries is extended to accommodate linearly viscoelastic phases
via the correspondence principle. The theory employs Fourier series representations for fiber and
matrix displacement fields in the cylindrical coordinate system that satisfy exactly equilibrium
equations and continuity conditions in the interior of the unit cell. The inseparable exterior
problem requires satisfaction of periodic conditions efficiently accomplished using previously
introduced balanced variational principle which ensures rapid displacement and stress field
convergence in the presence of linearly viscoelastic phases with relatively few harmonic terms.
The solution’s stability and efficiency, with concomitant simplicity of input data construction,
facilitates rapid identification of the impact of phase viscoelasticity and array type on
homogenized moduli and local fields in wide ranges of fiber volume fractions. We illustrate the
theory’s utility by investigating the impact of fiber array type and matrix viscoelastic response
(constant Poisson’s ratio vs constant bulk modulus) on the homogenized response and local
stress fields, reporting previously undocumented differences. Specially, we show that initially
small differences between hexagonal and square arrays are magnified substantially by
viscoelasticity. New results on the transmission of matrix viscoelastic features to the macroscale
are also generated in support of construction of homogenized viscoelastic functions from
experimental data.

Section 5.2 describes the locally-exact homogenization theory’s extension which is

validated in Section 5.3. In section 5.4 we investigate the combined effects of array type and
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phase relaxation moduli on the homogenized viscoelastic response and local stress fields,
reporting new results, as well as the transmissibility of phase response across scales which is
useful in the construction of homogenized response functions from experimental data. Specially,
we address the question whether the homogenized creep compliance elements of a unidirectional
composite comprised of a viscoelastic matrix that exhibits power-law creep also exhibit
power-law creep response in a wide range of fiber volume fractions. Conclusions are presented

in Section 5.5.
5.2 Locally-Exact Homogenization via Correspondence Principle

We employ the elastic-viscoelastic correspondence principle to transform the solution for
the unit cell problem obtained using the locally-exact homogenization theory for periodic
composites with transversely isotropic elastic phases to the viscoelastic solution in the Laplace
transform domain, cf. Christensen (1971). Then we use an efficient inversion method proposed
by Zakian (1969, 1970), see also Halsted and Brown (1972), to obtain the solution for the
homogenized relaxation moduli and creep compliances in the time domain. The alternative
approach is to solve the problem in the time domain directly, as for instance of the present
approach is that it applies to viscoelasic functions with non-separable and separable kernels alike.
The approach, however, depends on the accuracy and efficiency of the chosen Laplace inversion
scheme which the Zakian method affords, (Hassanzadeh and Pooladi-Darvish, 2007).

The transformed problem is obtained by replacing the displacement, strain and stress

variables in the elastic solution by their Laplace transforms, u, —i(s), g, %éij(s),
o, _>6-ij(S) , and the elastic stiffness matrix elements by their Carson transforms
Ciu = $Cy(s), where

Cyua(s)= [ Cp(0)e™dt (5.1)

The solution to the unit cell problem in the Laplace-transform domain yields Hill’s
localization relation, (Hill, 1963), between transformed average strains in the fiber and matrix

phases (k = f,m) and the transformed homogenized strains in the form
gi(k) — A(k)(Sé(f),Sé(m),Vf)SL (52)

which are employed in the construction of the homogenized Hooke’s law in the transformed
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domain. The specified macroscopic strain employed in the determination of the relaxation
moduli is £(f)= H(¢)&° whose Laplace transform is £(s)=&"/s. The homogenized Hooke’s

law in the transform domain is obtained by averaging local constitutive equations in each phase,
~ 1 A AN A
= ) pk) 717 _ (k) (k)
G—;ijsc &V, =Y vsCVE (5.3)

where the phase volume fractions obey the relationship Zkvk =1. Upon use of Eq. (5.2), the
homogenized relationship between stress and strain averages then becomes

o= Zk vksé(k)A(k)é =sCe (5.4)
where C" = Zk v,CPA®  In light of the phase volume fraction relationship above, the

homogenized relaxation functions for the unit cell in the Laplace transform domain may be

written,
& =EM 4y, [E0)_EMAY) 5.5)

J K, o,

1 —36902.08210 + 196990.42571 12.83767675 + 1.666063445i
2 +61277.02524 + 95408.62551i 12.22613209 + 5.012718792i
3 —28916.56288 + 18169.185311 10.93430308 + 8.409673116i
4 +4655.361138 — 1.9015286421 8.776434715 + 11.92185389i
5 +118.7414011 — 141.30369111 5.225453361 + 15.729529051

Table 5.1. Complex coefficients employed in Zakian’s inversion formula, Eq. (5.6), from
Laplace transform to time domain.

The inversion of the homogenized relaxation functions to the time domain is accomplished

by dividing the desired time interval into increments ¢ =[¢,¢,,t,,...,¢,,] at which the unit cell
problem in the Laplace transform domain is solved through the assignment s(j)=¢, /tl. for
Jj=12,..5, where the complex values of ¢, are given in Table 5.1. The solution of the unit

cell problem at the given time enables calculation of the strain concentration matrix for the fiber

phase, A" in the above equation. The homogenized relaxation functions at the given time are

subsequently calculated according to,
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C'(t)= ;2?_1 Re[K C (e, /1,)] (5.6)

where the complex coefficients K, are included in Table 5.1. The inversion process can also be

referred to the flowchart on next page. The following section provides an overview of the unit
cell solution in the Laplace transform domain that enables calculation of the time-domain

relaxation functions based on the above inversion method.
5.2.1 Unit Cell Solution Overview

The solution to the elastic unit cell problem representative of periodic hexagonal and
square arrays of transversely isotropic fibers embedded in (transversely) isotropic matrix, Fig.
2.1, has been provided by Wang and Pindera (2015, 2016). Here we summarize the main results
in order to make the employed replacement scheme and the calculation of the strain
concentration matrices in the transformed domain transparent.

The solution for the displacement field in the fiber and matrix phases of the unit cell, which
leads to the determination of local strains, stresses and the homogenized moduli, is carried out
within the homogenization theory’s framework wherein the global coordinates x=(x,,x,,x;)
describe the average response of the entire periodic array, and the local coordinates
y=(),,7,,);) describe the interior unit cell response, (Papanicolau et al., 1978; Suquet, 1985).
Accordingly, a two-scale displacement field representation is employed in the individual phases
whose Laplace transform is

2" (x,y,5) =& (s)x, +4/“ (y,9) (5.7)
where the fluctuating transformed displacement components #'*) caused by the material’s
heterogeneity are functions of the local coordinates (y,,y,,f) given the unidirectional

constraint along the x, direction by continuous reinforcement. The above displacement field

generates the local strains

A(k) _ el A2k

&1 (y,5)=&,(s)+€"(y,s) (5.8)
from which local stresses follow, with continuous reinforcement yielding the constraint
) _ &

g’ =§&,. The solution for the fluctuating displacement field in the fiber and matrix phases is

obtained from the Navier’s equations in the transformed domain in cylindrical coordinates

108



=

A\ 4

1. Assign K, and o, (7=12,...5) in Zakian’s formula;

2. Define time increments ¢ =[z,,1,,t,,...,t, ]

For each increment #(7)

ifi<N

YES
¥

Set s(j)=a, /t(i), choose S(s)=D,[s+C -T(n)/s"",

or S(s)=1/(sE,)+1/(sE))~1/[E (s + E,/n)]+1/(s*n,)

Y

Replacement scheme:

5 ACF) ) Am) & _ =0
CY —sCYP,CW —sC, g, =&p s

A\ 4

Solve A[F/G']"=BEg, (18)and A[H']"=BE, (20)

A\ 4

Determine strain concentration matrix A’

4

Determine C' =C"™ +v,(C) —C"™)A"

A 4

Invert @ ¢(7)

C;[t(z')]=%2Re[K,-é;(a,- Jt(@)]

i=l

A B )

i=i+1

AN J




0 190 19
o2 T T,
or~ ror r°d6
. (aza; 100, 4, J+ C,, -G, aza;+c}2+@3 o, 3G, —Cy iy _

o’ ror 1

A A 2 A2 A A A 2 A2 A A 2 A2 A A A7
022—023[8 19 _u_e]+ C, 0%y Cp+Cyy 8 3C, ~Cy, 90

C r
2 27 907 2 b 27 90 (5.9)

+ - =
2 o’ ror 1 r 06° 2r  0rd@ 2r? 00

which facilitate exact enforcement of displacement and traction continuity at the fiber/matrix
interface one harmonic at a time. This is referred to as the interior problem. The inseparable

exterior problem involves satisfaction of the periodicity conditions in Cartesian coordinates,
0,(x, +d,5)=0,(x,,8)+E,d, £.(x,+d,5) =1 (x,,5) (5.10)

where (x,,x,+d)e S, S is the unit cell boundary, d is a characteristic distance that defines the

unit cell array microstructure, and fl = oA'ﬂnj from Cauchy’s relation, with 7, denoting the jth

component of the unit normal to the boundary. Solution of the exterior problem which cannot be
solved one harmonic at a time entails minimization of a functional leading to the balanced

variational principle in the final form

jaﬁi(fi—f;)dsqéfi(a[—a;)dszo 5.11)
Sy s,

A A

where t=t° and w=u’ are periodic traction and displacement constraints imposed on S,
and S, , respectively. The displacement and traction components on the six and four surfaces of

hexagonal and rectangular unit cells, respectively are related through the periodicity conditions,

Egs. (5.10).
5.2.2 Displacement and Stress Fields in the Transform Domain

The solution for the transformed fluctuating out-of-plane and in-plane displacements .

and #, u,, respectively, in the fiber and matrix phases is obtained in the form
u = Za [(f”[-}ﬁ‘) +EHY )cos né + (4‘”1:1,5? +EHY )sin né’}
n=l1

o 4
0 = Fyal+ Fyal™ + 3 ) al™ [ﬂ‘l.k) cosnf+G\ sin nH}
n=2 j=1 ' ' (5.12)

o 4
i, = ZZaﬂwé‘“’ [Fni.k) sinnf— G, cos néq
n=2 j

Jj=1
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where rigid body terms associated with n=0 term in the expression for #’, and n=1 terms

in the expressions for #’ , u, have been excluded by fixing the fiber at the origin.

HP F® G(k)( j=1,2,3,4) are unknown coefficients, fzr/a is the nondimensionalized

n > nj 2

radial coordinate with respect to the fiber radius a, and the four eigenvalues p, — are

p,=n+l, p,=n-1, p.=—(n+l), p,,=—(n—1) with the corresponding eigenvectors

') given by

A 2622(1_175,')"'(@22_@23)”2

n: [(ézz + ézs )pnj - 3622 + C223]

n

To ensure that the displacements remain bounded in the fiber, we set H) =) =0 for
n>1 in the case of the out-of-plane displacement, and F£Y’ =0 and F{ =F =0,
(A?fﬁf )= (cz',% )=0 for n>2 in the case of the in-plane displacements. The remaining coefficients

H® F® ny’.‘) in the matrix phase (k=m) are subsequently obtained in terms of the fiber

nj > nj
coefficients [—A[,Lf ), ﬁnif ) and (A}ilf ) from the interfacial fluctuating displacement and traction

continuity conditions are the fiber/matrix interphase. The interfacial traction components are

obtained from Hooke’s law and strain-displacement relations,

6, =2sCLE, +sCOY al (£ D~ & AN cosnd+ (&7 Y~ A )sinnd

n=1
A _ 0F ~(k) &= ~(k) = Ak 4 AN ~(k) (k) -2
0, =sCy e +5CH €, +5C3 8y +5(Cyy + Gy )EG, —s(Cy — )E)zf

+S22P(k) P~ ( (k)cosm9+G(k)smn49)

n=2 j=1

G, =s(CH - (k))8r9+szzR(k)cf””’ ( F, sinn6 — G(k)cosné?)

n=2 j=1
(5.13)

in which £ =C%'p, +CE1+nfP), and RY =(CE -C)/2-[(p, -DB —n]

5.2.3 Interfacial Continuity

The axial shear problem is decoupled from the transverse normal and shear problems. Hence

applying the two interfacial continuity conditions on the axial displacement and axial shear stress
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at r=a and using the orthogonality of cosnf and sinnf terms, we obtain the following
relations between coating and fiber coefficients associated with different-order harmonic terms

for n>1,
H™ =¢HY +6 ¢,[28, 28,1 (5.14)

where  HY) =[HY H7', and the matrices ¢,¢, are

nl 2

Hg)]T, Him):[H(m) H™ o

nl >7"n2 > n3

given below. The Kronecker delta term ¢ is present because the average strains are introduced

only through the n=1 terms cos@ and sin@. Eq. (5.14) can be expressed explicitly as

follows:
A (m)
Hnl él O ) _1 0
H e |l H | ~11| 22
ol B S R P I (R (5.15)
Hn3 C2 O Hn2 1 0 2'913
s 0 ¢ 0 1

where ¢ =(C™ +CY)/2C  and ¢, =1-¢,.

The transverse normal and shear problems in the »—6 plane are coupled. Hence applying
the four interfacial continuity conditions, and using orthogonality of cosnf and sinné terms,
we obtain the following relations between coating and fiber coefficients for n =0

S 1 () A D Noa 2
F" =b,F’ +¢,&,+d,(€, +&,;) (5.16)

where F™ =[F F(7", and the matrices b,,¢, and d, are given below.

A A OD A(m) _ A(m) () _ A(m)
:(sz +C23 )+(C22 _C23 ) o _Clz _Clén a? 1~

5 ~ D - ~ 5 :__b
01 2C§;n) 01 2C§;1) 01 2 02 (5 17)
i _ (P + G- (G + ) P Jo——d
02 ~(m) > 02 01° 02 01

2C)

For n>2,
AMEM = AVRD L5 A (£, —E.)
n n n n n2°T0\"22 33 (518)

AME(m) _ A () () A =
An Gn - Aﬂ Gn + 5A2A0 2823

where Frfm) :[F(Wt) Fm - pim E(f)]T , Frff) :[F(f) F;t(zf)]T , G;m) :[G(m) G™_Gm G;EZI)]T ,

nl > n2 >-n3 > nl 2 nl 2~n2 >=n3

GV =[GV
n

nl

G177, and the matrices A””, A" and A, are given below:
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i (m) r 9 - _

1 1 1 1 1 1 0

oo P B Bl P Pl L 0
. - - - > > 2 (C%‘) C(f)) (Céfzn) C(m))
_R\nl R\nZ R\n3 R\n4_ _R\nl I’én2_ (an) C(m)) (Cé{) C(f) .

(5.19)

The Kronecker delta term ¢ , is present because the average strains are introduced only

through the n=2 terms cos26 and sin26.

5.2.4 Periodic Boundary Conditions

The unknown coefficients HY’,F) G are determined by applying the variational

principle, Eq. (5.11), with the surface displacements and tractions on the opposite faces of the
unit cell related through the periodic boundary conditions. Use of the two-scale displacement
representation given by Eq. (5.7) in the periodic displacement boundary conditions, Eq. (5.10),

reduces these periodicity conditions to constraints on the fluctuating displacement components.

Since the out-of-plane and inplane problems are uncoupled, the coefficients lA?"ff ),CAiff ) are

found independently of the coefficients H'’ upon utilizing the reduced periodicity conditions

in the variational principle. Implementing the reduced periodicity conditions for the inplane

problem in the variational principle, we have following system of equations for the unknown

coefficients F/), GV,

A [FG=B, g (5.20)
where & =[£,,8,,€,,28,], and ¥V =[F", £ ], GV =[G”,..G{ ]. Similarly, for
the out-of-plane loading, the variational principle yields the system of equations for the unknown

coefficients I:Iff ),

A H" =B & (5.21)

out ™~ out

A

where 6%0 [2812,2813] and HY = [H(f ) H(f ) ]. The elements of the matrices A ,A

in?" “out
and ﬁm,ﬁm are obtained in terms of surface integrals along the six sides §,,...S, of the unit

cell. Similar results are obtained for rectangular or square unit cells with four exterior surfaces,

see (Wang and Pindera, 2015) for details.
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5.2.5 Strain Concentration Matrix Determination

To determine the fiber strain concentration matrix, the average fiber strains are obtained in
closed form upon integrating the local expressions over the phase cross section. The resulting
expressions contain only the applied average strains and the displacement coefficients associated

with the »=1 harmonic in the case of axial shear strains, and the n=0,2 harmonics in the
case of transverse normal and shear strains

3CL+CD) o 7
) )
ED+ F

=) — & (/)
&, =&, +F; + ACT) FOP
22 g =€

. . . 3(@(.)’) +é(f)) R o o 1~
=) & f) _ 22 23 ) _ H = _ & (N
€3 =& T En 4(5'(]‘) le Fzz E; =&, T EHn (5-22)
22
AL AL ~ A 1 A
. ~ 3(CY) +CY A R EO g 4 H®
2(3” =E,+ ( 22 23 ) Gé'lf) +G§{) 13 13 9 12

A
4C5,
in which El(lf ) = g, is because uniaxial reinforcement.

The column of the fiber strain matrix A" are generated by solving the unit cell problem

for one non-zero average strain applied at a time, with the remaining average strains kept zero.
The solution produces the unknown coefficients F), G or HY for the applied loading,

and thus the average fiber strains. The elements of the strain concentration matrix occupying the
column that corresponds to the applied non-zero average strain are then obtained by taking the

ratios of the averaged strain in the fiber phase and the average applied strain.
5.3 Validation

We validate the solution by first demonstrating the rapid convergence of relaxation moduli
and local stress fields with the number of harmonics, and then comparing the solution’s
predictions with those reported in the literature based on finite-volume calculations of
comparable accuracy as the Q-9 based finite-element results. We also compare the locally-exact
theory predictions with experimental response of off-axis graphite-epoxy tension specimens

subjected to creep loading.
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Figure 5.2 Convergence study of selected relaxation functions as a function number of harmonics
for a glass/epoxy unidirectional composite with low and high fiber volume fraction.

5.3.1 Convergence Study

We consider hexagonal and square unit cells representative of a unidirectional composite
comprised of a polymeric matrix reinforced by glass fibers employed by (Cavalcante and
Marques, 2014) for validation of the generalized FVDAM theory with linearly viscoelastic
phases. The glass fibers were taken as elastic and the polymeric matrix was modeled as an
isotropic four-parameter fluid comprised of Maxwell and Kelvin elements connected in series.

The creep compliance in tension for this model takes the form
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R R
S =—+—(-e himy 4 — (5.23)

o £ m
where E =3.27GPa, E, =1.8GPa, 1, =300GPa-h, n, =8000GPa-h. This was obtained from
the generalized Kelvin model by setting the spring element stiffness in one of the Kevin elements
to a very small value, E,=10""GPa. The matrix Poisson’s ratio was assumed to remain
constant at v =0.38. The fiber elastic moduli are E =68.77GPa and v =0.21.
Using the above parameters, we investigate convergence of the homogenized moduli and

local stress fields with the number of harmonics in the displacement field representation, see Eq.

(5.12), for two non-dilute fiber volume fractions, namely 0.20 and 0.60. Figure 5.2 illustrates
convergence behavior of the homogenized relaxation stiff elements C;,(¢), C,,(¢), C,,(t) and
C..(t) with the harmonics number as a parameter for n=2,4,8 and 12. While the convergence of

these moduli is rapid at the low volume fraction, the high volume fraction requires somewhat

greater number of harmonics for convergence in the considered time interval. The axial shear

relaxation modulus C;(t) exhibits the slowest convergence, requiring 4 harmonics in the
displacement field representation, followed by the tensile transverse relaxation modulus C,, (7).
In contrast, the convergence of the local stresses requires greater number of harmonics. For
instance, the transverse shear stress field ©,,(y,,y,,¢) for the high fiber volume fraction
converges with 8 harmonics under pure shear loading by &,,=H(t)&;, whereas the
corresponding homogenized relaxation modulus requires fewer harmonics as seen in Fig. 5.2.
Here, we illustrate the convergence of the axial shear stress field o,,(y,,y,,t) under pure axial
shear loading by £, =H(t)g, at three different times for n=2, 8§ and 12 as this loading

requires 4 harmonics to yield converged homogenized relaxation response observed in Fig. 5.2 at
the high fiber volume fraction where interaction between fibers has greater impact than at the
low fraction. Fig 5.3 illustrates the axial shear stress fields at the three different times 7 =0, 150
and 600 hours for the three harmonics. For n =2 harmonics, both the matrix and fiber shear
stress fields are poorly predicted. Increasing the number of harmonics to 8 produces a stress field

that differs little from that obtained using 12 harmonics at the considered times.
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Figure 5.3. Convergence study of &,,(y,,y;) stress fields for different numbers of harmonics in

¢) Time = 600 hours

the displacement field representation during uniaxial loading by &, = H(¢)&}, .
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Figure 5.4. Comparison of the relaxation functions of a unidirectional glass/epoxy composite
with different fiber volume fractions generated by the locally-exact theory with FVDAM
predictions of Cavalcante and Marques (2014).
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The rapid convergence of both the homogenized moduli and local stress fields sets our
method apart from other elasticity-based solutions such as the eigenstrain expansion approach, cf.
(Caporale et al., 2015), which require substantially greater number of harmonics for converged

elastic stress fields, and hence by extension viscoelastic stress fields as well.
5.3.2 Comparison with Finite-Volume Results

Cavalcante and Marques (2014) extended the elastic version of the generated FVDAM theory of
Cavalcante and Pindera (2013) to the linearly viscoelastic domain directly in the time domain,
showing substantial improvement in the local stress field fidelity relative to the original version.
The elastic version produces results of comparable accuracy relative to the Q-9 based
finite-element method. The authors then compared the generated FVDAM predictions of the
creep and relaxation moduli of a glass epoxy system containing different fiber volume fractions
with the analytical solution of Luciano and Barbero (1995), showing exceptionally good
correlation. The study of Cavalcante and Marques (2014) is one of the few studies where the
local stress fields have also been generated during a relaxation history, in addition to the
homogenized viscoelastic response functions. Herein, we use these results as a gold standard for
comparison with our newly extended locally-exact theory. It is important to note that the solution
method employed in the generated FVDAM and locally-exact approaches are totally different,
lending credence to the locally-exact theory’s rigorous validation, and the ensuing conclusions.
Figure 5.4 illustrates comparison of the complete set of relaxation moduli for the
glass/epoxy system employed in the preceding section modelled as a square array of fibers in the
epoxy matrix for the fiber volume fractions 0.20, 0.30 and 0.40. The correlation is seen to be
excellent for the six relaxation moduli generated moduli generated at 25 times in the interval
[0,600] hours using 8 harmonics. This contrasts with the 200 time steps employed in the
generated FVDAM simulations required to obtain converged response directly in the time
domain by solving the unit cell problem incrementally owing to the separable kernel
representation of the linearly viscoelastic constitutive model used for the polymeric matrix. We

also compare the local stress fields generated by Cavalcante and Marques (2014) under
transverse shear loading &,, = H(¢)&;, at =600 hours with the locally-exact predictions for

the 0.20 fiber volume fraction. Eight harmonics were employed to generate the results shown in

Fig. 5.5 which are compared with the generalized FVDAM results obtained using the Mesh B in
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the author’s paper. In both cases, converged stress distributions are obtained which are nearly

0.7 ' 07
0.6 06
. 04

- a . . A . 0'

Figure 5.5. Comparison of transverse shear stress fields o,,(y,,y;) due to uniaxial loading

identical.

»

&, =H(#)&); in a square unit cell of a unidirectional glass/epoxy composite with 0.20 fiber

volume fraction at t = 600 hrs generated by the locally-exact (left) and FVDAM (right) theory of
Cavalcante and Marques (2014).

The above results were generated on a PC platform Windows 7 Ultimate 64-bit operating
system with 16 GB RAM and Intel(R) Core(TM) 15-3320M CPU @ 2.6 GHz. Table 2 illustrates
the execution time required to generate an entire set of relaxation functions in the considered
time interval of [0,600] hours as a function of the number of harmonic terms employed in the

displacement field representation in the unit cell solution.

Array type Execution time (minutes)
n=2 n=4 n=06 n=3_§ n=10 n=12 n=14
Square 0.369 1.702 3.674 8.009 11.613 16.437 21.859
Hexagonal  2.443 4.042 6.409 11.011 17.736 24.125 29.431
Table 5.2. Execution times consumed in calculating the full set of the relaxation functions of a
unidirectional glass/epoxy composite with 20% fiber volume fraction as a function of the number
of harmonics used in the displacement field approximation.

5.3.3 Comparison with Experiment

The experimental creep data on off-axis graphite/epoxy specimens at room and elevated

temperature generated by Yancey and Pindera (1990) is employed for comparison with the
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locally-exact predictions. The T300 graphite fiber and 934 epoxy matrix moduli used in the
comparison are given in Tables 5.3-5.4 at the two temperatures. While the fiber remains elastic
in the considered temperature range, the epoxy matrix creep response is described very well by
the power-law creep compliance
S,@&)=D,+Ct" (5.24)

where the three parameters are included in Table 5.4. This representation of the creep
compliance produces a non-separable kernel which is not readily amenable to an incremental
solution of the unit cell problem in the time-domain, in contrast with the present solution
approach independent of the type of viscoelastic function kernel in the hereditary integral

representation of the viscoelastic behavior.

Temperature E ,(GPa) E,(GPa) G,(GPa) Vv, Vv,
2°C 202.82 25.30 44.12 0.443 0.05
121°C 214.33 14.82 68.18 0.450 0.05

Table 5.3. Elastic moduli of transversely isotropic T300 graphite fiber at two temperatures.

Temperature E(GPa) 14 C(1/GPa-min) n
22°C 4.51 0.311 0.0135 0.17
121°C 3.36 0.317 0.0250 0.20

Table 5.4. Elastic moduli and viscoelastic power-law parameters of 934 epoxy resin at two
temperatures.

In the locally exact simulations the composite was taken as transversely isotropic and hence
a hexagon unit cell was employed to generate the creep response of 10° and 90° off-axis
specimens for comparison with the experimental results. Two sets of results were generated
based on the assumption that either the Poisson’s ratio or the bulk modulus of the epoxy matrix
1s constant. While constant Poisson’s ratio of the matrix phase is often assumed in numerical
simulations of the time-dependent composite material response due to unavailability of
experimental data, the potentially time-independent response of polymeric matrices under
hydrostatic loading may produce large differences in the response of specimens subjected to

loading which produce large local hydrostatic stresses. One example is a 90° specimen

subjected to transverse loading that determines the transverse creep compliance S, (¢). This will
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be explored in greater detail in Section 5.4 in the context of the impact of fiber array type on the

homogenized composite response.

0.016 0.016
0.015 0.015
0014} e T T 0014} =TT
< - a a o © - [u] a a
o oo O = o fun o a
Q ool Q ooram
= =
, = S0 © o o o ° = Lo © o o o <
l» 0.012F ) 0.012F
NR-LEHT NR-LEHT
0.011¢ ©  NR-Experiments [] 0.011} ©  NR-Experiments
—+='-NE-LEHT —+='-NE-LEHT
O NE-Experiments O NE-Experiments
0-01 1 1 1 T T 0-01 1 1 1 n T
0 20 40 60 80 100 120 0 20 40 60 80 100 120
t(min) t(min)
0.2 02
0.15 0151
a a a a a a a a a a
- e - 8o
© ¥ © ot
& &
= 01 o o o o} = 01 o [} o o
haol o © had ;x: o ©
N — o
w, N v N
w w
008 NRLEHT 005 NRLEHT
©  NR-Experiments © NR-Experiments
—.— “NE.LEHT —=—-NE-LEHT
O NE-Experiments O NE-Experiments
0 1 1 L T T 0 L 1 1 n n
0 20 40 60 80 100 120 0 20 40 60 80 100 120
t{(min) t(min)

Figure 5.6. Comparison of the predicted creep compliances S, (f) and S,,(¢) of 10° and 90°

off-axis graphite/epoxy specimens under uniaxial creep loading at room and elavated
temperatures with the experimental data of Yancey and Pindera (1990): constant Poisson’s ratio
of the epoxy matrix (left) and constant bulk modulus of the epoxy matrix (right).

Figure 5.6 illustrates comparison between the experimental results and locally exact
predictions at the two temperatures and the two assumptions on the Poisson’s ratio and bulk
modulus of the epoxy matrix. The simulations of the 10° off-axis specimen response were
obtained from the transformation equations in terms of the calculated creep compliance functions
in the principal material coordinate system. While the use constant Poisson’s ratio or bulk

modulus assumptions for the matrix phase produces little difference in the 10° off-axis
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specimen response, with good correlation with experiment in both cases, the predicted transverse
response of the 90° specimen is visibly affected by these assumptions. Specially, the
assumption of time-independent matrix response under hydrostatic loading tends to suppress the
creep component due to local hydrostatic matrix stresses that arise due to the fiber constraint.

The creep suppression is consistent at both temperatures.
5.4 Numerical Results

We consider two important aspects of the viscoelastic response of polymeric matrix
composites that have not been given much scrutiny. The first is the effect of fiber array on the
time-dependent response under the assumption of either constant Poisson’s ratio or bulk modulus.
The second addresses the extent to which a particular creep compliance representation of the
matrix phase percolates to the macroscopic scale. For instance, given a power-law representation
of the matrix creep compliance, can a similar power-law representation be employed to construct

the homogenized creep compliance of the composite?
5.4.1 Impact of Fiber Array and Matrix Relaxation Moduli

It is well known that the fiber array influences the elastic-plastic and creep response of
metal matrix composites by altering the hydrostatic stress distributions in the matrix phase. In
contrast, the elastic moduli, which are influenced by the stress transfer from the matrix to the
fiber phase, are affected to a lesser extent by the fiber array for a given fiber shape. Herein, we
employ the power-law creep compliance representation for the epoxy matrix of the preceding
section to generate creep compliances of a unidirectional graphite/epoxy composite with the fiber
volume fraction of 0.60 using two microstructural representations based on square and hexagonal
fiber arrays.

Figure 5.7 illustrates the differences in the homogenized transverse normal and shear, and
axial shear creep compliances S, (¢), S,,(t), S () of hexagonal and square fiber arrays with

constant matrix Poisson’s ratio (left column) and constant bulk modulus (right column). For each
matrix type, the effect of fiber array increases with time, with the initially small differences in
the instantaneous elastic response substantially magnified with continued loading. Largest

differences are observed in the transverse normal and shear creep compliances S,,(¢), S,,(?),

and smallest in the axial creep compliance. The assumption of purely elastic matrix response
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under hydrostatic stress dramatically suppresses creep of the composite under transverse normal
loading for both hexagonal and square fiber arrays. In contrast, under transverse shear loading
the square fiber array creep is slightly enhanced while the hexagonal array creep is slightly
suppressed. Under loading by axial shear, the matrix phase experiences only axial shear stresses,
and hence no differences are observed for a given fiber array using either of the two assumptions
on the matrix response. The differences arise because the shear modulus of the isotropic matrix,
which depends on the Young’s modulus and Poisson’s ratio in the elastic domain, evolves
differently in the time depending whether the matrix is assumed to respond elastically or in a
time-dependent manner under hydrostatic loading.

Figure 5.8 presents the transverse shear stress distributions ©.,,(y,,y;) at the instant of
applied loading &,,(t) = H(t)0,,, t=0, and at the terminal time of #=600 hours, in support
of increasing differences with time in the transverse creep compliance S,,(¢) of the hexagonal

and square arrays with constant bulk modulus matrix observed in Fig. 5.7. The substantially
greater load bearing capability of the fibers in the hexagonal array, which produces much stiffer
response, is attributable in large measure to the array type. The additional contribution of the
matrix type is rooted in the hydrostatic stress differences in the matrix phase produced by the two
arrays, which are compared in Fig. 5.9. The substantially larger hydrostatic stress magnitudes in
the matrix phase of the hexagonal array produce additional differences in the response of both
arrays upon comparison with the corresponding results in Fig. 5.7 based on the constant

Poisson’s ratio assumption.
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Figure 5.7 Comparison of the creep compliances S,,(¢), S,,(¢), Si(¢) of hexagonal and square

arrays of a glass/epoxy unidirectional composite predicted by the locally exact theory: constant
Poisson’s response of the epoxy matrix (left) and constant bulk modulus of the epoxy matrix

(right).
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Figure 5.8. Comparison of transverse shear stress fields o,,(y,,y;) in hexagonal and square

arrays of a glass/epoxy unidirectional composite under pure creep loading &,, = H(¢)ey,

predicted by the locally-exact theory when the bulk modulus of the epoxy matrix is assumed
constant.
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Figure 5.9. Comparison of hydrostatic stress fields in the matrix phase of hexagonal and square
arrays of a glass/epoxy unidirectional composite under pure creep loading &,; =H(¢)e,

predicted by the locally-exact theory when the bulk modulus of the epoxy matrix is assumed
constant.
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5.4.2 Transmission of Matrix Response Features Across Scales

Construction of relaxation moduli or creep compliances of unidirectional composites with
viscoelastic phases based on experimental data requires extensive tests to characterize all
time-dependent functions. For transversely isotropic composites, five independent functions are

required, some of which are difficult to obtain experimentally, e.g., C,,(t) or S,,(¢). Moreover,

once a set of relaxation moduli or creep compliances is experimentally obtained, the question
arises with regard to the choice of functions that may be employed that produce best fit with
experimental data. In this section we address this issue by investigating how the choice of a
particular function that describes the linearly viscoelastic response of the matrix phase percolates
to the homogenized level. Specifically, we use the power-law description of the creep
compliance of the epoxy matrix reported by Yancey and Pindera (1990) at the elevated
temperature to determine whether the homogenized response also obeys similar power-law
descriptions with altered coefficients (which must depend on the fiber volume fraction, array
type, and fiber moduli), and perhaps also altered power-law exponent(s). The larger exponent at
the elevated temperature relative to that at room temperature, Table 5.3, produces greater creep,
facilitating determination of the homogenized parameters with greater fidelity.

Using the locally-exact theory, homogenized creep compliances were generated for the

considered graphite/epoxy system at three different fiber volume fractions, namely

v, =0.20, 0.40, 0.60. The responses that exhibit the most pronounced time-dependent behavior

dominated by the viscoelastic epoxy matrix, namely S,,(¢), S,,(t) and S, () are illustrated

in Fig. 5.10. To determine whether these responses are well-approximated by power-law

functions, the time-dependent part of the response
* 0 _ g*ve
S; ) =8, =5, (5.25)
was plotted as a function of time on a log-log graph in order to extract power-law exponents and

associated coefficients. In other words, assuming that these homogenized functions may be

approximated by,
o QH0) R
S,()=8,"+8,;"t (5.26)

where ij =11,12,13,22,23,33,44,55,66, they were post-processed according to
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* *(0) _ *(1) *
In(S;(H)—S,;7)=InS," +n,Int (5.27)
to identify observable linear regions with the related power-law slopes n; and coefficients

s;0.

Table 5.5 reports the resulting power-law coefficients and exponents for the selected
homogenized creep compliances obtained from the locally-exact theory simulations for the
hexagonal array containing the three fiber volume fractions are two types of epoxy matrices
characterized by either constant Poisson’s ratio or constant bulk modulus. As anticipated, the
power-law coefficients decrease with the fiber volume fraction at rates that depend on the
particular creep compliance and matrix type. Regardless of the matrix type and creep compliance,
however, the power-law exponents for the matrix-dominated homogenized creep compliances
remain essentially the same as that of the epoxy matrix in the investigated fiber volume range.

Comparison of the homogenized creep compliances based on the power-law fits of Eq. (5.26)

with the locally-exact simulations are included in Fig. 5.10, illustrating excellent agreement.
Included in Table 5.5 are the corresponding results for the creep compliance Sl* ,(t) which

1s dominated by the elastic fibers, producing negligible time-dependent behavior in the

considered fiber volume range characterized by very small magnitudes of the power-law

coefficients. The power-law exponents, however, are nearly independent of the fiber volume

fractions are consistently lower relative to the matrix-dominated creep compliance exponents.

v Sii S’ S S omy omy  my ng
020(v=v,) 1.086*10" 0.0166 0.0478 0.0442 0.1650 0.1997 0.1998 0.2
0.40(v=v,) 2201*10° 0.0113 0.0321 0.0285 0.1650 0.1994 0.1996 0.2
0.60(v=v,) 6.717*10° 0.0067 0.0183 0.0165 0.1650 0.1989 0.1990 0.2
0.20(K =K,) 1.098*10* 0.0142 0.0532 0.0503 0.1645 0.1970 0.1988 0.2
0.40(K =K,) 2250*10° 0.0093 0.0347 0.0325 0.1645 0.1954 0.1972 0.2
0.60(K=K) 6.931*10° 0.0051 0.0189 0.0188 0.1645 0.1921 0.1939 0.2

Table 5.5 Power-law coefficients and exponents of homogenized creep compliances of a
unidirectional T300 graphite/934 epoxy composite at 121 °C containing different fiber volume
fractions.
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Figure 5.10. Time-dependent components of matrix-dominated homogenized creep compliances
of a transversely isotropic graphite/epoxy composite displayed on a logarithmic scale (left). The
matrix phase is characterized by a power-law creep compliance and constant bulk modulus while
the fiber is elastic. Predictions based on power-law fits (symbols) are compared with
locally-exact simulations (lines), (right).
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5.5 Conclusions

The extension of the locally-exact homogenization theory to accommodate linearly
viscoelastic phases in periodic unidirectional composites with hexagonal and square
microstructures via the correspondence enables rapid identification of the effects of
viscoelasticity, fiber array architecture and phase response on homogenized relaxation moduli
and local stress fields. The success of the correspondence principle applied to the locally-exact
theory depends on the efficiency and accuracy with which the Laplace-transformed unit cell
solution is inverted to the time domain. The chosen inversion method proposed by Zakian (1969)
proved to be an excellent vehicle towards this end. Because of the simple input data construction
arising from the computationally stable analytical framework, the theory may be used efficiently
by specialists and non-specialists alike to rapidly calculate both homogenized relaxation moduli
or creep compliances and local stress fields in a wide fiber volume fraction range. The extended
theory’s success is rooted in the variational principle proposed by Drago and Pindera (2008)
which facilitates rapid convergence of the unknown Fourier coefficients in the unit cell
displacement field representation upon application of periodic boundary conditions, demonstated
herein to also hold true in the Laplace-transform domain.

The theory’s utility was highlighted by investigating the impact of fiber array type and
matrix constitutive assumptions on the homogenized response of unidirectional composites. The
results revealed previously undocumented importance of viscoelasticity on the homogenized
response of unidirectional composites with hexagonal and square microstructures, illustrating
that initially small differences in the instantaneous response are substantially magnified with
time, while quantifying the effect of matrix viscoelastic incompressibility under hydrostatic
loading. The theory was also employed to investigate how the time-dependent component of the
matrix creep compliance affects the homogenized response. The results indicate that a power-law
representation of the matrix creep compliance produces power-law homogenized response in the
matrix-dominated directions with the same power-law exponent but fiber volume fraction

dependent coefficients.
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Chapter 6

Comparison: LEHT vs Classical Models

6.1 Review

Composite cylinder assemblage (CCA) model was proposed by Hashin (1962) based on
isotropic constituent, which was later extended to transversely isotropic phases in terms of
replacement schemes (Hashin, 1979). This is the classic model based on representative volume
element (RVE) concept, which provides closed-form expressions for the four of five effective
moduli for the response of unidirectional-reinforced composites. The axial Young’s and shear
modulus, axial Poisson’s ratio, transverse bulk modulus can be expressed because a single
composite cylinder still acts as a RVE, while the entire assemblage responds as same as a single
cylinder under homogeneous traction and displacement boundary conditions for axisymmetric
and axial shear loading. The fifth effective modulus — transverse shear modulus, can only be
expressed as the upper and lower bounds using variational principle. The four actual expressions
for homogenized moduli for CCA model (Hashin, 1979) are expressed for future reference:

4v,v, v -vimy
v, K v, KD +1/GE

- o)) (m)
E,=v,E] +v, E" +

b, 04 =V 1)
v, K v, KD +1/G

* N (m)
VA—VfVA +tv .V, +

(6.1)
V/-

K =k + -
T T 1 (k(f) _k(m))_|_v (k(m) _|_G(m))
T T m/| \'r T

Vi
(G =Gy +v, [(2G)

G, =G\ +

while the upper and lower bounds for the transverse shear modulus G, are
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p—v [1+3v. 52 [(1+av))]
Vy
/(G =Gy +v, (K™ +2GY) [2G (k™ + Gi™)]

G]*"(+) =G {1+

Gy, =G +

(=)

(6.2)

In addition, the bounds for the transverse normal modulus E; can be expressed as follows

4 11 4v]

*
T+ T+ T A

in - which a=(8,-18)/(+18) . p=(+B) (-1 . B, =k"["+2G{) .

B, =k" k" +2G"), y=G /G . EV KO vP,GP .G are the material properties

while v, stands for the volume fraction of fiber and matrix, respectively, and k= f,m.

Christensen and Lo (1979) provide the quadratic expression for the transverse shear

modulus using an energy approach based on the three-phase model, which can be expressed as:

(G'/G™Y 4+(G'/G™)B+D=0 (6.4)
in which 4, B and D are the functions of the material properties of composite cylinder
assemblage, the details of which can be referred in the original literature.

The viscoelastic behavior was extended for heterogeneous media based on CCA models by
Hashin and his colleagues, (Hashin, 1965; Hashin, 1966; Gottesman and Hashin, 1980). In the
meantime, based on the assumption of average stress in the matrix phase, Mori and Tanaka
(1973) provided another approach to evaluate effective stiffness matrix by firstly evaluating
Eshelby-type problem, in which the fiber was imbedded into the matrix phase, and then applying

far-field macroscopic strain to generate strain concentration matrix A/} relating averaging

fiber strain with averaging matrix strain £, = AY’Z . For any two-phase composite materials:
ging ’ ; y two-p P

sy 5 = = ) =
E=v,E +v,E, = E=[v, A +vIlE, (6.5)
from which the strain concentration matrix relating the averaging fiber strain with the

macroscopic average strain becomes
) — A N -1
AV =AY (6.6)

Then the final elastic stiffness matrix can be expressed as
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C' =C" +v,(C" =C")AL v, AL +v IT" (6.7)

The problem for Mori-Tanaka model is that the matrix phase is taken into account but only
in an average sense, which leads to the overestimating of initial yielding in the presence matrix
plasticity (Pindera et al., 2009).

Both CCA and Mori-Tanaka models have been among the most popular tools in
investigating the micromechanical behavior of unidirectional composites in the past years. Both
of them have their advantages over other micromechanics techniques: easily understandable and
implemented, comparatively accurate predictions, et al. However, other problems are still
looming: CCA model does not either consider fiber and fiber interaction, or provide the exact
expression for the transverse shear (normal) modulus; Mori-Tanaka just consider matrix phase in
an average sense. ..

In this chapter we systematically compare the elastic and viscoelastic response of
unidirectional composite materials based on CCA model, Mori-Tanaka model as well as LEHT,
the framework of which is introduced in Chapter 2. The comparison between LEHT and CCA
model has been conducted for unidirectional composites with cylindrical orthotropic fibers in
Chapter 3 for validation of the accuracy and efficiency of the present theory. Here the
comparison is limited for composites with (transversely) isotropic constituents to show the
advantage of the present theory against the classical models for both homogenized moduli and

stress distributions.
6.2 Elastic Behavior

In this section, the converged elastic homogenized moduli and stress distributions are
compared between the LEHT, proposed in this dissertation, and the classical CCA and
Mori-Tanaka models, both of which has been validated and applied in many situations. The
homogenized moduli are compared by using glass/epoxy (listed in Table 6.1) to highlight the
stronger contrast of inplane moduli between fiber and matrix, and covering a wide range of fiber
volume fraction [0.05-0.75] to suit to more demanding cases. The LEHT has been demonstrated
by many other analytical and numerical techniques, and here we just want to show the
advantages of the proposed method, which can be used as a gold standard against other

micromechanics tools.
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Fig. 6.1 Homogenized moduli as a function of fiber volume fraction for glass/epoxy composite
based on different models.
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The homogenized moduli generated using three different models are compared in Fig 6.1, most

of which has been normalized by their corresponding moduli of matrix, except axial Poisson’s
ratio v,. As can be observed in the figure, the homogenized moduli E:,k;,VZ,G: are almost
identical based on LEHT (hexagonal array), CCA model, as well as Mori-Tanaka model under
axisymmetric and axial shear loading. While the respective moduli for square array based on

LEHT analysis are almost same for most of the cases, except slight differences appear for G,
and v, when fiber volume fraction exceeds 55%. This is because the isotropic property

characteristics still hold for the inplane problem for hexagonal array but not rectangular (square)
array, and the fiber-fiber interactions turns to be more obvious when fiber volume fraction
becomes larger. For the transverse normal and shear properties, only upper and lower bounds for

E, and G, exist for CCA model, while Mori-Tanaka always gives the actual predictions for

all of the homogenized moduli. In addition, the homogenized moduli of E, and G, based on

LEHT for hexagonal array always lie between upper and lower bounds of their counterparts
predicted by CCA model. In the meantime, Mori-Tanaka model gives almost the same transverse

properties as the lower bounds of CCA model.

Material E,(GPa) E(GPa)  p,(GPa) i, (GPa) v,
E-glass fiber 69.0 69.0 28.28 28.28 0.22
3501-6 epoxy 42 42 1.567 1.567 0.34

Table 6.1. Elastic fiber and matrix properties employed in the elastic analysis.

Next, we are going to show the stress distributions using LEHT analysis and CCA model
under different types of loading conditions. First, the inplane axisymmetric loading is applied, in
which &,, =&, =0.01 for the hexagonal array and £, =0.01 for the CCA model, respectively.
Two fiber volume fractions are employed, 30% and 65%, to illustrate the effect of fiber-fiber
interaction on the stress distributions in the fiber area predicted by the two methods. Figs 6.2-6.3

illustrate the inplane stress distributions ©,,(y,,¥,), 0,,(¥,,¥;), 0,,(»,,y,) for comparison,;
out-of-plane stress field o,,(y,,y;) is not shown here because the fiber is dominant in taking

most of the axial stress, which is not as interesting as well. For the fiber volume fraction of 0.30,
the CCA model shows accurate predictions compared with the LEHT. However, when the fiber

volume fraction increases to 0.65 in Fig 6.3, obvious stress disturbance can be observed in the
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Fig. 6.2 Stress distribution comparisons of (a) o,,; (b) 0,;; and (c)o,, between LEHT

analysis for hexaognal array (left) and CCA model (right) with the fiber volume fraction 0.30
subjected to the loading: &,, =&,;, =0.01 (left)and &£, =0.01 (right).
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Fig. 6.3 Stress distribution comparisons of (a) o0,,; (b) 0,,; and (c¢)0,, between LEHT
analysis for hexaognal array (left) and CCA model (right) with the fiber volume fraction 0.65
subjected to the loading: &, =&,; =0.01(left)and £, =0.01 (right).
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Fig. 6.4 Stress distribution comparisons of (a) 0,,; (b) 0,, between LEHT analysis for hexaognal
array (left) and CCA model (right) with the fiber volume fraction 0.30 subjected to the loading:
£,=0.01(leftyand €, =0.01 (right).
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(b)

Fig. 6.5 Stress distribution comparisons of (a) 0,,; (b) 0,, between LEHT analysis for hexaognal
array (left) and CCA model (right) with the fiber volume fraction 0.65 subjected to the loading:
£,=0.01(leftyand €, =0.01 (right).
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fiber area in LEHT analysis but not in the CCA model, although the matrix phases still show
similar distributions. The disturbance in the fiber is due to fiber-fiber interaction, which cannot
be predicted by the CCA model, and can only be captured in the higher fiber volume fraction

case by LEHT. Similar phenomenon also happens in the stress fields under axial shear loading

conditions &, =0.01 (for hexagonal array) and £ =0.01 (for CCA model) (Figs. 6.4-6.5),
while the fiber disturbance still cannot be observed when fiber volume fraction is ¥, =0.65 by

CCA model. However, CCA model still establishes accurate stress distributions in most cases,
especially in the matrix phase, which cannot be illustrated by Mori-Tanaka model. In the next
section, the viscoelasticity capability is implemented into LEHT (see Chapter 5 for details), as

well as CCA and Mori-Tanaka models for comparison.
6.3 Viscoelastic Behavior

The viscoelastic behavior, based on the CCA model, was firstly studied by Hashin for
unidirectional composites about half a century ago. Here we are trying to explain the viscoelastic
behavior predicted by including LEHT, CCA model, as well as Mori-Tanaka model. The detailed
process for solving the viscoelastic relaxation moduli or creep compliances by LEHT has been
illustrated in Chapter 5, and are not going to be repeated here. However, the inversion technique
for CCA and Mori-Tanaka models are explained in this section for future reference, both of
which are using Zakian method, which has been proved to be a robust tool for many demanding
cases, (Hassanzadeh and Pooladi-Darvish, 2007).

Since the explicit expressions of homogenized moduli are already given in Egs. (6.1-6.2)

for CCA model, what is needed to do is to replace the elastic moduli by their Carson transform,
EP kO y®O GH and GE > sEW kB 0P sGP sGP ., k=f,m, or . s is the
Laplace variable which usually has the following relationship s(j)=¢; / t, for j=1,2,..5,1in

which the time domain is essentially a vector by dividing the desired time interval into

increments ¢ =[4,1,,t,,...,t,]. @; are complex values and can be referred to Table 5.1. The

homogenized relaxation functions at the given time are subsequently calculated according to Eq.

(5.6) using Zakian method for the inversion technique, which is

f @) =23 RelK,F (@ /1) 63)
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in which f stands for the elastic moduli E¢, k" v G} and G\, while F denotes their

respective relaxation moduli £© &% p® G® G® in Laplace domain.
However, the scheme used for Mori-Tanaka model is somewhat more complicated. The
replacement scheme is firstly employed by replacing the displacement, strain and stress fields in

the elastic domain by their Laplace transforms u;, —u;, €; — £,(s), 0, — 6,(s), and the elastic
stiffness matrix elements by their Carson transforms C,, — sCA'Ukl (s) . Then far-field
macroscopic strain is applied to generate strain concentration matrix Aﬁn’z relating averaging
fiber strain with averaging matrix strain & = A (sé(f ),S(A?(’"),vf — O)f‘m in the Laplace
domain. In addition, Eq. (6.5) can be re-expressed in Laplace domain as

E=[v,AV +v I, (6.9)
Then the final elastic stiffness matrix in the transform domain can be expressed as

C =C" +v,(CV =C™)AL[v, AL +v 1T (6.10)
Similar to the process applied to LEHT discussed in last chapter, the homogenized
relaxation moduli obtained by Mori-Tanaka model, Eq. (6.10), can be inverted back as elastic
moduli using Eq. (6.8).
Two material systems are employed to generate the relaxation moduli: Glass/ED-6 resin
(Cavalcante and Marques, 2014), and T300 graphite/934 resin at elevated temperature (Yancey

and Pindera, 1990). And the fiber volume fraction employed for the stress distributions in this

section is 60% to highlight the fiber-fiber interaction.

Material E/(GPa) E,(GPa)  p,(GPa) i, (GPa) v,
Glass fiber 68.67 68.67 28.38 28.38 0.21
T300 graphite fiber  214.33 14.82 68.18 7.06 0.45

Table 6.2 Elastic fiber properties used in the calculations.

Material  E,(GPa) E,(GPa) 1,(GPa-h) 7;(GPa-h) (C(1/GPa-min) v,

ED-6 3.27 1.8 300 8000 0.38

934 3.36 0.025 0.20 0.317

Table 6.3 Viscoelastic four-parameter and power-law model parameters for the response of resin.
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First, the relaxation moduli are generated using graphite/epoxy resin composite, and power

law model is used to model the matrix response. The isotropic creep compliance S(¢), for the

power law model is given by:

S@t)=D,+Ct" (6.11)
in which D, is the instantaneous elastic compliance, and D,=1/E,, where E, is the
instantaneous elastic stiffness. C and » are experimentally measured parameters, and ¢ is
time. The parameters can be referred to Table. 6.3.

Fig. 6.6 illustrates the comparison of relaxation moduli up to 200 minutes between three
models. Similar to Chapter 5, two popular assumptions are used for the consideration: (1) The
hydrostatic response, in which the bulk modulus is assume to a constant (same value as the

instantaneous response), and K = constant ; (2) the Poisson’s ratio is fixed as v = constant.
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Fig. 6.6 Comparison of the relaxation moduli of graphite/934 resin for LEHT, CCA model and
Mori-Tanaka model: constant bulk modulus of the epoxy matrix (left column) and constant
Poission’s ratio of epoxy matrix (right column).
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As is noticed in the figure, all three models predict almost the same behavior under
axisymmetric and axial shear loading, and E (¢), k,(¢), v (¢), G (f) are almost identical for
different three models. Similar as elastic behavior, the transverse shear modulus G, generated
by LEHT in viscoelastic domain is also between upper and lower bounds of CCA model, while
Mori-Tanaka model predicts G, that is close enough to the lower bound of the CCA model.
From the other perspective, slight difference can be observed for three of the five relaxation

moduli £ (7), G (1), G,(¢) investigated in the figure under two different assumptions that

model the response of the matrix. And big differences are found for k., v, while inplane bulk

modulus creep much less for the constant K case, and axial shear Poisson’s ratio almost keep
constant for the constant v case.

Then the glass/resin system is used here to show higher inplane modulus contrast. The
ED-6 resin employed here is modeled using four-parameter model, which is comprised by two

springs and two dashpots, arranged as shown in Fig. 6.7,

el IS5
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Figure 6.7 Mechanical representation of the four-parameter model

The creep compliance in tension for this model takes the following form

£
1 1 ¢
St)y=—+—(>0-e " )+—
® E E( )

0 1 E

(6.12)

and the parameters are listed in the Table. 6.3.
As we can see in the Fig. 6.8, the response of Axial Young’s modulus is identical in both
cases. The axial shear modulus is also same predicted by three models in each case, but small

difference can be observed between the two assumptions. This is because for the out-of-plane
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shear problem, the same Young’s modulus of the matrix is firstly assumed based on different

models, and then shear modulus G, would be different based on different assumptions from the

relationship G, =E, /2(1+V,).

As already observed in the moduli of graphite/resin in Fig. 6.6, the transverse shear
modulus G, predicted by LEHT lies between the upper and lower bounds of CCA model, while
Mori-Tanaka model gives almost same results as lower bound of CCA model. It should be
mentioned that LEHT has been validated by numerical technique FVDAM (Cavalcante and
Marques, 2014) and another analytical technique in the work of Luciano and Barbero (1995),
which are discussed in detailed in Chapter 5.

Similar phenomenon as Fig 6.6 also happens to the plain strain bulk modulus %, and axial

shear Poisson’s ratio between the two assumptions when k, creeps less in constant bulk

modulus case and v, barely changes in the constant Poisson’s ratio case.
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Fig. 6.8 Comparison of the relaxation moduli of glass/ED-6 resin for LEHT, CCA model and
Mori-Tanaka model: constant bulk modulus of the epoxy matrix (left column) and constant
Poission’s ratio of epoxy matrix (right column).
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Next, the stress distributions are compared between LEHT and CCA model to show the
evolution of the material properties. The stress fields are generated by applying two different
types of loading: transverse axisymmetric loading and axial shear loading, which are illustrated
in Fig 6.9 and 6.10, respectively. Here the stress distributions are generated at =0, #=150h
and ¢=600h (from left to right). As is observed, the stress fields are similar predicted by the two
models. But the CCA model cannot capture the disturbance in the fiber region when the
fiber-fiber interaction become obvious (fiber volume fraction is 60%), but it does show similar

distributions in the matrix against LEHT, which cannot be illustrated by Mori-Tanaka model.
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Fig. 6.9 Comparison of the converged stress distributions ©,,, 0,, of glass/epoxy composite with the fiber

volume fraction of 0.6 subjected to the axisymmetric loadings (1) &,, =&,,; =0.005 for hexagonal array (top);
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Fig. 6.10 Comparison of the converged stress distributions ©,,, 0,, of glass/epoxy composite with the fiber

volume fraction of 0.6 subjected to the axial shear loadings (1) €,=0.005 for hexagonal array (top); (2)
€_=0.005 for CCA model (bottom); at different time points: 0, 150h, 600h (from left to right).
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6.4 Remarks

In this chapter, two of the most well cited models in micromechanics community, CCA and
Mori-Tanaka models, are investigated and compared with the LEHT. Both the elastic and
viscoelastic cases are studied. Based on the study of homogenized moduli and stress distributions.

A few points can be used to conclude this chapter:

(1) CCA model is an easy-to-use and explicitly expressed analytical technique for the prediction
of effective properties in microstructures. The model provides accurate predictions for four
of the five transversely isotropic elastic effective properties (or viscoelastic relaxation moduli)

- E, k;,v,,G,, but only gives upper and lower bounds for the fifth one: G,. In addition,

the fiber-fiber interaction is still an obstacle especially when the fiber volume fraction is
large.

(2) Mori-Tanaka model is also a straightforward concept to be understood and employed, which
is based on the assumption of averaged matrix stress distributions. Most of the predictions for
the homogenized moduli are almost identical compared with LEHT and CCA, as well as
Mori-Tanaka model. However, the transverse normal and shear moduli predicted by
Mori-Tanaka model are almost identical as lower bound of the CCA model in both elastic
case and viscoelastic case, which have obvious discrepancies against LEHT that has been
validated by other techniques. Also, the stress distributions cannot be investigated using
Mori-Tanaka model.

(3) Locally exact homogenization theory can be used as a standard against other models because
it shows accurate predictions for the homogenized moduli, which is already discussed in
previous chapters, and stress distributions in different geometrical microstructures, for both

elastic and viscoelastic cases.

The accurate and efficient calculations of both homogenized moduli and stress
distributions are mainly because of the balanced variaitional principle firstly proposed by Drago
and Pindera (2008), which will be discussed and compared in details with another well known

method for boundary conditions implementation — Jirousek’s constrained variaitional approach.
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Chapter 7

Effect of Boundary Conditions

Implementation

7.1 Introduction

Convergence of the locally-exact homogenization theory for periodic materials was
investigated in Chapter 4 for both hexagonal and square arrays, based on isotropic and
transversely isotropic material properties. In the theoretical construction, the interior problem is
solved exactly one harmonic at a time using Fourier series expansions for the displacement fields
in the fiber and matrix phases which satisfy both the Navier’s equations and continuity
conditions. Alternatively, the non-separable exterior problem involving the implementation of
periodic boundary conditions is solved approximately using a new balanced variational principle
which leads to exceptionally fast and well-behaved convergence of the Fourier series coefficients.
Jirousek (1978) proposed another variational principle derived from a constrained potential
energy functional for finite-element solutions based on locally-exact elements, which motivated
the development of the balanced variational principle that is employed in the locally-exact
homogenization theory. Recently, Jirousek’s constrained variational principle has been
re-discovered by a number of researchers and applied to the homogenization of periodic
materials, Yan et al. (2010), Yan and Jiang (2010), Yan et al. (2011, 2013), Guinovart-Diaz et al.
(2012), Rodriguez-Ramos et al. (2013). The focus of these investigations was on homogenized
thermo-electrical-mechanical moduli, with little mention of the convergence behavior or local
field accuracy.

In this chapter, we compare the unit cell’s solution convergence behavior based on the two
different implementations of periodic boundary conditions, namely the constrained and balanced

variational principles, in a wide range of fiber volume fraction, modulus contrasts and two array
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types to demonstrate the latter principle’s advantages. Such comparison is highly relevant and a
major contribution to the literature given the gaining popularity of the recently re-discovered

constrained variational principle.
7.2 Periodic Boundary Conditions

Upon solution of the Navier’s equations in the individual phases of a unit cell, and
enforcing the fiber/matrix interfacial continuity conditions on both tractions and displacements,
the unknown coefficients associated with the displacement field in the matrix phase are

expressed in terms of the unknown fiber coefficients F’,GY” H', which are determined from

the periodic traction and displacement boundary conditions. For the non-separable exterior
problem, the two common ways of implementing periodic boundary conditions involved
collocation and least squares methods. These two approaches, however, are not very stable, and
often require large numbers of harmonics in the displacement field representation, as
demonstrated by Drago (2008). Jirousek (1978) proposed a variational principle based on
minimum potential energy for large-deformation problems solved using a locally-exact approach
in the context of finite-element method. Motivated by this approach, Drago and Pindera (2008)
developed the balanced variational principle for implementation of the periodic boundary
conditions discussed in detail in Chapter 2.

The balanced variational principle is compared with Jirousek’s constrained variational
approach in the sequel to demonstrate the differences and similarities. These features enable
straightforward implementation of the constrained variational principle into the locally-exact
homogenization framework. The numerical results are limited to these two approaches as the
collocation and least squares methods have been extensively discussed by Drago (2008), and
proved to be unstable and inefficient techniques vis-a-vis homogenized moduli and stress
distribution calculations.

Jirousek (1978) had proposed the following augmented functional in developing a

finite-element procedure locally satisfying all field equations

H,= EIV (TZJEU-dV—J'Sl t, u"dS_J'SM t.(u,-u; )dS (7.1)
This functional represents the potential energy (the first two terms) subject to the

displacement constraint (third term) over S, . In the context of the unit cell problem, t° and
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u’ are interpreted as periodic traction and displacement constraints imposed on S, and S, ,

respectively. Thus the additional term appearing in the variational principle represents a

constraint on the periodic displacement boundary conditions over a portion of the RUC

boundary.

Taking the first variation of H ,, and using the fact that our local elasticity solutions satisfy

the stress equilibrium equations a priori, so that
1 1
EJV o,e,dV = EIStiuidS (7.2)

After some manipulation, we obtain the variational principle in the final form

jS[ Su,(t, —t°)dS — jsu St (u, —u’)dS =0 (7.3)

On the other hand, the proposed balanced variational principle is expressed as:
_ 1 0 0
Hyp= | o,8,a7 - jsu tu’ds — js, t’u.dS (7.4)
which leads to the variational statement
0 0y 7¢ —
jS[ Su,(t, —t°)dS + jsu 5t.(u,—u’)dS =0 (7.5)

Implementing periodic boundary conditions in the first variation of the functionals
representing the two variational principles, we obtain the inplane expressions:

(a) Rectangular or parallelogram arrays

iL_{&mm[ws(&) (8.)] 07, (5[4 () -1 (5. Jjas

(7.6)
mZJ' {ou) (s, )+T,(S,) |+ 6us (S)[ T3 () +T5(S,,) [JdS =0
(b) Hexagonal array
.ZJ.S {57;(5:)[”; (Si) :+3 :|+5T :)I:u; (S[)_”; (Si+3 ):I}dS
. (7.7)

mZJ 51y (S))[ 15 (S,)+ T, (S,5) |+ 6us () T3 (S,)+ T3 (S,5) [JdS =0

and for the out-of-plane loading:

(a) Rectangular or parallelogram arrays
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2_'.&5711 (Sl)liull( i 1+2 ]dSmZJ 5” )+T i :IdS 0 (7.8)

(b) Hexagonal array

5T S)—u; (S,;) Sm 5u +7,(S, ;) dS =0 (7.9)
(S:)

Comparing the two variational principles we observe that the differences in the final

CC—”

equations lie in the signs between the terms involving the unit cell boundary summations.
This feature makes it very easy to incorporate the constrained variational principle into the

locally-exact homogenization theory’s framework for comparison with the balanced principle.
7.3 Numerical Results

The main focus of the numerical study is to compare the locally-exact homogenization
theory’s convergence behavior as a function of the number of harmonics in the displacement
field representation based on the implementation of periodic boundary conditions using the
balanced and constrained variational principles. This is carried out by computing the
homogenized engineering moduli and local stress fields as a function of the harmonic number for
unit cells representative of glass/epoxy and graphite/epoxy unidirectional composites, as well as
aluminum with cylindrical porosities. These material systems are characterized by a wide range
of fiber/matrix modulus contrasts, and include both isotropic and transversely isotropic fibers,
see Table 1. In the case of graphite/epoxy, coated fibers are also included in the convergence
study for several coating thicknesses. Unit cells representative of hexagonal and square arrays
are considered with fiber/porosity volume fractions of 0.20, 0.50 and 0.60. Convergence of
homogenized moduli was investigated for unit cells with centered fibers, whereas local stress
fields were computed at selected harmonic numbers for both centered and off-set fibers under
uniaxial loading. The uniaxial loading was achieved by applying the correct ratios of the
homogenized strains that produced the desired non-zero homogenized stress component. In the
case of axial and transverse shear loading, it was sufficient to set the remaining homogenized
strains to zero because of the absence of coupling between normal and shear strains. For loading
by normal strains, the appropriate homogenized strain ratios necessary to achieve the desired
non-zero homogenized stress were obtained from the homogenized Hooke's law.

The homogenized engineering moduli were computed using the elements of the
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homogenized compliance matrix S". This matrix is the inverse of the homogenized stiffness
matrix C~ appearing in the homogenized Hooke’s law in Egs. (2.61)-(2.62). Given that the
elements of S™ are expressed directly in terms of the engineering moduli, and S" =[C"]", the
six and five independent homogenized engineering moduli of square and hexagonal arrays,

* * * *

respectively, E,,, E,, =E,, V,=V;, Vs, G,=G,, G, can readily be calculated. For
instance, E| =1/S",, v\,/E,, =-S,, G, =1/S,, etc.

In the sequel, the presentation of results is organized by material systems characterized by

different fiber/matrix modulus contrasts.

Material E ,(GPa) E, (GPa) U, (GPa) U, (GPa) v,
E-glass fiber 69.0 69.0 28.28 28.28 0.22
3501-6 epoxy 4.2 4.2 1.567 1.567 0.34

Aluminum 69.0 69.0 25.94 25.94 0.33

Porosity 69.0e-6 69.0e-6 25.94e-6 25.94e-6 0.33

Graphite fiber 214 14 7 5.83 0.25
Epoxy 3.5 3.5 1.296 1.296 0.35
Coating 5.25 5.25 2.059 2.059 0.275

Table 7.1 Elastic fiber, coating, and matrix properties employed in the calculations.

7.3.1 Glass/Epoxy Composite

*

We start with the convergence of the three homogenized moduli E,,, G,, and Gl*2 of a

unidirectional glass/epoxy composite containing 0.20 fiber volume fraction. The fiber/matrix
Young's modulus contrast for this system is approximately sixteen and a half. The chosen moduli
are representative of the coupled and uncoupled systems of equations that must be solved to
generate them. Unit cells with centered fibers were used in the computations. As observed in Fig.
7.1, the balanced variational principle produces converged homogenized moduli with as few
harmonics as four and six for the hexagonal and square arrays, respectively. Greater number of
harmonic terms is required for the constrained variational principle, where greater variations in

the homogenized moduli are also observed at low harmonic numbers, in contrast with the

balanced principle. For instance, the homogenized transverse shear modulus G,

L, requires

eleven harmonics for convergence in the case of the hexagonal array.
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Figure 7.1 Convergence of homogenized moduli E,,,G.;,G,, for unidirectional glass/epoxy,

containing 0.20 fiber volume fraction, with the number of harmonics used in the displacement
field representation.
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Figure 7.2 Comparison of o,,(y,,y;)stress fields in unidirectional glass/epoxy containing 0.20
fiber volume fraction for loading by &,, =0.01 generated using 2, 8 and 12 harmonics by
balanced and constrained variational approaches.
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(a) Hexagonal array

(b) Square array

Balanced variational principle Constrained variational principle

Figure 7.3 Comparison of o©,,(y,,y,)stress fields in unidirectional glass/epoxy containing 0.20
fiber volume fraction for loading by £,,=0.01 generated using 9 harmonics by balanced and
constrained variational approaches.
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The observed convergence behavior of the homogenized engineering moduli with
harmonic number may also be used as a rough indicator of the convergence of local stress fields
under uniaxial loading. It is certainly an accurate indicator of the convergence of the local stress
fields to their integral or average values as the elements of the homogenized stiffness matrix may
also be computed from the ratios of the average stresses and one non-zero homogenized strain
component that produces them, rather than the strain concentration matrix approach employed in
the present study. These ratios determine the elements of the column of the homogenized
stiffness matrix that corresponds to the applied homogenized strain component. The results
shown in Fig. 7.1 suggest that the balanced variational principle produces local stresses that
converge to their homogenized values rapidly and generally smoothly with harmonic number.
Moreover, the convergence is not greatly influenced by the fiber's placement which may be
centered (which was used to compute the homogenized engineering moduli in Fig. 7.1), or offset
from the center, nor array type. The point-wise convergence is also generally smooth and
predictable. This is in contrast with the local stress convergence obtained from the constrained
variational principle, which may be erratic and dependent on the fiber placement as demonstrated
below.

Fig. 7.2 illustrates the convergence of the local stress fields o©,,(y,,y,) at the applied
transverse shear strain £,, =0.01 in hexagonal and square unit cells of the glass/epoxy

composite with off-set fibers generated using 2, 8 and 12 harmonics. The notable feature of the
balanced variational principle is the ability to capture the essential details of the stress field with
even two harmonics, which become continuously refined in a smooth fashion with increasing
number of harmonics. For the hexagonal array, the transverse shear stress field generated using 8
harmonics is nearly converged, with 12 harmonics producing additional refinement and
convergence. This contrasts with the constrained variational principle which exhibits slower and
more erratic convergence. Fig. 7.3 highlights this point for both arrays whose local transverse
shear stress fields were generated using 9 harmonics. The stress distributions were generated in
three dimensions to highlight the differences and non-uniform convergence behavior of the
constrained variational principle which produces distributions with large departures from those
generated using 8 and 12 harmonics shown in Fig. 7.2. In contrast, the stress distributions for
both arrays produced using the balanced variational principle shown in Fig. 7.3 conform to those

of Fig. 7.2 with regard to smooth convergence.
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(a) Hexagonal array

(b) Square array

Balanced variational principle Constrained variational principle

Figure 7.4. Comparison of ©,,(»,,y,)stress fields in unidirectional glass/epoxy containing 0.20

fiber volume fraction for loading by &,, =0.01 generated using 9 harmonics by balanced and
constrained variational approaches.
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(b) Square array

Balanced variational principle Constrained variational principle

Figure 7.5 Comparison of o,,(y,,y,)stress fields in unidirectional glass/epoxy containing 0.60
fiber volume fraction for loading by £,,=0.01 generated using 9 harmonics by balanced and
constrained variational approaches.
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Similar observations hold for uniaxial loading along other directions. This is illustrated in

Fig. 7.4 for uniaxial loading by the non-zero homogenized stress &,, at &,, =0.01, with the
remaining normal strains adjusted so as to produce 0&,, = G,, =0. Nine harmonics were used to

generate these stress distributions for both hexagonal and square arrays. Large departures of the
distributions produced by the constrained variational principle from those based on the balanced
principle are observed in the figure, especially around the unit cell boundaries. Examination of
the stress field convergence at 2, 8 and 12 harmonics highlights the erratic convergence behavior
of the constrained variational principle illustrated in Fig. 7.4 in a snapshot.

Increasing the volume fraction of the glass fibers increases the fluctuations observed in the
convergence behavior of the homogenized moduli at low harmonic numbers. The number of
harmonics required for converged homogenized moduli depends on the array type and particular

modulus for both variational principles. For instance, in the case of the balanced variational
principle, 8 harmonics are required for convergence of the transverse Young's modulus E), for
the hexagonal array, with just 4 for the remaining two moduli, whereas all homogenized moduli
for the square array converge at 9 harmonics. The constrained variational principle generally
requires greater number of harmonics for homogenized moduli convergence, which sometimes
exhibits erratic behavior for some moduli. For instance, 15 harmonics are required for converged
transverse Young's modulus E), of the square array.

The above observations carry over to the local stress field convergence. Figure 7.5
compares the local stress fields ©,,(y,,y,) at the applied transverse shear strain €, =0.01 in
hexagonal and square unit cells of the glass/epoxy composite containing 0.60 fiber volume
fraction that were generated using 9 harmonics. Unit cells with centered fibers were used in the
simulations because of the high fiber volume fraction. At this harmonic, stress field convergence
for both hexagonal and square arrays is not achieved using the constrained variational principle,

with the difference relative to the balanced variational principle greater for the square array.
7.3.2 Aluminum/Porosity Composite

Figure 7.6 illustrates the comparison of the homogenized moduli convergence behavior of

aluminum containing 0.20 volume fraction of cylindrical porosities generated using the two

variational principles for the three homogenized moduli E),, G; and Gl*z. For this extreme
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inclusion/matrix modulus contrast, the fluctuations observed in the convergence behavior of the
homogenized moduli at low harmonic numbers are substantially greater relative to the
glass/epoxy composite of the preceding section. The balanced variational principle also produces
faster convergence in this case for both hexagonal and square arrays relative to the constrained
principle. The erratic convergence behavior generated by the constrained variational principle is

observed for both arrays, and is particularly pronounced for the hexagonal array for which 14

. . . . *
harmonics were required to achieve converged homogenized modulus G,, .
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Figure 7.6 Convergence of homogenized moduli E,,,G,,,G,, for aluminum/porosity,

containing 0.20 porosity volume fraction, with the number of harmonics used in the
displacement field representation.
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Figure 7.7 Comparison of ©,,(y,,y;) stress fields in aluminum with cylindrical holes

containing 0.20 porosity volume fraction for loading by &,, =0.01 generated using 9 harmonics
by balanced and constrained variational approaches.
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The local stress distributions ©,,(y,,y,) due to uniaxial loading by &,, at the applied
homogenized strain €, =0.01 that were generated using 9 harmonics are compared in Fig. 7.7

for both arrays. Small differences between the predictions of the balanced and constrained
variational principles, limited to the immediately boundary of the unit cell, are observed for the
hexagonal array as may be inferred from the convergence behavior observed in Fig. 7.6 at this

harmonic number. The balanced variational principle produces converged homogenized modulus

E,, at this harmonic, whereas this modulus obtained from the constrained variational principle
has not fully converged. The differences in the stress distributions ©,,(y,,y,) increase for the
square array, which is consistent with the convergence behavior of E,, observed in Fig. 7.6.

The balanced variational principle produces fully converged E,, at the ninth harmonic in

contrast with the constrained principle.
7.3.3 Graphite/Epoxy Composite with Coated Fibers

Interphases either arise naturally at the fiber/matrix interface during the consolidation
process or are introduced deliberately in the form of coatings to improve fiber adhesion, mitigate
residual stresses or control composite toughness. Hence they have been the subject of extensive
investigations, and will continue to be studied as new material systems are developed since they
control the stress transfer from the matrix phase into the typically stiffer fiber. In light of the
interphases' or coatings' importance, their impact on the convergence of homogenized moduli
and local stress fields is investigated in this section for a graphite/epoxy composite with 0.5 fiber
volume fraction and several coating thicknesses. The fiber/matrix transverse Young's modulus
contrast for this material system is smaller than that of the glass/epoxy composite. The coating
stiffness is 1.5 of the matrix stiffness. Table 7.1 lists the elastic moduli of the constituent phases
for this composite.

The convergence of all the homogenized elastic moduli of hexagonal and square arrays was
investigated as a function of the number of harmonics, and the greatest differences between the

balanced and constrained variational principles were observed for the transverse Young's

modulus E,, . Fig. 7.8 illustrates the comparison of this convergence behavior for both arrays

with three coating thicknesses, ranging from 0.01 to 0.10 of the fiber radius. As observed in all

cases, the homogenized transverse modulus converges to larger values with increasing coating
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Figure 7.8 Convergence of the homogenized transverse Young’s modulus £,

Constrained variational principle

for

unidirectional graphite/epoxy with coated fibers, containing 0.50 fiber volume fraction, with the
number of harmonics used in the displacement field representation.

167



Tpl¥a¥y) Opl¥a¥o)
110 110

(@) 0y,(¥,,3)

Og3(¥p.¥) O3¥.95)

(®) 03(1,,13)

Balanced variational principle Constrained variational principle

Figure 7.9 Comparison of 0©,,(y,,y;)and 0,(»,,y,) stress fields in the square unit cell

representative of unidirectional graphite/epoxy with coated fibers containing 0.50 fiber volume
fraction for loading by £,, =0.01 generated using 14 harmonics by balanced and constrained
variational approaches.
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thickness since the coating stiffness is larger than that of the matrix phase. The convergence is
rapid for the balanced variational principle, and is independent of the coatings thickness both in
the number of harmonics required for convergence and the character of the convergence
behavior with harmonic number. For the hexagonal and square arrays, 9 and 8 harmonics,
respectively, are required for full convergence although acceptable results are obtained with
fewer harmonics because of the well-behaved convergence behavior. In contrast, the constrained
variational principle produces convergence behavior characterized by large departures from the
asymptotic homogenized transverse moduli for small harmonics, and requires greater number of
harmonics for convergence. The hexagonal array yields quicker convergence relative to the
square array. For instance, 12 and 16 harmonics are required for the hexagonal and square array,
respectively, both of which are greater relative to the balanced variational principle.

To demonstrate the quality of the stress fields produced by the balanced variational

principle, we compare the stress distributions ©,,(y,,»;) and o©(y,,»,) due to uniaxial
loading by &,, at the applied homogenized strain £, =0.01 that were generated using 14

harmonics in Fig. 7.9 for the square array. At this harmonic number the homogenized transverse

modulus E,, generated using the balanced variational principle has converged, whereas the

constrained principle requires 16 harmonics. As observed, both stress fields obtained from the
constrained variational principle do not satisfy periodicity conditions along the square unit cell

boundary, in contrast with the balanced principle distributions.
7.4 Summary

The generated results based on the two ways of implementing the periodic boundary
conditions for a wide range of material properties and two array types indicate that all of the
homogenized moduli will converge given a sufficient number of harmonic terms. The
convergence behavior depends on the method of implementing periodic boundary conditions, the
fiber volume fraction and modulus contrast. As observed, the balanced variational principle
provides quicker and more stable homogenized moduli in the investigated range of fiber volume
fractions and material properties. The homogenized moduli predicted by Jirousek’s constrained
principle display large deviations from the converged values for small numbers of harmonics,
which does not occur for the balanced variational principle. Based on the work of Drago (2008)

limited to square unit cells with isotropic elastic moduli of the fiber and matrix phases, weighted
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least squares method requires almost the same number of harmonics as Jirousek’s variational
principle for the convergence of homogenized moduli, and collocation requires the largest
number of all four methods.

The convergence of homogenized moduli for hexagonal array usually consumes more
harmonic terms than square array because one more set of periodic boundary conditions need to
be satisfied. In addition, it takes more harmonic terms for composites with greater modulus
contrast. For the graphite/epoxy and glass epoxy composites, 8 harmonics were sufficient to
achieve convergence, whereas porous aluminum required 10 when the balanced variational
principle was employed. In contrast, more harmonic terms are needed to generate converged
homogenized moduli when Jirousek’s constrained variational approach is employed. This is

particularly evident for the Aluminum/Porosity case shown in Fig. 7.6.
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Chapter 8

Summary and Conclusions

8.1 Summary of Accomplishments

Following and expanding on the work of Drago and Pindera (2008), the contribution of this
dissertation is the construction of stable and quickly converging elasticity-based locally exact

homogenization theory which may be used to:

® cfficiently investigate the elastic and viscoelastic response of unidirectional
composite materials with rectangular, square, hexagonal and tetragonal periodic
microstructures comprised of isotropic, transversely isotropic, and (cylindrically or
circumferentially) orthotropic phase constituents, and third phases such as coatings

or interphases.

The advantage of this homogenization theory, compared to other micromechanics models
or homogenization theories, is rooted in the balanced variational principle which plays a key role
in the implementation of non-separable periodic boundary conditions, leading to
quickly-converging homogenized moduli and stable local stress distributions. This variational
principle, originally proposed by Drago and Pindera (2008) for rectangular unit cell architectures,
was extended herein to hexagonal and tetragonal unit cell architectures and demonstrated to
produce quickly converging homogenized moduli and local stress fields regardless of phase
moduli contrast, orthotropy type or viscoelasticity effects.

The framework of the locally-exact homogenization theory was developed in two steps. In
the first step, the equilibrium equations expressed in terms of displacements, or Navier’s
equations, were solved exactly in the fiber, interface and matrix phases using Fourier series

representations of the respective displacement fields. The continuity conditions between
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fiber/interphase and interphase/matrix phases, respectively, were then applied one harmonic at a
time in the cylindrical coordinate system wherein the problem is separable. This problem is
called the interior unit cell problem. The exterior problem, which involves the satisfaction of
non-separable boundary conditions in the Cartesian coordinate system for the considered array
architectures, and which cannot be solved sequentially one harmonic at a time, is efficiently
solved via the balanced variational principle implemented for the different array types. Finally,
the homogenized constitutive equations are established to generate homogenized moduli of
unidirectional composites which depend on the type of microstructures and material
combinations.

The constructed theory has been validated upon comparison with known elasticity
solutions and micromechanics models. These include the solution to the Eshelby problem which
was used as a benchmark to demonstrate the robustness and stability of the developed unit cell
solution approach, and the FVDAM theory which produces high-fidelity results comparable to
the finite-element method. Comparison with the classical CCA and Mori-Tanaka
micromechanics models establishes applicability and limitations of these approaches based on
simplified geometric representation of composite material microstructures. Selected numerical
results are generated to provide insight into the efficiency and robustness of the theory. To
demonstrate its superior advantage, the key component of the theory, namely the balanced
variational principle, is compared with recently adopted approaches based on a derivative
variational principle proposed originally in the context of locally-exact finite-element solutions.
Finally, the elastic problem has been extended to viscoelastic domain via the elastic-viscoelastic
correspondence principle and employed to investigate certain undocumented features of

time-dependent response of polymeric matrix composites.

The main contributions of this dissertation may be summarized as follows:

® The constructed locally exact homogenization theory is the only elasticity-based theory of
this type with the aforementioned capabilities. These capabilities are applicable in a wide
range of fiber volume fractions, constituent phase modulus contrasts and three different
array types. The ability to investigate elastic and viscoelastic response of unidirectional

composites with cylindrically (both radially and circumferentially) orthotropic fibers,
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such as graphite or silicon carbide, is a significant achievement given the singular nature
of stress fields in this class of fibers. The problem of singular stress fields in cylindrically
orthotropic fibers has been discussed but sidestepped using a replacement scheme based
on equivalent transversely isotropic moduli. Another approach is the use of small hollow
or transversely isotropic cores at the origin. Herein, this problem is tackled directly by
employing orthotropic fiber properties in the homogenization and local stress calculation
procedures alike within a unified framework, thereby enabling assessment of the proposed
replacement schemes. Homogenization problems containing singularities cannot be easily
handled using numerical techniques in contrast with the developed elasticity approach
which produces exact expressions for the phase average strains and hence homogenized
moduli.

The developed theoretical framework which admits the presence of third phases in the
form of interfaces or interphases has also made possible contributions to this important
area of composite mechanics which continues to be explored. Interfaces play a key role in
stress transfer between fiber and matrix phases and in protecting fibers from fractures.
Numerically based analyses of interfaces using the finite-element approach present
convergence issues that must be overcome, which become increasingly more difficult
with decreasing interface thickness. The demonstration that the convergence of the
locally-exact homogenization theory does not deteriorate (that is, does not require more
harmonics terms) and remains stable with decreasing interface thickness provides the
composite mechanics and materials science communities with a powerful tool to assess
the important effect of interfaces on both the homogenized moduli and local stress fields.
In this dissertation, the generated homogenized moduli of composites with different
interface geometries and properties have been validated against other numerical and
analytically based techniques such as the PMH and three-phase models. Moreover, the
elasticity framework enabled efficient parametric studies aimed at investigating the effect
of interface or coating stiffness and thickness on both the homogenized moduli and stress
distributions. Because of the theory’s stability, a simple manipulation of parameters
enabled the investigation of homogenized moduli of atomic layer-deposited alumina

nanotubes with engineered multifunctional properties, revealing new effects.
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® The key pillar supporting the success of the locally exact homogenization theory is the
manner of implementing periodic boundary conditions based on a balanced variational
principle wherein both tractions and displacements play equivalent roles. This is in
contrast with the standard variational approaches based on the minimum potential energy
theorem currently implemented in several elasticity-based homogenization techniques.
The balanced variational principle is a derivative of a minimum potential energy approach
proposed by Jirousek some time ago in the context finite-element based exact
displacement field representation. This principle has been recently re-discovered and
implemented into several elasticity-based homogenization schemes. The final expressions
for the boundary conditions are almost exactly the same in the two approaches and differ
only in the “+” signs. In this dissertation, homogenization and local stress fields results
generated using both approaches are compared within the same framework for three
material systems with different elastic moduli contrasts, namely: graphite/epoxy,
glass/epoxy, and aluminum porosity. It is demonstrated that the balanced variational
principle exhibits superior convergence of both homogenized moduli and local stress
fields with increasing number of harmonics, that is better stability and quicker
convergence are observed relative to Jirousek’s approach.

® The eclastic problem has been extended to the viscoelastic domain for unidirectional
composites by including the time-dependent response of polymeric matrix phase. The
elastic-viscoelastic correspondence principle is employed to transform the unknown
variables in the elastic solution of the unit cell problem to the Laplace transform, with the
elastic moduli replaced by their Carson transforms. The Zakian inversion method to the
time domain is employed, proved to be a superior and more stable inversion technique
than the Schapery method, to efficiently calculate the homogenized moduli and local
stress fields in the time domain. Two representations are available for modeling the
isotropic matrix response, namely the power-law and the multi-parameter models
comprised of combinations of Reuss and Voigt spring and dashpot elements. In addition,
two popular adopted assumptions are employed to characterize the matrix response
namely: constant Poisson’s ratio and constant bulk modulus. The theory is successfully
compared with alternative homogenization approaches and experimental data, and

employed to study the undocumented effects of array type on the creep compliance
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functions, demonstrating substantial evolving differences with time for some functions.
Lastly, the theory is employed to study the transmission of phase constitutive behavior to
the macroscale in support of the construction of viscoelastic functions from experimental
data.

The accuracy and stability of the locally exact theory renders it an excellent standard for
comparison with other models, both classical and numerical. Herein, the results generated
using two widely-employed classical models, CCA and Mori-Tanaka models, have been
compared with the locally exact predictions for both elastic and viscoelastic problems.
Under axisymmetric and axial shear loading in the elastic domain, small differences are
observed between the baseline results of LEHT and the two classical models. The
differences are substantially greater under transverse normal and shear loading. For
instance, the transverse shear modulus predicted by LEHT lies between the upper and
lower bounds of the CCA models, while the Mori-Tanaka result is much closer to the
CCA’s lower bound. The stress distributions of generated by LEHT for hexagonal arrays
and CCA are very similar for small or medium fiber volume fractions; for larger fiber
volume fraction microstructures, however, the CCA model cannot capture the stress
fluctuations in the fiber phase because of the absence of adjacent fiber interactions.
Similar differences occur in viscoelastic problems for the types of assumptions on the
matrix time-dependent response. The main conclusions from this comparison are that the
CCA model provides accurate homogenized moduli and acceptably accurate stress
distributions despite inability to predict exactly the missing fifth modulus. The
Mori-Tanaka predictions of the homogenized moduli may be generated efficiently with
comparative accuracy even though the assumption is based on the average stress in the

matrix phase.

8.2 Conclusions

To overcome the shortcomings of traditional micromechanics models based on simplified

geometries of actual composite microstructures, and numerical homogenization approaches that

utilize popular finite-element commercial packages, a new locally exact homogenization theory

has been developed to very efficiently and accurately generate both homogenized moduli and

local stress fields of a wide class of unidirectional composites in the elastic and viscoelastic
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domains. The shortcomings of the traditional micromechanics models include the inability to
generate accurately all the necessary homogenized moduli and local stress fields due to the
simplified geometric representations and stress field assumptions necessary to obtain
closed-form analytical solutions. Conversely, numerical models involve tedious mesh generation,
time-consuming specification of periodic boundary conditions and also suffer from convergence
issues when regions of very small dimensions (such as fiber/matrix interfaces) are present,
requiring very refined meshes. Moreover, unlike the locally exact homogenization theory, both
classical and numerical approaches cannot readily accommodate certain types of phase
anisotropy such as cylindrical orthotropy exhibited by graphite fibers.

In contrast, the developed locally exact homogenization theory provides both accurate
homogenized moduli and stable stress distributions, which have been validated against many
other analytical and numerical techniques. A key feature of the theory is its efficiency and
stability in generating homogenized moduli and stress fields with very simple input data
construction readily accessible to professionals and non-professionals alike. Hence it is expected
that this approach will quickly gain popularity and become not only a design and research tool
used by diverse communities involved in materials characterization, design and development, but
also a comparison standard for bench-mark purposes.

The efficient and robust computational tool developed in this dissertation can be easily
implemented for other analytical purposes, which cannot be easily accomplished using other
methods. For instance, optimization of material architectures is expected to be much faster, and
multi-scale modeling capability easier to implement. It is also expected that the incorporation of
multi-physics phenomena of currently intense interest to the materials science community, such
as surface energy effects for nanoscale simulations, will be facilitated by the developed
analytical framework. These additional features are left to future work that is discussed in the

next section.
8.3 Future work

The extensions based on the present work are listed as follows:

® Optimization. The homogenized response of unidirectional composites can be obtained

through experimental characterization at the macroscale, but it is still a challenging
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problem to predict the interaction between fiber/matrix and fiber/coating/matrix at the
microscale due to lack of available data. Understanding this interaction is necessary for
progress in the simulation of damage evolution in the form of matrix cracking and
interphase debonding, leading to the development of tough composites. In addition, some
of the engineering moduli still cannot be measured directly, such as the properties of the
coating/interphase region, or transverse normal and shear moduli of fibers such as
graphite and Kevlar because of the small interphase or fiber dimensions. Thus, a reliable
optimization-based inverse method is necessary to provide insight into these properties,
avoiding laborious and time-consuming experimentation. Particle swarm optimization has
been shown to be a robust tool under diverse circumstances, which can be employed in
conjunction with LEHT to predict the material properties that are difficult to measure
directly, given available experimental data at the macroscale.

From “millimeter” to “nanometer”. The surface energy effect is one of the dominant
factors for consideration when material dimensions are on the nanometer scale, which is
the case in composite nanomaterials. Due to their wide applications in today’s high-tech
industry, it is important to use efficient tools to study thermos-mechanical behavior of
such nanoscale composite materials. One of the applications in this dissertation has
illustrated the theory’s capability of calculating the homogenized moduli of an epoxy
resin reinforced by atomic layer deposited (ALD) alumina nanotubes, which have been
successfully fabricated in the laboratory. However, the surface energy was neglected
because it was not significant in the chosen example. This effect may be incorporated in
the future. Moreover, extension of the theory to include calculation of thermal expansion
and conductivity tensors should be considered in future work as certain nanoscale
materials (carbon nanotubes) are widely employed in the micro-electronics industry,
necessitating inclusion of multi-physics characteristics.

Multiscale modeling. This topic is an important focus of modern mechanics, and is
rapidly gaining popularity because of the current efforts to understand how the
underpinning deformation mechanisms at different scales affect homogenized response.
For instance, researchers in the area of bone mechanics will benefit from efficient
homogenization tools that allow them to gain insight into stress transfer mechanisms

through various scales (from the nanometeric scale up to the organ scale). Two of the
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applications presented in Chapter #4, which involve unidirectional composite laminates
and cylinders, have demonstrated the ease of LEHT implementation into the multiscale
modeling process. Moreover, demonstration of multiscale modeling capability involving

viscoelastic response will elevate the theory to a new level and encourage widespread use.
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Appendix

A. Expressions of Stresses in the Matrix Phase in Cartesian Coordinate

Through the transformation between polar coordinate and Cartesian coordinate, the inplane
stress distributions for the matrix phase are expressed for the convenience of applying periodic

boundary conditions:

G, =2kV & +(k, +u,)E, +(k — 1 )&, +2k F, —2u F, 7 cos26

22 T A711 " 01

o 4
+3) Fnjép""_l [P, cosnfcos’6+S, cosnfsin’@— R sinnBsin26]

n=1 j=1

o 4
+3) G,E" v [P, sinnfcos’ @+, sinnBsin’ 6+ R cosnfsin26]

n=1 j=1

(A1)
0,,=2kV € +(k,—u)e,+(k, + U, )e, +2k F + 2,UTE)2§_2 cos260
+ gg Eyép""_l[lfy cosnfsin’ @+ S, cosnfcos’ @+ R sinnbsin26]
+ gg G,E" ”"_l[PW. sinn@sin’ 0 +S,_sinnfcos’ 6~ R cosnfsin26]
(A.2)
0, =2, &, 2/ F,E”sin20
+ gg Eljép”f_l[lqu cosnfsinfcosd— S, cosnBsinfcosd + R sinnbcos20]
o 4
+ ,12:1' 12_14 Gm_ﬁp’”'_l[Pnj sinn0sinf cosf — S, sinn0sinf cosf — R, cos n6cos20]
(A.3)
0, =(E, +4kv’)-€ +2kv -E,+2kV -E,+4kV F,
+ ggszVA[pm +(1+np, )]ﬁp’?f_l[Fnj cosnf+G, sinnd]
(A.4)

where p, are the eigenvalues that expressed in Chapter 2, P, = (k, +u,)p,, +(k; — )1 +nf,),
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Sﬂj = (kr —Hy )pnj + (kT + Uy )(1 + nﬁnj) and an = Uy [(pnj - l)ﬁnj - I’l] .

The out-of-plane stress expressions for the matrix phase are
O, =2/,

+u, {Z nH &' (cosnfcos O +sin n@sin 6) + z nH &' (sin né cos @ —cos nfsin )

n=1 n=1

=Y nH, & (cos nfcos 6 —sin nfsin @) — Y nH,,& "' (sin nf cos @ +cos nfsin 6)}

n=l1 n=1

(A.5)
0, =2U,E;,

+ U, {2 nH & (cos n@sin @ —sin nfcos 0) + 2 nH ,&" (sin n@sin @ + cos n cos )

n=1 n=1

- Z nH ™" (cos n@sin @+ sin nf cos &) — Z nH & " (sinn@sin @ —cos né cos )}

n=l n=1

(A.6)

B. Boundary Condition Implementation — Balanced Variational Principle
The periodic boundary conditions are solved by first assuming

_1 0 0 —
H, ,= EJV o,,dV — Js,( tu’dsS — Js, t'udS=0 (B.1)
where t=t’ and u=u' are periodic traction and displacement constraints imposed on S, and

S, respectively. Taking the first variation of H

»_p» and using the fact that the interior

elasticity solution satisfies the stress equilibrium equations a priori, so that

1 1
> [ o,e,av = > [ taas (B.2)

gt

The variational principle is obtained in the final form as
0 0y 7¢ —
Js, Su, (t —t°)dS + jsu St.(u —u’)dS =0 (B.3)
The reduced periodicity conditions can be expressed for arrays with different geometries:
Hexagonal array
w (S) =u/(S,), u(S,)=u/(S5), u/(Sy)=ui(S,)

1,(8,) =—1,(S,), 1,(S,) =—1,(Ss), #,(S;)=—1,(Ss)
and, rectangular or parallelogram array

(B.4)
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u:(Sl) = uz,(SS)’ ”,I(Sz) = u:(S4)

1(8) =—1(S;), 1,(S,)=-1,(S,)
where i=1,2,3. By implementing the reduced periodicity conditions Egs. (B.4-5) for the

(B.5)

inplane problem in the first variation of the functional, we obtain

Hexagonal array

Z-[S,- {5t2 (Sz)[u; (Sz) _u; (Si+3)] + 5t3 (Sz)[u;(Sl) _u;(SH.g.)]}dS

6 (B.6)
+Y L_ {0uy (SIE,(S) +1,(S, )]+ Sus (S[E(S) +5(S,5)1}dS =0
Rectangular or palr:efllelogram array
> .[S, {06, (SIS (S,) —uy (S,.,)]+ 0t (SO (S,) —145(S,,,) 1S
e (B.7)

4
+) L. {0y (S)[1,(S) +1,(S. )1+ G5 (S)[55(S,) +1,(S,,)1}dS =0
i=3
The respective expressions for the out-of-plane problem are

Hexagonal array

3 6
D L. {64,(S)[u(S,) —u[(S,)dS + Y Suf(S)[1,(S,) +1,(S,;)]}dS =0 (B.8)
i=1 i=4
Rectangular or parallelogram array

3 [ {01 (S)(S)~(S, S + 2SS (S)+1,(SNAS =0 (B)

i=3
where ¢ =o,n;,and n; are the unit normals for every side of the microstructures, each type of
array has different unit normals due to different geometry.
Hexagonal array
S in,=~3/2,n,=1/2; S,:n,=0,n,=1
S, in, =—3/2,n,=1/2; S, :n, =—3/2,n,=—1/2 (B.10)

Sszn2=0,n3=—l; S6:n2:\/§/2’n3:—1/2
Rectangular array

S :in,=1,n,=0; S,:n,=0,n,=1

(B.11)
S,:n,=-1,n,=0;, §,:n,=0,n, =-1

Parallelogram array
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S, :n, :sin.(0,113 =—cose; S,:n,=0,n,=1 (B.12)
S, :n, =—sin@,n, =cose;, §,:n,=0,n,=-1

Reorganizing the integrals with the Cauchy’s stress tensor relationship yields explicit
expressions for the boundary conditions with stresses and displacement fields, the integrals in the

equations can be evaluated numerically by using Gaussian quadrature rule.

Hexagonal array (Inplane)
[ V380, (8))+ 80, (8, 11245 (S,) 3 (S, )]
+jS: [V356,,(S,) + 804, (S (S,) — 16 (S,)]dx
+[ 80, (S,)05(S,) =y (S + [ 807, (,)[15(S,) ~ i (S e
+], V380, (8,)+ 607, (S,)][13(S,) ~15 (5, e
+] [V360,,(8,) + 80,5 (8111 (S,) ~ 1 (S )
+[ S1(S,)[V30,,(8,) = 0, () +3/300,(S)) + 0, (8
+JS: Sy (S,)[~V3025(5,) = 033(8.) #3306, (8)) + 07, (S Jx
+]| O (S)[=005(85) + 05 (S,)ldx + [ Gl (S)[-03(S,) +07,(S,)]dx
+ BU(SINBOL(S) =045 (S) V30,5 (S,) +0,5 (S,

[ 6 (S)N30,(S) =035 () =V3034(S,) + 04, (S)dx = 0

(B.13)
Hexagonal array (Out-of-plane):
[ [V360,,(5,) + 80, (SN (S) ~u{(S)ldx + [ 80,,(S)[u(S,) ~u](S,) ]

+], [=V360,,(S,)+ 80, (S,)][u(S,) = /(S )

+js4 6u(S)[30,,(S,) — 0,5(S,) +/30,,(S,) + 0,5 (S, )ldx

+| Sul(S)I-015(S,) +0,5(S,)ldx

+JS; Sl (S,)[N30,,(S)) = 015(S;) =30,,(8,) +0,(S,)]dx =0

(B.14)
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Rectangular array (Inplane)
[}, 60 (DI (S) (S )ldy + [ 80, (S)[u5(S,) 1 (S, )y
+[ 80, (SIS~ (Sl + | 807,,(S,)[5(S,) =3 (S, e
+ 8 (S)[0(8) = 0 (S)My + | S(S)[02(5) = 02 (S,)dy

+], B (S)[05(8,) =0, (Sl + [ l(8,)[035(5,) = 04, (S,))x =0

(B.15)
Rectangular array (Out-of-plane)
[ 30181 (S)) =l (Sl + [ 861, (S)[(S,) (S, e
+[ 8u{(S,)0,,(S) =015 (S)Idv+ [ Sui(S)I0,,(S,) = 014(S,)]dx =0
(B.16)

Parallelogram array (Inplane)
jsl [sin 950, (S,) — cos P80, (S (S,) — 1t (S;) W1 + tan> @dx
+_[SI [sin ¢S50, (S,) — cos Pdo-,; (S5 (S, ) — s (S;) /1 + tan dx
+] 80,(S)[u3(8,) =1 (S + [ 807, (S)[u (8,) =16 (S, )
+JS3 Ou (S,)[—sin 9o, (S,) +cos 9o, (S,) +sin 90, (S,) — cos Yo, (S,) /1 + tan® pdx
+J53 Ou’(S,)[—sin 9o, (S,) +cos PO, (S,) +sin 9o, (S,) — cos Po,(S,)]y/1 + tan® pdx

+[ UL (S[=0(S) + 0 (S)Idx+ [ S1l(S,) =05 (S,) + 0 (5,)]dx =0
(B.17)

Parallelogram array (Out-of-plane)
_[SI [sin S0, (S,) — cos oo, (S)[u](S,) —u(S;) 1+ tan® pdx
+] 80,,(5,)[{(8,) ~u{(S,)ldx
+JS3 Oul(S,)[—sin 9o, (S,) +cos g0, (S,) +sin go,, (S,) — cos po,,(S,)|\/1+ tan” pdx

+JS ou/(S,)[-0;(S,)+0,5(S,)]dx=0
(B.18)
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