
A

Presented to
the faculty of the School of Engineering and Applied Science

University of Virginia

in partial fulfillment
of the requirements for the degree

by

Towards Controllable and Data-Efficient Natural Language
Generation

Dissertation

Doctor of Philosophy

Wanyu Du

May 2024

APPROVAL SHEET

This

is submitted in partial fulfillment of the requirements
for the degree of

Author:

Advisor:

Advisor:

Committee Member:

Committee Member:

Committee Member:

Committee Member:

Committee Member:

Committee Member:

Accepted for the School of Engineering and Applied Science:

Jennifer L. West, School of Engineering and Applied Science

Dissertation

Doctor of Philosophy

Wanyu Du

This Dissertation has been read and approved by the examing committee:

Yangfeng Ji

Matthew Dwyer

Yen-Ling Kuo

Cong Shen

Xiaodong Liu

Sebastian Gehrmann

May 2024

ABSTRACT

Large Language Models (LLMs) have revolutionized artificial intelligence (AI) ap-

plications by significantly simplifying users’ efforts to provide detailed and task-specific

instructions to AI systems. The adoption of the transformer architecture has notably en-

hanced LLMs’ ability to learn intricate linguistic patterns and world knowledge from

extensive text datasets. Moreover, the large-scale pre-training on multiple natural language

processing (NLP) tasks enables LLMs to address a wide range of NLP challenges with

improved performance and efficiency. While LLMs excel in natural language understanding,

they still face undeniable challenges in natural language generation (NLG). These challenges

include generating undesired outputs (e.g., factually incorrect, harmful, biased contents),

difficulty in adapting to low-resource domain-specific tasks, and misalignment with user

intentions. To address the above challenges, this dissertation introduces methods to refine

the generative capabilities of LLMs through controllable and data-efficient natural language

generation techniques. The goal is to improve the alignment of generated content with user

intentions using controllable and data-efficient LLMs. We design three major components to

achieve the goal: (1) user intention identification to align models with human preferences; (2)

controllable LLMs to produce outputs that meet specific user requirements; (3) data-efficient

NLG to enhance LLM adaptability to low-resource domain-specific tasks. In summary, this

dissertation provides a framework to understand user intentions and develop controllable

generation methods to align LLMs with these intentions. At the end of the dissertation, an

interactive text generation application is presented to demonstrate the benefits of leveraging

user intentions and controllable LLMs for human-AI collaborative text generation.

ii

ACKNOWLEDGEMENTS

First, I would like to thank my advisor Yangfeng Ji for his mentoring, support, and

inspiration over the past six years. I wouldn’t have started my academic research journey

without him. He provided a lot of guidance for me in coding, problem analysis, paper

writing and presentation, and most importantly, a good mindset to do research. I really enjoy

working and discussing research with him.

I am grateful for having Matthew Dwyer, Yen-Ling Kuo, Cong Shen, Xiaodong Liu, and

Sebastian Gehrmann as my dissertation committee members. Thank you for reviewing my

work and providing valuable feedback and suggestions that help me improve my research.

I also want to show my gratitude to other amazing researchers I worked with. Thank

Yanjun Qi for providing me with the precious job opportunity to work as an applied scientist

at AWS AI after graduation. Thank Song Feng, James Gung, Yi Zhang, Saab Mansour,

and Lijia Sun for mentoring and supporting me during my internship at AWS AI. Thank

Donegyeop Kang, Vipul Raheja, Zae Myung Kim, and Dhruv Kumar for sharing an inspiring

and fruitful collaboration with me during my internship at Grammarly. Thank Liwei Wang

and Jianqiao Zhao for broadening my research horizons during my internship at Tencent AI

lab.

I am fortunate to be a member of the Information and Language Processing (ILP) lab

at UVa, working and studying with other amazing graduate students. I would also like to

thank all my lab mates, Hanjie Chen, Aidan San, Stephanie Schoch, Hannah Chen, Dane

Williamson, Minjae Kwon, for their kind help in my research and daily life. Besides, I want

to thank my friends, Hanjie Chen, Danhua Zhang, Zhe Wang, Guangtao Zheng, Wenbo

Pang, Jing Ma, ..., for their support and companionship during my PhD journey.

Finally, my deepest thanks to my grandma and dad, for their love that supports me going

through the hard time.

iii

TABLE OF CONTENTS

Acknowledgments . ii

List of Tables . vii

List of Figures . xii

Chapter 1: Introduction . 1

1.1 Limitations of LLMs in Text Generation 1

1.2 Controllable Text Generation . 3

1.3 Human-AI Collaborative Generation . 4

1.4 Contributions . 5

Chapter 2: Background . 8

2.1 Controllable Text Generation . 8

2.2 Data-Efficient Text Generation . 10

2.3 User Intention Modeling . 11

2.4 Human-AI Interaction Applications . 12

Chapter 3: Controllable Text Generation . 13

3.1 Controlling Text Diversity via Variational Encoder-Decoders 13

3.1.1 Gaussian Processes as Function Priors 16

iv

3.1.2 Variational Encoder-Decoder with Gaussian Process priors 18

3.1.3 Efficient Variational Inference . 22

3.1.4 Experimental Setup . 24

3.1.5 Result Analysis . 28

3.2 Controlling Faithfulness via Reinforcement Learning 31

3.2.1 Learning Faithful and Accurate Generation Policy with RL 34

3.2.2 Experimental Setups . 38

3.2.3 Result Analysis . 41

3.3 Summary . 44

Chapter 4: Data-Efficient Text Generation . 46

4.1 Personalized Dialogue Generation via Additive Side Networks 46

4.1.1 The SideControl Framework . 49

4.1.2 Experimental Setup . 54

4.1.3 Result Analysis . 60

4.2 Task-Oriented Dialogue Generation via Self-training Algorithms 65

4.2.1 Self-training with Two-phase Self-augmentation (SA2) 68

4.2.2 Experimental Setup . 72

4.2.3 Result Analysis . 75

4.3 Summary . 78

Chapter 5: User Intention Modeling . 80

5.1 Identifying Segment Act Flows for Consensus-Based Dialogue Evaluation . 80

5.1.1 ActDial: A Segment Act Dataset on Open-Domain Dialogues 83

v

5.1.2 FlowEval: A Segment-Act-Flow Aware Evaluation Metric 86

5.1.3 Experimental Setup . 89

5.1.4 Result Analysis . 93

5.2 Identifying Edit Intentions for Iterative Text Revisions 98

5.2.1 Task Formulation . 100

5.2.2 ITERATER Dataset Construction 102

5.2.3 Understanding Iterative Text Revisions 109

5.2.4 Modeling Iterative Text Revisions 112

5.2.5 Discussion . 116

5.3 Summary . 116

Chapter 6: Human-AI Interaction Applications 118

6.1 A System Demonstration for Human-in-the-loop Iterative Text Revision . . 118

6.1.1 R3 Human-in-the-loop Iterative Text Revision System 120

6.1.2 Experimental Setup . 123

6.1.3 Result Analysis . 126

6.1.4 Discussion . 130

6.2 Summary . 131

Chapter 7: Conclusion . 132

References . 161

vi

LIST OF TABLES

3.1 Model performance on text quality. To get the best performance of varia-
tional encoder-decoder models, we directly take the mean of qϕ(z | h,y)
as the sampled context variables to generate the output texts. Results of
the Multi-Selectors [101], Variation Attention [99] and T-CVAE [100] are
collected based on the source code provided in the original paper. 28

3.2 Model performance on text diversity. Avg-BLEU measures the average
quality of generated sentences compared with ground-truth references. Self-
BLEU measures the token-level repetitiveness, and a lower self-BLEU
indicates a higher token-level diversity. Div-4 measures the ratio of unique
4-grams, and a higher Div-4 means a higher token-level diversity. Uni. mea-
sures the ratio of unique generated sentences, and a higher Div-4 illustrates
a higher sentence-level diversity. 29

3.3 Sample outputs conditioned on different z sampled from qϕ(z|x) on GYAFC
(E&M) test set. 30

3.4 Two example responses generated by an LLM (text-davinci-003) in knowledge-
grounded information-seeking conversations. The green text highlights
the ground-truth knowledge span. The blue text is the unfaithful model-
generated response caused by the bias from the LLM. The red text is the
irrelevant model-generated response misled by the text that contains redun-
dant information. 32

3.5 An example from the validation set of FaithDial for human expert to do
pair-wise comparison between the outputs of GPT-3.5-turbo and t5-base.
The blue text is the unfaithful model-generated response caused by the bias
from the LLM. 37

3.6 Benchmark datasets statistics. 38

3.7 The prompt template used for GPT-4 faithfulness evaluation. 40

vii

3.8 Automatic evaluation results on the test set of MultiDoc2Dial. The results
of R3 are reprinted from the original paper [159]. The other results come
from our implementation. Note that Kspan is the ground-truth knowledge
span, and is not presented during training. 41

3.9 Automatic evaluation results on the test set of FaithDial. The results of
T5-CTRL come from the code and data released by [133]. The other
results come from our implementation. Note that Kspan is the ground-truth
knowledge span, and is not presented during training. 42

3.10 Different model-generated responses sampled from the test set of Multi-
Doc2Dial. The green text highlights the ground-truth knowledge span. The
red text is the incorrect model-generated response misled by the text that
contains redundant information. 43

4.1 Knowledge document control performances under full training set of Con-
vAI2, where λ = 10−5 forLcontrol in DialoGPT-SideControl and BlenderBot-
SideControl. 60

4.2 Knowledge document control performances of DialoGPT-SideControl with
different λ. 62

4.3 Semantic label control performances under full training set of DailyDia-
log, where λ = 105 for Lcontrol in DialoGPT-SideControl and BlenderBot-
SideControl. 62

4.4 Semantic label control performances of DialoGPT-SideControl with differ-
ent λ. 64

4.5 Human evaluation of fluency and context relevancy on semantic label control
task. 64

4.6 Human evaluation of attribute relevancy on semantic label control task. . . . 64

4.7 Examples of our self-augmented data and data selection strategy. text is
the input MR (e.g. request is the dialogue intent, and (ref = ?) is the slot-
value pair of the current intent). The model pθ generates synthetic dialogue
response conditioning on the text . For each self-augmented data, a low
predictive mean E[pθ] indicates that the model finds the augmented data
“too noisy” (e.g. out-of-domain or invalid response), and a low predictive
variance V ar[pθ] indicates that the model finds the augmented data “too
certain” (e.g. uninformative response). In this work, we propose to select
examples with high E[pθ] and high V ar[pθ]. 67

viii

4.8 Data statistics for the original manual-labeled data DL and the unlabeled
data DU on FEWSHOTWOZ. 73

4.9 Data statistics for the original manual-labeled data DL and the unlabeled
data DU on FEWSHOTSGD. 73

4.10 Automatic evaluation results on the test set of FEWSHOTWOZ (BLEU↑,
ERR↓). The results of AUG-NLG come from the data and code released by
[63], the other results come from our implementation. 75

4.11 Automatic evaluation results of BLEU scores on the test set of FEWSHOTSGD.
The results of AUG-NLG come from the data and code released by [63],
the other results come from our implementation. 76

4.12 Human evaluation results on the sampled test set of FEWSHOTSGD. 76

4.13 Human evaluation results on the sampled test set of FEWSHOTWOZ. . . . 76

4.14 Ablation study results on the test set of FEWSHOTWOZ (BLEU↑, ERR↓). 77

4.15 Different data selection strategy comparison of ST-SA2 in the Restaurant
domain on the test set of FEWSHOTWOZ. 77

4.16 Different base generation model comparison of ST-SA2 in the Restaurant
domain on the test set of FEWSHOTWOZ. 77

4.17 Different training hyper-parameters comparison of ST-SA2 in the Attrac-
tion domain of FEWSHOTWOZ, where Epoch is the number of training
epochs within a self-training iteration, and LR is the initial learning rate at
the beginning of each training epoch. We select the best model which has
the highest BLEUdev. 78

5.1 A snippet of an open-domain dialogue and its segment act flow. Each
segment is marked with the same color as its corresponding segment act label. 81

5.2 Our ISO-format open-domain segment act tagset: the definition, examples,
and distribution . 84

5.3 Controllable Dialogue [230] evaluation results by AMT crowd-workers. . . 91

ix

5.4 Correlations between different metrics and human evaluation on Controllable
Dialogue (test set), FED and DSTC9 datasets. All values are statistically
significant to p < 0.05, unless that are marked by ∗. SOTA refers to the
previous best performing methods (except our FlowEval) in each dataset
and is underlined. 93

5.5 Inter-correlations between FlowEval seg, BERTScore, BLEU, and human
evaluation. FlowEval seg is a version of FlowEval using segment act flow
only for assessment. All values are statistically significant to p < 0.05,
unless that are marked by ∗. 96

5.6 An iteratively revised ArXiv abstract snippet (2103.14972, version 2, 3, and
4) with our annotated edit-intention in ITERATER. 99

5.7 Comparisons with previous related works. 100

5.8 Statistics of the ITERATER dataset, where #D indicate the number of docu-
ment revisions (Rt), and #E indicate the number of annotated edit actions.
. 103

5.9 A taxonomy of edit intentions in ITERATER, where Fluency, Coherence,
Clarity and Style belong to Non-Meaning-changed edits. 104

5.10 Edit intention classifier performance on the test split of ITERATER-HUMAN. 107
5.11 Inter-annotator agreement (Fleiss’ κ [237]) across two rounds of annotations,

where the 1st-round only contains annotations from qualified AMT workers,
and the 2nd-round contains annotations from both qualified AMT workers
and expert linguists. 109

5.12 Evaluation results for 21 iterative document revisions, where t indicates
the revision depth. Note that ∆SLOR, ∆EG and ∆FKGL are computed
by subtracting the scores of original documents from the scores of revised
documents. Overall is the manual evaluation of overall quality of the revised
documents. 111

5.13 Manually evaluated text quality of 120 single sentence-level edits for differ-
ent edit intentions. 111

5.14 Model performances on the test set of ITERATER-HUMAN. Baseline refers
to a no-edit baseline, where we simply use the input text as the output. Avg.
is the average score of SARI, BLEU and ROUGE-L. 113

5.15 Manual pair-wise comparison for 30 single document revisions without
Meaning-changed edits. 114

5.16 Manual pair-wise comparison for overall quality of 21 iterative document-
revisions, where t indicates the revision depth. 114

x

6.1 Statistics for our collected revision data which has been used to train the
edit intention identification model and the text revision generation model. #
Docs means the total number of unique documents, Avg. Depths indicates
the average revision depth per document (for the human-generated training
data), and # Edits stands for the total number of edits (sentence pairs) across
the corpus. 125

6.2 Human-in-the-loop iterative text revision evaluation results. t stands for
the revision depth, # Docs shows the total number of revised documents
at the current revision depth, Avg. Edits indicates the average number of
applied edits per document, Avg. Accepts means the average number of
edits accepted by users per document, and % Accepts is calculated by
dividing the total accepted edits with the total applied edits. 127

6.3 The distribution of different edit intentions. # Edits indicates the total
number of applied edits under the current edit intention, # Accepts means
the total number of edits accepted by users under the current edit intention,
and % Accepts is calculated by dividing the total accepted edits with the
total applied edits. 127

6.4 Edit suggestion examples generated byR3. 128

6.5 Quality comparison results of final revised documents with and without
human-in-the-loop. Avg. Depths indicates the average number of iterations
conducted by the system, # Edits means the total number of accepted edits
by the system, and Quality represents the human judgements of the overall
quality of system-revised final documents. 128

6.6 User feedback survey ratings. Ratings are on 5-point Likert scale with 5
being strongly positive experience, 3 being neutral, and 1 being strongly
negative. However, we’d like to point out that as the number of users
(linguists) who participated in the study is small, the statistical significance
of the results should be taken lightly. 129

xi

LIST OF FIGURES

3.1 A simple illustration of a variational encoder-decoder model with (a) a
normal Gaussian prior and (b) a Gaussian process prior. With a normal
Gaussian prior, each hidden state hi will be mapped into a random vector
zi independently; while a Gaussian process prior imposes dependency con-
straints among {zi}. Double circles on {hi} indicate they are deterministic
variables. 14

3.2 Samples of potential functions g from (a) a Gaussian process prior GP(0,K)

which uses a squared exponential kernel k(h, h′) = exp(− (h−h′)2

2
), (b) a

Gaussian process posterior p(g | D) conditioning on the training data D. . . 17

3.3 A simple illustration for comparison between our GP priors and the priors
in conditional variational autoencoders [118] under the variational encoder-
decoder framework. 20

3.4 The relationship between the knowledge text, the ground-truth knowledge
span, and the reference answer in knowledge-grounded dialogue generation
tasks. 33

4.1 General architecture of the SIDECONTROL framework. 47

4.2 Confusion matrix of the evaluation dialogue act classifier. 55

4.3 Controllability under a different number of training examples in ConvAI2
dataset. 61

4.4 Controllability under a different number of training examples in DailyDialog
dataset. 63

4.5 Our two-phase self-augmentation (SA2) self-training framework for few-
shot MR-to-Text generation. 66

xii

5.1 Extract segment act and content features. Retrieve closest human dialogues
from ActDial dataset. 87

5.2 The relationships, in our hypothesis, between human evaluation vo, semantic-
meaning-focused evaluation vm, and segment-act-based evaluation vp. . . . 96

5.3 Segment act feature space of Controllable Dialogue, FED, DSTC9 dataset
and the retrieval set ActDial. We have a separate plot for Controllable
Dialogue because the ActDial we used are different (See Section 5.1.3). . . 97

5.4 A screenshot of the annotation instruction for human annotators. 105

5.5 A screenshot of the provided examples for human annotators. 106

5.6 A screenshot of the annotation interface for human annotators. 107

5.7 Logarithm (base e) of frequency for edit-intentions in each revision depth
for the three dataset domains. 108

5.8 Number of iterations made by humans and different text revision models. . 115

6.1 System overview forR3 human-in-the-loop iterative text revision. 119

6.2 User interface demonstration forR3. The anonymized version is available
at https://youtu.be/lK08tIpEoaE. 123

xiii

https://youtu.be/lK08tIpEoaE

CHAPTER 1

INTRODUCTION

With the fast development of deep learning and natural language processing (NLP) tech-

niques, large language models (LLMs) [1, 2, 3, 4] have demonstrated remarkable contextual

understanding capabilities, significantly improving user’s efficiency in various writing tasks,

including translation [5], summarization [6], creative writing [7], and text revisions [8]. By

simply writing instructions in natural language, users can prompt LLMs to produce outputs

that adaptively meet their specified requirements.

The success of LLMs could be attributed to four major factors: (1) the adoption of

Transformer-based model architectures [9], which leverages the self-attention mechanism

to capture long-range dependencies between words and model complex linguistic patterns,

addressing the limitations faced by LSTM architectures [10] when stacking up to deeper

layers; (2) the extensive pre-training on large-scale text datasets, which enables LLMs

to have broad general world knowledge and learn various language patterns [11]; (3) the

implementation of a unified text-to-text framework [12], which enables one single LLM to

solve multiple NLP tasks; and (4) the alignment with human preferences with fine-tuning

[1], which ensures LLMs more accurately adapt to users’ requirements. The state-of-the-art

LLMs [3, 4] are pre-trained on expansive internet-based text corpora, learning to predict

subsequent tokens based on previous input. They are further fine-tuned through task-specific

instructions and human preference scores using reinforcement learning techniques [13, 14],

achieving human-level performance across a variety of NLP tasks [15].

1.1 Limitations of LLMs in Text Generation

Although current LLMs exhibit remarkable proficiency in understanding natural language,

they nonetheless possess inherent limitations in natural language generation (NLG) and

1

human-AI collaboration. These constraints impede their integration into the development of

user-centric AI applications.

For the limitations in NLG, current LLMs are susceptible to generating outputs that might

be harmful, biased, or even factually incorrect [16, 17, 18], which motivates the development

of effective methods to control the generation of undesired outputs. Furthermore, current

LLMs still require a decent amount (e.g., a few thousand) of high-quality labeled data to

be adapted to domain-specific tasks (e.g., task-oriented dialogue state tracking, medical

document analysis, and legal document generation) [19, 20, 21]. However, collecting large-

scale labeled data for domain-specific tasks not only demands in-depth expert knowledge,

but also incurs significant costs due to the need for meticulous human annotations. Therefore,

the development of data-efficient methods in NLG is imperative to better adapt LLMs to

these domain-specific tasks.

From the perspective of human-AI collaboration, LLMs provide a convenient natural

language interface for human users to interact with AI systems to perform challenging tasks

with improved efficiency. Current LLMs interact with users through text-based conver-

sational interfaces, and such interaction mode requires large amounts of user’s cognitive

load to formulate task instructions and read model outputs. Besides, LLMs sometimes

misinterpret ambiguous and generic user instructions. The failure to identify user intentions

may incur the loss of the user’s trust and patience with the LLMs. Additionally, there is a

risk of diminishing user engagement and satisfaction, if the system continues querying the

user without resolving their issues expediently [22, 23, 24]. Users’ patience may decay if

the system fails to deliver solutions within a tolerable number of interactions. Therefore,

it is important to conduct thorough analyses of user behaviors and preferences to inform

the design of more intuitive user interfaces. Such enhancements are crucial to augment the

accessibility and utility of LLMs, thereby extending their benefits to a broader spectrum of

users.

2

1.2 Controllable Text Generation

Controllable text generation techniques aim at improving the alignment of LLMs with

human preferences, including generating factually correct, contextually relevant, unbiased,

and harmless outputs [25]. Previous methods control the generation of LLMs through

supervised fine-tuning on millions of training data, which is data-intensive [26, 27], or

attribute model that updates LLMs during inference, which is computation-intensive [28,

29]. Recent works design different prompting strategies to control LLMs generating desired

outputs, which is task-dependent [30, 31].

The supervised fine-tuning methods train a conditional language model from scratch [26,

32, 33]. This conditional language model learns the control attributes as latent variables,

and generates the desired outputs by conditioning on the target control attributes. While

the direct training of conditional language models achieves a good performance in both

controllability and text quality, it requires a large amount of training data to learn the latent

distribution of the control attributes.

The attribute model methods train a smaller attribute network to guide the generation

of LLMs [34, 35, 28, 36]. The attribute network, crucial for encoding control attribute

information, can be implemented through various approaches, each with its own set of

strengths and limitations. Some popular baseline methods are included as follows. First,

the plug-and-play model [34], which takes the gradient of the attribute model to update the

base LLM at each decoding time step. Although it exhibits excellent control over the output,

the plug-and-play model significantly increases the computational cost during inference.

Second, the scoring function for weighted decoding [36], which adjusts the probability

distribution of the base LLM during inference using a scoring function. While it reduces

the decoding cost compared to the plug-and-play model, its ability to control outputs is

ultimately constrained by the capabilities of the base LLM. Third, the reward model for

reinforcement learning applies a reward function to guide the generation policy to produce

3

high-reward outputs [37]. Despite its effectiveness in controlling generation, this method

risks “hacking” the reward system, potentially compromising the quality of the generated

text.

The prompt engineering methods leverage the general knowledge of LLMs to produce

desired outputs [38]. Prompt engineering designs task instructions and samples a set of

input-output training instances as the context information to guide LLMs generating outputs

in a similar format. Although this approach significantly reduces the need for labeled data,

it implicitly presupposes that LLMs already possess a reasonable level of proficiency in the

target tasks, which may not hold true in some domain-specific tasks, including task-oriented

dialogue state tracking, medical document analysis, and legal document generation.

This dissertation addresses these limitations by designing new loss functions and neural

network modules along the data-driven pipelines. To enhance computation and data effi-

ciency, I propose fine-tuning a small side network to encode control attributes and integrate

it with pre-trained LLMs [39]. This is complemented by a specific control loss to prevent

ambiguous and generic responses. Moreover, recognizing that some training data, especially

LLM-generated data, can be very noisy and uninformative, I design a model-uncertainty-

based data selection method to select training data that is beneficial for learning [40]. To

address the generation of factually incorrect content, I devise a new reward function and

fine-tuned LLMs with reinforcement learning to ensure the model’s outputs remain faithful

to the input knowledge texts [41].

1.3 Human-AI Collaborative Generation

Previous works on human-AI collaborative text generation have investigated the interactions

with LLMs that support story generation [42, 43], text revision [44, 8], or creative writing

[7]. However, there’s a notable lack of focus on the alignment with user intentions during

human-AI interactions.

User intentions reflect the goal of the user when interacting with the system, which

4

covers a wide range of objectives across different domains. In task-oriented dialogues, for

instance, intentions can range from finding a flight, setting an alarm, to sending an invite.

Within open-domain chit-chat, users might aim to ask questions, provide information, or

offer feedback. Meanwhile, intentions in formal writing revisions could involve correcting

grammatical mistakes, enhancing readability, or altering the writing style. Recognizing

these intentions is critical in guiding the system’s responses and functionalities to meet

users’ specific needs effectively.

Some works on text revision [45, 46, 47, 8] have proposed human-AI collaborative

writing interfaces to collect human-AI interaction data for training better neural models.

Other works [48, 42] on creative writing designed human-AI interaction interfaces to

encourage new content generation. Another line of works on interactive text generation

[49] builds user simulators to test the robustness of the interactive text generation system.

As mentioned above, those human-AI interfaces do not focus on the alignment with user

intentions during human-AI interactions.

This dissertation focuses on developing interactive text generation systems for the text

revision task, which leverages LLMs to improve the quality of formal writing with less

user effort. To achieve this goal, I propose a novel edit intention taxonomy to model user

intentions in iterative text revisions, and train controllable LLMs to produce accurate, formal,

and coherent text revisions [50]. To examine the capability of LLMs for making continuous

document revisions and collaborating with human writers, I build a human-in-the-loop

system [51]. The proposed system achieves high-quality text revisions with minimal human

efforts by reading model-generated revisions and user feedback, revising documents, and

repeating human-AI interactions.

1.4 Contributions

This dissertation aims to advance the field of human-AI collaborative text generation, focus-

ing on enhancing LLMs to better align with user specifications. The detailed contributions

5

are summarized as follows.

Designing controllable text generation methods. To improve the diversity of generated

outputs, I design a stochastic function to map contextual representations of LLMs into a

set of random context variables, and control the model generating more diverse texts by

sampling from the random context variables. The learned stochastic function introduces

context-aware variations into the original representations, which makes the model generate

high-quality and high-diversity texts.

To control the faithfulness and accuracy of the model outputs, I fine-tune LLMs using

reinforcement learning with multiple rewards. Our data analysis found that reference answers

typically share a high degree of overlap with ground-truth knowledge spans to maintain

their accuracy and faithfulness. Motivated by this finding, we study a collection of reward

functions and identify the most effective yet simple reward function for conversational

information-seeking tasks.

Developing data-efficient learning algorithms for domain-specific NLG tasks. To

guide the LLMs generating outputs that align with specific user persona profiles using a

few training data, I propose to add a small side network, which encodes the user persona

information, on top of the last hidden states of LLMs before producing the final probability

distribution. Training a small side network requires much less labeled data and computational

resources than fine-tuning the whole LLMs, and inserting it before producing the final

probability distribution differentiates the side network with the scoring functions used in

weighted decoding.

Besides, collecting large-scale labeled data in domain-specific NLG tasks can be pro-

hibitively expensive, therefore, I propose to leverage the self-training algorithms to adapt

LLMs to low-resource domains. The self-training algorithm is a semi-supervised learning

algorithm that trains the model with a small set of labeled data and a large set of unlabeled

data, assuming that the model can obtain better generalization capability by learning from

6

the unlabeled data. We leverage the model prediction uncertainty to select the informative

unlabeled data, and conduct pseudo-label enhancement to reduce the prediction errors.

Building human-AI collaborative text generation applications. To build user-centric

NLG applications, I collect real-world data and analyze human behaviors in the text revision

task. By analyzing the text revision data from human-written texts, we better understand

the text revision process, making vital connections between edit intentions and writing

quality, and then train controllable LLMs to model human revision patterns. Next, I develop

a human-in-the-loop text revision system based on the controllable LLM to provide high-

quality text revisions with minimal human effort. Finally, we analyze the user-system

interactions to better understand user preferences, which provides insights on how to further

improve the system’s performance.

For the rest of the dissertation, Chapter 2 discusses the background for controllable

text generation, data-efficient text generation, user intention identification, and human-

AI interaction applications. In Chapter 3, I present two works on controllable LLMs

development, including controlling text diversity via variational encoder-decoders and

controlling knowledge texts via reinforcement learning. In Chapter 4, I introduce two works

on data-efficient controllable text generation, including personalized dialogue generation via

additive side networks and task-oriented dialogue generation via a self-training algorithm.

In Chapter 5, I demonstrate two works on user intention modeling for open-domain dialogue

evaluation and iterative text revision respectively. In Chapter 6, I present one work on

building a human-AI collaborative text generation application for the iterative text revision

task. Finally, Chapter 7 summarizes the dissertation.

7

CHAPTER 2

BACKGROUND

This chapter discusses the recent literature on controllable text generation, data-efficient text

generation, user intention identification, and the development of human-AI collaborative

text generation applications.

2.1 Controllable Text Generation

Early works on controllable text generation train class-conditional language models from

scratch, and guide the generation with explicit control codes provided in the training data.

[32] trains a 1.63 billion-parameter Conditional Transformer Language (CTRL) model

by prepending control codes in front of raw texts. However, training the CTRL model

requires 140 GB of training data [32], which may not be affordable for some low-resource

languages. [33] builds a controllable neural conversation model by leveraging an adversarial

learning framework that alternatively trains between a class-conditional language model and

a multi-class discriminator, where the discriminator is used to help the generative model

produce responses with appropriate dialogue act. However, the control code is modeled as

a discrete variable in this work, which limits the controllability capacity of the dialogue

model.

Another popular approach is guiding generation with gradients from additional attribute

models. [34] introduce a plug-and-play language model (PPLM) which combines the pre-

trained language model p(x) with attribute models p(a|x) to approximate the conditional

generative model p(x|a). At each decoding timestep, all hidden representations of the

pre-trained language model are shifted with gradients towards a higher p(x|a) ∝ p(a|x)p(x).

The attribute models of PPLM are either in the form of bag-of-words or single-layer

classifiers, which require much less training data than learning a conditional generative

8

model. The following works [52, 53, 54] further propose more fine-grained attribute

models and generation strategies for specific tasks, such as emotional text generation [52],

story generation [53] and conversation generation [54]. However, since the plug-and-play

language models have to compute gradients from the attribute model and update hidden

representations at each decoding timestep, the generation process is very time-consuming,

which leads to high decoding costs.

Recent works on weighted decoding also demonstrate their impressive performance on

controllable text generation tasks. Weighted decoding runs a more expensive beam search

where the sampling probability distribution is altered by desired control attributes, such as

topic, sentiment, etc. [55] design a set of style features on controlling topic, sentiment, and

repetitive words, and re-compute the beam score of each token with a combination of the

original beam score and the style feature score. A recent work [36] introduces a Future

Discriminator for Generation (FUDGE) that trains a binary discriminator for the control

attribute prediction and re-scores the probability distribution of the original pre-trained

language model with the discriminator prediction via Bayesian factorization. The major

limitation of weighted decoding methods is that, if the pre-trained language model is a

high-bias estimator, which assigns a low probability for desired attribute words and a high

probability for commonly observed but unrelated words, re-scoring or re-ranking such a

“high-biased” distribution cannot guarantee the generation of desired attributes.

Finally, using reinforcement learning to control the generation of LLMs by designing

specific reward functions is another popular approach. [56] propose to train a reward

model from human preference feedback and use reinforcement learning to fine-tune LLMs

that can generate outputs that can better align with human preferences. [57] optimize a

reward function that quantifies an unwanted property, such as toxicity, negative sentiment,

and repetition, and fine-tune LLMs to avoid generating those unwanted properties. [58]

design LLM prompts to simulate human feedback and validate it against human instructions

obtained on real-world interactions. [59] use fine-grained human feedback to control LLMs

9

generating desired outputs. The fine-grained rewards come from two aspects: density,

providing a reward after every segment is generated; and incorporating multiple reward

models associated with different feedback types (e.g., factual incorrectness, irrelevance,

and information incompleteness). This line of work has been shown to bring substantial

performance improvement than supervised fine-tuning when aligning LLMs to match user

intentions.

2.2 Data-Efficient Text Generation

Early works on data-efficient text generation mainly focus on pre-training or adapting large

language models. [19] develops a pre-trained language model which can be fine-tuned with

only a few domain-specific labels to adapt to new domains, and presents the first few-shot

NLG benchmark for task-oriented dialog systems. [60] applies the switch mechanism to

combine the information from both input data and pre-trained language models, which

achieves good performance in table-to-text generation tasks. [61] studies the training data

selection strategies in few-shot NLG, and finds that clustering-based selection strategy

consistently helps generative models get better performance than random sampling.

The self-training technique has shown its capability to improve the model’s generaliza-

tion ability in many NLG tasks. Some works [62, 63] leverage the self-training framework

to pseudo-label the unlabeled data and select the training data based on the confidence score

from a single student model. Other works [64, 65] show that noisy self-training is able to

utilize unlabeled data and improve the performance of the supervised baseline. However,

their observations come from large-scale training datasets, which may not necessarily hold

in the few-shot data setting, because a single Transformer-based model may heavily overfit

on the few-shot training data in the early iteration and consequently generate pseudo-label

with high prediction errors.

To adopt the self-training algorithm into the few-shot NLG tasks, some works [66, 67,

68] train additional neural models to filter out the pseudo-labeled data with high prediction

10

errors. [66] and [67] use the reconstruction loss from a fine-tuned BART model [69] to

select the pseudo-labeled data. Besides, [68] leverage a fine-tuned BLEURT model [70]

with a selection threshold to select pseudo-responses for self-training. Intuitively, the

pseudo-labeled data should bring new domain-specific knowledge to the model.

2.3 User Intention Modeling

User intentions reflect the objectives users have when interacting with a system, encom-

passing a broad spectrum of goals across multiple domains. In task-oriented dialogues,

communicative intent [71, 72] and similar concepts, like dialog act [73, 74], have been

widely studied in the past decades. [75] construct a dialog act tagging scheme and eval-

uate travel planning systems [76] based on standalone dialog acts, rather than dialog act

sequences. This tagging scheme, while providing more detailed information compared

with previous works, only focuses on the system side in a task-oriented setting and may

need major modifications when applied to open-domain dialogues. After the initial flourish,

recent works come with their own purposes and tagsets for dialog act, tailored for different

scenarios or special needs [77, 78, 79]. Despite the potential benefits, the application of

dialog acts for evaluating coherence in human-system conversations remains under-explored.

Introducing dialog acts into the evaluation of multi-turn dialogues could be advantageous, as

they distill the fundamental function of each utterance, offering insights into the overarching

interaction patterns. However, directly using existing dialog act definitions [73, 71] seems

undesirable, as an utterance can contain several segments that possess different conver-

sational functions, using a single dialog act to express the core function of an utterance

inevitably suffers from information loss.

Identification of edit intentions is an integral part of the iterative text revision task. Prior

works have studied the categorization of different types of edit actions to help understand

why editors do what they do and how effective their actions are [80, 81, 82]. However,

these works do not further explore how to leverage edit intentions to generate better-revised

11

documents. Moreover, some of their proposed edit intention taxonomies are constructed

with a focus on specific domains of writing, such as Wikipedia articles [83, 84, 85] or

academic essays [81]. As a result, their ability to generalize to other domains remains an

open question.

2.4 Human-AI Interaction Applications

This thesis narrows down the scope of the interactive text generation applications to the text

revision systems, and leaves other applications (e.g. AI assistants, LLM agents) for future

research.

Previous works on modeling text revision [86, 87, 82, 85] have ignored the iterative

nature of the task, and simplified it into a one-shot ”original-to-final” sentence-to-sentence

generation task. However, in practice, at every revision step, multiple edits happen at the

document-level which also plays an important role in text revision. For instance, reordering

and deleting sentences to improve the coherence. More importantly, performing multiple

high-quality edits at once is very challenging. Continuing the previous example, document

readability can degrade after reordering sentences, and further adding transitional phrases

is often required to make the document more coherent and readable. Therefore, one-shot

sentence-to-sentence text revision formulation is not sufficient to deal with real-world

challenges in text revision tasks.

While some prior works on text revision [45, 46, 47, 8] have proposed human-machine

collaborative writing interfaces, they are mostly focused on collecting human-machine

interaction data for training better neural models, rather than understanding the iterative

nature of the text revision process, or the model’s ability to adjust editing suggestions

according to human feedback. Another line of work by [48, 42] on creative writing designed

human-machine interaction interfaces to encourage new content generation. However, text

revision focuses on improving the quality of existing writing and keeping the original content

as much as possible.

12

CHAPTER 3

CONTROLLABLE TEXT GENERATION

Controlling LLMs to generate outputs that align with user intentions is important in building

user-centric text generation applications. In this chapter, I investigate the user intentions of

generating semantically appropriate, diverse, and faithful texts. Specifically, I propose to

control the generation of diverse outputs by introducing context-aware variations into the

contextual representations of pre-trained LLMs in Section 3.1; and control the generation of

faithful and accurate outputs in knowledge-grounded dialogue generation by investigating

effective reward functions in reinforcement learning in Section 3.2.

3.1 Controlling Text Diversity via Variational Encoder-Decoders

Generating high-quality texts with high diversity is an important requirement for many text

generation applications, such as paraphrase generation [88, 89], style transfer [90, 91], dialog

generation [92, 93], etc. The encoder-decoder framework [94, 10] is widely adopted [5, 95,

96, 6, 97] to generate high-quality texts, where an encoder is applied to learn contextual

information from source texts and a decoder is used to generate texts for target tasks. To

improve the diversity of generated texts, prior works propose to introduce variations into

either the encoder [98, 99, 100, 101, 102, 103, 104, 105] or the decoder [106, 107, 108, 109].

However, it is difficult to incorporate meaningful variations into encoder-decoder models

without hurting the quality of generated texts.

Promoting diversity on the encoder side mainly focuses on modeling the probabilistic

distribution of contextual representations. Some prior works [99, 98] propose to model

attention alignments between encoder and decoder hidden states as latent variables, and

generate diverse texts by sampling from the latent attention variables. Other existing works

[100, 110, 111, 105] directly apply conditional variational autoencoders to model encoder

13

h1 h2 h3

z1 z2 z3

x1 x2 x3

c

s2s1 s3

y1 y2 y3

(a) With a normal Gaussian prior

h1 h2 h3

z1 z2 z3

x1 x2 x3

c1 c2 c3

s1 s2 s3

y1 y2 y3

(b) With a Gaussian process prior

Figure 3.1: A simple illustration of a variational encoder-decoder model with (a) a normal
Gaussian prior and (b) a Gaussian process prior. With a normal Gaussian prior, each hidden
state hi will be mapped into a random vector zi independently; while a Gaussian process
prior imposes dependency constraints among {zi}. Double circles on {hi} indicate they are
deterministic variables.

hidden states as latent variables, and generate high-diversity texts by sampling from the

latent context variables. However, when modeling the latent variables, they treat each latent

variable as independent of each other, which inevitably causes the loss of some contextual

information during learning, as shown in Figure 3.1a.

Other works turn towards designing diversity-promoting decoding strategies at the

decoder side, such as diverse beam search [106], top-k sampling [26], and nucleus sampling

[107]. But for those decoding strategies, there is often a trade-off between quality and

diversity, and the generation models have to sacrifice quality for a higher diversity. Another

line of works suggests learning a mixture of expert encoders [101] or decoders [108, 109],

and generating diverse texts by sampling from different encoders or decoders. While

different expert encoders or decoders can introduce some diversity, the model capacities are

limited within the pre-defined set of experts.

In this work, we propose a novel approach to introduce context-aware variations into the

encoder in order to generate high-quality and high-diversity texts. For an encoder-decoder

14

model, we introduce a stochastic function to map deterministic encoder hidden states {hi}

into a set of random context variables {zi}. The advantage of this stochastic function is

that it explicitly models the dependency between each context variable, as shown in Figure

Figure 3.1b, which can help preserve more semantic information from source texts. During

generation, the decoder generates diverse outputs conditioning on sampled different context

variables. In other words, by learning a stochastic function on top of one deterministic

encoder, the proposed approach offers many versions of random context variables for a

decoder to generate diverse texts.

To learn the stochastic function over hidden states, we propose a Gaussian process prior

(GP) [112] to model the joint distribution of all encoder hidden states. The major differences

between GP priors and other priors used in previous works [98, 99, 100, 101, 103, 104,

111, 105] have two-folds: (1) GP priors explicitly model the dependency between latent

variables of varying sizes as illustrated in Figure 3.1b, while previous works consider latent

variables as independent with each other as shown in Figure 3.1a; (2) GP priors provide

infinite a number of joint Gaussian distributions of latent variables as shown in Figure 3.3b,

while previous works have to pre-define a fixed set of Gaussian distributions (e.g. a standard

normal distribution, or a mixture of Gaussian distributions) with the risk of experiencing the

posterior collapse problem [113, 114, 115]. Besides, the proposed random function only

introduces variations into the encoder, and is orthogonal to diversity-promoting decoding

strategies at the decoder side. Users can freely adopt different decoding strategies to further

encourage diverse generation outputs.

The major contributions of this work are three-fold:

1. Proposing a novel method to introduce context-aware variations into encoder-decoder

models, which can help the model learn rich contextual representations and also

promote diversity in generation.

2. Proposing an efficient variational inference method to approximate the joint distribu-

tion of fully connected random context variables.

15

3. Testing our proposed method in both LSTM-based [6] and Transformers-based [97]

encoder-decoder models on paraphrase generation and style transfer tasks. Empirical

experimental results show that, on one hand, the proposed method can generate higher

quality texts than deterministic encoder-decoder models and conditional variational

auto-encoders; on the other hand, it also supports diverse generation by conditioning

on different sets of sampled random context variables.

3.1.1 Gaussian Processes as Function Priors

In this work, we are interested in learning a non-linear mapping function from encoder

hidden states to latent context variables. Gaussian process has the nice property which can

represent complex non-linear functions and also allow uncertainty to account for noisy data

observations. Considering a set of observed training data D = {(hi, zi)}Ni=1, a Gaussian

process defines a probability distribution over possible functions p(g). Given a Gaussian

process prior GP(0,K) on the function g(h), we have:

zi = g(hi) + ϵi (3.1)

g(hi) ∼ GP(0,K) (3.2)

ϵi ∼ N (0, σ2I) (3.3)

Note that ϵi is the noise of the observed data point zi, which is assumed to be an independent

identically distributed Gaussian with variance σ2. K is the covariance matrix which is

constructed using a squared exponential covariance function k(h,h′) = exp(−∥h−h′∥2
2

).

Now, we can sample different mapping functions g(h) from this Gaussian process prior

GP(0,K). Figure 3.2a illustrates some possible mapping functions g1, g2 and g3.

In the Gaussian process, each training and testing data point is treated as a random vari-

able which follows Gaussian distribution. Therefore, we can apply the Bayesian inference to

predict a testing data point z∗ conditioning on observed training data pointsD. To make con-

16

(a) Sample g from Gaussian process prior. (b) Sample g from Gaussian process posterior.

Figure 3.2: Samples of potential functions g from (a) a Gaussian process prior GP(0,K)

which uses a squared exponential kernel k(h, h′) = exp(− (h−h′)2

2
), (b) a Gaussian process

posterior p(g | D) conditioning on the training data D.

cise notation, we let h1:N = {hi}Ni=1, z1:N = {zi}Ni=1, and K−1 = [k(h1:N ,h1:N) + σ2I]−1.

The probability distribution of the testing data point z∗ can be computed by:

p(z∗ | h∗,D) =
∫

p(z∗ | h∗, g,D)p(g | D)dg (3.4)

where

p(z∗ | h∗,D) ∼ N (µ∗,K∗)

µ∗ = k(h∗,h1:N)K
−1z

K∗ = k(h∗,h∗)− k(h∗,h1:N)K
−1k(h1:N ,h∗)

(3.5)

Intuitively, training data points D constrain the set of functions g to pass through them since

the covariance becomes smaller when we have training data, as shown in Figure 3.2b.

Under our variational encoder-decoder framework, h1:N are encoder hidden states and

z1:N are latent context variables. Since the Gaussian process induces a distribution over

the mapping function g(h), theoretically we could sample an infinite number of mapping

functions, where each function gives us a different set of latent context representations

z1:N . In this way, we managed to obtain diverse context representations in encoder-decoder

models.

17

3.1.2 Variational Encoder-Decoder with Gaussian Process priors

This section discusses our novel latent structured variable model on learning rich context

representations by transforming the hidden states from a deterministic encoder into random

hidden states via stochastic functions.

Encoding with Stochastic Functions. Let x1:N = {xi}Ni=1 be the source sentence of

length N , and y1:T = {yt}Tt=1 be the target sentence of length T . In encoder-decoder models,

an encoder is used to obtain deterministic context representations of the source sentence,

i.e. the encoder hidden states: h1:N = fenc(x1:N), where fenc(·) is a nonlinear transition

function implemented by LSTM [10] or Transformer [116].

To introduce context-aware variations into the encoder, we propose to learn a stochastic

function that maps the deterministic hidden states to variables. Specifically, after computing

the hidden states h1:N from the transition function fenc(·), the proposed method employs

a stochastic mapping function g(·) to model the deterministic context representations as a

series of random context variables:

p(z1:N | h1:N) = g(h1:N) + ϵ (3.6)

where ϵ ∼ N (0, σ2I) is a Gaussian noise. Then, the decoder can generate diverse texts

conditioning on different sets of context variables sampled from p(z1:N | h1:N), as shown in

Figure Figure 3.3b. Considering that natural language texts are always context-dependent,

we expect the random context variables z1:N to encode the context dependency to some

extent. In other words, the distribution of zi will not only depend on hi, but also depend on

other {zj}j ̸=i, as shown in Figure 3.1b.

Under this framework, variational encoder-decoder models [98, 99, 100] can be viewed

as a special case, as illustrated in Figure 3.3a, where random context variables {zi}Ni=1 are

independent from each other. In this work, we consider this special case as generation with

18

normal priors.

Gaussian Process Priors for Stochastic Functions. The learning of stochastic function

g(h) is the key for the proposed method to be successful. Intuitively, we design g(h) to sat-

isfy two constraints simultaneously: (1) it can introduce some variation to the deterministic

encoder hidden states; (2) it should preserve the contextual information in the deterministic

encoder hidden states to be a faithful representation.

In this work, we propose to learn g(h) with a functional prior defined by Gaussian

processes. As shown in Figure 3.2a, we can sample very different functions g(h) from the

same GP prior, which ensures randomness when sampling z1:N .1 We define the stochastic

function g(h) following a GP prior:

g(h) ∼ GP(m(h), k(h,h′)) (3.7)

with the mean function m(h) and covariance function k(h,h′) as

m(h) = h

k(h,h′) = v2 exp{−∥h− h′∥22
2r2

}
(3.8)

where h indicates the current observed encoder hidden state, and h′ indicates the other

contextual encoder hidden states; v controls the average distance between a sampled function

g(h) and the mean function m(h), and r controls the covariance between random variables,

increasing r will make z and z′ become more correlated. In this work, v and r are chosen

based on the text generation performance on development sets. By setting m(h) = h,

we actually define a semi-parametric GP prior [117] instead of a fully non-parameteric

prior, since h as a hidden state is computed from the deterministic encoder with learnable

parameters. The intuition behind this definition is that, although we want to introduce some

1Please refer to subsection 3.1.1 and [112] for detailed introduction of Gaussian processes.

19

(a) Variational encoder-decoder model with a normal Gaussian prior. Note that we simplify the
latent variable zi from a vector to a scalar in order to plot out the Gaussian distribution for better
illustration.

(b) Variational encoder-decoder model with a GP prior. Note that we simplify the latent variable zi
from a vector to a scalar in order to plot out the joint Gaussian distribution for better illustration.

Figure 3.3: A simple illustration for comparison between our GP priors and the priors in
conditional variational autoencoders [118] under the variational encoder-decoder framework.

variations, taking the expectation of the sampled random states z should still be h.

The main advantage of applying GP priors is that we can sample an infinite number

of random functions g(h) thus obtaining infinite sets of random context variables z1:N , as

illustrated in Figure 3.3b. In contrast, standard variational encoder-decoder models can only

learn a fixed set of C joint distributions p(z1:N |h1:N), where 1 ≤ C ≪∞.2

Generation with Random Context Variables. Now, we demonstrate how to incorporate

z1:N into two typical encoder-decoder models for text generation: an LSTM-based encoder-

2When C = 1, it represents a conventional variational autoencoder [113]; when C = 5, it represents
a variational autoencoder with a mixture of Gaussians prior (component number = 5); when C → ∞, it
represents a variational autoencoder with a GP prior.

20

Algorithm 1: The generative story with a stochastic function g(·) sampled from
the GP prior

1: Input: A source sentence x1:N

2: Output: A generated sentence y1:T

3: // Encode context
4: Initialize h0 ← 0
5: for i = 1, . . . , N do
6: Compute hi = fenc(hi−1,xi)
7: end for
8: // Sample random context variables
9: Draw g(h) ∼ GP(m(h), k(h,h′))

10: Draw z1:N ∼ g(h1:N) + ϵ
11: // Generate a new sentence
12: Initialize s0 ← 0
13: for t = 1, . . . , T do
14: Compute st = fdec(st−1,yt−1, z1:N)
15: Draw yt ∼ softmax(W · st)
16: end for

decoder model [6] and a Transformer-based encoder-decoder model [97]. The performance

of these two variational encoder-decoder models will be evaluated in subsection 3.1.4.

Given the deterministic encoder hidden states h1:N , we first sample a function g(h) from

the GP prior in Equation 3.7; then sample a set of random context variables z1:N from g(h);

finally generate a output sentence y1:T based on the sampled z1:N . The generative story with

random context variables z1:N is detailed in algorithm 1.

For a LSTM-based encoder-decoder model [6], we apply the attention mechanism [5]

over the random context variables {zi}Ni=1 to construct ct for the decoder. At each decoding

time step t, the decoder computes the attention vector ct and decoder hidden state st as

follows:

αti =
exp (a(st−1, zi))∑N
j=1 exp (a(st−1, zj))

(3.9)

ct =
N∑
i=1

αti · zi (3.10)

st = fdec(st−1,yt−1, ct) (3.11)

21

where a(st−1, zi) = v⊤
a tanh(Wast−1 + Uazi), Wa, Ua and v⊤

a are parameter matrices.

Finally, the decoder outputs a word distribution based on the context representations and

previous decoded words at each decoding time step t:

p(yt | yt−1, z1:N) = softmax(Wb · st) (3.12)

where Wb is a parameter matrix.

For a Transformer-based encoder-decoder model [97], we take the output of the last

layer in the encoder as h1:N , and feed them into g(h) to get random context variables z1:N .

For the decoder, the inputs K and V are the combination of h1:N and z1:N :

Kl = Vl = Wz[z1:N ;h1:N] (3.13)

A = MultiHead(Sl−1,Kl,Vl) (3.14)

B = LayerNorm(A+ Sl−1) (3.15)

Sl = LayerNorm(FFN(B) +B) (3.16)

where Sl = {st}Tt=1 is the last layer of decoder hidden states, and MultiHead(·), LayerNorm(·)

and FFN(·) follow the standard implementation in [116]. The word distribution p(yt |

yt−1, z1:N) at each decoding time step t is computed the same way as in Equation 3.12.

3.1.3 Efficient Variational Inference

With the observed deterministic hidden states h1:N , we estimate the GP posterior to make

the prediction of context variables z1:N more accurate. Although the posterior estimation

of Gaussian processes can be written in a closed form theoretically, the challenge in this

work comes from learning with other parts of the model, such as the deterministic encoder

producing h1:N and the decoder generating y1:T . To simplify the inference procedure, we

will focus on inferring the samples of the GP posterior regarding the hidden states only as

22

p(g | h1:N), which essentially is a Gaussian distribution with non-isotropic covariance. In

this work, we apply variational inference to approximate the GP posterior p(g | h1:N) and

learn other model parameters jointly with maximum likelihood estimation.

For notation simplicity, we let h = fenc(x1:N), z = {zi}Ni=1, y = {yi}Ti=1 in this

section. With a sampled random function g(h) from the GP prior as described in line 9 of

algorithm 1, we will get the joint prior distribution p(z | h) according to Equation 3.6. Then

we approximate the true posterior p(z | h,y) with the variational posterior qϕ(z | h,y) by

maximizing the evidence lower bound of the marginal log-likelihood (ELBo):

log p(y | h) ≥ Eqϕ [log p(y | z)]− KL[qϕ(z | h,y)∥p(z | h)] (3.17)

where ϕ denotes the variational parameters.

Derivations of ELBo. We follow conditional variational autoencoders [118] and assume

that for given observation h, z is drawn from the prior distribution p(z | h), and the output

y is generated from the distribution p(y | h, z). We learn the variational posterior by

minimizing KL(qϕ(z | h,y)∥p(z | h,y)), which is equivalent to maximizing the evidence

lower bound of the marginal log-likelihood (ELBo):

KL(qϕ(z | h,y)∥p(z | h,y))

=

∫
qϕ(z | h,y) log

qϕ(z | h,y)
p(z | h,y)

dϕ

=

∫
qϕ(z | h,y) log

qϕ(z | h,y)p(y | h)p(h)
p(z,h,y)

dϕ

= log p(y | h) +
∫

qϕ(z | h,y) log
qϕ(z | h,y)p(h)
p(y | h, z)p(z | h)

dϕ

(3.18)

23

Since KL(qϕ(z | h,y)∥p(z | h,y)) ≥ 0, we have:

log p(y | h) ≥ −
∫

qϕ(z | h,y) log
qϕ(z | h,y)p(h)
p(y | h, z)p(z | h)

dϕ

= Eqϕ [log p(y | z,h) + log p(z | x)− qϕ(z | h,y)]

= Eqϕ [log p(y | z,h)]− Eqϕ [
qϕ(z | h,y)
log p(z | h)

]

= Eqϕ [log p(y | z,h)]− KL[qϕ(z | h,y)∥p(z | h)]

(3.19)

where ϕ are parameters for the variational inference networks.

Simplifying Inference. During generation, we propose a two-step approximation to

simplify qϕ(z | h,y). First, to maintain the generative property when using the variational

distribution, we propose an approximation of the variational distribution qϕ(z | h,y) ≈

qϕ(z | h). In this case, the random context vector z will only depend on h during inference.

Second, we apply the mean-field amortized variational approximation [119] to approximate

the parameters of qϕ(z | h):

qϕ(z | h) =
N∏
i=1

qϕ(zi | hi)

=
N∏
i=1

N (fµ(hi), fσ2(hi))

(3.20)

where fµ(·) and fσ2(·) are the mean and covariance in the amortized variational inference

network. In this work, we use two simple feed-forward neural networks fµ and fσ2 . The

implementation details are included in subsection 3.1.4.

3.1.4 Experimental Setup

We evaluate our method on two text generation tasks that require rich contextual representa-

tions: paraphrase generation and text style transfer. We compared our method with previous

works on diverse text generation in terms of quality and diversity. Empirical experiment

results show that our method is able to: (1) adapt to different encoder-decoder architectures,

24

such as the pointer-generator network (PG) [6] and the text-to-text transfer Transformer (T5)

[97]; (2) generate higher quality texts compared with deterministic encoder-decoder models

[6, 97] while also enabling diverse generation by conditioning on random context variables.

Evaluation Metrics. For quality evaluation, we use two commonly used automatic metrics

in text generation: METEOR [120] and BLEU with up to bi-grams [121], which tell us how

well the generated outputs match the reference sentences.

For diversity evaluation, we aim at examining how well different latent context variables

z1:N from qϕ(z | h,y) can make the decoder generate diverse outputs. We use self-BLEU

with up to bi-grams (self-BLEU) [122] to measure the mutual bi-gram overlap between the

set of outputs per source sentence, lower self-BLEU indicates less bi-gram overlap between

generated outputs. In addition, we use diverse 4-gram (Div-4) [123] to measure the ratio

of distinct 4-grams in the set of outputs per source sentence, higher diverse 4-gram shows

more unique 4-grams between generated outputs. Finally, we use uniqueness (Uni.) [123] to

measure the ratio of unique generated sentences in the set of outputs per source sentence,

higher uniqueness suggests different context variables z1:N lead to very different output

sentences.

Competitive Baselines. We compare our method with competitive deterministic encoder-

decoder models and variational encoder-decoder models as follows.

1. PG [6]: the pointer-generator network, which is a strong deterministic LSTM-based

encoder-decoder baseline. We refer to their model as PG.

2. T5 [97]: the text-to-text transfer Transformer, which is a strong deterministic Transformer-

based encoder-decoder baseline. We refer to their model as T5.

3. Variation Attention [99]: modeling the deterministic attention vectors as latent align-

ment variables to promote diverse text generation. We refer to their model as Variation

Attention.

25

4. Multi-Selectors [101]: using a mixture of experts to sample different binary masks

on the source texts for diverse content generation. We refer to their model as Multi-

Selectors.

5. T-CVAE [100]: modeling deterministic encoder hidden states as latent context vari-

ables with a Transformer-based conditional variational autoencoder. We refer to their

model as T-CVAE.

6. PG/T5 + Normal prior: PG or T5 with a normal prior p(z) = N (0, I), which follows

the conventional variational autoencoders [119, 113].

7. PG/T5 + GP prior: PG or T5 with our GP prior defined in Equation 3.7.

Model Configurations. The implementation details of PG, it is an LSTM-based encoder-

decoder model with copying mechanism. The encoder is a 1-layer Bi-LSTM, and the

decoder is a 1-layer uni-directional LSTM. We set the word embedding size to 300, and the

hidden dimension for both encoder and decoder to 512. We let the encoder and decoder

share the same vocabulary list and word embedding, and the vocabulary size is 20000. For

the configuration of the posterior networks, both the mean and covariance networks are a

single feed-forward neural network, and we set the dimension of the latent variable to 256.

For the implementation details of T5, we use the T5-base implementation from Hugging-

face [124] 3, and use their default model configuration. We load the pre-trained weights of

T5-base, and fine-tune them on our target task datasets. For the configuration of the posterior

networks, both the mean and covariance networks are a single feed-forward neural network,

and we set the dimension of the latent variable to 512.

Training Configurations. For the training details of PG and T5, we do not apply KL

annealing and the coefficient of the KL divergence is always 1. We use Adam optimizer

[125] with a learning rate of 0.0001, and adopt early stopping if the validation loss does

3https://huggingface.co/transformers/model_doc/t5.html

26

https://huggingface.co/transformers/model_doc/t5.html

not decrease after 10 epochs. For the hyper-parameters {v, r} of the kernel function in

Equation 3.8, we try a range of values where v ∈ [0.01, 100] and r ∈ [0.0001, 10], and do a

grid search cross-validation on the validation set to select the best model. All experiments

are independently conducted on a GPU server (RTX 2090 Ti) with 12GB Memory.

Generation Setups. For the decoding strategy, we use beam search with a beam size of

10. Note that our method is orthogonal to all diversity-promoting decoding strategies, such

as top-k sampling [26] and nucleus sampling [107]. We choose beam search in order to

make a fair comparison with other works which promote diversity on the encoder side.

For quality generation, we directly take the mean of qϕ(z|h,y), and generate one

y1:T based on the sampled context variables z1:N , since we want to examine how well

the posterior network can encode contextual information and make the decoder generate

high-quality texts.

For diverse generation, we sample different z1:N (instead of directly taking the mean)

from qϕ(z|h,y), and generate different y1:T based on the sampled context variables z1:N ,

since we want to examine how well different latent context variables z1:N from qϕ(z | h,y)

can make the decoder generate diverse outputs. For experiment setups, we sample 10

different z1:N and generate 10 different y1:T correspondingly. We compute the diversity

scores following the prior work [123]. To compute the self-BLEU and Div-4, we randomly

sample 5 different y1:T out of the 10 generated y1:T . To compute the Uni., we compute the

unique number of sentences among the 10 generated y1:T .

In preliminary experiments, we found that sampling from the original variational distribu-

tion tends to make the decoder generate the same sentences. We hypothesize that qϕ(z|h,y)

is a high-dimensional multivariate Gaussian, and sampling from a high-dimensional distri-

bution is a fundamental challenging problem. Therefore, we applied simple heuristics to

alleviate the sampling issue, where we scaled up the covariance matrix of the variational

distribution by a numeric scalar. We find this simple heuristics can help the decoder generate

27

TWITTER URL GYAFC (E&M) GYAFC (F&R)

Methods BLEU↑ METEOR↑ BLEU↑ METEOR↑ BLEU↑ METEOR↑

Seq2Seq baselines
PG 0.291 0.471 0.683 0.817 0.717 0.845
T5 0.264 0.453 0.683 0.819 0.726 0.847

Related works
Multi-Selectors 0.290 0.492 0.606 0.779 0.618 0.783
Variation Attention 0.294 0.512 0.632 0.804 0.675 0.833
T-CVAE 0.339 0.494 0.481 0.686 0.537 0.730

Our works
PG + Normal prior 0.041 0.127 0.145 0.354 0.191 0.452
T5 + Normal prior 0.269 0.461 0.675 0.815 0.722 0.846
PG + GP prior 0.307 0.483 0.681 0.828 0.734 0.849
T5 + GP prior 0.281 0.474 0.688 0.815 0.739 0.847

Table 3.1: Model performance on text quality. To get the best performance of variational
encoder-decoder models, we directly take the mean of qϕ(z | h,y) as the sampled context
variables to generate the output texts. Results of the Multi-Selectors [101], Variation
Attention [99] and T-CVAE [100] are collected based on the source code provided in the
original paper.

more diverse sentences. For PG + Normal prior and PG + GP prior, we set the numeric

scalar for the paraphrase generation task to 25, and for the style transfer task to 10. For T5 +

Normal prior and T5 + GP prior, we set the numeric scalar for the paraphrase generation

task to 7, and for the style transfer task to 4.

3.1.5 Result Analysis

Paraphrase Generation. We first evaluate the model’s capability of generating para-

phrases using the Twitter URL paraphrasing dataset [126]. In this task, we aim to compare

the quality of generated texts between our method and other competitive baselines.

The Twitter URL paraphrasing dataset [126] contains both positive and negative exam-

ples of paraphrases. We filter out all negative examples from the 1-year 2,869,657 candidate

pairs, and divided the remaining paraphrase pairs into 110K training pairs, 3K testing pairs,

and 1K validation pairs.

As shown in Table 3.1, for the quality of generated texts, our method is able to well

preserve the semantic information from source texts. For LSTM-based models, PG + GP

28

GYAFC (E&M) GYAFC (F&R)

Methods avg-BLEU↑ self-BLEU↓ Div-4↑ Uni.↑ avg-BLEU↑ self-BLEU↓ Div-4↑ Uni.↑

T-CVAE 0.481 0.986 0.221 0.130 0.537 0.990 0.220 0.126
T5 + Normal prior 0.419 0.522 0.524 0.791 0.347 0.415 0.484 0.845
T5 + GP prior 0.329 0.395 0.727 0.898 0.252 0.295 0.748 0.910

Table 3.2: Model performance on text diversity. Avg-BLEU measures the average quality
of generated sentences compared with ground-truth references. Self-BLEU measures the
token-level repetitiveness, and a lower self-BLEU indicates a higher token-level diversity.
Div-4 measures the ratio of unique 4-grams, and a higher Div-4 means a higher token-
level diversity. Uni. measures the ratio of unique generated sentences, and a higher Div-4
illustrates a higher sentence-level diversity.

prior generates better quality texts compared with both its deterministic baseline PG and

other variational baselines, e.g. Multi-Selectors and Variation Attention. Note that PG +

Normal prior experiences the posterior collapse problem [113, 114, 115] during training,

which causes the context variables to preserve little semantic information in the source text

and the model generating random tokens during inference. For Transformer-based models,

T-CVAE generates better quality texts than T5, T5 + Normal prior, and T5 + GP prior. But

T-CVAE lowercase all input and output tokens while the other models keep both lowercase

and capital tokens, this text preprocessing step may bring an unfairly better performance of

T-CVAE in quality scores. Note that the posterior collapse problem does not happen in T5

+ Normal prior, and T5 + GP prior still outperforms T5 + Normal prior, which shows the

advantage of GP priors in introducing context-aware variations.

Text Style Transfer. We evaluate our model’s capability of generating stylistic texts

using Grammarly’s Yahoo Answers Formality Corpus (GYAFC) [91]. In this task, we first

compare the quality of generated texts between our method and other competitive baselines,

and then we test the diversity of generated texts between our GP prior and conditional

variational autoencoders.

The GYAFC dataset covers two sub-domains: Entertainment & Music (E&M), which has

52,593 training pairs, 2,877 validation pairs, 1,416 testing pairs; and Family & Relationships

29

Informal Sentence: Your age... Dude that one is old.
Formal References: [”Your age. That one is old.”; ”You are quite old.”; ”Wow, that one is very old.”; ”How old are
you?”]

T-CVAE T5 + Normal Prior T5 + GP Prior
you are older . Your age is old. Your age, that one is old.
you are older . Your age, that one is old. Your age, that one is old.
you are older . You’re your age. No, that one is old. Your age, and that one is old.
you are older . You are your age. Due, that one is old. You are your age, and that one is old.
you are older . Your age, that one is old......... Your age, you are not the one who is old.
you are older . Your age and i........ You’re a fool, that one is old.
you are older . Your age is arbitrary to you......... Your age doesn’t matter, that one is old.
you are older . You are a very, jo, you are a very, jo Your age is due to the fact is very old.
you are older . You are a ant / a ante / a ante / a ante / Regardless of your age, he is a young person.
you are older . Your count count count count count count I am not sure your age, but that one is old.

Table 3.3: Sample outputs conditioned on different z sampled from qϕ(z|x) on GYAFC
(E&M) test set.

(F&R), which has 51,967 training pairs, 2,788 validation pairs, 1,332 testing pairs.

For the quality of generated texts, GP prior makes the model more robust to generate

accurate texts. As shown in Table 3.1, for LSTM-based models, PG + GP prior generates

the most accurate texts compared with PG, Multi-Selectors, and Variation Attention. Note

that PG + Normal prior also experiences the posterior collapse problem in GYAFC datasets,

resulting in very low-quality scores on the test set. For Transformer-based models, T5 + GP

prior achieves better performance than T5, T5 + Normal, and T-CVAE, which shows the

superiority of GP priors in encoding contextual information.

For the diversity of generated texts, imposing context-aware variations into encoder

hidden states is beneficial for generating diverse outputs. As demonstrated in Table 3.2,

for transformer-based models, T5 + GP prior gives the best diversity performance in both

token-level and sentence-level compared with T5 + Normal prior and T-CVAE. The model

performance on the style transfer task verifies the capability of our GP prior to promoting

generation diversity. Table 3.3 shows some diverse generation outputs of Transformer-based

variational encoder-decoder models. However, we also notice that increasing diversity

will inevitably cause degradation in quality, because z1:N are i.i.d. sampled from a high-

dimensional multivariate Gaussian qϕ(z | h,y). As discussed in previous work [127],

multivariate sampling in high-dimensional settings can become computationally demanding.

30

Computation Complexity Analysis. Our GP priors require more computation during

training, where the major computation comes from calculating the full covariance matrix

of context variables of the GP prior. However, during inference, we approximate the GP

posterior with a variational posterior qϕ(z | h,y) and conducts i.i.d. sampling, which

saves time for multivariate sampling and has the same computation complexity with other

conditional variational autoencoder baselines at testing time.

3.2 Controlling Faithfulness via Reinforcement Learning

Recent large language models (LLMs) have enabled conversational information-seeking

systems to exhibit remarkable proficiency in producing fluent and coherent responses

[128, 1, 2, 3]. However, LLMs sometimes fail to generate faithful and accurate responses

supported by verified knowledge texts, but instead generate content either not from verified

knowledge texts or from an incorrect span of irrelevant texts. This undesirable model

behavior stems from three distinct sources: the bias inherent in LLMs, the irrelevant

information in knowledge texts, and the characteristics of the employed learning algorithms.

Firstly, LLMs are likely to generate texts that are most frequently seen during pretraining

[129, 130], and may either disregard the knowledge texts or generate additional information

not provided in the knowledge texts, as illustrated in the first example of Table 3.4. This

problem is also described as hallucination in other works [131, 132, 133]. Secondly, the

knowledge texts often contain irrelevant information that diverts the model’s attention away

from the relevant text span [134], as demonstrated in the second example of Table 3.4.

Lastly, the model is trained to maximize the likelihood of ground-truth responses, which

is easy to suffer from exposure bias [135, 136], and sometimes fails to be faithful to the

knowledge texts at test time [137, 138].

Aligning with the problem source analysis, we classify the related prior works into three

categories. The first category of works proposes to use additional data annotations on the

knowledge texts to filter out irrelevant information, such as learning a knowledge selection

31

History User: Do you know anything about space elevators?

Knowledge Text The design would permit vehicles to travel along the cable from a planetary surface, such as
the Earth’s, directly into space or orbit, without the use of large rockets.

Reference An-
swer

System: Yeah, they would allow vehicles to move along a cable into space, instead of on a
rocket.

LLM Output System: Yes, a space elevator is a proposed type of transportation system. It consists of a
cable anchored to the surface of a planet, with the other end in space. The cable would be
held up by the centrifugal force generated by its orbital motion around. (unfaithful)

History User: How do i apply for Medicare?

Knowledge Text Benefits Planner: Retirement — Applying for Medicare Only — Social Security Ad-
ministration // Applying for Medicare Only. If you are within three months of age
65 or older and not ready to start your monthly Social Security benefits yet, you can
use our online retirement application to sign up just for Medicare and wait to ap-
ply for your retirement or spouse’s benefits later. Before you decide, you need to
be sure that you understand how waiting until later will affect: the lifetime benefits we can
pay on your account and your health insurance coverage.

Reference An-
swer

System: You can use our online retirement application to sign up just for Medicare and wait
to apply for your retirement or spouse’s benefits.

LLM Output System: You can use the Social Security Administration’s online retirement application
to sign up for Medicare only. Be aware that if you wait to apply for retirement or spouse
benefits later, it may affect the benefits you receive and your health insurance coverage.
(irrelevant)

Table 3.4: Two example responses generated by an LLM (text-davinci-003) in knowledge-
grounded information-seeking conversations. The green text highlights the ground-truth
knowledge span. The blue text is the unfaithful model-generated response caused by the
bias from the LLM. The red text is the irrelevant model-generated response misled by the
text that contains redundant information.

module [139, 140, 141, 142], or leveraging cross-attention scores to identify important

texts [143, 144]. While directly learning from additional data annotations can improve the

accuracy of locating the intended text spans, high-quality annotated data is often expensive

to collect. The second group of works modifies the model architecture [145] or refines

the decoding process [146] to force the model generating responses more faithful to the

knowledge texts. This kind of approach is typically model-dependent, which may not

generalize well to different pre-trained LLMs. The third line of works switches to alternative

learning algorithms to explore the optimal dialogue generation policy, such as unlikelihood

training [147], imitation learning [148] and reinforcement learning [149, 14, 37]. However,

previous learning algorithms focus on optimizing the coherence and fluency of generated

responses, and it is still less studied in improving the faithfulness and accuracy of generated

32

responses in knowledge-grounded conversations.

In this work, we find that a specific segment of the knowledge text, i.e. the ground-truth

knowledge span, shares a high degree of n-gram overlap with the reference answer, as illus-

trated in Figure 3.4. This observation leads us to posit that increasing the overlap between

the model-generated outputs and the reference answers, while simultaneously penalizing

the inclusion of irrelevant content in these outputs, could significantly enhance both the

faithfulness and coherence of the generated content. Therefore, we apply reinforcement

learning (RL) algorithms to learn faithful, accurate, and coherent dialogue generation policy.

On one hand, fine-tuning LLMs with RL on the downstream datasets can help alleviate the

bias obtained during pre-training; on the other hand, an appropriate reward function can

guide LLMs to generate responses that align with the relevant knowledge text.

Figure 3.4: The relationship between the
knowledge text, the ground-truth knowl-
edge span, and the reference answer in
knowledge-grounded dialogue generation
tasks.

We investigate a set of reward functions that

could potentially improve the faithfulness and ac-

curacy of the generated outputs, including Sacre-

BLEU [150], Knowledge-F1 [151], BERTScore

[152], and a coherence discriminator. The Sacre-

BLEU reward measures the geometric mean of

the modified n-gram precision between gener-

ated outputs and reference answers, which aims

at matching model outputs with reference an-

swers. The coherence discriminator is trained to

distinguish whether the output is coherent with

the conversation history. The Knowledge-F1 re-

ward and the BERTScore reward measure the similarity between generated outputs and

knowledge texts, which aims at matching model outputs with knowledge texts. We also

linearly combine some reward functions together to see if there is a further performance

improvement. Finally, empirical experiments on two information-seeking conversation

33

benchmark datasets suggest that the SacreBLEU reward is the most effective in improving

both faithfulness and coherence of generated outputs. This is because the SacreBLEU reward

computes the modified n-gram precision that penalizes the irrelevant contents generated

by the model. As demonstrated by the relationship between knowledge text and reference

answers in Figure 3.4, encouraging model outputs to align closely with reference answers

suggests that such outputs can inherently adhere to the ground-truth knowledge span. This

alignment occurs despite the model lacking direct access to this specific knowledge during

the fine-tuning process.

We summarize the contributions of this work as follows: (1) identifying the relationship

between knowledge texts and reference answers in knowledge-grounded dialogue generation

tasks; (2) applying reinforcement learning with a simple reward function to improve both

faithfulness and accuracy of generated outputs; (3) conducting empirical experiments to

demonstrate the effectiveness of our method compared with strong supervised fine-tuning

baselines.

3.2.1 Learning Faithful and Accurate Generation Policy with RL

Problem Definition. Given the knowledge text Kn and the conversation history X =

(u0, · · · ,un−1), the task is to generate a response un that is faithful to Kn and matches

the reference answer yn. Following [153, 37], we formulate the response generation

un = (a0, · · · , aT) as a Markov Decision Process (MDP) ⟨S,A,P ,R, γ⟩. S is a finite set

of states, where the initial state s0 ∈ S is a concatenation of input conversation history X

and knowledge text Kn. A is a finite set of actions, where an action at ∈ A is a token from

our vocabulary V . P : S × A → S is a transition function that determines the next state

st+1 given the current state action pair (st, at). R : S × A → R is a reward function that

returns a real number given the current state action pair (st, at). γ ∈ [0, 1] is a discount

factor. Each episode in the MDP begins by sampling a datapoint (u0, · · · ,un−1,yn, Kn)

from the dataset, and ends when the current time step t exceeds the horizon T or an end of

34

sentence token is generated.

Proximal Policy Optimization (PPO). The policy πθ : S → A is a function that selects

an action in a given state in order to maximize the long-term discounted rewards over

a trajectory Eπ[
∑T

t=0 γ
tRt]. In this work, we initialize the policy πθ with a pre-trained

language model π0. We learn the policy using the Proximal Policy Optimization (PPO)

algorithm [13], which is an effective actor-critic algorithm in many text generation tasks

[14, 37]. The advantage is approximated using Generalized Advantage Estimation [154]:

At =
∑T

τ=t(γλ)
τ−t(Rτ + γVϕ(sτ+1) − Vϕ(sτ)), where λ is a hyper-parameter, γ is the

discount factor, Rt is the reward assigned to at, and Vϕ(st) is the value of state st given

by the value network Vϕ. Note that the reward Rt is regularized using a token-level KL

penalty [155], in order to prevent the updated policy πθ deviating too far from the pre-trained

language model π0:

Rt = Rt − βKL(πθ(at|st)||π0(at|st)) (3.21)

where β is a dynamically adapted coefficient [156]. During training, the policy network πθ

and the value network Vϕ will be optimized jointly. 4

Reward Functions Selection. In this section, we discuss the selection of different reward

functions Rt. Note that Rt is only assigned to the final token in the generated response, and

will be regularized with the token-level KL penalty the same way as in Equation 3.21.

Accuracy Reward Functions: The goal of the accuracy reward is to match generated

response un and reference answer yn. We select the SacreBLEU as one reward function

which calculates the n-gram precision between generated responses and reference answers,

in order to discourage the model from generating irrelevant content. In addition, we train a

coherence discriminator as another reward function to distinguish whether the generated

response is coherent with the given conversation history. We provide implementation details

4In this work, we use the RL4LMs library to learn the response generation policy, so please refer to [37]
for more algorithm implementation details.

35

of the coherence discriminator in paragraph 3.2.2. Both reward functions will output a scalar

value between 0 and 1, where 1 means a perfect match between the generated response and

the reference answer.

Faithfulness Reward Functions: The goal of the faithfulness reward is to ensure

that the generated responses un accurately reflect the content of the knowledge text Kn,

thereby preventing the generation of irrelevant information not present in the knowledge

text. We select the Knowledge-F1 as one reward function which measures the surface-level

token overlap between generated responses and knowledge texts, in order to encourage

the model to generate content from the knowledge texts. Besides, we select BERTScore

as another reward function which computes the sentence embedding similarity between

generated responses and knowledge texts, with the goal of encouraging the model to generate

information semantically relevant to the knowledge text. Both reward functions will output

a scalar value between 0 and 1, where 1 means a complete copy of the knowledge text to the

generated response.

Combined Reward Functions: We hypothesize that a combined reward function may

contribute to the learning of a better policy which improves both accuracy and faithfulness.

We propose to linearly blend the accuracy reward and faithfulness reward. Formally, the

combined reward function is defined as:

Rt = αRacc
t (u,y) + (1− α)Rfaith

t (u, K) (3.22)

where Racc
t is the accuracy reward measuring the similarity between the generated response

u and the ground-truth reference y, Rfaith
t is the faithfulness reward evaluating the factual

consistency between the generated response u and the knowledge text K, and α ∈ [0, 1] is

a coefficient used to balance the accuracy and faithfulness of generated responses. In this

work, we choose SacreBLEU as Racc
t and Knowledge-F1 as Rfaith

t , as they are recognized as

effective rewards in our preliminary experiments.

36

In-Context Example

Instruction: The following is a conversation with an AI assistant. The assistant is providing an answer based on a
knowledge passage.
Human: I recently discovered rap music and I’m so intrigued by it! Do you listen to rap music?
Knowledge Text: Rapping is a musical form of vocal delivery that incorporates ”rhyme, rhythmic speech, and
street vernacular”, which is performed or chanted in a variety of ways.
AI: No, I’m a bot and can’t hear. I know that it’s a form of music that involves chanting and rhythmic speech.

Input

Human: Chevrolet is my all time favorite car brand, have you heard of it?
Knowledge Text: The Chevrolet Chevy II/Nova was a small automobile manufactured by Chevrolet, and produced
in five generations for the 1962 through 1979, and 1985 through 1988 model years.

Output

Model Output 1: Yes, I’m familiar with Chevrolet. It’s a car brand that has been around since the early 1900s
and has produced popular models like the Chevy II/Nova, Corvette, Camaro, and Impala.

Model Output 2: Yes, I heard of Chevrolet. It’s a popular car brand that has been manufacturing cars for several
decades. Chevy II/Nova was produced in five generations between 1962 and 1988.

Table 3.5: An example from the validation set of FaithDial for human expert to do pair-wise
comparison between the outputs of GPT-3.5-turbo and t5-base. The blue text is the unfaithful
model-generated response caused by the bias from the LLM.

The learning of the coefficient α is non-trivial, and we propose to learn it from human

pair-wise comparison data. Since the primary requirement of the reward function is to

differentiate faithful and accurate responses, leveraging human comparisons can provide

valuable insights for determining an appropriate value for α. Specifically, we leverage one

state-of-the-art model GPT-3.5-turbo5 and one baseline model T5-base [157] fine-tuned on

the target dataset, to generate 50 responses respectively. Then we shuffle the presentation

order and ask an NLP expert to do pair-wise comparisons between the two model outputs.

An illustration example is provided in Table 3.5. Next, we compute the reward using

Equation 3.22 for both models’ outputs, and align our reward comparison results with the

human pair-wise comparison results. The alignment is done by iterating values of α and

finding the optimal value that maximizes the Pearson correlation coefficient [158] between

the human pair-wise comparison results and our reward pair-wise comparison results. By

learning α from the human preference data, we can effectively calibrate the balance between

faithfulness and accuracy in the generated responses.

5https://platform.openai.com/docs/api-reference

37

https://platform.openai.com/docs/api-reference

Algorithm 2: Learning α from human pair-wise comparisons

Input: Models’ output pairs {(u1
n,u

2
n}Nn=1. Human pair-wise comparisons on models’

outputs {p̂n}Nn=1.
Output: The optimal blending coefficient α

1: for α = 0.00, . . . , 1.00 do
2: Compute our reward on two models’ outputs using Equation 3.22: {(r1n, r2n)}Nn=1.
3: Get the pair-wise comparison of our reward pαn = argmax(r1n, r

2
n), for n = 1, . . . , N

4: Compute the Pearson correlation coefficient r between {p̂n}Nn=1 and {pαn}Nn=1

5: end for
6: Save the optimal α which achieves the highest Pearson correlation coefficient

3.2.2 Experimental Setups

Benchmark Datasets. We choose two information-seeking conversation datasets as our

benchmarks: MultiDoc2Dial [140] and FaithDial [133]. Both datasets contain two par-

ticipants in each conversation: a user (or seeker) who initiates the conversation with a

question, and a system (or wizard) who answers the user’s question by referring to a piece

of knowledge text. Each conversation contains several turns and probably topic shifts. The

datasets statistics are demonstrated in Table 3.6.

Dataset Training Validation Test Avg. Length of Knowledge Text

MultiDoc2Dial 21,453 4,201 4,094 106
FaithDial 18,357 3,417 3,539 27

Table 3.6: Benchmark datasets statistics.

Competitive Methods. We compare with the following knowledge-grounded dialogue

generation methods:

• R3 [159]: a retriever-reranker-reader system that achieves state-of-the-art performance

on MultiDoc2Dial. The system uses a bi-encoder DistilSPLADE [160] retriever to fetch

top-100 relevant knowledge passages from the corpus, then applies a RoBERTa-based

[161] cross-encoder to rerank the top-100 knowledge passages, finally passes the top-10

reranked knowledge passages to a T5-based FiD [162] to generate the response.

• T5-CTRL [133]: a controlled generation method that achieves state-of-the-art perfor-

38

mance on FaithDial. Following [163], it sets control feature tokens based on measures of

entailment, lexical precision, and objective voice of the ground-truth response, to steer a

T5-base model [12] generating responses faithful to the input knowledge texts.

• T5-SFT: a supervised fine-tuning baseline for both datasets. This method directly fine-

tunes the T5-base model with maximum likelihood estimation on ground-truth responses

in the full training set.

Implementation Details. We choose T5-base [157] as our backbone language model for

all experiments. For the input knowledge text in MultiDoc2Dial, we use the ground-truth

knowledge passage preprocessed by the official code6, because we focus on the agent

response generation subtask. For T5-SFT baseline, we fine-tune the model on the ground-

truth response from the full training set. We fine-tune the model for 10 epochs using the

AdamW optimizer [164] with a linear decaying learning rate starting from 1× 10−5. During

inference, we use beam search with a beam size of 4 to generate the final response.

For the coherence discriminator in paragraph 3.2.1, we implement it with a RoBERTa-

base model [161] and train it to discriminate the T5-SFT generated responses and the

ground-truth responses. We train the reward model for 10 epochs using the AdamW

optimizer with a constant learning rate of 1 × 10−6. The reward model achieves 89%

accuracy on the test set of MultiDoc2Dial and 96% accuracy on the test set of FaithDial.

For the combined coefficient α in paragraph 3.2.1, we manually collect 50 pair-wise

human comparison data between T5-SFT and GPT-3.5-turbo on each dataset respectively,

and perform grid search to find the optimal value of α that produces the highest Pearson

correlation with the human judgments. We find the optimal value of α on MultiDoc2Dial

is 0.51 with a Pearson correlation coefficient of 0.1653, and the optimal value of α on

FaithDial is 0.05 with a Pearson correlation coefficient of 0.3381.

For all PPO experiments, the policy network and value network share the same base

6https://github.com/IBM/multidoc2dial/blob/main/scripts/run_data_
preprocessing.sh

39

https://github.com/IBM/multidoc2dial/blob/main/scripts/run_data_preprocessing.sh
https://github.com/IBM/multidoc2dial/blob/main/scripts/run_data_preprocessing.sh

model initialized from T5-SFT but separate the last output layer. The output layer of the

value network is a linear network that maps the last hidden state to a scalar value. We update

the parameters for 10,000 iterations using the AdamW optimizer [164] with a learning rate

of 5× 10−7. The policy is evaluated on the full validation set every 100 iterations, and the

final policy is the one that achieves the highest total scores in accuracy and faithfulness on

the validation set. We use top-k (k = 50) sampling to generate trajectories during training,

and use beam search with beam size of 4 to generate the final response during testing.

Evaluation Metrics. We follow the prior works [140, 133] to evaluate the accuracy and

faithfulness of generated responses. Specifically, we use SacreBLEU [150], ROUGE-L

[165], and METEOR [166] to evaluate the accuracy, which measures the similarity between

generated responses and reference answers. For the faithfulness evaluation, we use the token-

level F1 scores and the F1 measure of BERTScore [152], which computes the similarity

between generated responses and ground-truth knowledge spans. Additionally, we use

GPT-4 to evaluate the faithfulness of generated responses following [167], since they find

GPT-4 evaluation results correlate best with human judgments in conversational QA tasks.

The prompt template for faithfulness evaluation is provided in Table 3.7. Note that we only

sample 100 test data for GPT-4 evaluation due to limited budgets.

System prompt: You are CompareGPT, a machine to verify the groundedness of predictions. Answer with only
yes/no.

You are given a question, the corresponding evidence and a prediction from a model. Compare the ”Prediction”
and the ”Evidence” to determine whether all the information of the prediction in present in the evidence or can be
inferred from the evidence. You must answer ”no” if there are any specific details in the prediction that are not
mentioned in the evidence or cannot be inferred from the evidence.

Question: {Question}
Prediction: {Model response}
Evidence: {Knowledge text}
CompareGPT response:

Table 3.7: The prompt template used for GPT-4 faithfulness evaluation.

40

Accuracy (u,y) Faithfulness (u,Kspan)

Method BLEU ROUGE-L METEOR F1 BERTScore GPT4

Baselines
R3 31.10 41.40 - - - -
T5-SFT 25.38 41.13 38.86 51.61 91.10 95.00

Accuracy Rewards
T5-PPO-BLEU 30.60 43.04 35.19 54.80 91.67 96.00
T5-PPO-RoBERTa 30.51 42.56 32.67 47.05 90.66 91.00

Faithfulness Rewards
T5-PPO-F1 22.82 38.36 37.83 51.19 90.99 95.00
T5-PPO-BERTScore 27.45 42.42 32.10 51.12 91.37 94.00

Combined Rewards
T5-PPO-BLEU&F1 23.72 39.48 37.69 52.85 91.26 97.00

Table 3.8: Automatic evaluation results on the test set of MultiDoc2Dial. The results of R3
are reprinted from the original paper [159]. The other results come from our implementation.
Note that Kspan is the ground-truth knowledge span, and is not presented during training.

3.2.3 Result Analysis

The experiments in this section are designed to answer the following research questions:

RQ1 Does there exist a trade-off between faithfulness and accuracy in the knowledge-

grounded dialogue generation task?

RQ2 Which reward function is most effective in improving both faithfulness and accuracy?

RQ3 Can the combined reward function help to learn a better policy?

RQ1: Faithfulness v.s. Accuracy. We first investigate whether there exists a trade-off

between faithfulness and accuracy in the knowledge-grounded dialogue generation task.

The empirical results in Table 3.8 suggest that RL with BLEU reward can improve both

faithfulness and accuracy. For the MultiDoc2Dial dataset, the lengthy grounding knowledge

texts often contain redundant information, and the reference answer in the BLEU reward

can help locate the relevant text span in a long knowledge text.

On the other hand, the empirical results in Table 3.9 show that increasing the faithfulness

performance will lead to a decrease in accuracy performance. For the FaithDial dataset,

the grounding knowledge texts only contain the precise information needed for the answer,

41

Accuracy (u,y) Faithfulness (u,Kspan)

Method BLEU ROUGE-L METEOR F1 BERTScore GPT4

Baselines
T5-CTRL 13.75 38.57 35.49 70.91 94.42 62.00
T5-SFT 13.69 39.58 37.71 75.49 95.13 70.00

Accuracy Rewards
T5-PPO-BLEU 14.19 39.61 35.48 76.90 95.45 71.00
T5-PPO-RoBERTa 11.87 36.75 28.98 52.05 92.06 66.00

Faithfulness Rewards
T5-PPO-F1 12.47 36.64 33.77 96.46 98.95 72.00
T5-PPO-BERTScore 12.59 36.95 30.12 54.47 91.57 70.00

Combined Rewards
T5-PPO-BLEU&F1 12.42 36.56 33.86 97.12 99.04 75.00

Table 3.9: Automatic evaluation results on the test set of FaithDial. The results of T5-
CTRL come from the code and data released by [133]. The other results come from our
implementation. Note that Kspan is the ground-truth knowledge span, and is not presented
during training.

and further RL fine-tuning makes the model directly copy from the knowledge text. This

approach, while effective for faithfulness, inadvertently compromises the accuracy of the

generated responses, leading to a performance trade-off.

RQ2: Most Effective Reward. Generally, we find RL with BLEU reward achieves

the best overall performance compared with other competitive baselines in both datasets,

as shown in Table 3.8 and Table 3.9. In Table 3.8, T5-PPO-BLEU achieves the best

performance in both accuracy and faithfulness evaluation, indicating that BLEU reward

has the advantage of locating the relevant information from a long knowledge document.

T5-PPO-RoBERTa achieves improved performance in accuracy but degraded performance

in faithfulness compared with T5-SFT, because its reward function is designed to only

encourage the generated response matching the reference answer. T5-PPO-F1 and T5-

PPO-BERTScore could not improve the accuracy and faithfulness performances, probably

because the faithfulness rewards encourage the generated response to match the entire

knowledge text, thus distracting the model to attend to the irrelevant information in the

knowledge text.

42

History User: I’d like to ask more information on what to expect when I receive my new Empire
Gold plates?

Knowledge Text Information about Empire Gold plates // What to do with your old Em-
pire Blue and White plates When you receive your new Empire Gold plates,
do not return your old plate to the DMV. Recycle your old plates based
on local guidelines. For a statewide list of local recycling coordinators, visit the website of
the NYS Department of Environmental Conservation at http://www.dec.ny.gov/chemical/8
511.html [6]. Before you recycle your old plates, use a permanent ink marker to cross out
the plate number or otherwise deface the plates. For your own protection, separate the plates
and put them in the recycle bin during different weeks.

Reference Answer System: Do you want to know what to do when you receive your new Empire Gold plates?

T5-SFT System: Do not return your old plate to the DMV. Recycle your old plates based on local
guidelines. (incorrect span)

T5-PPO-BLEU System: When you receive your new Empire Gold plates, do not return your old plate to the
DMV.

T5-PPO-F1 System: Do not return your old plate to the DMV. Recycle your old plates based on local
guidelines. For a statewide list of local recycling coordinators, visit the web site of the NYS
Department of Environmental Conservation at http://www.dec.ny.gov/chemical/8511.html.
(incorrect span)

T5-PPO-BLEU&F1 System: Do not return your old plate to the DMV. Recycle your old plates based on local
guidelines. (incorrect span)

Table 3.10: Different model-generated responses sampled from the test set of Multi-
Doc2Dial. The green text highlights the ground-truth knowledge span. The red text is the
incorrect model-generated response misled by the text that contains redundant information.

In Table 3.9, T5-PPO-BLEU achieves improved performance in both accuracy and

faithfulness evaluation compared with T5-SFT. However, T5-PPO-RoBERTa achieves

the worst performance even if its reward model has 96% test accuracy, which indicates the

accuracy discriminator is not a robust and effective reward function. Because the FaithDial

dataset has short grounding knowledge texts that contain the precise information needed

for the answer, we find T5-PPO-F1 improves the faithfulness scores by a large margin

compared with T5-SFT. After manual inspections on some randomly sampled outputs, we

find the model just simply copies the entire knowledge text as its output. This explains why

T5-PPO-F1 leads to degraded performance in accuracy evaluation. T5-PPO-BERTScore

is not as effective as T5-PPO-F1, which indicates the sentence embedding similarity scores

may not provide a strong reward signal for the model to learn a good policy.

43

RQ3: Combined Reward. We didn’t find the combined reward significantly outperforms

the BLEU reward in Table 3.8. Compared with T5-BLEU, T5-PPO-BLEU&F1 in the Mul-

tiDoc2Dial dataset has decreased performance in both accuracy and faithfulness evaluation,

suggesting that the Knowledge-F1 reward is not helpful in this dataset. Compared with

T5-F1, T5-PPO-BLEU&F1 in the MultiDoc2Dial dataset has increased performance in

both accuracy and faithfulness evaluation, indicating that the BLEU reward is very effective

in locating the ground-truth knowledge span.

On the other hand, we find the combined reward achieves the best faithfulness perfor-

mance in Table 3.9. However, we find the model simply learns to copy from the knowledge

text as the output, which is not a good policy and does not demonstrate the effectiveness

of the combined reward. Future research may be conducted to find a more effective way

to combine two types of rewards that could improve performance in both faithfulness and

accuracy.

3.3 Summary

In this chapter, we design controllable text generation methods to steer LLMs to produce

desired outputs.

In Section 3.1, we investigate the problem of generating high-quality texts for variational

encoder-decoder models. We propose a novel stochastic function to introduce context-aware

variations into encoder hidden states, which provides the decoder with more diverse contex-

tual representations. To learn this stochastic function, we propose a GP prior to modeling the

dependency between random context variables, and apply an efficient amortized variational

inference method to approximate the GP posterior. Experimental results demonstrate that

our method can learn a better contextual representation that leads to higher generation

quality compared with deterministic encoder-decoder models and conditional variational

autoencoders.

In Section 3.2, we investigate how to improve faithfulness and accuracy in knowledge-

44

grounded dialogue generation tasks. Firstly, we identify the relationship between the

grounding knowledge text, the ground-truth knowledge span, and the reference answer.

Then, we solve the problem by applying a reinforcement learning algorithm with a suitable

reward function. The selected reward function can improve both the faithfulness and

accuracy of generated outputs. Finally, we validate the effectiveness of our method in two

information-seeking conversation datasets. The empirical experiment results show that our

method can outperform other strong supervised learning baselines.

45

CHAPTER 4

DATA-EFFICIENT TEXT GENERATION

LLMs pre-trained on open-domain data may not generalize well in domain-specific tasks

(e.g., task-oriented dialogue generation, medical report generation, legal document genera-

tion), however, it is often prohibitively expensive to collect large-scale, high-quality data in

domain-specific NLG tasks. In this chapter, I introduce two data-efficient text generation

methods to better adapt pre-trained LLMs to specific NLG tasks. In Section 4.1, I introduce

an additive side network for the personalized dialogue generation task, which effectively

encodes persona profile information to pre-trained LLMs with a few training data. In Section

4.2, I devise a novel self-training algorithm for the task-oriented dialogue generation task,

which reduces the model prediction errors by fine-tuning with pseudo-labeled data generated

by the model itself.

4.1 Personalized Dialogue Generation via Additive Side Networks

With the advance of Transformer-based pre-trained language models [168, 157, 11, 169],

many dialogue systems [169, 170, 171] have shown promising performance in challenging

open-domain conversations with humans. However, for controlled dialogue generation,

prior works mainly focus on building LSTM-based class-conditional generative model on

specific datasets with task-specific design on model architecture [172, 173, 174, 175] or

policy learning strategy [33, 176, 177, 178]. In this work, we explore effective methods

for controlled generation on Transformer-based dialogue systems, with the goal of adding

controllability functionality into state-of-the-art Transformer-based dialogue systems with

lower computation cost, less training data, and a more flexible control mechanism.

Prior works on controlled text generation for Transformer-based pre-trained language

models can be categorized into two general approaches: (1) gradient-based methods and

46

(a) SideNet for Knowledge Document Control (b) SideNet for Semantic Label Control

Figure 4.1: General architecture of the SIDECONTROL framework.

(2) weighted-decoding methods. The gradient-based methods [34, 52, 53] propose a plug-

and-play language model following p(x|a) ∝ p(a|x)p(x), which plugs an attribute model

p(a|x) with a pre-trained language model p(x) to control generation. The gradients from

p(a|x) are used to guide the latent representations of pre-trained models encoding more

control attribute information. The weighted-decoding methods [55, 179, 180, 36] modify

the sampling weights with attribute functions in beam search at each decoding timestep

to control generation. Essentially, the attribute functions are used to re-rank the original

beam candidates generated by the pre-trained language models. The main idea of both

gradient-based methods and weighted decoding methods is flexibility: users can design

any attribute models or functions for different controlled generation tasks and apply the

attribute model or function to any state-of-the-art pre-trained language models for generating

high-quality texts.

However, weighted decoding methods [55, 179, 180, 36] are limited by the low-variance

high-biased pre-trained language models, since they do not update the pre-trained language

models. If the pre-trained model yields commonly observed words rather than target attribute

words in the beam candidates list, it is difficult for the attribute functions to re-rank and find

the target words during generation. Although gradient-based methods [34, 52, 53] do not

47

have this limitation since they update the latent representations of pre-trained models during

inference, the gradient propagation at each decoding timestep involves heavy computation,

which results in slow response speed to users. In addition, the controllability performance of

gradient-based methods relies on the attribute model. If the attribute model gets overfitted

on a small training set, the gradient from this attribute model will just lead to meaningless

updates.

To build an effective and efficient controlled open-domain dialogue system, we propose

the SIDECONTROL framework, which treats the pre-trained language model as a feature

extractor and trains light-weight side networks to encode complementary information from

control attributes. In addition, we introduce a novel control attribute loss to guide the side

network during training. As shown in Figure 4.1, the final output representation is a mixture

of a base representation from the pre-trained language model and a side representation from

the side network. The mixture coefficient α is learned during training, and is used to balance

the prior knowledge from the base network and the task-specific control attributes signals

from the side network. From the encoding perspective, the SIDECONTROL framework not

only can be applied to any pre-trained language models, but also supports diverse format

attributes control (e.g. dialogue act, external knowledge document). From the decoding

perspective, the SIDECONTROL framework has low computation cost, since it directly

samples from its optimized class-conditional language model p(x|a) without additionally

updating latent representations during generation. From the sample-efficiency perspective,

the SIDECONTROL framework achieves good performance with a few thousand training

samples by leveraging the control loss.

We summarize the contributions of this work as follows:

1. Proposing a new controlled dialogue generation framework with novel control at-

tributes losses to support different forms of attributes control (e.g. dialogue act,

external knowledge document);

2. Conducting empirical experiments to show the sample-efficiency of the SIDECON-

48

TROL framework, which can achieve good performance with only 100 ∼ 1000 training

samples;

3. Conducting empirical experiments to validate that the SIDECONTROL framework

has better controllability, better text quality, and lower decoding cost compared to

gradient-based methods and weighted-decoding methods.

4.1.1 The SideControl Framework

Firstly, we introduce the SIDECONTROL framework, which presents the general idea of

using a small side network to coordinate the generation process based on large-scale pre-

trained language models [169, 170, 171]. Then we provide two realizations of side networks

for two types of control attributes: (1) external knowledge document, and (2) semantic label.

General Framework. Given a dialogue context which contains a fixed number of previous

utterances X = {xi}Ni=1, where N is the total number of tokens in the given dialogue context,

and a control attribute a which represents the desired controllable attributes, the goal is to

build a model conditioned on X and a that can generate a response which best approximates

the ground-truth human response Y = {yt}Tt=1:

p(Y | X,a) =
T∏
t=1

p(yt | y1:t−1,x1:N ,a)

=
T∏
t=1

p(yt | ht) (4.1)

where ht is the last hidden state of the generative model at decoding timestep t.

The SIDECONTROL framework consists of a large base network B(·) providing rich

feature representations and a small side network S(·) encoding control attribute(s), as

illustrated in Figure 4.1. The base network B(·) can be any pre-trained language models

[169, 170, 171]. Given dialogue context x1:N as the input to the base network, we just

take last hidden states {ht
b}Tt=1 for the response {yt}Tt=1 from the base network as our base

49

representations:

h1
b , . . . ,h

T
b = B(x1:N) (4.2)

The side network S(·) is a light-weight neural network, which encodes the control attribute

a into base representations {ht
b}Tt=1:

h1
s, . . . ,h

T
s = S(a,h1

b , . . . ,h
T
b) (4.3)

Finally, we keep the base representation ht
b fixed, and add the side representation ht

s upon it

to obtain the final combined representation ht for the current token yt:

ht = α · ht
b + (1− α) · ht

s (4.4)

p(yt | ht) = softmax(Wvocabht) (4.5)

where Wvocab is learnable parameters, and the mixture coefficient α is also learned during

training, which aims to encode both useful prior knowledge from pre-trained language

models and important attribute information from target dataset for controlled generation.

The main challenge in this framework is to teach the side network S(·), such that it

can provide complementary information of control signals via ht
s during generation, since

the pre-trained language models can already generate fluent responses. To address this

challenge, we intentionally freeze the parameters of the base network B(·) when training

the side network. Otherwise, it is essentially training a large neural network model even

deeper than B(·). Second, we introduce the control attribute loss Lcontrol, which is designed

to teach the side network explicitly encoding control signals to improve the controllability

of the model. The final objective is a combination of class-conditional language modeling

loss Lcclm and task-specific control attributes loss Lcontrol:

L = Lcclm + λ · Lcontrol (4.6)

50

where λ is a task-specific hyper-parameter, and Lcontrol has different implementation when

controlling different forms of attributes.

Knowledge Document Control. When having external knowledge documents as the

control attributes, such as persona profile [181], Wikipedia articles [139], etc., the format

of control attribute is sequences of tokens a = {ki}Ki=1, where K is the total number of

tokens in the external knowledge document. In this case, we model the knowledge document

representation with a single-layer bi-directional LSTM:

h1
k, ...,h

K
k = BiLSTM(a) (4.7)

The side network is designed to align the controlled knowledge document representation

{hi
k}Ki=1 with the base representation ht

b at each decoding timestep. We compute the cross-

attention between {hi
k}Ki=1 and ht

b following [5]:

eti = vT · tanh (Wkh
i
k +Wbh

t
b + bkb) (4.8)

ati = softmax(eti) (4.9)

ctk =
K∑
i=1

ati · hi
k (4.10)

where Wk ∈ RD×D, Wb ∈ RD×D and bkb ∈ RD are learnable parameters. The attention

at is a probability distribution over the controlled knowledge document that tells the de-

coder where to look when generating the next word, and the context vector ctk represents

what has been read from the controlled knowledge document representation at decoding

timestep t. The final side representation ht
s incorporates the context vector ctk into the base

representation ht
b:

ht
s = tanh (Wc[c

t
k;h

t
b] + bc) (4.11)

where we concatenate ctk and ht
b, and Wc ∈ R2D×D and bc ∈ RD are learnable parameters.

51

Since the controlled knowledge document is different per utterance, we implement the

mixture coefficient α based on the side representation ht
s and base representation ht

b at

decoding timestep t:

αt = σ(Wα[h
t
s;h

t
b] + bα) (4.12)

ht = αt · ht
b + (1− αt) · ht

s (4.13)

where we concatenate ht
s and ht

b, and Wα ∈ R2D×1 and bα ∈ R are learnable parameters.

In order to encourage the decoder to generate more words from the knowledge document,

we adopt the copy mechanism from [6] to formulate Lcclm:

β = σ(Wβ[c
t
k;h

t
b] + bβ) (4.14)

p(yt | ht) = βp(yt|ht) + (1− β)
K∑
i=1

ati (4.15)

Lcclm = −
T∑
t=1

log p(y∗
t | ht) (4.16)

where we concatenate ctk and ht
b, and Wβ ∈ R2D×1 and bβ ∈ R are learnable parameters.

ht comes from Equation 4.13. y∗
t is the ground-truth word at decoding timestep t.

∑K
i=1 a

t
i

is the summation of attention distribution over the knowledge document at current decoding

timestep t, which will assign a higher probability for attended knowledge document words

in the final word probability distribution.

The control attribute loss for this task is used to encourage generating more non-repetitive

words from the knowledge document. We adopt the coverage mechanism from [6] to

formulate Lcontrol:

Lcontrol =
T∑
t=1

K∑
i=1

min(ati,
t−1∑
t′=0

at
′

i) (4.17)

where at′i is the attention weight of knowledge document word ki at previous decoding time

step t′. Lcontrol penalizes the overlap between current attention distribution and previous

52

attention distributions, which prevents the model from repeatedly attending to the same

word in the knowledge document. For more details about the copy mechanism and coverage

mechanism, please refer to the original paper [6].

Semantic Label Control. When having a semantic label as the control attribute, such

as dialogue act [182], emotion [183], etc., we implement the side network as a simple

feed-forward neural network:

ht
s = tanh (Wd[Waa;h

t
b] + bd) (4.18)

ht = α · ht
b + (1− α) · ht

s (4.19)

Lcclm = −
T∑
t=1

log p(y∗
t | ht) (4.20)

where we concatenate Waa and ht
b, Wa ∈ R1×D is an embedding matrix that maps the

discrete label a to a continuous representation, Wd ∈ R2D×D and bd ∈ RD are learnable

parameters. The mixture coefficient α ∈ [0, 1] is a global parameter which is learned during

training, in order to encode both useful prior knowledge from pre-trained language models

and control signals from semantic labels. y∗
t is the ground-truth word at the decoding time

step t.

The control attributes loss Lcontrol for this task is used to modify the final latent represen-

tations so that the model can generate responses with the target control attribute. However,

it is difficult to directly measure how much control attribute information has been encoded

into the side representation. Therefore, we approximate it using an independent attribute

classifier p(a|h1:T). When training the side network, we keep the attribute classifier fixed

and feed the side representations {ht
s}Tt=1 into the classifier. The classifier will return a loss

between the current side representation and the target control attribute a∗, and optimizing

53

this loss will update the side representation ht
s towards obtaining a higher p(a∗|h1:T):

p(a | h1:T) = softmax(Wclf

∑T
t=1 h

t
s

T
) (4.21)

Lcontrol = − log p(a∗ | h1:T) (4.22)

Note that Wclf ∈ RD×K is independently learned on the same training set based on the base

representation {ht
b}Tt=1, but is fixed when we update the side network.

4.1.2 Experimental Setup

Evaluation Metrics. In this work, we focus on evaluating the controllability and text

quality of different controlled generation methods. Additionally, we prefer to have lower

decoding costs and better modularity in order to apply the proposed method to more possible

applications. Therefore, we consider the following dimensions to evaluate the performance:

controllability, text quality, decoding cost, and modularity.

Controllability: This is our main metric. It aims to evaluate whether the proposed

method can successfully generate the target controlling attributes. For the semantic label

control task, we use the classification accuracy computed by an independently trained BERT

classifier [184]. We train an independent dialogue act classifier to evaluate whether the

current generated response matches its conditioning dialogue act. The input to the evaluation

dialogue act classifier is a single response, and the output is a prediction of one of the 4

dialogues in DailyDialog, i.e. inform, questions, directives and commissive.

We construct the training corpus following the standard splition of the original DailyDia-

log dataset, and obtain 87,170 training samples, 8,069 validation samples, and 7,740 testing

samples. We leverage the BERT model to provide a sequence of word representations and

add a single-layer feed-forward neural network to predict the dialogue act of the current

sentence. We use AdamW [185] with a learning rate of 0.0001 to train this classifier. We set

the batch size to 16, the total training epoch to 10, and automatically evaluate the model

54

on the validation set very 5000 iterations. We save the model checkpoint with the lowest

validation loss as the optimal model. This dialogue act classifier achieves 0.79 accuracy on

Figure 4.2: Confusion matrix of the evaluation dialogue act classifier.

the test set. Figure 4.2 shows the confusion matrix of this dialogue act classifier.

For the knowledge document control task, we use the cosine similarity between the

word vectors of external knowledge document and model generated response. We use the

pre-trained GloVe embedding [186] to model the word vectors. The word embeddings

are GloVe embeddings [186] pre-trained on Wikipedia 2014 and Gigaword 5, which are

100-dimension vectors and have 6 billion tokens 1. We use the NLTK word tokenizer 2 to

tokenize the texts into a set of tokens, and remove stop words based on a pre-defined stop

words list in [187]. Finally, we compute the cosine similarity between the two sets of word

vectors.

Text Quality: It aims at evaluating how well the model learns to generate responses that

match the ground-truth references, where we use model perplexity (PPL) computed on the

test set 3, BLEU [121] and METEOR [166] to approximate it.

Decoding Cost: It evaluates the generation efficiency of the proposed method. Given the

same set of 10 dialogue contexts, we compute the decoding time per token across different
1https://nlp.stanford.edu/projects/glove/
2https://www.nltk.org/_modules/nltk/tokenize.html
3Note that PPLM and FUDGE do not update the generative model and are applied only during generation,

which means their model perplexity will be the same with their base network, i.e. DialoGPT-Ori, therefore we
do not report their model perplexity in performance results.

55

https://nlp.stanford.edu/projects/glove/
https://www.nltk.org/_modules/nltk/tokenize.html

methods, a faster decoding time indicates the method is more efficient during generation.

Modularity: It evaluates how well the side network can be applied to different base

networks. We compare model performance under two different types of pre-trained lan-

guage models: DialoGPT [169] and BlenderBot [170]. Ideally, we expect a good or even

better performance when switching the base network from DialoGPT to BlenderBot, since

BlenderBot has been trained on a larger dialogue corpus that is likely to provide more

informative base representations.

Competitive Baselines. We compare the SIDECONTROL framework with the following

competitive baselines:

1. DialoGPT-Ori: the original pre-trained language model for open-domain dialogue

generation, DialoGPT [169]. DialoGPT is a Transformer-based language model. It is

the baseline for all other controlled generation methods.

2. DialoGPT-FT: direct fine-tuning the DialoGPT on the target dialogue dataset. It is

used as a strong baseline for evaluating the generation quality of the generative model.

3. DialoGPT-PPLM: the Plug-and-Play Language Model (PPLM) [34] with DialoGPT

as the base pre-trained language model. It is a strong gradient-based baseline.

4. DialoGPT-FUDGE: the Future Discriminators for Generation (FUDGE) [36] with

DialoGPT as the base pre-trained language model. It is a strong weighted decoding

baseline.

5. DialoGPT-SideControl: our SIDECONTROL framework with DialoGPT as the base

pre-trained language model. It is used to validate the effectiveness of our side network

compared with other controlled generation baselines.

6. BlenderBot-Ori: the original BlenderBot [170], which is a Transformer-based sequence-

to-sequence model showing state-of-the-art performance on some challenging open-

domain dialogue datasets.

56

7. BlenderBot-SideControl: our SIDECONTROL framework with BlenderBot as the

base pre-trained language model. It is used to show the high modularity of our side

network.

Knowledge Document Control. In this task, given the previous dialogue context and the

external knowledge document for the current speaker, the model will generate one utterance

that is relevant both to the context and to the knowledge document.

We use the ConvAI2 dataset [181] for the knowledge document control task. We set the

previous 4 utterances as the dialogue context. Each utterance is linked to its corresponding

persona profile. Since the test set of ConvAI2 has not been made public, we use the original

training set to construct our training set, and split the first 80% original validation set as our

validation set and the remaining 20% original validation set as our testing set. In total, we

have 153,082 training samples, 38,271 validation samples, and 11,590 testing samples.

We conduct all of our experiments on a single GeForce RTX 2080Ti GPU server with

12GB memory. The experiment setup details are as follows.

Direct Fine-tuning: We directly update all parameters of the pre-trained language model

on the ConvAI2 training set without having any side network or control attribute loss. For

the training of the pre-trained language model, we use AdamW [185] with a learning rate of

0.0001. We set the batch size to 2, the total training epoch to 10, and automatically evaluate

the model on the validation set every 1000 iterations. We save the model checkpoint which

achieves the lowest validation loss as the final optimal model. For generation, we follow the

setup of FUDGE, which uses top-k sampling with k = 10.

PPLM: For the implementation of the attribute model, we use the bag-of-words attribute

model proposed in the original paper [34] to encode external knowledge documents. We run

the model on the ConvAI2 dataset using the code provided by the original paper.4 We set

the maximum generation length to 50, the number of gradient update steps to 3, the step

size to 0.03, the window length to 5, the number of generated sentences to 1, γgm = 0.99,

4https://github.com/uber-research/PPLM

57

https://github.com/uber-research/PPLM

λKL = 0.01.

FUDGE: For the implementation of the attribute model, we use the bag-of-words

attribute model proposed in the original paper [36] to encode external knowledge documents.

We run the model on the ConvAI2 dataset using the code provided by the original paper.5

We set the maximum generation length to 80, the weight on the conditioning model to 4.0,

consider the top 200 outputs from DialoGPT at each decoding timestep before conditioning,

and sample from the top 10 outputs from DialoGPT at each decoding timestep.

SideControl: For the implementation of the side network, we use a single-layer bi-LSTM

which shares the same hidden dimension with the final hidden states of the base network.

We tokenize the knowledge document using the same tokenizer with the base network, and

share the same word embedding with the base network as well. For the training of the side

network, we use AdamW [185] with a learning rate of 0.0001. We set the batch size to 4,

the total training epoch to 10, and automatically evaluate the model on the validation set

every 100 iterations. For the hyper-parameter λ of the coverage loss in Equation 4.17, we

use grid search on the validation set to obtain the optimal number. We search from the set

λ = {10−6, 10−5, 10−4, 10−3, 0.01, 0.1} and find λ = 10−5 yields best performance. For

generation, we follow the setup of FUDGE, which uses top-k sampling with k = 10.

Semantic Label Control. In this task, given the previous dialogue context and the current

dialogue act, the model will generate one utterance that is relevant to the context and also

satisfies the current dialogue act.

We use the DailyDialog dataset [182] for the semantic label control task. We set the

previous 5 utterances as the dialogue context and follow the standard train/validation/test

split of the original dataset to construct our generation dataset. In total, we obtain 35,781

training samples, 3,388 validation samples, and 3,123 testing samples.

We conduct all of our experiments on a single GeForce RTX 2080Ti GPU server with

11019 MB memory. The experimental setup details are described below.

5https://github.com/yangkevin2/naacl-2021-fudge-controlled-generation

58

https://github.com/yangkevin2/naacl-2021-fudge-controlled-generation

Direct Fine-tuning: We directly update all parameters of the pre-trained language model

on the DailyDialog training set without having any side network or control attribute loss. For

the training of the pre-trained language model, we use AdamW [185] with a learning rate of

0.0001. We set the batch size to 2, the total training epoch to 10, and automatically evaluate

the model on the validation set every 1000 iterations. We save the model checkpoint which

achieves the lowest validation loss as the final optimal model. For generation, we follow the

setup of FUDGE, which uses top-k sampling with k = 10.

PPLM: For the implementation of the attribute model, we follow the generic discrimina-

tor implementation in the original paper [34]. We run the model on the DailyDialog dataset

using the code provided by the original paper. We train a dialogue act classifier which takes

a single response as input and produces a prediction on one of the four dialogue acts. For

the training of the classifier, we use Adam [188] with a learning rate of 0.0001. We set the

batch size to 64, and the total training epoch to 10. For the generation of PPLM, we set the

maximum generation length to 50, the number of gradient update steps to 10, the step size

to 0.2, the number of generated sentences to 1, γgm = 0.95, λKL = 0.01.

FUDGE: For the implementation of the attribute model, we follow the attribute discrim-

inator implementation in the original paper [36]. We run the model on the DailyDialog

dataset using the code provided by the original paper. We train a dialogue act discriminator

which takes the dialogue context and the current response as input and produces a prediction

on one of the four dialogue acts. For the training of the discriminator, we use Adam [188]

with a learning rate 2× 10−5. We set the batch size to 16, and the total training epoch to 10.

For the generation of FUDGE, we set the maximum generation length to 60, the weight on

the conditioning model to 1.0, consider the top 200 outputs from DialoGPT at each decoding

timestep before conditioning, and sample from the top 10 outputs from DialoGPT at each

decoding timestep.

SideControl: For the implementation of the side network, we use a single-layer feed-

forward neural network which shares the same hidden dimension with the final hidden

59

Controllability Text Quality Decoding Cost

METHOD SIMILARITY ↑ PPL ↓ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑ TIME ↓

DialoGPT-Ori 0.6382 68.63 12.95 1.22 0.0526 0.0786 s/tok
DialoGPT-FT 0.6732 15.22 17.27 2.05 0.0675 0.0721 s/tok
DialoGPT-FUDGE 0.6684 - 10.26 0.60 0.0514 0.0510 s/tok
DialoGPT-PPLM 0.6858 - 11.30 0.94 0.0646 0.5208 s/tok
DialoGPT-SideControl 0.7526 14.34 13.46 1.96 0.0988 0.0824 s/tok

BlenderBot-Ori 0.7455 90.89 9.38 0.54 0.0908 0.0384 s/tok
BlenderBot-SideControl 0.7841 14.34 10.10 1.20 0.0964 0.0608 s/tok

Table 4.1: Knowledge document control performances under full training set of ConvAI2,
where λ = 10−5 for Lcontrol in DialoGPT-SideControl and BlenderBot-SideControl.

states of the base network. Besides, we pre-trained a dialogue act classifier to compute the

control loss in Equation 4.22. We emphasize that this dialogue act classifier is different from

the evaluation classifier. It models the sentence representation from the base network, i.e.

DialoGPT, and adds a single-layer feed-forward neural network to predict the dialogue act

of the current response. We train this classifier using AdamW [185] with a learning rate of

0.0001 for 10 epochs. Then, we fix this classifier and begin to train the side network using

AdamW [185] with a learning rate of 0.0001 for another 10 epochs. We evaluate the model

on the validation set every 1000 iterations, and save the model checkpoint which has the

lowest validation loss. For the hyper-parameter λ of the control loss in Equation 4.22, we

use grid search on the validation set to obtain the optimal number. We search from the set

λ = {1, 10, 100, 103, 104, 105, 106} and find λ = 105 yields best performance on the full

training set. For generation, we follow the setup of FUDGE, which uses top-k sampling

with k = 10.

4.1.3 Result Analysis

Knowledge Document Control. Table 4.1 shows that DialoGPT+SideControl outper-

forms all other baselines in controllability, which validates the effectiveness of the SIDE-

CONTROL framework. For the quality of the generated texts, we find that both FUDGE

and PPLM perform worse than the original pre-trained language model, while the SIDE-

60

Figure 4.3: Controllability under a different number of training examples in ConvAI2
dataset.

CONTROL shows improved quality because of the Lcclm during training. We also notice that

direct fine-tuning gives the best performance in BLEU-1 and BLEU-2, but worse controlla-

bility compared with the SIDECONTROL. This is because direct fine-tuning only focuses on

optimizing the language modeling loss, and does not take the control attributes information

into account. For the decoding cost, our SIDECONTROL is around 6x faster than PPLM

during generation, which shows its efficiency during inference. Finally, we find that the

performance improvement in controllability and text quality also holds when we apply the

SIDECONTROL to BlenderBot, which shows the flexible modularity of the side network.

With the goal of testing the sample-efficiency of the SIDECONTROL framework, we train

all baselines under smaller datasets, where we randomly sample 100, 1000, 5000 and 10000

training samples from the original training set to train the model, and evaluate the model

performance using the full testing test. Figure 4.3 shows the controllability performance

under different training sizes. We find that SIDECONTROL only underperforms PPLM in

100 training samples, since PPLM uses non-parametric bag-of-words features as its attribute

model while SIDECONTROL uses a BiLSTM as its attribute model. And 1000 training

samples are sufficient enough for SIDECONTROL to achieve comparable performance with

PPLM. In addition, SIDECONTROL constantly achieves performance improvement when

61

Controllability Text Quality

SIMILARITY ↑ PERPLEXITY ↓ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑

λ = 0 0.7273 14.24 15.72 2.16 0.0858
λ = 10−6 0.7284 14.30 16.08 2.29 0.0800
λ = 10−5 0.7526 14.34 13.46 1.96 0.0988
λ = 10−4 0.7306 14.65 15.87 2.32 0.0846
λ = 10−3 0.7259 15.65 15.72 2.09 0.0802
λ = 10−2 0.7217 30.29 15.30 2.05 0.0803
λ = 10−1 0.7137 22481.68 15.50 2.01 0.0774

Table 4.2: Knowledge document control performances of DialoGPT-SideControl with
different λ.

Controllability Text Quality Decoding Cost

METHOD ACCURACY ↑ PPL ↓ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑ TIME ↓

DialoGPT-Ori 0.4307 55.09 7.78 0.66 0.0333 0.0921 s/tok
DialoGPT-FT 0.4358 8.95 14.35 2.30 0.0523 0.0786 s/tok
DialoGPT-FUDGE 0.4701 - 14.40 1.59 0.0411 0.0535 s/tok
DialoGPT-PPLM 0.5994 - 14.22 1.25 0.0506 2.4171 s/tok
DialoGPT-SideControl 0.5376 12.79 16.37 1.90 0.0526 0.0990 s/tok

BlenderBot-Ori 0.4605 110.05 12.21 1.10 0.0775 0.0603 s/tok
BlenderBot-SideControl 0.6865 8.16 14.49 1.36 0.0680 0.0995 s/tok

Table 4.3: Semantic label control performances under full training set of DailyDialog,
where λ = 105 for Lcontrol in DialoGPT-SideControl and BlenderBot-SideControl.

increasing the training size.

To verify the effectiveness of the control loss Lcontrol, we conduct an ablation study by

trying out different values of λ in Equation 4.6. As shown in Table 4.2, when λ = 0, the

model becomes a vanilla language model and takes no information from the side network,

which leads to low performance in controllability. When λ ̸= 0, the model incorporates

control attributes information from the side network, which leads to improved performance

in controllability. However, incorporating side information will lead to a slight increase in

model perplexity.

Semantic Label Control. Table 4.3 demonstrates that SIDECONTROL has better text

quality than FUDGE and PPLM, since we explicitly optimize Lcclm during training. For

controllability, PPLM achieves the best performance with a sacrifice of inference efficiency,

while SIDECONTROL can achieve comparable performance in controllability with around

62

Figure 4.4: Controllability under a different number of training examples in DailyDialog
dataset.

24x faster decoding time. Finally, the performance improvements in controllability and

text quality still hold when we switch the base network from DialoGPT to BlenderBot,

which demonstrates that the side network is flexible to be applied to different types of

pre-trained language models. And surprisingly, BlenderBot can even provide state-of-the-art

performance in controllability.

We also compare the model performance under different training sizes following the same

setup with the knowledge document control task. Figure 4.4 illustrates that SIDECONTROL

achieves better controllability than PPLM when the training size is under 1000. This is

because PPLM uses a data-driven classifier as its attribute model in this task, and its attribute

model gets overfitted on the 100 training samples, which results in poor controllability

performance. Similarly, FUDGE has the same overfitting issue for its attribute discriminator

on these small training sets, and gets unsatisfied controllability performance. Although

SIDECONTROL also pre-trains a classifier on the 100 training samples to guide the update of

side representation, its final representation is a combination of base and side representation.

We believe incorporating prior knowledge from the base representation helps SIDECONTROL

alleviate the overfitting issue on a small training set.

63

Controllability Text Quality

ACCURACY ↑ PERPLEXITY ↓ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑

λ = 0 0.4950 12.37 16.19 1.95 0.0534
λ = 101 0.5229 12.48 15.06 1.76 0.0525
λ = 102 0.5366 12.51 15.59 1.76 0.0517
λ = 103 0.5232 12.59 15.59 1.75 0.0512
λ = 105 0.5376 12.79 16.37 1.90 0.0526
λ = 106 0.5357 13.10 15.29 1.67 0.0485

Table 4.4: Semantic label control performances of DialoGPT-SideControl with different λ.

METHOD FLUENCY ↑ RELEVANCY ↑
DialoGPT-PPLM 3.832 3.188
DialoGPT-FUDGE 4.016 3.348
DialoGPT-SideControl 4.108 3.816

Table 4.5: Human evaluation of fluency
and context relevancy on semantic label
control task.

Wins %

PPLM FUDGE SideControl
PPLM - 55.25% 57.61%
FUDGE 44.76% - 54.46%
SideControl 42.39% 45.54% -

Table 4.6: Human evaluation of attribute
relevancy on semantic label control task.

We also try out different values of λ to study the effect of control loss Lcontrol. As

shown in Table 4.4, when λ = 0, the model takes no control attribute signals from the side

network during training, which results in a low controllability performance. When λ ̸= 0,

the controllability performance of the model is improved but with a slight increase in model

perplexity. Both Table 4.2 and Table 4.4 verify the effectiveness of control loss Lcontrol in

improving the controllability of pre-trained language models.

Human Evaluation. To validate the good performance of SIDECONTROL, we follow

prior works [34, 189] and deploy a set of human evaluations to compare the text quality

and controllability between several methods. For the text quality, we ask human annotators

to evaluate the fluency and context relevancy of the generated responses on a scale of 1-5,

where a higher score indicates better quality. For the controllability, we use A/B testing

following [189] and compare all model pairs (e.g. PPLM vs. SIDECONTROL) 6. For all

human evaluations, we randomly sample 50 dialogue contexts, and collect the corresponding

model-generated responses. Human annotators are recruited using Amazon Mechanical
6We show the same dialogue context, current dialog act and two responses generated by model A and

model B respectively, and ask human annotators to select the response which is more related to the current
dialog act among: model A, model B, both and neither.

64

Turk and each response has 5 annotations. In total, we collect 2250 human annotations.

Table 4.5 shows the results of text quality evaluation, and SIDECONTROL achieves the

best fluency and context relevancy than PPLM and FUDGE. Table 4.6 shows the results of

controllability evaluation, and SIDECONTROL wins over PPLM and FUDGE in 57% and

54% respectively. Both text quality and controllability evaluation show that SIDECONTROL

can generate more fluent, context-relevant, and attribute-relevant responses than PPLM and

FUDGE.

4.2 Task-Oriented Dialogue Generation via Self-training Algorithms

In task-oriented dialogue systems, a natural language generation (NLG) module is an

essential component: it maps structured dialogue meaning representations (MRs) into

natural language responses. The NLG module has a great impact on users’ experience

because it directly interacts with users using text responses [172, 190, 191, 19]. However, in

real-world applications, developers often only have a few well-annotated data and confront

a high data collection cost in specific domains. This real-world challenge makes building an

NLG module in the low-data setting a valuable research problem [191, 60, 19].

While language models have been widely adopted to build the NLG module in task-

oriented dialogue systems, they usually require thousands of MR-to-Text pairs for learning

the domain-specific knowledge [192, 193, 194, 195]. To collect more training data under a

feasible budget, previous works propose three general approaches: (1) designing handcraft

rules to augment new data, which is hard to scale up [196, 197]; (2) building task-specific

data retriever to search related data, which may overfit on the few training data [63]; or

(3) leveraging pre-trained language models to generate new data, which may generate “too

noisy” data [198, 199, 67].

Ideally, the augmented data should help the model better learn the domain-specific

knowledge. However, some augmented data can be “too noisy” that leads the model to learn

irrelevant or inappropriate data patterns. This phenomenon is also described as negative

65

Figure 4.5: Our two-phase self-augmentation (SA2) self-training framework for few-shot
MR-to-Text generation.

transfer in other works [200, 201, 202, 203]. To address this challenge, some works leverage

human judgments to filter out the “too noisy” augmented data, which are difficult to scale up

across different domains and tasks [204, 205]. Other works train task-specific discriminators

to pick up the valid augmented data, which are likely to overfit in the low-data setting [62,

63, 66, 67, 68].

In this work, we propose to address the issue of selecting high-quality self-augmented

examples with a two-phase procedure, where each phase will take care of selecting inputs

and generating outputs independently. As illustrated in Figure 4.5, the first phase evaluates

input MRs with the model’s prediction uncertainty, aiming at selecting input examples

that are informative to the current model. Specifically, for each input MR, we let the

current model generate a response, and then apply the Monte Carlo Dropout method [206]

to estimate the predictive mean E[pθ] and predictive variance V ar[pθ] of the generated

response. In uncertainty quantification [207], a high predictive mean indicates that the

model is familiar with this input (i.e. in-domain data) and high predictive variance reflects

that the model is sensitive to this input (i.e. informative data). Hence, we propose to select

input MRs with high predictive mean and variance. Note that our uncertainty-based data

selection strategy neither requires training additional neural models to select the valid data

[66, 67, 68], nor need to calculate the data statistics across all training epochs and re-train

the model overall again [208]. The second phase aims to further improve the quality of the

66

Self-augmented Data E[pθ] V ar[pθ]

1 request (ref = ?) & i am sorry i do not have any restaurants with those
criteria

low low

2 inform (choice = many) @ request (food = ?) & there are many restaurants
that serve vegetarian food

low high

3 inform (food = seafood) & it is seafood high low

4
✓

inform (choice = several) @ request (area = ?) & there are several restau-
rants you’d like to dine in?

high high

Table 4.7: Examples of our self-augmented data and data selection strategy. text is the
input MR (e.g. request is the dialogue intent, and (ref = ?) is the slot-value pair of the
current intent). The model pθ generates synthetic dialogue response conditioning on the
text . For each self-augmented data, a low predictive mean E[pθ] indicates that the model
finds the augmented data “too noisy” (e.g. out-of-domain or invalid response), and a low
predictive variance V ar[pθ] indicates that the model finds the augmented data “too certain”
(e.g. uninformative response). In this work, we propose to select examples with high E[pθ]
and high V ar[pθ].

selected data. We adopt an idea from contrastive representation learning [209] and use the

aggregation of randomly perturbed latent representations to help the model produce more

accurate responses. The combination of these two phases guarantees the proposed method

selects more informative MR inputs and generates less noisy responses for further model

fine-tuning.

In summary, the contributions of this work are as follows:

1. Proposing a novel self-training algorithm for the few-shot MR-to-Text generation prob-

lem in task-oriented dialogue systems, which applies a two-phase self-augmentation

strategy to identify informative MRs and generate accurate responses for further

fine-tuning.

2. Showing that the proposed method generally outperforms other few-shot NLG base-

lines on two benchmark datasets, FEWSHOTWOZ [19] and FEWSHOTSGD [63] in

both automatic and human evaluations.

3. Conducting in-depth empirical analysis on key components of the proposed few-shot

self-training framework: the pre-trained language model, the data selection strategy,

67

and the model training configurations.

4.2.1 Self-training with Two-phase Self-augmentation (SA2)

MR-to-Text Generation. In task-oriented dialogue systems, the NLG module translates

a structured dialogue meaning representation A into a natural language response x =

{x1, ..., xT}. One structured dialogue meaning representation A consists of K dialogue

intents and a list of slot-value pairs for each intent:

A = {Ik, (sk,1, vk,1), ..., (sk,Pk
, vk,Pk

)}Kk=1 (4.23)

where the dialogue intent Ik indicates different types of system actions and the slot-value

pairs {(sk,i, vk,i)}Pk
i=1 shows the category names and their content information to be expressed

in the response. For example, inform (area = west; choice = many), where inform is the

dialogue intent, area and choice are the slot names, west and many are the slot values.

We define pθ(x | A) as the generation model that generates the response x in an

auto-regressive way conditioning on A:

pθ(x | A) =
T∏
t=1

pθ(xt | x1:t−1,A) (4.24)

where θ is the model parameter. A typical way of learning θ is by maximizing the log-

likelihood of the conditional probabilities in Equation 4.24 over the original training set

DL:

Lθ(DL) =

|DL|∑
n=1

Tn∑
t=1

log pθ(xt,n | x1:t−1,n,An) (4.25)

In the few-shot MR-to-Text generation setting, the size of training data |DL| is a small

number (e.g. ≤ 50).

SA2 Self-training Algorithm Overview. The SA2 self-training algorithm starts from a

warm-up stage, where a base generation model is trained on the original training set DL for

68

Algorithm 3: SA2 Self-training Algorithm
Input: The original training set DL, in-domain MRs DU , base generation model pθ,
number of self-training iterations S

Output: A fine-tuned generation model pθ
1: Load pθ and train pθ on DL

2: for s = 1, . . . , S do
3: Initialize DA = ∅ and DL′ = ∅
4: // Synthetic Text Annotation
5: for An ∈ DU do
6: Generate xn ∼ pθ(xn | An)
7: DA ∪ {(xn,An)}
8: end for
9: // Data Selection

10: Compute threshold µ̄ and s̄ using Eq. (4.28)
11: for (xn,An) ∈ DA do
12: if E[pθ] > µ̄ and V ar[pθ] > s̄ then
13: // Response Refinement
14: Generate x̄n using Eq.(4.29)
15: DL′ ∪ {(x̄n,An)}
16: end if
17: end for
18: Fine-tune pθ on DL ∪ DL′

19: end for

a few epochs. Then, in each iteration of self-training, the algorithm consists of four steps:

synthetic text annotation, uncertainty-based data selection, response refinement, and model

fine-tuning.

The synthetic text annotation uses the current model to generate synthetic text responses

based on input MRs and constructs a preliminary version of self-augmented data DA. Next,

the data selection uses the prediction uncertainty of the current model on the synthetic

responses to select informative MRs in DA, which is the first phase of self-augmentation.

Given the selected MRs, the second phase of self-augmentation is to generate more accurate

text responses via aggregating multiple latent representations from model parameters with

different dropout masks, which produces the pseudo-labeled data DL′ . Finally, the current

model is fine-tuned with both the original training set DL and the pseudo-labeled dataset

DL′ .

69

The detailed procedure of SA2 self-training algorithm is demonstrated in algorithm 3.

We choose the pre-trained language model SC-GPT [19] as our base generation model pθ.

We collect in-domain MRs from the training set of existing task-oriented dialogue datasets,

such as MultiWOZ corpus [210] and Schema-Guided Dialog corpus [190]. We use nucleus

sampling [211] with the threshold p = 0.9 to generate the output tokens for both synthetic

text annotation and refined response generation.

Phase I: Uncertainty-based Data Selection. We hypothesize that the generation model

is likely to gain little by learning from the data, if (1) it finds “too noisy”, which may be

out-of-domain or invalid; (2) it finds “too certain”, which may be uninformative to learn

from. Therefore, we propose to select the data which the current model finds “less noisy” and

“more uncertain”. Intuitively, data with “less noise” may provide helpful domain-specific

knowledge to the model, meanwhile “more uncertainty” indicates the model has not learned

well from the data yet, thus may produce incoherent responses.

We use the Monte Carlo Dropout method [206, 212] to estimate the “noise” and “uncer-

tainty” of each self-augmented data regarding the current model. For each self-augmented

data (x,A), we enable dropouts before every hidden layer in the generation model, per-

form M forward passes through the model, and get M i.i.d. model likelihood estimations

{pθi(x | A)}Mi=1. These M outputs are empirical samples of an approximated posterior dis-

tribution p(x | A) [207]. Then, we compute the predictive mean E[pθ] of the approximated

distribution p(x | A) and predictive variance V ar[pθ] of the empirical samples:

E[pθ] ≈
1

M

M∑
i=1

pθi(x | A) (4.26)

V ar[pθ] ≈
1

M

M∑
i=1

(pθi(x | A)− E[pθ])2 (4.27)

A low predictive mean E[pθ] means the model finds the current data “too noisy”, because it

has a low likelihood estimation of the current data, which indicates the current data may be

70

out-of-domain or invalid; while a low predictive variance V ar[pθ] means the model finds the

current data “too certain”, because all empirical samples have a similar likelihood estimation

of the current data, which indicates the current data may be uninformative for the model to

learn from. Therefore, we consider self-augmented data with both high predictive means

and variances are examples of interest.

The next question is what are the thresholds for high predictive means and variances?

First, we calculate the corpus-level predictive mean µA of the self-augmented DA, and filter

out the augmented data which have a lower predictive mean than µA, because we observe

that such data are often very noisy and contain many redundant slots. Then, we combine

and sort the original training data DL and the remaining self-augmented data, and further

remove the outliers (i.e. first and last 1% of data points). Assume that the collection of

predictive mean scores E[pθ] and variance scores V ar[pθ] of the selected data follow a

Gaussian distribution respectively, then the data selection threshold is defined as

µ̄ =
1

N

N∑
n=1

pn, s̄ =
1

N

N∑
n=1

vn (4.28)

where pn is the predictive mean and vn is the predictive variance of the n-th selected data,

N is the total number of original training data and remaining self-augmented data (after

removing the outliers).

We select the self-augmented data with high E[pθ] (above the average predictive mean

µ̄) and high V ar[pθ] (above the average predictive variance s̄). We also explored other data

selection strategies (detailed in §4.2.3), and find that selecting high E[pθ] and high V ar[pθ]

data empirically brings more performance improvements than other strategies.

Phase II: Response Refinement. Since the large generation model is trained on a small

training set, it is very likely to overfit and produce high-biased latent representations that

cause the generation of inaccurate text responses. To reduce the risk of producing high-

biased latent representations, we adopt dropout noise proposed in contrastive learning [209]

71

into the latent representation during inference.

Specifically, for each selected input MR from Phase I, we enable the dropout masks of

the model (placed on fully connected layers as well as attention probabilities) at the decoding

timestamp t, and compute R latent representations {ht
θi
}Ri=1, then take an average over all

latent representations to obtain the final latent representation for the current probability

distribution:

p(x̄t | x̄1:t−1,A) = softmax(
1

R

R∑
i=1

ht
θi
) (4.29)

Then, we generate the text response x̄ according to the probability distribution p(x̄t |

x̄1:t−1,A) and add the data (x̄,A) into the pseudo-labeled dataset DL′ . We fine-tune the

generation model on both the original training set DL and the pseudo-labeled dataset DL′ .

Fine-tuning the refined responses is shown to improve the model’s final performances

(detailed in §4.2.3).

4.2.2 Experimental Setup

We conduct evaluation experiments to answer three research questions: (1) Is SA2 self-

training algorithm a helpful method to deal with the few-shot dialogue generation problem?

(2) Can our data selection strategy effectively filter out the “too noisy” and “uninformative”

augmented data? (3) Can our response refinement method help improve the performance of

the NLG model?

Benchmark Datasets. We evaluate our method on two few-shot dialogue generation

benchmark datasets: FEWSHOTWOZ [19] and FEWSHOTSGD [63]. FEWSHOTWOZ has

7 domains and an average number of 50 training examples per domain. FEWSHOTSGD

has 16 domains and an average number of 35 training examples per domain. However,

both datasets do not provide the development sets for hyperparameter tuning. To create the

standard training/dev/test data splits, we randomly sampled 10% data from the original test

set as the dev set, and kept the training set unchanged. For fair comparisons across different

72

Restaurant Laptop Hotel TV Attraction Train Taxi

Training Pairs 51 51 51 51 50 50 40
Dev Pairs 12 137 7 68 34 65 4
Test Pairs 117 1242 71 612 306 592 43
Unlabeled Data 10,000 10,000 10,000 7,035 10,000 10,000 6,527

Table 4.8: Data statistics for the original manual-labeled data DL and the unlabeled data
DU on FEWSHOTWOZ.

Restaurants Hotels Flights Buses Events Rentalcars Services Ridesharing

Training Pairs 50 50 50 50 50 50 50 48
Dev Pairs 961 401 272 427 836 287 793 819
Test Pairs 8,657 3,615 2,453 3,845 7,526 2,592 7,146 7,378
Unlabeled Data 10,000 10,000 10,000 10,000 10,000 10,000 10,000 8,259

Movies Calendar Banks Music Homes Media Travel Weather

Training Pairs 30 25 23 21 21 14 14 11
Dev Pairs 737 532 332 732 563 568 528 193
Test Pairs 6,634 4,793 2,988 6,594 5,073 5,121 4,753 1,742
Unlabeled Data 7,604 5,355 3,343 7,347 5,657 5,703 5,299 1,947

Table 4.9: Data statistics for the original manual-labeled data DL and the unlabeled data
DU on FEWSHOTSGD.

methods, we evaluated all methods on the new split test set. The detailed data statistics of

FEWSHOTWOZ is presented in Table 4.8. The detailed data statistics of FEWSHOTSGD is

demonstrated in Table 4.9.

Unlabeled Data. The two benchmark datasets are sampled and constructed based on the

three datasets: RNNLG [192], MultiWOZ [210] and SGD [213]. To ensure the input MRs

are within the same domain of the original training set DL, we collect all augmented MRs

from the training set of RNNLG, MultiWOZ, and SGD. For FEWSHOTWOZ, we collect an

average number of 9,080 unlabeled MRs per domain. For FEWSHOTSGD, we collect an

average number of 7,532 unlabeled MRs per domain.

Evaluation Metrics. We follow the prior works [172, 19, 63] and use BLEU score and

Slot Error Rate (ERR) for automatic evaluation. ERR is computed by exactly matching the

slot tokens in the generated responses as ERR = (p+ q)/N , where N is the total number

of slots in the MR, and p,q is the number of missing and redundant slots in the generated

73

response. For each MR, we generate five responses and select the top one with the lowest

ERR as the final output. Note that we only compute ERR on the FEWSHOTWOZ dataset,

because the FEWSHOTSGD dataset does not release its evaluation script.

We also follow the prior works [19, 191] and use Amazon Mechanical Turk to conduct

the human evaluation. We recruited master-level workers with over 90% approval rate to

compare and rate the responses generated by different methods and the the ground truth

response. The workers are asked to rate the response on a scale of 1 (bad) to 3 (good) in

terms of informativeness and naturalness. Informativeness indicates how much information

from the input MR has been covered in the response, and naturalness measures whether the

response looks coherent, grammatical, and natural. Each data pair is rated by 3 workers. We

randomly sample 120 examples from each dataset, and collect a total of 2880 ratings.

Competitive Baselines. We compare our method with four baselines. (1) SC-GPT [19] is

the state-of-the-art pre-trained language model for NLG in task-oriented dialogue systems,

which is further fine-tuned on each specific domain using the original training data DL; (2)

AUG-NLG [63] leverages the pre-trained SC-GPT model, first trains it on its automatically

retrieved augmented data, then fine-tunes it on each few-shot domain; (3) ST-ALL is the

traditional self-training baseline which learns from all self-augmented data without any data

selection and text refinement; (4) ST-NLL adopts the traditional self-training baseline but

learns from the self-augmented data which has a lower than the average reconstruction loss

according to the current generation model; (5) ST-SA2 is our method, in addition to our

proposed data selection strategy and response refinement method, we apply a rule-based

parser [64] to heuristically filter out invalid responses that do not match the slot-value pairs

in the input MRs on the FEWSHOTWOZ dataset in order to achieve lower ERR.

74

Restaurant Laptop Hotel TV Attraction Train Taxi
BLEU ERR BLEU ERR BLEU ERR BLEU ERR BLEU ERR BLEU ERR BLEU ERR

SC-GPT 34.62 1.95 33.31 3.01 40.74 3.55 33.72 1.72 23.77 1.40 25.09 1.90 18.22 0.00
AUG-NLG 29.94 2.28 30.02 4.29 38.30 4.73 32.41 3.34 21.76 3.95 24.06 3.81 17.99 0.00

ST-ALL 33.84 6.51 34.40 4.28 39.68 1.78 34.88 1.76 24.32 3.19 24.47 3.87 17.89 0.00
ST-NLL 33.07 9.44 34.99 3.37 41.40 5.92 35.98 2.26 24.87 4.85 23.53 5.27 20.21 0.00
ST-SA2 (ours) 36.48 2.60 35.42 2.04 42.63 1.77 36.39 1.63 25.63 1.40 25.34 1.62 20.95 0.00

Table 4.10: Automatic evaluation results on the test set of FEWSHOTWOZ (BLEU↑, ERR↓).
The results of AUG-NLG come from the data and code released by [63], the other results
come from our implementation.

4.2.3 Result Analysis

On FEWSHOTWOZ. The automatic evaluation results in Table 4.10 show that ST-SA2

outperforms other baselines across all domains in both BLEU and ERR. Besides, we observe

that SC-GPT is a strong baseline, and ST-NLL can bring more performance improvements

than AUG-NLG and ST-ALL in 5 out of 7 domains, which shows the effectiveness of data

selection in self-training. The human evaluation results in Table 4.13 indicate that ST-SA2

can generate more natural and informative responses than SC-GPT and ST-NLL.

On FEWSHOTSGD. The automatic evaluation results in Table 4.11 illustrates that ST-

SA2 outperforms other baselines in 14 out of 16 domains in BLEU score. Additionally,

we find that ST-ALL generally outperforms AUG-NLG, which indicates that additional pre-

training on the retrieved task-relevant data does not necessarily help the model generate

better responses. In contrast, the self-training method ST-ALL generally improves the

model performances in 10 out of 16 domains, which shows the benefit of learning from

self-augmented data. The human evaluation results in Table 4.12 demonstrate that ST-SA2

is capable of generating more informative and natural responses than SC-GPT and ST-ALL.

Ablation Study on Response Refinement. To validate the effectiveness of the proposed

response refinement method, we conduct an ablation study on ST-SA2 by removing the

representation aggregation in Equation 4.29 and the rule-based filter [64] respectively. We

75

Restaurants Hotels Flights Buses Events Rentalcars Services Ridesharing

SC-GPT 19.86 22.21 26.63 19.87 26.41 20.21 27.32 22.03
AUG-NLG 19.73 12.38 23.20 16.81 19.62 16.64 20.18 17.20

ST-ALL 19.71 21.45 26.90 19.76 25.68 20.22 27.59 21.14
ST-NLL 14.52 21.29 27.59 20.27 25.81 20.07 26.54 19.84
ST-SA2 (ours) 20.42 22.90 27.12 21.16 25.32 20.70 28.34 23.28

Movies Calendar Banks Music Homes Media Travel Weather

SC-GPT 25.71 23.53 25.99 24.01 24.90 26.24 24.97 27.89
AUG-NLG 16.93 13.60 12.89 9.56 18.06 10.51 15.77 10.74

ST-ALL 26.19 24.86 25.03 24.62 24.97 26.56 25.28 28.06
ST-NLL 23.98 23.67 25.70 18.88 24.82 26.99 24.95 28.64
ST-SA2 (ours) 28.95 25.24 28.14 27.23 25.03 28.76 25.34 29.27

Table 4.11: Automatic evaluation results of BLEU scores on the test set of FEWSHOTSGD.
The results of AUG-NLG come from the data and code released by [63], the other results
come from our implementation.

Informativeness ↑ Naturalness ↑

SC-GPT 2.53 2.31
ST-ALL 2.55 2.40
ST-SA2 (ours) 2.69 2.42

Human 2.69 2.56

Table 4.12: Human evaluation results on
the sampled test set of FEWSHOTSGD.

Informativeness ↑ Naturalness ↑

SC-GPT 2.62 2.32
ST-NLL 2.69 2.31
ST-SA2 (ours) 2.69 2.41

Human 2.71 2.49

Table 4.13: Human evaluation results on
the sampled test set of FEWSHOTWOZ.

observe from Table 4.14 that removing the representation aggregation during response

refinement will lead to degraded performances in both BLEU and ERR across all domains,

which indicates the importance of obtaining lower-biased latent representations during

self-augmentation. Besides, we find that removing the rule-based filter will lead to worse

performances in ERR across all domains, which reveals that the model is still likely to

generate incorrect responses, and those incorrect pseudo-labeled data will cause the model

to learn irrelevant patterns and perform worse on the unseen test set.

Analysis of Other Components in SA2 Self-training Algorithm. We provide additional

empirical analysis on other components that will affect the performance of the SA2 self-

training algorithm, in order to gain more insights about the self-training technique in solving

the few-shot NLG problem.

76

Restaurant Laptop Hotel TV Attraction Train Taxi
BLEU ERR BLEU ERR BLEU ERR BLEU ERR BLEU ERR BLEU ERR BLEU ERR

ST-SA2 (ours) 36.48 2.60 35.42 2.04 42.63 1.77 36.39 1.63 25.63 1.40 25.34 1.62 20.95 0.00
w/o aggregation 35.30 3.25 34.30 3.57 39.08 2.96 36.24 5.25 24.44 2.55 24.15 2.01 20.17 1.69
w/o filter 36.17 3.90 34.19 5.85 39.52 3.55 35.45 2.76 25.51 2.42 24.89 2.24 20.60 0.00

Table 4.14: Ablation study results on the test set of FEWSHOTWOZ (BLEU↑, ERR↓).

E[pθ] V ar[pθ] BLEU ↑ ERR ↓

1 low low 32.72 1.62
2 low high 32.24 1.62
3 high low 33.18 2.28
4 high high 36.48 2.60

Table 4.15: Different data selection strat-
egy comparison of ST-SA2 in the Restau-
rant domain on the test set of FEWSHOT-
WOZ.

Base Model BLEU ↑ ERR ↓

1 GPT2 24.22 13.68
2 DialoGPT 14.77 20.84
3 SC-GPT 36.48 2.60

Table 4.16: Different base generation
model comparison of ST-SA2 in the
Restaurant domain on the test set of
FEWSHOTWOZ.

Data Selection Strategies: Table 4.15 compares different data selection strategies of

ST-SA2 in the restaurant domain of FEWSHOTWOZ. We find that selecting low E[pθ] data

will lead to degraded performance in BLEU score, because low E[pθ] data often contains

more redundant tokens compared with the ground-truth response. Although low E[pθ] data

gives lower ERR, the generated texts are not very natural and fluent. Selecting high E[pθ]

and low V ar[pθ] data will also lead to degraded performance in the BLEU score, which is

probably because the model overfits on the uninformative data.

Base Generation Models: For the base generation model selection, we compare dif-

ferent pre-trained language models, including GPT2 [168], DialoGPT [169], and SC-GPT.

GPT2 is an open-end text generation model, and DialoGPT is an open-domain dialogue

generation model. In contrast, SC-GPT is trained on around 400K MR-to-Text pairs in

task-oriented dialogue generation datasets. As can be seen in Table 4.16, SC-GPT gives

much better performance than GPT2 and DialoGPT, which indicates that selecting a suitable

base generation model is critical for self-training.

Training Hyper-parameters: Table 4.17 compares different training hyper-parameters

of ST-SA2 in the attraction domain of FEWSHOTWOZ dataset. We observe that the learning

77

Epoch LR BLEUdev ↑ BLEUtest ↑ ERRtest ↓

1 10 1e-6 23.22 24.75 2.93
2 20 1e-6 22.96 24.63 2.04
3 20 5e-7 23.43 25.63 1.40
4 20 5e-8 23.29 24.82 1.91

Table 4.17: Different training hyper-parameters comparison of ST-SA2 in the Attraction
domain of FEWSHOTWOZ, where Epoch is the number of training epochs within a self-
training iteration, and LR is the initial learning rate at the beginning of each training epoch.
We select the best model which has the highest BLEUdev.

rate plays an essential role in training NLG models under the low-data setting. If the learning

rate is too large, the development loss may not converge because the training set is too small;

if the learning rate is too small, the model may get stuck into the local optimal. Finally, we

find a good combination of learning rate and training epoch can help the model achieve the

best performance, but the specific values vary across different domains.

4.3 Summary

In this chapter, we design data-efficient text generation methods to better adapt pre-trained

LLMs to domain-specific NLG tasks.

In Section 4.1, we propose a new method for controlled dialogue generation: adding a

small side network to incorporate useful control signals into the pre-trained language models.

We design control attribute loss to teach the side network learning useful control signals.

Empirical experiments show that our method is effective even with 100 ∼ 1000 training

samples. Besides, our side network supports diverse forms of attribute control and can be

flexibly applied to any pre-trained language models, which extends its possible application

to other general controlled text generation tasks.

In Section 4.2, we present a two-phase self-augmentation self-training algorithm to

deal with the few-shot dialogue generation problem in task-oriented dialogue systems.

We propose to select informative input MRs based on the model’s prediction uncertainty,

and improve the pseudo-response generation by aggregating randomly perturbed latent

78

representations. Empirical experiments on two few-shot NLG datasets show that our

proposed method achieves the best performance among other baselines in both automatic

and human evaluations.

79

CHAPTER 5

USER INTENTION MODELING

Accurately recognizing user intentions is important for controlling the model’s responses,

ensuring that they align closely with users’ specific needs. This alignment will facilitate

more effective and satisfying interactions between users and the system, enhancing user

experience and engagement. In Section 5.1, I propose to model the communicative intents in

open-domain conversations from the sentence-level to segment-level as the dialog flow for

multi-turn dialogue evaluation. In Section 5.2, I design a novel edit intention taxonomy to

better understand human editing behaviors, and use the edit intention labels to guide LLMs

generating text revisions that better align with human preferences.

5.1 Identifying Segment Act Flows for Consensus-Based Dialogue Evaluation

Dialogue evaluation plays a crucial role in the recent advancement of dialogue research.

While human evaluation is often considered a universal and reliable method by the commu-

nity [214], automatic dialogue evaluation metrics draw growing attention as they can assess

dialogues with faster speed and lower cost [215, 216, 217].

Traditional word-overlap metrics, like BLEU [218] and METEOR [166], lose some of

their effectiveness in the dialogue setting as reliable references are hard to obtain [219].

Recent works tackle this problem by leveraging more sophisticated architectures [220, 221]

and harnessing the power of large models [217]. Although these recent metrics claim to show

some progress towards higher correlation with humans, the gap between automatic metrics

and human evaluation is still noticeable [222]. Automatic open-domain dialogue evaluation

is still an open question, and extensive efforts have been made to improve performance from

different angles [223, 224, 225, 226].

Among those newly released metrics [220, 217, 221, 223, 215, 225, 226], hardly

80

Dialogue Section Segment Act Flow

Speaker1: How are you? May I have a cup of coffee? greeting , directive

Speaker2: Hmm. Certainly. What kind of coffee do you like?

We have espresso and latte.

backchannel- success ,
commissive , question ,

inform

Table 5.1: A snippet of an open-domain dialogue and its segment act flow. Each segment is
marked with the same color as its corresponding segment act label.

any explicitly employs dialog act, one of the pillars of dialogue study, in their methods.

Intuitively, introducing dialog act into open-domain dialogue evaluation should be beneficial:

a sequence of dialog acts distills the core function of each utterance and can potentially

reveal how speakers interact in general. However, directly using preexisting dialog act

definitions [73, 71] seems undesirable, as an utterance can contain several segments that

possess different conversational functions. We show our observation in Table 5.1. By

saying “Hmm. Certainly. What kind of coffee do you like? We have espresso and latte.”, the

participant first acknowledges the conversation with backchannel, then commits to finishing

the request by saying “Certainly”. Later, the speaker asks for a more concrete order and

offers all the options. In human conversations, it is common to have more than one function

for each utterance, which means using a single dialog act to express the core function of an

utterance inevitably suffers from information loss. To solve this issue, we extend the concept

of dialog act from the utterance level to the segment level. We name these segment-level

dialog act segment act and a sequence of segment acts a segment act flow.

One difficulty of using segment act for open-domain dialogue evaluation is the lack

of related data. Since there is no dataset for the segment act, we follow the ISO 24617-2

annotation criteria [227] and propose a simplified ISO-format segment act tagset. We

crowdsource large-scale segment act annotations on two popular open-domain dialogue

datasets: ConvAI2 [181] and DailyDialog [228]. We name our dataset ActDial.

Another challenge of incorporating segment act into open-domain dialogue evaluation

lies in finding a suitable way to assess dialogues with the segment act feature. Modeling

81

segment act flow is not trivial. On the one hand, dialogues have different numbers of turns

and, thus, have varying lengths of segment act sequences. On the other hand, defining and

finding the ground-truth segment act flow for a dialogue is almost infeasible, discouraging

the development of any reference-based methods. To overcome this challenge, we design the

first consensus-based reference-free open-domain dialogue evaluation framework, FlowEval.

For a dialogue to be evaluated, our FlowEval first obtains the segment act flow, e.g., from

a trained classifier. Then, we harvest segment act features, from a dedicated BERT-like [184]

masked segment act model, and content features, from RoBERTa-large [229]. We retrieve

pseudo-references from the training set, according to the segment act features as well as

content features. Last, we evaluate the dialogue with the consensus of the pseudo-references,

fusing metrics from both segment act and word-overlap perspectives. The essence of our

consensus-based framework lies in retrieving pseudo-references and using the consensus of

pseudo-references to assess a new dialogue. This process can be regarded as reference-free,

since no additional dialogue evaluation label is required. Not limited to segment act features,

our proposed consensus-based framework is compatible with a wide range of features and

metrics, such as sentiment features, engagingness features, etc.

Extensive experiments are carried out against the state-of-the-art baselines on Control-

lable Dialogue dataset [230], FED dataset [217], and DSTC9 dataset [231]. The result

supports that segment act flow is effective in dialogue evaluation: our consensus-based

method achieves the best or comparable correlation with human evaluation. Additionally,

segment act flow can bring complementary information to metrics that heavily focus on the

raw text of dialogues.

In summary, the contributions of this work are three-fold:

1. We propose to model the segment level act as the dialog flow information for open-

domain dialogue evaluation.

2. We are the first to propose a consensus-based framework for open-domain dialogue

evaluation. Our studies show that the consensus approach can work efficiently even

82

when the size of the search set, i.e., the number of dialogues in the training set,

is around ten thousand. This attainable size shows the promise of our consensus

approach for dialogue evaluation and other natural language evaluation tasks.

3. Our method can reach the best or comparable performance when compared with state-

of-the-art baselines. Additional experiments are conducted to examine the detailed

properties of our method and consensus process.

5.1.1 ActDial: A Segment Act Dataset on Open-Domain Dialogues

We propose the new concept of segment act, extracting the core function of each segment

in an utterance. We then crowdsource a large-scale open-domain dialogue dataset with our

proposed segment act labels, called ActDial.

Segment Act Tagset. We design an open-domain segment act tagset based on the ISO

24617-2 annotation criteria [227]. We define a segment act as a functional label that ex-

presses the communicative goal of participants in a conversation, which is irrelevant to

syntactic or sentiment details. Based on this definition, we conduct combination operations,

like merging Choice-Question, Check Question, etc. into question, on the original 56 labels

proposed by [227] and eventually obtain 11 labels as our tagset. These combination opera-

tions guarantee robust coverage of diverse dialogue expressions and mutual exclusiveness

between different segment act labels. From our later experiments, these 11 labels capture key

information from dialogues while remaining simple enough to enable large-scale accurate

annotations.

For the formal definitions and examples of segment act, please refer to Table 5.2. The

eleven segment act labels cover three major communication activities: (i) general task,

which includes information-transfer activities and action-discussion activities; (ii) social

obligation management, which includes typical social conventions in communication; and

(iii) simple feedback, which includes simple non-informative feedback about the processing

83

General
Dimension

Segment Act Definition Examples Distribution

General
Task

inform The sender makes the addressee
know some information which he
assumes to be correct.

“The train is leaving.”,
“The meeting starts in 5
minutes.”

65.702%

question The sender asks the addressee to
provide some information which he
assumes the addressee knows.

“What time is it?”,
“Where is the nearest
bank?”

16.529%

directive The sender asks the addressee to
perform an action.

“Please don’t do this
ever again.”

2.880%

commissive The sender considers to perform
an action which he believes would
be in addressee’s interest, or he
has been requested/suggested to per-
form by the addressee.

“I will not do that any
more.”,
“May I offer you an up-
grade?”

0.517%

Social
Obligation
Management

greeting The speakers inform the presence
of each other.

“how are you?”,
“I’m fine.”

6.023%

goodbye The speakers inform the end of the
dialog.

“Bye”, “See you.” 0.172%

apology The speakers express or mitigate
the feelings of regret.

“Sorry.”, “No problem.” 0.542%

thanking The speakers express or mitigate
the feelings of gratitude.

“Thanks.”,
“You are welcome.”

1.049%

Simple
Feedback

backchannel-
success

The speakers succeed in processing
the previous dialog.

“Okay”, “Uh-huh” 6.543%

backchannel-
failure

The speakers fail in processing the
previous dialog.

“Sorry?”, “Excuse me?” 0.030%

check-
understanding

The sender wants to check whether
the addressee succeed in processing
the previous dialog.

“Do you get what I just
said?”

0.013%

Table 5.2: Our ISO-format open-domain segment act tagset: the definition, examples, and
distribution

of previous utterances. We segmented all the dialogue utterances using the NLTK sentence

punctuation tokenizer [232] that mainly consists of a set of rule-based regular expressions

on punctuation.

Datasets and Segmentation. We crowdsourced segment act annotations on ConvAI2

[181] and DailyDialog [228]. We crowdsourced segment act annotations from annotators

whose native language is Mandarin Chinese (zh-cmn), but more importantly, they are

proficient in English (en-US). More than 50 annotators participated after rigorous training

to ensure data quality. Each segment is annotated by three different annotators. If the initial

three annotations are all different, further round(s) of annotation on this segment would be

84

conducted until it got a majority vote (at least two annotations are the same).

The ConvAI2 dataset is based on the PersonaChat dataset [233], where all dialogues

are constructed by asking two crowd-workers to chat with each other based on randomly

assigned persona profiles. ConvAI2 is a widely-used benchmark for many state-of-the-art

dialogue systems [234, 187, 235, 170].

The DailyDialog dataset [228] is constructed by crawling raw data from various English-

learning websites. Note that DailyDialog already has 4 dialog act labels: question, inform,

directive, and commissive. Our finer-grained annotation which takes social chit-chat and

simple feedback into account can better cover diverse dialogue scenarios and provide extra

information.

Following our definition of segment acts, we split each utterance into multiple segments

using NLTK [236] sentence punctuation tokenizer [232]. The resulting segments will have

their own segment act labels during annotation. Each segment is annotated by three different

crowd-workers. With our special tagset design and the segmentation process, annotators

can easily reach substantial agreement and deliver a high-quality dataset: Fleiss’ kappa

[237] achieves 0.754 for DailyDialog and 0.790 for ConvAI2. Note that the majority of the

segments are labeled as question and inform. This is common in dialog act datasets [73, 78]

as most of the dialogues consist of asking for information and stating facts or opinions.

Dataset Statistics and Distributions. For the ConvAI2 dataset, we collected 481,937

segment acts on the training set, and 29,232 segment acts on the validation set. Since the

testing set is not publicly available, we did not annotate it.

For the DailyDialog dataset, we gathered 178,604 segment acts on the training set,

16,500 segment acts on the validation set, and 16,028 segment acts on the testing set.

Note that even though ConvAI2 and DailyDialog split their data for training, validation,

and testing purposes, it is not always necessary to mechanically follow the splits. Our

annotations on ConvAI2 and DailyDialog can be used as a unity, ActDial, depending on the

85

research problems.

Table 5.2 shows the distribution of all segment acts on our dataset. The segment act

distribution is unbalanced. Specifically, the distribution is highly skewed to inform and

question, which is not surprising because ConvAI2 and DailyDialog are chitchat datasets

and the majority of communication activities are exchanging information. In addition, few

written dialogues between two strangers, the setting of ConvAI2 and DailyDialog, involve

an apology or encounter communicative difficulties, which results in the rare occurrences

of apology, backchennel-failure, and check-understanding segment acts.

However, it is still essential to include these segment acts as they take place more commonly

in spoken dialogues in the real world.

5.1.2 FlowEval: A Segment-Act-Flow Aware Evaluation Metric

In this section, we describe the details of our proposed dialogue evaluation framework,

FlowEval. FlowEval is implemented in three stages: segment act harvesting, retrieval, and

assessment.

Segment Act Harvesting. In order to utilize the segment act flow, we first need to harvest

the segment act labels for an unseen raw dialogue U . In our experiments unless specified,

the segment act labels are acquired by a text classification model, based on RoBERTa-large

[229] and fine-tuned on ActDial. The accuracy of this classifier is 90% on unseen data.

In the end, we will have the annotated segment act flow AU = {a1, · · · , ai, · · · , an} for

the dialogue U , where ai is the segment act label for i-th segment and n is the number of

segments in U .

Retrieval. For the retrieval process, FlowEval retrieves two sets of dialogues based on

segment act features and content features respectively. The search space for FlowEval

is our ActDial dataset and the unseen raw dialogue U serves as a query. FlowEval first

extracts segment act features from a masked segment act model, and retrieves ka nearest

86

Figure 5.1: Extract segment act and content features. Retrieve closest human dialogues
from ActDial dataset.

neighbors for U based on our defined similarity function. Then, FlowEval extracts content

features from a RoBERTa-large model, and retrieves kc nearest neighbours for U based on

another similarity function. The final outcome of this retrieval stage is k = ka + kc relevant

dialogues for the unseen dialogue U . Figure 5.1 illustrates this process in detail.

Segment Act Flow Features. To extract segment act flow features, we treat every segment

act label as a word and a segment act flow of a dialogue as a sequence. We then train a

masked language model [184] called ActBERT on all segment act flows in our ActDial

datasets. ActBERT has an accuracy of 81% for predicting the masked segment act on unseen

data, which is significantly higher than guessing the majority segment act label (67%).

This means that our ActBERT indeed captures reliable features from the segment act flow.

ActBERT will be used to extract segment act features for any dialogue that has segment act

flow.

Given a dialogue D, we first pass D’s segment act flow AD into ActBERT. The output

of h-th intermediate layer of ActBERT, Hh
D ∈ Rn×d, will be chosen, where h is a hyper-

parameter, n is the number of segments in D and d is the hidden size of ActBERT. Hh
D is

then max-pooled along the n dimension to construct a fixed length vector H̄h
D ∈ Rd as the

segment act feature of D.

We further employ TF-IDF features to constrain the retrieved dialogues to have a similar

87

topic as U . We collect the word count statistics from our ActDial dataset and compute the

TF-IDF feature vector TD ∈ Rv for any dialogue D, where v is the vocabulary size.

Having the feature set {H̄h
U , TU} of U and {H̄h

R, TR} of a human dialogue R in ActDial,

we define an segment-act-based similarity metric Sa to retrieve ka nearest neighbors {Ri}ka :

Sa(U,R) = (1 + cos(H̄h
U , H̄

h
R))(1 + cos(TU , TR)) (5.1)

where cos is the cosine similarity. Sa in Eq. 5.1 will only score high if R has a segment act

flow as well as a topic close to U .

Content Features. Retrieval with segment act features only might miss dialogues that dis-

cussed similar contents as U but speakers communicated in a different way to U . Therefore,

we retrieve from ActDial again but using features with regard to the content of U .

We use RoBERTa-large [229], a pre-trained language model, to extract the content

feature of any dialogue D. We first feed the raw text of D into RoBERTa and take the

l-th layer representation Ll
D ∈ Rm×d of RoBERTa, where l is a hyper-parameter, m is the

number of tokens in D and d is the hidden size of RoBERTa. Ll
D is then max-pooled along

the m dimension to obtain a fixed-length content feature vector L̄l
D ∈ Rd for D. Having

the content feature Ll
U of U and Ll

R of R in ActDial, we define a content-based similarity

metric Sc for the second-round retrieval to retrieve kc nearest neighbors {Ri}kc:

Sc(U,R) = cos(Ll
U , L

l
R) (5.2)

Sc in Eq. 5.2 will output a high score if R’s content is closed to U . The final retrieved set of

dialogues will be {Ri}k = {Ri}ka
⋃
{Ri}kc .

Assessment. We define a metric to find the closest R∗ ∈ {Ri}k to U by treating this small

retrieved set {Ri}k as pseudo-references. The distance between R∗ and U will be the final

88

score of U . Concretely, we have the following scoring function F :

F (U) = max
R∈{Ri}k

wF a(U,R) + (1− w)F c(U,R) (5.3)

F a(U,R) = Sa(U,R) · BLEU(AU , AR) (5.4)

F c(U,R) = BERTScore(U,R) (5.5)

where w is a hyper-parameter between 0 and 1. Eq. 5.3 assess U from two aspects: F a,

computed by Eq. 5.4, indicates whether speakers in U interact naturally and is evaluated

by ActBERT in Eq. 5.1 and BLEU score [218] of the raw segment act flow AU ; F c, on the

other hand, measures how natural sentences in U are using BERTScore [238] in Eq. 5.5.

5.1.3 Experimental Setup

In this section, we introduce evaluation datasets, baseline evaluation methods, and detailed

experimental setups.

Evaluation Datasets. We evaluate the effectiveness of our metric on three benchmark

datasets.

1. Controllable Dialogue Dataset contains the human-to-bot conversation data collected

by [230]. These conversations are based on the ConvAI2 dataset [181]. We extend the

original dataset by crowdsourcing segment act labels and human evaluation scores.

There are 278 dialogues coming from 3 generative models. 28 dialogues are sampled

randomly to form a validation set for hyperparameter tuning, while the rest make up

the test set.

2. FED Dataset [217] contains 125 human-to-bot conversations coming from three

systems. We take the mean of the 5 overall scores for each dialogue as the human

89

evaluation score in our experiments. We annotate all the segment act labels using the

trained classifier described in Section 5.1.2.

3. DSTC9 Dataset [231] contains 2200 human-to-bot conversations from eleven chat-

bots. We take the mean of the 3 human ratings as the final score. All the segment act

labels are predicted by a trained classifier.

Human Evaluation for Controllable Dialogue. We collected human judgments from

Amazon Mechanical Turk (AMT). The crowd-workers are provided with the full multi-turn

conversation for evaluation. We ask crowd-workers to evaluate the relevancy, avoiding con-

tradiction, avoiding repetition, persona consistency, and overall quality of the conversation.

The reason for designing the human evaluation on different aspects is that we assume a good

conversation between humans and a dialogue system should satisfy the following properties:

(1) generating relevant and non-repetitive responses (relevancy and avoiding repetition), (2)

memorizing the dialogue history and generating non-contradictory information (avoiding

contradiction), (3) maintaining a consistent persona/topic (persona/topic consistency), (4)

formulating a natural conversation (overall quality).

The first four aspects are formulated as binary-choice questions, and the overall quality is

formulated as a Likert question on a 1-5 scale, where higher is better. During evaluation, we

did not distinguish whether an utterance is generated by a human or by the dialogue model,

because we want the evaluation is about the full conversation, rather than just utterances

generated by the dialogue model.

To ensure better data quality, Turkers are selected by their job success rate and geo-

graphic location (only admits turkers from English-speaking countries). Before starting our

evaluation job, turkers must read through our detailed guidelines. For each dialogue, a turker

is asked to evaluate the dialogue from the following perspectives:

1. Irrelevant response (binary): Whether or not the speaker generates a response which

seems to come out of nowhere according to the conversation history. Binary score.

90

2. Contradictory information (binary): Whether or not the speaker generates a re-

sponse which contradicts common sense or what he just said in the previous conversa-

tion. Binary score.

3. Repetitive response (binary): Whether or not the speaker generates a response which

has the same meaning as his previous utterance(s). Binary score.

4. Inconsistent with persona (binary): Whether or not the speaker generates a response

which is not consistent with his persona profile. Only used if the dialogues-to-

evaluate follow ConvAI2 setting and are generated with personas. Binary score.

5. Topic shifts (binary): Whether or not the speaker generates a response which belongs

to a completely different topic compared with the previous conversation history. Only

used if the dialogues-to-evaluate follow the Daily Dialogue setting and are not

generated with personas. Binary score.

6. Overall score (1-5): An overall impression of the dialogue quality, not necessary to

have any relationship with the aspects above. The score is between 1 to 5 inclusive,

all integers. The higher the better.

The evaluation results are examined by ourselves. Incorrect annotation would be rejected

and re-evaluated by another turker. The final evaluation results are shown as Table 5.3.

Controllable Dialogue Dataset

RELEVANCY NO CONTRADICTION NO REPETITION CONSISTENCY OVERALL

Seq2Seq 0.7802 0.8791 0.3846 0.9010 3.4505
Seq2Seq + Repetition 0.8437 0.9062 0.7812 0.8541 3.6250
Seq2Seq + Specificity 0.8351 0.8681 0.8351 0.8681 3.8791

Table 5.3: Controllable Dialogue [230] evaluation results by AMT crowd-workers.

Baseline Methods. Our method mainly compares with the following competitive base-

lines.

91

1. FED metric [217], leveraging the ability of DialoGPT-large [239] and the use of

follow-up utterances, is an automatic and training-free evaluation method widely used

by the community [231].

2. DynaEval [220] adopts the graph convolutional network to model dialogues, where

the graph nodes are dialogue utterances and graph edges represent the relationships

between utterances. DynaEval emp and DynaEval daily denote two variants trained

on Empathetic Dialogues [183] and DailyDialog [228] respectively. DynaEval emp

reaches the best correlation on the FED dataset.

3. Flow score [221], considering the semantic influence of each utterance and modeling

the dynamic information flow in dialogues, becomes the best evaluation method on

the DSTC9 dataset.

4. BLEU [218] and BERTScore [238] are two popular reference-based metrics. The

performance of BLEU and BERTScore are tested on the Controllable Dialogue dataset

only, as finding suitable references is unfeasible on the FED and DSTC9 datasets.

5. FlowEval (our method) tune its hyperparameters on the validation set of the Con-

trollable Dialogue dataset and directly apply to the test set of Controllable Dialogue,

FED, and DSTC9. Besides, since the Controllable Dialogue dataset is constructed on

top of ConvAI2 [230], we only use the DailyDialog part of ActDial for all the training

and retrieval to prevent any data leakage.

Implementation of ActBERT. ActBERT follows the architecture of RoBERTa [229].

The vocabulary size is relatively small as it only contains 11 segment acts and other special

tokens. It has 4 hidden layers, 4 attention heads, and a hidden dimension size of 256.

Speaker information is included using different input token types. Similar to the masked

language model task, we use a masked segment act task during the training.

92

Metric Controllable Dialogue FED Dataset DSTC9 Dataset

Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

BLEU 0.132 0.136 0.104
N/A

BERTSCORE 0.282 0.214 0.162

CONSENSUS-
BERTSCORE

0.284 0.240 0.183 0.0874∗ -0.037∗ -0.023∗ 0.060 0.054 0.039

FED Metric -0.025∗ 0.010∗ 0.007∗ 0.134∗ 0.126∗ 0.088∗ 0.117 0.108 0.078
DynaEval daily 0.050∗ 0.051∗ 0.039∗ 0.390 0.396 0.278 0.084 0.085 0.061
DynaEval emp 0.026∗ -0.007∗ -0.005∗ 0.464 0.489 0.341 0.029∗ 0.046 0.033
Flow -0.065∗ -0.029∗ -0.020∗ -0.073∗ -0.003∗ -0.002∗ 0.154 0.148 0.106

FlowEval (Our) 0.301 0.256 0.193 0.246 0.212 0.152 0.088 0.096 0.070
FlowEval (Our) + SOTA 0.327 0.250 0.190 0.468 0.493 0.342 0.165 0.161 0.116
FED Metric + SOTA 0.032∗ 0.058∗ 0.042∗ 0.403 0.411 0.284 0.103 0.093 0.067
DynaEval + SOTA 0.117∗ 0.109∗ 0.084∗ N/A 0.054 0.059 0.042
Flow + SOTA 0.207 0.140 0.107 0.460 0.471 0.327 N/A

Table 5.4: Correlations between different metrics and human evaluation on Controllable
Dialogue (test set), FED and DSTC9 datasets. All values are statistically significant to
p < 0.05, unless that are marked by ∗. SOTA refers to the previous best performing methods
(except our FlowEval) in each dataset and is underlined.

Implementation of BLEU and BERTScore. Controllable Dialogue [230] are trained

on the ConvAI2 dataset whose setting is two participants talking about their own personas.

These unique characteristics make it feasible to find references for BLEU, BERTScore, or

other reference-based metrics. We take dialogues, from the testing set of ConvAI2, that have

the most overlapping personas as the references for a dialogue. Although not as convincing

as references in machine translation tasks, references obtained in this way prove to be helpful

to dialogue evaluation. Both BLEU and BERTScore reach relatively high correlations on

Controllable Dialogue. The smooth function of the BLEU score is NIST geometric sequence

smoothing [236]. BERTScore is calculated by using the package from its authors [238].

5.1.4 Result Analysis

The common practice to show the effectiveness of a dialogue evaluation metric is to calcu-

late the Pearson, Spearman’s, and Kendall correlation between human evaluation and the

automatic evaluation [217, 220, 221, 222], as shown in Table 5.4. From these results, the

following four conclusions can be drawn.

93

FlowEval Reaches Comparable Performance. Across three datasets, our FlowEval

achieves the best or comparable correlations with human evaluation. On the Controllable

Dialogue dataset, all baseline metrics fail to reach meaningful correlation, while FlowEval

becomes the top performer. On the other two datasets, the results of FlowEval are comparable

with most baselines, though the gap to the best method is obvious.

Ablation Study on Controllable Dialogues. We perform an ablation study on Control-

lable Dialogues and obtained positive results. This experiment is designed to reveal the

effectiveness of the segment act, so content-related information and features are excluded

from the whole process. Specifically, we remove the content feature and only used the

segment act flow feature during the retrieval (Section 5.1.2). We later assessed each dialogue

on this shrunk retrieval set. The Pearson, Spearman’s, and Kendall correlations in this

setting are 0.298, 0.252, and 0.189 respectively. These results decrease slightly from our full

version of FlowEval (0.301, 0.256, and 0.193) but remain higher than the previous SOTA

(0.282, 0.214, and 0.162). This ablation study strengthens our claim on the effectiveness of

segment acts and our consensus-based framework.

Automatic Evaluation Metrics Lack Transferability. We can observe that the best

method on one dataset becomes mediocre on the other datasets, including our FlowEval.

FlowEval outperforms all other methods on the Controllable Dialogue dataset, but can only

get to the second tier on the other two datasets. DynaEval, the best method on the FED

dataset, loses its advantage when tested on other datasets. The same story also happens for

the Flow score, a state-of-the-art metric in the DSTC9 dataset. This observation is consistent

with a study from previous work [222]. One reason for the brittleness of these methods is

that their calculations rely on large models. The data used to train these large models plays

a decisive role, as we can see from the performance difference between DynaEval emp and

DynaEval daily. In addition, FlowEval depends on the segment act labels, and these labels

on the FED dataset and DSTC9 dataset are annotated by a trained classifier. Even though

94

the classifier has relatively high accuracy (90%), it still injects some errors into the segment

act flow, which hinders the application of FlowEval on new datasets. These observations

indicate that how to construct a robust dialogue evaluation metric remains a problem for the

community.

FlowEval Can Provide Complementary Information to Other Methods. Similar to

[222], we test different combinations of metrics by directly averaging one metric with

the previous best metrics on the three datasets, which are BERTScore on the Controllable

Dialogue dataset, DynaEval emp on the FED dataset, and Flow score on DSTC9 dataset.

The last 4 rows of Table 5.4 show that FlowEval can consistently push the current correlation

ceiling to a new level the most, while many other combinations improve little or even hurt

performance. These results imply that segment act is an important missing aspect in dialogue

evaluation that is worth even further exploration in the future.

Our Consensus-Based Framework Shows Potential. In our consensus-based framework,

the retrieval step of FlowEval could find pseudo-references for other reference-based metrics

like BLEU [218] and BERTScore [238] and make them reference-free. Here we experiment

with BERTScore, as it is the best-performing reference-based metric on Controllable Di-

alogue. The reference-free form of BERTScore, called Consensus BERTScore, is similar

to our FlowEval, except that we do not employ segment act features in the retrieval step

and we exclude the segment act score, i.e., Eq. 5.4, in the assessment step. As shown in

the third row of Table 5.4, Consensus BERTScore slightly outperforms BERTScore in all

three correlations (0.284 vs. 0.282, 0.240 vs. 0.214, 0.183 vs. 0.162). This promising result

shows the potential of our consensus-based framework. It leads a new way to rethink the

usability of reference-based metrics in dialogue evaluation.

What Does Segment Act Bring to Dialogue Evaluation? Compared with semantic-

meaning-focused metrics, what does segment act bring to dialogue evaluation? We hypothe-

95

Metric 1 Metric 2 Pearson Spearman Kendall

FlowEval seg Human 0.191 0.151 0.113
BLEU Human 0.132 0.136 0.104
BERTScore Human 0.282 0.214 0.162

FlowEval seg BERTScore 0.014∗ -0.030∗ -0.022∗

FlowEval seg BLEU 0.067∗ 0.042∗ 0.026∗

BLEU BERTScore 0.576 0.637 0.460

Table 5.5: Inter-correlations between FlowEval seg, BERTScore, BLEU, and human evalu-
ation. FlowEval seg is a version of FlowEval using segment act flow only for assessment.
All values are statistically significant to p < 0.05, unless that are marked by ∗.

size the explicit involvement of segment acts can bring useful information, complementary

to semantic-meaning-focused metrics.

We illustrate our hypothesis in Figure 5.2. If segment act is useful, the segment-act-based

evaluation vp should be positively correlated to human evaluation vo, i.e., vp has roughly the

same direction as vo but with a small angle θ2. If segment act is complementary to semantic-

meaning-focused metrics, the segment-act-based evaluation vp should be almost orthogonal

Figure 5.2: The relationships, in our
hypothesis, between human evaluation
vo, semantic-meaning-focused evaluation
vm, and segment-act-based evaluation vp.

to the semantic-meaning-focused evaluation vm,

i.e., vm falls into the other side of vo so that vm

is also positively correlated to vo with a small

angle θ1 but almost orthogonal to vp with a large

angle θ3 = θ1 + θ2. These angles θ1, θ2 and θ3

could be characterized by the correlation of two

evaluation results. A higher correlation implies

a smaller angle.

We conduct experiments on the test set of the

Controllable Dialogue dataset to validate our hy-

pothesis. Two of the popular semantic-meaning-

focused metrics are BERTScore [238] and BLEU [218]. We modify the retrieval and

assessment parts of our FlowEval, so that only segment act information is utilized. We

denote this variant as FlowEval seg.

96

Figure 5.3: Segment act feature space of Controllable Dialogue, FED, DSTC9 dataset and
the retrieval set ActDial. We have a separate plot for Controllable Dialogue because the
ActDial we used are different (See Section 5.1.3).

As we can observe from the first three rows of Table 5.5 the FlowEval seg, BLEU, and

BERTScore all exhibit strong correlation to human evaluation. Unsurprisingly, BLEU and

BERTScore are highly correlated (the last row of Table 5.5), since both of them focus on

the semantic meaning of dialogues. In line with our hypothesis, the BLEU-FlowEval seg

correlation and BERTScore-FlowEval seg correlation are far smaller (rows 4-5 of Table 5.5),

which indirectly shows that segment act can evaluate dialogues from a complementary

perspective. These findings resonate with the theory from [240], where the meaning and

the communicative intent, i.e., segment act here, are considered to be two decoupled and

complementary dimensions.

Why Does Consensus Work? We investigate why the consensus-based framework can

perform well in dialogue evaluation by visualizing the segment act feature space, an essential

aspect in the retrieval process of FlowEval. We compare the segment act feature distribution

between the three test sets and their corresponding retrieval sets, projecting these features

to 2-dimensional space by t-SNE [241] as shown in Figure 5.3. We did not tune any

hyperparameter to obtain these results, in consideration of the sensitivity of t-SNE plots.

The core idea of consensus lies in using the nearest neighbors as references to measure

97

a newcomer. Only if the suitable nearest neighbors consistently exist, will the consensus

of them have a meaningful indication to evaluate a new subject. We can observe from

Figure 5.3 that, even though dialogues in three test sets are diverse, every datapoint from

the test sets is surrounded by data points from the retrieval sets. We can always reliably

find good references for a new dialogue, which explains why using consensus in dialog

evaluation is promising. Moreover, this desirable coverage is achieved by an attainable

amount of data points. It only needs 10,494 and 31,993 dialogues as retrieval sets in our

experiments to get good results. The power of the consensus may become stronger and more

reliable if the size of the retrieval set grows, which could be a favorable property in many of

industrial applications.

5.2 Identifying Edit Intentions for Iterative Text Revisions

Writing is a complex and effortful cognitive task, where writers balance and orchestrate three

distinct cognitive processes: planning, translation, and revising [242]. These processes can

be hierarchical and recursive and can occur at any moment during writing. This work focuses

on text revision as an essential part of writing [243]. Revising text is a strategic, and adaptive

process. It enables writers to deliberate over and organize their thoughts, find a better line of

argument, learn afresh, and discover what was not known before [244]. Specifically, text

revision involves identifying discrepancies between intended and instantiated text, deciding

what edits to make, and how to make those desired edits [245, 246, 247].

Text revision is an iterative process. Human writers are unable to simultaneously

comprehend multiple demands and constraints of the task when producing well-written texts

[248, 249, 250] – for instance, expressing ideas, covering the content, following linguistic

norms and discourse conventions of written prose, etc. Thus, they turn towards making

successive iterations of revisions to reduce the number of considerations at each time.

Previous works on iterative text revision have three major limitations: (1) simplifying

the task to an noniterative ”original-to-final” text paraphrasing; (2) focusing largely on

98

103.14972v2 Each comment was annotated by three different annotators, which achieved high inter-
annotator agreement. The proposed annotation {process approach}CLARITY is also
language and domain independent{, nevertheless, it was currently applied for Brazilian
Portuguese} MEANING-CHANGED .

103.14972v3 Each comment was annotated by three different annotators, {which and} COHERENCE

achieved high inter-annotator agreement. The {new} MEANING-CHANGED proposed
annotation approach is also language and {domain independent, nevertheless, it was
currentlydomain-independent (although it has been} CLARITY applied for Brazilian

Portuguese{)} FLUENCY .

103.14972v4 Each comment was annotated by three different annotators {,} FLUENCY and achieved

high inter-annotator agreement. The {new} COHERENCE proposed annotation ap-
proach is also language and domain-independent {(although it has been applied neverthe-
less it is currently customized} COHERENCE for Brazilian Portuguese {)} FLUENCY
.

Table 5.6: An iteratively revised ArXiv abstract snippet (2103.14972, version 2, 3, and 4)
with our annotated edit-intention in ITERATER.

sentence-level editing [86, 87, 82, 85]; (3) developing editing taxonomies within individual

domains (e.g. Wikipedia articles, academic writings) [80, 81, 83]. These limitations make

their proposed text editing taxonomies, datasets, and models lose their generalizability and

practicality.

We present ITERATER— an annotated dataset for ITERAtive TExt Revision that con-

sists of 31,631 iterative document revisions with sentence-level and paragraph-level edits

across multiple domains of formally human-written text, including Wikipedia1, ArXiv2

and Wikinews.3 Table 5.6 shows a sample ArXiv document in ITERATER, that underwent

iterative revisions. Our dataset includes 4K manually annotated and 196K automatically

annotated edit intentions based on a sound taxonomy we developed, and is generally applica-

ble across multiple domains and granularities (presented in Table 5.7). Note that ITERATER

is currently only intended to support formal writing revisions, as iterative revisions are more

prevalent in formal rather than informal writings (e.g. tweets, chit-chats).

Our contributions are as follows:
1https://www.wikipedia.org/
2https://arxiv.org/
3https://www.wikinews.org/

99

https://www.wikipedia.org/
https://arxiv.org/
https://www.wikinews.org/

Dataset Size Domain Granularity Revision History Annotations

WikiRevisions [80] 5K Wiki Paragraph-level ×
√

WikiHowToImprove [83] 2.7M Wiki Sentence-level
√

×
ArgumentWriting [81] 180 Academic Sentence-level

√ √

NewsEdits [251] 4.6M News Sentence-level
√

×
ITERATER (Ours) 31K All above Sentence-level&Paragraph-level

√ √

Table 5.7: Comparisons with previous related works.

1. Formulating the iterative text revision task in a more comprehensive way, capturing

greater real-world challenges such as successive revisions, multi-granularity edits, and

domain shifts.

2. Collecting and releasing a large, multi-domain Iterative Text Revision dataset: ITER-

ATER, which contains 31K document revisions from Wikipedia, ArXiv and Wikinews,

and 4K edit actions with high-quality edit intention annotations.

3. Analyzing how text quality evolves across iterations and how it is affected by different

kinds of edits.

4. Showing that incorporating the annotated edit-intentions is advantageous for text

revision systems to generate better-revised documents.

5.2.1 Task Formulation

We provide formal definitions of the Iterative Text Revision task, and its building blocks.

Edit Action. An edit action ak is a local change applied to a certain text object, where

k is the index of the current edit action. The local changes include: insert, delete and

modify. The text objects include: token, phrase4, sentence, and paragraph. This work

defines local changes applied to tokens or phrases as sentence-level edits, local changes

applied to sentences as paragraph-level edits and local changes applied to paragraphs as

document-level edits.
4In this work, we define phrase as text pieces which contain more than one token and only appears within a

sentence.

100

Edit Intention. An edit intention ek reflects the revising goal of the editor when making a

certain edit action. In this work, we assume each edit action ak will only be labeled with one

edit intention ek. We further describe our edit intention taxonomy in Table 5.9 and §5.2.2.

Document Revision. A document revision is created when an editor saves changes for the

current document [252, 80]. One revisionRt is aligned with a pair of documents (Dt−1,Dt)

and contains Kt edit actions, where t indicates the version of the document and Kt ≥ 1. A

revision with Kt edit actions will correspondingly have Kt edit intentions:

(Dt−1,Dt)→ Rt = {(at
k, e

t
k)}K

t

k=1 (5.6)

We define t as the revision depth.

Iterative Text Revision. Given a source text Dt−1, iterative text revision is the task of

generating revisions of text Dt at depth t until the quality of the text in the final revision

satisfies a set of pre-defined stopping criteria {s0, ..., sM}:

Dt−1 g(D)−−→ Dt, if f(Dt) < {s0, ..., sM} (5.7)

where g(D) is a text revision system and f(D) is a quality evaluator of the revised text.

The quality evaluator f(D) can be automatic systems or manual judgments which measure

the quality of the revised text. The stop criteria {si} is a set of conditions that determine

whether to continue revising or not. In this work, we simply set them as revision depth equal

to 10, and edit distance between Dt−1 and Dt equal to 0 (§5.2.4). We will include other

criteria which measures the overall quality, content preservation, fluency, coherence, and

readability of the revised text in future works.

101

5.2.2 ITERATER Dataset Construction

Raw Data Collection. We select three domains – Wikipedia articles, academic papers,

and news articles – to cover different human writing goals, formats, revision patterns, and

quality standards. The three domains consist of formally written texts, typically edited by

multiple authors. We describe why and how we collect text revision from each domain

below:

• Scientific Papers: Scientific articles are written in a rigorous, logical manner. Authors

generally highlight and revise their hypotheses, experimental results, and research insights

in this domain. We collect paper abstracts submitted at different timestamps (i.e., version

labels) from ArXiv.

• Wikipedia Articles: Encyclopedic articles are written in a formal, coherent manner, where

editors typically focus on improving the clarity and structure of articles to make people

easily understand all kinds of factual and abstract encyclopedic information. We collect

revision histories of the main contents of Wikipedia articles.

• News Articles: News articles are generally written in a precise and condensed way. News

editors emphasize improving the clarity and readability of news articles to keep people

updated on rapidly changing news events. We collect revision histories of news content

from Wikinews.

Raw Data Processing. We first collect all raw documents, then sort each document

version according to its timestamp in ascending order. For each document D, we pair two

consecutive versions as one revision (Dt−1,Dt)→ Rt, where t is the revision depth. For

each sampled document-revision Rt, we extract its full edit actions using latexdiff.5 We

provide both the paragraph-level and sentence-level revisions where the latter is constructed

by applying a sentence segmentation tool,6 and aligning each sentence to each revision.

For each revision pair, we have: the revision type, the document id, the revision depth, an
5https://www.ctan.org/pkg/latexdiff
6https://github.com/zaemyung/sentsplit

102

https://www.ctan.org/pkg/latexdiff
https://github.com/zaemyung/sentsplit

ITERATER-FULL ITERATER-HUMAN

ArXiv Wikipedia Wikinews ArXiv Wikipedia Wikinews

Depth #D #E #D #E #D #E #D #E #D #E #D #E

1 9,446 65,450 8,195 51,290 7,878 39891 95 618 130 1,072 173 1,227
2 1,615 11,391 1,991 12,868 1,455 8,116 76 499 38 250 25 155
3 301 2,076 415 2,786 161 1,704 6 47 10 98 4 27
4 66 444 64 723 16 71 1 13 1 12 0 0
5 15 107 9 52 4 18 0 0 0 0 0 0

Total 11,443 79,468 10,674 67,719 9,514 49,800 178 1,177 179 1,432 202 1,409

Table 5.8: Statistics of the ITERATER dataset, where #D indicate the number of document
revisions (Rt), and #E indicate the number of annotated edit actions.

original phrase, and a revised phrase, respectively.7

For Wikipedia and Wikinews, we use the MediaWiki Action API8 to retrieve raw pages

updated at different timestamps. For each article, we start from July 2021 and trace back

to its five most recent updated versions. Then, we parse9 plain texts from raw wiki-texts

and filter out all references and external links.For Wikipedia, we retrieve pages under the

categories listed on the main category page 10. For Wikinews, we retrieve pages listed on

the published articles page11.

For ArXiv, we use the ArXiv API12 to retrieve paper abstracts. Note that we do not

retrieve the full paper for two reasons: (1) some paper reserved their copyright for dis-

tribution, (2) parsing and aligning editing actions in different document types (e.g. pdf,

tex) is challenging. For each paper, we start from July 2021 and retrieve all its previous

submissions. We collect papers in the fields of Computer Science, Quantitative Biology,

Quantitative Finance, and Economics.

In summary, we collect 31,631 document revisions with 196,987 edit actions, and

maintain a relatively balanced distribution across three domains, as shown in Table 5.8. We

call this large-scale dataset as ITERATER-FULL-RAW.

7We also record character-level indices of their positions within the original sentence and the paragraph.
8https://www.mediawiki.org/wiki/API:Main_page
9https://github.com/earwig/mwparserfromhell

10https://en.wikipedia.org/wiki/Wikipedia:Contents/Categories
11https://en.wikinews.org/wiki/Category:Published
12https://arxiv.org/help/api/

103

https://www.mediawiki.org/wiki/API:Main_page
https://github.com/earwig/mwparserfromhell
https://en.wikipedia.org/wiki/Wikipedia:Contents/Categories
https://en.wikinews.org/wiki/Category:Published
https://arxiv.org/help/api/

Edit-Intention Description Example Counts (Ratio)

FLUENCY Fix grammatical errors in the text. She went to the marktmarket. 942 (23.44%)

COHERENCE Make the text more cohesive, logically linked
and consistent as a whole.

She works hard. She; therefore,
she is successful.

393 (9.78%)

CLARITY Make the text more formal, concise, readable
and understandable.

The changes made the paper
better than beforeimproved the
paper.

1,601 (39.85%)

STYLE Convey the writer’s writing preferences, in-
cluding emotions, tone, voice, etc..

Everything was awfully rotten. 128 (3.19%)

MEANING-CHANGED Update or add new information to the text. This method improves the model
accuracy from 64% to 7883%.

896 (22.30%)

OTHER Edits that are not recognizable and do not be-
long to the above intentions.

This method is also named as
CITATION1.

58 (1.44%)

Table 5.9: A taxonomy of edit intentions in ITERATER, where Fluency, Coherence, Clarity
and Style belong to Non-Meaning-changed edits.

Data Annotation Overview. To better understand the human revision process, we sample

559 document revisions from ITERATER-FULL-RAW, consisting of 4,018 human edit

actions. We refer to this small-scale unannotated dataset as ITERATER-HUMAN-RAW. Then,

we use Amazon Mechanical Turk (AMT) to crowdsource edit intention annotations for

each edit action according to our proposed edit-intention taxonomy. We refer to this small-

scale annotated dataset as ITERATER-HUMAN.We then scale these manual annotations to

ITERATER-FULL-RAW by training edit intention prediction models on ITERATER-HUMAN,

and automatically label ITERATER-FULL-RAW to construct ITERATER-FULL.

Edit Intention Taxonomy. For manual annotations, we propose a new edit intention

taxonomy in ITERATER (Table 5.9), in order to comprehensively model the iterative text

revision process. Our taxonomy builds on prior literature [253, 254]. At the highest level,

we categorize the edit intentions into ones that change the meaning or the information

contained in the text (MEANING-CHANGED), and ones that preserve these characteristics

(NON-MEANING-CHANGED). Since our goal is to understand edit intentions to improve

the quality of writing, we focus on categorizing edits in the latter category further into four

sub-categories: FLUENCY, CLARITY, COHERENCE and STYLE. Our proposed taxonomy

104

Figure 5.4: A screenshot of the annotation instruction for human annotators.

of edit intentions is generally applicable to multiple domains, edit-action granularities

(sentence-level and paragraph-level), and revision depths. We also propose the OTHER

category for edits that cannot be labeled using the above taxonomy.

Manual Annotation Instruction and Interface. To guide human annotators to making

accurate edit-intention annotations, we provide them with a short task instruction (Figure

5.4) followed by some concrete edit-intention examples (Figure 5.5). Then, we highlight the

edit-action within the document-revision and ask human annotators three questions to obtain

the accurate edit-intention of the current edit-action, as illustrated in Figure 5.6. Note that in

our previous test runs on AMT, we find that AMT workers can hardly reach a consensus

on Clarity and Style edits, which give a very low IAA score. Therefore, in the annotation

interface, we include Clarity and Style edits under the category of ”Rephrasing”, and further

ask the annotators to judge whether the current ”Rephrasing” edit is making the text more

clearer and understandable. If yes, we convert this edit to Clarity, otherwise, we convert this

edit to Style. This interface configuration gives us the best IAA score among our 5 test runs.

Manual Annotation Procedure. Since edit intention annotation is a challenging task, we

design strict qualification tests to select 11 qualified AMT annotators. First, we prepare a

small test set with 67 edit-actions and deploy parallel test runs on AMT to get more workers

to participate in this task. Before starting the annotation, workers are required to pass a

105

Figure 5.5: A screenshot of the provided examples for human annotators.

qualification test which has 5 test questions to get familiar with our edit-intention taxonomy.

Second, we compare workers’ annotations with our golden annotations, and select workers

who have an accuracy over 0.4. After 5 test runs, we select 11 AMT workers who are

qualified to participate in this task. Then, we deploy the full 4K edit-actions on AMT, and

collect 3 human annotations per edit-action.

To further improve the annotation quality, we ask another group of expert linguists

(English L1, bachelor’s or higher degree in Linguistics) to re-annotate the edits which do

not have a majority vote among the AMT workers. Finally, we take the majority vote among

3 human annotations (either from AMT workers or from expert linguists) as the final edit

intention labels. This represents the ITERATER-HUMAN dataset. We release both the final

majority vote and the three raw human annotations per edit action as part of the dataset.

Automatic Annotation. To scale up the annotation, we train an edit-intention classifier to

annotate ITERATER-FULL-RAW and construct the ITERATER-FULL dataset. We split the

ITERATER-HUMAN dataset into 3,254/400/364 training, validation and test pairs. The edit

106

Figure 5.6: A screenshot of the annotation interface for human annotators.

Edit-Intention Precision Recall F1

CLARITY 0.75 0.63 0.69
FLUENCY 0.74 0.86 0.80
COHERENCE 0.29 0.36 0.32
STYLE 1.00 0.07 0.13
MEANING-CHANGED 0.44 0.69 0.53

Table 5.10: Edit intention classifier performance on the test split of ITERATER-HUMAN.

intention classifier is a RoBERTa-based [161] multi-class classifier that predicts an intent

given the original and the revised text for each edit action. We leverage the RoBERTa-large

model from Huggingface transformers [124], which has 354 million parameters. For training,

we set the total training epoch to 15 and batch size to 4. We use the Adam optimizer with

weight decay [164], and set the learning rate to 10−5 which decreases linearly to 0 at the last

training iteration.

For evaluation, we report descriptive statistics with a single run. We use the sklearn

package [255] to calculate the precision, recall, and f1 score. Table 5.10 shows its perfor-

mance on the test set. The Fluency and Clarity edit intentions are easy to predict with F1

scores of 0.8 and 0.69, respectively, while Style and Coherence edit intentions are harder to

107

Figure 5.7: Logarithm (base e) of frequency for edit-intentions in each revision depth for
the three dataset domains.

predict with F1 scores of 0.13 and 0.32, respectively, largely due to the limited occurrence

of Style and Coherence intents in the training data.

Edit Intention Distributions. The iterative edit intention distributions in three domains

are demonstrated in Figure 5.7. Across all three domains, authors tend to make the majority

of edits at revision depth 1. However, the number of edits rapidly decreases at revision depth

2, and few edits are made at revision depth 3 and 4.

We find that CLARITY is one of the most frequent edit intentions across all domains,

indicating that authors focus on improving readability across all domains. For ArXiv,

MEANING-CHANGED edits are also among the most frequent edits, which indicates that

authors also focus on updating the contents of their abstracts to share new research insights

or update existing ones. Meanwhile, ArXiv also covers many FLUENCY and COHERENCE

edits, collecting edits from scientific papers and suggesting meaningful revisions would

be an important future application of our dataset. For Wikipedia, we find that FLUENCY,

COHERENCE, and MEANING-CHANGED edits roughly share a similar frequency, which

indicates Wikipedia articles have more complex revision patterns than ArXiv and news

articles. For Wikinews, FLUENCY edits are equally emphasized, indicating that improving

the grammatical correctness of the news articles is just as important.

Inter-Annotator Agreement. We measure inter-annotator agreement (IAA) using Fleiss’

κ [237]. Table 5.11 shows the IAA across three domains. After the second round of re-

108

ArXiv Wikipedia Wikinews All

1st-round 0.3369 0.3630 0.3886 0.3628
2nd-round 0.4983 0.4274 0.5601 0.5014

Table 5.11: Inter-annotator agreement (Fleiss’ κ [237]) across two rounds of annotations,
where the 1st-round only contains annotations from qualified AMT workers, and the 2nd-
round contains annotations from both qualified AMT workers and expert linguists.

annotation by proficient linguists, Fleiss’ κ increases to 0.5014, which indicates moderate

agreement among annotators.

We further look at the raw annotations where at least 1 out of 3 annotators assigns

a different edit intention label. We find that the COHERENCE intention is the one that

is the most likely to have a disagreement: 312 out of 393 COHERENCE annotations do

not have consensus. Within those disagreements of the COHERENCE intention, 68.77%

are considered to be CLARITY, and 11.96% are considered to be the FLUENCY intention.

Annotators also often disagree on the CLARITY intention, where 1023 out of 1601 CLARITY

intentions do not have a consensus. Among those disagreements of the CLARITY intention,

30.33% are considered to be COHERENCE, and 30.23% are considered to be STYLE.

The above findings explain why the inter-annotator agreement scores are lower in

Wikipedia and ArXiv. As shown in Figure 5.7, Wikipedia has many COHERENCE edits

while ArXiv has many CLARITY edits. This explains the difficulty of the edit intention

annotation task: it not only asks annotators to infer the edit intention from the full document

context, but also requires annotators to have a wide range of domain-specific knowledge in

scientific writings.

5.2.3 Understanding Iterative Text Revisions

To better understand how text revisions affect the overall quality of documents, we conduct

both manual and automatic evaluations on a sampled set of document revisions.

Evaluation Data. We sample two sets of text revisions for different evaluation purposes.

The first set contains 21 iterative document revisions, consisting of 7 unique documents, each

109

document having 3 document revisions from revision depth 1 to 3. The second set contains

120 text pairs, each associated with exactly one edit intention of FLUENCY, COHERENCE,

CLARITY, or STYLE. We validate the following research questions:

RQ1 How do human revisions affect the text quality across revision depths?

RQ2 How does text quality vary across edit intentions?

Manual Evaluation Configuration. We hire a group of proficient linguists to evaluate the

overall quality of the documents/sentences, where each revision is annotated by 3 linguists.

For each revision, we randomly shuffle the original and revised texts, and ask the evaluators

to select which one has better overall quality. They can choose one of the two texts, or

neither. Then, we calculate the score for the overall quality of the human revisions as

follows: -1 means the revised text has worse overall quality than the original text; 0 means

the revised text do not show a better overall quality than the original text, or cannot reach

agreement among 3 annotators; 1 means the revised text has better overall quality than the

original text.

Automatic Evaluation Configuration. We select four automatic metrics to measure the

document quality on four different aspects: fluency, coherence readability, and content

preservation. For Fluency, we use the Syntactic Log-Odds Ratio (SLOR) [256] to evaluate

the naturalness and grammaticality of the current revised document, where a higher SLOR

score indicates a more fluent document. Prior works [257, 256] found word-piece log-

probability correlates well with human fluency ratings. For Coherence, we use the Entity

Grid (EG) score [258] to evaluate the local coherence of the current revised document, where

a higher EG score indicates a more coherent document. EG is a widely adopted [259, 260,

261] metric for measuring document coherence. For Readability, we use the Flesch–Kincaid

Grade Level (FKGL) [262] to evaluate how easy the current revised document is for the

readers to understand, where a lower FKGL indicates a more readable document. FKGL

is a popular metric that has been used by many prior works [263, 264, 265, 266, 267] to

110

t Overall ↑ BLEURT↑ ∆SLOR ↑ ∆EG ↑ ∆FKGL ↓

1 0.4285 0.1982 -0.0985 -0.0132 -1.0718
2 0.4285 0.1368 -0.1025 -0.0295 -2.4973
3 0.1428 -0.0224 -0.0792 0.0278 1.8131

Table 5.12: Evaluation results for 21 iterative document revisions, where t indicates the
revision depth. Note that ∆SLOR, ∆EG and ∆FKGL are computed by subtracting the
scores of original documents from the scores of revised documents. Overall is the manual
evaluation of overall quality of the revised documents.

FLUENCY COHERENCE CLARITY STYLE

0.3673 0.1500 0.2800 -0.0385

Table 5.13: Manually evaluated text quality of 120 single sentence-level edits for different
edit intentions.

measure the readability of documents. For Content Preservation, we use the BLEURT

score [70] to measure how much content has been changed from the previous document to

the current revised one, where a higher BLEURT score indicates more content has been

preserved. BLEURT has been shown to correlate better with human judgments than other

metrics that take semantic information into account, e.g. METEOR [166] or BERTScore

[268]. However, in our following experiments, we find these existing automatic metrics are

poorly correlated with manual evaluations.

RQ1: Iterative Revisions vs. Quality. Table 5.12 shows the document quality changes at

different revision depths. Generally, human revisions improve the overall quality of original

documents, as indicated by the overall score at each revision depth.However, the overall

quality keeps decreasing as the revision depth increases from 1 to 3, likely because it is

more difficult for evaluators to grasp the overall quality in the deeper revision depths in

the pair-wise comparisons between the original and revised documents, because less NON-

MEANING-CHANGED edits have been conducted in deeper revision depths. For automatic

metrics, we find ∆SLOR and ∆EG are not well-aligned with the human overall score, we

further examine whether human revisions make original documents less fluent and less

coherent in the analysis of RQ2.

111

RQ2: Edit Intentions vs. Quality. Table 5.13 shows how text quality varies across edit

intentions. We find that FLUENCY and COHERENCE edits indeed improve the overall quality

of original sentences according to human judgments. This finding suggests that ∆SLOR

and ∆EG are not well-aligned with human judgments, and calls for the need to explore

other effective automatic metrics to evaluate the fluency and coherence of revised texts.

Besides, we observe that STYLE edits degrade the overall quality of original sentences.

This observation also makes sense since STYLE edits reflect the writer’s personal writing

preferences (according to our edit intention taxonomy in Table 5.9), which is not necessarily

improve the readability, fluency or coherence of the text.

5.2.4 Modeling Iterative Text Revisions

To better understand the challenges of modeling the task of iterative text revisions, we train

different types of text revision models using ITERATER.

Text Revision Models. For training the text revision models, we experiment with both

edit-based and generative models. For the edit-based model, we use FELIX [269], and

for the generative models, we use BART [69] and PEGASUS [270]. FELIX decomposes

text revision into two sub-tasks: Tagging, which uses a pointer mechanism to select the

subset of input tokens and their order; and Insertion, which uses a masked language model

to fill in missing tokens in the output not present in the input. BART and PEGASUS are

Transformer-based encoder-decoder models which are used in a wide range of downstream

tasks such as natural language inference, question answering, and summarization.

Training. We use four training configurations to evaluate whether edit intention infor-

mation can help better model text revisions. The first configuration uses the pure revision

pairs without edit intention annotations (ITERATER-HUMAN-RAW dataset). In the sec-

ond configuration, we include the manually annotated edit intentions to the source text

(ITERATER-HUMAN dataset). Similarly, for the third and fourth training configurations, we

112

Model Dataset SARI BLEU ROUGE-L Avg.

FELIX HUMAN-RAW 29.23 49.48 63.43 47.38
FELIX HUMAN 30.65 54.35 59.06 48.02
FELIX FULL-RAW 30.34 55.10 56.49 47.31
FELIX FULL 33.48 61.90 63.72 53.03

BART HUMAN-RAW 33.20 78.59 85.20 65.66
BART HUMAN 34.77 74.43 84.45 64.55
BART FULL-RAW 33.88 78.55 86.05 66.16
BART FULL 37.28 77.50 86.14 66.97

PEGASUS HUMAN-RAW 33.09 79.09 86.77 66.32
PEGASUS HUMAN 34.43 78.85 86.84 66.71
PEGASUS FULL-RAW 34.67 78.21 87.06 66.65
PEGASUS FULL 37.11 77.60 86.84 67.18

Baseline - 29.47 81.25 88.04 66.25

Table 5.14: Model performances on the test set of ITERATER-HUMAN. Baseline refers to a
no-edit baseline, where we simply use the input text as the output. Avg. is the average score
of SARI, BLEU and ROUGE-L.

use ITERATER-FULL-RAW dataset (no edit intention information) and ITERATER-FULL

dataset (automatically annotated labels, as described in §5.2.2, simply appended to the input

text). We use these four configurations for all model architectures.

We leverage the BART-large (with 400 million parameters) and PEGASUS-large (with

568 million parameters) from Huggingface transformers [124]. We set the total training

epoch to 5 and batch size to 16. We use the Adam optimizer with weight decay [164], and set

the learning rate to 3× 10−5 which decreases linearly to 0 at the last training iteration. We

report descriptive statistics with a single run. We use the metrics package from Huggingface

transformers to calculate the SARI, BLEU, and ROUGE-1/2/L score.

Automatic Evaluation. Table 5.14 shows the results of the three models for our different

training configurations. Following prior works [271, 272, 269], we report SARI, BLEU, and

ROUGE-L metrics. It is noteworthy that the SARI score on the no-edit baseline is the lowest,

which indicates the positive impact of revisions on document quality, as also corroborated

by the human evaluations in §5.2.3. For both ITERATER-HUMAN and ITERATER-FULL

datasets, we see that edit intention annotations help to improve the performance of both

113

Human Revision Tie Model Revision

Overall 83.33% 10.00% 6.67%
Content 13.33% 70.00% 16.67%
Fluency 50.00% 50.00% 0.00%
Coherence 40.00% 56.67% 3.33%
Readability 86.67% 10.00% 3.33%

Table 5.15: Manual pair-wise comparison for 30 single document revisions without
Meaning-changed edits.

t Human Revisions Tie Model Revisions

1 57.14% 14.28% 28.58%
2 57.14% 14.28% 28.58%
3 42.85% 57.15% 0.00%

Table 5.16: Manual pair-wise comparison for overall quality of 21 iterative document-
revisions, where t indicates the revision depth.

FELIX and PEGASUS. Also, both models perform better on the larger ITERATER-FULL

dataset compared to the ITERATER-HUMAN dataset, showing that the additional data (and

automatically-annotated annotations) are helpful.

Manual Evaluation. Table 5.15 shows how the model revision affects the quality of the

original document. We choose PEGASUS trained on ITERATER-FULL to generate revisions

and compare with human revisions, as the model produces the best overall results.

First, we evaluate how model revisions affect the quality of the document. We randomly

sample 30 single document-revisions which do not contain Meaning-changed edits, and input

the original documents to the best-performing model to get the model-revised documents.

Then, for each data pair, we randomly shuffle model revisions and human revisions, and ask

human evaluators to select which revision leads to better document quality in terms of:

• Content Preservation: keeping more content information unchanged;

• Fluency: fixing more grammatical errors or syntactic errors;

• Coherence: making the sentences more logically linked and organized;

• Readability: making the text easier to read and understand;

114

Figure 5.8: Number of iterations made by humans and different text revision models.

• Overall Quality: better improving the overall quality of the document.

Secondly, we evaluate how model generated text quality varies across revision depths.

We use the same set of 21 iterative document-revisions in §5.2.3. We feed the original

documents into the best-performing model to obtain the model’s revised documents at each

revision depth. For each data pair, we randomly shuffle model revisions and human revisions,

and ask human evaluators to judge which one gives better overall text quality.

There exists a big gap between the best-performing model revisions and human revisions,

indicating the challenging nature of the modeling problem. Thus, while model revisions can

achieve comparable performance with human revisions on fluency, coherence, and meaning

preservation, human revisions still outperform in terms of readability and overall quality.

Table 5.16 demonstrates how model-generated text quality varies across revision depths.

In the first two depths, human revisions win over model revisions with a ratio of 57.14%.

However, in the last depth, model revisions stay similar with human revisions in a ratio of

57.15%. Upon reviewing revisions in the last depth, we find a lot of MEANING-CHANGED

edits in human revisions. At the same time, the model revisions only made a few FLUENCY

or CLARITY edits, which the human evaluators tend to judge as “tie”.

Iterativeness. We also compare the iterative ability between the two kinds of text revision

models (best performing versions of both FELIX and PEGASUS: trained on ITERATER-

115

FULL), against human’s iterative revisions. Figure 5.8 shows that while PEGASUS is able to

finish iterating after 2.57 revisions on average, FELIX continues to make iterations until the

maximum cutoff of 10 that we set for the experiment. In contrast, humans on average make

1.61 iterations per document. While FELIX is able to make meaningful revisions, it lacks

the ability to effectively evaluate the text quality at a given revision, and decide whether

or not to make further changes. PEGASUS, on the other hand, is able to pick up on these

nuances of iterative revision, and learns to stop revising after a certain level of quality has

been reached.

5.2.5 Discussion

Our work is a step toward understanding the complex process of iterative text revision from

human-written texts. We collect, annotate, and release ITERATER: a novel, large-scale,

domain-diverse, annotated dataset of human edit actions. Despite the deliberate design of

our dataset collection, ITERATER only includes formally written texts. We plan to extend

it to diverse sets of revision texts, such as informally written blogs and less informal but

communicative texts like emails, as well as increase the size of the current dataset. For

future research, we believe ITERATER can serve as a basis for future corpus development

and computationally modeling iterative text revision.

5.3 Summary

In this chapter, we model two types of user intentions in open-domain conversations and

iterative text revision tasks respectively, and apply the proposed intention taxonomy for

model performance evaluation and controllable text generation.

In Section 5.1, we propose a consensus-based reference-free framework for open-domain

dialog evaluation with segment act flows. From extensive experiments against state-of-the-

art baselines, our method can reach the best or comparable correlation with human evaluation.

Our segment-act-based methods complement well to previous semantic-meaning-focused

116

methods, pushing the ceiling of correlations. Moreover, the promise of our consensus-based

framework encourages us to step further in the direction of dialog evaluation.

In Section 5.2, we construct a large-scale, annotated dataset of human edit actions, and

train controllable LLMs to model the human revision process. Our research shows that

different domains of text have different distributions of edit intentions, and the general

quality of the text has improved over time. Computationally modeling the human revision

process is still under-explored, yet our results indicate some interesting findings and potential

directions.

117

CHAPTER 6

HUMAN-AI INTERACTION APPLICATIONS

Another important dimension of building text generation applications is the user-system

interaction, where a good system not only successfully fulfills user requirements but also

reduces user effort in interacting with the system. In this chapter, I present a human-AI

interactive text generation system for the text revision task. Specifically, I develop a human-

in-the-loop text revision system based on the controllable LLMs to provide high-quality text

revisions with minimal human effort in Section 6.1.

6.1 A System Demonstration for Human-in-the-loop Iterative Text Revision

Text revision is a crucial part of writing. Specifically, text revision involves identifying

discrepancies between intended and instantiated text, deciding what edits to make, and how

to make those desired edits [273, 245, 274]. It enables writers to deliberate over and organize

their thoughts, find a better line of argument, learn afresh, and discover what was not known

before [244, 243]. Previous studies [248, 249, 250] have shown that text revision is an

iterative process since human writers are unable to simultaneously comprehend multiple

demands and constraints of the task when producing well-written texts – for instance,

covering the content, following linguistic norms and discourse conventions of written prose,

etc. Therefore, writers resort to performing text revisions on their drafts iteratively to reduce

the number of considerations at each time.

Computational modeling of the iterative text revision process is essential for building

intelligent and interactive writing assistants. Most prior works on the development of neural

text revision systems [86, 87, 82, 85] do not take the iterative nature of text revision and

human feedback on suggested revisions into consideration. The direct application of such

revision systems in an iterative way, however, could generate some “noisy” edits and require

118

Source Doc
Dt-1

ℛ3: Text Revision
System

Source DocSource Doc
Edit

Suggestions

Revised Doc
Dt

Final
Revised Doc

Dfinal
Stop

Revision

Accept
Edits

Review
✅ ❌

YesNo

t+1

User

Figure 6.1: System overview forR3 human-in-the-loop iterative text revision.

much burden on human writers to fix the noise. Therefore, we propose to collect human

feedback at each iteration of revision to filter out those harmful noisy edits and produce

revised documents of higher quality.

In this work, we present a novel human-in-the-loop iterative text revision system,Read,

Revise,Repeat (R3), which reads model-generated revisions and user feedbacks, revises

documents, and repeats human-machine interactions in an iterative way, as depicted in

Figure 6.1. First, users write a document as input to the system or choose one from a

candidate document set to edit. Then, the text revision system provides multiple editing

suggestions with their edits and intents. Users can accept or reject the editing suggestions in

an iterative way and stop revision when no editing suggestions are provided or the model

reaches the maximum revision limit. The overall model performance can be estimated by

calculating the acceptance rate throughout all editing suggestions.

R3 provides numerous benefits over existing writing assistants for text revision. First,

R3 improves the overall writing experience for writers by making it more interpretable,

controllable, and productive: on the one hand, writers don’t have to (re-)read the parts of

119

the text that are already high quality, and this, in turn, helps them focus on larger writing

goals; on the other hand, by showing edit intentions for every suggested edit, which users

can further decide to accept or reject,R3 provides them with more fine-grained control over

the text revision process compared to other one-shot based text revision systems [8], and

are limited in both interpretability and controllability. Second, R3 improves the revision

efficiency. The human-machine interaction can help the system produce higher-quality

revisions with fewer iterations and edits, and the empirical experiments validate this claim.

To the best of our knowledge, R3 is the first text revision system in literature that can

perform iterative text revision in collaboration with human writers and revision models.

In this paper, we make three major contributions:

1. Presenting a novel human-in-the-loop text revision systemR3 to make text revision

models more accessible; and to make the process of iterative text revision efficient,

productive, and cognitively less challenging.

2. From an HCI perspective, conducting experiments to measure the effectiveness of the

proposed system for the iterative text revision task. Empirical experiments show that

R3 can generate edits with a comparable acceptance rate to human writers at early

revision depths.

3. Analyzing the data collected from human-model interactions for text revision and

providing insights and future directions for building high-quality and efficient human-

in-the-loop text revision systems. We release our code, revision interface, and collected

human-model interaction dataset to promote future research on collaborative text

revision.

6.1.1 R3 Human-in-the-loop Iterative Text Revision System

Figure 6.1 shows the general pipeline ofR3 human-in-the-loop iterative text revision system.

In this section, we will describe the development details of the text revision models and

120

demonstrate our user interfaces.

Iterative Text Revision Task. We first formulate an iterative text revision process: given

a source document1 Dt−1, at each revision depth t, a text revision system will apply a set

of edits to get the revised document Dt. The system will continue iterating revision until

the revised document Dt satisfies a set of predefined stopping criteria, such as reaching a

predefined maximum revision depth tmax, or making no edits between Dt−1 and Dt.

Text Revision System Overview. We follow the prior work of [50] to build our text

revision system. The system is composed of edit intention identification models and a text

revision generation model. We follow the same data collection procedure in [50] to collect

the iterative revision data.Then, we train the three models on the collected revision dataset.

Edit Intention Identification Models. Following [50], our edit intentions have four

categories: FLUENCY, COHERENCE, CLARITY, and STYLE. We build our edit intention

identification models at each sentence of the source document Dt−1 to capture the more

fine-grained edits. Specifically, given a source sentence, the system will make two-step

predictions: (1) whether or not to edit, and (2) which edit intention to apply. The decision

whether or not to edit is taken by an edit-prediction classifier that predicts a binary label

of whether to edit a sentence or not. The second model, called the edit-intention classifier,

predicts which edit intention to apply to the sentence. If the edit-prediction model predicts

“not to edit” in the first step, the source sentence will be kept unchanged at the current

revision depth.

Text Revision Generation Model. We fine-tune a large pre-trained language model like

PEGASUS [275] on our collected revision dataset to build the text revision generation model.

Given a source sentence and its predicted edit intention, the model will generate a revised

1The source document can be chosen by a user in the candidate set of documents or written from scratch
by a user.

121

sentence, conditioned on the predicted edit intention. Then, we concatenate all un-revised

and revised sentences to get the model-revised document Dt, and extract all its edits using

latexdiff 2 and difflib.3

In summary, at each revision depth t, given a source document Dt−1, the text revision

system first predicts the need for revising a sentence, and for the ones that need revision,

it predicts the corresponding fine-grained edit intentions – thus, generating the revised

document Dt based on the source document and the predicted edit decisions and intentions.

Human-in-the-loop Revision. In practice, not all model-generated edits are equally im-

pactful towards improving the document quality [50]. Therefore, we enable user interaction

in the iterative text revision process to achieve high-quality of text revisions along with

a productive writing experience. At each revision depth t, our system provides the user

with suggested edits, and their corresponding edit intentions. The user can interact with the

system by choosing to accept or reject the suggested edits.

Figure 6.2 illustrates the details of R3’s user interface. First, a user enters their id to

log in to the web interface as shown in Figure 6.2a. Then, the user is instructed with a few

guidelines on how to operate the revision as demonstrated in Figure 6.2b. After getting

familiar with the interface, the user can select a source document from the left drop-down

menu in Figure 6.2c. By clicking the source document, all the edits predicted by the text

revision model, as well as their corresponding edit intentions will show up on the main page

as illustrated in Figure 6.2d (left panel). The user is guided to go through each suggested edit,

and choose to accept or reject the current edit by clicking the Confirm button in Figure 6.2d

(right panel). After going through all the suggested edits, the user is guided to click the

Submit button to save their decisions on the edits. Then, the user is guided to click the

Next Iteration! button to proceed to the next revision depth and check the next round of

edits suggested by the system. This interactive process continues until the system does not

2https://ctan.org/pkg/latexdiff
3https://docs.python.org/3/library/difflib.html

122

https://ctan.org/pkg/latexdiff
https://docs.python.org/3/library/difflib.html

(a) Login (b) Read guidelines (c) Select doc

Interaction
panel

Editing
suggestions

Edit Intentions

(d) Editing suggestions and interaction panel

Figure 6.2: User interface demonstration for R3. The anonymized version is available at
https://youtu.be/lK08tIpEoaE.

generate further edits or reaches the maximum revision depth tmax.

6.1.2 Experimental Setup

We conduct experiments to answer the following research questions:

RQ1 How likely are users to accept the editing suggestions predicted by our text revision

system? This question is designed to evaluate whether our text revision system can

generate high-quality edits.

RQ2 Which types of edit intentions are more likely to be accepted by users? This question

123

https://youtu.be/lK08tIpEoaE

is aimed to identify which types of edits are more favored by users.

RQ3 Does user feedback in R3 help produce higher quality of revised documents? This

question is proposed to validate the effectiveness of human-in-the-loop component in

R3.

System Setups. We prepare three types of iterative revision systems to answer the above

questions:

1. HUMAN-HUMAN: We ask users to accept or reject text revisions made by human writers,

which are directly sampled from our collected iterative revision dataset. This serves as

the baseline to measure the gap between our text revision system and human writers.

2. SYSTEM-HUMAN: We ask users to accept or reject text revisions made by our system.

Then, we incorporate user accepted edits to the system to generate the next iteration of

revision. This is the standard human-in-the-loop process ofR3.

3. SYSTEM-ONLY: We conduct an ablation study by removing user interaction in reviewing

the model-generated edits. Then, we compare the overall quality of the final revised

documents with and without the human-in-the-loop component.

In both HUMAN-HUMAN and SYSTEM-HUMAN setups where users interacted with the

system, they were not informed whether the revisions were sampled from our collected

iterative revision dataset, or generated by the underlying text revision models.

User Study Design. We hired three linguistic experts (English L1, bachelor’s or higher

degree in Linguistics) to interact with our text revision system. Each user was presented

with a text revision (as shown in Figure 6.2d) and asked to accept or reject each edit in the

current revision (users were informed which revision depth they were looking at). For a

fair comparison, users were not informed about the source of the edits (human-written vs.

model-generated), and the experiments were conducted separately one after the other. Note

that the users were only asked to accept or reject edits, and they had control neither over the

number of iterations, nor over the stopping criteria. The stopping criteria for the experiment

124

Docs Avg. Depths # Edits

Training 44,270 6.63 292,929
Validation 5,152 6.60 34,026
Test 6,226 6.34 39,511

Table 6.1: Statistics for our collected revision data which has been used to train the edit
intention identification model and the text revision generation model. # Docs means the
total number of unique documents, Avg. Depths indicates the average revision depth per
document (for the human-generated training data), and # Edits stands for the total number
of edits (sentence pairs) across the corpus.

were set by us and designed as: (1) no new edits were made at the following revision depth,

or (2) the maximum revision depth tmax = 3 was reached.

Data Details. We followed the prior work [50] to collect the text revision data across three

domains: ArXiv, Wikipedia, and Wikinews. This data was then used to train both the edit

intention identification models and the text revision generation model. We split the data

into training, validation, and test sets according to their document ids with a ratio of 8:1:1.

The detailed data statistics are included in Table 6.1. Note that our newly collected revision

dataset is larger than the previously proposed dataset in [50] with around 24K more unique

documents and 170K more edits (sentence pairs).

For the human evaluation data, we randomly sampled 10 documents with a maximum

revision depth of 3 from each domain in the test set in Table 6.1. For the evaluation of text

revisions made by human writers (HUMAN-HUMAN), we presented the existing ground-

truth references from our collected dataset to users. Since we do not hire additional human

writers to perform continuous revisions, we just presented the static human revisions from

the original test set to users at each revision depth, and collected the user acceptance statistics

as a baseline for our system.

For the evaluation of text revisions made by our system (SYSTEM-HUMAN), we only

presented the original source document at the initial revision depth (D0) to our system,

and let the system generate edits in the following revision depths, while incorporating the

125

accept/reject decisions on model-generated edit suggestions by the users. Note that at each

revision depth, the system will only incorporate the edits accepted by users and pass them to

the next revision iteration.

For text revisions made by our system without human-in-the-loop (SYSTEM-ONLY), we

let the system generate edits in an iterative way and accepted all model-generated edits at

each revision depth.

Model Details. For both edit intention identification models, we fine-tuned the RoBERTa-

large [276] pre-trained checkpoint from HuggingFace [124] for 2 epochs with a learning

rate of 1× 10−5 and batch size of 16. The edit-prediction classifier is a binary classification

model that predicts whether to edit a given sentence or not. It achieves an F1 score of 67.33

for the edit label and 79.67 for the not-edit label. The edit-intention classifier predicts the

specific intent of a sentence that requires editing. It achieves F1 scores of 67.14, 70.27, 57.0,

and 3.214 for CLARITY, FLUENCY, COHERENCE and STYLE intent labels respectively.

For the text revision generation model, we fine-tuned the PEGASUS-LARGE [275] pre-

trained checkpoint from HuggingFace. We set the edit intentions as new special tokens (e.g.,

<STYLE>, <FLUENCY>), and concatenated the edit intention and source sentence together

as the input to the model. The output of the model is the revised sentence, and we trained

the model with cross-entropy loss. We fine-tuned the model for 5 epochs with a learning rate

of 3× 10−5 and batch size of 4. Finally, our text revision generation model achieves 41.78

SARI score [277], 81.11 BLEU score [218] and 89.08 ROUGE-L score [165] on the test set.

6.1.3 Result Analysis

Iterativeness. The human-in-the-loop iterative text revision evaluation results are reported

in Table 6.2. Each document is evaluated by at least 2 users. We find that R3 achieves

comparable performances with ground-truth human revisions at revision depth 1 and
4We note that the F1 score for STYLE is low as the number of training samples for that intent is particularly

small.

126

HUMAN-HUMAN SYSTEM-HUMAN (ours)

t # Docs Avg. Edits Avg. Accepts % Accepts # Docs Avg. Edits Avg. Accepts % Accepts

1 30 5.37 2.77 51.66 30 5.90 2.90 49.15
2 30 4.83 3.00 62.06 24 3.83 2.57 67.02
3 20 3.80 2.67 70.39 20 3.43 1.94 56.71

Table 6.2: Human-in-the-loop iterative text revision evaluation results. t stands for the
revision depth, # Docs shows the total number of revised documents at the current revision
depth, Avg. Edits indicates the average number of applied edits per document, Avg. Accepts
means the average number of edits accepted by users per document, and % Accepts is
calculated by dividing the total accepted edits with the total applied edits.

HUMAN-HUMAN SYSTEM-HUMAN (ours)

Edits # Accepts % Accepts # Edits # Accepts % Accepts

CLARITY 197 119 60.40 332 195 58.73
FLUENCY 178 146 82.02 91 41 45.05
COHERENCE 103 41 39.80 141 68 48.22
STYLE 6 2 33.33 113 73 64.60

Table 6.3: The distribution of different edit intentions. # Edits indicates the total number
of applied edits under the current edit intention, # Accepts means the total number of edits
accepted by users under the current edit intention, and % Accepts is calculated by dividing
the total accepted edits with the total applied edits.

2, and tends to generate less favorable edits at revision depth 3. At revision depth 1,

R3 is able to generate more edits than ground-truth human edits for each document, and

gets more edits accepted by users on average. This shows the potential ofR3 in generating

appropriate text revisions that are more favorable to users.

At revision depth 2, while R3 generates fewer edits than human writers on average,

it gets a higher acceptance rate than human writers. This result suggests that for the end

users, more edits may not necessarily lead to a higher acceptance ratio, and shows thatR3

is able to make high-quality edits for effective iterative text revisions. At revision depth 3,

R3 generates even fewer edits compared both to human writers and its previous revision

depths. This result can be attributed to the fact that our models are only trained on static

human revision data, while at testing time they have to make predictions conditioned on

their revisions generated at the previous depth, which may have a very different distribution

of edits than the training data.

127

Edit Intention Edit Suggestion

CLARITY Emerging new test procedures , such as antigen or RT-LAMP tests, might enable us to
protect nursing home residents.

FLUENCY For Radar tracking, we show how a model can reduce the tracking errors.

COHERENCE However, we show that even a small violation can significantly modify the effective
noise.

STYLE There has been numerousextensive research focusing on neural coding.

Table 6.4: Edit suggestion examples generated byR3.

Avg. Depths # Edits Quality

SYSTEM-HUMAN (ours) 2.5 148 0.68
SYSTEM-ONLY 2.8 175 0.28

Table 6.5: Quality comparison results of final revised documents with and without human-in-
the-loop. Avg. Depths indicates the average number of iterations conducted by the system,
Edits means the total number of accepted edits by the system, and Quality represents the
human judgements of the overall quality of system-revised final documents.

Edit Intentions. Table 6.3 demonstrates the distribution of different edit intentions, which

can help us further analyze which type of edits are more likely to be accepted by end users.

For human-generated revisions, we find that FLUENCY edits are most likely to be accepted

since they are mainly fixing grammatical errors.

For system-generated revisions, we observe that CLARITY edits are the most

frequent edits but end users only accept 58.73% of them, which suggests that our system

needs further improvements in learning CLARITY edits. Another interesting observation

is that STYLE edits are rarely generated by human writers (1.2%) and also get the lowest

acceptance rate (33.33%) than other intentions, while they are frequently generated by

our system (16.7%) and surprisingly gets the highest acceptance rate (64.6%) than other

intentions. This observation indicates that R3 is capable of generating favorable stylistic

edits.

Role of Human Feedback in Revision Quality. Table 6.5 illustrates the quality compari-

son results of final revised documents with and without human-in-the-loop forR3. We asked

128

Criterion Avg. Score Std. Deviation

Convenience 3.66 0.58
Satisfaction 2.33 0.58
Productivity 3.00 1.00
Retention 2.66 0.58

Table 6.6: User feedback survey ratings. Ratings are on 5-point Likert scale with 5 being
strongly positive experience, 3 being neutral, and 1 being strongly negative. However, we’d
like to point out that as the number of users (linguists) who participated in the study is small,
the statistical significance of the results should be taken lightly.

another group of three annotators (English L2, bachelor’s or higher degree in Computer

Science) to judge whether the overall quality of the system-generated final document is better

than the ground-truth reference final document. The quality score ranges between 0 and 1.

We evaluated 10 unique documents in the ArXiv domain, and took the average score from all

3 annotators. As shown in Table 6.5, SYSTEM-HUMAN produces a better overall quality

score for the final system-generated documents with fewer iterations of revision and

fewer edits, which validates the effectiveness of the human-machine interaction proposed

inR3.

User Feedback. We also collected qualitative feedback about R3 from the linguistic

experts through a questionnaire. The first part of our questionnaire asks participants to

recall their experience with the system, and evaluate various aspects of the system (in

Table 6.6). They were asked to rate how easy it was to get onboarded and use the system

(convenience), whether they were satisfied with the system (revision quality and usage

experience) (satisfaction), whether they felt it improved their productivity for text revision

(productivity), and whether they would like to use the system again (retention) for performing

revisions on their documents.

In general, the users gave positive feedback towards the ease of use of the system.

However, they were neutral on the potential productivity impact, owing to the lack of

domain knowledge of the documents they were evaluating. This issue could be mitigated by

asking users to revise their own documents of interest. The retention and satisfaction scores

129

were leaning slightly negative, which was explained as primarily attributed to gaps in the

user interface design (eg. improperly aligned diffs, suboptimal presentation of word-level

edits, etc.).

We also asked them to provide detailed comments on their experience, and the potential

impact of the system on their text revision experience. Specifically, upon asking the users

whether using the system to evaluate the model-suggested edits would be more time-efficient

compared to actually revising the document themselves, we received many useful insights

that help better design better interfaces and features of our system in future work, as some

users noted:

I think it would be faster using the system, but I would still be checking the text

myself in case edits were missed. The system made some edits where there were

letters and parts of words being added/removed/replaced, which sometimes took

some time to figure out. That wouldn’t be the case if I were editing a document.

Ultimately, I would use the system for grammar/coherence/clarity edits, and

then still research (a lot) to ensure that meaning was preserved throughout the

document. For topics that I was more familiar with/more general topics, using

the system would probably reduce my time by a third or so. For topics that

require more in-depth research, the time saved by using the system might be

minimal.

6.1.4 Discussion

When R3 generates revisions at deeper depths, we observe a decrease in the acceptance

ratio by human users. It is crucial to create a text revision system that can learn different

revision strategies at each iteration and generate high-quality edits at deeper revision levels.

Editing suggestions provided by our text revision generation models could be improved.

Particularly, FLUENCY edits show a huge gap between human and system revisions (45.05%

130

and 82.02%). Future work could focus on developing more powerful text revision generation

models.

In our human-machine interaction, we restrict the users’ role to accept or reject the

model’s predictions. Even with minimal human interaction, our experiment shows compara-

ble or even better revision quality as compared to human writers at early revision depths.

A potential future direction for human-machine collaborative text revision would be to

develop advanced human-machine interaction interfaces, such as asking users to rewrite the

machine-revised text.

Also, a larger-scale user study could be carried out to derive more meaningful statistics

(e.g. optimal number of revision depths and edit suggestions) and investigate if there is any

intriguing user behavior in the iterative revision process. For example, as mentioned in the

users’ feedback, it would be interesting to check if users behave differently when they are

asked to accept/reject edit suggestions provided for their own texts as opposed to the texts

written by a third party.

6.2 Summary

In this chapter, we analyze real-world human revision behaviors and develop an interactive

text generation system for the text revision task. In Section 6.1, we develop an interactive

iterative text revision systemR3 that is able to effectively assist users to make revisions and

improve the quality of existing documents. Empirical results show that R3 can generate

iterative text revisions with acceptance rates comparable to or even better than human writers

at early revision depths.

131

CHAPTER 7

CONCLUSION

My research aims to advance the field of human-AI collaborative text generation, focus-

ing on enhancing large language models (LLMs) to better align with user specifications.

Specifically, I achieve the goal through: (1) designing controllable and data-efficient text

generation methods, and (2) building human-AI collaborative text generation applications

guided by user intentions.

To enhance controllability and data efficiency, I propose fine-tuning a small side network

to encode control attributes and integrate them with pre-trained LLMs. This is complemented

by a specific control loss to prevent ambiguous and generic responses. Moreover, recognizing

that some training data, especially LLM-generated data, can be very noisy and uninformative,

I design a model-uncertainty-based data selection method to select training data that is

beneficial for learning. To address the generation of factually incorrect content, I devise a

new reward function and fine-tuned LLMs with reinforcement learning to ensure the model’s

outputs remain faithful to the input knowledge texts. To promote output diversity, I apply a

stochastic function to introduce context-aware variations into encoder hidden states, which

helps the model learn rich contextual representations.

For human-AI collaborative text generation, I apply LLMs for a document revision

task that requires producing accurate, formal, and coherent text revisions. To examine

the capability of LLMs for making continuous revisions and collaborating with human

writers, I collect a large-scale iterative text revision dataset with fine-grained edit intention

labels, train controllable text revision models, and build a human-in-the-loop system to

incorporate user feedback into model revisions. The proposed system achieved high-quality

text revisions with minimal human efforts by reading model-generated revisions and user

feedback, revising documents, and repeating user-system interactions.

132

For future research directions, my primary objective is to further refine the interaction

between users and AI systems. The goal is to develop more efficient writing systems that

not only reduce user’s cognitive load but also effectively meet domain-specific requirements.

I plan to achieve the goal based on the retrieval-augmented generation framework [278]

via: (1) collaborative text generation: understanding and predicting user requirements in

real-time, and adaptively controlling LLMs to respond in various writing contexts; (2)

knowledge-grounded text generation: equipping LLMs with domain-specific knowledge

and controlling LLMs to generate factual and helpful content. Beyond these areas, I am

also interested in educational AI applications. This includes the development of knowledge-

grounded question-answering systems and academic writing assistants, leveraging LLMs

to provide educational support, tailored guidance, and assistance in academic research and

writing.

133

REFERENCES

[1] R. Nakano et al., “Webgpt: Browser-assisted question-answering with human feed-
back,” arXiv, 2022.

[2] J. Menick et al., “Teaching language models to support answers with verified quotes,”
arXiv, 2022.

[3] L. Ouyang et al., “Training language models to follow instructions with human
feedback,” arXiv, 2022.

[4] H. Touvron et al., “Llama: Open and efficient foundation language models,” arXiv,
2023.

[5] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[6] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization with
pointer-generator networks,” in Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Vancouver,
Canada: Association for Computational Linguistics, Jul. 2017, pp. 1073–1083.

[7] E. Clark, A. S. Ross, C. Tan, Y. Ji, and N. A. Smith, “Creative writing with a
machine in the loop: Case studies on slogans and stories,” in 23rd International
Conference on Intelligent User Interfaces, ser. IUI ’18, Tokyo, Japan: Association
for Computing Machinery, 2018, 329–340, ISBN: 9781450349451.

[8] M. Lee, P. Liang, and Q. Yang, “Coauthor: Designing a human-ai collaborative writ-
ing dataset for exploring language model capabilities,” arXiv preprint arXiv:2201.06796,
2022.

[9] A. Vaswani et al., “Attention is all you need,” in Advances in Neural Information
Processing Systems, I. Guyon et al., Eds., vol. 30, Curran Associates, Inc., 2017.

[10] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Advances in neural information processing systems, 2014, pp. 3104–
3112.

[11] T. Brown et al., “Language models are few-shot learners,” in Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020, pp. 1877–1901.

134

[12] C. Raffel et al., “Exploring the limits of transfer learning with a unified text-to-text
transformer,” Journal of Machine Learning Research, vol. 21, pp. 1–67, 2020.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv, 2017.

[14] N. Stiennon et al., “Learning to summarize with human feedback,” in Advances
in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020, pp. 3008–3021.

[15] Y. Zhou et al., “Large language models are human-level prompt engineers,” arXiv
preprint arXiv:2211.01910, 2022.

[16] E. M. Bender and B. Friedman, “Data statements for natural language processing:
Toward mitigating system bias and enabling better science,” Transactions of the
Association for Computational Linguistics, vol. 6, pp. 587–604, 2018.

[17] S. L. Blodgett, S. Barocas, H. Daumé III, and H. Wallach, “Language (technology)
is power: A critical survey of “bias” in NLP,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, Online: Association for
Computational Linguistics, Jul. 2020, pp. 5454–5476.

[18] S. Harrer, “Attention is not all you need: The complicated case of ethically using
large language models in healthcare and medicine,” EBioMedicine, vol. 90, 2023.

[19] B. Peng et al., “Few-shot natural language generation for task-oriented dialog,” in
Findings of the Association for Computational Linguistics: EMNLP 2020, Online:
Association for Computational Linguistics, Nov. 2020, pp. 172–182.

[20] M. Cascella, J. Montomoli, V. Bellini, and E. Bignami, “Evaluating the feasibility
of chatgpt in healthcare: An analysis of multiple clinical and research scenarios,”
Journal of Medical Systems, vol. 47, no. 1, p. 33, 2023.

[21] A. Deroy, K. Ghosh, and S. Ghosh, “How ready are pre-trained abstractive models
and llms for legal case judgement summarization?” arXiv preprint arXiv:2306.01248,
2023.

[22] J. Schatzmann, K. Georgila, and S. Young, “Quantitative evaluation of user simu-
lation techniques for spoken dialogue systems,” in Proceedings of the 6th SIGdial
Workshop on Discourse and Dialogue, Lisbon, Portugal: Special Interest Group on
Discourse and Dialogue (SIGdial), Sep. 2005, pp. 45–54.

[23] J. Gao, M. Galley, and L. Li, “Neural approaches to conversational ai,” in The 41st
International ACM SIGIR Conference on Research & Development in Informa-

135

tion Retrieval, ser. SIGIR ’18, Ann Arbor, MI, USA: Association for Computing
Machinery, 2018, 1371–1374, ISBN: 9781450356572.

[24] S. Zhang and K. Balog, “Evaluating conversational recommender systems via user
simulation,” in Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, ser. KDD ’20, Virtual Event, CA, USA:
Association for Computing Machinery, 2020, 1512–1520, ISBN: 9781450379984.

[25] Y. Wolf, N. Wies, Y. Levine, and A. Shashua, “Fundamental limitations of alignment
in large language models,” arXiv preprint arXiv:2304.11082, 2023.

[26] A. Fan, M. Lewis, and Y. Dauphin, “Hierarchical neural story generation,” in Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), Melbourne, Australia: Association for Computational
Linguistics, Jul. 2018, pp. 889–898.

[27] N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher, “Ctrl: A
conditional transformer language model for controllable generation,” arXiv preprint
arXiv:1909.05858, 2019.

[28] B. Krause et al., Gedi: Generative discriminator guided sequence generation, 2020.
arXiv: 2009.06367 [cs.CL].

[29] S. Dathathri et al., “Plug and play language models: A simple approach to controlled
text generation,” in International Conference on Learning Representations, 2019.

[30] J. Wei et al., “Chain-of-thought prompting elicits reasoning in large language
models,” Advances in neural information processing systems, vol. 35, pp. 24 824–
24 837, 2022.

[31] S. Min et al., “Rethinking the role of demonstrations: What makes in-context
learning work?” In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, Abu Dhabi, United Arab Emirates: Association for
Computational Linguistics, Dec. 2022, pp. 11 048–11 064.

[32] N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher, arXiv preprint
arXiv:1909.05858, 2019.

[33] S. Kawano, K. Yoshino, and S. Nakamura, “Neural conversation model controllable
by given dialogue act based on adversarial learning and label-aware objective,” in
Proceedings of the 12th International Conference on Natural Language Generation,
Tokyo, Japan: Association for Computational Linguistics, 2019, pp. 198–207.

[34] S. Dathathri et al., “Plug and play language models: A simple approach to controlled
text generation,” CoRR, vol. abs/1912.02164, 2019. arXiv: 1912.02164.

136

https://arxiv.org/abs/2009.06367
https://arxiv.org/abs/1912.02164

[35] J. O. Zhang, A. Sax, A. R. Zamir, L. J. Guibas, and J. Malik, “Side-tuning: Network
adaptation via additive side networks,” CoRR, vol. abs/1912.13503, 2019. arXiv:
1912.13503.

[36] K. Yang and D. Klein, “FUDGE: Controlled text generation with future discrimina-
tors,” in Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Online:
Association for Computational Linguistics, Jun. 2021, pp. 3511–3535.

[37] R. Ramamurthy et al., “Is reinforcement learning (not) for natural language pro-
cessing: Benchmarks, baselines, and building blocks for natural language policy
optimization,” in The Eleventh International Conference on Learning Representa-
tions, 2023.

[38] E. Akyürek, D. Schuurmans, J. Andreas, T. Ma, and D. Zhou, “What learning
algorithm is in-context learning? investigations with linear models,” in The Eleventh
International Conference on Learning Representations, 2023.

[39] W. Du and Y. Ji, “SideControl: Controlled open-domain dialogue generation via ad-
ditive side networks,” in Findings of the Association for Computational Linguistics:
EMNLP 2021, Punta Cana, Dominican Republic: Association for Computational
Linguistics, Nov. 2021, pp. 2175–2194.

[40] W. Du, H. Chen, and Y. Ji, “Self-training with two-phase self-augmentation for
few-shot dialogue generation,” in Findings of the Association for Computational
Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates: Association for
Computational Linguistics, Dec. 2022, pp. 2770–2784.

[41] Du, Wanyu and Y. Ji, “Blending reward functions via few expert demonstrations
for faithful and accurate knowledge-grounded dialogue generation,” arXiv preprint
arXiv:2311.00953, 2023.

[42] N. Singh, G. Bernal, D. Savchenko, and E. L. Glassman, “Where to hide a stolen
elephant: Leaps in creative writing with multimodal machine intelligence,” ACM
Trans. Comput.-Hum. Interact., vol. 30, no. 5, 2023.

[43] A. Yuan, A. Coenen, E. Reif, and D. Ippolito, “Wordcraft: Story writing with large
language models,” in 27th International Conference on Intelligent User Interfaces,
ser. IUI ’22, New York, NY, USA: Association for Computing Machinery, 2022,
841–852, ISBN: 9781450391443.

[44] W. Cui, S. Zhu, M. R. Zhang, H. A. Schwartz, J. O. Wobbrock, and X. Bi, “Justcor-
rect: Intelligent post hoc text correction techniques on smartphones,” in Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology,

137

https://arxiv.org/abs/1912.13503

ser. UIST ’20, Virtual Event, USA: Association for Computing Machinery, 2020,
487–499, ISBN: 9781450375146.

[45] A. Coenen, L. Davis, D. Ippolito, E. Reif, and A. Yuan, “Wordcraft: A human-ai
collaborative editor for story writing,” arXiv preprint arXiv:2107.07430, 2021.

[46] V. Padmakumar and H. He, “Machine-in-the-loop rewriting for creative image
captioning,” arXiv preprint arXiv:2111.04193, 2021.

[47] K. I. Gero, V. Liu, and L. B. Chilton, “Sparks: Inspiration for science writing using
language models,” arXiv preprint arXiv:2110.07640, 2021.

[48] S. Sun et al., “IGA: An intent-guided authoring assistant,” in Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, Online
and Punta Cana, Dominican Republic: Association for Computational Linguistics,
Nov. 2021, pp. 5972–5985.

[49] F. Faltings et al., “Interactive text generation,” arXiv preprint arXiv:2303.00908,
2023.

[50] W. Du, V. Raheja, D. Kumar, Z. M. Kim, M. Lopez, and D. Kang, “Understanding
iterative revision from human-written text,” in Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 3573–
3590.

[51] W. Du, Z. M. Kim, V. Raheja, D. Kumar, and D. Kang, “Read, revise, repeat:
A system demonstration for human-in-the-loop iterative text revision,” in Pro-
ceedings of the First Workshop on Intelligent and Interactive Writing Assistants
(In2Writing 2022), Dublin, Ireland: Association for Computational Linguistics, May
2022, pp. 96–108.

[52] T. Goswamy, I. Singh, A. Barkati, and A. Modi, “Adapting a language model
for controlled affective text generation,” in Proceedings of the 28th International
Conference on Computational Linguistics, Barcelona, Spain (Online): International
Committee on Computational Linguistics, Dec. 2020, pp. 2787–2801.

[53] Z. Lin and M. Riedl, “Plug-and-blend: A framework for controllable story generation
with blended control codes,” N. Akoury, F. Brahman, S. Chaturvedi, E. Clark, M.
Iyyer, and L. J. Martin, Eds., pp. 62–71, Jun. 2021.

[54] A. Madotto, E. Ishii, Z. Lin, S. Dathathri, and P. Fung, “Plug-and-play conversational
models,” in Findings of the Association for Computational Linguistics: EMNLP
2020, Online: Association for Computational Linguistics, Nov. 2020, pp. 2422–
2433.

138

[55] M. Ghazvininejad, X. Shi, J. Priyadarshi, and K. Knight, “Hafez: An interactive
poetry generation system,” in Proceedings of ACL 2017, System Demonstrations,
Vancouver, Canada: Association for Computational Linguistics, Jul. 2017, pp. 43–
48.

[56] N. Stiennon et al., “Learning to summarize from human feedback,” in Proceed-
ings of the 34th International Conference on Neural Information Processing Sys-
tems, ser. NIPS’20, Vancouver, BC, Canada: Curran Associates Inc., 2020, ISBN:
9781713829546.

[57] X. Lu et al., “QUARK: Controllable text generation with reinforced unlearning,”
in Advances in Neural Information Processing Systems, A. H. Oh, A. Agarwal, D.
Belgrave, and K. Cho, Eds., 2022.

[58] Y. Dubois et al., “Alpacafarm: A simulation framework for methods that learn from
human feedback,” ArXiv, vol. abs/2305.14387, 2023.

[59] Z. Wu et al., “Fine-grained human feedback gives better rewards for language model
training,” ArXiv, vol. abs/2306.01693, 2023.

[60] Z. Chen, H. Eavani, W. Chen, Y. Liu, and W. Y. Wang, “Few-shot NLG with
pre-trained language model,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, Online: Association for Computational
Linguistics, Jul. 2020, pp. 183–190.

[61] E. Chang, X. Shen, H.-S. Yeh, and V. Demberg, “On training instance selection
for few-shot neural text generation,” in Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 2: Short Papers), Online:
Association for Computational Linguistics, Aug. 2021, pp. 8–13.

[62] F. Mi, W. Zhou, L. Kong, F. Cai, M. Huang, and B. Faltings, “Self-training improves
pre-training for few-shot learning in task-oriented dialog systems,” in Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, Online
and Punta Cana, Dominican Republic: Association for Computational Linguistics,
Nov. 2021, pp. 1887–1898.

[63] X. Xu, G. Wang, Y.-B. Kim, and S. Lee, “AugNLG: Few-shot natural language
generation using self-trained data augmentation,” in Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online:
Association for Computational Linguistics, Aug. 2021, pp. 1183–1195.

[64] C. Kedzie and K. McKeown, “A good sample is hard to find: Noise injection
sampling and self-training for neural language generation models,” in Proceedings

139

of the 12th International Conference on Natural Language Generation, Tokyo,
Japan: Association for Computational Linguistics, 2019, pp. 584–593.

[65] J. He, J. Gu, J. Shen, and M. Ranzato, “Revisiting self-training for neural sequence
generation,” in International Conference on Learning Representations, 2020.

[66] S. Bakshi, S. Batra, P. Heidari, A. Arun, S. Jain, and M. White, “Structure-to-text
generation with self-training, acceptability classifiers and context-conditioning for
the GEM shared task,” in Proceedings of the 1st Workshop on Natural Language
Generation, Evaluation, and Metrics (GEM 2021), Online: Association for Compu-
tational Linguistics, Aug. 2021, pp. 136–147.

[67] P. Heidari et al., “Getting to production with few-shot natural language generation
models,” in Proceedings of the 22nd Annual Meeting of the Special Interest Group
on Discourse and Dialogue, Singapore and Online: Association for Computational
Linguistics, Jul. 2021, pp. 66–76.

[68] S. V. Mehta, J. Rao, Y. Tay, M. Kale, A. P. Parikh, and E. Strubell, Improving
compositional generalization with self-training for data-to-text generation, 2022.
arXiv: 2110.08467 [cs.CL].

[69] M. Lewis et al., “BART: Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension,” in Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics, Online: Association
for Computational Linguistics, Jul. 2020, pp. 7871–7880.

[70] T. Sellam, D. Das, and A. Parikh, “BLEURT: Learning robust metrics for text
generation,” in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, Online: Association for Computational Linguistics, Jul.
2020, pp. 7881–7892.

[71] C. T. Hemphill, J. J. Godfrey, and G. R. Doddington, “The ATIS spoken language
systems pilot corpus,” in Speech and Natural Language: Proceedings of a Workshop
Held at Hidden Valley, Pennsylvania, June 24-27,1990, 1990.

[72] S. Larson et al., “An evaluation dataset for intent classification and out-of-scope
prediction,” in Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China: Association for Com-
putational Linguistics, Nov. 2019, pp. 1311–1316.

[73] A. Stolcke et al., “Dialogue act modeling for automatic tagging and recognition of
conversational speech,” CoRR, vol. cs.CL/0006023, 2000.

140

https://arxiv.org/abs/2110.08467

[74] E. Shriberg, R. Dhillon, S. Bhagat, J. Ang, and H. Carvey, “The ICSI meeting
recorder dialog act (MRDA) corpus,” in Proceedings of the 5th SIGdial Workshop
on Discourse and Dialogue at HLT-NAACL 2004, Cambridge, Massachusetts, USA:
Association for Computational Linguistics, 2004, pp. 97–100.

[75] M. Walker and R. Passonneau, “DATE: A dialogue act tagging scheme for evaluation
of spoken dialogue systems,” in Proceedings of the First International Conference
on Human Language Technology Research, 2001.

[76] M. A. Walker et al., “Darpa communicator dialog travel planning systems: The june
2000 data collection,” in INTERSPEECH, 2001.

[77] P. Budzianowski et al., “Multiwoz - A large-scale multi-domain wizard-of-oz dataset
for task-oriented dialogue modelling,” CoRR, vol. abs/1810.00278, 2018. arXiv:
1810.00278.

[78] D. Yu and Z. Yu, “MIDAS: A dialog act annotation scheme for open domain
human machine spoken conversations,” CoRR, vol. abs/1908.10023, 2019. arXiv:
1908.10023.

[79] A. Cervone and G. Riccardi, “Is this dialogue coherent? learning from dialogue acts
and entities,” CoRR, vol. abs/2006.10157, 2020. arXiv: 2006.10157.

[80] D. Yang, A. Halfaker, R. Kraut, and E. Hovy, “Identifying semantic edit intentions
from revisions in Wikipedia,” in Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, Copenhagen, Denmark: Association for
Computational Linguistics, Sep. 2017, pp. 2000–2010.

[81] F. Zhang, H. B. Hashemi, R. Hwa, and D. Litman, “A corpus of annotated revisions
for studying argumentative writing,” in Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver,
Canada: Association for Computational Linguistics, Jul. 2017, pp. 1568–1578.

[82] T. Ito et al., “Diamonds in the rough: Generating fluent sentences from early-stage
drafts for academic writing assistance,” in Proceedings of the 12th International
Conference on Natural Language Generation, Tokyo, Japan: Association for Com-
putational Linguistics, 2019, pp. 40–53.

[83] T. Anthonio, I. Bhat, and M. Roth, “WikiHowToImprove: A resource and analyses
on edits in instructional texts,” in Proceedings of the Twelfth Language Resources
and Evaluation Conference, Marseille, France: European Language Resources
Association, May 2020, pp. 5721–5729, ISBN: 979-10-95546-34-4.

[84] I. Bhat, T. Anthonio, and M. Roth, “Towards modeling revision requirements in
wikiHow instructions,” in Proceedings of the 2020 Conference on Empirical Methods

141

https://arxiv.org/abs/1810.00278
https://arxiv.org/abs/1908.10023
https://arxiv.org/abs/2006.10157

in Natural Language Processing (EMNLP), Online: Association for Computational
Linguistics, Nov. 2020, pp. 8407–8414.

[85] F. Faltings et al., “Text editing by command,” in Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Online: Association for Computational Linguistics,
Jun. 2021, pp. 5259–5274.

[86] M. Faruqui, E. Pavlick, I. Tenney, and D. Das, “WikiAtomicEdits: A multilingual
corpus of Wikipedia edits for modeling language and discourse,” in Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing,
Brussels, Belgium: Association for Computational Linguistics, 2018, pp. 305–315.

[87] J. A. Botha, M. Faruqui, J. Alex, J. Baldridge, and D. Das, “Learning to split and
rephrase from Wikipedia edit history,” in Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, Brussels, Belgium: Association
for Computational Linguistics, 2018, pp. 732–737.

[88] A. Prakash et al., “Neural paraphrase generation with stacked residual lstm net-
works,” in Proceedings of COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, 2016, pp. 2923–2934.

[89] Z. Li, X. Jiang, L. Shang, and H. Li, “Paraphrase generation with deep reinforce-
ment learning,” in Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, Brussels, Belgium: Association for Computational
Linguistics, 2018, pp. 3865–3878.

[90] H. Jhamtani, V. Gangal, E. Hovy, and E. Nyberg, “Shakespearizing modern language
using copy-enriched sequence to sequence models,” in Proceedings of the Workshop
on Stylistic Variation, 2017, pp. 10–19.

[91] S. Rao and J. Tetreault, “Dear sir or madam, may I introduce the GYAFC dataset:
Corpus, benchmarks and metrics for formality style transfer,” in Proceedings of
the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
New Orleans, Louisiana: Association for Computational Linguistics, Jun. 2018,
pp. 129–140.

[92] A. Sordoni, Y. Bengio, H. Vahabi, C. Lioma, J. Grue Simonsen, and J.-Y. Nie, “A
hierarchical recurrent encoder-decoder for generative context-aware query sugges-
tion,” in Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management, 2015, pp. 553–562.

142

[93] I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau, “Building end-
to-end dialogue systems using generative hierarchical neural network models,” in
Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[94] K. Cho et al., “Learning phrase representations using RNN encoder–decoder for
statistical machine translation,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), Doha, Qatar: Association for
Computational Linguistics, Oct. 2014, pp. 1724–1734.

[95] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based
neural machine translation,” in Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, 2015, pp. 1412–1421.

[96] J. Gu, Z. Lu, H. Li, and V. O. Li, “Incorporating copying mechanism in sequence-to-
sequence learning,” in Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Berlin, Germany: Association
for Computational Linguistics, Aug. 2016, pp. 1631–1640.

[97] C. Raffel et al., “Exploring the limits of transfer learning with a unified text-to-text
transformer,” CoRR, vol. abs/1910.10683, 2019. arXiv: 1910.10683.

[98] H. Bahuleyan, L. Mou, O. Vechtomova, and P. Poupart, “Variational attention for
sequence-to-sequence models,” in Proceedings of the 27th International Conference
on Computational Linguistics, 2018, pp. 1672–1682.

[99] Y. Deng, Y. Kim, J. Chiu, D. Guo, and A. Rush, “Latent alignment and variational
attention,” in Advances in Neural Information Processing Systems, 2018, pp. 9712–
9724.

[100] T. Wang and X. Wan, “T-cvae: Transformer-based conditioned variational autoen-
coder for story completion,” in Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19, International Joint Conferences on
Artificial Intelligence Organization, Jul. 2019, pp. 5233–5239.

[101] J. Cho, M. Seo, and H. Hajishirzi, “Mixture content selection for diverse sequence
generation,” in Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China: Association for Com-
putational Linguistics, Nov. 2019, pp. 3121–3131.

[102] D. Qian and W. K. Cheung, “Enhancing variational autoencoders with mutual
information neural estimation for text generation,” in Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),

143

https://arxiv.org/abs/1910.10683

Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 4047–
4057.

[103] C. Wu, P. Z. Wang, and W. Y. Wang, “On the encoder-decoder incompatibility in vari-
ational text modeling and beyond,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, Online: Association for Computational
Linguistics, Jul. 2020, pp. 3449–3464.

[104] Y. Duan, C. Xu, J. Pei, J. Han, and C. Li, “Pre-train and plug-in: Flexible conditional
text generation with variational auto-encoders,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, Online: Association for
Computational Linguistics, Jul. 2020, pp. 253–262.

[105] B. Sun, S. Feng, Y. Li, J. Liu, and K. Li, “Generating relevant and coherent dialogue
responses using self-separated conditional variational AutoEncoders,” in Proceed-
ings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), Online: Association for Computational Linguistics, Aug. 2021,
pp. 5624–5637.

[106] A. K. Vijayakumar et al., “Diverse beam search: Decoding diverse solutions from
neural sequence models,” arXiv preprint arXiv:1610.02424, 2016.

[107] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case of neural
text degeneration,” arXiv preprint arXiv:1904.09751, 2019.

[108] X. He, G. Haffari, and M. Norouzi, “Sequence to sequence mixture model for diverse
machine translation,” in Proceedings of the 22nd Conference on Computational
Natural Language Learning, 2018, pp. 583–592.

[109] T. Shen, M. Ott, M. Auli, and M. Ranzato, “Mixture models for diverse machine
translation: Tricks of the trade,” arXiv preprint arXiv:1902.07816, 2019.

[110] D. Liu and G. Liu, “A transformer-based variational autoencoder for sentence
generation,” in 2019 International Joint Conference on Neural Networks (IJCNN),
IEEE, 2019, pp. 1–7.

[111] K. Shinoda, S. Sugawara, and A. Aizawa, “Improving the robustness of QA models
to challenge sets with variational question-answer pair generation,” in Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing: Student
Research Workshop, Online: Association for Computational Linguistics, Aug. 2021,
pp. 197–214.

144

[112] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning.
The MIT Press, 2006.

[113] S. R. Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz, and S. Bengio, “Gen-
erating sentences from a continuous space,” in Proceedings of the 20th SIGNLL
Conference on Computational Natural Language Learning, Berlin, Germany: Asso-
ciation for Computational Linguistics, Aug. 2016, pp. 10–21.

[114] Y. Kim, S. Wiseman, A. Miller, D. Sontag, and A. Rush, “Semi-amortized variational
autoencoders,” in Proceedings of the 35th International Conference on Machine
Learning, J. Dy and A. Krause, Eds., ser. Proceedings of Machine Learning Research,
vol. 80, PMLR, 2018, pp. 2678–2687.

[115] A. B. Dieng, Y. Kim, A. M. Rush, and D. M. Blei, “Avoiding latent variable col-
lapse with generative skip models,” in Proceedings of the Twenty-Second Interna-
tional Conference on Artificial Intelligence and Statistics, K. Chaudhuri and M.
Sugiyama, Eds., ser. Proceedings of Machine Learning Research, vol. 89, PMLR,
2019, pp. 2397–2405.

[116] A. Vaswani et al., “Attention is all you need,” in Advances in neural information
processing systems, 2017, pp. 5998–6008.

[117] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[118] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation using
deep conditional generative models,” in Advances in Neural Information Processing
Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28,
Curran Associates, Inc., 2015, pp. 3483–3491.

[119] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in Proceedings of
the International Conference on Representation Learning, 2014.

[120] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evaluation with
improved correlation with human judgments,” in Proceedings of the acl workshop
on intrinsic and extrinsic evaluation measures for machine translation and/or sum-
marization, 2005, pp. 65–72.

[121] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for automatic
evaluation of machine translation,” in Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, 2002, pp. 311–318.

[122] Y. Zhu et al., “Texygen: A benchmarking platform for text generation models,” in
The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval, 2018, pp. 1097–1100.

145

[123] A. Deshpande, J. Aneja, L. Wang, A. G. Schwing, and D. Forsyth, “Fast, diverse and
accurate image captioning guided by part-of-speech,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp. 10 695–10 704.

[124] T. Wolf et al., “Transformers: State-of-the-art natural language processing,” in
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Online: Association for Computational Lin-
guistics, Oct. 2020, pp. 38–45.

[125] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization.,” Journal of machine learning research, vol. 12, no. 7,
2011.

[126] W. Lan, S. Qiu, H. He, and W. Xu, “A continuously growing dataset of sentential
paraphrases,” in Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, 2017, pp. 1224–1234.

[127] M. Vono, N. Dobigeon, and P. Chainais, “High-dimensional gaussian sampling: A
review and a unifying approach based on a stochastic proximal point algorithm,”
SIAM Review, vol. 64, no. 1, pp. 3–56, 2022.

[128] R. Thoppilan et al., “Lamda: Language models for dialog applications,” arXiv, 2022.

[129] N. Kandpal, H. Deng, A. Roberts, E. Wallace, and C. Raffel, “Large language
models struggle to learn long-tail knowledge,” arXiv, 2022.

[130] Y. Wang et al., “Self-instruct: Aligning language models with self-generated instruc-
tions,” arXiv, 2023.

[131] J. Maynez, S. Narayan, B. Bohnet, and R. McDonald, “On faithfulness and factuality
in abstractive summarization,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, Online: Association for Computational
Linguistics, Jul. 2020, pp. 1906–1919.

[132] M. Cao, Y. Dong, and J. Cheung, “Hallucinated but factual! inspecting the factuality
of hallucinations in abstractive summarization,” in Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 3340–
3354.

[133] N. Dziri et al., “FaithDial: A Faithful Benchmark for Information-Seeking Dialogue,”
Transactions of the Association for Computational Linguistics, vol. 10, pp. 1473–
1490, Dec. 2022. eprint: https://direct.mit.edu/tacl/article-
pdf/doi/10.1162/tacl_a_00529/2065956/tacl_a_00529.
pdf.

146

https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00529/2065956/tacl_a_00529.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00529/2065956/tacl_a_00529.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00529/2065956/tacl_a_00529.pdf

[134] X. Chen, F. Chen, F. Meng, P. Li, and J. Zhou, “Unsupervised knowledge selection
for dialogue generation,” in Findings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, Online: Association for Computational Linguistics, Aug.
2021, pp. 1230–1244.

[135] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level training with
recurrent neural networks,” arXiv, 2016.

[136] W. Du and Y. Ji, “An empirical comparison on imitation learning and reinforcement
learning for paraphrase generation,” in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 6012–6018.

[137] C. Wang and R. Sennrich, “On exposure bias, hallucination and domain shift in
neural machine translation,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, Online: Association for Computational
Linguistics, Jul. 2020, pp. 3544–3552.

[138] W. Li, W. Wu, M. Chen, J. Liu, X. Xiao, and H. Wu, “Faithfulness in natural
language generation: A systematic survey of analysis, evaluation and optimization
methods,” arXiv, 2022.

[139] E. Dinan, S. Roller, K. Shuster, A. Fan, M. Auli, and J. Weston, “Wizard of wikipedia:
Knowledge-powered conversational agents,” in International Conference on Learn-
ing Representations, 2018.

[140] S. Feng, S. S. Patel, H. Wan, and S. Joshi, “MultiDoc2Dial: Modeling dialogues
grounded in multiple documents,” in Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing, Online and Punta Cana, Dominican
Republic: Association for Computational Linguistics, Nov. 2021, pp. 6162–6176.

[141] B. Kim, J. Ahn, and G. Kim, “Sequential latent knowledge selection for knowledge-
grounded dialogue,” in International Conference on Learning Representations,
2020.

[142] Z. Wu, B.-R. Lu, H. Hajishirzi, and M. Ostendorf, “DIALKI: Knowledge identi-
fication in conversational systems through dialogue-document contextualization,”
in Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, Online and Punta Cana, Dominican Republic: Association for
Computational Linguistics, Nov. 2021, pp. 1852–1863.

[143] X. Zhao, W. Wu, C. Tao, C. Xu, D. Zhao, and R. Yan, “Low-resource knowledge-
grounded dialogue generation,” in International Conference on Learning Represen-
tations, 2020.

147

[144] P. Xu, D. Liang, Z. Huang, and B. Xiang, “Attention-guided generative models for
extractive question answering,” arXiv, 2021.

[145] S. Prabhumoye, K. Hashimoto, Y. Zhou, A. W. Black, and R. Salakhutdinov, “Fo-
cused attention improves document-grounded generation,” in Proceedings of the
2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Online: Association for Compu-
tational Linguistics, Jun. 2021, pp. 4274–4287.

[146] R. Tian, S. Narayan, T. Sellam, and A. P. Parikh, “Sticking to the facts: Confident
decoding for faithful data-to-text generation,” arXiv, 2020.

[147] M. Li et al., “Don’t say that! making inconsistent dialogue unlikely with unlikeli-
hood training,” in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, Online: Association for Computational Linguistics, Jul.
2020, pp. 4715–4728.

[148] B. Liu, G. Tür, D. Hakkani-Tür, P. Shah, and L. Heck, “Dialogue learning with
human teaching and feedback in end-to-end trainable task-oriented dialogue sys-
tems,” in Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), New Orleans, Louisiana: Association for Computational
Linguistics, Jun. 2018, pp. 2060–2069.

[149] J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and J. Gao, “Deep reinforce-
ment learning for dialogue generation,” in Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, Austin, Texas: Association for
Computational Linguistics, Nov. 2016, pp. 1192–1202.

[150] M. Post, “A call for clarity in reporting BLEU scores,” in Proceedings of the
Third Conference on Machine Translation: Research Papers, Brussels, Belgium:
Association for Computational Linguistics, Oct. 2018, pp. 186–191.

[151] K. Shuster, S. Poff, M. Chen, D. Kiela, and J. Weston, “Retrieval augmentation
reduces hallucination in conversation,” in Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, Punta Cana, Dominican Republic: Association for
Computational Linguistics, Nov. 2021, pp. 3784–3803.

[152] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore: Evaluating
text generation with bert,” in International Conference on Learning Representations,
2020.

[153] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge,
MA, USA: A Bradford Book, 2018, ISBN: 0262039249.

148

[154] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, High-dimensional
continuous control using generalized advantage estimation, 2018.

[155] J. Wu et al., “Recursively summarizing books with human feedback,” arXiv, 2021.

[156] D. M. Ziegler et al., “Fine-tuning language models from human preferences,” arXiv,
2020.

[157] C. Raffel et al., “Exploring the limits of transfer learning with a unified text-to-text
transformer,” Journal of Machine Learning Research, vol. 21, no. 140, pp. 1–67,
2020.

[158] K. Pearson, “Note on regression and inheritance in the case of two parents,” pro-
ceedings of the royal society of London, vol. 58, no. 347-352, pp. 240–242, 1895.

[159] S. Bansal et al., “R3 : Refined retriever-reader pipeline for multidoc2dial,” in
Proceedings of the Second DialDoc Workshop on Document-grounded Dialogue and
Conversational Question Answering, Dublin, Ireland: Association for Computational
Linguistics, May 2022, pp. 148–154.

[160] T. Formal, C. Lassance, B. Piwowarski, and S. Clinchant, “Splade v2: Sparse lexical
and expansion model for information retrieval,” arXiv, 2021.

[161] Y. Liu et al., “RoBERTa: A robustly optimized BERT pretraining approach,” in
International Conference on Learning Representations, 2020.

[162] G. Izacard and E. Grave, “Leveraging passage retrieval with generative models for
open domain question answering,” in Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume,
Online: Association for Computational Linguistics, Apr. 2021, pp. 874–880.

[163] H. Rashkin, D. Reitter, G. S. Tomar, and D. Das, “Increasing faithfulness in
knowledge-grounded dialogue with controllable features,” in Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), Online: Association for Computational Linguistics, Aug. 2021, pp. 704–
718.

[164] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in Interna-
tional Conference on Learning Representations, 2018.

[165] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in Text
Summarization Branches Out, Barcelona, Spain: Association for Computational
Linguistics, Jul. 2004, pp. 74–81.

149

[166] S. Banerjee and A. Lavie, “METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments,” in Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or
Summarization, Ann Arbor, Michigan: Association for Computational Linguistics,
Jun. 2005, pp. 65–72.

[167] V. Adlakha, P. BehnamGhader, X. H. Lu, N. Meade, and S. Reddy, “Evaluating
correctness and faithfulness of instruction-following models for question answering,”
arXiv, 2023.

[168] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners,” 2019.

[169] Y. Zhang et al., “DIALOGPT : Large-scale generative pre-training for conversational
response generation,” in Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics: System Demonstrations, Online: Association for
Computational Linguistics, Jul. 2020, pp. 270–278.

[170] S. Roller et al., “Recipes for building an open-domain chatbot,” arXiv preprint
arXiv:2004.13637, 2020.

[171] K. Shuster, D. Ju, S. Roller, E. Dinan, Y.-L. Boureau, and J. Weston, “The dialogue
dodecathlon: Open-domain knowledge and image grounded conversational agents,”
in Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, Online: Association for Computational Linguistics, Jul. 2020, pp. 2453–
2470.

[172] T.-H. Wen, M. Gašić, N. Mrkšić, P.-H. Su, D. Vandyke, and S. Young, “Semantically
conditioned LSTM-based natural language generation for spoken dialogue systems,”
in Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, Lisbon, Portugal: Association for Computational Linguistics, Sep. 2015,
pp. 1711–1721.

[173] P. Ke, J. Guan, M. Huang, and X. Zhu, “Generating informative responses with
controlled sentence function,” in Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Melbourne,
Australia: Association for Computational Linguistics, Jul. 2018, pp. 1499–1508.

[174] W. Chen, J. Chen, P. Qin, X. Yan, and W. Y. Wang, “Semantically conditioned dialog
response generation via hierarchical disentangled self-attention,” in Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, Florence,
Italy: Association for Computational Linguistics, Jul. 2019, pp. 3696–3709.

[175] A. See, S. Roller, D. Kiela, and J. Weston, “What makes a good conversation?
how controllable attributes affect human judgments,” in Proceedings of the 2019

150

Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019,
pp. 1702–1723.

[176] C.-H. Hsueh and W.-Y. Ma, “Semantic guidance of dialogue generation with re-
inforcement learning,” in Proceedings of the 21th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, 1st virtual meeting: Association for
Computational Linguistics, Jul. 2020, pp. 1–9.

[177] J. Takayama and Y. Arase, “Consistent response generation with controlled speci-
ficity,” in Findings of the Association for Computational Linguistics: EMNLP 2020,
Online: Association for Computational Linguistics, Nov. 2020, pp. 4418–4427.

[178] D. Varshney, A. Ekbal, and P. Bhattacharyya, “Modelling context emotions using
multi-task learning for emotion controlled dialog generation,” in Proceedings of
the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, Online: Association for Computational Linguistics, Apr.
2021, pp. 2919–2931.

[179] A. Baheti, A. Ritter, J. Li, and B. Dolan, “Generating more interesting responses in
neural conversation models with distributional constraints,” in Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, Brussels,
Belgium: Association for Computational Linguistics, 2018, pp. 3970–3980.

[180] A. Holtzman, J. Buys, M. Forbes, A. Bosselut, D. Golub, and Y. Choi, “Learning to
write with cooperative discriminators,” in Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne,
Australia: Association for Computational Linguistics, Jul. 2018, pp. 1638–1649.

[181] E. Dinan et al., “The second conversational intelligence challenge (convai2),” in The
NeurIPS’18 Competition, Springer, 2020, pp. 187–208.

[182] Y. Li, H. Su, X. Shen, W. Li, Z. Cao, and S. Niu, “DailyDialog: A manually
labelled multi-turn dialogue dataset,” in Proceedings of the Eighth International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), Taipei,
Taiwan: Asian Federation of Natural Language Processing, Nov. 2017, pp. 986–995.

[183] H. Rashkin, E. M. Smith, M. Li, and Y.-L. Boureau, “Towards empathetic open-
domain conversation models: A new benchmark and dataset,” in Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, Florence,
Italy: Association for Computational Linguistics, Jul. 2019, pp. 5370–5381.

[184] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings of the 2019

151

Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019,
pp. 4171–4186.

[185] I. Loshchilov and F. Hutter, Decoupled weight decay regularization, 2019. arXiv:
1711.05101 [cs.LG].

[186] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for word repre-
sentation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Doha, Qatar: Association for Computational Lin-
guistics, Oct. 2014, pp. 1532–1543.

[187] S. Bao, H. He, F. Wang, H. Wu, and H. Wang, “PLATO: Pre-trained dialogue
generation model with discrete latent variable,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, Online: Association for
Computational Linguistics, Jul. 2020, pp. 85–96.

[188] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017. arXiv:
1412.6980 [cs.LG].

[189] M. Li, J. Weston, and S. Roller, “ACUTE-EVAL: improved dialogue evaluation
with optimized questions and multi-turn comparisons,” CoRR, vol. abs/1909.03087,
2019. arXiv: 1909.03087.

[190] A. Rastogi, X. Zang, S. Sunkara, R. Gupta, and P. Khaitan, “Towards scalable multi-
domain conversational agents: The schema-guided dialogue dataset,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, pp. 8689–8696,
2020.

[191] M. Kale and A. Rastogi, “Template guided text generation for task-oriented dialogue,”
in Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Online: Association for Computational Linguistics, Nov.
2020, pp. 6505–6520.

[192] T.-H. Wen et al., “Multi-domain neural network language generation for spoken
dialogue systems,” in Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, San Diego, California: Association for Computational Linguistics, Jun.
2016, pp. 120–129.

[193] C. Zhu, M. Zeng, and X. Huang, “Multi-task learning for natural language genera-
tion in task-oriented dialogue,” in Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Con-

152

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1909.03087

ference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 1261–1266.

[194] Y. Yang, Y. Li, and X. Quan, “Ubar: Towards fully end-to-end task-oriented dialog
system with gpt-2,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 16, pp. 14 230–14 238, 2021.

[195] Y. Lee, “Improving end-to-end task-oriented dialog system with a simple auxiliary
task,” in Findings of the Association for Computational Linguistics: EMNLP 2021,
Punta Cana, Dominican Republic: Association for Computational Linguistics, Nov.
2021, pp. 1296–1303.

[196] J. Wei and K. Zou, “EDA: Easy data augmentation techniques for boosting per-
formance on text classification tasks,” in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 6382–6388.

[197] S. Y. Feng, V. Gangal, D. Kang, T. Mitamura, and E. Hovy, “GenAug: Data aug-
mentation for finetuning text generators,” in Proceedings of Deep Learning Inside
Out (DeeLIO): The First Workshop on Knowledge Extraction and Integration for
Deep Learning Architectures, Online: Association for Computational Linguistics,
Nov. 2020, pp. 29–42.

[198] B. Peng, C. Zhu, M. Zeng, and J. Gao, “Data Augmentation for Spoken Language
Understanding via Pretrained Language Models,” in Proc. Interspeech 2021, 2021,
pp. 1219–1223.

[199] A. Fabbri et al., “Improving zero and few-shot abstractive summarization with inter-
mediate fine-tuning and data augmentation,” in Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Online: Association for Computational Linguistics,
Jun. 2021, pp. 704–717.

[200] M. Chen, K. Q. Weinberger, and J. Blitzer, “Co-training for domain adaptation,” in
Advances in Neural Information Processing Systems, J. Shawe-Taylor, R. Zemel,
P. Bartlett, F. Pereira, and K. Weinberger, Eds., vol. 24, Curran Associates, Inc.,
2011.

[201] Z. Wang, Z. Dai, B. Poczos, and J. Carbonell, “Characterizing and avoiding negative
transfer,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[202] S. Meftah, N. Semmar, Y. Tamaazousti, H. Essafi, and F. Sadat, “On the hidden
negative transfer in sequential transfer learning for domain adaptation from news to

153

tweets,” in Proceedings of the Second Workshop on Domain Adaptation for NLP,
Kyiv, Ukraine: Association for Computational Linguistics, Apr. 2021, pp. 140–145.

[203] L. Feng, M. Qiu, Y. Li, H. Zheng, and Y. Shen, “Wasserstein selective transfer
learning for cross-domain text mining,” in Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, Online and Punta Cana, Do-
minican Republic: Association for Computational Linguistics, Nov. 2021, pp. 9772–
9783.

[204] Á. Peris and F. Casacuberta, “Active learning for interactive neural machine trans-
lation of data streams,” in Proceedings of the 22nd Conference on Computational
Natural Language Learning, Brussels, Belgium: Association for Computational
Linguistics, Oct. 2018, pp. 151–160.

[205] A. P.V.S and C. M. Meyer, “Data-efficient neural text compression with interactive
learning,” in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), Minneapolis, Minnesota: Association for Com-
putational Linguistics, Jun. 2019, pp. 2543–2554.

[206] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing
model uncertainty in deep learning,” in Proceedings of The 33rd International
Conference on Machine Learning, M. F. Balcan and K. Q. Weinberger, Eds., ser. Pro-
ceedings of Machine Learning Research, vol. 48, New York, New York, USA:
PMLR, 2016, pp. 1050–1059.

[207] Y. Gal, “Uncertainty in deep learning,” Ph.D. dissertation, University of Cambridge,
2016.

[208] S. Swayamdipta et al., “Dataset cartography: Mapping and diagnosing datasets with
training dynamics,” in Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Online: Association for Computational
Linguistics, Nov. 2020, pp. 9275–9293.

[209] T. Gao, X. Yao, and D. Chen, “SimCSE: Simple contrastive learning of sentence em-
beddings,” in Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, Online and Punta Cana, Dominican Republic: Association
for Computational Linguistics, Nov. 2021, pp. 6894–6910.

[210] P. Budzianowski et al., “MultiWOZ - a large-scale multi-domain Wizard-of-Oz
dataset for task-oriented dialogue modelling,” in Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, Brussels, Belgium:
Association for Computational Linguistics, 2018, pp. 5016–5026.

154

[211] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case of neural
text degeneration,” in International Conference on Learning Representations, 2020.

[212] S. Mukherjee and A. Awadallah, “Uncertainty-aware self-training for few-shot
text classification,” in Advances in Neural Information Processing Systems, H.
Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33, Curran
Associates, Inc., 2020, pp. 21 199–21 212.

[213] A. Rastogi, X. Zang, S. Sunkara, R. Gupta, and P. Khaitan, “Towards scalable multi-
domain conversational agents: The schema-guided dialogue dataset,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 8689–8696.

[214] E. M. Smith, O. Hsu, R. Qian, S. Roller, Y. Boureau, and J. Weston, “Human
evaluation of conversations is an open problem: Comparing the sensitivity of various
methods for evaluating dialogue agents,” CoRR, vol. abs/2201.04723, 2022. arXiv:
2201.04723.

[215] C. Tao, L. Mou, D. Zhao, and R. Yan, “RUBER: an unsupervised method for
automatic evaluation of open-domain dialog systems,” in Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, S. A. McIlraith and K. Q. Weinberger, Eds., AAAI Press,
2018, pp. 722–729.

[216] L. Huang, Z. Ye, J. Qin, L. Lin, and X. Liang, “GRADE: automatic graph-enhanced
coherence metric for evaluating open-domain dialogue systems,” in Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, B. Webber, T. Cohn, Y. He, and
Y. Liu, Eds., Association for Computational Linguistics, 2020, pp. 9230–9240.

[217] S. Mehri and M. Eskénazi, “Unsupervised evaluation of interactive dialog with
dialogpt,” CoRR, vol. abs/2006.12719, 2020. arXiv: 2006.12719.

[218] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for automatic
evaluation of machine translation,” in Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, Philadelphia, Pennsylvania, USA:
Association for Computational Linguistics, Jul. 2002, pp. 311–318.

[219] C.-W. Liu, R. Lowe, I. Serban, M. Noseworthy, L. Charlin, and J. Pineau, “How NOT
to evaluate your dialogue system: An empirical study of unsupervised evaluation
metrics for dialogue response generation,” in Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, Austin, Texas: Association
for Computational Linguistics, Nov. 2016, pp. 2122–2132.

155

https://arxiv.org/abs/2201.04723
https://arxiv.org/abs/2006.12719

[220] C. Zhang et al., “Dynaeval: Unifying turn and dialogue level evaluation,” CoRR,
vol. abs/2106.01112, 2021. arXiv: 2106.01112.

[221] Z. Li, J. Zhang, Z. Fei, Y. Feng, and J. Zhou, “Conversations are not flat: Modeling
the dynamic information flow across dialogue utterances,” in Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), Online: Association for Computational Linguistics, Aug. 2021, pp. 128–
138.

[222] Y. Yeh, M. Eskénazi, and S. Mehri, “A comprehensive assessment of dialog evalua-
tion metrics,” CoRR, vol. abs/2106.03706, 2021. arXiv: 2106.03706.

[223] B. Pang, E. Nijkamp, W. Han, L. Zhou, Y. Liu, and K. Tu, “Towards holistic and
automatic evaluation of open-domain dialogue generation,” in Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, Online:
Association for Computational Linguistics, Jul. 2020, pp. 3619–3629.

[224] S. Ghazarian, R. M. Weischedel, A. Galstyan, and N. Peng, “Predictive engagement:
An efficient metric for automatic evaluation of open-domain dialogue systems,”
CoRR, vol. abs/1911.01456, 2019. arXiv: 1911.01456.

[225] S. Mehri and M. Eskenazi, “USR: An unsupervised and reference free evaluation
metric for dialog generation,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, Online: Association for Computational
Linguistics, Jul. 2020, pp. 681–707.

[226] V. Phy, Y. Zhao, and A. Aizawa, “Deconstruct to reconstruct a configurable eval-
uation metric for open-domain dialogue systems,” in Proceedings of the 28th In-
ternational Conference on Computational Linguistics, Barcelona, Spain (Online):
International Committee on Computational Linguistics, Dec. 2020, pp. 4164–4178.

[227] H. Bunt, V. Petukhova, A. Malchanau, A. Fang, and K. Wijnhoven, “The dialogbank:
Dialogues with interoperable annotations,” Language Resources and Evaluation,
vol. 53, no. 2, pp. 213–249, 2019.

[228] Y. Li, H. Su, X. Shen, W. Li, Z. Cao, and S. Niu, “Dailydialog: A manually labelled
multi-turn dialogue dataset,” in Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 1: Long Papers), 2017, pp. 986–
995.

[229] Y. Liu et al., “Roberta: A robustly optimized BERT pretraining approach,” CoRR,
vol. abs/1907.11692, 2019. arXiv: 1907.11692.

156

https://arxiv.org/abs/2106.01112
https://arxiv.org/abs/2106.03706
https://arxiv.org/abs/1911.01456
https://arxiv.org/abs/1907.11692

[230] A. See, S. Roller, D. Kiela, and J. Weston, “What makes a good conversation?
how controllable attributes affect human judgments,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019,
pp. 1702–1723.

[231] R. C. Gunasekara et al., “Overview of the ninth dialog system technology challenge:
DSTC9,” CoRR, vol. abs/2011.06486, 2020. arXiv: 2011.06486.

[232] T. Kiss and J. Strunk, “Unsupervised multilingual sentence boundary detection,”
Computational Linguistics, vol. 32, no. 4, pp. 485–525, 2006.

[233] S. Zhang, E. Dinan, J. Urbanek, A. Szlam, D. Kiela, and J. Weston, “Personalizing
dialogue agents: I have a dog, do you have pets too?” In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Melbourne, Australia: Association for Computational Linguistics, Jul. 2018,
pp. 2204–2213.

[234] S. Golovanov, R. Kurbanov, S. Nikolenko, K. Truskovskyi, A. Tselousov, and T.
Wolf, “Large-scale transfer learning for natural language generation,” in Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics,
Florence, Italy: Association for Computational Linguistics, Jul. 2019, pp. 6053–
6058.

[235] K. Shuster, D. Ju, S. Roller, E. Dinan, Y.-L. Boureau, and J. Weston, “The dialogue
dodecathlon: Open-domain knowledge and image grounded conversational agents,”
in Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, Online: Association for Computational Linguistics, Jul. 2020, pp. 2453–
2470.

[236] S. Bird and E. Loper, “NLTK: The natural language toolkit,” in Proceedings of the
ACL Interactive Poster and Demonstration Sessions, Barcelona, Spain: Association
for Computational Linguistics, Jul. 2004, pp. 214–217.

[237] J. L. Fleiss, “Measuring nominal scale agreement among many raters.,” Psychologi-
cal bulletin, vol. 76, no. 5, p. 378, 1971.

[238] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore: Evaluating
text generation with BERT,” in 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, OpenReview.net,
2020.

[239] Y. Zhang et al., “Dialogpt: Large-scale generative pre-training for conversational
response generation,” CoRR, vol. abs/1911.00536, 2019. arXiv: 1911.00536.

157

https://arxiv.org/abs/2011.06486
https://arxiv.org/abs/1911.00536

[240] E. M. Bender and A. Koller, “Climbing towards NLU: On meaning, form, and
understanding in the age of data,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, Online: Association for Computational
Linguistics, Jul. 2020, pp. 5185–5198.

[241] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine
Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008.

[242] L. Flower and J. R. Hayes, “The cognition of discovery: Defining a rhetorical
problem,” College Composition and Communication, vol. 31, no. 1, pp. 21–32,
1980.

[243] M. Scardamalia, “Research on written composition,” Handbook of reserch on teach-
ing, 1986.

[244] N. Sommers, “Revision strategies of student writers and experienced adult writers,”
College composition and communication, vol. 31, no. 4, pp. 378–388, 1980.

[245] L. Faigley and S. Witte, “Analyzing revision,” College composition and communica-
tion, vol. 32, no. 4, pp. 400–414, 1981.

[246] J. Fitzgerald, “Research on revision in writing,” Review of educational research,
vol. 57, no. 4, pp. 481–506, 1987.

[247] L. S. Bridwell, “Revising strategies in twelfth grade students’ transactional writing,”
Research in the Teaching of English, vol. 14, no. 3, pp. 197–222, 1980.

[248] L. Flower, “The dynamics of composing: Making plans and juggling constraints,”
Cognitive processes in writing, pp. 31–50, 1980.

[249] A. Collins and D. Gentner, “A framework for a cognitive theory of writing,” in
Cognitive processes in writing, Erlbaum, 1980, pp. 51–72.

[250] M. M. Vaughan and D. D. McDonald, “A model of revision in natural language gen-
eration,” in 24th Annual Meeting of the Association for Computational Linguistics,
New York, New York, USA: Association for Computational Linguistics, Jul. 1986,
pp. 90–96.

[251] A. Spangher, X. Ren, J. May, and N. Peng, “NewsEdits: A news article revision
dataset and a novel document-level reasoning challenge,” M. Carpuat, M.-C. de
Marneffe, and I. V. Meza Ruiz, Eds., pp. 127–157, Jul. 2022.

[252] D. Yang, A. Halfaker, R. Kraut, and E. Hovy, “Who did what: Editor role identifi-
cation in wikipedia,” in Proceedings of the International AAAI Conference on Web
and Social Media, vol. 10, 2016.

158

[253] D. Rathjens, “The seven components of clarity in technical writing,” IEEE Transac-
tions on Professional Communication, vol. PC-28, no. 4, pp. 42–46, 1985.

[254] R. A. Harris, Writing with clarity and style: A guide to rhetorical devices for
contemporary writers. Routledge, 2017.

[255] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[256] K. Kann, S. Rothe, and K. Filippova, “Sentence-level fluency evaluation: References
help, but can be spared!” In Proceedings of the 22nd Conference on Computational
Natural Language Learning, Brussels, Belgium: Association for Computational
Linguistics, Oct. 2018, pp. 313–323.

[257] A. Pauls and D. Klein, “Large-scale syntactic language modeling with treelets,” in
Proceedings of the 50th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), Jeju Island, Korea: Association for Computational
Linguistics, Jul. 2012, pp. 959–968.

[258] M. Lapata and R. Barzilay, “Automatic evaluation of text coherence: Models and
representations,” in IJCAI, 2005, pp. 1085–1090.

[259] R. Soricut and D. Marcu, “Discourse generation using utility-trained coherence
models,” in Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions,
Sydney, Australia: Association for Computational Linguistics, Jul. 2006, pp. 803–
810.

[260] M. Elsner and E. Charniak, “Coreference-inspired coherence modeling,” in Proceed-
ings of ACL-08: HLT, Short Papers, Columbus, Ohio: Association for Computational
Linguistics, Jun. 2008, pp. 41–44.

[261] A. Louis and A. Nenkova, “A coherence model based on syntactic patterns,” in Pro-
ceedings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, Jeju Island, Korea:
Association for Computational Linguistics, Jul. 2012, pp. 1157–1168.

[262] J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, and B. S. Chissom, “Derivation of
new readability formulas (automated readability index, fog count and flesch reading
ease formula) for navy enlisted personnel,” Naval Technical Training Command
Millington TN Research Branch, Tech. Rep., 1975.

[263] M. Solnyshkina, R. Zamaletdinov, L. Gorodetskaya, and A. Gabitov, “Evaluating
text complexity and flesch-kincaid grade level,” Journal of Social Studies Education
Research, vol. 8, no. 3, pp. 238–248, 2017.

159

[264] W. Xu, C. Napoles, E. Pavlick, Q. Chen, and C. Callison-Burch, “Optimizing
Statistical Machine Translation for Text Simplification,” Transactions of the As-
sociation for Computational Linguistics, vol. 4, pp. 401–415, Jul. 2016. eprint:
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/
tacl_a_00107/1567406/tacl_a_00107.pdf.

[265] H. Guo, R. Pasunuru, and M. Bansal, “Dynamic multi-level multi-task learning for
sentence simplification,” in Proceedings of the 27th International Conference on
Computational Linguistics, Santa Fe, New Mexico, USA: Association for Computa-
tional Linguistics, Aug. 2018, pp. 462–476.

[266] I. Nassar, M. Ananda-Rajah, and G. Haffari, “Neural versus non-neural text sim-
plification: A case study,” in Proceedings of the The 17th Annual Workshop of the
Australasian Language Technology Association, Sydney, Australia: Australasian
Language Technology Association, 2019, pp. 172–177.

[267] D. Nishihara, T. Kajiwara, and Y. Arase, “Controllable text simplification with
lexical constraint loss,” in Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics: Student Research Workshop, Florence, Italy:
Association for Computational Linguistics, Jul. 2019, pp. 260–266.

[268] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore: Evaluating
text generation with bert,” in International Conference on Learning Representations,
2020.

[269] J. Mallinson, A. Severyn, E. Malmi, and G. Garrido, “FELIX: Flexible text editing
through tagging and insertion,” in Findings of the Association for Computational
Linguistics: EMNLP 2020, Online: Association for Computational Linguistics, Nov.
2020, pp. 1244–1255.

[270] J. Zhang, Y. Zhao, M. Saleh, and P. Liu, “Pegasus: Pre-training with extracted gap-
sentences for abstractive summarization,” in International Conference on Machine
Learning, PMLR, 2020, pp. 11 328–11 339.

[271] E. Malmi, S. Krause, S. Rothe, D. Mirylenka, and A. Severyn, “Encode, tag, realize:
High-precision text editing,” in Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 5054–5065.

[272] Y. Dong, Z. Li, M. Rezagholizadeh, and J. C. K. Cheung, “EditNTS: An neural
programmer-interpreter model for sentence simplification through explicit editing,”
in Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, Florence, Italy: Association for Computational Linguistics, Jul. 2019,
pp. 3393–3402.

160

https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00107/1567406/tacl_a_00107.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00107/1567406/tacl_a_00107.pdf

[273] L. Flower and J. R. Hayes, “A cognitive process theory of writing,” College Compo-
sition and Communication, vol. 32, no. 4, pp. 365–387, 1981.

[274] J. Fitzgerald, “Research on revision in writing,” Review of Educational Research,
vol. 57, no. 4, pp. 481–506, 1987.

[275] J. Zhang, Y. Zhao, M. Saleh, and P. Liu, “PEGASUS: Pre-training with extracted gap-
sentences for abstractive summarization,” in Proceedings of the 37th International
Conference on Machine Learning, H. D. III and A. Singh, Eds., ser. Proceedings of
Machine Learning Research, vol. 119, PMLR, 2020, pp. 11 328–11 339.

[276] Y. Liu et al., “RoBERTa: A robustly optimized BERT pretraining approach,” in
International Conference on Learning Representations, 2020.

[277] W. Xu, C. Napoles, E. Pavlick, Q. Chen, and C. Callison-Burch, “Optimizing statis-
tical machine translation for text simplification,” Transactions of the Association for
Computational Linguistics, vol. 4, pp. 401–415, 2016.

[278] P. Lewis et al., “Retrieval-augmented generation for knowledge-intensive nlp tasks,”
Advances in Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020.

161

	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Limitations of LLMs in Text Generation
	Controllable Text Generation
	Human-AI Collaborative Generation
	Contributions

	Background
	Controllable Text Generation
	Data-Efficient Text Generation
	User Intention Modeling
	Human-AI Interaction Applications

	Controllable Text Generation
	Controlling Text Diversity via Variational Encoder-Decoders
	Gaussian Processes as Function Priors
	Variational Encoder-Decoder with Gaussian Process priors
	Efficient Variational Inference
	Experimental Setup
	Result Analysis

	Controlling Faithfulness via Reinforcement Learning
	Learning Faithful and Accurate Generation Policy with RL
	Experimental Setups
	Result Analysis

	Summary

	Data-Efficient Text Generation
	Personalized Dialogue Generation via Additive Side Networks
	The SideControl Framework
	Experimental Setup
	Result Analysis

	Task-Oriented Dialogue Generation via Self-training Algorithms
	Self-training with Two-phase Self-augmentation (SA2)
	Experimental Setup
	Result Analysis

	Summary

	User Intention Modeling
	Identifying Segment Act Flows for Consensus-Based Dialogue Evaluation
	ActDial: A Segment Act Dataset on Open-Domain Dialogues
	FlowEval: A Segment-Act-Flow Aware Evaluation Metric
	Experimental Setup
	Result Analysis

	Identifying Edit Intentions for Iterative Text Revisions
	Task Formulation
	IteraTeR Dataset Construction
	Understanding Iterative Text Revisions
	Modeling Iterative Text Revisions
	Discussion

	Summary

	Human-AI Interaction Applications
	A System Demonstration for Human-in-the-loop Iterative Text Revision
	R3 Human-in-the-loop Iterative Text Revision System
	Experimental Setup
	Result Analysis
	Discussion

	Summary

	Conclusion
	References

