
Modernizing College Courses: A Practical Application of Gamification 
  

  
  

A Technical Report submitted to the Department of Computer Science 
  
  

Presented to the Faculty of the School of Engineering and Applied Science 
University of Virginia • Charlottesville, Virginia 

  
In Partial Fulfillment of the Requirements for the Degree 

Bachelor of Science, School of Engineering 
  
  

Branden Kim 
Spring 2020 

  
  
On my honor as a University Student, I have neither given nor received 
unauthorized aid on this assignment as defined by the Honor Guidelines 
for Thesis-Related Assignments 
  

  
  
  
Signature  ____Branden Kim____________________   Date __5/04/2020_______ 
Branden Kim 
  
 
Approved __________________________________________   Date __________ 

Mark Floryan, Department of Computer Science 
05/04/20



Modernizing College Courses: A Practical
Application of Gamification

Branden Kim
bk2dh@virginia.edu

Mark Floryan
mrf8t@virginia.edu

May 3, 2020

Abstract

Collegiate courses have been around for decades and with them a certain
teaching style to transfer the information from professor to student. However,
with the advent of new teaching methods such as Coding Bootcamps, online
courses, and private tutoring that argueably can save money and time, can
college courses deliver the same or higher value to students? It is crucial that
collegiate courses keep up with alternative forms of learning as most of them
apply gamification principles already, which might explain why they may
have higher value. This report aims analyze a new way college courses are
taught to students by applying gamification principles along with a choose-
your-own-path style of learning. The goal of the application was to increase
student knowledge retention, satisfaction, and passion for diving deeper into
the topic of the course. This report will dive deeper into the current problems
with college courses today in addition to analyzing a potential solution that
was implemented that can categorize steps to learning. In the end, there were
successful aspects to the implemented solution that show promise to increas-
ing knowledge retention and passion such as students working on what they
enjoy and a dynamic style of learning that had a clear feedback reward loop
that can be applied to any courses in the future.
Keywords: Gamification. Courses. Feedback-Loop

1 Introduction

What is the purpose of college? In my experience and talking with my col-

leagues, many have decided to pursue higher education less for the sake of ac-

quiring more knowledge, but rather because it is the logical next step towards a

”successful” life. This is one misled step that many people, myself included, have

taken, and I would hope that throughout taking multiple college courses, I would

enjoy what I learn and be able to retain the information throughout my life. Cur-

rently, there are many alternatives to the traditional college degree, especially in

the computer science domain. The number of online resources are limitless, for

1

mailto:bk2dh@virginia.edu
mailto:mrf8t@virginia.edu


example now there are 6 month in-person coding bootcamps, online learning plat-

forms such as Udacity, and free blog and tutorial posts scoured throughout the

internet. From my experience talking to those who have taken these alternative

forms of learning, I noticed that they can give a better amount of value for time

as they are significantly cheaper, have job guarentees, and adjust the material lo-

gistics according to the student’s needs. To that end, I believed that in order for

college courses to keep up, some kind of restructure in the logistics or the material

given was necessary.

All the courses that ended up being unsatisfactory lack an overall goal, a pos-

itive feedback loop, freedom of choice, and a form of personalized attachment.

Throughout, this report will outline the goals, explain the implementation of a

potential solution, analyze the data, retrospectively explore the results, and in-

vestigate future recommendations. As for the implementation of a potential so-

lution, CS4730: Computer Game Design was revamped in a way where students

can choose their sub-topic of interest, dynamically create their own future assign-

ments, and collaboratively work together in order to create a complete 2D game.

Mainly, this method focused on allowing students to choose what they wanted to

focus on in order to increase passion, create a positive feedback loop, and increase

the amount the student learns.

If this method gains enough data to be able to significantly improve passion,

knowledge retention, and value, the general template of this implementation could

possibly be applied to other courses, alternative forms of learning, and even in

industry for new-hire onboarding or professional development. By increasing the

amount of productivity and amount of learning, this could reduce costs in industry

for the time spent on learning and increase employee skill level.

2



2 Main Objectives

At a very high level, courses in general should have two goals: make sure the

student gains the information that he or she needs and try to inspire the student

to dive deeper and proactively learn. From my experiences from the courses that I

have taken, I noticed that a lot of them fail to deliver because of one or several of

the following reasons:

1. The objective of the course is lost

2. The organization of materials seems sporadic

3. The assignments don’t assess student understanding well

4. Students can’t focus on their strengths

Some of my experiences with college courses have left me not feeling like I

grasped the materials as well as I should because, for example, the assignments

were too hand-holding or the connection of a certain topic in the course to the

course objectives is unclear. After analyzing my experiences on why I was dissat-

isfied with the current iteration of courses, I outlined a way to logistically design a

course so that it wouldn’t fail any of the above reasons.

When trying to learn something new, there has to be several key objectives that

have to be met:

1. Have a clear overall goal that all material adheres to

2. Have some form of a positive feedback loop

3. Allow the student to choose assignments / materials based on interest

4. Have a form of personal connection for each concept

3



Some of these objectives were applied from the concept of gamification which

is ”The idea to harness the motivational potential of video games by transferring

game design elements to non-game environments” 1

By game design elements, the article is referring to those elements in a game.

Figure 1: 6 elements to games Hinske et al. (2007)

As outlined above, there are 6 general elements to games. In our implementa-

tion, we expanded upon the some of these elements, which will be covered upon

more in the next section. Overall, we mapped the elements within most game de-

signs to course infrastructure in a way that retains the overall goal and information

of the course.

3 Implementation

Planning out the new implementation of the course took around 3 months. Pre-

viously, the course logistics was similar to that of other courses. In the first half of

the semester, students would spend each week working on a particular feature of

their game engine such as working on the collision resolution. In the second half,

the students would form groups of 2 − 3 and start utilizing one student’s engine

to create a playable game that could be demoed to the class at the end of the year.

1Sailer, Hense, Mayr, and Mandl (2020)

4



This course structure by itself is very good, but it could be improved.

In order to adhere to the objectives and elements outlined in the previous sec-

tion, the logistics of the course as well as create some additional assignments. As a

high overview, the first two weeks had the students learn the very basics of a game

engine like the game loop and rendering by utilizing AffineTransforms. However,

afterwards the students would pitch game ideas and break up into teams imple-

menting the most popular pitched ideas. Each time had an engine, level, and de-

sign sub team that was made up of around 2 to 3 students. Every week, each

subteam had to complete some sort of feature that would contribute to the overall

goal implementing a video game from scratch utilizing what was learned in class.

3.1 Goal

Similar to that of the previous iteration of the course, we made the overall

goal of the students to understand game design principles, fundamentally how

the game engine works, and what goes behind the scenes. In the division of the as-

signments and the material of the course, we tried to make everything contribute

to the goal of understanding how video games are designed and programmed.

However, to add some competition and incentive to create a superior game, we set

up the teams so that they will compete for the best game at the end of the year.

3.2 Feedback Loop

A positive feedback loop is essential to the learning process as it builts mo-

mentum in the student on what they are doing correctly and what they shouldn’t

be doing. Similar to that of progress checkpoints in video games there needs to

be a reward system that provides instrinsic feedback to the person. By intrinsic,

this means something that relates to personality or emotions as one could argue

that grades can be utilized as a feedback loop, but I would argue that it is not

valuable enough to the person. Instead, we decided to group the students such

5



that a group’s assignments are utilized in another group’s assignments, meaning

if one group did not finish their assignment or completed it poorly, that groups

teammates would suffer and also feel some pressure from the other groups. Fur-

thermore, we tried to incentivize being ahead of groups by offering the chance to

complete extra features that could potentially improve the team’s game or could

replace other assignments. Due to the lack of time and necessity of additional fea-

tures, we couldn’t add the incentives of replacing assignments, but this feedback

loop had a positive effect on some students as one was able to create additional

engine graphics features such as orthogonal projections.

3.3 Dynamic Progression

An essential component to video games is the aspect of choice. Without any

choice or personal say, a person can be taken out of an experience. To allow for the

aspect of choice, we decided to allow students to ”choose” their own path within

3 sub-teams:

• Engine

• Level

• Design

Each sub-team would have weekly assignments to complete features that con-

tribute to the course goal. Furthermore, towards the end of the semester, each

sub-team was allowed to either follow the schedulized assignments or create their

own assignments to complete.

3.4 Personalization

I believe that the way information is retained over long periods of time is to

create personalized connections to the information. For example, when I learned

6



about how the AffineTransform worked in relation to getting global coordinates, I

created this visualization of the matrix being passed on to the children components

that allowed me to internalize the information. Each course assignment should

be personally internalized by a student so that it solidifies their understanding.

In our implementation, we made each team to submit a demo showing off their

feature each week and have a different team present to the others every week.

This way students would have to personalize the course material in the form of

their own creative demo and show off the demo to other classmates which adds to

the feedback loop.

As mentioned before, we decided that allow students to choose a path that most

aligned with their style would be the key to applying the Gamification principles.

In our very first iteration, we divided the teams in the following way:

Figure 2: First Iteration of Schedule

In this first iteration, we divided each team into 8 subteams:

1. Engine

2. UI

3. Special Effects

4. Level Programming

5. Character Programming

7



6. Design

7. Testing

8. Art

Outlined in each cell is the assignment that they should complete by that week.

The way that we connected it is future assignments of on sub team would depend

on the implementation of another subteam in an earlier week.

While this was the initial plan, we changed it to a second iteration. Because of

the overload of material that needs to be covered in the first iteration as well as the

problem of having to deal with teaching how to draw art. Instead, in the second

iteration , the teams were divided as:

1. Engine

2. Level

3. Design

Overall the schedule was divided as:

Figure 3: Second Iteration of Schedule

Here we divided each team into 3 subteams where students could choose which

sub-team they wanted to join. The rows represents weeks in the semester and as-

signments further in the semester requires proper completion from corresponding

8



subteams earlier in the semester. For example, the Level’s Parallax and Tweening

assignment requires the Engine’s Observer Design Pattern for the event functional-

ity. Without proper implementation of the observer design pattern, the assignment

cannot be completed. This adds a dependency from the Engine team to the Level

team that contributes to the feedback loop and personal connection.

Furthermore, we made the deadlines flexible such that the sub-team can re-

submit their work anytime that they wish. This means that if the sub-team didn’t

completely finish their assignment, they will be able to resubmit a complete ver-

sion at any time for full points. This is adhering to principle of how games have

flexible completion. In a video game, when you fail to complete a level, the game

doesn’t progress and prevent you from completing future assignments because

you failed to complete a previous quest. Similarly, the class shouldn’t progress to

more advanced topics just because one failed a previous assignment. However,

the longer that a sub-team waits to complete an assignment, the longer that the

other sub-teams cannot finish their assignment so it creates an incentive to finish

the assignments on time.

The overall assignment documents gave a short explanation on the functional-

ity of a feature and gave a high level API overview of what should be completed.

This decision was made so that when another sub-team utilized another’s imple-

mentation, they would be able to know exactly what API’s they needed to use to

utilize the features of the previous implementation.

Here is an example of one of the documents:

Towards the last few weeks, we made each team submit an Alpha, Beta, and

Final version of their game. During these submissions, the teams were allowed to

either work on a feature that we have previously outline for them or create their

own feature as an assigment. Especially in the final submissions, we thought that

students would have created some personal attachment to the work that they have

done so far and would like to extend features that are necessary.

9



Figure 4: Example of an Assignment Doc

New implementation of CS 4730: Computer Game Design

Gamification Principles Course Mechanics

Clear Objective Group up in teams and make a video game

with custom engine

Feedback Loop Peer to peer presentations and praise from

teammates

Freedom of Choice Can choose subteam of choice and desired

features in later assignments

Personal Connection Creation of a demo for each assignment

10



Included above is a table of the course mechanisms that were implemented and

how they relate to the key objectives outlined in the previous section.

While this implementation was in practice, we became something like stake-

holders that dictated what the type of game was being created as well as directing

the teams in the right direction. In the Retrospective section, I will outline differing

aspects from the theoretical schedule and the actual implemenation.

4 Data Analysis

In the middle of the semester, a survey was released to all of the students for

their overall satisfaction and thoughts on the structure of the course and the mate-

rials, in order to measure the satisfaction of students with the new implemenation

of the course. In the survey, 21 out of 64 students responded. Within this survey,

we asked short answer questions on the course structure, rewarding aspects, dif-

ficulty, and volume of material. To first analyze students’ general satisfaction of

the course, I created a box-plot of the overall satisfaction, motivation levels, and

structure of the course:

11



Figure 5: Box and whisker plot of Satisfaction Levels

Here we can see a visual respresentation of the aggregated data collected from

the passion, motivation, and enjoyment of the course structure scaled from 1 − 5.

Overall we observe that there is a median of 4 across all of the metrics, but the third

quartile ranges from 4− 5. Analyzing this data, we can see that the majority of the

students overall enjoyed the new course structure and found it valuable in terms

of their motivation, learning, and passion.

12



Figure 6: Bar Graph on the Favorite Part of the Course

In this bar graph below, I categorized the responses of the overall course sat-

isfaction in discrete categories to try” to analyze what aspect of the course is the

most popular among the students. According to one of the students, ”The course

is flexible and broad - we’re covering lots of topics in game design and there is al-

ways something to do, learn, think about, and explore. This is reinforced by the the

homework assignments, which provide a goal rather than an instructive sequence;

so you can take numerous approaches on each element. To add, it’s awesome that

you can focus on a subarea of game design: we still get exposure to each aspect, but

can really spend time on topics we’re more interested (and motivated to). In that

sense, there is a nice balance between course broadness and specificity, instead of

just a survey course or a hyper specific portion (like if the course focused a bunch

on just on graphics, for instance). The TAs are widely available, albeit I admit I

have not used them even though I would like to (I tend not to use office hours

practically even if it would be wise). During lecture, we see even more of this; it’s

discussion based and generalized in a way that encourages students to think about

13



it on their own.” Based on the data, it seems that a majority of the students enjoyed

the sub-teams and having the choice to choose the sub-team of their choice.

14



Figure 7: Bar Graph on dissatisfaction of the Course

In this bar graph above, I categorized the responses of the overall course dis-

satisfaction. Based on the majority of the students, it seems the highest amount of

dissatisfaction in the course logistics is due to the grading format.

In this bar graph below, I analyzed the responses on the desire to see more

advanced material on the course. One thing that is always hard in balancing course

materials is adding advanced material without making the course overwhelming.

In this graph, we can see that the majority of students would prefer seeing more

advanced material.

15



Figure 8: Bar Graph of Desire of Advanced Material

This final graph represents what the students found the most rewarding in the

course.

Figure 9: Bar Graph of Most Rewarding Part of the Course

16



It is interesting that what students found the most rewarding is seeing the

fruition of their implementation. Looking at this, the data might suggest that there

is a correlation between a positive feedback loop and the difficulty of projects and

assignments. This would be similar to that of how more challenging video games

feel more rewarding to the player.

5 Retrospective

Overall, this course implementation was a step in the right direction, but had

some logistic problems, mainly due to the grading system. One of the general

trends found was how the division of teams and aspect of choice vastly increase

student’s interest and passion. Many students seemed to enjoy the challenging im-

plementation assignments as well as how they were able to work on the sub-teams

that interested them the most. Overall, the satisfaction level across all measures

seemed to be fairly high, settling around 4 out of 5 based on the student respones.

Furthermore, from many of the student responses, it seemed that how in-depth

the course material and assignments went into the topic of game design generated

positive responses. There might be a correlation with the depth of material and

difficulty level with satisfaction and value. Furthermore, the division of the teams

into sub-teams that had to collaborate and communicate with each other to finish

assignments was a huge positive. Perhaps the demos that sub-teams had to make

and the accountability of the quality of their code due to other sub-teams utilizing

it had an effect on the overall passion and motivation of the students.

The way that the assignments were split up into 3 separate sub-teams created

an relationship that allowed the implementation to meet the main objectives. Each

sub-team was in charge of their own assignments and had other sub-teams de-

pending on them. This created a feedback loop dependency where sub-teams felt

accountable of the work they hand off. Furthermore, this creates an avenue for

a reward system when a sub-team completes an assignment very well with good

17



code quality and abstraction. When a sub-team abstracts and creates easy to use

APIs, it reinforces the reliability of that sub-team and makes future assignments

much easier. This type of intrinsic feedback loop is a great solution to keeping

students motivated.

As seen in the data analysis, alot of the students enjoyed the sub-team structure

with the ability to choose the corresponding sub-team. This aspect of choice really

allows the students to focus and excel on what they want to learn while still adher-

ing to the goals of the course. With the vast amount of features and optimizations

that can be made to the game engine as well as the level, it is nearly impossible

to teach the foundations and the more advanced topics within one semester. One

benefit of the division of the course into sub-teams was that students were able to

dive deeper into the particular sub-topic such as having some of the engine teams

optimize their collision detection by parsing out objects that are not in the camera

scene. Furthermore, because students are working on what they are interested in,

the motivation pushes them to learn more.

Finally, we added the requirements for each sub-team to have to create and

present their demo to each other each week. Similar to how in video games there

are small challenges that require one to show mastery of a new skill or power-up

that was obtained, creating these demos requires the students to understand their

implementation. Furthermore, implementing a small demo creates a personal at-

tachment to the obtained knowledge. From my experiences and the responses of

the students in the course, the personal attachment is what allowed the informa-

tion to transfer into long-term memory.

This course implementation was definitely not perfect. From the responses of

the students and my observations I noticed that there was a key flaw in how the

structure of the course was set up. The course had 3 sub-teams with 3 assignments

due each week. However, there was only 2 lectures in one week which meant

that not all of the information needed to finish an assignment could be logistically

covered. Some of the students in the design sub-team expressed frustration that

18



most of the lecture material covered concepts for the engine and level sub-team

but not the design sub-team. Therefore, when the design sub-teams had to design

levels and the character, many were left not really knowing how to go about it and

as the semester progressed, many of those students wanted to go back and change

some of the design decisions they made. This logistical issue is one that we did not

think of when planning out the course and it seems will be an issue for any type

of course with multiple teams. A few options could be made to remedy this issue.

1. Focus on lecture materials in the overall semester in bursts. For example, in

the beginning of the semester very basic, foundational concepts in the engine

can be covered for assignments in the engine and some of the level sub-teams.

Right after this, the class can shift to covering game design principles, essen-

tial components of video games, and what makes video games fun. Rather

than covering small increments of ideas every week for each team, instead

covering the entirety of on sub-team in a section of the semester may flow

better and make the topics seem that they have a sense of direction. This

could have an effect on how the information formulates and sticks within

the student’s mind.

2. Another option is to have solutions for each assignments readily available

and easy to integrate with each team’s game. One of the main problems of

having assignments not done correctly is that it makes the future assignments

almost impossible and has students constantly bug-fixing and going back to

fix the mistakes. By having hard deadlines and giving solutions to assign-

ments each week, this ensures that students do not fall behind, although it

would be more work on the staff since they sometimes may have to come up

with custom solutions for each team.

3. There is also the option of spliting the course up into multiple courses. There

is either the option of splitting the course up sequentially or in parallel. For

19



the sequential option, a possible solution is to offer a ”beginner”, an ”ad-

vanced”, and ”integration” version of the course. The beginner version ab-

stracts a lot of the engine and level features out by utilizing an existing frame-

work such as Unity. In this way, concepts that don’t pertain to the framework

such as game design, art, software and game testing, etc. can be all be cov-

ered in this beginner course. Then in the advanced course, the course could

cover more of the features that exist in the engine such as the AffineTrans-

form, Lighting/Shaders, Event system, collision detection, etc. Finally, there

can be an integration course that requires the knowledge learned from the

first two courses and requires the students to make a full-fledged video game

utilizing the engine and game design concepts learned. Furthermore, in this

”integration” course, there are definitely going to be some bug fixing and

additional features that may be specific to a game. This can all be finished /

covered within this last course. This could work nicely with the semester cur-

riculum as logistically, this works as a concentration similar to that of USC’s

game development track.

4. For splitting up the course in parallel, each of the sub-teams can be its own

courses that sort of run dependent on each other. The engine and game de-

sign concepts can be split where the engine course covers implementing the

engine features and the game design course covers the design concepts as

well as the aspect of building out the game with the engine that is built in

the engine course. This necessarily doesn’t even have to be split up as sepa-

rate courses. Instead, the number of lectures in the course can be increased

to 4 where the first 2 weeks has the students attending every lecture to get

the very basics of game design down such as the game loop and the compo-

nents of a game. Afterwards, the course will be split up into 2 lectures for

the engine and 2 lectures for the game design. Additionally, there can be one

extra lab section that is utilized for the game designers and engine people to

20



collaborate. This way, there wouldn’t be a shortage of lecture coverage but

also, towards the later weeks in as seen in figure 3, the engine course can

focus on optimizations without hindering the implementation of the game

and the game designers can just utilize the engine without having to worry

about the actual implementation. Unlike the sequential option, this parallel

option would be more complicated with the logistics of a college major. The

amount of credits and the approval from the department for a course run in

this manner seems almost radical.

Another issue that was observed was that the implementations of the assign-

ments by the sub-teams usually came with a lot of bugs or were often incomplete.

This adds a lot of complexity to the overall schedule as future assignments are

blocked as well as the implementation of the overall game. In the last 3 weeks

of figure 3, the teams had to come together and start implementing their game.

Theoretically, there should not have been major bugs or incomplete assignments

from the earlier weeks, however, due to the flexible deadlines and the lack of cus-

tomized solutions, many of the teams spent a majority of their time bug-fixing and

completing additional features. This was a huge issue since it barely left any time

for completing the actual game. To remedy this, there are several options:

1. One option is to reduce the amount of material covered throughout the semester.

This would mean decreasing the amount of features that needed to be imple-

mented so that many of the core engine, level, and design decisions are com-

pleted by about halfway through the semester. This way the teams have half

of the semester to spend on bug-fixing and building out their game. Even

though this gives the students significantly more time, it may not be the best

option. The main objectives of the course is to learn about good game de-

sign and how the engine works in the background rather than to build out a

completed game. By reducing the amount of content covered, the goal feels

lost. Furthermore, as in figure 9, a majority of the students found that the im-

21



plementation of the concepts covered in the lecture was the most rewarding

aspect of the course.

2. Another option is to have very robust and correct solutions to the assign-

ments combined with hard deadlines. With this combination even if sub-

teams fall behind, the solutions could be provided such that no other sub-

team falls behind and by the time the teams have to implement their video

game, time isn’t spent on bug-fixing and finishing out previous assignments.

Furthermore, since the students have hard deadlines that directly affect their

grades, students will be more motivated to learn and complete the assign-

ments on time. There are a few negatives to this approach. First, it is going

to be difficult to provide custom solutions specific to a team. For example,

a team might require a special type of level editor or a specific implementa-

tion of physics that, without a custom-made solution, may be detrimental to

the team. This would increase burden on the staff as each week they would

have to come up with solutions specific for each team. Furthermore, if one

of the sub-teams fail their assignment and have the solution handed to them,

there is no incentive for them to learn how the solution works and how to

relay that information to their team, which would mean that they lose some

understanding of the material.

3. Instead of having cutoffs with hard deadlines, another option is the have

general solutions with a ”redemption” deadline. In this version, general so-

lutions such as an optimized collision resolution, a general dev tool, etc. are

provided after an assignment is due. In the case that a sub-team fails to com-

plete an assignment, their ”redemption” would be to integrate the general

solution and make it specific to their game. For example, if the engine sub-

team fails to complete their dev-tool assignment, we would provide a general

solution for the dev-tool all set up, but the sub-team would have to integrate

it into their solution within the next week in order to get some of the points

22



back. By giving a partial grade back, this incentivizes the students to finish

the ”redemption” assignment. This makes the students have to understand

how the solution is working as well as figure out how to work with it so that

their teammates don’t fall behind.

There were also some minor issues with the grading system as well as com-

pilation. One issue that arose in the semester that we did not foresee was cross-

platform compilation issues within teams. Some members had a Windows OS,

others OSX, others Linux. The version of the C++ compiler created several issues

as well as integrating the SDL2 framework with visual sudio. Since it was the first

iteration of the course, the need for better compile scripts was not foreseen, how-

ever, in the future a better compile script is needed such as CMake or Premake.

One of the main issues throughout the course was the grading system. An

expressed dissatisfaction from some of the students was how the grading scale

was not proportional to the difficulty of the assignment. Huge assignments such

as the collision system or tweening that needs to be almost perfectly implemented

were weighted the same as very easy assignments such as the observer design

pattern for the event system. The lack of scaling may make hard assignments

seem not as involved which would cause for problems in future assignments if

the feature wasn’t implemented diligently. One solution that I believe is necessary

in the course is some sort of ”skill” tree. The tree tracks the different assignments

for each subteam similar to something like:

Similar to the figures above, the skill tree will have 3 different trees correspond-

ing to each sub-tree. In each of the nodes contains information on the assignments,

the requirements, and what needs to be completed. Furthermore, each node will

have an associated amount of experience points that are awarded on completion.

For grades, a certain amount of experience points are necessary for grade cutoffs.

Within a sub-team different nodes (or assignments) will have a number of experi-

ence points proportional to the difficulty of completing the assignment. For exam-

23



Figure 10: Final Fantasy XIII Leveling System (url:
https://mobius.gamepedia.com/Crystarium)

Figure 11: Skyrim Leveling System (url: http://en.uesp.net/wiki/Skyrim:Skills)

ple, an optimized collision system will have a higher amount of experience points

awarded for completion than the basic collision system or the dev-tool will have

a higher amount of experience points awarded than the event system. In this skill

tree system, the students will be free to choose whatever assignment they want to

complete first which helps aid in the aspect of choice as well as decisions can be

made based on what is the most necessary for the team. However, certain nodes

have a required amount of experience points to be able to see the information and

complete. The experience point requirement is to ensure that teams don’t only

work on optimizing on feature. This requires teams to finish other assignments as

well and makes it seem that the assignment completion is more for what is nec-

essary for their team rather than just gaining experience points. In addition, with

24



the assignment as nodes, there will also be ”checks” which represent peer-to-peer

demos. As show in figure 6 and figure 9, the peer demos and class presentations

was a highly enjoyed. The creation of the presentation adds personalization to

the knowledge as well as adds the aspect of competition between different teams

that motivates them to work harder and present something unique. These ”check”

nodes will award experience points and is a nice balance to the course. The skill

tree makes it so that it is possible to earn enough experience points to get an A, but

just the basic assignments are not enough to receive an A. When faced with that

obstacle, a student has the choice to either complete a more advanced assignment

or finish the presentation ”checks” either of which might take longer depending

on the student.

One difficult aspect of the skill tree is its implementation and balance with the

proportion of experience points each assignment awards, however one could say

this is an aspect of gamification and is a necessary process that constantly requires

improvement. The idea of have all the basic assignments open to the student may

seem counter intuitive since the lectures flow in a sequential order, but because the

first open assignments are very basic, students with some background knowledge

or better intution will still have the ability to complete the assignments in an order

different from that of the lecture.

Finally, some students have responded about utilizing a framework like Unity

in the course. The subject of whether to utilize a framework or not is one that I see

come up quite often in course implementation. I find high value in learning how to

implement a version of a framework because it really helps to understand the con-

cepts utilized. However, the only instance that I find utilizing frameworks help-

ful is when the concepts in the implementation of the framework are beyond the

scope of the course. For example, if the course was split up into the beginner and

advanced versions, it makes sense for the beginner course to utilize a framework

like Unity because the goal of the course is to learn good game design principles as

opposed to learning what happens in the engine. The use of frameworks should

25



only be utilized when the goal of the course does not focus on the technologies

utilized in the framework.

As a final outro to the retrospective section, I will offer a more radical idea. The

idea is to have students participate in a ”battle royale” system. In the beginning

everyone has the chance to implement their own solutions to assignments in their

respective sub-team. However, as more and more assignments are completed, the

ones that do not submit a very good working version or do not complete the as-

signment are shuffled into teams that end up utilizing frameworks as well as have

more basic lecture content offered to them as opposed to more advanced topics.

In this system, as time progresses, the best in the class become made up of the

best in each sub-team; the best engine implementers and best designers and are

the ones that continually push and learn more advanced topics. The ones that are

super passionate about the topic have the opportunity to work with others who

share the same passion while those who are not can still utilize other technologies

and what they consider satisfactory in terms of lecture content to meet the course

objectives. This is more of a thought experiment rather than an actual proposition

as the logistics might make it very difficult to put into practice.

6 Results and Conclusions

In conclusion, this semester’s course implementation of CS 4730: Computer

Game Design was one in the right direction. While there were many flaws in the

way the course was structured, the course was one of the first that I have seen to

divide the content into separate paths and allowed the students the freedom to

choose. There are many things that need to be balanced such as the lecture content

with the amount of sub-teams, but the course’s emphasis on the student’s choice

with the structure and the peer-to-peer demos made it unique. The main issue

was the sheer amount of features and content in the course that couldn’t fit into

one semester, and I would like to offer some recommendations going forward on

26



how I would change the course. First, I would definitely want to have the skill tree

that I outlined in the previous section to be put into implementation. In terms of

the main objectives that I wanted, I think the skill tree encompasses all of it for any

course. Furthermore, I would like to have the different teams run in parallel. If the

teams are divided in to sub-teams of engine and design, students can either join the

engine or the design lectures after the initial foundation lectures and every week

there is a laboratory section that is used for peer-to-peer presentations (for the

”checks” nodes in the skill tree”) as well as ”stand-up” meetings for collaboration.

I am a huge proponent of the idea that information sticks once it is seen repeatedly.

This parallel version of the course can be taken multiple times such that the first

time around I could be on the engine side, but the next time I can take the design

side of the course. Because the engine and design are sort of opposities, a different

perspective to the completing the course objective could be found. Futhermore, the

compile scripts would be able to compile cross-platform and basic source control

management would be covered. After analyzing how the course went and the

feedback from the students, I learned so much and came up with solutions that I

don’t think I could have seen before. The application of gamification is in the right

step into formalizing steps to learning, but I learned how gamification principles

are applied have a huge impact on the results.

27



References

Hinske, S., Lampe, M., Magerkurth, C., & Röcker, C. (2007, 01). Classifying per-

vasive games: On pervasive computing and mixed reality. Concepts and Tech-

nologies for Pervasive Games-A Reader for Pervasive Gaming Research, 1.

Sailer, M., Hense, J. U., Mayr, S. K., & Mandl, H. . (2020, April). Decem-

ber 23). How gamification motivates: An experimental study of the effects

of specific game design elements on psychological need satisfaction, 23. Re-

trieved from https://www.sciencedirect.com/science/article/

pii/S074756321630855X#sec2

28

https://www.sciencedirect.com/science/article/pii/S074756321630855X#sec2
https://www.sciencedirect.com/science/article/pii/S074756321630855X#sec2

