
Software Development: Building a Suite of Web Applications for
Research and Analysis

CS4991 Capstone Report, 2025

Feyona Zhang

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

ket6cc@virginia.edu

ABSTRACT
In today’s increasingly connected world, the
digital footprint we leave across the internet
can pose security risks to governments and
organizations that want to keep their search
activities private. To aid the research and
analysis conducted by analysts at CACI
International, Inc, I developed a suite of web
applications that replaced the use of
third-party tools. Using the Python Flask
framework, I implemented the
functionalities of two web applications
presenting web-scraped data collected in
Elasticsearch and AWS EC2 buckets.
Throughout development, I communicated
with analysts to understand their needs and
translate those needs into a software
product, collaborated with my team, worked
independently, and gained knowledge on
cutting-edge software technologies. The
result was the development of two web
applications, one which presented
autonomous system (AS) information and
another which indexed and searched a file
system based on keywords. These
applications enhanced analysts’ research
processes by increasing speed and offering a
diverse set of tools. After the development
of these apps, there remains a continued
need for maintenance and improvement in
the software. Additionally, as research needs
evolve and more data becomes available,
new applications will need to be developed.

1. INTRODUCTION
While surfing the internet, browsers track a
wide range of information pertaining to user
activity. This is done through cookies,
fingerprinting, scripts, and more. One might
think the architecture of the Internet contains
identifying information to the website or
domain object model (DOM) the user is
visiting, however, information can be leaked
to third parties through JavaScript and
cross-site embeds. Websites can gather user
information such as IP addresses, browser,
device, and operating system settings, web
traffic, and website interaction, such as
number of clicks and search terms. These
various pieces of information can be used to
follow the user across the Internet and form
a digital blueprint of user activity.

In addition to tracking, the Internet hosts a
large repository of raw data. Often the data
is unpurposed because it is in
machine-readable format such as comma
separated values (CSV) or JSON files. With
the proper tools to present and sift through
the data, connections and meaning can be
drawn from seemingly random information
that can have a huge impact for
organizations in terms of data analytics.
Combining the security concerns and the
potential power of big data on the internet,
creating web applications can be the bridge
between data on the internet with new
discoveries at organization.

2. RELATED WORKS
In their study, Bujlow et al. (2017) surveys
all the different ways one can be tracked
across the Internet. Some security concerns
highlighted include third-party web embeds
and session data. Their research emphasizes
the relevance of companies concerned with
keeping their web browsing private. This
demonstrates the increasing need for
companies to develop their own software
tools for secure and trusted use which is my
role at CACI.

Another study by Kononenko et al. (2014)
presents Elasticsearch as an effective tool in
processing “big data”. Elasticsearch is a
“distributed full-text search engine” that is
free, open-source, and scalable. The
researchers examine their experience using
Elasticsearch, highlighting its strengths and
weaknesses. They concluded Elasticsearch
as a NoSQL database coupled with machine
learning is able to perform preliminary
analysis and derive insights from big
datasets, making it an effective tool for data
analytics of web-scraped unstructured data.

3. PROJECT DESIGN
For my role, I inherited two web
applications which had access to a
repository of raw data but required software
engineering to display it in a meaningful
way.

3.1 Requirements
The first application was a website that
displayed the network information of
organizations, such as autonomous system
(AS) information and associated IP prefixes.
Most of the data could already be searched
through by AS numbers, IP prefixes,
organization name, city, and country
locations, however, the search parameters
did not always return the expected results.
My task was to refine the search results,

implement a description search of the data,
and allow combination searches of the
parameters, such as searching name, city,
and country at the same time.

The second application was a Python Flask
file search that returned documents
containing the keyword search terms. The
requirement was to return 500 character text
block previews of files where the search
term was found and allow pagination
through each of the snippets per file.
Additionally, the app needed to store the last
search result upon returning to the home
page.

3.2 System Architecture
Both web applications were locally hosted
within Docker containers on EC2 instances
with configured IP addresses, ports, and
allowable traffic. The apps utilized the
Python Flask framework and were deployed
on the app server using Gunicorn. In the
case of both apps, the data was already
collected. The first application presented
data from a combination of Elasticsearch
and JSON files. The second application
drew data solely from text files within
Elasticsearch. A limitation of the system is
that all the technology was already
pre-configured.

3.3 Challenges
The first challenge was choosing the
backend data structure to manipulate the
data. Since the search results pulled from a
combination of data from the JSON files and
Elasticsearch results, the data from the two
sources needed to be combined. It was a
question of whether to do that in the
middleware or on the backend. Additionally,
in the given code in the middle of pipelining
the code to the frontend the JSON data was
converted into a Pandas dataframe.

The second challenge was learning the
Elasticsearch API for Python Flask. There
were three versions of documentation
potentially applicable: the Apache Lucene
query syntax, the Elasticsearch syntax which
wrapped the Lucene query, and the Python
Elasticsearch API which used a wrapper
method for Elasticsearch queries. It was
difficult configuring the Lucene or
Elasticsearch syntax to be compatible within
the Python API for complex Elasticsearch
queries.

Another challenge was understanding the
data. The first web applications required a
knowledge of computer network architecture
such as how AS related to prefixes and how
IP prefixes related to IP addresses in order to
return the correct results. The second
application required recognizing whether the
snippets of text returned were correct based
on reading the contents of the file.

3.4 Solutions
For the first challenge, the solution was to
communicate with my team, specifically the
developer who wrote the original code and
other members who were familiar with the
data setup. From this process, I was able to
better understand the abstractions of the
code and functions of different sections.

I addressed the second challenge through
independent research. The Python
Elasticsearch API could perform complex
queries through either using Lucene or
Elasticsearch, however, the query had to be
broken up into the Python method
parameters individually, or put into the body
argument of the method and could not use
other arguments. I discovered this through
referring to existing documentation. I also
consulted members of my team to learn of
relevant documentation such as the Lucene
syntax being the source code of
Elasticsearch.

For the last challenge of understanding the
data, I performed white-box testing with
each function in order to verify the results
and understand where the data was being
pulled from. As I progressed, I sought
guidance from my team members and the
analysts to ensure I was returning the results
they wanted and to ask if there was anything
that could be further improved. A team
member helped systems test the application
and smooth out areas that could be refined.

4. RESULTS
When the web application met the user
specifications, I verified the functionality
with the requesting client. With their
approval, the changes were ready to be
pushed to the production server.

To communicate the new changes with the
analysts, I updated the sites to display an
announcement banner attached to session
data so that it would only popup on opening
a new tab, and they would be able to read an
update of the latest changes.

Since our software is created in-house, we
can choose what technologies to use to
incorporate into our tools, considering
factors such as cost, accessibility, usability,
and the integration with our other services.
Our custom tools can be readily adapted to
different tasks shared across platforms and
streamline other processes.

5. CONCLUSION
Developing software at CACI International,
Inc. taught me important soft skills and gave
me valuable practical experience. Through
developing the web applications, I was able
to go through the software development
lifecycle from gathering requirements to
testing and maintenance. My role at the
internship was the first time I was able to
inherit a medium-sized code base to

interpret and build off and work with
industry technologies. My contributions to
the project were able to be published live
directly after I finished writing the code or
optimizations, offering immediate benefits
to the analyst’s work.

By developing the web applications
according to user specifications, I was able
to take on software development projects for
the team so members could focus on other
tasks. In addition, I was able to help around
twenty analysts conduct their research by
making their data sources more accessible.

The web applications will help the team
have their own set of customized
off-the-shelf tools that can be assured of
their data security. The software tools serve
to automate research tasks, speeding up the
process and making the data more
accessible, allowing analysts to reach
meaningful conclusions about data securely.

6. FUTURE WORK
Research needs will change over time as
technology evolves and more data is
collected. As such, there will be a continual

need for more tools that streamline the
team’s operations. I am currently working
on the next software application, a video
transcription and translation service that
utilizes OpenAI’s Whisper machine learning
model to make video data accessible as well.
Additionally, the team has more apps that
require software optimizations or to be built
entirely from scratch. As the collection of
software tools grows, they can likely be
further packages as a useful product applied
to more projects.

REFERENCES

Bujlow, T., Carela-Espanol, V., Lee, B.-R.,
& Barlet-Ros, P. (2017). A survey on web
tracking: Mechanisms, implications, and
defenses. Proceedings of the IEEE, 105(8),
1476–1510.
https://doi.org/10.1109/jproc.2016.2637878.

Kononenko, O., Baysal, O., Holmes, R., &
Godfrey, M. W. (2014). Mining modern
repositories with Elasticsearch. Proceedings
of the 11th Working Conference on Mining
Software Repositories.
https://doi.org/10.1145/2597073.2597091.

