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Abstract 

 

This dissertation describes the construction, validation and applications of a stable and 

quickly converging elasticity-based locally exact homogenization theory for unidirectionally-

reinforced composites. Elasticity-based homogenization approaches offer a number of 

advantages relative to finite-element, finite-difference or finite-volume homogenization schemes, 

including extremely fast input data construction, ability to investigate composites with very thin 

coatings or interphases without experiencing convergence issues common to finite-element 

analyses, and ability to efficiently accommodate phases with cylindrically orthotropic 

constituents without much effort. The constructed homogenization theory enables efficient 

analysis of the elastic and viscoelastic response of unidirectional composite materials with 

rectangular, square, hexagonal and tetragonal periodic microstructures comprised of isotropic, 

transversely isotropic, and (cylindrically or circumferentially) orthotropic phase constituents, and 

third phases such as coatings or interphases. 

The success of this homogenization theory is rooted in the balanced variational principle 

which plays a key role in the implementation of non-separable periodic boundary conditions, 

leading to quickly-converging homogenized moduli and stable local stress distributions. This 

variational principle, originally proposed by Drago and Pindera (2008) for rectangular unit cell 

architectures, was extended herein to hexagonal and tetragonal unit cells and demonstrated to 

produce quickly converging homogenized moduli and local stress fields regardless of phase 

modulus contrast, orthotropy type or viscoelasticity effects. 

The constructed homogenization theory has been validated upon comparison with known 

elasticity solutions and micromechanics models. These include the solution to the Eshelby 

problem which was used as a benchmark to demonstrate the robustness and stability of the 

developed unit cell solution approach, and the finite volume direct averaging micromechanics 

(FVDAM) theory which produces high-fidelity results comparable to the finite-element method. 

Comparison with the classical composite cylinder assemblage (CCA) and Mori-Tanaka 

micromechanics models establishes applicability and limitations of these approaches based on 

simplified geometric representation of composite material microstructures. Selected numerical 

results are generated to provide insight into the efficiency and robustness of the theory. To 



demonstrate its advantage, the key component of the theory, namely the balanced variational 

principle, is compared with recently adopted approaches based on a derivative variational 

principle proposed originally in the context of locally-exact finite-element solutions. Finally, the 

elastic problem has been extended to viscoelastic domain via the elastic-viscoelastic 

correspondence principle, validated at the homogenized and local field levels at different times, 

and employed to investigate thus-far undocumented features of time-dependent response of 

polymeric matrix composites. The significant findings include the effect of array type on the 

creep response which increases dramatically with increasing time for certain loading directions. 

The theory’s utility in support of constructing homogenized response functions of polymeric 

matrix composites from experimental data was also demonstrated.    

Because of its analytical nature, the constructed theory may easily be incorporated into 

larger structural analysis algorithms in a multi-scale computational setting. This capability is 

illustrated herein in the context of laminated plate and functionally graded tube analyses, wherein 

local homogenized elastic moduli of the investigated structural components are generated on the 

fly for use in the governing equations at the structural level. 

The theory’s efficiency and stability in generating homogenized moduli and stress fields 

with very simple input data construction make it readily accessible to professionals and non-

professionals alike. Hence it is expected that this approach will quickly gain popularity and 

become not only a design and research tool used by diverse communities involved in materials 

characterization, design and development, but also a comparison standard for bench mark 

purposes.
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Chapter 1 

Introduction 

1.1  Motivation 

All solid materials can be treated as composite materials if the scale is small enough. A 

composite material is a material made from two or more constituent phases with significantly 

different physical or chemical properties that, when combined, produce a material with 

characteristics different from the individual components. The definition cited from Wikipedia 

suggests the reason why composite materials experience ever increasing applications: they may 

be lighter or cheaper than the individual constituents, but the combination might be stronger or 

more durable. 

The history of man-made composite materials may be traced to biblical times when straw 

was added to clay to make more durable bricks. In the 12th century ancient Mongols developed 

more advanced weapons, which were smaller and more powerful archery bows in their days, by 

combining cattle tendons, horns, bamboo and silk bonded with natural pine resin. The most 

common applications of composite materials in recent human history were also in the military 

arena. During World War I (WWI), military aircraft benefited greatly from composite wing skins 

made of laminated wood, which made the wing frames lighter and stronger. Metal matrix 

composites (MMCs) based on boron fibers were developed for modern military aircraft in the 

1960’s and 1970’s for use in control surfaces such as the vertical stabilizer on the F-15 Eagle jet 

fighter. Introduction of new fibers developed in research labs, such as carbon, graphite and 

Kevlar, and subsequent rapid growth of the fiber-reinforced plastics industry, stimulated new 

demand from markets across diverse areas, including commercial aircraft, civil infrastructure, 

automotive and electrical engineering industries, as well as biomedical engineering. Composite 

materials, in the long run, are playing and will play increasingly greater and more significant 

roles. Taking Boeing 787 as an example, fifty percent of the airplane body is comprised of 
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composite materials, whereas the dominant material used in Boeing 747 and 777 airplanes is 

aluminum. Different forms of composite materials such as particle-reinforced composites, 

fiber-reinforced composites and their laminates, woven composites, etc., are usually tailored to 

different applications based on structural requirements.  

Two basic mechanical properties are needed in the analysis and design of structural 

components that utilize combinations of diverse material systems, namely: (1) thermo-elastic 

properties and strength; and (2) time-dependent response. There are two approaches in 

characterizing these properties, one of which is experimental characterization aimed at specific 

composites. The other approach, which is broadly called micromechanics or homogenization, 

plays the role of a virtual laboratory which is used to identify potential material systems for 

given applications through a validated analysis procedure. This approach eliminates the 

trial-and-error procedure often used in developing new materials, and the associated laborious 

and expensive preparation and manufacturing steps. Micromechanics involves analysis of 

composite or heterogeneous media with the aim of predicting average or macroscopic behavior 

on the basis of geometric arrangement and mechanical properties of individual phases. For 

materials with periodic (repeating) microstructures, it is also called homogenization. 

Micromechanics or homogenization techniques aid in the rapid identification of material systems 

for specific structural application, as well as in the development of new materials.  

A variety of micromechanical models have been developed by researchers and scientists 

during the past fifty years. This development continues and is motivated by advances in the 

computational technology. In the next section, three conceptual categories of micromechanics 

and homogenization techniques are reviewed and discussed with the aim of providing motivation 

for the developments and contributions described in this dissertation. 

1.2  Literature Review  

Micromechanics theories of heterogeneous materials can be separated into three categories: 

1) microstructural detail-free strategies; 2) theories for statistically homogeneous composites 

based on the representative volume element (RVE) concept; and 3) theories developed for 

periodic composites based on the repeating unit cell (RUC) concept, see Fig. 1.1, in which (b) 

and (c) are referred to Pindera et al. (2009).   

The key step in a micromechanical or homogenization procedure is to determine Hill’s 
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strain (or stress) concentration tensors – ( )kA , which relate the average strains (or stresses) in 

each individual phase to the average or macroscopic strain imposed on the heterogeneous 

medium, Hill (1963), through so-called localization relations, which can be expressed as  

 ( ) ( )k kε ε= A  (1.1) 

in which k represents the kth phase, e.g. fiber, coating, matrix.   

These local concentration tensor are employed in the definition of the average stress given 

in terms of the phases averages, expressed in terms of the phase average strains through Hooke’s 

law, to obtain the homogenized stiffness matrix for the composite shown as follows 

 

   
C* = vkC

(k )A(k )

k=1

N

∑  (1.2) 

in terms of the elastic moduli ( )kC  and phase volume fractions  vk , respectively. This concept 

will percolate through this entire dissertation. 

 

 

 
 

(a) (b) 

 
(c) 

Figure 1.1 Three geometric representations of a material microstructure: (a) detailed-free 
microstructure (Three-phase model); (b) statistically homogeneous microstructure characterized 
by an RVE; (c) periodic microstructure characterized by an RUC. 
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1.2.1 Microstructure Detail-Free Estimates  

The early micromechanics calculations of average moduli of composite materials are based 

on Voigt (Voigt, 1889) and Reuss (Reuss, 1929) estimates which were established for uniform 

dispersions of isotropic constituents or phases. For the Voigt estimate, the strain concentration 

tensors for the matrix and inclusion phases are taken as unity; whereas for the Reuss estimate the 

stress concentration tensors for the matrix and inclusion phases are taken as unity. These 

estimates originally were used for the predictions of homogenized moduli of polycrystalline 

metals wherein the modulus contrast between individual grains was small. Hence poor results are 

obtained for composite materials for which the phase moduli differ by more than a factor of two.  

The Reuss and Voigt estimates provided the foundation for the rule-of-mixtures formula, 

which were applied preferentially to mimic the oriented microstructures of 

unidirectionally-reinforced composites. For instance, the average strain in the fiber and matrix 

phases was taken to be the same as that of the composite along the fiber direction, while 

transverse to the fiber direction the average stresses were equal. Hence an accurate estimate of 

the Young’s modulus along the fiber direction may be obtained due to the correct kinematic 

constraint, but the remaining moduli associated with transverse normal and shear loading, as well 

as with axial shear loading, are typically inaccurate especially for large mismatch of fiber/matrix 

moduli. 

In the 1950’s, the self-consistent scheme (Hershey, 1954; Kröner, 1958) was proposed as 

an alternative to Voigt and Reuss estimates to calculate stress or strain concentration matrices in 

polycrystalline metals, with a single anisotropic grain playing the role of an inclusion phase 

embedded in a homogenized medium of sought properties. An orientational averaging over all 

grains of a polycrystal provided implicit self-consistent relations for the unknown homogenized 

moduli.  

This scheme was subsequently adopted to the calculation of average properties of 

particulate and unidirectionally-reinforced composites by assuming that the concentration 

matrices calculated for a single fiber were the same as those of all fibers, (Hill, 1963). This 

scheme was shown to suffer from several shortcomings as it did not explicitly take into account 

the presence of the matrix phase around a fiber inclusion. This shortcoming was overcome by the 

method proposed by Mori and Tanaka (Mori and Tanaka, 1973), who provided a different 
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interpretation of the embedding approach based on the average stress in the matrix phase 

determined from the solution of an Eshelby-type problem for a two-phase composite with 

isotropic or transversely isotropic macroscopic moduli. Some problems with this approach 

remained, however, including: 1) the matrix phase was taken into account, but only in an average 

sense; 2) the loss of homogenized stiffness matrix symmetry would occur under certain 

circumstances. In order to overcome these shortcomings the three-phase model was proposed by 

Christensen and Lo (1979), wherein a composite fiber/matrix inclusion was embedded in an 

equivalent homogenized medium. 

The above approaches do not take into account the actual microstructural details of 

heterogeneous materials, and may be viewed as vehicles for calculating Hill’s stress or strain 

concentration matrices necessary for the determination of the homogenized moduli. More 

detailed information on the homogenized moduli and local stress fields that account explicitly for 

the microstructural details may be obtained using microstructural analysis of heterogeneous 

materials based on two different concepts of material microstructures: representative volume 

element (RVE) and repeating unit cell (RUC), as discussed by Drago and Pindera (2007). 

Representative volume element is the smallest subvolume of the statistically homogeneous 

microstructure that contains the same phase volume fractions and statistical distribution as the 

material-at-large, and also responds in a manner identical to that of the entire assemblage under 

either homogeneous displacement or homogeneous traction boundary conditions. Repeating unit 

cell is the smallest element of periodic microstructure that serves as the basic building block for 

the material through replication regardless of its content. Thus, the response of the entire array 

under macroscopically uniform loading is identical to that of an arbitrary RUC subjected to the 

same loading. 

1.2.2 RVE-Based Approaches 

Composite spherical assemblage (CSA) and Composite cylinder assemblage (CCA) 

(Hashin, 1962; Hashin and Rosen, 1964) were the earliest and most classic geometric 

RVE-based models that provided closed-form expressions for the average or effective moduli. 

The composite was viewed as an assemblage of inclusion/matrix spheres or fiber/matrix 

cylinders of varying sizes but fixed radii ratio of fiber/matrix. This allowed the entire space to be 

completely filled by such composite inclusions while maintaining a fixed inclusion volume 

content. Taking the CCA model as an example, for axisymmetric and longitudinal shear loading, 
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exact expressions for the moduli are obtained by applying continuity conditions and boundary 

conditions of displacements and stresses in cylindrical coordinates. However, the homogeneous 

boundary condition equivalence no longer holds under transverse normal and shear loading, only 

bounds on the moduli may be obtained by applying a variational principle because a single 

composite cylinder ceases to respond as an RVE. Similar situation occurs in the case of the 

three-dimensional counterpart, the CSA model. Furthermore, because an isolated composite 

sphere or cylinder was considered in the calculation of effective moduli, direct particle-particle 

interaction remained absent in this approach.  

The CCA model was extended by Pindera and co-workers, (Pindera et al., 1993a,b), by 

developing solutions to a multiple concentric cylinder of arbitrarily layered geometry with 

elastic-plastic phases subjected to axisymmetric and axial shear loading by a combination of a 

uniform temperature change, axial deformation and externally applied transverse pressure. This 

model was employed to study the evolution of residual stresses in metal matrix composites, 

taking into account the complex microstructures of the titanium matrix in SiC/Ti composites, and 

engineered interfaces introduced to mitigate excessively high residual stresses. 

The models mentioned above are easy-to-use and produce comparatively accurate 

predictions of the homogenized moduli (such as the CCA model), as discussed in more details in 

this dissertation (Chapter #6). Hence they continue to be employed by the composite mechanics 

and materials communities. However, because they are based in simple geometric 

representations of a composite material, they do not always capture local stress fields with high 

accuracy because of the absence of fiber-fiber interactions that occur in real microstructures.  

Moreover, the CCA model is limited to transversely isotropic composites due to its geometric 

representation of the composite microstructure. The above limitations have given rise to the 

development of techniques based on the concept of periodicity and the concomitant unit cell 

representation of the material microstructure. These techniques continue to develop and form a 

dominant part of the micromechanics field. 

1.2.3 RUC-Based Approaches 

Much research has been done in simulating the response of periodic composites in the 

elastic and inelastic regions based on the RUC concept. The semi-analytical approaches include 

the method of cells (MOC) and its generalization (GMC), (Aboudi, 1989; Paley and Aboudi, 

1992), wherein the composite material’s microstructure was discretized into rectangular rows 
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and columns with the resulting subcells assigned properties that mimic the microstructural details. 

Pindera and Bednarcyk (1997) showed that the intrinsic assumptions on the form of the 

displacement field in each subcell in these two models produced essentially spring models 

wherein each column and row behaved either like two-dimensional springs capable of supporting 

uniform normal stress components or one-dimensional springs independently supporting axial or 

transverse shear stress components. These shortcomings led to a more accurate model based on a 

two-level discretization of the unit cell into generic cells and subcells, with a higher-order 

displacement field representation in each subcell, called high-fidelity generalized method of cells 

– HFGMC, (Aboudi et al., 2003). The explicit solution for the strains and stress fields in the unit 

cell was obtained by satisfying 0th, 1st and 2nd moments of equilibrium equations in each subcell, 

in addition to the interfacial traction and displacement continuity conditions within each, and 

between adjacent, generic cells and the periodic boundary conditions on the external faces of 

boundary generic cells. The two-level unit cell discretization complicated the theoretical 

framework and created a large system of equations that governed the unit cell response. 

Subsequently, this approach was substantially re-constructed and simplified by Bansal and 

Pindera (2005), and the re-construction revealed that the method was really a finite-volume 

technique.  

At present, most homogenization techniques for periodic materials continue to rely on 

numerical solutions of the unit cell boundary-value problem using mainly finite-element and 

finite-volume techniques, and to a lesser extent techniques based on finite-difference and Fourier 

transform approaches (Michel et al., 1999; Pindera et al., 2009; Charalambakis, 2010; 

Cavalcante et al., 2012; Tu and Pindera, 2014). The finite-element technique is the dominant 

method mainly because of the easy-to-use character and wide availability of commercial 

packages. However, because commercial finite-element codes are general structural analysis 

codes, the implementation of periodic boundary conditions under general loading is not readily 

achievable, and the geometric representation of unidirectional composites under 

three-dimensional loading requires full three-dimensional models. Hence new techniques 

continue to be developed. The finite-volume method, first used to investigate fluid mechanics 

problems (Versteeg and Malalasekera, 2007), is one such technique that is rapidly developing. 

Cavalcante et al. (2006a,b) incorporated parametric mapping into the finite-volume direct 

averaging micromechanics (FVDAM) theory developed by Bansal and Pindera (2003), which 



! 8!

resulted from the re-construction of HFGMC, that enabled modeling of complex microstructures 

using quadrilaterals rather than rectangular subvolumes. The use of quadrilateral subvolumes 

made possible by the mapping facilitated efficient modeling of microstructures with arbitrarily 

shaped heterogeneities, and eliminated artificial stress concentrations produced by the 

rectangular subvolumes employed in the standard version. Closed-form expressions were 

constructed for the elements of a local stiffness matrix for each subvolume that related the 

surface-averaged fluctuating displacements to the surface-averaged tractions on each face of the 

subvolume used in the assembly of the global system of equations. 

Interest in elasticity-based methods has revived within the past 15 years in light of 

advances in computational technology, as well as due to the potential advantages offered by 

these techniques (Crouch and Mogilevskaya, 2006; Wang et al., 2005). For instance, 

microstructural optimization will profit from analytical solutions of unit cell problems due to the 

significantly smaller design variable space, more efficient specification of objective functions 

and implementation of more efficient search procedures. Another application is the 

reconstruction of local fields from homogenized-based results within a multi-scale analysis of 

local failure modes (Lipton, 2003), and material development which relies on rapid answers to 

what/if questions. Theoretical issues concerning the use of approximations in homogenization 

schemes may also be addressed by elasticity solutions (Mogilevskaya et al., 2012). 

Elasticity solutions for the homogenized moduli of periodic heterogeneous materials had 

been developed by a number of investigators with various degrees of success since the early 

development stage of composite materials. For unidirectional composites with circular fibers or 

porosities the main obstacle to an accurate solution is the inseparable nature of the problem due 

to the different coordinate systems required to solve the interior and exterior unit cell problems. 

The interior problem involves satisfaction of the elasticity field equations subject to the 

fiber/matrix continuity conditions most conveniently implemented in the cylindrical coordinate 

system, whereas the exterior problem involves enforcement of periodicity conditions on the 

boundary of the unit cell in the Cartesian coordinate system. The interior problem is readily 

handled using Fourier series representations of stress or displacement fields, (Chen and Cheng, 

1967; Heaton, 1968; Leissa and Clausen, 1968; Pickett, 1968), or complex potential methods for 

plane problems, (Koiter, 1960; Fil’shinskii, 1964; Wilson and Hill, 1965; Grigolyuk and 

Fil’shinskii, 1966). The more difficult exterior problem had been tackled in an approximate 
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manner through the use of collocation or least-squares techniques in the implementation of 

periodic boundary conditions on the unit cell’s bounding surfaces. While this approach has 

produced reasonable estimates of the homogenized moduli, convergence of stress fields with 

increasing number of terms in the series representation of the displacement field remains 

problematic. 

To circumvent the problem with the implementation of periodic boundary conditions, 

series expansions of the displacement field have been employed that reflect the overall 

microstructural periodicity using the eigenstrain device to represent inclusion strains, thereby 

avoiding the problem of explicitly enforcing continuity conditions at the fiber/matrix interface 

while a priori ensuring displacement field periodicity (Nemat-Nasser et al., 1982; Luciano and 

Barbero, 1995). This approach has been applied to both square and hexagonal arrays of 

inclusions in the matrix phase by Guinovart-Diaz et al. (2010). An alternative approach to 

implement periodic boundary conditions into the exact elasticity solution of the interior unit cell 

problem for unidirectionally reinforced composites has been proposed by Drago and Pindera 

(2008) in the form of a balanced variational principle. This variational principle produces rapid 

convergence of the coefficients in the series representation of the displacement fields which 

satisfy both the Navier’s equations and fiber/matrix continuity conditions in the interior of the 

unit cell representative of rectangular or square arrays of isotropic inclusions. As a result, 

converged homogenized moduli and local stress fields are obtained with relatively few terms in 

the displacement field representation. 

1.3  Significance of Elasticity-Based Homogenization Techniques 

Despite the widespread use of numerical techniques in the homogenization of composites 

due to their ability to model complex microstructures and accommodate inelastic behavior of 

constituent phases, there are number of instances where the elasticity approach has certain 

advantages. The construction of an input data file for an elasticity-based homogenization 

algorithm is at least an order-of-magnitude faster relative to numerical methods based on 

geometric discretization, and may be quickly automated for use in parametric or optimization 

studies. In the case of numerical analyses, model construction which defines the input data 

consumes a major part of the simulation effort. Moreover, studies aimed at the important effects 

of fiber/matrix interfaces on the homogenized moduli and local stress fields are much more 
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efficiently carried out using the elasticity approach due to both mesh construction and 

convergence issues. Similar comments apply to the modeling of cylindrically orthotropic fiber 

microstructures such as those found in graphite fibers. These two important areas in the 

mechanics of composite materials which continue to be explored with numerical techniques that 

account for the local fiber interactions absent in the simple geometric models are discussed in 

detail in the following subsections. 

Lastly, an analytical solution to an elasticity problem of a unit cell subjected to macroscopic 

loading provides solution to the corresponding linearly viscoelastic problem in the 

Laplace-transform domain through replacement of the constituent phase moduli by their Carson 

transforms, and elastic variables by their Laplace transforms. This is known as the 

elastic-viscoelastic correspondence principle. Inversion of the Laplace-transformed solution to 

the time domain may be obtained numerically, enabling investigations into little explored 

time-dependent response of unidirectional polymeric matrix composites with different 

architectures. The success of the inversion procedure is very much dependent on the particular 

inversion scheme which must be chosen carefully. 

1.3.1 Interfaces 

Interfaces play a key role in stress transfer between fiber and matrix phases of a 

fiber-reinforced composite, which is at the core of reinforcement principles in the mechanics of 

composite materials. They take different forms that depend on the fiber/matrix system and hence 

different names have been used to describe them. Examples include regions with variable 

properties, or interphases, due to altered chemical bond structure of the matrix phase adjacent to 

the fiber’s surface in polymeric matrix composites; fabrication-induced reaction zones with 

degraded properties in metal matrix composites reinforced by ceramic fibers; as well as coatings 

that promote fiber/matrix adhesion, control fracture toughness or reduce residual stresses. The 

effect of interfaces or interphases on the homogenized and local response of unidirectional 

composites has been investigated by many researchers using different modeling approaches 

within various micromechanics or homogenization theories, including distinct interfacial layers 

with properties different from those of the adjacent fiber or matrix, and spring and cohesive zone 

models. For very thin interface/interphase regions the latter two models offer an attractive 

alternative to finite-thickness interfacial layers especially when variational techniques requiring 

detailed geometric discretization are employed. 
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Review of the early approaches based on simple geometric models of unidirectional 

composites such as the CCA, Mori-Tanaka and GSC (generalized self-consistent) models was 

provided by Jasiuk and Kouider (1993). A more recent discussion of the various approaches may 

be found in Duan et al. (2005). The simple geometric models based on a single fiber embedded 

in the matrix phase, which may in turn be embedded in the homogenized medium of sought 

properties, yield estimates of homogenized moduli in the presence of interphases or coatings 

with uniform or variable (so-called graded) properties, but do not provide accurate estimates of 

stress fields that account for adjacent fiber interaction. To gauge the effect of coatings or 

interphases on the homogenized moduli without sacrificing local stress field accuracy critical in 

failure analysis, the finite-element approach has been, and continues to be, employed by a 

number of investigators, (Lagache et al., 1994; Veazie and Qu, 1995; Asp et al., 1996; Shen and 

Li, 2003; Maligno et al., 2010; Wang et al., 2011; Sideridis et al., 2015). In the presence of thin 

coatings, however, detailed mesh discretization is required for converged stress fields. 

Alternative approaches to the homogenization of unidirectional composites include 

elasticity-based solutions for periodic microstructures and finite-volume techniques. A recent 

focus on the incorporation of interphase and spring models into elasticity-based solutions has 

been highlighted by several researchers, (Mogilevskaya et al., 2010; Sevostianov et al., 2012; 

Guinovart-Díaz et al., 2013). Optimization of interfacial properties will profit from the use of 

analytical techniques in the solution of unit cell problems due to the significantly smaller design 

variable space, more efficient specification of objective functions and implementation of more 

efficient search procedures. Another benefit is the efficient reconstruction of local fields from 

homogenized-based results within a multi-scale analysis of local failure modes, and material 

development which relies on rapid answers to what/if questions. 

1.3.2 Cylindrically Orthotropic Fiber Microstructures 

Materials and structures with cylindrically orthotropic architectures are found in nature as 

well as in man-made constructs. Examples include tree trunks, biological tissues and bones, 

masonry structures and graphite/carbon fibers used as reinforcement in advanced composites. 

Leknitskii and Fern (1963) were perhaps the first to provide solutions to cylindrically orthotropic 

materials and structural components under certain geometric and loading constraints, including 

cylinders subjected to axisymmetric and bending loads. The problem with singular stress fields 

that occur at the origin of radially orthotropic fibers was sidestepped by focusing on structural 
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components that were hollow. To gauge the impact of cylindrical orthotropy in graphite fibers on 

the homogenized moduli and local stress fields in unidirectional graphite/epoxy composites, 

simplified models based on the concentric cylinder geometry had been employed by several 

investigators. For instance, Avery and Herakovich (1986) employed the composite cylinder 

geometry to investigate the impact of graphite fiber's cylindrically orthotropic microstructure on 

residual stresses that arise during the fabrication process and the potential failure modes in the 

graphite fiber induced by these stresses. In a follow-up investigation, Knott and Herakovich 

(1991) calculated four of the fiver transversely isotropic moduli of graphite/epoxy unidirectional 

composites and related stress fields using the CCA model. Similar investigation was carried out 

by Hashin (1990) and Christensen (1994) using the CCA and three-phase models wherein the 

cylindrically orthotropic moduli of graphite fibers were replaced by equivalent homogenized 

transversely isotropic moduli, thereby sidestepping the singular nature of stress fields in radially 

orthotropic fibers. The issue of stress singularity in cylindrically orthotropic solid cylinders has 

been discussed by Antman and Negrón-Marrero (1987), Tarn (2002), Cowin and Fraldi (2005). 

The simple geometric models based on a single fiber embedded in the matrix phase such as 

the CCA model, which may in turn be embedded in the homogenized medium of sought 

properties, e.g., three-phase model, yield estimates of homogenized moduli but do not provide 

accurate estimates of stress fields that account for adjacent fiber interaction. Hence the 

finite-element approach continues to be employed in predicting both the homogenized moduli 

and local stress fields necessary for local failure analysis. Thus far, however, little work can be 

found dealing with finite-element analysis of unidirectional composites with cylindrically 

orthotropic fibers, although results on the homogenized moduli and local stress fields in 

unidirectional composites with nano-fibrils which effectively act as cylindrically orthotropic 

fiber coatings have recently become available, (Chatzigeorgiou et al., 2011, 2012). Hence the 

micromechanics community would benefit from a unified elasticity-based homogenization 

approach that accounts for cylindrically orthotropic fibers in both the homogenization process 

and local stress field calculations, while admitting local fiber interactions. 

1.4  Objectives 

The main objective, and achievement, of this dissertation is the construction of a 

comprehensive set of homogenization theories for unidirectional composite materials based on 
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the elasticity approach, with the following features and modeling capabilities: 

 

! Transversely isotropic constituent phases, extending the previous work of Drago and Pindera 

(2008) with isotropic phases; 

! Radially and circumferentially orthotropic fibers to study the effect of graphite fiber 

morphology on composite properties and local stress fields within a unified framework; 

! Three-phase microstructures through inclusion of coatings or interphases (interfaces) 

between fiber and matrix; 

! Three types of microstructural representations based on rectangular (square), hexagonal and 

parallelogram (tetragonal) arrays that mimic different arrangements of fibers in the matrix 

phases; 

! Viscoelastic response of polymeric matrices to study the effect of unit cell architectures on 

the time-dependent homogenized response and the transmission of phase time-dependent 

characteristics to the macro-level. 

 

1.5  Approach and Outcomes 

 The construction of the locally exact homogenization theory with the aforementioned 

features follows the framework of the original theory for rectangular arrays containing isotropic 

elastic phases developed by Drago and Pindera (2008). The solution to the unit cell problem is 

carried out in two steps. The displacement fields are represented using Fourier series expansions 

in cylindrical coordinates which satisfy equilibrium and continuity conditions in the fiber, 

interface and matrix phases. This is the interior unit cell problem which is separable. The 

inseparable periodic boundary conditions in the Cartesian coordinates are implemented using the 

variational principle proposed by Drago and Pindera (2008) which is demonstrated to work 

extremely well for hexagonal and tetragonal unit cell architectures incorporated in this 

dissertation.  

The theory is validated against exact elasticity solutions in the limit as the fiber volume 

fraction becomes dilute and shown to reduce to the classical solution of Eshelby (1957) 

regardless of the number of harmonics employed in the displacement field approximation, 

demonstrating also its robustness and stability. In the non-dilute case, the homogenized moduli 
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and local stress fields are compared with those of the FVDAM theory previously demonstrated to 

be of the same fidelity as the finite-element method. Convergence studies indicate that 

homogenized moduli converge rapidly to their values with relatively small number of harmonics, 

whereas local stress fields require somewhat greater, but not large, number of harmonics for 

convergence. This rapid convergence is due to the balanced variational principle originally 

proposed by Drago and Pindera (2008) for rectangular periodic arrays, and extended herein to 

hexagonal and tetragonal arrays. 

The capability and efficiency of the developed locally exact homogenization theory are 

illustrated throughout the dissertation with the aim of highlighting the following outcomes and 

features: 

 

! Comparison of stress distributions and homogenized moduli predicted locally exact 

homogenization theory (LEHT) and FVDAM illustrates the robustness and accuracy of this 

method; 

! The stability of the method and its quick convergence in predicting homogenized moduli and 

local stress fields in a wide range of volume fractions, phase moduli contrasts and fiber 

arrays sets this method apart from other elasticity-based homogenization theories;  

! The total time required for problem definition and execution is an order of magnitude smaller 

relative to variational or finite-volume techniques because time-consuming mesh 

discretization is not required, while post-processing of output data is easily automated. This 

facilitates rapid visualization of stress distributions, and applications involving optimization 

and multiscale modeling, etc.; 

! The input data construction requires a few geometric and material parameters, facilitating use 

by specialists and non-specialists alike; 

! Rapid assessment of widely employed classical models such as the CCA and Mori-Tanaka 

models for both elastic and viscoelastic behavior; 

! Assessment of recently proposed elasticity-based models that employ a related variational 

principle, and the related problem of the effect of boundary condition implementation on the 

resulting homogenized moduli and stress fields. 

 

The advantages of the locally-exact homogenization theory relative to other numerical and 
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analytical techniques extend beyond those discussed above. Taking the cylindrically orthotropic 

fiber case as an example, hundreds if not thousands of elements or subvolumes need to be 

employed to accurately capture the local fiber stresses near the origin because of the very high 

stress gradients produced by singular nature of the stress field. Moreover, a small transversely 

isotropic core is needed to eliminate the difficulties of simulating the singularity. This problem 

does not appear in the locally-exact theory. The unknown coefficients that govern the 

displacement and stress distributions are easily obtained upon rapidly solving the unit-cell 

boundary value problem, thereby leading to explicit expressions for stress distributions and 

homogenized moduli. 

Based on the theoretical framework and validation described and conducted in this 

dissertation, the constructed locally exact homogenization theory may be used as a standard 

against which other microstructural analytical and numerical models may be compared due to the 

ease-of-implementation, solution stability, quick convergence and accuracy. 

1.6  Outline 

This dissertation has the following organization. In Chapter 2, the basic theoretical 

framework is presented for both two-phase and three-phase composite materials with continuous 

reinforcement along one direction. The derivation is valid for transversely isotropic fiber and 

matrix phases, which may be easily degenerated to isotropic phases, as well as cylindrically 

orthotropic fibers. Three types of periodic microstructures (rectangular, hexagonal, tetragonal 

arrays) may be simulated by the developed theory which may be used to study microstructures 

with resultant transversely isotropic, orthotropic or monoclinic homogenized moduli.  

In Chapter 3, several cases are used to validate the theory developed in Chapter 2. First, 

rapid convergence of the homogenized moduli and local stress fields is demonstrated with 

increasing number of harmonics employed in the displacement field representation in the fiber 

and matrix phases. For dilute fiber volume fractions, stress distributions are compared with 

Eshelby and Kirsch problems for stiff fibers and cylindrical porosities. Chapter 4 presents a 

number of numerical results and examples which demonstrate the advantages of the locally-exact 

homogenization theory in dealing with different applications. The homogenized moduli in a wide 

range of fiber and cylindrical porosity volume fractions are compared with Mori-Tanaka and 

CCA models, as well as with the FVDAM theory shown previously to be as accurate as the 
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finite-element calculations in both Chapter 3 and 4. The elastic unit cell solution for different 

array types is extended to viscoelastic domain using the correspondence principle in order to 

study the time-dependent behavior of polymeric matrix composites in Chapter 5. The method 

proposed by Zakian (1969), which is chosen for inverting Laplace-transformed homogenized 

moduli, is proven to be a stable and accurate inversion technique from Laplace domain to the 

time domain. Two types of assumptions on the time-dependent response of a polymeric matrix – 

constant Poisson’s ratio and constant bulk modulus cases, are employed in simulating 

homogenized creep compliances of unidirectional graphite/epoxy composites and compared with 

experimental data. Chapter 6 compares LEHT with CCA and Mori-Tanaka models for both 

elastic and viscoelastic behavior. By comparing the homogenized moduli and stress distributions, 

it is concluded that even if the CCA model can just provide bounds on the transverse shear 

modulus which the Mori-Tanaka model can predict precisely, it is still an easy-to-use and 

efficient method which gives accurate homogenized moduli and stress distributions relative to 

LEHT. In Chapter 7, the balanced variational principle is compared with Jirousek’s constrained 

variational approach in dealing with periodic boundary conditions for different types of 

microstructural arrays, showing its quickly convergent and more stable characteristics. At last, 

summary and conclusions are presented in Chapter 8, and future work is proposed with the aim 

of further enhancing the theory’s computational and predictive capabilities. 
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Chapter 2 

Theoretical Framework 

2.1  Unit Cell Solution Overview  

We consider a periodic material with continuous reinforcement along the   x1  axis, 

characterized by a repeating unit cell that defines the material’s microstructure. Fig 2.1 shows 

three types of two-phase microstructures: rectangular, hexagonal, parallelogram arrays; while Fig 

2.2 shows three-phase microstructures with additional coating or interphase between fiber and 

matrix (parallelogram array not shown). The unit cell, which contains an inclusion offset from 

the center to demonstrate the approach’s robustness, is loaded by homogenized strain 

components ijε . The solution for the displacement field is obtained subject to the periodic 

boundary conditions imposed on the external surface displacements and tractions 

 ( ) ( )o ox +d xi i ij ju u dε= +   and ( ) ( )o ox +d xi it t= −  (2.1) 

where ( )o ox ,x +d S∈ , S is the unit cell boundary, d is a characteristic distance that defines the 

unit cell microstructure, and i ji jt nσ=  from Cauchy’s relations, with in  denoting the ith 

component of the unit normal to S. 

The boundary-value problem is first solved in the interior of the unit cell for the 

displacement fields in the fiber, coating and matrix phases such that local equilibrium equations 

and interfacial continuity conditions are satisfied exactly. The problem is separable in the 

cylindrical coordinate system, facilitating exact solution. The exterior problem involves 

satisfaction of the periodic boundary conditions in the Cartesian coordinate system and hence is 

inseparable using the interior solution in cylindrical coordinates. To solve the exterior problem, 

the balanced variational principle proposed by Drago and Pindera (2008) for rectangular unit 

cells comprised of isotropic phases is adapted herein for hexagonal or tetragonal (or  
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(a)                             (b) 

!

 
(c) 

Figure 2.1 Repeating unit cells of hexagonal (a), rectangular (b) and parallelogram (c) arrays 

 

 

 
     (a)                            (b) 

Figure 2.2 Repeating unit cells of hexagonal (a), rectangular (b) arrays with coated fibers 

 



! 19!

parallelogram) arrays comprised of transversely isotropic phases. Solution of exterior problem 

involves minimization of the functional 

 0 01 0
2

t u t u
u t

D P ij ij i i i iV S S
H dV dS dSσ ε− = − − =∫ ∫ ∫  (2.2) 

where 0t=t  and 0u=u  are periodic traction and displacement constraints imposed on tS  and 

uS , respectively. Taking the first variation of  D PH − , and using the fact that the interior 

elasticity solution satisfies the stress equilibrium equations a priori, so that  

 1 1
2 2ij ij i iV S

dV t u dSσ ε =∫ ∫  (2.3) 

The variational principle is obtained in the final form 

 0 0( ) ( ) 0u t t t u u
t u

i i i i i iS S
dS dSδ δ− + − =∫ ∫  (2.4) 

The displacement and traction components on the six surfaces of the hexagonal unit cell, 

Figs. 2.1-2.2, are obtained from the periodicity conditions, Eq. (2.1), in the form,  

 
1 4 2 2 5 3 3 6 3

1 4 2 5 3 6

( ) ( ) , ( ) ( ) , ( ) ( )
( ) ( ), ( ) ( ), ( ) ( )

    
                       
i i i i i i i i i

i i i i i i

u S u S d u S u S d u S u S d
T S T S T S T S T S T S

ε ε ε= + = + = +
= − = − = −

 (2.5) 

where 3d L= .  

In the case of rectangular (Drago and Pindera, 2008) or parallelogram unit cell with length 

2d  and height 3d , these components are  

 
1 3 2 2 2 4 3 3

1 3 2 4

( ) ( ) , ( ) ( )
( ) ( ), ( ) ( )

  
               
i i i i i i

i i i i

u S u S d u S u S d
T S T S T S T S

ε ε= + = +
= − = −

 (2.6) 

The solution for the displacement and stress fields in the fiber, coating and matrix phases is 

carried out within the homogenization theory’s framework wherein the global coordinates 

1 2 3( , , )x x x x=  describe the average response of the entire periodic array, and the local 

coordinates 1 2 3( , , )y y y y=  describe the interior unit cell response (Suquet, 1985; Bensoussan et 

al., 2011). Accordingly, a two-scale displacement field expansion is employed within the unit 

cell,  

 ( ) ( )( , ) ( )x y yk k
i ij j iu x uε ′= +  (2.7) 

where the fluctuating displacement components u′  induced by the medium’s heterogeneity are 

functions of local coordinates 2 3( , )y y , in light of the constraint along the 1x  direction by the 

continuous reinforcement, and the superscripts , ,k f c m=  denote fiber, coating (interphase) 
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and matrix phases, respectively. The above displacement field generates the local strains,  

 ( ) ( )( ) ( )y yk k
ij ij ijε ε ε′= +  (2.8) 

Once the solution for the unknown fluctuating displacement components ( , )zu r θ′ , 

( , )ru r θ′ , ( , )u rθ θ′  is obtained in each phase in the cylindrical coordinate system, the 

corresponding strains are determined from the strain-displacement relations. To implement 

periodicity conditions in the variational principle, the fluctuating displacements in the cylindrical 

coordinate system are transformed to the Cartesian system using the standard transformation 

equations 

 
1 2 3, cos sin , sin cos  z r ru u u u u u u uθ θθ θ θ θ′ ′ ′ ′ ′ ′ ′ ′= = − = +  (2.9) 

         Similarly the fluctuating Cartesian strains are obtained from the transformations,  

Out of plane: 

 
12

13

cos sin
sin cos

zr z

zr z

θ

θ

ε ε θ ε θ
ε ε θ ε θ
′ ′ ′= −
′ ′ ′= +

 (2.10) 

Inplane: 

 ( ) ( )

( ) ( )

( )

22

33

23

1 1
cos2 sin 2

2 2
1 1

cos2 sin 2
2 2

1
sin 2 cos2

2

rr rr r

rr rr r

rr r

θθ θθ θ

θθ θθ θ

θθ θ

ε ε ε ε ε θ ε θ

ε ε ε ε ε θ ε θ

ε ε ε θ ε θ

′ ′ ′ ′ ′ ′= + + − −

′ ′ ′ ′ ′ ′= + − − +

′ ′ ′ ′= − +           

 (2.11) 

which are subsequently used in the calculation of stresses and then tractions in the Cartesian 

coordinate system through Hooke’s law and Cauchy’s relations.  

2.2  The Interior Problem 

2.2.1 Transversely Isotropic Phases 

The solution of the interior problem for unit cells with transversely isotropic phases follows 

the solution procedure by Drago and Pindera (2008). Hence only the main results are stated here 

with appropriate modifications accounting for transversely isotropic phases possessing plane of 

isotropy perpendicular to the reinforcement direction 1x . The generalized Hooke’s law for such 

materials takes the uncoupled form 
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 (2.12) 

where the stiffness elements are given in terms of the axial Young’s and shear moduli ,A AE µ  

and Poisson’s ratio Aν , and the transverse plane strain bulk and shear moduli ,T Tk µ : 

2
11 4A T AC E k ν= + , 12 22 23 662 , , ,T A T T T T AC k C k C k Cν µ µ µ= = + = − =   . The use of the generalized 

Hooke’s law and strain-displacement relations 
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′′ ∂ ′= + + = +

∂
′ ′′ ∂∂⎛ ⎞ ′= + + − = +⎜ ⎟∂ ∂⎝ ⎠

′∂ ′= + = +
∂

′∂ ′= + = +
∂

 

(2.13) 

in the equilibrium equations in the cylindrical coordinate system yields the Navier’s equations 

for the three unknown fluctuating displacements in each phase 

 2 2

2 2 2

22 2

2 2 2 2 2

2 2 2

2 2 2 2 2

1 1 0

2( 2 )1( ) 0

( ) 2( 2 )1 0

z z z

r r r T r T T T
T T

T T T r T T r
T

u u u
r r r r

u uu u u u k kk
r r r r r r r r

u u u uk k u k u
r r r r r r r r

θ θ

θ θ θ θ

θ
µ µµ

θ θ θ

µ µµ
θ θ θ

′ ′ ′∂ ∂ ∂+ + =
∂ ∂ ∂

′ ′′ ′ ′ ′⎛ ⎞ ∂ ∂∂ ∂ ∂ ++ + − + + − =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
′ ′ ′ ′ ′ ′⎛ ⎞∂ ∂ ∂+ ∂ + ∂+ − + + + =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 
(2.14) 

- 
(2.16) 

Since the out-of-plane and in-plane displacements zu′  and ,ru uθ′ ′ , respectively, are 

uncoupled in the differential equations above, the two problems are solved independently for the 

displacement field that generates homogenized moduli associated with respective loading.  
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2.2.1.1 Axial shear loading 

The displacement field ( , )zu r θ′  for the fiber, coating and matrix phases has the same form 

as that for isotropic phases 

 ( ) ( )- -
01 1 3 2 4

1

cos sinn n n n
z n n n n

n

u H a H H n H H nξ ξ θ ξ ξ θ
∞

=

⎡ ⎤′ = + + + +⎣ ⎦∑  (2.17) 

where r aξ =  is the nondimensionalized radial coordinate with respect to the fiber radius a, 

and ( )( , , ) 1,2,3,4f c m
njH j =  are unknown coefficients. Setting ( ) ( )

3 4 0f f
n nH H= =  to ensure that the 

out-of-plane displacement remains bounded in the fiber. 

(a) For two-phase (fiber/matrix) material system, the coefficients ( ) ( ) ( ) ( )
1 2 3 4, , ,m m m m
n n n nH H H H  are 

obtained in terms of ( )
1
f
nH  and ( )

2
f
nH  from the fiber/matrix interfacial displacement and traction 

continuity conditions 

 ( ) ( ) ( ) ( )( , ) ( , ), ( , ) ( , )f m f m
z z zr zru a u a a aθ θ σ θ σ θ′ ′= =   (2.18) 

(b) For three-phase (fiber/coating/matrix) material system, the matrix coefficients 
( ) ( ) ( ) ( )
1 2 3 4, , ,m m m m
n n n nH H H H  and coating coefficients ( ) ( ) ( ) ( )

1 2 3 4, , ,c c c c
n n n nH H H H  are obtained in terms of 

( )
1
f
nH  and ( )

2
f
nH  from the fiber/coating/matrix interfacial displacement and traction continuity 

conditions 

fiber/coating interface:  ( ) ( ) ( ) ( )( , ) ( , ), ( , ) ( , )f c f c
z z zr zru a u a a aθ θ σ θ σ θ′ ′= =   

coating/matrix interface:     ( ) ( ) ( ) ( )( , ) ( , ), ( , ) ( , )c m c m
z z zr zru b u b b bθ θ σ θ σ θ′ ′= =   

 (2.19) 

The shear stress components zrσ  in the fiber, coating and matrix regions are obtained 

from Hooke’s law, Eq. (2.12), and the strain-displacement relations, Eq. (2.13), 

 ( ) ( )1 1 1 1
1 3 2 4

1

2 cos sinn n n n
zr A zr A n n n n

n

G G n H H n H H nσ ε ξ ξ θ ξ ξ θ
∞

− − − − − −

=

⎡ ⎤= + − + +⎣ ⎦∑  (2.20) 

where 12 13cos sinzrε ε θ ε θ= + , since the periodic boundary conditions imposed on a hexagonal 

unit cell are given in terms of the macroscopic axial strain 12ε  and 13ε  in Cartesian 

coordinates. 

Applying the interfacial continuity conditions and using the orthogonality of cosnθ  and 

sin nθ  terms, we obtain the following expressions for the matrix coefficients (two-phase model) 
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or coating coefficients (three-phase model): ( ) ( ) ( ) ( )
1 2 3 4, , ,k k k k
n n n nH H H H : 

 ( ) ( )
1 1

( )
( )2 1 121

1 2
3 2 132

4 2

0 1 0
20 0 1
20 1 0

0 0 1

k r a
n

f
r an n

n
n n
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c
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H c

εδ ε

=

=

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

 (2.21) 

where ( ) ( ) ( ) ( )
1 ( ) 2r a k f k

A A Ac µ µ µ= = +  and ( ) ( )
2 11r a r ac c= == − . Here k m=  for two-phase model, 

k c=  for three-phase model. 

For the three-phase composite materials, another set of interfacial continuity conditions are 

employed to set up relationship of coefficients between coating and matrix at r b= :  
( )( ) ( )2
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r bn n

nn
n n

n
n n

c a b cH H
H Hc a b c

c
H H b ab a c c
H H b ab a c c

εδ ε

=

=

⎡ ⎤ −⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ − ⎡ ⎤⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

     (2.22) 

where  ( ) ( ) ( ) ( )
1 ( ) 2r b m c m

A A Ac µ µ µ= = +  and ( ) ( )
2 11r b r bc c= == − . 

2.2.1.2 Axial normal and transverse loading 

Similarly, the fully coupled displacement field ( , ), ( , ) ru r u rθθ θ′ ′  that accommodates unit 

cells without planes of material symmetry in the r θ−  plane and specified loading is obtained 

in the form, 

 4
1

01 02 12 12
2 1

4

12 12
2 1

cos sin cos sin

sin cos sin cos

nj

nj

p
r nj nj

n j

p
nj nj nj

n j

u F a F a F G a F n G n

u F G a F n G nθ

ξ ξ θ θ ξ θ θ

θ θ β ξ θ θ

∞
−

= =

∞

= =

′ ⎡ ⎤= + + + + +⎣ ⎦

′ ⎡ ⎤= − + + −⎣ ⎦

∑∑

∑∑
 (2.23) 

and 1 2 3 41, 1, ( 1), ( 1)   n n n np n p n p n p n= + = − = − + = − −  are the four eigenvalues with the 

corresponding eigenvectors njβ  

 2 2( )(1 )
( 2 )

T T nj T
nj

T nj T T

k G p G n
n k p k G

β
+ − +

=
− −

 (2.24) 

and ( )( , , ) ( , , ), 1,2,3,4f c m f c m
nj njF G j =  are unknown coefficients. Setting ( )

02 0fF =  and ( )
3
f

nF =

( )
4 0f
nF = , ( ) ( )

3 4 0f f
n nG G= =  to ensure that the fiber displacement field remains bounded,  

(a) For two-phase composite materials, the remaining matrix coefficients ( )m
njF  and ( )m

njG  are 
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obtained in terms of the fiber coefficients ( )f
njF  and ( )f

njG  from the fiber/matrix interfacial 

displacement and traction continuity conditions 

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( , ) ( , ), ( , ) ( , )

( , ) ( , ), ( , ) ( , )

f m f m
r r
f m f m
rr rr r r

u a u a u a u a
a a a a

θ θ

θ θ

θ θ θ θ
σ θ σ θ σ θ σ θ
′ ′ ′ ′= =

= =

 
 

 (2.25) 

(b) For three-phase composite materials, the matrix coefficients ( )m
njF  and ( )m

njG , as well as the 

coating coefficients ( )c
njF  and ( )c

njG  are obtained in terms of the fiber coefficients ( )f
njF  and 

( )f
njG  from the displacement and traction continuity conditions between fiber/coating and 

coating/matrix interfaces. 

fiber/coating:   
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( , ) ( , ), ( , ) ( , )

( , ) ( , ), ( , ) ( , )

f c f c
r r
f c f c
rr rr r r

u a u a u a u a
a a a a

θ θ

θ θ

θ θ θ θ
σ θ σ θ σ θ σ θ
′ ′ ′ ′= =

= =

 
 

                 (2.26) 

 

coating/matrix:    
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( , ) ( , ), ( , ) ( , )

( , ) ( , ), ( , ) ( , )

c m c m
r r
c m c m
rr rr r r

u a u a u a u a
a a a a

θ θ

θ θ

θ θ θ θ
σ θ σ θ σ θ σ θ
′ ′ ′ ′= =

= =

 
 

                 (2.27) 

The radial and shear stress components rrσ  and rθσ  in the fiber, coating, and matrix 

regions are obtained from the Hooke’s law, Eq. (2.12), and the strain-displacement relations, Eq. 

(2.13), 

( )
4

12
01 02

2 1

2 ( )( ) ( )( )
2 ( ) ( )

2 2 cos sin

2 ( )

nj

rr T A zz T T rr rr T T

T A zz T T rr T T

p
T T nj nj nj

n j

r T r r

k k k
k k k

k F F P F n G n

θθ θθ

θθ

θ θ θ

σ ν ε µ ε ε µ ε ε
ν ε µ ε µ ε

µ ξ ξ θ θ

σ µ ε ε

∞
−−

= =

′ ′= + + + + − +
= + + + −

+ − + +

′= +

∑∑

     

                                             

( )
4

1

2 1

2 sin cosnjp
T r nj nj nj

n j
R F n G nθµ ε ξ θ θ

∞
−

= =

= + −∑∑

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

  (2.28) 

where ( ) ( )(1 )nj T T nj T T njP k p k nµ µ β= + + − + , and! ( 1)nj T nj njR p nµ β⎡ ⎤= − −⎣ ⎦ .!

Interfacial continuity at r a= : 

Applying the four interfacial continuity conditions at r a= , and using orthogonality of 

cosnθ  and sin nθ  terms, we obtain systems of equations for the coefficients ( )m
njF and ( )m

njG  

(or coating coefficients ( )c
njF ! and ( )c

njG  for three-phase composites) in terms of the 

corresponding fiber coefficients. From the 0n =  contributions, we have  
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 ( ) ( ) ( ) ( )
( )01 01 01 01
01 11 22 33

02 02 02 02
( )

k r a r a r a
fF b c dFF b c dε ε ε

= = =
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.29) 

where 

 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
01 01 01 02( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )
02 02 01 02 01( ) ( )

1,   ,   
2

,   ,                      

f k f f k k
r a r a r a r aT T T A T A

k k k k
T T T T
k f

r a r a r a r a r aT T
k k
T T

k k kb c d b
k k
k kb c c d d
k

µ ν ν
µ µ

µ

= = = =

= = = = =

+ −= = = −
+ +

−= = − = −
+

 (2.30) 

From the 2≥n  contributions: 

 ( ) ( ) ( ) ( )
2 0 22 33

( ) ( ) ( ) ( )
2 0 23

A F A F A ( )
A G A G A 2

k k f f
n n n n n

k k f f
n n n n n

δ ε ε
δ ε

= + −
= +

 

(2.31) 

where 
( ) ( )

1 2 3 4 1 2( ) ( ) ( )
0 ( ) ( )

1 2 3 4 1 2
( ) ( )

1 2 3 4 1 2

1 1 1 1 1 1 0
0

,  ,  
( )
( )

k f

n n n n n nk f r a
n n f c

n n n n n n T T
f c

n n n n n n T T

A A A
P P P P P P
R R R R R R

β β β β β β
µ µ
µ µ

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣ ⎦

 

  (2.32) 

in which k m=  for two-phase model, and k c=  for three-phase model. 

Interfacial continuity at r b= : 

For fiber/coating/matrix three-phase composite materials, the additional interfacial 

continuity at r b=  can be applied to obtain the relationship between coating coefficients
( ) ( ),c c
n nF G  and matrix coefficients ( ) ( ),m m

n nF G . 

For 0n =  contributions: 
( ) ( ) ( ) ( ) ( )

( ) ( )01 01 01 01 01
01 02 11 22 33

02 02 02 02 02
( )

m r b r b r b r b
c cF b b c dF FF b b c dε ε ε

= = = =′⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

  (2.33) 

where 

  

b01
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(c)
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a
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a
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a
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′b01
(r=b) = −

µT
(c) − µT

(m)

kT
(m) + µT

(m) ( a
b

)2 ,  ′b02
(r=b) =

µT
(c) + kT

(m)

kT
(m) + µT

(m)     

  (2.34) 

For 2n ≥  contributions: 

 ( ) ( ) ( ) ( )
2 0 22 33

( ) ( ) ( ) ( )
2 0 23

A F A F A ( )
A G A G A 2

m m c c
n n n n n

m m c c
n n n n n
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(2.35) 

where 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4
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1 2 3 4
1 1 1 1
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( ) ( )

( )
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c m
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µ µ
µ µ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥− −⎣ ⎦

 

  (2.36) 

in which ,k c m= . 

 

 
Figure 2.3 Repeating unit cell of a hexagonal array of fibers with cylindrically orthotropic 

microstructures. 

 

2.2.2 The Interior Problem with Cylindrically Orthotropic Fibers 

The Hooke’s law for such materials naturally expressed in the cylindrical coordinates takes 

the form, 
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 0 0 2
,       0 0 2

0 0 2

zz zz zr z zz r r r

rr zr rr r rr zr zr zr

z r z z z

C C C
C C C
C C C

θ θ θ θ

θ

θθ θ θ θθ θθ θ θ θ

σ ε σ µ ε
σ ε σ µ ε
σ ε σ µ ε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.37) 

Two distinct types of cylindrically orthotropic microstructures can be identified which give 

rise to different stress fields. For radially orthotropic materials, the ratio 1rrC Cθθ >  with the 

concomitant microstructure resembles a bicycle wheel, whereas 1rrC Cθθ <  for 

circumferentially orthotropic materials whose microstructure resembles an onion. Fig 2.3 

illustrates different types of microstructures found in graphite fibers characterized by differently 

oriented basal planes aligned with the fiber’s axis which produce radially and circumferentially 

orthotropic effective behavior (Huang, 2009). A random dispersion of these planes perpendicular 

to the fiber axis produces transversely singular stress fields at the origin while those with 

circumferentially orthotropic moduli do not.  The different graphite fiber microstructures have 

different impacts on the homogenized moduli, stress fields and fracture characteristics at both the 

single ply and laminated plate levels (Herakovich, 1989). 

The solution of interior problem for unit cells with cylindrically orthotropic fibers whose 

elastic response is governed by Eq. (2.37), and (transversely) isotropic matrices follows the 

solution procedure described in Section 2.2.1. Hence only results which focus on the 

displacement field in cylindrically orthotropic fibers that require special treatment will be 

highlighted. The equilibrium equations in the cylindrical coordinate system yields the Navier’s 

equations for the three unknown fiber displacements ,z ru u  and uθ , 

2 2

2 2 2

22 2

2 2 2 2 2

2 2 2

2 2 2 2 2

1 1 0
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zz z z

zr

r r r r z zrr r r r
rr zz

r r rr r
r

u u u
r r r r

C u C u C Cu u u uC C
r r r r r r r r r

u u u C u C Cu u
r r r r r r r r

θ

θ θ θ θ θθ θ θ θ
θθ

θ θ θ θθ θ θ θ θθ θ
θ

µ
µ θ

µ µ µ ε
θ θ θ

µ µµ
θ θ θ

∂ ∂ ∂+ + =
∂ ∂ ∂

+ ∂ + ∂ −∂ ∂ ∂+ − + + − =
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ + +∂ ∂+ − + + + =
∂ ∂ ∂ ∂ ∂ ∂

 

  (2.38) 

2.2.2.1 Displacement and stress fields 

Assuming solutions for the fiber out-of-plane and in-plane displacements zu  and ,ru uθ , 

respectively, in the separable form:  
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uz

( f ) (r,θ )− ε zz z = [hn(r)cos nθ + hn
*(r)sin nθ]

n=0

∞

∑  

( )

0

( , ) [ ( ) cos ( )sin ]f
r n n

n
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∞

=

= +∑  and ( ) * *

0

( , ) [ ( )cos ( )sin ]f
n n

n
u r g r n f r nθ θ θ θ

∞

=

= +∑ , 

substituting into  Eq. (2.38), and using orthogonality for each harmonic contribution we obtain 

the fiber displacement field in the final form, 

( ) ( )
0 0

- -( ) ( ) ( ) ( ) ( )
1 3 2 4

1

4
( ) ( ) ( ) ( ) ( )

01 02
2 1

( ) ( ) ( )

( , ) cos sin
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n n n n
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f f f f f
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f f f f f
r nj nj zz
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f f f
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θ ξ ξ ξ θ θ ε

θ β ξ θ θ

∞

=

∞
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= =

⎡ ⎤= + + +⎣ ⎦

⎡ ⎤= + + + +⎣ ⎦

⎡ ⎤= −⎣ ⎦

∑

∑∑
4

2 1n j

∞

= =
∑∑

!

  (2.39) 

where ( ) ( )z zr rrH C C C Cθ θθ= − − . We note that rigid body terms associated with 0n =  term 

in the expression for ( )f
zu , and 1n =  terms in the expressions for ( ) ( ),f f

ru uθ  have been 

excluded by fixing the fiber at the origin. For the out-of-plane displacement ( )f
zu , the two 

eigenvalues are obtained in closed form 1,2( ) ( )n z zrn θλ µ µ= ± . For the in-plane displacements 

( ) ( ),f f
ru uθ , when 0n =  the two eigenvalues that characterize the axisymmetric displacement 

field are 0 1,2 0( ) ( )rrn C Cθθλ λ= ± = ± . When 2n ≥ , the four eigenvalues 1 4,...n nλ λ  are 

obtained from the characteristic equations, 

 4 2 2 2 2 2[ ( 2 ) ( ) ] ( 1) 0rr r n rr r r r rr r n rC n C C C C C C n Cθ θθ θ θ θ θθ θ θθ θµ λ µ µ λ µ− − − + + + − =  (2.40) 

with the corresponding eigenvectors ( )k
njβ  given by  

 2 2

[( ) ( )]
nj rr r

nj
r r nj r

C C n
n C C

θθ θ

θ θ θθ θ

λ µ
β

µ λ µ
− +

=
+ − +  (2.41) 

Figure 2.4 presents the four eigenvalues as a function of the harmonic number in a wide 

range of cylindrical orthotropy ratios that define radially ( 1rrC Cθθ > ) and circumferentially 

( 1rrC Cθθ < ) orthotropic microstructures, illustrating that they are real for the graphite fiber 

considered herein. 
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Figure 2.4 Eigenvalues for the inplane displacement field representation in fibers with different 
cylindrical orthotropy ratios as a function of harmonic number. 
 

The unknown coefficient ( ) ( ) ( ), , ( 1,2,3,4)f f f
nj nj njH F G j =  are the fundamental unknowns in 

terms of which the corresponding matrix coefficients will be expressed using the continuity 

conditions, and r aξ =  is the nondimensionalized radial coordinate with respect to the fiber 

radius a. To ensure that the displacements remain bounded in the fiber, we still set 
( ) ( )
3 4 0f f
n nH H= =  for 1n ≥  in the case of the out-of-plane displacement, and ( )

02 0fF =  and 

( ) ( ) ( ) ( )
3 4 3 40, 0f f f f
n n n nF F G G= = = =  for 2n ≥  in the case of the in-plane displacements.  

The stress components derived from the above displacement field employed in satisfying 

the continuity conditions at the fiber/matrix interface for cylindrically orthotropic fibers are 

  
σ zr

( f ) (r,θ ) = µzr
( f ) λn ξλn−1Hn1

( f ) cos nθ + ξλn−1Hn2
( f ) sin nθ⎡⎣ ⎤⎦

n=1

∞

∑  
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σ rr
( f ) (r,θ ) = Lrz

( f )ε zz + ( CrrCθθ +Crθ )F01
( f )ξλ0−1 + Pnjξ

λnj−1 Fnj
( f ) cos nθ +Gnj

( f ) sin nθ⎡⎣ ⎤⎦
j=1

2

∑
n=2

∞

∑

σ rθ
( f ) (r,θ ) = Rnjξ

λnj−1 Fnj
( f ) sin nθ −Gnj

( f ) cos nθ⎡⎣ ⎤⎦
j=1

4

∑
n=2

∞

∑
!

  (2.42) 

where ( )rz zr rr rL C H C C θ= + + , (1 )nj rr nj r njP C C θλ β= + + , and [( 1) ]nj r nj njR nθµ λ β= − − .    

2.2.2.2 Interfacial displacement and traction continuity 

The coefficients ( ) ( ),m m
nj njH F  and ( )m

njG  that characterize the displacement field in the 

matrix phase given in the below are subsequently obtained in terms of the fiber coefficients 
( ) ( ),f f
nj njH F  and ( )f

njG  from the interfacial displacement and traction continuity conditions at the 

fiber/matrix interface r a= , 

 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( , ) ( , ), ( , ) ( , ), ( , ) ( , )

( , ) ( , ), ( , ) ( , ), ( , ) ( , )

f m f m f m
z z r r
f m f m f m
zr zr rr rr r r

u a u a u a u a u a u a
a a a a a a

θ θ

θ θ

θ θ θ θ θ θ
σ θ σ θ σ θ σ θ σ θ σ θ

= = =

= = =

      
  

 (2.43) 

where the traction components at the common interface on the cylindrically orthotropic fiber side 

are given in the preceding section and the corresponding tractions on the (transverse) isotropic 

matrix side are given in Eqs. (2.20) and (2.28) in Section 2.2.1. 

The axial shear problem is decoupled from the transverse normal and shear problems. 

Hence applying the two interfacial continuity conditions on the axial displacement ( , )zu r θ  and 

axial shear stress ( , )zr rσ θ  at r a=  and using the orthogonality of cosnθ  and sin nθ  terms, 

we obtain the following relations between fiber and matrix coefficients associated with 

different-order harmonic terms for 1n ≥ , 

 ( ) ( )
1 12 13[2 2 ]m f

n n nδ ε ε= ⋅ + ⋅H c H d   (2.44) 

where ( ) ( ) ( )
1 2[ , ]f f f T

n n nH H=H , ( ) ( ) ( ) ( ) ( )
1 2 3 4[ , , , ]m m m m m T

n n n n nH H H H=H , and the matrices ,c d  are given 

below. The Kronecker delta term 1nδ  is present because the average strains are introduced only 

through the 1n =  terms cosθ  and sinθ . Eq. (2.44) can be re-expressed as follows: 

 ( )
1 1 1

( )
2 1 121 1

1
3 2 132 2

4 2 2

0 0
20 0
20 0

0 0

m
n

f
n n

n
n n

n

H c d
H Hc d
H Hc d
H c d

εδ ε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (2.45) 
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in which ( ) ( ) ( ) ( )
1 2 1 1 2( ) 2 ,  1 ,  1,  0f f m m

zr n A Ac C n n c c d dλ µ µ= + = − = − = .  

The transverse normal and shear problems in the r θ−  plane are coupled. Hence applying 

the four interfacial continuity conditions, and using orthogonality of cosnθ  and sin nθ  terms, 

we obtain the following relations between matrix and fiber coefficients, for 0n =   

 ( )
( )01 01 01 01
01 11 22 33

02 02 02 02
( )

m
fF b c dFF b c dε ε ε⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.46) 
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 (2.47) 

For 2n ≥  

 ( ) ( ) ( ) ( )
2 0 22 33

( ) ( ) ( ) ( )
2 0 23

A F A F A ( )
A G A G A 2

m m f f
n n n n n

m m f f
n n n n n

δ ε ε
δ ε

= + −
= +

 

(2.48) 

in which  
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 (2.49) 

The Kronecker delta term 2nδ  is present because the average strains are introduced only 

through the 2n =  terms cos 2θ  and sin 2θ .   

2.3  The Exterior Problem 

To complete the solution to the unit cell problem, the unknown coefficient comprising 
( ) ( ) ( ), ,f f f
nj nj njF G H  are determined by applying the variational principle, Eq. (2.2), with the surface 

displacements and tractions on the opposite faces of the unit cell related through the periodic   

boundary conditions. Use of the two-scale displacement representation given by Eq. (2.7) in the 

periodic displacement boundary conditions, Eq. (2.1), reduces these periodicity conditions to 

constraints on the fluctuating displacement components. For different geometrical arrays, we 

have, 

(a) Rectangular or parallelogram arrays:  1 3 2 4( ) ( ), ( ) ( )  i i i iu S u S u S u S′ ′ ′ ′= =                      
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(b) Hexagonal array:          1 4 2 5 3 6( ) ( ), ( ) ( ), ( ) ( )    i i i i i iu S u S u S u S u S u S′ ′ ′ ′ ′ ′= = =               

  (2.50) 

Since the out-of-plane and in-plane problems are uncoupled, the coefficients comprising 
( ) ( ),f f
nj njF G and ( )f

njH  are found independently upon utilizing the reduced periodicity conditions 

in the variational principle. Implementing these conditions for the inplane problem in the first 

variation of the functional, Eq. (2.4), we obtain 

(a) Rectangular or parallelogram arrays 
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′ ′+ + + + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
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∑∫
 (2.51) 

(b) Hexagonal array 
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∑∫
 (2.52) 

from which the system of equations for the unknown coefficients in ( ) ( ),f f
nj njF G  are obtained in 

the form 
 ( ) ( )ˆ ˆTf f

inε⎡ ⎤ =⎣ ⎦A F G B  (2.53) 

where [ ]11 22 33 23, , ,2 T
inε ε ε ε ε= and ( ) ( ),f fF G  are comprised of the individual vectors ( ) ( ),f f

n nF G . 

Similarly, for the out-of-plane loading, the first variation of the functional becomes 

(a) Rectangular or parallelogram arrays 

 
( ) ( ) ( ) ( ) ( ) ( )

2 4

1 1 1 2 1 1 1 2
1 3

0
i i

i i i i i iS S
i i

T S u S u S dS u S T S T S dSδ δ+ −
= =

′ ′ ′− + + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ∑∫ ∫  (2.54) 

(b) Hexagonal array 

 

  
δT1 Si( ) ′u1 Si( )− ′u1 Si+3( )⎡⎣ ⎤⎦Si

∫ dS
i=1

3

∑ + δ ′u1 Si( ) T1 Si( ) +T1 Si−3( )⎡⎣ ⎤⎦Si
∫ dS

i=4

6

∑ = 0  (2.55) 

from which the system of equations for the unknown coefficients in ( )f
nH  are obtained in the 

form 

 
    
!AH( f ) = !Bεout  (2.56) 
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where [ ]12 132 ,2 T
outε ε ε=  and ( )fH contains the individual ( )f

nH s. The elements of    Â,  !A  and 

   B̂,  !B  are obtained in terms of surface integrals along the four or six sides 1 6,...S S  of the unit 

cell. 

To implement periodicity conditions in the variational principle, the fluctuating 

displacements in the cylindrical coordinate system are transformed to the Cartesian system using 

the displacement transformation equations. Similarly the fluctuating Cartesian strains, used in the 

calculation of stresses and tractions through Hooke’s law and Cauchy’s relations, respectively, 

are obtained from the strain transformation equations, with the cylindrical fluctuating strains 

determined from the corresponding fluctuating displacement components ( , ),  ( , )z ru r u rθ θ′ ′ , 

( , )u rθ θ′  using strain-displacement relations (Wang and Pindera, 2015). The expressions for the 

axial shear stresses and transverse normal and shear stresses in the Cartesian coordinate system 

along the unit cell’s boundary obtained from Hooke’s law are 
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(2.57) 

where the fluctuating strain components are related to their counterparts in the cylindrical 

coordinates. 

2.4  Homogenized Constitutive Equations 

2.4.1 Transversely Isotropic Phases 

The homogenized Hooke’s law is obtained by averaging local constitutive equations in 

each phase 

 ( ) ( ) ( ) ( )
( )

1 C Ck k k k
k kk k

dV v
V

σ ε ε= =∑ ∑∫  (2.58) 

where the phase volume fractions obey the relationship ( ) 1k
k
v =∑ .    

With the knowledge of the coefficients in ( ) ( ),f f
n nF G and ( )f

nH , the remaining coating and 

matrix phase coefficients may be calculated using Eqs. (2.21)-(2.22), and (2.29)-(2.36). Hence 
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the average strains ( ) ( , , )k k f c mε =  in the individual phases may be related to average 

macroscopic strains through the localization relations 

 ( ) ( )Ak kε ε=  (2.59) 

where ( )A k  are Hill’s elastic strain concentration matrix for the each individual phase (Hill, 

1963). The homogenized relationship between stress and strain averages then becomes 
 ( ) ( )

( )C A Ck k
kk
vσ ε ε∗= =∑  (2.60) 

where ( ) ( )
( )C C Ak k
k

k
v∗ =∑ . In light of the phase volume fraction relationship, the homogenized 

stiffness matrix for the unit cell may be written as 

(a) Fiber/matrix two-phase material system: 
 ( )* ( ) ( ) ( ) ( )

( )C C C C Am f m f
fv= + −  (2.61) 

 

(b) Fiber/coating/matrix three-phase material system: 

 ( ) ( )* ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )C C C C A C C Am f m f c m c
f cv v= + − + −  (2.62) 

The average fiber strains are obtained in closed form upon integrating the local expressions 

over the fiber strains contain only the applied average strains and the displacement coefficients 

associated with the 0,2n =  harmonics in the case of transverse normal and shear strains, and 

the 1n =  harmonic in the case of axial shear strains 
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 (2.63) 

where ,k f c= , and ( ) 1fγ = , ( )2( ) 1f b aγ = + .     

These relations reduce to the expressions reported by Drago and Pindera (2008) for 

isotropic phases. The columns of the matrices ( )A f  and ( )A c  are generated by solving the unit 

cell problem for one non-zero average strain of a known magnitude applied at a time, with the 

remaining average strains kept zero. The solution produces the unknown coefficients in 
( ) ( ),F Gk k
n n and ( )H k

n  for the applied loading, and thus the average fiber and coating strains. The 
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elements of the strain concentration matrix occupying the column that corresponds to the applied 

non-zero average strain are then obtained by taking the ratio of the averaged strain in the fiber 

phase and the average applied strain. 

2.4.2 Orthotropic-Fiber Composites 

Based on the special characteristics of orthotropic fiber constitutive equations, when 

transformed from polar coordinate to Cartesian coordinate, the stiffness matrix in Cartesian 

coordinate would have “θ ” effects. So the homogenized Hooke’s law for the unit cell is 

obtained directly by averaging the local stresses  

 ( ) ( ) *
( )

1 ( )x Ck k
k kk k

dV v
V

σ σ σ ε= = =∑ ∑∫  (2.64) 

This is in contrast with the approach based on averaging local constitutive equations in 

each phase and then finding the relation between phase and composite strain averages through 

Hill’s concentration factors. The present approach is preferable as it does not require a fourth 

order stiffness tensor transformation from cylindrical to Cartesian coordinates. 

To generate the elements of homogenized stiffness matrix *C , one non-zero homogenized 

strain component is applied to the unit cell at a time, and the fiber phase coefficients ( ) ( ),f f
n nF G  

and ( )f
nH , are obtained for the particular loading upon solving the corresponding boundary-value 

problem, with the matrix phase coefficients obtained from Eqs. (2.44)-(2.49). Hence the local 

stresses in the individual phases are obtained in cylindrical coordinates, transformed to Cartesian 

coordinates using the standard 2nd-order transformation equations, and subsequently averaged 

throughout each phase domain. For the matrix phase, this is carried out numerically (and the 

explicit expressions of which are expressed in Section 2.2.1 and Appendix A), while for the fiber 

phase the following closed-form expressions are obtained analytically in the limit as the fiber 

core which excludes singular stresses tends to zero, 

  σ 11
( f ) = 2(Czr

( f )λ0 +Czθ
( f ) ) (λ0 +1) ⋅F01

( f ) + Lzz
( f ) ⋅ε11  

   

σ 22
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( f ) +Crθ
( f ) )λ0 +Crθ

( f ) +Cθθ
( f ) ] (λ0 +1) ⋅F01

( f )

                       + (P2 j
( f ) − S2 j

( f ) − 2R2 j
( f ) ) 2(λ2 j

( f ) +1) ⋅F2 j
( f )
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( f ) ) 2 ⋅ε11
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σ 33
( f ) = [(Crr

( f ) +Crθ
( f ) )λ0 +Crθ

( f ) +Cθθ
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( f )λ1 +Czθ
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( f )  

  σ 13
( f ) = (Czr

( f )λ1 +Czθ
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  (2.65) 

where ( ) ( ) ( ) ( )( )f f f f
iz iz i irL C H C Cθ= + + , , ,i z r θ=  and 2 2 2(1 2 )j r j jS C Cθ θθλ β= + + .    

Hence for the particular loading by one non-zero homogenized strain component, taking 

the ratio of the average stress to the applied average strain generates one column of the 

homogenized stiffness matrix *C . The accuracy of averaging the stress fields has been 

confirmed by employing both volume and surface integration using the average stress theorem, 

 

   
σ (k ) = 1

V(k )

σ (k ) (x)dV(k )V( k )
∫ = 1

V(k )

σ (k ) (x)! n(k ) dS(k )S( k )
∫  (2.66) 

where ( )x kS∈  in the surface integral. Moreover, we have also confirmed by direct numerical 

calculation that the stress and strain fields satisfy the Hill-Mandel energy equivalence between 

the homogenized and local quantities,  

 

    
1
V

σ x( )!ε(x)dV
V∫ =σ !ε  (2.67) 

which are discussed in details in next chapter. This provides additional confidence in the 

extended theory and the associated implemented numerical procedure. 

2.5  Summary  

This chapter establishes the theoretical framework of the locally exact homogenization 

theory. The displacement fields are expressed using Fourier series expansion representation with 

unknown coefficients after solving the Navier’s equations. The relationship between the 

unknown coefficients of fiber, coating (for three-phase composites) and matrix is derived by 

applying the stress and displacement continuity conditions. Then two systems of equations, for 

the decoupled inplane and out-of-plane problem, are set up to solve the remaining unknowns by 
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employing the balanced variational principle proposed by Drago and Pindera (2008). Finally, the 

homogenized constitutive relationship is obtained by averaging local constitutive equations in 

each phase. Hill’s concentration matrix (Hill, 1963) is used for (transversely) isotropic properties 

to simplify the process, but not preferred for orthotropic constituents that bring in “θ ” effect 

during the fourth order stiffness tensor transformation from cylindrical to Cartesian coordinates. 

The theory proposed can be treated as an efficient micromechanics tool to accommodate 

fiber/matrix or fiber/coating/matrix composites, and cover different geometrical properties – 

hexagonal, rectangular (square), parallelogram (tetragonal) arrays, as well as different material 

properties – (transversely) isotropic, orthotropic constituents. The easy input constructions, 

which are just geometrical and material properties of the composites, as well as the quick 

execution that is explained later in this dissertation, are the most significant contributions for the 

framework of LEHT. Compared with other models, this theory can be promoted among 

professionals and non-professionals alike because of the characteristics discussed above. Next 

chapter we will investigate the accuracy, stability and efficiency of the present theory against 

other classical theories, analytical and numerical techniques.   

 



! 38!

Chapter 3  

Validation 

3.1  Two-Phase Composite Materials 

3.1.1 Convergence Study 

We first demonstrate the extended theory’s convergence behavior by calculating 

homogenized engineering moduli of graphite/epoxy and glass/epoxy unidirectional composites 

as a function of the number of eigenfunctions used in the displacement field representation. The 

elastic moduli of the fiber and matrix phases are listed in Table 3.1. 

 

Material (GPa)AE  (GPa)TE  (GPa)Aµ  (GPa)Tµ  Aν  
AS4 graphite fiber 225 15 15 7 0.20 

E-glass fiber 69.0 69.0 28.28 28.28 0.22 
Boron fiber 420 420 175 175 0.20 

3501-6 epoxy 4.2 4.2 1.567 1.567 0.34 
Aluminum 69.0 69.0 25.94 25.94 0.33 

Table 3.1 Elastic fiber and matrix properties employed in the calculations. Note that the AS4 
graphite fiber is transversely isotropic with 22 33E E= , 12 13ν ν=  and 23 22 232(1 )G E ν= +  and 
the remaining constituents isotropic. 
 

While the graphite fibers are transversely isotropic, glass fibers are isotropic with a greater 

in plane elastic modulus contrast relative to the epoxy matrix than in the case of graphite fibers. 

Three fiber volume fractions are used in this convergence study to cover a wide range of 

reinforcement content, namely 0.05, 0.30 and 0.60. Unit cells with centered fibers were 

employed in the homogenized moduli calculations. The homogenized engineering moduli are 

evaluated by using the homogenized compliance matrix obtained from the inverse of the 

homogenized stiffness matrix established in Eq. (2.61) or (2.62), 1[ ]S C∗ ∗ −= . Then the 

homogenized moduli for transversely isotropic materials are obtained from the following 
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relations, 

12
11 22 12 13

11 22 33 11

1 1 1, , A
A T

A

E E E E S S
S S S E E

ν ν∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗= = = = = = = − = −     

12 23
55 66 44

1 1 1,A A T TG G
S S S

µ µ µ µ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗= = = = = = =  !

(3.1) 
Figs. 3.1-3.3 demonstrate convergence behavior of the homogenized Young’s and shear 

moduli TE
∗   and AG

∗  of hexagonal, square and tetragonal arrays, respectively, for both the 

graphite/epoxy and glass/epoxy composites. Similar behavior is observed for the homogenized 

Poisson’s ratios Aν
∗   and Tν

∗ . The moduli of hexagonal and square arrays have been normalized 

by the corresponding moduli generated using the finite-volume direct averaging micromechanics 

(FVDAM) theory (Gattu et al., 2008; Khatam and Pindera, 2009), demonstrated to be 

comparable to that of the finite element method (Cavalcante et al., 2012); while the moduli of 

parallelogram array whose values have been normalized by moduli corresponding to harmonic 

number 16N = , which should be the converged values for their respective counterparts. Hence 

converged values correspond to moduli ratio of 1.0. As observed, generally greater number of 

eigenfunctions is required to obtain converged moduli with increasing fiber volume fraction for 

all different fiber types. Nonetheless, converged moduli are obtained with as few harmonics as 8, 

and at most 12 for both materials. 

Figs. 3.4-3.6 compares the converged in-plane stress fields 22 2 3( , )y yσ , 33 2 3( , )y yσ , 

23 2 3( , )y yσ  for hexagonal, square, and tetragonal arrays of unidirectional graphite/epoxy with 

fiber volume fraction of 0.25 generated using 12 harmonics under unidirectional loading by the 

homogenized stress 22 0σ ≠ . For these calculations offset fibers were employed placed at (0, −1, 

−1) relative to the unit cells’ centroids. For the hexagonal array L = 6.204 while for the square 

array L = H = 10, and for tetragonal array H = 10.746, L=9.306, and 3ϕ π= . For all of the 

three arrays the fiber radius was 2.8209. Examination of stress fields generated using 4, 8 and 12 

harmonics indicates that rapid stress field convergence is achieved with just 8 harmonics, 

resulting in good estimates of stress field magnitudes and distributions. The higher transverse 

stress in the fiber embedded in the square unit cell produces higher transverse Young’s modulus 

than the hexagonal array. This well-known result is demonstrated in the following section. 
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Figure 3.1 The convergence of homogenized moduli of hexagonal array with the number of 
harmonic eigenfunctions for graphite/epoxy and glass/epoxy with fiber volume fractions of 0.05, 
0.30 and 0.60 relative to FVDAM predictions. 
 

  

  

  

  
Graphite/epoxy Glass/epoxy 
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Graphite/epoxy Glass/epoxy 

Figure 3.2 The convergence of homogenized moduli of hexagonal array with the number of 
harmonic eigenfunctions for graphite/epoxy and glass/epoxy with fiber volume fractions of 0.05, 
0.30 and 0.60 relative to FVDAM predictions. 
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Graphite/epoxy Glass/epoxy 

Figure 3.3 The convergence of homogenized moduli of parallelogram array with the number of 
harmonic eigenfunctions for graphite/epoxy and glass/epoxy with fiber volume fractions of 0.05, 
0.30 and 0.60 relative to the converged value predictions.!
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Figure 3.4 Converged stress distributions 22 2 3( , )y yσ in hexagonal, square and parallelogram 
unit cells of a graphite/epoxy composite with the fiber volume fraction 0.25 subjected to the 
unidirectional loading 22 0σ ≠  at the applied strain 22 0.01ε = . 
 

  

 

 

Figure 3.5 Converged stress distributions 33 2 3( , )y yσ in hexagonal, square and parallelogram 
unit cells of a graphite/epoxy composite with the fiber volume fraction 0.25 subjected to the 
unidirectional loading 22 0σ ≠  at the applied strain 22 0.01ε = . 
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Figure 3.6 Converged stress distributions 23 2 3( , )y yσ in hexagonal, square and parallelogram 
unit cells of a graphite/epoxy composite with the fiber volume fraction 0.25 subjected to the 
unidirectional loading 22 0σ ≠  at the applied strain 22 0.01ε = . 
 

The utility of the analytical solution approach employed herein lies in its ability to ensure 

continuity of both tractions and displacements at the fiber/matrix interface. This will be 

important in our future investigations dealing with interfacial debonding as well as surface 

effects in nanotechnology applications. Fig. 3.7 demonstrates the rapid convergence of in-plane 

radial and circumferential tractions ( , )rr r aσ θ=  and ( , )r r aθσ θ= with harmonic number 

calculated around the fiber/matrix interface. We note that traction continuity is maintained for all 

harmonics employed in the solution, with no visually discernible differences between traction 

components on either side of the fiber/matrix interface. This is due to the explicit enforcement of 

traction (and displacement) continuity in the unit cell solution. Similar results have been obtained 

for the in-plane interfacial displacement components ( , )ru r a θ= , ( , )u r aθ θ=  and for the 

out-of plane interfacial displacement ( , )zu r a θ=  and traction ( , )rz r aσ θ= under the 

corresponding loading.  
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Hexagonal array Square array 

Figure 3.7 Convergence of the radial and tangential tractions, as well as the displacement 
components at the fiber/matrix interface of a graphite/epoxy composite with 0.25 fiber volume 
fraction with increasing number of harmonics by applying uniaxial loading.   
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3.1.2 Stability of the Solution 

Convergence of the homogenized moduli with the number of eigenfunctions demonstrated 

in the foregoing implies convergence of the unknown coefficients in the Fourier series 

representation of fluctuating displacements, Eqs. (2.17) and (2.23). This has been demonstrated 

by Drago and Pindera (2008) for square arrays of isotropic inclusion/matrix phases, and is also 

the case in the present study. A demanding test of the solution’s stability is the demonstration 

that in the limit as the fiber volume fraction becomes very small, the solution reduces to the 

Eshelby solution (Eshelby, 1957) with just the first few terms remaining, and the higher-order 

coefficients becoming vanishingly small. 

To demonstrate this, we subject a hexagonal unit cell with 0.05% fiber content to uniaxial 

loading by 22 100MPaσ = . The material system is graphite/epoxy, Table 3.1. The solutions are 

then generated using an increasing number of harmonics from 2n = , which corresponds to the 

Eshelby solution as the fiber volume fraction tends to zero, to 16n = . The inplane stresses

22 2 3( , )y yσ , 33 2 3( , )y yσ , 23 2 3( , )y yσ  are illustrated in Fig. 3.8 for 2n =  and 16 harmonics and 

compared with the exact Eshelby solution. The stress distributions have been plotted in the 

square region in the vicinity of the fiber with the hexagonal boundaries outside of this region. 

The locally-exact homogenization theory solution is seen to remain very stable regardless of the 

number of harmonics employed (at least up to sixteen). Similar results are obtained for the 

in-plane shear stress 23 2 3( , )y yσ  distributions. Qualitative comparison with the Eshelby solution 

is very favorable. Quantitative comparison shown in Fig. 3.9 in terms of the absolute differences 

2 3 2 3 2 3( , ) ( , ) ( , )Eshelby
ij ij ijy y y y y yσ σ σΔ = −  for the inplane stress components is also favorable. 

The differences are seen to be very small fractions of the maximum stresses observed in each 

distribution. Examination of the leading coefficients ( ) ( )
01 22,f fF F  as a function of harmonics 

vis-à-vis those of the Eshelby solution indicates insignificant differences, with the higher-order 

coefficients practically zero. 
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! ! ! !
          N = 2                   N = 16                  Eshelby 
 

Figure 3.8 Stress distributions in a hexagonal unit cell with a dilute fiber volume fraction 
solution as a function of the number of harmonics, mimicking the Eshelby and demonstrating the 
locally-exact solution’s stability with increasing harmonic number. 
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(a) 22 2 3( , )y yσΔ  (b) 33 2 3( , )y yσΔ  (c) 23 2 3( , )y yσΔ  

Figure 3.9 Distributions of stress differences in a hexagonal unit cell with a dilute fiber volume 
fraction between the locally-exact homogenization theory results generated with 16 harmonics 
and the Eshelby solution based on results in Fig. 3.8. 

 

3.1.3 Comparison with Published Results 

Results for the homogenized moduli of hexagonal (as well as square) periodic arrays are 

available in the literature for quantitative comparison with present results. In particular, Eischen 

and Torquato (1993) have calculated inplane moduli of hexagonal arrays comprised of phases 

with a wide range of moduli contrast using the boundary-element method which have been used 

as benchmark results by several investigators. Helsing (1995) has demonstrated that these results 

may be obtained much more efficiently and with greater numerical resolution using an integral 

equation approach. Most recently, Mogilevskaya et al. (2012, 2014) provided comparison 

between the above results and the results generated using previously developed equivalent 

inhomogeneity and multi-pole expansion techniques for hexagonal and square arrays, 

respectively. These results are employed for quantitative comparison with our locally-exact 

homogenization theory.    

 Tables 3.2-3.3 shows comparison of the normalized homogenized plane bulk modulus 
* ( )m
Tk k  and transverse shear modulus ( )m

Tµ µ∗  of an hexagonal array of stiff inclusions 

embedded in a much softer matrix generated by the locally-exact homogenization theory (LEHT) 

with the results reported in Refs. (Helsing, 1995; Mogilevskaya et al., 2012). This is case 2 with 
( ) ( ) ( ) ( )1, 0.35, 135, 0.20m m f fµ ν µ ν= = = =  considered by Eischen and Torquato (1993) who 

reported data with just two significant digits (not included in Table 3.2). We report our results 

with five significant digits for direct comparison with those of Helsing (1995). In addition, we 
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also verify the accuracy of our calculations by leveraging the relationship that must be satisfied 

by transversely isotropic materials, 

 *

2(1 )
T

T
T

Eµ
ν

∗
∗=

+
 (3.2) 

As observed, the results of Ref. (Helsing, 1995) and LEHT agree to five, four, three and 

two significant digits in the low, medium, high and very high fiber volume fraction ranges, 

respectively. Moreover, the LEHT transverse shear moduli generated by the unit cell analysis 

coincide with those of Eq. (3.2) to five significant digits for all fiber volume fractions but one. 

Similar results have been obtained for the homogenized plane strain bulk modulus * ( )m
T Tk k . The 

results reported in Ref. (Mogilevskaya et al., 2012) to three significant digits agree with the 

LEHT and Ref. (Helsing, 1995) predictions in the low fiber volume fraction, but lose their 

significant digit accuracy with increasing fiber volume fraction. The accuracy deteriorates 

significantly at the highest fraction of 0.85. The above comparison provides additional evidence 

of the accuracy of the locally-exact homogenization theory with the newly extended capability to 

hexagonal periodicity. 

 

* ( )m
Tk k  Helsing Mogilevskaya 

N=7 
Mogilevskaya 

N=37 LEHT 

0.1 1.14137 1.141 1.141 1.14137 
0.2 1.31725 1.317 1.317 1.31725 
0.3 1.54202 1.543 1.543 1.54202 
0.4 1.83948 1.843 1.842 1.83948 
0.5 2.25228 2.262 2.260 2.25227 
0.6 2.86670 2.895 2.888 2.86667 
0.7 3.89641 3.978 3.959 3.89632 
0.8 6.12145 6.372 6.337 6.12090 
0.85 8.87779 9.347 9.370 8.87498 

Table 3.2 Quantitative comparison of the normalized homogenized transverse shear modulus 
* ( )m
T Tk k  of a hexagonal array of stiff inclusions with the results of Mogilevskaya et al. (2012) 

(both N=7 &37 cases) and Helsing (1995). 
 
 

For completeness, we also compare our predictions with those reported by Mogilevskaya et 

al. (2014) for a square array of inclusions. In this case, we focus on the homogenized transverse 

Young’s and shear moduli, as well as axial shear modulus of a porous solid whose comparison is 

presented in Table 3.4-3.5. Both sets of results are accurate to three significant digits upon 
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round-off of the LEHT predictions with the exceptions of the transverse shear modulus at very 

high porosity fractions. The result * ( )
44

m
TC µ  of Ref. (Mogilevskaya et al., 2014) at the porosity 

fraction of 0.75 appears to be erroneous as it increases relative to that at 0.70. 

!
* ( )m
T Tµ µ  Helsing Mogilevskaya 

N=7 
Mogilevskaya 

N=37 LEHT * * *[2(1 )]T T TG E ν= +  

0.1 1.17821 1.178 1.178 1.17821 1.17821 
0.2 1.40186 1.402 1.403 1.40186 1.40186 
0.3 1.69713 1.696 1.699 1.69715 1.69715 
0.4 2.11487 2.106 2.118 2.11489 2.11489 
0.5 2.75227 2.718 2.688 2.75232 2.75232 
0.6 3.80628 3.721 3.823 3.80637 3.80636 
0.7 5.74678 5.611 5.841 5.74688 5.74688 
0.8 10.17840 10.463 11.213 10.17821 10.17821 
0.85 15.64461 18.012 19.715 15.64173 15.64173 

Table 3.3 Quantitative comparison of the normalized homogenized transverse shear modulus 
* ( )m
T Tµ µ of a hexagonal array of stiff inclusions with the results of Mogilevskaya et al. (2012) 

(both N=7 &37 cases) and Helsing (1995). 
!
!

 
  (c22

* + c23
* ) 2kT

(m)    (c22
* + c23

* ) 2µT
m  

fV   Mogilevskaya LEHT Mogilevskaya LEHT 
0.05 0.774 0.77407 0.894 0.89364 
0.10 0.619 0.61873 0.810 0.81003 
0.15 0.505 0.50532 0.741 0.74083 
0.20 0.419 0.41877 0.681 0.68105 
0.25 0.350 0.35040 0.628 0.62755 
0.30 0.295 0.29488 0.578 0.57813 
0.35 0.249 0.24873 0.531 0.53124 
0.40 0.210 0.20959 0.486 0.48569 
0.45 0.176 0.17581 0.441 0.44056 
0.50 0.146 0.14619 0.395 0.39508 
0.55 0.120 0.11979 0.348 0.34850 
0.60 0.096 0.09583 0.300 0.29990 
0.65 0.074 0.07357 0.248 0.24782 
0.70 0.052 0.05212 0.190 0.18913 
0.75 0.029 0.03065 0.117 0.11012 

Table 3.4 Quantitative comparison of the normalized homogenized transverse moduli of a square 
array of porosities with the results of Mogilevskaya et al. (2014), with   µT

(m) = µA
(m) = 1GPa ,  

( ) ( ) 0.39;m m
T Aν ν= = ( ) ( ) 1e 6GPa,f f

T Aµ µ= = − ( ) ( ) 0.20f f
T Aν ν= = . 

!
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 44
* m

Tc µ  
55
* m

Ac µ  
fV  Mogilevskaya LEHT Mogilevskaya LEHT 

0.05 0.878 0.87763 0.905 0.90476 
0.10 0.757 0.75685 0.818 0.81818 
0.15 0.641 0.64099 0.739 0.73910 
0.20 0.533 0.53289 0.667 0.66653 
0.25 0.435 0.43468 0.600 0.59962 
0.30 0.348 0.34761 0.538 0.53758 
0.35 0.272 0.27214 0.480 0.47971 
0.40 0.208 0.20809 0.425 0.42535 
0.45 0.155 0.15476 0.374 0.37387 
0.50 0.111 0.11121 0.325 0.32466 
0.55 0.076 0.07635 0.277 0.27705 
0.60 0.049 0.04910 0.230 0.23032 
0.65 0.028 0.02861 0.183 0.18343 
0.70 0.013 0.01480 0.135 0.13456 
0.75 0.034 0.00981 0.078 0.07885 

Table 3.5 Quantitative comparison of the normalized homogenized transverse and axial shear 
moduli of a square array of porosities with the results of (Mogilevskaya et al., 2014). 
 

Material (GPa)AE  (GPa)TE  (GPa)Aµ  (GPa)Tµ  Aν  
Graphite fiber 214 14 7 5.83 0.25 
3501-6 epoxy 3.5 3.5 1.3 1.3 0.35 

Interface 5.25 5.25 2.059 2.059 0.275 
Table 3.6 Elastic fiber and matrix properties employed in the calculations. Note that the AS4 
graphite fiber is transversely isotropic with 22 33E E= , 12 13ν ν=  and 23 22 232(1 )G E ν= +  and 
the remaining constituents isotropic.  
 

3.2  Three-Phase Composite Materials 

We validate the developed solution by first showing that in the limit as the fiber volume 

fraction becomes very small, the results of Eshelby (1957); Kirsch (1898) are recovered 

regardless of the number of terms employed in the displacement field representation in the fiber, 

coating and matrix phases. This also demonstrates the solution’s stability with increasing number 

of harmonics. In the first case, we take the coating Young’s modulus to be thousand times stiffer 

than that of the matrix, while in the second case we take it thousand times softer. In both cases 

the ratio of the coating to fiber outer radii is 1.1b a = . Then we study the convergence of the 



! 52!

homogenized moduli and local stress fields as a function of the number of harmonic terms of 

non-dilute fiber volume fractions with different coating thicknesses. Finally, we compare our 

solution’s predictions with those reported in the literature based on finite-element and 

elasticity-based calculations.  

3.2.1 Stability of the Solution 

To demonstrate the solution’s stability and reduction to known solutions, we subject a 

hexagonal unit cell with the fiber volume fraction of 0.2% to uniaxial loading 22 100MPaσ =  

with the remaining stresses zero. The material system is graphite/epoxy considered by Jasiuk and 

Kouider (1993) with the fiber and matrix elastic moduli given in Table 3.6. The solutions are 

then generated using an increasing number of harmoncis from 2n = , which corresponds to the 

Eshelby solution as the fiber volume fraction tends to zeros, to 16n = . The inplane stresses 

22 2 3( , )y yσ , 33 2 3( , )y yσ  and 23 2 3( , )y yσ  are illustrated in Fig. 3.10 for 2n =  and 16 

harmonics and compared with the exact Eshelby solution for the coating that is thousand times 

stiffer than the matrix. The stress distributions have been plotted in the square region in the 

vicinity of the fiber with the hexagonal boundaries far outside this region. The locally-exact 

homogenization theory solution is seen to remain very stable regardless of the number of 

harmonics employed (at least up to sixteen). Comparison with the Eshelby solution is very 

favorable. Moreover, examination of the leading coefficients ( )
01
fF , and ( )

22
fF  as a function of 

harmonics vis-à-vis those of the Eshelby solution indicates insignificant differences, with the 

higher-order coefficients practically zero. 

The above results have been plotted using a color map that highlights the fiber and matrix 

stresses at the expense of very large coating stresses owing to the large coating stiffness. Hence 

these stresses are compared separately with the Eshelby solution along radial paths with the 

largest stress gradients in Fig. 3.11 for the 16n =  harmonic case, illustrating the locally-exact 

solution’s ability to accurately capture stress fields in thin interfacial layers. 

Setting the coating Young’s modulus to a very small value prevents stress transfer into the 

fiber, thereby mimicking a dilute hexagonal array of non-interacting holes equivalent to an 

infinite plate with a hole (Fig 3.12). For this problem, the maximum 22 2 3( , )y yσ  stress occurs at  

the top and bottom of the hole whose magnitude is three time the far-field stress, or 300 MPa. 
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(a) ),( 3222 yyσ  

   

(b) ),( 3233 yyσ  

   

(c) ),( 3223 yyσ  
N=2 N=16 Eshelby 

Figure 3.10 Comparison of stress distributions in a hexagonal unit cell with a dilute fiber volume 
fraction as a function of the number of harmonics with the Eshelby solution, demonstrating the 
locally-exact solution's stability with increasing harmonic number for ( ) ( ) 3/ 10c mE E =  and 

1.1/ =ab . 
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(c) ),( 3223 yyσ  

N=16 Eshelby 

Figure 3.11 Comparison of converged stress distributions in the stiff coating of a hexagonal unit 
cell with a dilute fiber volume fraction with the Eshelby solution for ( ) ( ) 3/ 10c mE E =  and 

1.1/ =ab .  
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(c) ),( 3223 yyσ  

N=2 N=16 Eshelby 

Figure 3.12 Comparison of stress distributions in a hexagonal unit cell with a dilute fiber volume 
fraction as a function of the number of harmonics with the Kirsch solution, demonstrating the 
locally-exact solution's stability with increasing harmonic number for ( ) ( ) 3/ 10c mE E −=  and 

1.1/ =ab . 
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Similarly, the minimum 33 2 3( , )y yσ  stress which is compressive occurs along the load axis at 

the hole boundary whose magnitude is equal to the far-field stress. These stresses are captured 

very well by the locally exact theory regardless of the number of harmonics used in the 

displacement fields.  

3.2.2 Convergence Study 

We consider hexagonal and square unit cells representative of graphite/epoxy composites 

with non-dilute reinforcement, and investigate convergence of the homogenized moduli and local 

stress fields with the number of harmonics in the displacement field representation for three 

interfacial layer thicknesses. The elastic moduli of the fiber and matrix phases are the same as in 

the preceding stability study listed in Table 3.6 which includes the coating Young's modulus 1.5 

times that of the epoxy matrix. The non-dilute fiber volume fraction is 0.50 and the coating 

thicknesses yield coating/ fiber radius ratios b a  of 1.01, 1.05 and 1.10, with the thinnest 

coating providing a demanding test of the theory's computational capability. 

The homogenized engineering moduli were calculated using the homogenized compliance 

matrix obtained from the inverse of the homogenized stiffness matrix established in Eq. (2.62),
* * 1[ ]S C −= , as described in (Wang and Pindera, 2015). Fig. 3.13 illustrates convergence behavior 

of the homogenized transverse Young’s and shear moduli *
TE  and *

TG , respectively, and axial 

shear moduli *
AG  for hexagonal and square unit cell architectures. Similar behavior (not shown) 

is observed for the homogenized Poisson’s radios Aν
∗  and Tν

∗ . The moduli have not been 

normalized to highlight the effect of the coating thickness whose increase yields stiffer response 

given its greater Young’s modulus relative to that of the matrix. The result indicates that at the 

considered fiber volume fraction, generally quicker convergence of the homogenized moduli is 

observed for the hexagonal array, with as few as 5 harmonics yielding converged transverse and 

axial shear moduli, and 10 yielding converged transverse Young’s modulus. Included in the 

figure are the corresponding results in the absence of coating ( 1.0b a = ), illustrating that the 

convergence behavior is not altered by the coating presence in the considered thickness range.   
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Hexagonal array   Square array 

Figure 3.13 Convergence of selected homogenized moduli with the number of harmonic 
eigenfunctions for a graphite/epoxy composite with fiber volume fraction of 0.50 and coating 
thickness as a parameter for ( ) ( )/ 1.5c mE E = . 
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(b) ),( 3233 yyσ  

   
(c) ),( 3223 yyσ  

Figure 3.14 Converged stress distributions generated with 12 harmonics in a hexagonal unit cell of a 
graphite/epoxy composite with the fiber volume fraction 0.50 and two coating thicknesses with 
modulus contrast ( ) ( )/ 1.5c mE E =  subjected to the unidirectional loading 022 ≠σ  at the applied 
strain 01.022 =ε : (left) 0.1/ =ab , (middle) 01.1/ =ab ; (right) 1.1/ =ab . 
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(c) ),( 3223 yyσ  

Figure 3.15 Converged stress distributions generated with 12 harmonics in a square unit cell of a 
graphite/epoxy composite with the fiber volume fraction 0.50 and two coating thicknesses with 
modulus contrast contrast ( ) ( )/ 1.5c mE E =  subjected to the unidirectional loading 022 ≠σ  at the 
applied strain 01.022 =ε : (left) 0.1/ =ab , (middle) 01.1/ =ab ; (right) 1.1/ =ab . 
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Fig. 3.14 compares the converged stress fields 22 2 3( , )y yσ , 33 2 3( , )y yσ  and 23 2 3( , )y yσ  

for hexagonal arrays of uncoated and coated fibers with the smallest and largest coating 

thickness. Similar stress fields are obtained for the square array (Fig. 3.15), with the higher 

transverse stress 22 2 3( , )y yσ  in the fiber yielding higher transverse Young’s modulus than the 

hexagonal array for all coating thickness (see Fig. 3.13). These stress fields were generated using 

12 harmonics under unidirectional loading by the homogenized stress 22 0σ ≠  at the applied 

strain of 22 0.01ε = . Unidirectional loading was achieved by adjusting the homogenized strains 

in Eq. (2.60) to obtain 22σ  as the only nonzero homogenized stress. When the coating stiffness 

is higher than that of the matrix, increasing coating thickness produces greater stress transfer into 

the fiber for both hexagonal and square geometries for the loading, yielding increasingly greater 

moduli seen in the convergence study of Fig. 3.13. Comparison of the stress distributions in both 

arrays without and with the thinnest coating for the given coating/matrix modulus contrast 

indicates very little difference, suggesting little effect on the homogenized moduli as observed in 

Fig. 3.13 and further illustrated in next chapter. The locally-exact elasticity solution is sensitive 

enough to accurately capture the small differences in stress distributions in the presence of very 

think coatings, highlighting the method’s ruggedness. The rapid convergence of both the 

homogenized moduli and local stress fields sets our method apart from other elasticity-based 

solutions such as the eigenstrain expansion approach, cf. Caporale et al. (2015), which require 

substantially greater number of harmonics for converged stress fields.    

3.3.3 Comparison with Published Results 

The results of an extensive investigation of the impact of interphases or coatings on 

homogenized moduli of unidirectionally-reinforced composites have been reported by Lagache 

et al. (1994). The authors employed the finite element method to generate the full set of 

homogenized moduli of transversely isotropic composites based on a hexagonal array of coated 

fibers with different coating moduli. The numerical solution was implemented following 

elements of the 0th-order homogenization theory, including displacement decomposition into 

average and fluctuating components within generalized plane strain framework, and periodic 

boundary conditions applied on the faces of a hexagonal unit cell representative of the 

transversely isotropic composite. Hence the numerical results of Lagache et al. (1994) may be 

compared directly with the present results based on the same geometry and solution 
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methodology applied within elasticity, rather than variational, framework. 

The results used in the comparison were generated for a unidirectional composite with the 

fiber volume fraction of 0.50 comprised of isotropic fibers embedded in an isotropic matrix with 

the elastic moduli: ( ) ( )84GPa, 0.22f fE ν= = , and ( ) ( )4GPa, 0.34m mE ν= = . These moduli are 

representative of a glass/epoxy composite. Four values of the interphase Young’s modulus were 

used, namely 4, 6, 8 and 12 GPa  with the Poisson’s ratio fixed at ( ) 0.34cν = . The fiber radius 

was 8.5 µm and the coating thickness 1.0 µm  with the unit cell dimensions adjusted 

accordingly. 

!
Homogenization 

Method 
* ( )m
TE E  * ( )m

AE E  * ( )m
TG G  * ( )m

AG G  *
Tv  *

Av  Coating 
  E (c)  (GPa) 

LEHT 2.66358 11.00460 2.51952 2.69616 0.41647 0.27241 4 
PMH 2.68875 11.00475 2.54948 2.71263 0.41321 0.27216 4 
LEHT 2.92551 11.06774 2.78403 2.96176 0.40796 0.27216 6 
PMH 2.91120 11.05735 2.77514 2.93674 0.40569 0.27191 6 
LEHT 3.08409 11.13087 2.94736 3.11810 0.40203 0.27210 8 
PMH 3.04255 11.10993 2.91075 3.06545 0.40067 0.27184 8 
LEHT 3.26772 11.25710 3.13934 3.29485 0.39468 0.27217 12 
PMH 3.19163 11.21508 3.06666 3.20829 0.39461 0.27187 12 

Table 3.7 Comparison of selected homogenized moduli predicted by the locally-exact 
homogenization theory with the PMH model (Lagache et al., 1994) for coated fiber 
unidirectional composite with different coating moduli. 
 

Table 3.7 presents comparison of the finite-element calculations and the present theory for 

the whole set of homogenized moduli normalized by the corresponding matrix moduli. However, 

three of them: * ( )m
TE E , * ( )m

TG G  and * ( )m
AG G  are more sensitive to changes in the 

coating’s stiffness than the axial Young’s modulus *
AE  and axial and transverse Poisson’s ratios 

*
Aν  and *

Tν . Overall, the results in Table 3.7 are seen to agree to one significant digit, whereas 

the axial and transverse Poisson’s ratios differ only in the third decimal place. We note that when 
( ) 4GPacE = , that is when the matrix and coating moduli are the same, we recover the results for 

the uncoated fiber composite. For this case, the moduli produced by the present method have 

been shown by Wang and Pindera (2015) to be accurate to 4 significant digits at the fiber volume 

fraction of 0.50 upon comparison with the results of Helsing (1995), often employed as a gold 

standard, which were generated using an integral equation method. In the present case, the 
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discrepancy is likely due to a relatively coarse discretization of both the matrix and the coating, 

with the coating discretized into a double-layer triangular element mesh as a compromise 

between efficiency and accuracy. The recent finite-element results of Sideridis et al. (2015) 

suggest that a larger number of elements is needed for fully converged results. Out results for the 

transverse Young’s modulus *
TE  also compare favorably with those of Mogilevskaya et al. 

(2010) (reported in Table 1 of this reference in a different form) which were generated using the 

authors’ elasticity-based equivalent inhomogeneity method under plain strain constraint. 

We also compare our results with those of Sevostianov et al. (2012) based on the complex 

potential representation of displacement and stress fields in an infinite series form for a square 

array of isotropic fibers coated by a very thin interphase layer such that 0.001b a− = . The fiber, 

coating and matrix moduli for this system are ( ) ( )24GPa, 0.20f fE ν= = ;   E
(c) = 3.03GPa,  

  ν
(c) = 0.50 and ( ) ( )2.7GPa, 0.35m mE ν= = . Table 3.8 presents comparison of the normalized 

homogenized transverse shear modulus * ( )m
TG G  in a wide fiber volume range predicted by the 

two analytical methods, showing very good agreement to within graphical resolution accuracy of 

the Sevostianov et al. data for this computationally demanding case.  

 

fv   0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.75 
LEHT 1.139 1.287 1.455 1.662 1.939 2.353 3.109 3.852 
Sevostianov et al. 1.142 1.293 1.461 1.671 1.948 2.360 3.129 3.817 

Table 3.8 Comparison of the normalized homogenized transverse shear modulus * ( )m
TG G  

predicted by the locally exact homogenization theory with the three-phase square array 
calculations of Sevostianov et al. (2012) for unidirectional composite with a very thin fiber 
coating. 

 

3.3  Validation for Composites with Cylindrically Orthotropic Fibers  

We validate the developed solution by first showing that in the limit as the fiber volume 

fraction becomes very small, the results of Eshelby (1957) are recovered regardless of the 

number of terms employed in the displacement field representation in the fiber and matrix phases. 

This also demonstrates the solution’s stability with increasing number of harmonics. First, we 

take the radial Young’s modulus to be about twenty-eight times stiffer relative to the 

circumferential modulus, and then we reverse this ratio, see Table 3.9 for the remaining moduli. 
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These engineering moduli were calculated using the stiffness matrix coefficients of 

experimentally determined single crystal graphite arranged in radial and circumferential patterns 

considered by Christensen (1994). 

 

Moduli 1rrC Cθθ >  1rrC Cθθ <  
(MPa)zzE  1,025,161 1,025,161 
(MPa)rrE  1,025,161 36,137 
(MPa)Eθθ  36,137 1,025,161 
(MPa)rθµ  4,500 4,500 
(MPa)zrµ  440,000 4,500 
(MPa)zθµ  4,500 440,000 

rθν  0.3432 0.0121 

zrν  0.1649 0.3432 

zθν  0.3432 0.1649 
Table 3.9 Elastic moduli of radially and circumferentially orthotropic graphite fibers based on 
single crystal graphite data reported in Christensen, (1994). 
 

Moduli 1rrC Cθθ >  1rrC Cθθ <  
(MPa)AE  1,014,171 1,014,171 
(MPa)TE  79,611 42,400 
(MPa)Tµ  24,600 11,800 
(MPa)Aµ  44,497 44,497 

Tν  0.6181 0.7966 

Aν  0.1928 0.1928 
Table 3.10 Effective transversely isotropic elastic moduli of graphite fibers based on data in 
Table 3.9 and equations provided by Christensen, (1994). 
 

Subsequently, we study the convergence of the homogenized moduli as a function of the 

number of harmonic terms for a non-dilute fiber volume fraction with the two rrE Eθθ  ratios. 

Included in the results are homogenized moduli based on equivalent transversely isotropic fiber 

moduli calculated using the formula developed by Christensen, (1994). The homogenized 

engineering moduli were calculated using the homogenized compliance matrix obtained from the 

inverse of the homogenized stiffness matrix established in Eq. (2.64), * * 1[ ]−=S C , as described 
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in Wang and Pindera (2015). We also show later that regardless of the rrE Eθθ  ratio the 

homogenized stiffness matrix *C  for the graphite/epoxy composite with cylindrically 

orthotropic fibers is characteristic of a transversely isotropic composite with the plane of isotropy 

normal to the fiber direction that satisfies the relation 44 22 23( ) 2C C C= − . 

3.3.1 Hill-Mandell Energy Equivalence 

The Hill-Mandell energy equivalence can be expressed as  

 1
ij ij ij ijV
dV

V
σ ε σ ε=∫  (3.3) 

in which local stress and strain distributions on the left side of the equation, for both fiber and 

matrix, can be obtained by applying macroscopic strain on the right side. Numerical results 

(Tables 3.11-3.12) are shown to prove the validity of the theory. Fiber volume fractions of 65% 

and 25% are employed to cover a wider range of fiber content, and the material properties are 

listed in Table 3.9. 

   

C-O 11ε  22ε  33ε  232ε  122ε  132ε  Sum V  
Left 324.4292 8.2994 8.2975 7.3273 10.5535 10.5501 76.4412 

Right 324.4293 8.3015 8.2994 7.3287 10.5562 10.5572 76.4444 
        

R-O 11ε  22ε  33ε  232ε  122ε  132ε  Sum V  
Left 324.4296 8.7596 8.7582 9.1609 10.5535 10.5501 77.0112 

Right 324.4296 8.7596 8.7582 9.1671 10.5516 10.5501 77.0121 
Table 3.11 Numerical comparison of Hill-Mandel energy equivalence between left side and right 
side of the equation for both circumferentially and radially orthotropic fibers with the fiber 
volume fraction 0.65fV = .  
 

C-O 11ε  22ε  33ε  232ε  122ε  132ε  Sum V  
Left 328.3878 9.9249 9.9253 9.2121 10.5358 10.5353 30.1218 

Right 328.3878 9.9221 9.9240 9.2101 10.5337 10.5304 30.1207 
        

R-O 11ε  22ε  33ε  232ε  122ε  132ε  Sum V  
Left 328.3877 10.0075 10.0082 9.5431 10.5358 10.5352 30.1613 

Right 328.3877 10.0057 10.0051 9.5448 10.5325 10.5346 30.1607 
Table 3.12 Numerical comparison of Hill-Mandel energy equivalence between left side and right 
side of the equation for both circumferentially and radially orthotropic fibers with the fiber 
volume fraction 0.25fV = .  
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As we can observe in the Tables 3.11 – 3.12, each column stands for the energy 

calculations for both left side and right side of the equation by apply the corresponding 

individual strain, while the last column means the average energy (total energy divided by 

volume) as shown in the Eq. (3.3). At least second decimal places are well matched for both 

individual and total energy calculations, which is sufficient to provide the proof and confidence. 

3.3.2 Stability of the Solution for the Dilute Case 

To demonstrate the solution’s stability and reduction to known solutions, we subject a 

hexagonal unit cell with the fiber volume fraction of 0.2% to uniaxial loading by 22 100MPaσ =  

with the remaining stresses zero. The material system is graphite/epoxy with the fiber moduli 

given in the Table 3.9 and the epoxy matrix taken as isotropic with the Young’s modulus 

3.5GPaE =  and Poisson’s ratio 0.35v = . The solutions were generated using an increasing 

number of harmonics from 2n = , which corresponds to the Eshelby solution as the fiber volume 

fraction tends to zeros, to 16n = . The inplane stresses 22 2 3( , )y yσ , 33 2 3( , )y yσ  and 

23 2 3( , )y yσ  obtained from the locally-exact solution remain stable as the number of harmonics is 

increased to 16n = . Comparison with the Eshelby solution is very favorable. This is illustrated 

in Fig. 3.16 for the transverse normal stress field 22 2 3( , )y yσ  generated with the locally-exact 

theory using 12n =  where the stress distributions in the matrix and cylindrically orthotropic 

fibers with modulus ratios 28.37rrE Eθθ = and 1 28.37 are illustrated separately. The stress 

distributions in the matrix have been plotted in the square region in the vicinity of the fiber with 

the hexagonal boundaries far outside this region. In the matrix region, the stress field is 

unaffected by the cylindrical orthotropy type, with the same distributions obtained for both the 

radially ( 28.37rrE Eθθ = ) and circumferentially ( 1 28.37rrE Eθθ = ) orthotropic fibers, Fig. 

3.16a. In contrast, the cylindrically orthotropy type affects the fiber stress distributions 

dramatically, producing a singular value at the fiber’s center for radially orthotropic fibers, Fig. 

3.16b, and a finite value for circumferentially orthotropic fibers, Fig. 3.16c. No discernible 

differences are observed between the locally-exact and Eshelby solutions. Moreover, 

examination of the leading coefficients ( ) ( )
01 22,f fF F  as a function of harmonics vis-à-vis those of 

the Eshelby solution indicates insignificant differences, with the higher-order coefficients 

practically zeros.  
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       Locally-exact homogenization                     Eshelby 
 

       
(a) matrix only 

 

  
(b) radially orthotropic fiber only with 28/ ≈θθEErr  

 

      
 

(c) circumferentialy orthotropic fiber only with 28/1/ ≈θθEErr  
Figure 3.16 Comparison of converged stress distributions ),( 3222 yyσ  in a hexagonal unit cell 
with a dilute fiber volume fraction subjected to uniaxial loading by 022 ≠σ  only generated 
using 12 harmonics. 
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                   Hexagonal array                  Square array 
 
Figure 3.17 Convergence of selected homogenized moduli with the number of harmonics for a 
graphite/epoxy composite with the fiber volume fraction 0.50 and modulus ratio θθEErr /  as a 
parameter. 
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3.3.2 Convergence Study 

Next, we consider a hexagonal unit cell representative of graphite/epoxy composites with 

the non-dilute fiber volume fraction 0.50fv = , and investigate convergence of the homogenized 

moduli as a function of the harmonic number for the two fiber orthotropy ratios rrE Eθθ , as 

well as the equivalent transversely isotropic properties. Figure 3.17 illustrates convergence 

behavior of the homogenized axial Poisson’s ratio Av
∗ , axial shear modulus  AG

∗  and transverse 

Young’s modulus *
TE  for hexagonal and square unit cell architectures at the fiber volume 

fraction of 0.50. Convergence is rapid for the three moduli of both array types, attained with 

typically fewer than eight harmonics. While the axisymmetric ( * *,A AE v  and *
Tk ) and axial shear 

moduli converge to the same values for both cylindrical orthotropy types, the homogenized 

moduli associated with transverse non-asymmetric loading ( * *,T TE v  and *
TG ) converge to values 

that depend on the orthotropy type. Regardless of the orthotropy type, the convergence is also 

rapid in these cases, and similar to that observed for *
TE  in Fig. 3.17. The differences in the 

converged moduli due to array type are most pronounced for the transverse Young’s modulus 
*
TE .  

3.3.3 Applicability of the Fiber Moduli Replacement Scheme 

In this section we first compare homogenized moduli of radially and circumferentially 

orthotropic fiber composites generated as a function of fiber volume fraction using the 

locally-exact theory with those of obtained from the composite cylinder assemblage (CCA) 

model based on equivalent transversely isotropic properties of cylindrically orthotropic graphite 

fibers. Hashin (1990) provides four of five equivalent transversely isotropic moduli for 

cylindrically orthotropic fibers employed in the calculation of composite homogenized moduli 

under axisymmetric and axial shear loading. Christensen (1994) provides formula for all five 

equivalent fiber homogenized moduli which, however, are not used in the calculation of 

homogenized moduli.  Both authors used an energy-based replacement scheme for cylindrically 

orthotropic fibers by the corresponding transversely isotropic moduli that produce the same 

energy in the fiber under boundary conditions used to determine the particular modulus. The five 

transversely isotropic moduli are ( )f
AE , ( )f

Aν , ( )f
Tk , ( )f

Aµ  and ( )f
Tµ . Closed-form expressions 
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for the first four moduli were obtained in terms of the cylindrically orthotropic moduli listed by 

Christensen (1994) as follows, 
2 2 2

2 2
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where rrC Cθθα = . The equivalent transverse shear modulus ( )f
Tµ  is obtained from the 

solution of a quadratic equation from the associated self-consistent scheme  

 2 0T Tµ βµ γ+ + =  (3.5) 

where the lengthy parameters β  are γ  are given by Christensen (1994). The expressions in 

two extreme conditions, in which the contrasts between cylindrical and circumferential 

properties become huge, are 
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  (3.6) 

Christensen also provides asymptotic closed-form expressions for the equivalent 

transversely shear moduli of radially and circumferentially orthotropic fiber with large moduli 

contrasts which, however, exhibit very slow convergence. Hence the equivalent transversely 

isotropic moduli of radially and circumferentially orthotropic graphite fibers reported in Table 

3.10 were obtained using the above equations. We also use these equivalent transversely 

isotropic fiber moduli in the locally-exact homogenization theory to calculate the resulting 

composite homogenized moduli as a function of fiber volume fraction for comparison with the 

calculations that explicitly account for the cylindrical orthotropy of graphite fibers. 
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Figure 3.18 Comparison of homogenized moduli of a unidirectional graphite/epoxy composite 
with cylindrically orthotropic (both radially and circumferentially orthotropic) fibers predicted 
by the locally-exact theory and Hashin’s CCA model based on equivalent transversely isotropic 
fiber moduli. 
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Figure 3.18 illustrates comparison of four of the five homogenized moduli of a 

unidirectional graphite/epoxy composite comprised of radially and circumferentially orthotropic 

fibers with elastic moduli given in Table 3.9 predicted by the locally-exact theory and Hashin’s 

CCA moduli based on equivalent transversely isotropic fiber moduli given in Table 3.10. The 

same homogenized moduli are obtained from the locally-exact homogenization theory for both 

radially and circumferentially orthotropic fibers under axisymmetric and axial shear loading. As 

will be shown in the sequel, these moduli are also the same as the corresponding moduli obtained 

using the equivalent transversely isotropic fiber moduli. Moreover, practically no differences are 

observed between moduli generated under axisymmetric loading, namely * *,A AE v  and *
Tk , as 

well as under axial shear loading, *
Aµ  or *

AG , by the two homogenization approaches despite 

differences in the microstructural representation of the unidirectional composite. This remarkable 

result is rooted in the small differences in the stress fields in the matrix phase of both models and 

similar values of the average fiber stresses under axisymmetric and axial shear loading despite 

the absence of explicit adjacent fiber interactions in the CCA model. Figure 3.19 illustrates this 

point for the homogenized axial shear modulus *
Aµ  through comparison of the axial shear stress 

fields in the hexagonal unit cell and the CCA model containing the same fiber volume fraction 

and subjected to pure shear loading by 12 0σ ≠ . Radially orthotropic fiber moduli were used in 

the locally-exact theory calculations. A higher fiber volume fraction was used for comparison to 

highlight the effect of adjacent fiber interaction, namely ( ) 0.65fν = . Comparable axial shear 

stress distributions are observed throughout the matrix phase of both the hexagonal unit cell that 

accounts for adjacent fiber interaction through the periodicity conditions, and in the matrix phase 

of the CCA model. Given comparable average axial shear stresses in the fiber phases of the 

hexagonal unit cell and the CCA model, comparable homogenized axial shear moduli are 

obtained as observed in Fig. 3.18. 

Figure 3.20 illustrates results for the homogenized plane strain bulk, axial and transverse 

shear moduli generated solely with the locally-exact homogenization theory using both radially 

and circumferentially orthotropic fiber moduli taken from Table 3.9 and their transversely 

isotropic counterparts from Table 3.10. No differences are observed between the homogenized 

axisymmetric and axial shear moduli obtained from the four sets of cylindrically orthotropic 

fiber moduli and their transversely isotropic equivalents. In the case of the homogenized  
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(a) ),( 3212 yyσ  
 
 

     
 

(b) ),( 3213 yyσ  
 
Figure 3.19 Comparison of stress fields in the matrix phase of the hexagonal unit cell with a 
radially orthotropic fiber and the CCA model with an equivalent transversely isotropic fiber of a 
unidirectional composite with the fiber volume fraction 65.0vf =  under pure axial shear 
loading by 012 ≠σ  at the applied axial shear strain of 01.012 =ε . Color bar in MPa. 
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Figure 3.20 Transverse shear moduli predicted by the locally-exact theory based on cylindrically 
orthotropic graphite fibers: verification of transverse isotropy retention (left), and comparison 
with predictions based on equivalent transversely isotropic graphite fiber moduli (right). 
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transverse shear modulus *
Tµ  or *

TG , differences are expected and observed between the 

predictions based on radially and circumferentially orthotropic moduli, with the radially 

orthotropic fibers yielding noticeable greater homogenized transverse moduli than the 

circumferentially orthotropic fibers at large fiber volume fractions. An additional check on the 

correctness of the results is provided by comparing the homogenized transverse shear moduli 

obtained from the direct calculation with the results based on the transversely isotropic relation 
* * *2(1 )T T TG E ν= + . These results are included in Fig. 3.20 with no differences observed. 

Moreover, the homogenized transverse shear moduli based on cylindrically orthotropic fiber 

moduli are somewhat more compliant than the corresponding moduli based on the transversely 

isotropic fiber counterparts taken from Table 3.10, with greater differences observed for the 

circumferentially orthotropic fibers at larger fiber volume fractions.      

The differences in the homogenized transverse shear moduli are rooted in the matrix and 

fiber transverse shear stress fields under pure shear loading by 23 0.01ε =  shown in Figs. 3.21 

and 3.22, respectively, for both radially and circumferentially orthotropic fibers and their 

transversely isotropic equivalents. The distributions were generated for a hexagonal unit cell 

with the fiber volume fraction of ( ) 0.65fν =  where noticeable differences in the homogenized 

transverse shear moduli are observed. The average matrix and fiber transverse shear stresses 

calculated from these distributions are listed in Table 3.13 and reflect the differences in the 

homogenized transverse shear moduli based on the four sets of cylindrically orthotropic fiber 

moduli. Included in the table are the corresponding results for both ( ) 0.10fν =  and ( ) 0.65fν =  

where little differences in the homogenized transverse shear moduli are observed based on the 

four sets of fiber moduli.  

 

 

   
ν f = 0.10    

ν f = 0.65  

RO " TI CO " TI RO " TI CO " TI 
Fiber (MPa) 44.16 44.93 42.45 43.03 113.77 117.99 88.25 95.83 

Matrix (MPa) 28.44 28.54 28.20 28.28 59.55 62.52 52.70 54.52 
Table 3.13 Average transverse shear stresses in the fiber and matrix phases of a hexagonal unit 
cell under pure transverse shear loading. 
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(a) Radially orthotropic fiber and transversely isotropic equivalent 
 

     
 

(b) Circumferentially orthotropic fiber and transversely isotropic equivalent 
 
Figure 3.21 Matrix transverse shear stress fields ),( 3223 yyσ  predicted by the locally-exact 
theory based on cylindrically orthotropic graphite fibers (left) and their transversely isotropic 
equivalents (right) in a unidirectional composite with the fiber volume fraction ( ) 0.65fν =  
under pure transverse shear loading by 023 ≠σ  at the applied transverse shear strain of 

01.023 =ε . Color bar in MPa. 
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(a) Radially orthotropic fiber and transversely isotropic equivalent 
 
 

     
 

(b) Circumferentially orthotropic fiber and transversely isotropic equivalent 
 
Figure 3.22 Fiber transverse shear stress fields ),( 3223 yyσ  predicted by the locally-exact theory 
based on cylindrically orthotropic graphite fibers (left) and their transversely isotropic 
equivalents (right) in a unidirectional composite with the fiber volume fraction ( ) 0.65fν =  
under pure transverse shear loading by 023 ≠σ  at the applied transverse shear strain of 

01.023 =ε . Color bar in MPa. 
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Finally, we demonstrate the effect of fiber array on the homogenized moduli of 

cylindrically orthotropic fiber unidirectional composites. Figure 3.23 presents comparison of 
* * *, ,A T TG G E  and *

Tν  moduli of hexagonal and square arrays of radially and circumferentially 

orthotropic graphite fibers generated using the locally-exact homogenization theory. The axial 

moduli *
AE  and *

Aν  are not included as the effect of fiber array type is minimal in this case. 

 
 
 

      
 

      
 
Figure 3.23 Comparison of homogenized moduli of hexagonal and square arrays predicted by the 
locally-exact theory. 
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3.4  Remarks 

The convergence study of both two-phase (fiber/matrix) and three-phase 

(fiber/coating/matrix) unidirectional composites has been firstly studied and compared with other 

classical theories, by covering a wide range of fiber volume fractions. The theory has been 

validated for different microstructural array types and material constituents, which proves the 

robustness of the LEHT against other micromechanics models. Some extreme cases are 

employed to show the advantage of the present theory. For instance, the converged homogenized 

moduli and stress distributions of three-phase composites with very thin coatings are generated 

to compare with the ones without any coatings.   

Also, the extension of the locally exact homogenization theory to accommodate 

cylindrically orthotropic fibers in periodic unidirectional composites with hexagonal and square 

microstructures enables rapid identification of the effects of fiber orthotropy on homogenized 

moduli and local stress fields. The efficiency with which the calculations are performed is rooted 

in the balanced variational principle which ensures stable and very accurate solution with 

relatively few terms in the Fourier series representation of the displacement fields in the 

cylindrically orthotropic fiber and matrix phases of the unit cell representative of the composite’s 

microstructures. Hence the results may be used as a gold standard to assess the accuracy of other 

homogenization approaches. Herein, we have shown that the previously proposed replacement 

scheme for cylindrically orthotropic fibers with very large moduli contrast by their transversely 

isotropic homogenized equivalents implemented within the CCA model produces remarkably 

accurate results for four of the five homogenized moduli associated with axisymmetric and axial 

shear loading. These moduli differ very little from the corresponding moduli obtained by the 

locally exact homogenization theory that explicitly accounts for radially and circumferentially 

orthotropic graphite fibers. The advantage of the locally exact theory lies in its ability to generate 

both the homogenized moduli and local stress fields that explicitly account for the cylindrically 

orthotropic nature of graphite fibers within the same framework with great efficiency. 

Perhaps most importantly, the unexplored effect of the fifth remaining modulus, namely the 

equivalent transverse modulus of cylindrically orthotropic fibers, on the homogenized transverse 

shear modulus of unidirectional composites has also been assessed using the self-consistent 

based replacement scheme proposed by Christensen (1994). Unlike the equivalent axisymmetric 

and axial shear fiber moduli, this replacement scheme produces equivalent transverse shear 
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moduli for radially and circumferentially orthotropic graphite fibers that may differ substantially. 

These differences translate into differences in the homogenized transverse shear moduli of the 

unidirectional composite which increase with the fiber volume fraction, with radially orthotropic 

fibers yielding stiffer response. Remarkably, Christensen’s replacement scheme produces 

homogenized transverse shear moduli that closely follow the actual values based on cylindrically 

orthotropic fiber moduli, with larger differences observed for circumferentially orthotropic fibers. 
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Chapter 4 

Numerical Results and Applications 

4.1 Numerical Results 

4.1.1 Two-Phase Composites: Homogenized Moduli vs Fiber Volume Fraction 

In this section we employ the locally-exact homogenization theory to calculate 

homogenized moduli of unidirectional composites comprised of constituents with different 

moduli contrast in a wide fiber volume fraction range. These systems include graphite/epoxy, 

glass/epoxy, boron/aluminum and aluminum with cylindrical porosities. Both hexagonal and 

square arrays are employed and the results are compared with the FVDAM theory calculations as 

well as the widely employed Mori-Tanaka scheme. We also discuss execution time for these 

calculations and data file construction. Because some homogenized moduli exhibit behavior with 

inclusion/porosity volume fraction which is not intuitive, we verify that the results do not violate 

thermodynamic bounds. 

We start with three of the five homogenized moduli, * * *, ,T T AE Gν , calculated as a function of 

the fiber volume fraction for the graphite/epoxy material system. The axial modulus *
AE  is not 

shown as it is approximated very well by the familiar rule-of-mixtures formula, with similar 

result for the axial Poisson’s ratio *
Aν . The results are generated for hexagonal, square and 

tetragonal arrays in the fiber volume interval [0.05,0.75] using increments of 0.05, normalized by 

the corresponding matrix moduli in the case of the transverse Young’s modulus and axial shear 

modulus, and compared with the corresponding results obtained from FVDAM and Mori-Tanaka 

calculation in Fig. 4.1. As observed, there is no difference between the locally exact analytical 

and FVDAM predictions for both hexagonal and square arrays. The array type only affects 

moduli associated with transverse loading, *
TE  and *

Tv , with very little difference observed in 

the axial shear moduli *
AG  in most of the realistic fiber volume fraction range, and no difference 
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in the axial Poisson’s ratio *
Aν . The Mori-Tanaka results are close to the hexagonal array 

predictions as would be expected from the model’s transversely isotropic framework. Fig. 4.2 

presents the corresponding predictions for the glass/epoxy material system. The constituent 

moduli contrast in glass/epoxy system is greater than for the graphite/epoxy composite, thereby 

resulting in greater differences in the homogenized moduli for the hexagonal, square and 

tetragonal arrays. The locally-exact analytical moduli and the FVDAM predictions are virtually 

identical, but greater differences are now observed between the hexagonal array transverse 

moduli and the corresponding Mori-Tanaka predictions. Since the angle between adjacent two 

sides of the tetragonal array is chosen as  ϕ = π 3 , resembling hexagonal array, the 

homogenized moduli are identical to those of hexagonal array.    

 

  

  
Figure 4.1 Homogenized moduli as a function of fiber volume fraction for a graphite/epoxy 
composite with hexagonal, square and tetragonal architectures. Comparison with FVDAM 
predictions and the Mori-Tanaka method. 
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Figure 4.2 Homogenized moduli as a function of fiber volume fraction for a glass/epoxy 
composite with hexagonal, square and tetragonal architectures. Comparison with FVDAM 
predictions and the Mori-Tanaka method. 

 

Finally, we illustrate the effect of fiber/matrix moduli mismatch on the homogenized 

moduli of graphite/epoxy, glass/epoxy, boron/aluminum and porous aluminum composites 

generated by the locally exact homogenization theory as a function of the inclusion/porosity 

content in Fig. 4.3. The results have been generated for hexagonal arrays. The homogenized 

transverse Young’s and axial shear moduli trends with the fiber content reflect the respective 

fiber/matrix moduli mismatch for the three fiber-reinforced composites. In the case of cylindrical 

porosities in aluminum matrix, the results are expected with the exception of the transverse 

Poisson’s ratio which increases above the value of 0.5 for porosity volume fractions greater than 

approximately 0.6. This counter-intuitive result, however, is consistent with the thermodymanic 

constraint * * * *1 2 ( )T A T Av E Eν< − ×  obtained by requiring that the homogenized compliance 

tensor *S  be positive-definite as dictated by the positive-definite constraint on the homogenized 

complementary energy. In contrast, the homogenized transverse Poisson’s ratio *
Tν  for 
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cylindrical porosities in a square array (not shown) decreases with increasing porosity content. 

 

  

  
Figure 4.3 Homogenized moduli as a function of fiber/porosity volume fraction for 
unidirectional composites with hexagonal architectures with different constituent moduli 
contrast. 

 

The quick convergence of the developed analytical solution to the unit cell boundary-value 

problem with relatively small number of harmonics makes the locally exact homogenization 

theory extremely efficient in execution. This is demonstrated in Fig. 4.4 for the graphite/epoxy 

composite wherein execution time needed to calculate the entire set of homogenized moduli or 

0.6 fiber volume fraction have been recorded as a function of harmonic number for square and 

hexagonal arrays. These calculations were performed on a PC platform running Windows 7 

Ultimate 64-bit operating system with 16 GB RAM and Intel(R) Core(TM) i5-3320M CPU @2.6 

GHz. As observed, hexagonal arrays are somewhat more computationally demanding because 

the balanced variational principle is employed on six faces of the hexagonal unit cell instead of 

just four faces for the square array. Nonetheless, the locally exact homogenization theory is very 
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efficient, consuming less than one second to calculate the entire set of homogenized moduli for a 

single volume fraction with very good accuracy using 15 harmonics. Similarly, less than 15s are 

needed to calculate the entire set of homogenized moduli using 15 harmonics in the fiber volume 

fraction range [0.05,0.75] with an increment of 0.05. Moreover, the negligible effort required to 

construct an input data file describing the unit cell geometry (rectangular vs hexagonal), fiber 

placement and radius which defines the fiber volume fraction, and the constituent elastic moduli 

contributes to the method’s overall efficiency as well as accessibility by specialist and 

not-specialist alike. 

 

 
   (a)                                   (b) 

Figure 4.4 Comparison of execution times as a function of harmonic number to generate one set 
of homogenized moduli for hexagonal and square arrays: (a) single fiber volume fraction of 0.6; 
(b) fiber volume fraction range [0.05-0.75] with an increment of 0.05. 
 
4.1.2 Evaluation of Effective Material Properties for Composites with Rhombic or 

Parallelogram Fiber Arrangements 

The homogenized moduli of the composites generated by LEHT are compared with 

another analytical technique – asymptotic homogenization method (AHM) and numerical 

method (FEM) (Rodríguez-Ramos et al., 2012) in Tables 4.1 – 4.5. The calculation by AHM are 

studied for 0N =10, where 0N  denotes the number of equations considered in the solution of 

the algebraic system. The Young’s moduli and Poisson’s ratio employed in most of the tables 

(except Table 4.3) are artificial values: ( ) 312GPafE = , ( ) 0.3fν = ; ( ) ( )2.6GPa,  0.3m mE ν= = . 
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Angle
θ  fV  

*
11C  *

22C  *
33C  *

23C  
LEHT AHM FEM LEHT AHM FEM LEHT AHM FEM LEHT AHM FEM 

30o 
0.1 34.579 34.579 34.576 4.0379 4.0376 4.0384 4.1118 4.1106 4.1123 1.6974 1.6980 1.6977 
0.2 65.702 65.701 65.700 4.6548 4.6551 4.6567 5.1230 5.0999 5.1189 1.9046 1.9075 1.9047 
0.3 96.948 96.920 96.940 5.3499 5.3531 5.3559 7.3099 7.0091 7.2488 2.1603 2.1539 2.1554 

50o 
0.1 34.578 34.578 34.577 4.0494 4.0494 4.0505 4.0573 4.0572 4.0582 1.7145 1.7145 1.7149 
0.3 96.853 96.853 96.851 5.5696 5.5696 5.5757 5.7070 5.7018 5.7117 2.3217 2.3232 2.3204 
0.5 159.47 159.46 159.46 8.1646 8.1740 8.1918 9.1781 8.9916 9.1903 3.3691 3.3977 3.3528 

70o 
0.1 34.578 34.578 34.577 4.0609 4.0609 4.0615 4.0594 4.0595 0.0600 1.7076 1.7075 1.7074 
0.3 96.851 96.851 96.850 5.7237 5.7209 5.7248 5.7002 5.6993 5.7027 2.2401 2.2425 2.2409 
0.5 159.44 159.44 159.44 8.9680 8.9147 8.9571 8.8064 8.7726 8.8087 3.0084 3.0557 3.0137 

Table 4.1 Comparison of the homogenized moduli between LEHT, AHM and FEM with rhombic periodic cells * * * *
11 22 33 23,  ,  ,  C C C C :  

 
Angle
θ  fV  

*
14C  *

24C  *
34C  *

44C  
LEHT AHM FEM LEHT AHM FEM LEHT AHM FEM LEHT AHM FEM 

30o 
0.1 -0.0064 -0.0063 -0.0061 0.0125 0.0124 0.0132 -0.0339 -0.0335 -0.0337 1.1620 1.1616 1.1622 
0.2 -0.0405 -0.0385 -0.0404 0.0442 0.0416 0.4346 -0.1792 -0.1699 -0.1783 1.3632 1.3629 1.3660 
0.3 -0.1694 -0.1434 -0.1643 0.0680 0.0635 0.0627 -0.6326 -0.5416 -0.6108 1.6806 1.6642 1.6868 

50o 
0.1 -0.0014 -0.0014 -0.0013 0.0056 0.0056 0.0054 -0.0102 -0.0103 -0.0098 1.1722 1.1722 1.1725 
0.3 -0.0244 -0.0236 -0.0244 0.0499 0.0479 0.0487 -0.1313 -0.1267 -0.1300 1.6904 1.6870 1.6928 
0.5 -0.1807 -0.1461 -0.1778 0.0854 0.0753 0.0755 -0.6876 -0.5624 -0.6693 2.7931 2.7050 2.8006 

70o 
0.1 0.0006 0.0006 0.0008 -0.0038 -0.0038 -0.0038 0.0057 0.0057 0.0060 1.1651 1.1651 1.1653 
0.3 0.0089 0.0089 0.0090 -0.0378 -0.0378 -0.0379 0.0675 0.0674 0.0681 1.6094 1.6085 1.6104 
0.5 0.0616 0.0586 0.0622 -0.0985 -0.0987 0.1014 0.3039 0.2939 0.3089 2.4424 2.4261 2.4466 

Table 4.2 Comparison of the homogenized moduli between LEHT, AHM and FEM with rhombic periodic cells * * * *
14 24 34 44,  ,  ,  C C C C . 

!
!
!
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( ) ( )
55 55
f mC C  fV  

* ( )
55 55

mC C  * ( )
56 55

mC C  * ( )
66 55

mC C  
LEHT G&N AHM FEM LEHT G&N AHM FEM LEHT G&N AHM FEM 

20 
0.3 1.74 1.74 1.74 1.74 0.02 0.02 0.02 0.02 1.75 1.75 1.75 1.75 
0.5 2.66 2.66 2.66 2.67 0.08 0.08 0.08 0.08 2.70 2.70 2.70 2.71 
0.7 4.83 4.83 4.83 4.82 0.34 0.34 0.34 0.35 5.00 5.00 5.00 4.99 

120 
0.3 1.83 1.83 1.83 1.84 0.02 0.02 0.02 0.02 1.84 1.84 1.84 1.85 
0.5 2.96 2.96 2.96 2.97 0.11 0.11 0.11 0.11 3.01 3.01 3.01 3.02 
0.7 6.16 6.16 6.16 6.15 0.60 0.60 0.60 0.60 6.47 6.47 6.47 6.43 

Table 4.3 Comparison of axial shear homogenized moduli between different approaches with rhombic periodic cell and 
arccos(1 4)θ = .  

 
 

L H  fV  
*
22C  *

23C  *
33C  *

44C  
LEHT AHM FEM LEHT AHM FEM LEHT AHM FEM LEHT AHM FEM 

0.980 
0.1 4.0623 4.0621 4.0651 1.7086 1.7086 1.7091 4.0561 4.0561 4.0585 1.1657 1.1657 1.1671 
0.3 5.7484 5.7327 5.7547 2.2569 2.2659 2.2535 5.6471 5.6394 5.6557 1.6125 1.6077 1.6200 
0.5 9.1818 8.9137 9.1901 3.0693 3.2075 3.0613 8.4733 8.3894 8.4835 2.4600 2.3723 2.4609 

1.146 
0.1 4.0742 4.0741 4.0755 1.7026 1.7026 1.7010 4.0565 4.0565 4.0594 1.1612 1.1607 1.1616 
0.3 5.9451 5.9190 5.9508 2.1818 2.1924 2.1829 5.6288 5.6245 5.6339 1.5739 1.5625 1.5701 
0.5 10.6786 10.0040 10.6754 2.7888 2.9316 2.7725 8.2374 8.2009 8.2491 2.3076 2.2560 2.3045 

1.308 
0.1 4.0862 4.0861 4.0889 1.6977 1.6978 1.6991 4.0551 4.0551 4.0572 1.1585 1.1570 1.1578 
0.3 6.1826 6.1396 6.1886 2.1199 2.1311 2.1195 5.5898 5.5872 5.5945 1.5539 1.5344 1.5409 
0.5 13.5180 11.7480 13.4746 2.5729 2.6968 2.5605 7.9532 7.9427 7.9665 2.2709 2.2087 2.2340 

Table 4.4 Comparison of the in-plane homogenized moduli with parallelogram periodic cells for different ratios L H  and fiber 
volume fractions. 
!
!
! !
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L H  fV  
* ( )
55 55

mC C  * ( )
66 55

mC C  
LEHT G&N AHM FEM LEHT G&N AHM FEM 

0.980 
0.3 1.8657 1.87 1.8657 1.8678 1.8110 1.81 1.8110 1.8130 
0.5 3.1087 3.11 3.1088 3.1110 2.8088 2.81 2.8088 2.8095 
0.6 4.3277 4.33 4.3300 4.3334 3.6258 3.63 3.6269 3.6273 

1.146 0.3 1.9245 1.92 1.9245 1.9255 1.7675 1.77 1.7674 1.7688 
0.5 3.5514 3.55 2.5288 2.5294 2.6197 2.62 2.6195 2.6207 

1.138 0.3 1.9998 2.00 1.9998 2.0032 1.7252 1.72 1.7252 1.7258 
0.5 4.4012 4.40 4.4001 4.4188 2.4583 2.46 2.4578 2.4617 

Table 4.5. Comparison of the out-of-plane homogenized moduli with parallelogram periodic cells for different ratios L H  and fiber 
volume fractions. 
!
!
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The results calculated by LEHT, AHM and FEM coincide in many different cases. Tables 

4.1-4.3 exhibit composite materials with rhombic periodic unit cells. Tables 4.1-4.2 show the 

inplane homogenized moduli and Table 4.3 shows out-of-plane homogenized moduli according 

to three different fiber volume fractions.  The composites shown belong to the monoclinic 

material of symmetry. For instance, the * * *
14 24 34,  ,  C C C  in Table 4.3 are non-zero terms in 

comparison with hexagonal or tetragonal unit cells.  In order to validate the effect of the ratio of 
( ) ( )
44 44
f mC C  on the out-of-plane homogenized moduli, three different fiber volume fractions are 

used to cover a wide range of the fiber arrangement at a fixed angle arccos(1 4)ϕ = . A new set 

of results calculated using G&N (Golovchan and Nikityuk, 1981) are included to prove more 

confidence of the new proposed method. An excellent agreement between all the approaches can 

be observed. 

Tables 4.4-4.5 study the homogenized moduli of composites with parallelogram arrays by 

letting 1H =  and arccos(0.5 )Lθ =  with different values of L listed in the tables. As is well 

noticed in the tables, the out-of-plane homogenized moduli are well matched between different 

methods. However, smaller discrepancies are observed between LEHT and FEM than AHM, 

especially when the fiber volume fraction is set to be high for different angles. For example, 

LEHT provides much closer results compared with FEM than AHM for *
22C  corresponding to 

1.4L H =  and 0.5fV =  in Table 4.4. 

4.1.3 A Parametric Study for Composites with Coated Fibers 

We illustrate the effects of coating’s thickness and stiffness for three of the five 

homogenized moduli which exhibit the greatest sensitivity to these parameter variations, namely 
* *,T TE ν  and *

AG , calculated as a function of the fiber volume fraction for the graphite/epoxy 

material system. Fig. 4.5 illustrates the effect of coating thickness represented by the ratios 

   b a = 1.0,  1.01  and 1.10, see Fig. 2.2, on the three homogenized moduli for the coating/epoxy 

modulus contrast ( ) ( ) 1.5c mE E = . The results were generated in the fiber volume interval 

[0.05,0.75] using increments of 0.05, normalized by the corresponding matrix moduli in the case 

of the transverse Young’s and axial shear moduli. The fiber volume fraction was incremented by 

changing the unit cell dimensions in order to keep the coating thickness fixed. At this modulus 

contrast, measurable increases in the homogenized transverse Young’s and axial shear moduli 
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are observed for the largest ratio 1.1b a = , with a decrease observed in the transverse Poisson’s 

ratio. The effect of coating increases with increasing fiber volume fraction, and appears to be 

comparable for both arrays, accounting for the greater Young’s and axial shear moduli exhibited 

by the square array at each fiber volume fraction. Within each array type, the coating tends to 

enhance the axial shear modulus *
AG  to a somewhat greater extent than the transverse Young’s 

modulus *
TE  for the considered coating/epoxy modulus contrast, suggesting more efficient 

stress transfer mechanism into the coated fiber discussed in the sequel. 

Next, we choose coating thickness with the largest ratio 1.1b a =  and investigate the 

effect of both fiber volume fraction and coating stiffness on the homogenized transverse Young’s 

and axial shear moduli. The results are presented in Fig. 4.6 as three-dimensional carpet plots, 

highlighting the efficiency of generating homogenized moduli with our elasticity-based approach. 

These results have been generated for hexagonal arrays and normalized by the respective moduli 

of the matrix phase. Consistent with expectation, the effect of increasing coating’s Young’s 

modulus on the homogenized moduli increases with increasing fiber volume fraction as the 

coating volume fraction also increases even if the coating thickness remains fixed. Included in 

the figure are two-dimensional projections of the carpet plots in a small range of ( ) ( )c mE E  

ratios, namely [0.0, 0.275], wherein rapid changes in the homogenized moduli values are 

observed in the carpet plots. These projections illustrate the minimum values of the coating 

Young’s modulus as a function of the fiber volume fraction which yield homogenized moduli 

greater than the matrix modulus. This information may be useful in the design of engineered 

coatings.  

What needs to be mentioned is that less than 1.5 s was needed to generate the full set of 

homogenized moduli with coated fibers as compared to less than 0.5s without the coating using 

10 harmonics and a PC platform running Windows 7 Ultimate 64-bit operating system with 

16GB RAM and Intel(R) Core(TM) i5-3320M CPU @2.6 GHz. 

As observed in Fig. 4.5 and 4.6, the loading direction influences the effectiveness of fiber 

reinforcement vis-à-vis respective homogenized moduli. For both arrays, the axial shear modulus 
*
AG  increases faster with fiber volume fraction relative to the matrix than the transverse Young’s 

modulus *
TE , with the concomitant effectiveness increase of the coating. Fig. 4.7 illustrates the 

effectiveness of stress transfer from the matrix into the fiber under uniaxial loading by transverse  
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(a) 

  
(b)     

 
(c)        

  Hexagonal array                 Square array 
 
Figure 4.5 Homogenized moduli as a function of fiber volume fraction for a graphite/epoxy 
composite with hexagonal and square architectures and modulus contrast ( ) ( ) 1.5c mE E = , 
demonstrating the effect of coating thickness. 
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(a) 
 
 

      
 

(b) 
 
Figure 4.6 Homogenized moduli as a function of fiber volume fraction for a graphite/epoxy 
composite with hexagonal architecture and fiber/matrix radius ratio 1.1/ =ab , demonstrating the 
effect of coating stiffness. 
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(a) ),( 3222 yyσ  
 

     
 

(b) ),( 3212 yyσ  
 
Figure 4.7 Transverse normal and axial shear stress distributions in hexagonal unit cells of a 
graphite/epoxy composite with fiber volume fraction 0.60 subjected to uniaxial loading 022 ≠σ  
and 012 ≠σ  at the applied strains 01.022 =ε  and 01.012 =ε , respectively, illustrating the 
effect of modulus contrasts ( ) ( ) 1.0c mE E =  (left) and ( ) ( ) 1.5c mE E =  (right) on stress transfer 
mechanism for 0.1/ =ab  (left) and 1.1/ =ab  (right). 
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tension and axial shear in the presence of coating with the ( ) ( ) 4.0c mE E =  ratio relative to the 

uncoated fiber when the fiber volume fraction is 0.6. The stress fields were calculated for the 

respective macroscopic strains of 0.01 or 1% under corresponding unidirectional loading. Under 

transverse tension, the coating experiences substantially larger normal stress 22 2 3( , )y yσ  than 

the fiber in the angular sectors away from the applied load, producing a uniform stress field 

throughout most of the fiber which is greater relative to the uncoated fiber. In contrast, under 

axial shear loading, the coating experiences smaller axial shear stress 12 2 3( , )y yσ  than the fiber. 

Nonetheless, the axial shear stress in the fiber is substantially enhanced by the coating’s presence 

relative to the uncoated fiber, producing a concomitant increase in the homogenized axial shear 

modulus *
AG . Overall, for the chosen parameters, the coating tends to promote greater stress 

transfer into the fiber under axial shear loading relative to transverse normal loading.  

4.2 Examples and Applications 

4.2.1 Local Stress Recovery in a Multiscale FGM Application – Composite Cylinder    

 

 

 
 

Fig 4.8 Circumferentially wound and functionally graded boron/aluminum cylinder subjected to 
internal pressure.  
 



! 94!

The locally exact theory’s computational efficiency facilitates its use in multiscale 

applications. Herein, we demonstrate this capability by embedding the theory into the structural 

analysis of a functionally graded metal matrix composite cylinder subjected to internal pressure 

in order to generate homogenized and local stress fields. Specifically, we consider a thick-walled 

aluminum cylinder reinforced by circumferentially wound born fibers with an inner radius of 

0.025 m, outer radius of 0.050m and 100 MPa applied internally, and investigate how grading 

may enhance the cylinder’s loading bearing capacity in the elastic region. The grading is 

accomplished in a piece-wise fashion by dividing the cylinder into 10 sublayers with a constant 

boron fiber volume fraction in each year, Fig. 4.8. Because the boron fiber diameter is small 

relative to sublayer’s thickness, each sublayer may be homogenized for structural analysis.  

The analysis proceeds as follows. First, the elastic moduli in each sublayer of the cylinder 

are determined using the locally exact homogenization theory. These moduli are employed to 

solve the Navier’s equations for the displacement field in each homogenized sublayer, which 

reduce to the following equation for the axisymmetric radial displacement with 0uθ = , cf. 

Pindera and Freed (1994), 

 
2

2 * 2

1 0r r r

rr

Cd u du u
dr r dr C r

θθ
∗

+ − =  (4.2) 

where *
rrC Cθθ

∗ >  in the light of the circumferential reinforcement by boron fibers. We consider 

the plane strain case so that 0zu = . The solution for the radial displacement field in each 

sublayer takes the form 

 ( )r k ku r A r B rλ λ−= +  (4.2) 

where * 1 2( )rrC Cθθλ ∗=  and the unknown coefficients kA , kB  in each layer are obtained from 

the external boundary conditions 

 ( ) ( 1) ( ) ( 1)( ) ( ), ( ) ( )k k k k
r k r k rr k rr ku r u r r rσ σ+ += = , 1,..., 1k n= −  (4.3) 

where n is the number of sublayers, and kr  is the distance to the kth interface. The above 

boundary and continuity conditions produce twenty equations for the unknown coefficients kA , 

kB . The expressions for the homogenized radial, circumferential and axial stress components are 

obtained from the Hooke’s law 
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zz zr rr z

C C
C C
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θ θθ

θθ θ θθ θθ

θ θθ

σ ε ε
σ ε ε
σ ε ε

= +
= +
= +

 (4.4) 

where rr rdu drε =  and ru rθθε = . The following equivalence relations hold between the 

homogenized moduli in the cylindrical coordinate system associated with the composite tube and 

the Cartesian coordinate system of the unit cell used in the homogenization analysis, 

 
* * * * * *
11 22 33
* * * * * *
12 13 23

, ,
, ,
    
    

rr zz

r z rz

C C C C C C
C C C C C C

θθ

θ θ

→ → →
→ → →

 (4.5) 

The solution for the unknown coefficients produces homogenized strains at each radial 

position in the composite cylinder that may be used to calculate the local fields within the unit 

cell representative of the sublayer’s microstructure.  

We consider composite cylinder with two grading patterns. First, we grade by decreasing 

the boron volume fraction from 0.50 at the inner sublayer to 0.05 at the outer sublayer. Then we 

reverse the grading pattern and compare the stress distributions produced by the two patterns 

with the corresponding distributions in a pure aluminum cylinder. Both homogenized and 

constituent phase stress distributions have been calculated. The homogenized stresses are 

calculated from Eqs. (4.3) and (4.4) upon solving for the displacement field in each homogenized 

sublayer of the graded cylinder. The displacement field produces homogenized strains at 

different radial locations that serve as input to the unit cell boundary-value problem solved using 

the locally-exact homogenization theory described in Chapter 2. The unit cell solution produces 

local stress fields in the fiber and matrix phases that vary along the graded cylinder’s radius. The 

local stresses of interest are the fiber axial stress (or the circumferential stress in the cylinder’s 

coordinate system) that may produce fiber fracture, as well as the effective stress 
1 2(3 2 )m

eff ij ijs sσ = , 1 3ij ij kk ijs σ σ δ= − , in the matrix phase that governs local matrix yielding. 

Fig. 4.9 presents comparison of the radial, circumferentially, axial and effective stress 

distributions in the graded and pure aluminum cylinders. Grading from high to low reduces the 

homogenized radial stress relative to that in the pure aluminum cylinder with the opposite effect 

for the reverse grading pattern. The importance of recovering local constituent stresses is 

illustrated in the circumferential stress distribution. For this stress component, grading the 

cylinder from low to high produces a nearly uniform homogenized stress which is substantially 

lower than in the pure aluminum cylinder from low to high produces a nearly uniform 
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Figure 4.9 Homogenized and local stress distributions as a function of the graded cylinder’s 
radial coordinate. 

 

homogenized stress which is substantially lower than in the pure aluminum cylinder in the inner 

radius region, with the difference decreasing with increasing radial distance. In contrast, grading 

from high to low produces a small reduction in the homogenized circumferential stress relative to 

the pure aluminum case at the inner radius, which increases with increasing radial distance. The 

substantial reduction in the homogenized stress due to grading from low to high vs high to low, 

however, comes at the coat of large axial fiber stress in the inner radius region of the cylinder 

which may potentially produce fiber fracture. The smaller homogenized elastic modulus *Cθθ  in 

the low boron volume fraction range produces large circumferential strains which lead to high 

axial fiber stresses. Conversely, small axial fiber stress is observed in the inner radius region of 

the high to low grading pattern because of larger values of *Cθθ  due to larger boron volume 

fractions, and hence smaller circumferential strains. The benefit of the high to low grading 
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pattern is also observed in the effective stress distribution in the matrix phase where substantially 

lower maximum effective stress is observed in the inner radius region relative to both the pure 

aluminum cylinder and the low to high grading pattern. Grading in this manner will enhance the 

cylinder’s pressurization capacity in the elastic region while ensuring that the axial fiber stress is 

not excessively large to cause fracture. 

 

   
(a) Grading the boron fiber content from high to low 

   

(b) Grading the boron fiber content from low to high 

Fig 4.10 Effective stress distributions in the matrix phase of functionally graded B/Al cylinder in 
the center of the inner layer (left column), middle layer (center column) and outer layer (right 
column) 
 

The constituent phase stress distributions illustrated in Fig. 4.9 were determined at the 

center of each sublayer from the unit cell analysis. These local stresses are the maximum axial 

fiber and effective matrix stresses that occur within the analyzed unit cells at each radial location. 

While the axial fiber stress remains nearly uniform at each radial location, the effective matrix 

stress varies substantially within the unit cell. These variation are shown in Fig. 4.10 in the 

center of the inner, middle and outer sublayers for both grading patterns, and illustrate local 

stress recovery capability in a multiscale analysis setting of the locally-exact homogenization 

theory. Examination of the effective stress fields suggests greater capacity of the high to low 
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grading pattern to support internal pressure before the aluminum matrix is fully plasticized. This 

observation provides guidance and motivation for further investigation by an elastic-plastic 

analysis using other means. 

4.2.2 Local Stress Recovery in a Multiscale Application – Laminate  

Herein, we demonstrate this capability by embedding the theory into a laminate analysis 

algorithm to generate the homogenized plate response and local stress fields under combined 

inplane loading. Specifically, we consider a quasi-isotropic  [0
o ±45o 90o]2  laminate laid up 

with unidirectional graphite/epoxy plies containing 0.6 fiber volume fraction. The homogenized 

elastic moduli of the unidirectional plies are calculated using the locally-exact homogenization 

theory based on the constituent moduli given in Table 3.1. They are then employed to calculated 

the reduced stiffness moduli ijQ  of the plies used in constructing the laminate constitutive 

equation in the form 

 

0
11 12 16

0
12 22 26

0
16 26 66

xxxx

yy yy

xy xy

a a a
a a a
a a a

εσ
σ ε
σ γ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (4.6) 

where 
1

1 ( )
2

n

ij ij k
k

a Q t
H

θ
=

= ∑ , kt  is the ply thickness, 2H is the laminate thickness, ( )ijQ θ  are 

transformed reduced stiffness moduli in the laminate coordinate system, and o o o, ,xx yy xyε ε γ  are the 

uniform laminate strains that arise due to the uniform inplane laminate stress , ,xx yy xyσ σ σ . The 

uniform inplane laminate strains obtained from the above equation are then transformed to the 

principle material coordinate system of each ply, which then play the role of homogenized 

strains employed in the calculation of local fields within the unit cell representative of the ply’s 

microstructure. The missing homogenized strain normal to the laminate’s plane for each ply is 

obtained from the homogenized Hooke’s law for the ply under the constraint of plane stress.  

As an illustration, selected local stress fields in the o0 , o45±  and o90  plies of the 

considered quasi-isotropic laminate produced by the laminate stress vector [100,50,25]TMPa 

are presented in Fig. 4.11 in the principal material coordinate system of each ply. These include 

two inplane stresses 22 2 3( , )y yσ  and 12 2 3( , )y yσ , and two out-of-plane stresses 23 2 3( , )y yσ   
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       0 deg ply                  45 deg ply                  90 deg ply 

     
),( 3222 yyσ  

   
),( 3212 yyσ  

   
),( 3223 yyσ  

   
),( 3233 yyσ  

 
Figure 4.11 Local stress fields ),( 3222 yyσ , ),( 3212 yyσ , ),( 3223 yyσ  and ),( 3233 yyσ  in the 
principal material coordinate system of the individual plies in a symmetric quasi-isotropic 
laminate subjected to combined inplane state of stress 100=xxσ , 50=yyσ  and 25=xyσ  MPa.  
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and 33 2 3( , )y yσ  which are not insignificant. The local stress fields may be used in a failure 

criterion to efficiently generate homogenized laminate failure envelopes which account for the 

three-dimensional stress state in the individual plies. 

4.2.3 Efficiency of Nanotube Reinforcement 

The developed solution (Chapter 2) may be specialized to composites reinforced by hollow 

tubes by treating the coating as a hollow fiber upon setting the elastic moduli of the solid core to 

very small values. This also demonstrates the method’s ruggedness. Hollow fiber reinforcement 

of traditional composites has not been attempted on a large scale due to fabrication difficulties. 

Fabrication techniques developed during the past decade for nanotechnology applications, 

however, make possible reinforcement of different types of matrix materials by inorganic 

nanotubes with precisely-controlled diameters, wall thickness and placement, such as 

hexagonally-arrayed alumina nanotubes, that have potential applications in microelectronics, 

nanofluidics, drug delivery and optical devices, amongst others. In light of the emerging 

applications of these nanostructures, little data is available on their homogenized properties.  

Herein, we illustrate the extended theory’s applicability by calculating homogenized 

moduli of an epoxy resin reinforced by atomic layer deposited (ALD) alumina nanotubes 

arranged in a hexagonal array. In particular, we consider alumina nanotubes 70 nm in diameter 

with wall thickness ranging from 6 nm to 15 nm, fabricated successfully by Yang et al. (2012), 

and calculate homogenized moduli as a function of effective nanotube volume fraction. Only 

mechanical reinforcement effects are considered given that the present extension does not 

include surface-energy effects that are important at very small scales. These will be incorporated 

in our future work. We note, however, that Duan et al. (2006) did not find significant effect of 

surface energy on homogenized plain strain and axial and transverse shear moduli of 

nano-porous aluminum with cylindrical porosities having radii greater than 10 nm using the 

CCA and GSC models. Hence continuum-level calculations remain valid for the considered size 

ranges, with interaction effects from neighboring nanotubes afforded by our locally-exact 

homogenization. The elastic moduli of the alumina nanotubes and epoxy matrix used in the 

present calculations were: 
2 3 2 3Al O Al O166GPa,  0.20E ν= =  and 4GPa,  0.34m mE ν= = , with the 

former taken from (Lyytinen et al., 2014). The Young’s modulus and Poisson’s ratio of the solid 

were 3
core 10 GPaE −=  and core 0.34ν = . These properties effectively produced a porosity in the 
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region occupied by the solid core which plays the role of the fiber in the analytical solution. 

Fig. 4.12 presents homogenized transverse Young’s and shear moduli *
TE  and *

TG  

normalized by the respective moduli of the epoxy matrix for alumina nanotubes with three wall 

thickness as a function of the volume fraction of an equivalent solid nanocylinder of the same 

radius as the nanotube. The chosen mode of data display was motivated by the actual nanotube 

dimensions that had been successfully realized using the ALD method. The results may also be 

displayed as a function of the porosity volume fraction. As expected, the homogenized moduli 

increase with increasing alumina nanotube wall thickness for a fixed volume fraction of an 

equivalent solid nanocylinder. What is less expected, however, are the very small changes in the 

homogenized moduli over a large nanotube volume fraction relative to the epoxy matrix modulus 

when the nanotube wall thickness is 6 nm. In fact, while the transverse Young’s modulus 

increases slightly, the transverse shear modulus initially decreases. In both instances the ratios 
*
T mE E  and  *

T mG G  remain in the vicinity of unity over a large volume fraction range. This 

suggests that materials with enhanced functionality due to the presence of thin-walled tubes of 

varying dimensions may be designed without altering the elastic moduli of the base material.  

 

 

   
 
Figure 4.12 Homogenized moduli of alumina nanotube-reinforced epoxy matrix as a function of 
the nanotube’s apparent volume fraction based on the outer radius of 70 nm for different tube 
thicknesses. 
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Figure 4.13 Normal stress fields ),( 3222 yyσ  in the epoxy matrix and alumina nanotubes of 
different thickness under uniaxial loading by 022 ≠σ  at the applied strain 01.022 =ε . 
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Figure 4.14 Tranverse shear stress fields ),( 3223 yyσ  in the epoxy matrix and alumina nanotubes 
of different thickness under uniaxial loading by 023 ≠σ  at the applied strain 01.023 =ε . 
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Figs. 4.13 and 4.14 illustrate the normal and transverse shear stress fields that arise in the 

nanotube reinforcement and epoxy matrix under respective uniaxial loadings in the case of 

nanotubes with the smallest and largest wall thickness at the apparent volume fraction of 0.60 

While the maximum normal and transverse shear stresses are comparable in the thick and thin 

walled nanotubes, the wall thickness dramatically alters the epoxy matrix stress fields, thereby 

producing large differences in the homogenized moduli seen in Fig. 4.12. 

4.3 Summary 

In this chapter, we use locally exact homogenization theory to investigate several 

numerical results and applications of unidirectional composites. The homogenized moduli of 

both two-phase and three-phase composites with constituents of different moduli contrast are 

generated via a wide range of fiber volume fractions, and compared with FVDAM, FEM, and 

other analytical results. The study of the quick convergent moduli and respective stress 

distribution, as well as the execution time shows that the LEHT is an efficient and stable theory 

that can be applied into other problems, such as multiscale modeling, nanotube applications…  

Thus, three applications are then employed to illustrate the theory’s applicability: 

composite cylinder, laminate, and nanotube reinforcement. The first two multiscale modeling 

applications prove that LEHT is very efficient in the local stress recovery given certain loading 

circumstances. Different patterns of structural designs can be accomplished by manipulating the 

material constituents and geometrical properties of layers of composite cylinder and laminate. 

Composites with hollow nanotubes that can be fabricated using atomic layer deposition 

technique are also investigated. Avoiding the large detailed mesh discretization, the theory can 

easily predict the effects of the thickness of coating/interphase on the homogenized moduli and 

stress fields, giving researchers more insight about the composites with nanoscale.   

The theory can be extended to a more robust tool by including more capabilities: 

viscoelasticity is one of the most important perspectives. Thus, the LEHT with the consideration 

of viscoelasticity is introduced in the next chapter to study the long-term behavior, especially for 

the polymeric composites.
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Chapter 5  

Locally Exact Homogenization of Viscoelastic 

Unidirectional Composites 

5.1 Introduction 

The elasticity-based locally-exact homogenization theory for periodic materials with 

hexagonal and tetragonal symmetries is extended to accommodate linearly viscoelastic phases 

via the correspondence principle. The theory employs Fourier series representations for fiber and 

matrix displacement fields in the cylindrical coordinate system that satisfy exactly equilibrium 

equations and continuity conditions in the interior of the unit cell. The inseparable exterior 

problem requires satisfaction of periodic conditions efficiently accomplished using previously 

introduced balanced variational principle which ensures rapid displacement and stress field 

convergence in the presence of linearly viscoelastic phases with relatively few harmonic terms. 

The solution’s stability and efficiency, with concomitant simplicity of input data construction, 

facilitates rapid identification of the impact of phase viscoelasticity and array type on 

homogenized moduli and local fields in wide ranges of fiber volume fractions. We illustrate the 

theory’s utility by investigating the impact of fiber array type and matrix viscoelastic response 

(constant Poisson’s ratio vs constant bulk modulus) on the homogenized response and local 

stress fields, reporting previously undocumented differences. Specially, we show that initially 

small differences between hexagonal and square arrays are magnified substantially by 

viscoelasticity. New results on the transmission of matrix viscoelastic features to the macroscale 

are also generated in support of construction of homogenized viscoelastic functions from 

experimental data.  

Section 5.2 describes the locally-exact homogenization theory’s extension which is 

validated in Section 5.3. In section 5.4 we investigate the combined effects of array type and 
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phase relaxation moduli on the homogenized viscoelastic response and local stress fields, 

reporting new results, as well as the transmissibility of phase response across scales which is 

useful in the construction of homogenized response functions from experimental data. Specially, 

we address the question whether the homogenized creep compliance elements of a unidirectional 

composite comprised of a viscoelastic matrix that exhibits power-law creep also exhibit 

power-law creep response in a wide range of fiber volume fractions. Conclusions are presented 

in Section 5.5.  

5.2 Locally-Exact Homogenization via Correspondence Principle 

We employ the elastic-viscoelastic correspondence principle to transform the solution for 

the unit cell problem obtained using the locally-exact homogenization theory for periodic 

composites with transversely isotropic elastic phases to the viscoelastic solution in the Laplace 

transform domain, cf. Christensen (1971). Then we use an efficient inversion method proposed 

by Zakian (1969, 1970), see also Halsted and Brown (1972), to obtain the solution for the 

homogenized relaxation moduli and creep compliances in the time domain. The alternative 

approach is to solve the problem in the time domain directly, as for instance of the present 

approach is that it applies to viscoelasic functions with non-separable and separable kernels alike. 

The approach, however, depends on the accuracy and efficiency of the chosen Laplace inversion 

scheme which the Zakian method affords, (Hassanzadeh and Pooladi-Darvish, 2007). 

The transformed problem is obtained by replacing the displacement, strain and stress 

variables in the elastic solution by their Laplace transforms,   ui → ûi(s) ,   
ε ij → ε̂ ij (s) ,

  
σ ij →σ̂ ij (s) , and the elastic stiffness matrix elements by their Carson transforms 

ˆ ( )ijkl ijklC sC s→ , where 

 
0

ˆ ( ) ( )
s st

ijkl ijklC s C t e dt−= ∫  (5.1) 

The solution to the unit cell problem in the Laplace-transform domain yields Hill’s 

localization relation, (Hill, 1963), between transformed average strains in the fiber and matrix 

phases ( ,k f m= ) and the transformed homogenized strains in the form 

 ( ) ( ) ( ) ( )ˆ ˆ ˆˆ ˆ( , , )A C Ck k f m
fs s vε ε=  (5.2) 

which are employed in the construction of the homogenized Hooke’s law in the transformed 
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domain. The specified macroscopic strain employed in the determination of the relaxation 

moduli is 0( ) ( )t H tε ε=  whose Laplace transform is 0ˆ ( )s sε ε= . The homogenized Hooke’s 

law in the transform domain is obtained by averaging local constitutive equations in each phase,  

 ( ) ( ) ( ) ( )1 ˆ ˆ ˆˆ ˆC Ck k k k
k kk k

s dV v s
V

σ ε ε= =∑ ∑∫  (5.3) 

where the phase volume fractions obey the relationship 1kk
v =∑ . Upon use of Eq. (5.2), the 

homogenized relationship between stress and strain averages then becomes 

 ( ) ( ) *ˆ ˆ ˆˆ ˆˆ C A Ck k
kk
v s sσ ε ε= =∑  (5.4) 

where * ( ) ( )ˆ ˆ ˆC C Ak k
kk
v=∑ . In light of the phase volume fraction relationship above, the 

homogenized relaxation functions for the unit cell in the Laplace transform domain may be 

written, 

 * ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ[ ]C C C C Am f m f
fv= + −  (5.5) 

 

j jK  jα  
1 –36902.08210 + 196990.4257i 12.83767675 + 1.666063445i 
2 +61277.02524 + 95408.62551i 12.22613209 + 5.012718792i 
3 –28916.56288 + 18169.18531i 10.93430308 + 8.409673116i 
4 +4655.361138 – 1.901528642i 8.776434715 + 11.92185389i 
5 +118.7414011 – 141.3036911i 5.225453361 + 15.72952905i 

Table 5.1. Complex coefficients employed in Zakian’s inversion formula, Eq. (5.6), from 
Laplace transform to time domain. 
 

The inversion of the homogenized relaxation functions to the time domain is accomplished 

by dividing the desired time interval into increments 1 2 3[ , , ,..., ]Nt t t t t=  at which the unit cell 

problem in the Laplace transform domain is solved through the assignment ( ) j is j tα=  for 

1,2,...5j = , where the complex values of jα  are given in Table 5.1. The solution of the unit 

cell problem at the given time enables calculation of the strain concentration matrix for the fiber 

phase, ( )Â f , in the above equation. The homogenized relaxation functions at the given time are 

subsequently calculated according to, 
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 5* *
1

2 ˆ( ) Re[ ( )]C Ci j j ij
i

t K t
t

α
=

= ∑  (5.6) 

where the complex coefficients jK  are included in Table 5.1. The inversion process can also be 

referred to the flowchart on next page. The following section provides an overview of the unit 

cell solution in the Laplace transform domain that enables calculation of the time-domain 

relaxation functions based on the above inversion method. 

5.2.1 Unit Cell Solution Overview 

The solution to the elastic unit cell problem representative of periodic hexagonal and 

square arrays of transversely isotropic fibers embedded in (transversely) isotropic matrix, Fig. 

2.1, has been provided by Wang and Pindera (2015, 2016). Here we summarize the main results 

in order to make the employed replacement scheme and the calculation of the strain 

concentration matrices in the transformed domain transparent. 

The solution for the displacement field in the fiber and matrix phases of the unit cell, which 

leads to the determination of local strains, stresses and the homogenized moduli, is carried out 

within the homogenization theory’s framework wherein the global coordinates 1 2 3( , , )x x x x=  

describe the average response of the entire periodic array, and the local coordinates 

1 2 3( , , )y y y y=  describe the interior unit cell response, (Papanicolau et al., 1978; Suquet, 1985). 

Accordingly, a two-scale displacement field representation is employed in the individual phases 

whose Laplace transform is  

 ( ) ( )ˆˆ ˆ( , , ) ( ) ( , )x y yk k
i ij j iu s s x u sε ′= +  (5.7) 

where the fluctuating transformed displacement components ( )ˆ k
iu′  caused by the material’s 

heterogeneity are functions of the local coordinates 2 3( , , )y y t  given the unidirectional 

constraint along the 1x  direction by continuous reinforcement. The above displacement field 

generates the local strains 

 ( ) ( )ˆˆ ˆ( , ) ( ) ( , )y yk k
ij ij ijs s sε ε ε ′= +  (5.8) 

from which local stresses follow, with continuous reinforcement yielding the constraint 
( )
11 11
ˆ ˆkε ε= . The solution for the fluctuating displacement field in the fiber and matrix phases is 

obtained from the Navier’s equations in the transformed domain in cylindrical coordinates 



 
Start 

Set , choose , 

or  

Determine strain concentration matrix  

Invert @    

 

Replacement scheme:  

 

End 

1. Assign  and  ( ) in Zakian’s formula; 
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(5.9) 

which facilitate exact enforcement of displacement and traction continuity at the fiber/matrix 

interface one harmonic at a time. This is referred to as the interior problem. The inseparable 

exterior problem involves satisfaction of the periodicity conditions in Cartesian coordinates, 

 
0 0 0 0

ˆ ˆ ˆˆ ˆ( , ) ( , ) , ( , ) ( , )i i ij j i iu s u s d t s t sε+ = + + = −x d x  x d x  (5.10) 

where ( )o ox ,x +d S∈ , S is the unit cell boundary, d is a characteristic distance that defines the 

unit cell array microstructure, and ˆ ˆi ji jt nσ=  from Cauchy’s relation, with jn  denoting the jth 

component of the unit normal to the boundary. Solution of the exterior problem which cannot be 

solved one harmonic at a time entails minimization of a functional leading to the balanced 

variational principle in the final form 

 ˆ ˆ ˆˆ ˆ ˆ( ) ( ) 0
T u

o o
i i i i i i

S S

u t t dS t u u dSδ δ− + − =∫ ∫  (5.11) 

where ˆ ˆot t=  and ˆ ˆ ou u=  are periodic traction and displacement constraints imposed on tS  

and uS , respectively. The displacement and traction components on the six and four surfaces of 

hexagonal and rectangular unit cells, respectively are related through the periodicity conditions, 

Eqs. (5.10). 

5.2.2 Displacement and Stress Fields in the Transform Domain 

The solution for the transformed fluctuating out-of-plane and in-plane displacements ˆzu′  

and ˆru′ , ûθ′ , respectively, in the fiber and matrix phases is obtained in the form 

 

     
( ) ( )( ) - ( ) ( ) - ( )

1 3 2 4
1

ˆ ˆ ˆ ˆˆ cos sinn k n k n k n k
z n n n n

n

u a H H n H H nξ ξ θ ξ ξ θ
∞

=

⎡ ⎤′ = + + +⎣ ⎦∑
 

     

4
( ) ( ) 1 ( ) ( )
01 02

2 1

4
( ) ( )

2 1

ˆˆ ˆ ˆˆ cos sin

ˆˆˆ sin cos

nj

nj

pk k k k
r nj nj

n j

p k k
nj nj nj

n j

u F a F a a F n G n

u a F n G nθ

ξ ξ ξ θ θ

β ξ θ θ

∞
−

= =

∞

= =

⎡ ⎤′ = + + +⎣ ⎦

⎡ ⎤′ = −⎣ ⎦

∑∑

∑∑  

 

(5.12) 
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where rigid body terms associated with 0n =  term in the expression for ˆzu′ , and 1n =  terms 

in the expressions for ˆru′ , ûθ′  have been excluded by fixing the fiber at the origin. 

( ) ( ) ( )ˆˆ ˆ, , ( 1,2,3,4)k k k
nj nj njH F G j =  are unknown coefficients, r aξ =  is the nondimensionalized 

radial coordinate with respect to the fiber radius a , and the four eigenvalues njp  are 

1 1np n= + , 2 1np n= − ,  3 ( 1)np n= − + , 4 ( 1)np n= − −  with the corresponding eigenvectors 

( )k
njβ  given by 

 2 2
22 22 23

22 23 22 23

ˆ ˆ ˆ2 (1 ) ( )ˆ
ˆ ˆ ˆ ˆ[( ) 3 ]

nj
nj

nj

C p C C n
n C C p C C

β
− + −

=
⋅ + − +

  

To ensure that the displacements remain bounded in the fiber, we set ( ) ( )
3 4
ˆ ˆ 0f f
n nH H= =  for 

1n ≥  in the case of the out-of-plane displacement, and ( )
02
ˆ 0fF =  and ( ) ( )

3 4
ˆ ˆ 0f f
n nF F= = , 

( ) ( )
3 4
ˆ ˆ 0f f
n nG G= =  for 2n ≥  in the case of the in-plane displacements. The remaining coefficients 

( ) ( ) ( )ˆˆ ˆ, ,k k k
nj nj njH F G  in the matrix phase ( k m= ) are subsequently obtained in terms of the fiber 

coefficients ( )ˆ f
njH , ( )ˆ f

njF  and ( )ˆ f
njG  from the interfacial fluctuating displacement and traction 

continuity conditions are the fiber/matrix interphase. The interfacial traction components are 

obtained from Hooke’s law and strain-displacement relations, 

  
σ̂ zr = 2sĈ66

(k )ε̂ zr + sĈ66
(k ) n ξ n−1Ĥn1

(k ) −ξ−n−1Ĥn3
(k )( )cosnθ + ξ n−1Ĥn2

(k ) −ξ−n−1Ĥn4
(k )( )sin nθ⎡

⎣
⎤
⎦

n=1

∞

∑  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) 2
12 22 23 22 23 01 22 23 02

4
1( ) ( ) ( )

2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ ( ) ( )

ˆˆ ˆ cos sin

ˆˆ (

                                                     nj

k k k k k k k
rr zz rr

pk k k
nj nj nj

n j

r

sC sC sC s C C F s C C F

s P F n G n

s

θθ

θ

σ ε ε ε ξ

ξ θ θ

σ

−

∞
−

= =

= + + + + − −

+ +

=

∑∑

( )
4

1( ) ( ) ( ) ( ) ( )
22 23

2 1

ˆ ˆˆ ˆˆ) sin cosnjpk k k k k
r nj nj nj

n j
C C s R F n G nθε ξ θ θ

∞
−

= =

− + −∑∑

 

  (5.13) 

in which ( ) ( ) ( ) ( )
22 23
ˆ ˆ ˆˆ (1 )k k k k

nj nj njP C p C nβ= + + , and ( ) ( ) ( ) ( )
22 23
ˆ ˆ ˆˆ ( ) 2 ( 1)k k k k

nj nj njR C C p nβ⎡ ⎤= − ⋅ − −⎣ ⎦ . 

5.2.3 Interfacial Continuity 

The axial shear problem is decoupled from the transverse normal and shear problems. Hence 

applying the two interfacial continuity conditions on the axial displacement and axial shear stress 
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at r a=  and using the orthogonality of cosnθ  and sin nθ  terms, we obtain the following 

relations between coating and fiber coefficients associated with different-order harmonic terms 

for   n ≥1 ,  

 ( ) ( )
1 1 2 12 13

ˆ ˆ ˆ ˆˆ ˆ [2 2 ]m f T
n n nδ ε ε= +H c H c   (5.14) 

where  ( ) ( ) ( )
1 2

ˆ ˆ ˆ[ , ]f f f T
n n nH H=H , ( ) ( ) ( ) ( ) ( )

1 2 3 4
ˆ ˆ ˆ ˆ ˆ[ , , , ]m m m m m T
n n n n nH H H H=H , and the matrices 1 2ˆ ˆ,c c  are 

given below. The Kronecker delta term 1nδ  is present because the average strains are introduced 

only through the 1n =  terms cosθ  and sinθ . Eq. (5.14) can be expressed explicitly as 

follows: 

 ( )

1 1 ( )

2 1 121
1 2

2 133 2

2
4

ˆ ˆ 0 1 0
ˆ ˆ ˆˆ 20 0 1ˆˆ ˆ ˆˆ 0 1 0 2

ˆ0 0 1ˆ

m

n
f

n n
n

n n

n

H c
H Hc c

cH H
cH

εδ
ε

⎡ ⎤ −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤−⎢ ⎥ = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

 (5.15) 

where ( ) ( ) ( )
1 66 66 66

ˆ ˆ ˆˆ ( ) 2m f mc C C C= + , and 2 1ˆ ˆ1c c= − . 

The transverse normal and shear problems in the r θ−  plane are coupled. Hence applying 

the four interfacial continuity conditions, and using orthogonality of cosnθ  and sin nθ  terms, 

we obtain the following relations between coating and fiber coefficients for 0n =   

 ( ) ( )
0 0 01 0 11 0 22 33
ˆ ˆ ˆ ˆˆ ˆ ˆˆ ( )m fF ε ε ε= + + +F b c d  (5.16) 

where ( ) ( ) ( )
0 01 02
ˆ ˆ ˆ[ , ]m m m TF F=F , and the matrices 0 0

ˆ ˆ,b c  and 0d̂  are given below. 

 ( ) ( ) ( ) ( ) ( ) ( )
22 23 22 23 12 12

01 01 01 02( ) ( )
22 22

( ) ( ) ( ) ( )
22 23 22 23

02 02 01 02 01( )
22

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) 1ˆ ˆ ˆˆ,   ,   ˆ ˆ 22 2
ˆ ˆ ˆ ˆ( ) ( )ˆ ˆ ˆˆ ˆ,   ,              ˆ2

f f m m f m

m m

m m f f

m

C C C C C Cb c d b
C C

C C C Cb c c d d
C

+ + − −= = = −

+ − += = − = −

 (5.17) 

For 2n ≥ , 

 ( ) ( ) ( ) ( )
2 0 22 33

( ) ( ) ( ) ( )
2 0 23

ˆ ˆ ˆˆ ˆ ˆ ˆ( )
ˆ ˆ ˆ ˆ ˆ ˆ2

m m f f
n n n n n

m m f f
n n n n n

δ ε ε

δ ε

= + −

= +

A F A F A

A G A G A

 

(5.18) 

where ( ) ( ) ( ) ( ) ( )
1 2 3 4

ˆ ˆ ˆ ˆ ˆ[ , , , ]m m m m m T
n n n n nF F F F=F ,  ( ) ( ) ( )

1 2
ˆ ˆ ˆ[ , ]f f f T
n n nF F=F , ( ) ( ) ( ) ( ) ( )

1 2 3 4
ˆ ˆ ˆ ˆ ˆ[ , , , ]m m m m m T
n n n n nG G G G=G , 

( ) ( ) ( )
1 2

ˆ ˆ ˆ[ , ]f f f T
n n nG G=G , and the matrices ( ) ( )ˆ ˆ,m f

n nA A  and 0Â  are given below: 
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( ) ( )

1 2 3 4 1 2( ) ( )
0 ( ) ( ) ( ) ( )

22 23 22 231 2 3 4 1 2
( ) ( ) ( )
22 23 221 2 3 4 1 2

1 1 1 1 1 1 0
ˆ ˆ ˆ ˆ ˆ ˆ 01ˆ ˆ ˆ,  ,  ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ( ) ( )2

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ( ) (

m f

n n n n n nm f
n n f f m m

n n n n n n
m m f

n n n n n n

A A A
C C C CP P P P P P
C C CR R R R R R

β β β β β β
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ − − −⎣ ⎦ ⎣ ⎦

( )
23

ˆ )fC

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

  (5.19) 

The Kronecker delta term 2nδ  is present because the average strains are introduced only 

through the 2n =  terms cos 2θ  and sin 2θ .    

5.2.4 Periodic Boundary Conditions  

The unknown coefficients ( ) ( ) ( )ˆˆ ˆ, ,f f f
n n nH F G  are determined by applying the variational 

principle, Eq. (5.11), with the surface displacements and tractions on the opposite faces of the 

unit cell related through the periodic boundary conditions. Use of the two-scale displacement 

representation given by Eq. (5.7) in the periodic displacement boundary conditions, Eq. (5.10), 

reduces these periodicity conditions to constraints on the fluctuating displacement components. 

Since the out-of-plane and inplane problems are uncoupled, the coefficients ( ) ( )ˆˆ ,f f
n nF G  are 

found independently of the coefficients ( )ˆ f
nH  upon utilizing the reduced periodicity conditions 

in the variational principle. Implementing the reduced periodicity conditions for the inplane 

problem in the variational principle, we have following system of equations for the unknown 

coefficients ( ) ( )ˆˆ ,f f
n nF G ,  

 ( ) ( )ˆ ˆˆ ˆ ˆ[ ]A F G Bf f
in in inε=  (5.20) 

where 11 22 33 23
ˆ ˆ ˆ ˆ ˆ[ , , ,2 ]Tinε ε ε ε ε= , and 

max

( ) ( ) ( )
1

ˆ ˆ ˆ[ ,... ]F f f f
NF F= , 

max

( ) ( ) ( )
1
ˆ ˆ[ ,... ]G f f f

NG G= . Similarly, for 

the out-of-plane loading, the variational principle yields the system of equations for the unknown 

coefficients ( )ˆ f
nH ,  

 ( )ˆ ˆ ˆ ˆA H Bf
out out outε=  (5.21) 

where 12 13
ˆ ˆ ˆ[2 ,2 ]Toutε ε ε=  and 

max

( ) ( ) ( )
1

ˆ ˆ ˆ[ ,... ]H f f f
NH H= . The elements of the matrices ˆ ˆ,A Ain out  

and ˆ ˆ,B Bin out  are obtained in terms of surface integrals along the six sides 1 6,...S S  of the unit 

cell. Similar results are obtained for rectangular or square unit cells with four exterior surfaces, 

see (Wang and Pindera, 2015) for details.
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5.2.5 Strain Concentration Matrix Determination  

To determine the fiber strain concentration matrix, the average fiber strains are obtained in 

closed form upon integrating the local expressions over the phase cross section. The resulting 

expressions contain only the applied average strains and the displacement coefficients associated 

with the 1n =  harmonic in the case of axial shear strains, and the 0,2n =  harmonics in the 

case of transverse normal and shear strains 

 ( ) ( )
( ) ( ) ( ) ( )22 23
22 22 01 21 22( )

22

( ) ( )
( ) ( ) ( ) ( )22 23
33 33 01 21 22( )

22

( ) ( )
( ) ( ) ( )22 23
23 23 21 22( )

22

ˆ ˆ3( )ˆ ˆ ˆˆ ˆ
ˆ4

ˆ ˆ3( )ˆ ˆ ˆˆ ˆ
ˆ4

ˆ ˆ3( ) ˆ ˆˆ ˆ
ˆ4

f f
f f f f

f

f f
f f f f

f

f f
f f f

f

C CF F F
C

C CF F F
C

C C G G
C

ε ε

ε ε

ε ε

+= + + +

+= + − −

+= + +

         

( )
11 11

( ) ( )
12 12 11

( ) ( )
13 13 12

ˆ ˆ

1 ˆˆ ˆ
2
1 ˆˆ ˆ
2

f

f f

k k

H

H

ε ε

ε ε

ε ε

=

= +

= +

 (5.22) 

in which ( )
11 11
ˆ ˆfε ε=  is because uniaxial reinforcement. 

The column of the fiber strain matrix ( )Â f  are generated by solving the unit cell problem 

for one non-zero average strain applied at a time, with the remaining average strains kept zero. 

The solution produces the unknown coefficients ( ) ( )ˆˆ ,f f
n nF G  or ( )ˆ f

nH  for the applied loading, 

and thus the average fiber strains. The elements of the strain concentration matrix occupying the 

column that corresponds to the applied non-zero average strain are then obtained by taking the 

ratios of the averaged strain in the fiber phase and the average applied strain. 

5.3 Validation  

We validate the solution by first demonstrating the rapid convergence of relaxation moduli 

and local stress fields with the number of harmonics, and then comparing the solution’s 

predictions with those reported in the literature based on finite-volume calculations of 

comparable accuracy as the Q-9 based finite-element results. We also compare the locally-exact 

theory predictions with experimental response of off-axis graphite-epoxy tension specimens 

subjected to creep loading. 
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Figure 5.2 Convergence study of selected relaxation functions as a function number of harmonics 
for a glass/epoxy unidirectional composite with low and high fiber volume fraction. 
 

5.3.1 Convergence Study 

We consider hexagonal and square unit cells representative of a unidirectional composite 

comprised of a polymeric matrix reinforced by glass fibers employed by (Cavalcante and 

Marques, 2014) for validation of the generalized FVDAM theory with linearly viscoelastic 

phases. The glass fibers were taken as elastic and the polymeric matrix was modeled as an 

isotropic four-parameter fluid comprised of Maxwell and Kelvin elements connected in series. 

The creep compliance in tension for this model takes the form 
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1 1( )

11
0 1 2

1 1( ) (1 )E t tS t e
E E

η

η
−= + − +  (5.23) 

where   E0 = 3.27GPa,  E1 = 1.8GPa,  η1 = 300GPa ⋅h,  η2 = 8000GPa ⋅h . This was obtained from 

the generalized Kelvin model by setting the spring element stiffness in one of the Kevin elements 

to a very small value,  12
2 10 GPaE −= . The matrix Poisson’s ratio was assumed to remain 

constant at 0.38ν = . The fiber elastic moduli are 68.77GPaE =  and  0.21ν = . 

Using the above parameters, we investigate convergence of the homogenized moduli and 

local stress fields with the number of harmonics in the displacement field representation, see Eq. 

(5.12), for two non-dilute fiber volume fractions, namely 0.20 and 0.60. Figure 5.2 illustrates 

convergence behavior of the homogenized relaxation stiff elements * * *
11 22 44( ),  ( ),  ( )C t C t C t  and  

*
66 ( )C t  with the harmonics number as a parameter for n=2,4,8 and 12. While the convergence of 

these moduli is rapid at the low volume fraction, the high volume fraction requires somewhat 

greater number of harmonics for convergence in the considered time interval. The axial shear 

relaxation modulus *
66 ( )C t  exhibits the slowest convergence, requiring 4 harmonics in the 

displacement field representation, followed by the tensile transverse relaxation modulus *
22 ( )C t . 

In contrast, the convergence of the local stresses requires greater number of harmonics. For 

instance, the transverse shear stress field 23 2 3( , , )y y tσ  for the high fiber volume fraction 

converges with 8 harmonics under pure shear loading by 23 23( ) oH tε ε=  whereas the 

corresponding homogenized relaxation modulus requires fewer harmonics as seen in Fig. 5.2. 

Here, we illustrate the convergence of the axial shear stress field 12 2 3( , , )y y tσ  under pure axial 

shear loading by 12 12( ) oH tε ε=  at three different times for 2,  8n =  and 12 as this loading 

requires 4 harmonics to yield converged homogenized relaxation response observed in Fig. 5.2 at 

the high fiber volume fraction where interaction between fibers has greater impact than at the 

low fraction. Fig 5.3 illustrates the axial shear stress fields at the three different times 0,  150t =  

and 600 hours for the three harmonics. For 2n =  harmonics, both the matrix and fiber shear 

stress fields are poorly predicted. Increasing the number of harmonics to 8 produces a stress field 

that differs little from that obtained using 12 harmonics at the considered times. 
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       2 harmonics                8 harmonics               12 harmonics 
 

 
 

(a) Time = 0 hours 
 

 
 

b) Time = 150 hours 
 

 
 

c) Time = 600 hours 
 

Figure 5.3. Convergence study of ),( 3212 yyσ  stress fields for different numbers of harmonics in 
the displacement field representation during uniaxial loading by o

1212 )(H εε t= . 
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Figure 5.4. Comparison of the relaxation functions of a unidirectional glass/epoxy composite 
with different fiber volume fractions generated by the locally-exact theory with FVDAM 
predictions of Cavalcante and Marques (2014). 
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The rapid convergence of both the homogenized moduli and local stress fields sets our 

method apart from other elasticity-based solutions such as the eigenstrain expansion approach, cf. 

(Caporale et al., 2015), which require substantially greater number of harmonics for converged 

elastic stress fields, and hence by extension viscoelastic stress fields as well.  

5.3.2 Comparison with Finite-Volume Results 

Cavalcante and Marques (2014) extended the elastic version of the generated FVDAM theory of 

Cavalcante and Pindera (2013) to the linearly viscoelastic domain directly in the time domain, 

showing substantial improvement in the local stress field fidelity relative to the original version. 

The elastic version produces results of comparable accuracy relative to the Q-9 based 

finite-element method. The authors then compared the generated FVDAM predictions of the 

creep and relaxation moduli of a glass epoxy system containing different fiber volume fractions 

with the analytical solution of Luciano and Barbero (1995), showing exceptionally good 

correlation. The study of Cavalcante and Marques (2014) is one of the few studies where the 

local stress fields have also been generated during a relaxation history, in addition to the 

homogenized viscoelastic response functions. Herein, we use these results as a gold standard for 

comparison with our newly extended locally-exact theory. It is important to note that the solution 

method employed in the generated FVDAM and locally-exact approaches are totally different, 

lending credence to the locally-exact theory’s rigorous validation, and the ensuing conclusions.  

Figure 5.4 illustrates comparison of the complete set of relaxation moduli for the 

glass/epoxy system employed in the preceding section modelled as a square array of fibers in the 

epoxy matrix for the fiber volume fractions 0.20, 0.30 and 0.40. The correlation is seen to be 

excellent for the six relaxation moduli generated moduli generated at 25 times in the interval 

[0,600] hours using 8 harmonics. This contrasts with the 200 time steps employed in the 

generated FVDAM simulations required to obtain converged response directly in the time 

domain by solving the unit cell problem incrementally owing to the separable kernel 

representation of the linearly viscoelastic constitutive model used for the polymeric matrix. We 

also compare the local stress fields generated by Cavalcante and Marques (2014) under 

transverse shear loading  23 23( ) oH tε ε=  at 600t =  hours with the locally-exact predictions for 

the 0.20 fiber volume fraction. Eight harmonics were employed to generate the results shown in 

Fig. 5.5 which are compared with the generalized FVDAM results obtained using the Mesh B in 
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the author’s paper. In both cases, converged stress distributions are obtained which are nearly 

identical. 

 

 

Figure 5.5. Comparison of transverse shear stress fields ),( 3223 yyσ  due to uniaxial loading 
o
2323 )(H εε t=  in a square unit cell of a unidirectional glass/epoxy composite with 0.20 fiber 

volume fraction at t = 600 hrs generated by the locally-exact (left) and FVDAM (right) theory of 
Cavalcante and Marques (2014). 
 

The above results were generated on a PC platform Windows 7 Ultimate 64-bit operating 

system with 16 GB RAM and Intel(R) Core(TM) i5-3320M CPU @ 2.6 GHz. Table 2 illustrates 

the execution time required to generate an entire set of relaxation functions in the considered 

time interval of [0,600] hours as a function of the number of harmonic terms employed in the 

displacement field representation in the unit cell solution. 

 

Array type Execution time (minutes) 
 2n =  4n =  6n =  8n =  10n =  12n =  14n =  

Square 0.369 1.702 3.674 8.009 11.613 16.437 21.859 
Hexagonal 2.443 4.042 6.409 11.011 17.736 24.125 29.431 

Table 5.2. Execution times consumed in calculating the full set of the relaxation functions of a 
unidirectional glass/epoxy composite with 20% fiber volume fraction as a function of the number 
of harmonics used in the displacement field approximation. 
 

5.3.3 Comparison with Experiment 

The experimental creep data on off-axis graphite/epoxy specimens at room and elevated 

temperature generated by Yancey and Pindera (1990) is employed for comparison with the 
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locally-exact predictions. The T300 graphite fiber and 934 epoxy matrix moduli used in the 

comparison are given in Tables 5.3-5.4 at the two temperatures. While the fiber remains elastic 

in the considered temperature range, the epoxy matrix creep response is described very well by 

the power-law creep compliance 

 
11 0( ) nS t D Ct= +  (5.24) 

where the three parameters are included in Table 5.4. This representation of the creep 

compliance produces a non-separable kernel which is not readily amenable to an incremental 

solution of the unit cell problem in the time-domain, in contrast with the present solution 

approach independent of the type of viscoelastic function kernel in the hereditary integral 

representation of the viscoelastic behavior. 

 
Temperature (GPa)AE  (GPa)TE  (GPa)AG  Aν  Tν  

22 oC  202.82 25.30 44.12 0.443 0.05 
121 oC  214.33 14.82 68.18 0.450 0.05 

Table 5.3. Elastic moduli of transversely isotropic T300 graphite fiber at two temperatures. 
 

Temperature (GPa)E  ν  (1 GPa-min)C  n 
22 oC  4.51 0.311 0.0135 0.17 
121 oC  3.36 0.317 0.0250 0.20 

Table 5.4. Elastic moduli and viscoelastic power-law parameters of 934 epoxy resin at two 
temperatures. 
 

In the locally exact simulations the composite was taken as transversely isotropic and hence 

a hexagon unit cell was employed to generate the creep response of 10o and 90o off-axis 

specimens for comparison with the experimental results. Two sets of results were generated 

based on the assumption that either the Poisson’s ratio or the bulk modulus of the epoxy matrix 

is constant. While constant Poisson’s ratio of the matrix phase is often assumed in numerical 

simulations of the time-dependent composite material response due to unavailability of 

experimental data, the potentially time-independent response of polymeric matrices under 

hydrostatic loading may produce large differences in the response of specimens subjected to 

loading which produce large local hydrostatic stresses. One example is a 90o  specimen 

subjected to transverse loading that determines the transverse creep compliance *
22 ( )S t . This will 
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be explored in greater detail in Section 5.4 in the context of the impact of fiber array type on the 

homogenized composite response.  

 

 

 

Figure 5.6. Comparison of the predicted creep compliances )(11 tS  and )(22 tS  of !10  and !90  
off-axis graphite/epoxy specimens under uniaxial creep loading at room and elavated 
temperatures with the experimental data of Yancey and Pindera (1990): constant Poisson’s ratio 
of the epoxy matrix (left) and constant bulk modulus of the epoxy matrix (right). 
 

Figure 5.6 illustrates comparison between the experimental results and locally exact 

predictions at the two temperatures and the two assumptions on the Poisson’s ratio and bulk 

modulus of the epoxy matrix. The simulations of the 10o off-axis specimen response were 

obtained from the transformation equations in terms of the calculated creep compliance functions 

in the principal material coordinate system. While the use constant Poisson’s ratio or bulk 

modulus assumptions for the matrix phase produces little difference in the 10o  off-axis 
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specimen response, with good correlation with experiment in both cases, the predicted transverse 

response of the 90o  specimen is visibly affected by these assumptions. Specially, the 

assumption of time-independent matrix response under hydrostatic loading tends to suppress the 

creep component due to local hydrostatic matrix stresses that arise due to the fiber constraint. 

The creep suppression is consistent at both temperatures. 

5.4 Numerical Results  

We consider two important aspects of the viscoelastic response of polymeric matrix 

composites that have not been given much scrutiny. The first is the effect of fiber array on the 

time-dependent response under the assumption of either constant Poisson’s ratio or bulk modulus. 

The second addresses the extent to which a particular creep compliance representation of the 

matrix phase percolates to the macroscopic scale. For instance, given a power-law representation 

of the matrix creep compliance, can a similar power-law representation be employed to construct 

the homogenized creep compliance of the composite? 

5.4.1 Impact of Fiber Array and Matrix Relaxation Moduli 

It is well known that the fiber array influences the elastic-plastic and creep response of 

metal matrix composites by altering the hydrostatic stress distributions in the matrix phase. In 

contrast, the elastic moduli, which are influenced by the stress transfer from the matrix to the 

fiber phase, are affected to a lesser extent by the fiber array for a given fiber shape. Herein, we 

employ the power-law creep compliance representation for the epoxy matrix of the preceding 

section to generate creep compliances of a unidirectional graphite/epoxy composite with the fiber 

volume fraction of 0.60 using two microstructural representations based on square and hexagonal 

fiber arrays. 

Figure 5.7 illustrates the differences in the homogenized transverse normal and shear, and 

axial shear creep compliances * * *
22 44 66( ),  S ( ),  S ( )S t t t  of hexagonal and square fiber arrays with 

constant matrix Poisson’s ratio (left column) and constant bulk modulus (right column). For each 

matrix type, the effect of fiber array increases with time, with the initially small differences in 

the instantaneous elastic response substantially magnified with continued loading. Largest 

differences are observed in the transverse normal and shear creep compliances * *
22 44( ),  S ( )S t t , 

and smallest in the axial creep compliance. The assumption of purely elastic matrix response 
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under hydrostatic stress dramatically suppresses creep of the composite under transverse normal 

loading for both hexagonal and square fiber arrays. In contrast, under transverse shear loading 

the square fiber array creep is slightly enhanced while the hexagonal array creep is slightly 

suppressed. Under loading by axial shear, the matrix phase experiences only axial shear stresses, 

and hence no differences are observed for a given fiber array using either of the two assumptions 

on the matrix response. The differences arise because the shear modulus of the isotropic matrix, 

which depends on the Young’s modulus and Poisson’s ratio in the elastic domain, evolves 

differently in the time depending whether the matrix is assumed to respond elastically or in a 

time-dependent manner under hydrostatic loading. 

Figure 5.8 presents the transverse shear stress distributions 23 2 3( , )y yσ  at the instant of 

applied loading 23 23( ) ( ) ot H tσ σ= , 0t = , and at the terminal time of 600t =  hours, in support 

of increasing differences with time in the transverse creep compliance *
44 ( )S t  of the hexagonal 

and square arrays with constant bulk modulus matrix observed in Fig. 5.7. The substantially 

greater load bearing capability of the fibers in the hexagonal array, which produces much stiffer 

response, is attributable in large measure to the array type. The additional contribution of the 

matrix type is rooted in the hydrostatic stress differences in the matrix phase produced by the two 

arrays, which are compared in Fig. 5.9. The substantially larger hydrostatic stress magnitudes in 

the matrix phase of the hexagonal array produce additional differences in the response of both 

arrays upon comparison with the corresponding results in Fig. 5.7 based on the constant 

Poisson’s ratio assumption. 
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Figure 5.7 Comparison of the creep compliances )(22 tS , )(44 tS , )(66 tS  of hexagonal and square 
arrays of a glass/epoxy unidirectional composite predicted by the locally exact theory: constant 
Poisson’s response of the epoxy matrix (left) and constant bulk modulus of the epoxy matrix 
(right). 
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a) Time = 0 hr 
 

   
 

b) Time = 600 hr 
 
Figure 5.8. Comparison of transverse shear stress fields ),( 3223 yyσ  in hexagonal and square 
arrays of a glass/epoxy unidirectional composite under pure creep loading o

2323 )(H εε t=  
predicted by the locally-exact theory when the bulk modulus of the epoxy matrix is assumed 
constant. 
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a) Time = 0 hr 
 

   
 

b) Time = 600 hr 
 
Figure 5.9. Comparison of hydrostatic stress fields in the matrix phase of hexagonal and square 
arrays of a glass/epoxy unidirectional composite under pure creep loading o

2323 )(H εε t=  
predicted by the locally-exact theory when the bulk modulus of the epoxy matrix is assumed 
constant. 
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5.4.2 Transmission of Matrix Response Features Across Scales  

Construction of relaxation moduli or creep compliances of unidirectional composites with 

viscoelastic phases based on experimental data requires extensive tests to characterize all 

time-dependent functions. For transversely isotropic composites, five independent functions are 

required, some of which are difficult to obtain experimentally, e.g., *
44 ( )C t  or *

44 ( )S t . Moreover, 

once a set of relaxation moduli or creep compliances is experimentally obtained, the question 

arises with regard to the choice of functions that may be employed that produce best fit with 

experimental data. In this section we address this issue by investigating how the choice of a 

particular function that describes the linearly viscoelastic response of the matrix phase percolates 

to the homogenized level. Specifically, we use the power-law description of the creep 

compliance of the epoxy matrix reported by Yancey and Pindera (1990) at the elevated 

temperature to determine whether the homogenized response also obeys similar power-law 

descriptions with altered coefficients (which must depend on the fiber volume fraction, array 

type, and fiber moduli), and perhaps also altered power-law exponent(s). The larger exponent at 

the elevated temperature relative to that at room temperature, Table 5.3, produces greater creep, 

facilitating determination of the homogenized parameters with greater fidelity. 

Using the locally-exact theory, homogenized creep compliances were generated for the 

considered graphite/epoxy system at three different fiber volume fractions, namely 

  
v f = 0.20,  0.40,  0.60 . The responses that exhibit the most pronounced time-dependent behavior 

dominated by the viscoelastic epoxy matrix, namely *
22 ( )S t , *

44 ( )S t  and *
66 ( )S t  are illustrated 

in Fig. 5.10. To determine whether these responses are well-approximated by power-law 

functions, the time-dependent part of the response   

 * 0 *( ) ( )ve
ij ij ijS t S S t− =  (5.25) 

was plotted as a function of time on a log-log graph in order to extract power-law exponents and 

associated coefficients. In other words, assuming that these homogenized functions may be 

approximated by,  

 ** *(0) *(1)( ) ijn
ij ij ijS t S S t= +  (5.26) 

where 11,12,13,22,23,33,44,55,66ij = , they were post-processed according to  
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 * *(0) *(1) *ln( ( ) ) ln lnij ij ij ijS t S S n t− = +  (5.27) 

to identify observable linear regions with the related power-law slopes *
ijn  and coefficients 

*(1)
ijS . 

Table 5.5 reports the resulting power-law coefficients and exponents for the selected 

homogenized creep compliances obtained from the locally-exact theory simulations for the 

hexagonal array containing the three fiber volume fractions are two types of epoxy matrices 

characterized by either constant Poisson’s ratio or constant bulk modulus. As anticipated, the 

power-law coefficients decrease with the fiber volume fraction at rates that depend on the 

particular creep compliance and matrix type. Regardless of the matrix type and creep compliance, 

however, the power-law exponents for the matrix-dominated homogenized creep compliances 

remain essentially the same as that of the epoxy matrix in the investigated fiber volume range. 

Comparison of the homogenized creep compliances based on the power-law fits of Eq. (5.26) 

with the locally-exact simulations are included in Fig. 5.10, illustrating excellent agreement. 

Included in Table 5.5 are the corresponding results for the creep compliance   S11
* (t)  which 

is dominated by the elastic fibers, producing negligible time-dependent behavior in the 

considered fiber volume range characterized by very small magnitudes of the power-law 

coefficients. The power-law exponents, however, are nearly independent of the fiber volume 

fractions are consistently lower relative to the matrix-dominated creep compliance exponents. 

 

 

fv  *(1)
11S  *(1)

22S  *(1)
44S  *(1)

66S  *
11n  *

22n  *
44n  *

66n  
0.20( oν ν= ) 1.086*10-4 0.0166 0.0478 0.0442 0.1650 0.1997 0.1998 0.2 
0.40( oν ν= ) 2.201*10-5 0.0113 0.0321 0.0285 0.1650 0.1994 0.1996 0.2 
0.60( oν ν= ) 6.717*10-6 0.0067 0.0183 0.0165 0.1650 0.1989 0.1990 0.2 
0.20( oK K= ) 1.098*10-4 0.0142 0.0532 0.0503 0.1645 0.1970 0.1988 0.2 
0.40( oK K= ) 2.250*10-5 0.0093 0.0347 0.0325 0.1645 0.1954 0.1972 0.2 
0.60( oK K= ) 6.931*10-6 0.0051 0.0189 0.0188 0.1645 0.1921 0.1939 0.2 

Table 5.5 Power-law coefficients and exponents of homogenized creep compliances of a 
unidirectional T300 graphite/934 epoxy composite at 121 oC  containing different fiber volume 
fractions. 
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Figure 5.10. Time-dependent components of matrix-dominated homogenized creep compliances 
of a transversely isotropic graphite/epoxy composite displayed on a logarithmic scale (left). The 
matrix phase is characterized by a power-law creep compliance and constant bulk modulus while 
the fiber is elastic. Predictions based on power-law fits (symbols) are compared with 
locally-exact simulations (lines), (right). 
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5.5 Conclusions  

The extension of the locally-exact homogenization theory to accommodate linearly 

viscoelastic phases in periodic unidirectional composites with hexagonal and square 

microstructures via the correspondence enables rapid identification of the effects of 

viscoelasticity, fiber array architecture and phase response on homogenized relaxation moduli 

and local stress fields. The success of the correspondence principle applied to the locally-exact 

theory depends on the efficiency and accuracy with which the Laplace-transformed unit cell 

solution is inverted to the time domain. The chosen inversion method proposed by Zakian (1969) 

proved to be an excellent vehicle towards this end. Because of the simple input data construction 

arising from the computationally stable analytical framework, the theory may be used efficiently 

by specialists and non-specialists alike to rapidly calculate both homogenized relaxation moduli 

or creep compliances and local stress fields in a wide fiber volume fraction range. The extended 

theory’s success is rooted in the variational principle proposed by Drago and Pindera (2008) 

which facilitates rapid convergence of the unknown Fourier coefficients in the unit cell 

displacement field representation upon application of periodic boundary conditions, demonstated 

herein to also hold true in the Laplace-transform domain. 

The theory’s utility was highlighted by investigating the impact of fiber array type and 

matrix constitutive assumptions on the homogenized response of unidirectional composites. The 

results revealed previously undocumented importance of viscoelasticity on the homogenized 

response of unidirectional composites with hexagonal and square microstructures, illustrating 

that initially small differences in the instantaneous response are substantially magnified with 

time, while quantifying the effect of matrix viscoelastic incompressibility under hydrostatic 

loading. The theory was also employed to investigate how the time-dependent component of the 

matrix creep compliance affects the homogenized response. The results indicate that a power-law 

representation of the matrix creep compliance produces power-law homogenized response in the 

matrix-dominated directions with the same power-law exponent but fiber volume fraction 

dependent coefficients.
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Chapter 6  

Comparison: LEHT vs Classical Models 

6.1 Review 

Composite cylinder assemblage (CCA) model was proposed by Hashin (1962) based on 

isotropic constituent, which was later extended to transversely isotropic phases in terms of 

replacement schemes (Hashin, 1979). This is the classic model based on representative volume 

element (RVE) concept, which provides closed-form expressions for the four of five effective 

moduli for the response of unidirectional-reinforced composites. The axial Young’s and shear 

modulus, axial Poisson’s ratio, transverse bulk modulus can be expressed because a single 

composite cylinder still acts as a RVE, while the entire assemblage responds as same as a single 

cylinder under homogeneous traction and displacement boundary conditions for axisymmetric 

and axial shear loading. The fifth effective modulus – transverse shear modulus, can only be 

expressed as the upper and lower bounds using variational principle. The four actual expressions 

for homogenized moduli for CCA model (Hashin, 1979) are expressed for future reference: 

! ( ) ( ) 2
* ( ) ( )

( ) ( ) ( )
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f m
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(6.1) 

 

while the upper and lower bounds for the transverse shear modulus *
TG  are  
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!          ! (6.2) 

In addition, the bounds for the transverse normal modulus *
TE  can be expressed as follows 

!

  

4
ET

*
±

= 1
GT

*
±

+ 1
kT

* +
4ν A

*2

EA
* ! (6.3) 

in which ( ) (1 )m f fα β γβ γβ= − + ,  ( ) ( 1)mρ γ β γ= + − , ( ) ( ) ( )( 2 )f f f
f T T Tk k Gβ = + ,   

( ) ( ) ( )( 2 )m m m
m T T Tk k Gβ = + , ( ) ( )f m

T TG Gγ = . ( ) ( ) ( ) ( ) ( ), , , ,k k k k k
A T A A TE k G Gν  are the material properties 

while kv  stands for the volume fraction of fiber and matrix, respectively, and ,k f m= .   

Christensen and Lo (1979) provide the quadratic expression for the transverse shear 

modulus using an energy approach based on the three-phase model, which can be expressed as: 

! ( ) ( )2* ( ) * ( ) 0m mG G A G G B D+ + = ! (6.4) 
in which A, B and D are the functions of the material properties of composite cylinder 

assemblage, the details of which can be referred in the original literature. 

The viscoelastic behavior was extended for heterogeneous media based on CCA models by 

Hashin and his colleagues, (Hashin, 1965; Hashin, 1966; Gottesman and Hashin, 1980). In the 

meantime, based on the assumption of average stress in the matrix phase, Mori and Tanaka 

(1973) provided another approach to evaluate effective stiffness matrix by firstly evaluating 

Eshelby-type problem, in which the fiber was imbedded into the matrix phase, and then applying 

far-field macroscopic strain to generate strain concentration matrix ( )f
m∞A  relating averaging 

fiber strain with averaging matrix strain ( )f
f m mε ε∞= A  . For any two-phase composite materials: 

! ( )[ ]f
f f m m f m m mv v v vε ε ε ε ε∞= + ⇒ = +  A I ! (6.5) 

from which the strain concentration matrix relating the averaging fiber strain with the 

macroscopic average strain becomes 

! ( ) ( ) ( ) 1[ ]f f f
m f m mv v −
∞ ∞= +A A A I ! (6.6) 

Then the final elastic stiffness matrix can be expressed as 
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! ( ) ( ) ( ) ( ) ( ) 1( ) [ ]m f m f f
f m f m mv v v∗ −

∞ ∞= + − +C C C C A A I ! (6.7) 

The problem for Mori-Tanaka model is that the matrix phase is taken into account but only 

in an average sense, which leads to the overestimating of initial yielding in the presence matrix 

plasticity (Pindera et al., 2009).   

Both CCA and Mori-Tanaka models have been among the most popular tools in 

investigating the micromechanical behavior of unidirectional composites in the past years. Both 

of them have their advantages over other micromechanics techniques: easily understandable and 

implemented, comparatively accurate predictions, et al. However, other problems are still 

looming: CCA model does not either consider fiber and fiber interaction, or provide the exact 

expression for the transverse shear (normal) modulus; Mori-Tanaka just consider matrix phase in 

an average sense…  

In this chapter we systematically compare the elastic and viscoelastic response of 

unidirectional composite materials based on CCA model, Mori-Tanaka model as well as LEHT, 

the framework of which is introduced in Chapter 2. The comparison between LEHT and CCA 

model has been conducted for unidirectional composites with cylindrical orthotropic fibers in 

Chapter 3 for validation of the accuracy and efficiency of the present theory. Here the 

comparison is limited for composites with (transversely) isotropic constituents to show the 

advantage of the present theory against the classical models for both homogenized moduli and 

stress distributions. 

6.2 Elastic Behavior 

In this section, the converged elastic homogenized moduli and stress distributions are 

compared between the LEHT, proposed in this dissertation, and the classical CCA and 

Mori-Tanaka models, both of which has been validated and applied in many situations. The 

homogenized moduli are compared by using glass/epoxy (listed in Table 6.1) to highlight the 

stronger contrast of inplane moduli between fiber and matrix, and covering a wide range of fiber 

volume fraction [0.05-0.75] to suit to more demanding cases. The LEHT has been demonstrated 

by many other analytical and numerical techniques, and here we just want to show the 

advantages of the proposed method, which can be used as a gold standard against other 

micromechanics tools.   
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Fig. 6.1 Homogenized moduli as a function of fiber volume fraction for glass/epoxy composite 
based on different models. 
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The homogenized moduli generated using three different models are compared in Fig 6.1, most 

of which has been normalized by their corresponding moduli of matrix, except axial Poisson’s 

ratio Aν . As can be observed in the figure, the homogenized moduli * * * *, , ,A T A AE k Gν  are almost 

identical based on LEHT (hexagonal array), CCA model, as well as Mori-Tanaka model under 

axisymmetric and axial shear loading. While the respective moduli for square array based on 

LEHT analysis are almost same for most of the cases, except slight differences appear for AG  

and Aν  when fiber volume fraction exceeds 55%. This is because the isotropic property 

characteristics still hold for the inplane problem for hexagonal array but not rectangular (square) 

array, and the fiber-fiber interactions turns to be more obvious when fiber volume fraction 

becomes larger. For the transverse normal and shear properties, only upper and lower bounds for 

TE  and TG  exist for CCA model, while Mori-Tanaka always gives the actual predictions for 

all of the homogenized moduli. In addition, the homogenized moduli of *
TE  and *

TG  based on 

LEHT for hexagonal array always lie between upper and lower bounds of their counterparts 

predicted by CCA model. In the meantime, Mori-Tanaka model gives almost the same transverse 

properties as the lower bounds of CCA model. 

 
Material (GPa)AE  (GPa)TE  (GPa)Aµ  (GPa)Tµ  Aν  

E-glass fiber 69.0 69.0 28.28 28.28 0.22 
3501-6 epoxy 4.2 4.2 1.567 1.567 0.34 

Table 6.1. Elastic fiber and matrix properties employed in the elastic analysis. 
 

Next, we are going to show the stress distributions using LEHT analysis and CCA model 

under different types of loading conditions. First, the inplane axisymmetric loading is applied, in 

which 22 33 0.01ε ε= =  for the hexagonal array and 0.01rrε =  for the CCA model, respectively. 

Two fiber volume fractions are employed, 30% and 65%, to illustrate the effect of fiber-fiber 

interaction on the stress distributions in the fiber area predicted by the two methods. Figs 6.2-6.3 

illustrate the inplane stress distributions    σ 22( y2 , y3),  σ 33( y2 , y3),  σ 23( y2 , y3)  for comparison; 

out-of-plane stress field 11 2 3( , )y yσ  is not shown here because the fiber is dominant in taking 

most of the axial stress, which is not as interesting as well. For the fiber volume fraction of 0.30, 

the CCA model shows accurate predictions compared with the LEHT. However, when the fiber 

volume fraction increases to 0.65 in Fig 6.3, obvious stress disturbance can be observed in the  
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  !
(a)  

   
(b)  

   
(c)  

Fig. 6.2 Stress distribution comparisons of (a) 22σ ; (b) 33σ ; and (c) 23σ  between LEHT 
analysis for hexaognal array (left) and CCA model (right) with the fiber volume fraction 0.30 
subjected to the loading: 22 33 0.01ε ε= =  (left) and 0.01rrε =  (right). 
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  !
(a)  

   
(b)  

   
(c)  

Fig. 6.3 Stress distribution comparisons of (a) 22σ ; (b) 33σ ; and (c) 23σ  between LEHT 
analysis for hexaognal array (left) and CCA model (right) with the fiber volume fraction 0.65 
subjected to the loading: 22 33 0.01ε ε= = (left) and 0.01rrε =  (right). 
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  !
(a)  

   
(b)  

Fig. 6.4 Stress distribution comparisons of (a) 12σ ; (b) 13σ  between LEHT analysis for hexaognal 
array (left) and CCA model (right) with the fiber volume fraction 0.30 subjected to the loading: 

12 0.01ε = (left) and 0.01zrε =  (right). 
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  !
(a)  

   
(b) !

Fig. 6.5 Stress distribution comparisons of (a) 12σ ; (b) 13σ  between LEHT analysis for hexaognal 
array (left) and CCA model (right) with the fiber volume fraction 0.65 subjected to the loading: 

12 0.01ε = (left) and 0.01zrε =  (right). 
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fiber area in LEHT analysis but not in the CCA model, although the matrix phases still show 

similar distributions. The disturbance in the fiber is due to fiber-fiber interaction, which cannot 

be predicted by the CCA model, and can only be captured in the higher fiber volume fraction 

case by LEHT. Similar phenomenon also happens in the stress fields under axial shear loading 

conditions 12 0.01ε =  (for hexagonal array) and 0.01zrε =  (for CCA model) (Figs. 6.4-6.5), 

while the fiber disturbance still cannot be observed when fiber volume fraction is 0.65fV =  by 

CCA model. However, CCA model still establishes accurate stress distributions in most cases, 

especially in the matrix phase, which cannot be illustrated by Mori-Tanaka model. In the next 

section, the viscoelasticity capability is implemented into LEHT (see Chapter 5 for details), as 

well as CCA and Mori-Tanaka models for comparison. 

6.3 Viscoelastic Behavior 

The viscoelastic behavior, based on the CCA model, was firstly studied by Hashin for 

unidirectional composites about half a century ago. Here we are trying to explain the viscoelastic 

behavior predicted by including LEHT, CCA model, as well as Mori-Tanaka model. The detailed 

process for solving the viscoelastic relaxation moduli or creep compliances by LEHT has been 

illustrated in Chapter 5, and are not going to be repeated here. However, the inversion technique 

for CCA and Mori-Tanaka models are explained in this section for future reference, both of 

which are using Zakian method, which has been proved to be a robust tool for many demanding 

cases, (Hassanzadeh and Pooladi-Darvish, 2007). 

Since the explicit expressions of homogenized moduli are already given in Eqs. (6.1-6.2) 

for CCA model, what is needed to do is to replace the elastic moduli by their Carson transform, 
( ) ( ) ( ) ( ), , ,k k k k
A T A AE k Gν  and ( )k

TG  ! ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆˆ ˆ, , , ,k k k k k
A T A A TsE sk s sG sGν , , ,  or k f m= ∗ . s  is the 

Laplace variable which usually has the following relationship ( ) j is j tα= ! for! 1,2,...5j = , in 

which the time domain is essentially a vector by dividing the desired time interval into 

increments 1 2 3[ , , ,..., ]Nt t t t t= . jα   are complex values and can be referred to Table 5.1. The 

homogenized relaxation functions at the given time are subsequently calculated according to Eq. 

(5.6) using Zakian method for the inversion technique, which is  

! 5* *
1

2( ) Re[ ( )]i j j ij
i

f t K F t
t

α
=

= ∑ ! (6.8) 
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in which f stands for the elastic moduli ( ) ( ) ( ) ( ), , ,k k k k
A T A AE k Gν  and ( )k

TG , while F denotes their 

respective relaxation moduli ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆˆ ˆ, , , ,k k k k k
A T A A TE k G Gν  in Laplace domain. 

However, the scheme used for Mori-Tanaka model is somewhat more complicated. The 

replacement scheme is firstly employed by replacing the displacement, strain and stress fields in 

the elastic domain by their Laplace transforms ˆˆ ˆ, ( ), ( )  i i ij ij ij iju u s sε ε σ σ→ → → , and the elastic 

stiffness matrix elements by their Carson transforms ˆ ( )ijkl ijklC sC s→ . Then far-field 

macroscopic strain is applied to generate strain concentration matrix ( )ˆ f
m∞A  relating averaging 

fiber strain with averaging matrix strain ( )( ) ( ) ( )ˆ ˆ ˆˆ ˆ, , 0f f m
f m f ms s vε ε∞= →A C C  in the Laplace 

domain. In addition, Eq. (6.5) can be re-expressed in Laplace domain as   

! ( )ˆˆ ˆ[ ]f
f m m mv vε ε∞= +A I ! (6.9) 

Then the final elastic stiffness matrix in the transform domain can be expressed as 

! ( ) ( ) ( ) ( ) ( ) 1ˆ ˆ ˆ ˆ ˆ ˆ( ) [ ]m f m f f
f m f m mv v v∗ −

∞ ∞= + − +C C C C A A I ! (6.10) 

Similar to the process applied to LEHT discussed in last chapter, the homogenized 

relaxation moduli obtained by Mori-Tanaka model, Eq. (6.10), can be inverted back as elastic 

moduli using Eq. (6.8). 

Two material systems are employed to generate the relaxation moduli: Glass/ED-6 resin 

(Cavalcante and Marques, 2014), and T300 graphite/934 resin at elevated temperature (Yancey 

and Pindera, 1990). And the fiber volume fraction employed for the stress distributions in this 

section is 60% to highlight the fiber-fiber interaction. 

 

Material (GPa)AE  (GPa)TE  (GPa)Aµ  (GPa)Tµ  Aν  
Glass fiber 68.67 68.67 28.38 28.38 0.21 

T300 graphite fiber 214.33 14.82 68.18 7.06 0.45 
Table 6.2 Elastic fiber properties used in the calculations. 

 

Material 0 (GPa)E  1(GPa)E  1 (GPa h)Eη ⋅  2 (GPa h)Eη ⋅  (1/ GPa min)C ⋅  n  mν  
ED-6 3.27 1.8 300 8000   0.38 
934 3.36    0.025 0.20 0.317 

Table 6.3 Viscoelastic four-parameter and power-law model parameters for the response of resin. 
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First, the relaxation moduli are generated using graphite/epoxy resin composite, and power 

law model is used to model the matrix response. The isotropic creep compliance ( )S t , for the 

power law model is given by: 

!
0( ) = + nS t D Ct ! (6.11) 

in which 0D  is the instantaneous elastic compliance, and 0 01=D E , where 0E  is the 

instantaneous elastic stiffness. C  and n  are experimentally measured parameters, and t  is 

time. The parameters can be referred to Table. 6.3. 

Fig. 6.6 illustrates the comparison of relaxation moduli up to 200 minutes between three 

models. Similar to Chapter 5, two popular assumptions are used for the consideration: (1) The 

hydrostatic response, in which the bulk modulus is assume to a constant (same value as the 

instantaneous response), and constant=K ; (2) the Poisson’s ratio is fixed as constantν = .  
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! !

! !

! !
constant=K ! constantν = !

Fig. 6.6 Comparison of the relaxation moduli of graphite/934 resin for LEHT, CCA model and 
Mori-Tanaka model: constant bulk modulus of the epoxy matrix (left column) and constant 
Poission’s ratio of epoxy matrix (right column). 
!
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As is noticed in the figure, all three models predict almost the same behavior under 

axisymmetric and axial shear loading, and    EA(t),  kT (t),  ν A(t),  GA(t)  are almost identical for 

different three models. Similar as elastic behavior, the transverse shear modulus TG  generated 

by LEHT in viscoelastic domain is also between upper and lower bounds of CCA model, while 

Mori-Tanaka model predicts TG  that is close enough to the lower bound of the CCA model. 

From the other perspective, slight difference can be observed for three of the five relaxation 

moduli    EA(t),  GA(t),  GT (t)  investigated in the figure under two different assumptions that 

model the response of the matrix. And big differences are found for    kT ,  ν A , while inplane bulk 

modulus creep much less for the constant K  case, and axial shear Poisson’s ratio almost keep 

constant for the constant ν  case.  

Then the glass/resin system is used here to show higher inplane modulus contrast. The 

ED-6 resin employed here is modeled using four-parameter model, which is comprised by two 

springs and two dashpots, arranged as shown in Fig. 6.7,  

 

 

  
 
 

 
 

 

Figure 6.7 Mechanical representation of the four-parameter model 

 

The creep compliance in tension for this model takes the following form 

! 1
1

2
0 1

1 1( ) (1 )E

E t

E

tS t e
E E

η

η

−

= + − + ! (6.12) 

and the parameters are listed in the Table. 6.3.  

As we can see in the Fig. 6.8, the response of Axial Young’s modulus is identical in both 

cases. The axial shear modulus is also same predicted by three models in each case, but small 

difference can be observed between the two assumptions. This is because for the out-of-plane 

0E

1ηE

1E

2ηE
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shear problem, the same Young’s modulus of the matrix is firstly assumed based on different 

models, and then shear modulus mG  would be different based on different assumptions from the 

relationship 2(1 )m m mG E ν= + .  

As already observed in the moduli of graphite/resin in Fig. 6.6, the transverse shear 

modulus TG  predicted by LEHT lies between the upper and lower bounds of CCA model, while 

Mori-Tanaka model gives almost same results as lower bound of CCA model. It should be 

mentioned that LEHT has been validated by numerical technique FVDAM (Cavalcante and 

Marques, 2014) and another analytical technique in the work of  Luciano and Barbero (1995), 

which are discussed in detailed in Chapter 5. 

Similar phenomenon as Fig 6.6 also happens to the plain strain bulk modulus Tk  and axial 

shear Poisson’s ratio between the two assumptions when Tk  creeps less in constant bulk 

modulus case and Aν  barely changes in the constant Poisson’s ratio case. 

 

! !

! !
!

!



! 147!

!
!

! !

! !

! !
constant=K ! constantν = !

Fig. 6.8 Comparison of the relaxation moduli of glass/ED-6 resin for LEHT, CCA model and 
Mori-Tanaka model: constant bulk modulus of the epoxy matrix (left column) and constant 
Poission’s ratio of epoxy matrix (right column).!
!
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Next, the stress distributions are compared between LEHT and CCA model to show the 

evolution of the material properties. The stress fields are generated by applying two different 

types of loading: transverse axisymmetric loading and axial shear loading, which are illustrated 

in Fig 6.9 and 6.10, respectively. Here the stress distributions are generated at 0t = , 150ht =

and 600ht = (from left to right). As is observed, the stress fields are similar predicted by the two 

models. But the CCA model cannot capture the disturbance in the fiber region when the 

fiber-fiber interaction become obvious (fiber volume fraction is 60%), but it does show similar 

distributions in the matrix against LEHT, which cannot be illustrated by Mori-Tanaka model. 
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! ! !

! ! !
(a)   σ 22( y2 , y3)  

! ! !

! ! !
(b)   σ 23( y2 , y3) !

Fig. 6.9 Comparison of the converged stress distributions 22 23,  σ σ  of glass/epoxy composite with the fiber 
volume fraction of 0.6 subjected to the axisymmetric loadings (1) 22 33 0.005ε ε= =  for hexagonal array (top); 
(2) 0.005rrε =  for CCA model (bottom); at different time points: 0, 150h, 600h (from left to right). 
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! ! !

! ! !
(a)   σ 12( y2 , y3) !

! ! !

! ! !
(b)   σ 13( y2 , y3) !

Fig. 6.10 Comparison of the converged stress distributions 12 13,  σ σ  of glass/epoxy composite with the fiber 

volume fraction of 0.6 subjected to the axial shear loadings (1)  ε12 = 0.005  for hexagonal array (top); (2) 

  ε zr = 0.005  for CCA model (bottom); at different time points: 0, 150h, 600h (from left to right).!
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6.4 Remarks 

In this chapter, two of the most well cited models in micromechanics community, CCA and 

Mori-Tanaka models, are investigated and compared with the LEHT. Both the elastic and 

viscoelastic cases are studied. Based on the study of homogenized moduli and stress distributions. 

A few points can be used to conclude this chapter: 

 

(1) CCA model is an easy-to-use and explicitly expressed analytical technique for the prediction 

of effective properties in microstructures. The model provides accurate predictions for four 

of the five transversely isotropic elastic effective properties (or viscoelastic relaxation moduli) 

– , , ,A T A AE k Gν , but only gives upper and lower bounds for the fifth one: TG . In addition, 

the fiber-fiber interaction is still an obstacle especially when the fiber volume fraction is 

large. 

(2) Mori-Tanaka model is also a straightforward concept to be understood and employed, which 

is based on the assumption of averaged matrix stress distributions. Most of the predictions for 

the homogenized moduli are almost identical compared with LEHT and CCA, as well as 

Mori-Tanaka model. However, the transverse normal and shear moduli predicted by 

Mori-Tanaka model are almost identical as lower bound of the CCA model in both elastic 

case and viscoelastic case, which have obvious discrepancies against LEHT that has been 

validated by other techniques. Also, the stress distributions cannot be investigated using 

Mori-Tanaka model. 

(3) Locally exact homogenization theory can be used as a standard against other models because 

it shows accurate predictions for the homogenized moduli, which is already discussed in 

previous chapters, and stress distributions in different geometrical microstructures, for both 

elastic and viscoelastic cases.  

 

The accurate and efficient calculations of both homogenized moduli and stress 

distributions are mainly because of the balanced variaitional principle firstly proposed by Drago 

and Pindera (2008), which will be discussed and compared in details with another well known 

method for boundary conditions implementation – Jirousek’s constrained variaitional approach.
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Chapter 7  

Effect of Boundary Conditions 

Implementation  

7.1 Introduction 

Convergence of the locally-exact homogenization theory for periodic materials was 

investigated in Chapter 4 for both hexagonal and square arrays, based on isotropic and 

transversely isotropic material properties. In the theoretical construction, the interior problem is 

solved exactly one harmonic at a time using Fourier series expansions for the displacement fields 

in the fiber and matrix phases which satisfy both the Navier’s equations and continuity 

conditions. Alternatively, the non-separable exterior problem involving the implementation of 

periodic boundary conditions is solved approximately using a new balanced variational principle 

which leads to exceptionally fast and well-behaved convergence of the Fourier series coefficients. 

Jirousek (1978) proposed another variational principle derived from a constrained potential 

energy functional for finite-element solutions based on locally-exact elements, which motivated 

the development of the balanced variational principle that is employed in the locally-exact 

homogenization theory. Recently, Jirousek’s constrained variational principle has been 

re-discovered by a number of researchers and applied to the homogenization of periodic 

materials, Yan et al. (2010), Yan and Jiang (2010), Yan et al. (2011, 2013), Guinovart-Díaz et al. 

(2012), Rodríguez-Ramos et al. (2013). The focus of these investigations was on homogenized 

thermo-electrical-mechanical moduli, with little mention of the convergence behavior or local 

field accuracy. 

In this chapter, we compare the unit cell’s solution convergence behavior based on the two 

different implementations of periodic boundary conditions, namely the constrained and balanced 

variational principles, in a wide range of fiber volume fraction, modulus contrasts and two array 
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types to demonstrate the latter principle’s advantages. Such comparison is highly relevant and a 

major contribution to the literature given the gaining popularity of the recently re-discovered 

constrained variational principle. 

7.2 Periodic Boundary Conditions 

Upon solution of the Navier’s equations in the individual phases of a unit cell, and 

enforcing the fiber/matrix interfacial continuity conditions on both tractions and displacements, 

the unknown coefficients associated with the displacement field in the matrix phase are 

expressed in terms of the unknown fiber coefficients ( ) ( ) ( )F ,G ,Hf f f
n n n , which are determined from 

the periodic traction and displacement boundary conditions. For the non-separable exterior 

problem, the two common ways of implementing periodic boundary conditions involved 

collocation and least squares methods. These two approaches, however, are not very stable, and 

often require large numbers of harmonics in the displacement field representation, as 

demonstrated by Drago (2008). Jirousek (1978) proposed a variational principle based on 

minimum potential energy for large-deformation problems solved using a locally-exact approach 

in the context of finite-element method. Motivated by this approach, Drago and Pindera (2008) 

developed the balanced variational principle for implementation of the periodic boundary 

conditions discussed in detail in Chapter 2. 

The balanced variational principle is compared with Jirousek’s constrained variational 

approach in the sequel to demonstrate the differences and similarities. These features enable 

straightforward implementation of the constrained variational principle into the locally-exact 

homogenization framework. The numerical results are limited to these two approaches as the 

collocation and least squares methods have been extensively discussed by Drago (2008), and 

proved to be unstable and inefficient techniques vis-à-vis homogenized moduli and stress 

distribution calculations.  

Jirousek (1978) had proposed the following augmented functional in developing a 

finite-element procedure locally satisfying all field equations 

 0 01 )
2 t u

J ij ij i i i i iV S S
H dV dS dSσ ε= − −∫ ∫ ∫t u t (u -u  (7.1) 

This functional represents the potential energy (the first two terms) subject to the 

displacement constraint (third term) over uS . In the context of the unit cell problem, ot  and 
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ou  are interpreted as periodic traction and displacement constraints imposed on tS  and uS , 

respectively. Thus the additional term appearing in the variational principle represents a 

constraint on the periodic displacement boundary conditions over a portion of the RUC 

boundary. 

Taking the first variation of JH , and using the fact that our local elasticity solutions satisfy 

the stress equilibrium equations a priori, so that  

 1 1
2 2

t uij ij i iV S
dV dSσ ε =∫ ∫  (7.2) 

After some manipulation, we obtain the variational principle in the final form 

 0 0( ) ( ) 0
t u

i i i i i iS S
dS dSδ δ− − − =∫ ∫u t t t u u  (7.3) 

 

On the other hand, the proposed balanced variational principle is expressed as: 

 0 01
2 u t

D P ij ij i i i iV S S
H dV dS dSσ ε− = − −∫ ∫ ∫t u t u  (7.4) 

which leads to the variational statement  

 0 0( ) ( ) 0
t u

i i i i i iS S
dS dSδ δ− + − =∫ ∫u t t t u u  (7.5) 

Implementing periodic boundary conditions in the first variation of the functionals 

representing the two variational principles, we obtain the inplane expressions: 

(a) Rectangular or parallelogram arrays 

 ( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ) ( ){ }

2

2 2 2 2 3 3 3 2
1

4

2 2 2 2 3 3 3 2
3

0

i

i

i i i i i iS
i

i i i i i iS
i

T S u S u S T S u S u S dS

u S T S T S u S T S T S dS

δ δ

δ δ

+ +
=

− −
=

′ ′ ′ ′− + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

′ ′+ + + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∑∫

∑∫m     

 (7.6) 

(b) Hexagonal array 

 ( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ) ( ){ }

3

2 2 2 3 3 3 3 3
1

6

2 2 2 3 3 3 3 3
4

0

i

i

i i i i i iS
i

i i i i i iS
i

T S u S u S T S u S u S dS

u S T S T S u S T S T S dS

δ δ

δ δ

+ +
=

− −
=

′ ′ ′ ′− + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

′ ′+ + + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∑∫

∑∫m     

 (7.7) 

 

and for the out-of-plane loading: 

(a) Rectangular or parallelogram arrays 
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 ( ) ( ) ( ) ( ) ( ) ( )
2 4

1 1 1 2 1 1 1 2
1 3

0
i i

i i i i i iS S
i i

T S u S u S dS u S T S T S dSδ δ+ −
= =

′ ′ ′− + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ∑∫ ∫m  (7.8) 

(b) Hexagonal array 

 ( ) ( ) ( ) ( ) ( ) ( )
3 6

1 1 1 3 1 1 1 3
1 4

0
i i

i i i i i iS S
i i

T S u S u S dS u S T S T S dSδ δ+ −
= =

′ ′ ′− + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ∑∫ ∫m  (7.9) 

Comparing the two variational principles we observe that the differences in the final 

equations lie in the “ ∓ ” signs between the terms involving the unit cell boundary summations. 

This feature makes it very easy to incorporate the constrained variational principle into the 

locally-exact homogenization theory’s framework for comparison with the balanced principle.  

7.3 Numerical Results 

The main focus of the numerical study is to compare the locally-exact homogenization 

theory’s convergence behavior as a function of the number of harmonics in the displacement 

field representation based on the implementation of periodic boundary conditions using the 

balanced and constrained variational principles. This is carried out by computing the 

homogenized engineering moduli and local stress fields as a function of the harmonic number for 

unit cells representative of glass/epoxy and graphite/epoxy unidirectional composites, as well as 

aluminum with cylindrical porosities. These material systems are characterized by a wide range 

of fiber/matrix modulus contrasts, and include both isotropic and transversely isotropic fibers, 

see Table 1. In the case of graphite/epoxy, coated fibers are also included in the convergence 

study for several coating thicknesses. Unit cells representative of hexagonal and square arrays 

are considered with fiber/porosity volume fractions of 0.20, 0.50 and 0.60. Convergence of 

homogenized moduli was investigated for unit cells with centered fibers, whereas local stress 

fields were computed at selected harmonic numbers for both centered and off-set fibers under 

uniaxial loading. The uniaxial loading was achieved by applying the correct ratios of the 

homogenized strains that produced the desired non-zero homogenized stress component. In the 

case of axial and transverse shear loading, it was sufficient to set the remaining homogenized 

strains to zero because of the absence of coupling between normal and shear strains. For loading 

by normal strains, the appropriate homogenized strain ratios necessary to achieve the desired 

non-zero homogenized stress were obtained from the homogenized Hooke's law. 

The homogenized engineering moduli were computed using the elements of the 



! 156!

homogenized compliance matrix *S . This matrix is the inverse of the homogenized stiffness 

matrix *C  appearing in the homogenized Hooke’s law in Eqs. (2.61)-(2.62). Given that the 

elements of *S  are expressed directly in terms of the engineering moduli, and * * 1[ ]S C −= , the 

six and five independent homogenized engineering moduli of square and hexagonal arrays, 

respectively, *
11E , * *

22 33E E= , * *
12 13ν ν= , *

23ν , * *
12 13G G= , *

23G  can readily be calculated. For 

instance, * *
11 111E S= , * * *

12 22 21E Sν = − , * *
12 661G S= , etc. 

In the sequel, the presentation of results is organized by material systems characterized by 

different fiber/matrix modulus contrasts. 

 

Material (GPa)AE  (GPa)TE  (GPa)Aµ  (GPa)Tµ  Aν  
E-glass fiber 69.0 69.0 28.28 28.28 0.22 
3501-6 epoxy 4.2 4.2 1.567 1.567 0.34 

Aluminum 69.0 69.0 25.94 25.94 0.33 
Porosity 69.0e-6 69.0e-6 25.94e-6 25.94e-6 0.33 

Graphite fiber 214 14 7 5.83 0.25 
Epoxy 3.5 3.5 1.296 1.296 0.35 

Coating 5.25 5.25 2.059 2.059 0.275 
Table 7.1 Elastic fiber, coating, and matrix properties employed in the calculations.!
!

7.3.1 Glass/Epoxy Composite 

We start with the convergence of the three homogenized moduli *
22E , *

23G  and *
12G  of a 

unidirectional glass/epoxy composite containing 0.20 fiber volume fraction. The fiber/matrix 

Young's modulus contrast for this system is approximately sixteen and a half. The chosen moduli 

are representative of the coupled and uncoupled systems of equations that must be solved to 

generate them. Unit cells with centered fibers were used in the computations. As observed in Fig. 

7.1, the balanced variational principle produces converged homogenized moduli with as few 

harmonics as four and six for the hexagonal and square arrays, respectively. Greater number of 

harmonic terms is required for the constrained variational principle, where greater variations in 

the homogenized moduli are also observed at low harmonic numbers, in contrast with the 

balanced principle. For instance, the homogenized transverse shear modulus *
23G  requires 

eleven harmonics for convergence in the case of the hexagonal array.  

!



! 157!

!
!
!
!
!
!
!
!
!

!
(a) Hexagonal array 

 

 
(b) Square array 

  Balanced variational principle           Constrained variational principle 
 

Figure 7.1 Convergence of homogenized moduli  for unidirectional glass/epoxy, 
containing 0.20 fiber volume fraction, with the number of harmonics used in the displacement 
field representation. 
!
!
! !

* *
22 23 12, ,E G G∗
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       2 harmonics                8 harmonics                12 harmonics 

  
Balanced variational principle 

 
Constrained variational principle 

(a) Hexagonal array 

     
Balanced variational principle 

     
Constrained variational principle 

(b) Square array 
 

Figure 7.2 Comparison of ),( 3223 yyσ stress fields in unidirectional glass/epoxy containing 0.20 
fiber volume fraction for loading by 01.023 =ε  generated using 2, 8 and 12 harmonics by 
balanced and constrained variational approaches.! !
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!
!
!
!
!

   
(a) Hexagonal array 

   
(b) Square array 

 
  Balanced variational principle               Constrained variational principle 

 
Figure 7.3 Comparison of ),( 3223 yyσ stress fields in unidirectional glass/epoxy containing 0.20 
fiber volume fraction for loading by 01.023 =ε  generated using 9 harmonics by balanced and 
constrained variational approaches. 
! !
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The observed convergence behavior of the homogenized engineering moduli with 

harmonic number may also be used as a rough indicator of the convergence of local stress fields 

under uniaxial loading. It is certainly an accurate indicator of the convergence of the local stress 

fields to their integral or average values as the elements of the homogenized stiffness matrix may 

also be computed from the ratios of the average stresses and one non-zero homogenized strain 

component that produces them, rather than the strain concentration matrix approach employed in 

the present study. These ratios determine the elements of the column of the homogenized 

stiffness matrix that corresponds to the applied homogenized strain component. The results 

shown in Fig. 7.1 suggest that the balanced variational principle produces local stresses that 

converge to their homogenized values rapidly and generally smoothly with harmonic number. 

Moreover, the convergence is not greatly influenced by the fiber's placement which may be 

centered (which was used to compute the homogenized engineering moduli in Fig. 7.1), or offset 

from the center, nor array type. The point-wise convergence is also generally smooth and 

predictable. This is in contrast with the local stress convergence obtained from the constrained 

variational principle, which may be erratic and dependent on the fiber placement as demonstrated 

below. 

Fig. 7.2 illustrates the convergence of the local stress fields 23 2 3( , )y yσ  at the applied 

transverse shear strain 23 0.01ε =  in hexagonal and square unit cells of the glass/epoxy 

composite with off-set fibers generated using 2, 8 and 12 harmonics. The notable feature of the 

balanced variational principle is the ability to capture the essential details of the stress field with 

even two harmonics, which become continuously refined in a smooth fashion with increasing 

number of harmonics. For the hexagonal array, the transverse shear stress field generated using 8 

harmonics is nearly converged, with 12 harmonics producing additional refinement and 

convergence. This contrasts with the constrained variational principle which exhibits slower and 

more erratic convergence. Fig. 7.3 highlights this point for both arrays whose local transverse 

shear stress fields were generated using 9 harmonics. The stress distributions were generated in 

three dimensions to highlight the differences and non-uniform convergence behavior of the 

constrained variational principle which produces distributions with large departures from those 

generated using 8 and 12 harmonics shown in Fig. 7.2. In contrast, the stress distributions for 

both arrays produced using the balanced variational principle shown in Fig. 7.3 conform to those 

of Fig. 7.2 with regard to smooth convergence. 
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!

   
(a) Hexagonal array 

   
(b) Square array 

 
    Balanced variational principle              Constrained variational principle 

 
Figure 7.4. Comparison of ),( 3222 yyσ stress fields in unidirectional glass/epoxy containing 0.20 
fiber volume fraction for loading by 01.022 =ε  generated using 9 harmonics by balanced and 
constrained variational approaches. 
!
!
!

!
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(a) Hexagonal array 

   
(b) Square array 

 
  Balanced variational principle             Constrained variational principle 

 
Figure 7.5 Comparison of ),( 3223 yyσ stress fields in unidirectional glass/epoxy containing 0.60 
fiber volume fraction for loading by 01.023 =ε  generated using 9 harmonics by balanced and 
constrained variational approaches. 

!
!
!

! !
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Similar observations hold for uniaxial loading along other directions. This is illustrated in 

Fig. 7.4 for uniaxial loading by the non-zero homogenized stress 22σ  at 22 0.01ε = , with the 

remaining normal strains adjusted so as to produce 11 33 0σ σ= = . Nine harmonics were used to 

generate these stress distributions for both hexagonal and square arrays. Large departures of the 

distributions produced by the constrained variational principle from those based on the balanced 

principle are observed in the figure, especially around the unit cell boundaries. Examination of 

the stress field convergence at 2, 8 and 12 harmonics highlights the erratic convergence behavior 

of the constrained variational principle illustrated in Fig. 7.4 in a snapshot. 

Increasing the volume fraction of the glass fibers increases the fluctuations observed in the 

convergence behavior of the homogenized moduli at low harmonic numbers. The number of 

harmonics required for converged homogenized moduli depends on the array type and particular 

modulus for both variational principles. For instance, in the case of the balanced variational 

principle, 8 harmonics are required for convergence of the transverse Young's modulus *
22E  for 

the hexagonal array, with just 4 for the remaining two moduli, whereas all homogenized moduli 

for the square array converge at 9 harmonics. The constrained variational principle generally 

requires greater number of harmonics for homogenized moduli convergence, which sometimes 

exhibits erratic behavior for some moduli. For instance, 15 harmonics are required for converged 

transverse Young's modulus *
22E  of the square array. 

The above observations carry over to the local stress field convergence. Figure 7.5 

compares the local stress fields 23 2 3( , )y yσ  at the applied transverse shear strain 23 0.01ε =  in 

hexagonal and square unit cells of the glass/epoxy composite containing 0.60 fiber volume 

fraction that were generated using 9 harmonics. Unit cells with centered fibers were used in the 

simulations because of the high fiber volume fraction. At this harmonic, stress field convergence 

for both hexagonal and square arrays is not achieved using the constrained variational principle, 

with the difference relative to the balanced variational principle greater for the square array. 

7.3.2 Aluminum/Porosity Composite 

Figure 7.6 illustrates the comparison of the homogenized moduli convergence behavior of 

aluminum containing 0.20 volume fraction of cylindrical porosities generated using the two 

variational principles for the three homogenized moduli *
22E , *

23G  and *
12G . For this extreme 
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inclusion/matrix modulus contrast, the fluctuations observed in the convergence behavior of the 

homogenized moduli at low harmonic numbers are substantially greater relative to the 

glass/epoxy composite of the preceding section. The balanced variational principle also produces 

faster convergence in this case for both hexagonal and square arrays relative to the constrained 

principle. The erratic convergence behavior generated by the constrained variational principle is 

observed for both arrays, and is particularly pronounced for the hexagonal array for which 14 

harmonics were required to achieve converged homogenized modulus *
23G .  

!
!

 
(a) Hexagonal array 

 
(b) Square array 

 
   Balanced variational principle           Constrained variational principle 

 
Figure 7.6 Convergence of homogenized moduli  for aluminum/porosity, 
containing 0.20 porosity volume fraction, with the number of harmonics used in the 
displacement field representation. 
! !
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(a) Hexagonal array 

 

   
(b) Square array 

 
  Balanced variational principle               Constrained variational principle 

 
Figure 7.7 Comparison of ),( 3222 yyσ  stress fields in aluminum with cylindrical holes 
containing 0.20 porosity volume fraction for loading by 01.022 =ε  generated using 9 harmonics 
by balanced and constrained variational approaches. 
 
! !



! 166!

The local stress distributions 22 2 3( , )y yσ  due to uniaxial loading by 22σ  at the applied 

homogenized strain 22 0.01ε =  that were generated using 9 harmonics are compared in Fig. 7.7 

for both arrays. Small differences between the predictions of the balanced and constrained 

variational principles, limited to the immediately boundary of the unit cell, are observed for the 

hexagonal array as may be inferred from the convergence behavior observed in Fig. 7.6 at this 

harmonic number. The balanced variational principle produces converged homogenized modulus 
*
22E  at this harmonic, whereas this modulus obtained from the constrained variational principle 

has not fully converged. The differences in the stress distributions 22 2 3( , )y yσ  increase for the 

square array, which is consistent with the convergence behavior of *
22E  observed in Fig. 7.6. 

The balanced variational principle produces fully converged *
22E  at the ninth harmonic in 

contrast with the constrained principle. 

7.3.3 Graphite/Epoxy Composite with Coated Fibers 

Interphases either arise naturally at the fiber/matrix interface during the consolidation 

process or are introduced deliberately in the form of coatings to improve fiber adhesion, mitigate 

residual stresses or control composite toughness. Hence they have been the subject of extensive 

investigations, and will continue to be studied as new material systems are developed since they 

control the stress transfer from the matrix phase into the typically stiffer fiber. In light of the 

interphases' or coatings' importance, their impact on the convergence of homogenized moduli 

and local stress fields is investigated in this section for a graphite/epoxy composite with 0.5 fiber 

volume fraction and several coating thicknesses. The fiber/matrix transverse Young's modulus 

contrast for this material system is smaller than that of the glass/epoxy composite. The coating 

stiffness is 1.5 of the matrix stiffness. Table 7.1 lists the elastic moduli of the constituent phases 

for this composite. 

The convergence of all the homogenized elastic moduli of hexagonal and square arrays was 

investigated as a function of the number of harmonics, and the greatest differences between the 

balanced and constrained variational principles were observed for the transverse Young's 

modulus *
22E . Fig. 7.8 illustrates the comparison of this convergence behavior for both arrays 

with three coating thicknesses, ranging from 0.01 to 0.10 of the fiber radius. As observed in all 

cases, the homogenized transverse modulus converges to larger values with increasing coating! !
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(a) Hexagonal array 

 

 
(b) Square array 

!
   Balanced variational principle          Constrained variational principle 

 
Figure 7.8 Convergence of the homogenized transverse Young’s modulus *

22E  for 
unidirectional graphite/epoxy with coated fibers, containing 0.50 fiber volume fraction, with the 
number of harmonics used in the displacement field representation. 
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(a) ),( 3222 yyσ  

 

  
(b) ),( 3233 yyσ  

 
 Balanced variational principle               Constrained variational principle 

 
Figure 7.9 Comparison of ),( 3222 yyσ and ),( 3233 yyσ stress fields in the square unit cell 
representative of unidirectional graphite/epoxy with coated fibers containing 0.50 fiber volume 
fraction for loading by 01.022 =ε  generated using 14 harmonics by balanced and constrained 
variational approaches. 
! !
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thickness since the coating stiffness is larger than that of the matrix phase. The convergence is 

rapid for the balanced variational principle, and is independent of the coatings thickness both in 

the number of harmonics required for convergence and the character of the convergence 

behavior with harmonic number. For the hexagonal and square arrays, 9 and 8 harmonics, 

respectively, are required for full convergence although acceptable results are obtained with 

fewer harmonics because of the well-behaved convergence behavior. In contrast, the constrained 

variational principle produces convergence behavior characterized by large departures from the 

asymptotic homogenized transverse moduli for small harmonics, and requires greater number of 

harmonics for convergence. The hexagonal array yields quicker convergence relative to the 

square array. For instance, 12 and 16 harmonics are required for the hexagonal and square array, 

respectively, both of which are greater relative to the balanced variational principle. 

To demonstrate the quality of the stress fields produced by the balanced variational 

principle, we compare the stress distributions 22 2 3( , )y yσ  and 33 2 3( , )y yσ  due to uniaxial 

loading by 22σ  at the applied homogenized strain 22 0.01ε =  that were generated using 14 

harmonics in Fig. 7.9 for the square array. At this harmonic number the homogenized transverse 

modulus *
22E  generated using the balanced variational principle has converged, whereas the 

constrained principle requires 16 harmonics. As observed, both stress fields obtained from the 

constrained variational principle do not satisfy periodicity conditions along the square unit cell 

boundary, in contrast with the balanced principle distributions. 

7.4 Summary 

The generated results based on the two ways of implementing the periodic boundary 

conditions for a wide range of material properties and two array types indicate that all of the 

homogenized moduli will converge given a sufficient number of harmonic terms. The 

convergence behavior depends on the method of implementing periodic boundary conditions, the 

fiber volume fraction and modulus contrast. As observed, the balanced variational principle 

provides quicker and more stable homogenized moduli in the investigated range of fiber volume 

fractions and material properties. The homogenized moduli predicted by Jirousek’s constrained 

principle display large deviations from the converged values for small numbers of harmonics, 

which does not occur for the balanced variational principle. Based on the work of Drago (2008) 

limited to square unit cells with isotropic elastic moduli of the fiber and matrix phases, weighted 
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least squares method requires almost the same number of harmonics as Jirousek’s variational 

principle for the convergence of homogenized moduli, and collocation requires the largest 

number of all four methods. 

The convergence of homogenized moduli for hexagonal array usually consumes more 

harmonic terms than square array because one more set of periodic boundary conditions need to 

be satisfied. In addition, it takes more harmonic terms for composites with greater modulus 

contrast. For the graphite/epoxy and glass epoxy composites, 8 harmonics were sufficient to 

achieve convergence, whereas porous aluminum required 10 when the balanced variational 

principle was employed. In contrast, more harmonic terms are needed to generate converged 

homogenized moduli when Jirousek’s constrained variational approach is employed. This is 

particularly evident for the Aluminum/Porosity case shown in Fig. 7.6.
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Chapter 8 

Summary and Conclusions 

8.1 Summary of Accomplishments 

Following and expanding on the work of Drago and Pindera (2008), the contribution of this 

dissertation is the construction of stable and quickly converging elasticity-based locally exact 

homogenization theory which may be used to: 

 

" efficiently investigate the elastic and viscoelastic response of unidirectional 

composite materials with  rectangular, square, hexagonal and tetragonal periodic 

microstructures comprised of isotropic, transversely isotropic, and (cylindrically or 

circumferentially) orthotropic phase constituents, and third phases such as coatings 

or interphases. 

 

The advantage of this homogenization theory, compared to other micromechanics models 

or homogenization theories, is rooted in the balanced variational principle which plays a key role 

in the implementation of non-separable periodic boundary conditions, leading to 

quickly-converging homogenized moduli and stable local stress distributions. This variational 

principle, originally proposed by Drago and Pindera (2008) for rectangular unit cell architectures, 

was extended herein to hexagonal and tetragonal unit cell architectures and demonstrated to 

produce quickly converging homogenized moduli and local stress fields regardless of phase 

moduli contrast, orthotropy type or viscoelasticity effects. 

The framework of the locally-exact homogenization theory was developed in two steps. In 

the first step, the equilibrium equations expressed in terms of displacements, or Navier’s 

equations, were solved exactly in the fiber, interface and matrix phases using Fourier series 

representations of the respective displacement fields. The continuity conditions between 
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fiber/interphase and interphase/matrix phases, respectively, were then applied one harmonic at a 

time in the cylindrical coordinate system wherein the problem is separable. This problem is 

called the interior unit cell problem. The exterior problem, which involves the satisfaction of 

non-separable boundary conditions in the Cartesian coordinate system for the considered array 

architectures, and which cannot be solved sequentially one harmonic at a time, is efficiently 

solved via the balanced variational principle implemented for the different array types. Finally, 

the homogenized constitutive equations are established to generate homogenized moduli of 

unidirectional composites which depend on the type of microstructures and material 

combinations.  

The constructed theory has been validated upon comparison with known elasticity 

solutions and micromechanics models. These include the solution to the Eshelby problem which 

was used as a benchmark to demonstrate the robustness and stability of the developed unit cell 

solution approach, and the FVDAM theory which produces high-fidelity results comparable to 

the finite-element method. Comparison with the classical CCA and Mori-Tanaka 

micromechanics models establishes applicability and limitations of these approaches based on 

simplified geometric representation of composite material microstructures. Selected numerical 

results are generated to provide insight into the efficiency and robustness of the theory. To 

demonstrate its superior advantage, the key component of the theory, namely the balanced 

variational principle, is compared with recently adopted approaches based on a derivative 

variational principle proposed originally in the context of locally-exact finite-element solutions. 

Finally, the elastic problem has been extended to viscoelastic domain via the elastic-viscoelastic 

correspondence principle and employed to investigate certain undocumented features of 

time-dependent response of polymeric matrix composites. 

 

The main contributions of this dissertation may be summarized as follows: 

 

" The constructed locally exact homogenization theory is the only elasticity-based theory of 

this type with the aforementioned capabilities. These capabilities are applicable in a wide 

range of fiber volume fractions, constituent phase modulus contrasts and three different 

array types. The ability to investigate elastic and viscoelastic response of unidirectional 

composites with cylindrically (both radially and circumferentially) orthotropic fibers, 
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such as graphite or silicon carbide, is a significant achievement given the singular nature 

of stress fields in this class of fibers. The problem of singular stress fields in cylindrically 

orthotropic fibers has been discussed but sidestepped using a replacement scheme based 

on equivalent transversely isotropic moduli. Another approach is the use of small hollow 

or transversely isotropic cores at the origin. Herein, this problem is tackled directly by 

employing orthotropic fiber properties in the homogenization and local stress calculation 

procedures alike within a unified framework, thereby enabling assessment of the proposed 

replacement schemes. Homogenization problems containing singularities cannot be easily 

handled using numerical techniques in contrast with the developed elasticity approach 

which produces exact expressions for the phase average strains and hence homogenized 

moduli. 

" The developed theoretical framework which admits the presence of third phases in the 

form of interfaces or interphases has also made possible contributions to this important 

area of composite mechanics which continues to be explored. Interfaces play a key role in 

stress transfer between fiber and matrix phases and in protecting fibers from fractures. 

Numerically based analyses of interfaces using the finite-element approach present 

convergence issues that must be overcome, which become increasingly more difficult 

with decreasing interface thickness. The demonstration that the convergence of the 

locally-exact homogenization theory does not deteriorate (that is, does not require more 

harmonics terms) and remains stable with decreasing interface thickness provides the 

composite mechanics and materials science communities with a powerful tool to assess 

the important effect of interfaces on both the homogenized moduli and local stress fields. 

In this dissertation, the generated homogenized moduli of composites with different 

interface geometries and properties have been validated against other numerical and 

analytically based techniques such as the PMH and three-phase models.  Moreover, the 

elasticity framework enabled efficient parametric studies aimed at investigating the effect 

of interface or coating stiffness and thickness on both the homogenized moduli and stress 

distributions. Because of the theory’s stability, a simple manipulation of parameters 

enabled the investigation of homogenized moduli of atomic layer-deposited alumina 

nanotubes with engineered multifunctional properties, revealing new effects. 
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" The key pillar supporting the success of the locally exact homogenization theory is the 

manner of implementing periodic boundary conditions based on a balanced variational 

principle wherein both tractions and displacements play equivalent roles. This is in 

contrast with the standard variational approaches based on the minimum potential energy 

theorem currently implemented in several elasticity-based homogenization techniques. 

The balanced variational principle is a derivative of a minimum potential energy approach 

proposed by Jirousek some time ago in the context finite-element based exact 

displacement field representation. This principle has been recently re-discovered and 

implemented into several elasticity-based homogenization schemes. The final expressions 

for the boundary conditions are almost exactly the same in the two approaches and differ 

only in the “± ” signs. In this dissertation, homogenization and local stress fields results 

generated using both approaches are compared within the same framework for three 

material systems with different elastic moduli contrasts, namely: graphite/epoxy, 

glass/epoxy, and aluminum porosity. It is demonstrated that the balanced variational 

principle exhibits superior convergence of both homogenized moduli and local stress 

fields with increasing number of harmonics, that is better stability and quicker 

convergence are observed relative to Jirousek’s approach.  

" The elastic problem has been extended to the viscoelastic domain for unidirectional 

composites by including the time-dependent response of polymeric matrix phase. The 

elastic-viscoelastic correspondence principle is employed to transform the unknown 

variables in the elastic solution of the unit cell problem to the Laplace transform, with the 

elastic moduli replaced by their Carson transforms. The Zakian inversion method to the 

time domain is employed, proved to be a superior and more stable inversion technique 

than the Schapery method, to efficiently calculate the homogenized moduli and local 

stress fields in the time domain. Two representations are available for modeling the 

isotropic matrix response, namely the power-law and the multi-parameter models 

comprised of combinations of Reuss and Voigt spring and dashpot elements. In addition, 

two popular adopted assumptions are employed to characterize the matrix response 

namely: constant Poisson’s ratio and constant bulk modulus. The theory is successfully 

compared with alternative homogenization approaches and experimental data, and 

employed to study the undocumented effects of array type on the creep compliance 
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functions, demonstrating substantial evolving differences with time for some functions. 

Lastly, the theory is employed to study the transmission of phase constitutive behavior to 

the macroscale in support of the construction of viscoelastic functions from experimental 

data. 

" The accuracy and stability of the locally exact theory renders it an excellent standard for 

comparison with other models, both classical and numerical. Herein, the results generated 

using two widely-employed classical models, CCA and Mori-Tanaka models, have been 

compared with the locally exact predictions for both elastic and viscoelastic problems. 

Under axisymmetric and axial shear loading in the elastic domain, small differences are 

observed between the baseline results of LEHT and the two classical models. The 

differences are substantially greater under transverse normal and shear loading. For 

instance, the transverse shear modulus predicted by LEHT lies between the upper and 

lower bounds of the CCA models, while the Mori-Tanaka result is much closer to the 

CCA’s lower bound. The stress distributions of generated by LEHT for hexagonal arrays 

and CCA are very similar for small or medium fiber volume fractions; for larger fiber 

volume fraction microstructures, however, the CCA model cannot capture the stress 

fluctuations in the fiber phase because of the absence of adjacent fiber interactions. 

Similar differences occur in viscoelastic problems for the types of assumptions on the 

matrix time-dependent response. The main conclusions from this comparison are that the 

CCA model provides accurate homogenized moduli and acceptably accurate stress 

distributions despite inability to predict exactly the missing fifth modulus. The 

Mori-Tanaka predictions of the homogenized moduli may be generated efficiently with 

comparative accuracy even though the assumption is based on the average stress in the 

matrix phase.    ! ! ! !

8.2 Conclusions 

To overcome the shortcomings of traditional micromechanics models based on simplified 

geometries of actual composite microstructures, and numerical homogenization approaches that 

utilize popular finite-element commercial packages, a new locally exact homogenization theory 

has been developed to very efficiently and accurately generate both homogenized moduli and 

local stress fields of a wide class of unidirectional composites in the elastic and viscoelastic 
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domains. The shortcomings of the traditional micromechanics models include the inability to 

generate accurately all the necessary homogenized moduli and local stress fields due to the 

simplified geometric representations and stress field assumptions necessary to obtain 

closed-form analytical solutions. Conversely, numerical models involve tedious mesh generation, 

time-consuming specification of periodic boundary conditions and also suffer from convergence 

issues when regions of very small dimensions (such as fiber/matrix interfaces) are present, 

requiring very refined meshes. Moreover, unlike the locally exact homogenization theory, both 

classical and numerical approaches cannot readily accommodate certain types of phase 

anisotropy such as cylindrical orthotropy exhibited by graphite fibers. 

In contrast, the developed locally exact homogenization theory provides both accurate 

homogenized moduli and stable stress distributions, which have been validated against many 

other analytical and numerical techniques. A key feature of the theory is its efficiency and 

stability in generating homogenized moduli and stress fields with very simple input data 

construction readily accessible to professionals and non-professionals alike. Hence it is expected 

that this approach will quickly gain popularity and become not only a design and research tool 

used by diverse communities involved in materials characterization, design and development, but 

also a comparison standard for bench-mark purposes. 

The efficient and robust computational tool developed in this dissertation can be easily 

implemented for other analytical purposes, which cannot be easily accomplished using other 

methods. For instance, optimization of material architectures is expected to be much faster, and 

multi-scale modeling capability easier to implement. It is also expected that the incorporation of 

multi-physics phenomena of currently intense interest to the materials science community, such 

as surface energy effects for nanoscale simulations, will be facilitated by the developed 

analytical framework. These additional features are left to future work that is discussed in the 

next section.  

8.3 Future work 

The extensions based on the present work are listed as follows: 

 

" Optimization. The homogenized response of unidirectional composites can be obtained 

through experimental characterization at the macroscale, but it is still a challenging 
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problem to predict the interaction between fiber/matrix and fiber/coating/matrix at the 

microscale due to lack of available data. Understanding this interaction is necessary for 

progress in the simulation of damage evolution in the form of matrix cracking and 

interphase debonding, leading to the development of tough composites. In addition, some 

of the engineering moduli still cannot be measured directly, such as the properties of the 

coating/interphase region, or transverse normal and shear moduli of fibers such as 

graphite and Kevlar because of the small interphase or fiber dimensions. Thus, a reliable 

optimization-based inverse method is necessary to provide insight into these properties, 

avoiding laborious and time-consuming experimentation. Particle swarm optimization has 

been shown to be a robust tool under diverse circumstances, which can be employed in 

conjunction with LEHT to predict the material properties that are difficult to measure 

directly, given available experimental data at the macroscale. 

" From “millimeter” to “nanometer”. The surface energy effect is one of the dominant 

factors for consideration when material dimensions are on the nanometer scale, which is 

the case in composite nanomaterials. Due to their wide applications in today’s high-tech 

industry, it is important to use efficient tools to study thermos-mechanical behavior of 

such nanoscale composite materials. One of the applications in this dissertation has 

illustrated the theory’s capability of calculating the homogenized moduli of an epoxy 

resin reinforced by atomic layer deposited (ALD) alumina nanotubes, which have been 

successfully fabricated in the laboratory. However, the surface energy was neglected 

because it was not significant in the chosen example. This effect may be incorporated in 

the future. Moreover, extension of the theory to include calculation of thermal expansion 

and conductivity tensors should be considered in future work as certain nanoscale 

materials (carbon nanotubes) are widely employed in the micro-electronics industry, 

necessitating inclusion of multi-physics characteristics. 

" Multiscale modeling. This topic is an important focus of modern mechanics, and is 

rapidly gaining popularity because of the current efforts to understand how the 

underpinning deformation mechanisms at different scales affect homogenized response. 

For instance, researchers in the area of bone mechanics will benefit from efficient 

homogenization tools that allow them to gain insight into stress transfer mechanisms 

through various scales (from the nanometeric scale up to the organ scale). Two of the 
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applications presented in Chapter #4, which involve unidirectional composite laminates 

and cylinders, have demonstrated the ease of LEHT implementation into the multiscale 

modeling process. Moreover, demonstration of multiscale modeling capability involving 

viscoelastic response will elevate the theory to a new level and encourage widespread use.
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Appendix 

A. Expressions of Stresses in the Matrix Phase in Cartesian Coordinate  

Through the transformation between polar coordinate and Cartesian coordinate, the inplane 

stress distributions for the matrix phase are expressed for the convenience of applying periodic 

boundary conditions: 

        

   

σ 22 = 2kTν Aε11 + (kT + µT )ε22 + (kT − µT )ε33 + 2kT F01 − 2µT F02ξ
−2 cos2θ

     + Fnjξ
pnj−1[Pnj cos nθ cos2θ + Snj cos nθ sin2θ − Rnj sin nθ sin2θ]

j=1
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     + Gnjξ
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σ 33 = 2kTν Aε11 + (kT − µT )ε22 + (kT + µT )ε33 + 2kT F01 + 2µT F02ξ
−2 cos2θ
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σ 11 = (EA + 4kTν A
2 ) ⋅ε11 + 2kTν A ⋅ε22 + 2kTν A ⋅ε33 + 4kTν AF01

     + 2kTν A[ pnj + (1+ nβnj )]ξ
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       (A.4) 

where  pnj  are the eigenvalues that expressed in Chapter 2, ( ) ( )(1 )nj T T nj T T njP k p k nµ µ β= + + − + , 
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( ) ( )(1 )nj T T nj T T njS k p k nµ µ β= − + + +  and ( 1)nj T nj njR p nµ β⎡ ⎤= − −⎣ ⎦ . 

 

The out-of-plane stress expressions for the matrix phase are 
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B. Boundary Condition Implementation – Balanced Variational Principle 

The periodic boundary conditions are solved by first assuming  

 0 01 0
2

t u t u
u t

D P ij ij i i i iV S S
H dV dS dSσ ε− = − − =∫ ∫ ∫  (B.1) 

where 0t=t  and 0u=u  are periodic traction and displacement constraints imposed on tS  and 

uS , respectively. Taking the first variation of  D PH − , and using the fact that the interior 

elasticity solution satisfies the stress equilibrium equations a priori, so that  

 1 1
2 2ij ij i iV S

dV t u dSσ ε =∫ ∫  (B.2) 

The variational principle is obtained in the final form as 

 0 0( ) ( ) 0u t t t u u
t u

i i i i i iS S
dS dSδ δ− + − =∫ ∫  (B.3) 

The reduced periodicity conditions can be expressed for arrays with different geometries:  

Hexagonal array 

 1 4 2 5 3 6

1 4 2 5 3 6

( ) ( ), ( ) ( ), ( ) ( )
( ) ( ), ( ) ( ), ( ) ( )

     
   

i i i i i i

i i i i i i

u S u S u S u S u S u S
t S t S t S t S t S t S
′ ′ ′ ′ ′ ′= = =

= − = − = −
 (B.4) 

and, rectangular or parallelogram array 
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 1 3 2 4

1 3 2 4
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i i i i

i i i i

u S u S u S u S
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= − = −
 (B.5) 

where 1,2,3i = . By implementing the reduced periodicity conditions Eqs. (B.4-5) for the 

inplane problem in the first variation of the functional, we obtain 
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Rectangular or parallelogram array 
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The respective expressions for the out-of-plane problem are   

Hexagonal array 
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Rectangular or parallelogram array 
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where i ij jt nσ= , and jn  are the unit normals for every side of the microstructures, each type of 

array has different unit normals due to different geometry. 
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Rectangular array 
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Parallelogram array 
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 Reorganizing the integrals with the Cauchy’s stress tensor relationship yields explicit 

expressions for the boundary conditions with stresses and displacement fields, the integrals in the 

equations can be evaluated numerically by using Gaussian quadrature rule. 
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δ σ σ σ σ

δ σ σ δ σ σ

′ ′+ −

′+ − − + +

′+ − − + +

′ ′+ − + + − +

∫
∫
∫
∫

6

6

2 6 22 6 23 6 22 3 23 3

3 6 23 6 33 6 23 3 33 3

( )[ 3 ( ) ( ) 3 ( ) ( )]

( )[ 3 ( ) ( ) 3 ( ) ( )] 0

S

S

u S S S S S dx

u S S S S S dx

δ σ σ σ σ

δ σ σ σ σ

′+ − − +

′+ − − + =

∫
∫
∫  

                    (B.13) 
 

Hexagonal array (Out-of-plane):  

        

1 2

3

4

5

12 1 13 1 1 1 1 4 13 2 1 2 1 5

12 3 13 3 1 3 1 6

1 4 12 4 13 4 12 1 13 1

1 5 13 5 13 2

[ 3 ( ) ( )][ ( ) ( )] ( )[ ( ) ( )]

[ 3 ( ) ( )][ ( ) ( )]

( )[ 3 ( ) ( ) 3 ( ) ( )]

( )[ ( ) ( )]

  
S S

S

S

S

S S u S u S dx S u S u S dx

S S u S u S dx

u S S S S S dx

u S S S dx

δσ δσ δσ

δσ δσ

δ σ σ σ σ

δ σ σ

′ ′ ′ ′+ − + −

′ ′+ − + −

′+ − − + +

′+ − +

∫ ∫
∫
∫

6
1 6 12 6 13 6 12 3 13 3( )[ 3 ( ) ( ) 3 ( ) ( )] 0

S
u S S S S S dxδ σ σ σ σ′+ − − + =

∫
∫

 

                    (B.14) 
 



! 192!

Rectangular array (Inplane) 

        

1 1

2 2

3 3

4

22 1 2 1 2 3 23 1 3 1 3 3

23 2 2 2 2 4 23 2 3 2 3 4

2 3 22 1 22 3 3 3 23 1 23 3

2 4

( )[ ( ) ( )] ( )[ ( ) ( )]

( )[ ( ) ( )] ( )[ ( ) ( )]

( )[ ( ) ( )] ( )[ ( ) ( )]

( )[

  
S S

S S

S S

S

S u S u S dy S u S u S dy

S u S u S dx S u S u S dx

u S S S dy u S S S dy

u S

δσ δσ

δσ δσ

δ σ σ δ σ σ

δ

′ ′ ′ ′− + −

′ ′ ′ ′+ − + −

′ ′+ − + −

′+

∫ ∫
∫ ∫
∫ ∫
∫

4
23 2 23 4 3 4 33 2 33 4( ) ( )] ( )[ ( ) ( )] 0

S
S S dx u S S S dxσ σ δ σ σ′− + − =∫

 

                    (B.15) 
 

Rectangular array (Out-of-plane) 

        1 2

3 4

12 1 1 1 1 3 13 2 1 2 1 4

1 3 12 1 13 3 1 4 13 2 13 4

( )[ ( ) ( )] ( )[ ( ) ( )]

( )[ ( ) ( )] ( )[ ( ) ( )] 0

  
S S

S S

S u S u S dy S u S u S dx

u S S S dy u S S S dx

δσ δσ

δ σ σ δ σ σ

′ ′ ′ ′− + −

′ ′+ − + − =

∫ ∫
∫ ∫

 

                    (B.16) 
 

Parallelogram array (Inplane) 

        

1

1

2 2

2
22 1 23 1 2 1 2 3

2
23 1 33 1 3 1 3 3

23 2 2 2 2 4 33 2 3 2 3 4

2 3 22 3

[sin ( ) cos ( )][ ( ) ( )] 1 tan

[sin ( ) cos ( )][ ( ) ( )] 1 tan

( )[ ( ) ( )] ( )[ ( ) ( )]

( )[ sin ( )

  
S

S

S S

S S u S u S dx

S S u S u S dx

S u S u S dx S u S u S dx

u S S

ϕδσ ϕδσ ϕ

ϕδσ ϕδσ ϕ

δσ δσ

δ ϕσ

′ ′− − +

′ ′+ − − +

′ ′ ′ ′+ − + −

′+ − +

∫
∫
∫ ∫

3

3

4 4

2
23 3 22 1 23 1

2
3 3 23 3 33 3 23 1 33 1

2 4 23 4 23 2 3 4 33 4 33 2

cos ( ) sin ( ) cos ( )] 1 tan

( )[ sin ( ) cos ( ) sin ( ) cos ( )] 1 tan

( )[ ( ) ( )] ( )[ ( ) ( )] 0

S

S

S S

S S S dx

u S S S S S dx

u S S S dx u S S S dx

ϕσ ϕσ ϕσ ϕ

δ ϕσ ϕσ ϕσ ϕσ ϕ

δ σ σ δ σ σ

+ − +

′+ − + + − +

′ ′+ − + + − + =

∫
∫
∫ ∫

 

                    (B.17) 
 

Parallelogram array (Out-of-plane) 

        

1

2

3

4

2
12 1 13 1 1 1 1 3

13 2 1 2 1 4

2
1 3 12 3 13 3 12 1 13 1

1 4 13 4 13 2

[sin ( ) cos ( )][ ( ) ( )] 1 tan

( )[ ( ) ( )]

( )[ sin ( ) cos ( ) sin ( ) cos ( )] 1 tan

( )[ ( ) ( )] 0

  
S

S

S

S

S S u S u S dx

S u S u S dx

u S S S S S dx

u S S S dx

ϕδσ ϕδσ ϕ

δσ

δ ϕσ ϕσ ϕσ ϕσ ϕ

δ σ σ

′ ′− − +

′ ′+ −

′+ − + + − +

′+ − + =

∫
∫
∫
∫

 

                    (B.18) 


