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Abstract 

Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with unknown cause and cure. The lack of 

understanding regarding the disease’s pathophysiology and presence of ineffective treatments results in the 

high mortality of IPF. Previously, impeding the transition of pericytes into myofibroblasts, cells responsible 

for fibrotic lesions and tissue stiffening, was found to be a strategy for mitigating kidney fibrosis. Given 

lung pericytes are significant sources of myofibroblasts, we applied these findings to the pericyte-to-

myofibroblast transition resulting from lung injury. Considering the time-efficient and cost-effective 

advantages of computational methods and the ability of such models to integrate key signaling pathways 

responsible for pericyte differentiation, we developed a two-dimensional agent-based model (ABM) to 

recapitulate the crucial signaling molecules and pericyte behaviors implicated in pulmonary fibrosis. The 

designed model can mimic the responses of pericytes, including migration, apoptosis, and differentiation, 

to transforming growth factor β (TGF-β), platelet-derived growth factor (PDGF), vascular endothelial 

growth factor (VEGF), and Thy-1 based on assigned rules. Sensitivity analysis was performed to assess the 

effect of cytokine perturbation on final myofibroblast count and extracellular matrix (ECM) stiffness after 

one-week and two-week simulations. Among all the signaling molecules, TGF-β exhibited the highest 

sensitivity coefficients for both myofibroblast number and ECM stiffness after one and two weeks. Higher 

TGF-β expression is associated with increased myofibroblast counts. However, downregulation of PDGF 

increased the ECM stiffness and lower VEGF concentrations reduced ECM stiffness after 1 week, contrary 

to the in vivo and in vitro findings. Furthermore, contrary to expectations, experiments showed a negative 

correlation between the initial number of active pericytes and average ECM stiffness. Therefore, we suggest 

future research focus on downregulating TGF-β and VEGF concentrations to most effectively decrease 

tissue stiffening associated with IPF progression. 

 

Keywords:  pericyte, myofibroblast, fibrosis, agent-based model

Introduction 

IPF is a chronic, progressive pneumonia characterized by 

excessive ECM deposition within the pulmonary 

interstitium1,2. Owing to the poor prognosis, the median 

survival rate of patients with IPF is approximately 3-5 years 

post-diagnosis3. This highly lethal disease has affected more 

than 500,000 individuals in the United States and results in 

a $2 billion financial burden annually1,4. Myofibroblasts are 

the main players contributing to wound healing and tissue 

remodeling. Dysregulated ECM secretion by 

myofibroblasts in lung injury results in excessive ECM 

deposition within the lung interstitium, tissue thickening 

and stiffening, and ultimately respiratory failure5. The 

accumulation of myofibroblasts and ECM proteins, which 

gives rise to fibroblastic foci, is regarded as the hallmark of 

IPF and is directly correlated to disease severity and 
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mortality6,7. However, the pathophysiology of IPF has not 

yet been fully understood, contributing to the limited 

efficacy of the current standard of care for IPF. Two existing 

FDA-approved IPF medications, Nintedanib and 

Pirfenidone, can impede disease progression, but fail to 

reduce the mortality of the disease, implying an urgent need 

for novel IPF therapeutics.  

 

Pericytes, the mural cells wrapping the capillaries, are 

critical to the formation of new vessels8. The coverage of 

pericytes around endothelial cells is crucial to structurally 

stabilize the capillary wall, regulate the capillary diameter, 

and maintain vascular homeostasis8. In addition to the roles 

pericytes play in microcirculation, pericytes are also one of 

the most significant sources of myofibroblast progenitors. 

In lung fibrosis, pericytes are capable of transitioning into 

myofibroblasts, detaching from the capillary walls, and 

migrating to the interstitial regions of the lung. A previous 

study has found that halting the pericyte-to-myofibroblast 

transition can ameliorate renal fibrosis in type I diabetic 

nephropathy9. In addition, current FDA-approved IPF drugs 

downregulate multiple cytokines and tyrosine kinases 

involved in microvascular remodeling, which includes 

TGF-β, PDGF receptors, and VEGF receptors4,6. These 

works together suggest the significance of microvascular 

alteration in the progression of pulmonary fibrosis, thereby 

increasing the potentiality of vascular components as novel 

therapeutic targets for IPF. 

 

Due to the high cost of research and complexity of clinical 

trials, designing a computational model can provide 

researchers and developers of IPF treatments the ability to 

study their hypotheses in a controlled, time-efficient, and 

cost-effective manner prior to conducting in vitro and in 

vivo experiments. With regard to tissue fibrosis outside of 

the lungs, a mathematical model on renal interstitial fibrosis 

originating from tubulointerstitial inflammation was 

developed10. This model approximated the densely packed 

tubules and blood vessels in renal tissue as a rectangle. 

Spatial and temporal densities of macrophages, which 

contribute to inflammation; fibroblasts; ECM; and 

cytokines such as PDGF, matrix metalloproteinase (MMP), 

and TGF-β were represented through a set of partial 

differential equations (PDEs) with periodic boundary 

conditions. However, models such as this one, which rely 

heavily on ordinary differential equations (ODEs) and 

partial PDEs, prevent discovery of the emergent phenomena 

and incorporation of multiple scales of biological processes, 

Fig. 1. Design idea of the proposed 

model. (A) Signaling pathways 

involved in IPF: Figure adapted from 

Fabregat et al., 2018 that depicts how 

the presence of extracellular TGF-β 

can induce the expression of 

profibrogenic factors such as 

collagen. Figure adapted from Hung 

et al., 2019 depicts morphological 

changes of pericyte upon 

encountering profibrogenic cues. (B) 

Overview of the use of NetLogo in 

representing histology images 

computationally. Histology images 

obtained from past lab paper studying 

pulmonary microvasculature. 

NetLogo

Designed ABMIPF Mouse Lung Image 

Figure adapted from Hung et al., 2019

Figure adapted from Fabregat et al., 2018

(b)

(a)

(B) 

 (A) 
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both of which are crucial when attempting to draw tissue-

wide conclusions from the data11. 

 

ABMs, on the other hand, enforce a set of “rules”, which 

are represented as logic-based conditions or differential 

equations, on individual “agents.” The ability to incorporate 

spatial considerations with an intuitive modeling paradigm 

suggests that ABMs are better suited for translational 

biology than other types of computational models, 

especially given that unveiled emergent phenomena are 

sometimes counterintuitive to what is expected12. This was 

exemplified in a hybridized physics and agent-based model 

used to recapitulate IPF progression13. In this model, 2D 

lung tissue was modeled using a hexagonal network of 

linear springs. The spaces in the hexagons represented 

alveoli and fibroblasts were located at the network’s nodes. 

Changes in stiffness due to increased ECM deposition were 

mimicked by increasing the spring constant of the hexagons 

where the agents were activated by existing stiff ECM.  

 

However, existing models still do not account for 

environmental cues that activate the pericyte-to-

myofibroblast transition and its impact on ECM 

remodeling. The development of a multiscale 

computational model that investigates the influence of 

various biochemical cues on the differentiation of pericytes 

into myofibroblasts following lung injury would enable 

comparison with experimental data for prediction validation 

and provide a platform for identifying and validating new 

therapeutic interventions for IPF. Therefore, through 

combining the previous in vitro and in vivo findings, we aim 

to develop a two-dimensional ABM that can simulate the 

responses of pericytes, including proliferation, migration, 

and transition, to diverse signaling pathways (Figure 1). In 

addition to incorporating the essential biochemical stimuli 

– TGF-β, VEGF, and PDGF – Thy-1, a membrane protein 

responsible for mechanosensing by interacting with αvβ3 

integrin, will be used to simulate mechanotransduction in 

our model14. Through this resulting model, the sensitivity of 

the pericyte-to-myofibroblast transition to various chemical 

Fig. 2. Rule flowchart for pericyte 

behaviors in the developed ABM. (A) 

The blue box depicts the responses of 

pericytes to VEGF and PDGF. 

Pericytes are defined as “active” if the 

concentration of VEGF is lower than 

20 pg/mL and the concentration of 

PDGF is higher than 80 pg/mL. Active 

pericytes will migrate off vessels and 

have the potential to differentiate into 

myofibroblasts. The orange and green 

boxes describe the pericyte behaviors 

in response to TGF-β stimulation. If an 

active pericyte is in the region with 

TGF-β concentration higher than 100 

pg/mL, it will migrate off the capillary 

and transition into a myofibroblast. (B) 

Pericytes sensing the ECM stiffness > 

17 kPa will differentiate into 

myofibroblasts. However, Thy-1 with a 

concentration lower than 1000 ng/mL 

would also cause pericyte-to-

myofibroblast transition even if the 

ECM stiffness is lower than 17 kPa. 

 

ECM Stiffness > 17 kPa?

No

Active
Pericyte?

Yes

No

Yes
Differentiate into myofibroblast

Quiescent 
Pericyte

Active Pericyte[Thy-1?] > 1000 ng/mL?
Yes

Differentiate into myofibroblast

No

(B) Mechanotransduction

Pericyte Activation Pericyte Migration & Transition

Active
pericyte?

No
Quiescent Pericyte

Yes

[TGF-β] > 100 pg/mL?

Migrate off the 
capillary

Yes

No
Active Pericyte

Pericyte migrate off capillary?

Differentiate into myofibroblast

Yes

(A) Biochemical Cues

[VEGF] < 20 pg/mL?
No Quiescent 

Pericyte

Yes

[PDGF] > 80 pg/mL?

Yes

Active Pericyte

No

Pericyte

Yes

Quiescent 
Pericyte



Hung & Sharma, Group 7G, 07 May 2021 

 

 4 

and mechanical cues can be uncovered as a means of 

improving the understanding of IPF and accelerating the 

development of therapeutics for this disease. 

Results 

Rule Flowchart Defining Pericyte Behaviors 

 In this ruleset, we depicted the cellular behaviors that are 

implemented in the designed model, including pericyte 

activation, pericyte migration off the blood vessels, and 

pericyte transition into myofibroblasts (Figure 2A). The 

rules for pericyte responses to molecule signaling are 

condition-based and are determined by simple yes-or-no 

questions. We defined “active” pericytes as the pericytes 

that can differentiate into myofibroblasts, while “inactive” 

pericytes are pericytes that remain quiescent even in the 

presence of biochemical and mechanical stimuli. The 

activation state of pericytes is determined by the 

concentrations of both VEGF and PDGF signaling 

molecules. Given that VEGF contributes to the stability of 

capillaries and PDGF can lead to pericyte detachment from 

the vessels, we posited that pericytes present in regions with 

a  VEGF concentration less than 20 pg/mL and a PDGF 

concentration higher than 80 pg/mL are defined as “active” 

pericytes15,16. The pericytes not meeting this criterion are 

deemed as “inactive”, or quiescent, pericytes. To model the 

pericyte response to biochemical cues, we chose to develop 

a rule for TGF-β due to the essential role TGF-β plays as a 

profibrotic factor in the progression of pulmonary fibrosis. 

If the agent is confirmed as an active pericyte and stimulated 

by a patch where the TGF-β concentration is higher than 

100 pg/mL, the pericyte will then differentiate into a 

myofibroblast10. These stimulated pericytes, or 

myofibroblasts in this case, will then have the potential to 

detach from the capillary and migrate toward the lung 

interstitium. The baseline values of VEGF, PDGF, and 

TGF-β used to form these rules can be found in Table 1. 

 

The mechanosensing of ECM stiffness that induces the lung 

pericyte transition is incorporated through the interaction of 

the Thy-1 and αvβ3 integrins (Figure 2B). If the active 

pericytes sense a patch with an ECM stiffness larger than 17 

kPa, the typical stiffness of fibrotic pulmonary tissue that is 

approximately 30 times higher than the Young’s modulus 

of healthy lung tissue, they will undergo differentiation into 

myofibroblasts17. On the other hand, if the ECM stiffness is 

lower than 17 kPa, Thy-1 would be the determinant factor 

on the fate of activated pericytes. Since the lack of Thy-1 in 

injured lungs will result in increased αv integrin activation 

regardless of the ECM stiffness and exacerbate the tissue 

scarring, the activated pericytes without the presence of a 

Thy-1 concentration exceeding 1000 ng/mL will transition 

into myofibroblasts even when the tissue has a stiffness 

lower than 17 kPa18. The baseline concentration of Thy-1 

and the stiffness of fibrotic lung tissue can be found in Table 

1. The above-mentioned chemical and mechanical cues 

simultaneously regulate the fate of pericytes in the 

developed model.  

 

2D ABM Simulating Phenotypic Switch of Lung Pericytes  

The lung microenvironment, including the alveolar and 

vascular architectures, of fibrotic lungs was designed using 

the historical immunofluorescence murine lung images 

collected in the Peirce-Cottler lab. Blood vessels with 

tortuous features are represented by the red-colored patches, 

which make up the background of the model (Figure 3). The 

yellow and orange patches denote areas where there is a 

higher concentration of VEGF and PDGF, respectively. Per 

the rules mentioned above, these cytokines allow the 

pericytes to become activated or remain as inactive. The 

gradient of TGF-β stuck in the lung ECM was represented 

by the blue-to-white color gradient in the model 

background. Additionally, we used green patches to denote 

TGF-β secreted by active pericytes with the potential to 

transition into myofibroblasts. Thy-1 expression and 

behaviors elicited through mechanosensing were achieved 

by creating a patch-variable for ECM stiffness that is 

increased upon pericyte differentiation and a 

mechanotransduction function that implements the rules 

above (Figure 2B). A reporter function was included to 

report the average ECM stiffness in patches with a stiffness 

greater than that of healthy tissue (0.5 kPa). We leveraged 

Table 1. Parameters for designed ABM. Parameters in this table 

include those used to recapitulate chemical and morphological 

characteristics of native lung tissue in humans. Due to the limited 

availability of information regarding IPF tissue in humans, 

parameters derived from other human organ systems and bleomycin-

induced mouse models were also used. 
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this reporter function to graph ECM stiffness in our model’s 

main console.  

 

Pericytes, the primary agents of our proposed model, have 

been incorporated into the model as turtles so they are able 

to travel around the model and respond to changes in their 

surroundings. To mimic the coverage of pericytes around 

endothelial cells in the microvasculature, we made the 

diameters of the pericytes approximately equal to the 

diameters of capillaries, which is 7 μm19. The pericytes 

possess the ability to undergo apoptosis, migrate along and 

off the vessels, and differentiate into myofibroblasts 

through the interactions with incorporated cytokine 

signaling pathways. The black, blue, and yellow cells stand 

for quiescent pericytes, active pericytes, and 

myofibroblasts, respectively. 

 

Given the diversity of the units for the parameters (Table 1), 

it was crucial that we appropriately time-scale and 

dimensionally-scale the parameters of our model to match 

the duration of each tick. A tick in NetLogo is an iterator 

that aids in continuously running the model’s functions. For 

the purposes of our model, each tick represented a change 

in time. This enabled us to make periodic conclusions about 

the pericyte-to-myofibroblast transition over varying 

periods of time. As our initial simulations approximated at 

most a two-week timeline, we decided to have each tick 

represent 15-minute increments. In the model’s console, we 

enabled users to choose the total number of pericytes, 

including both the active and inactive ones, to better 

simulate the desired conditions. The dimensions for the 

cross-sectional area, which will impact the scaling of 

migration rate parameters, for example, can also be 

controlled manually. The concentrations of VEGF, PDGF, 

Thy-1, and TGF-β are adjustable as well using sliders. An 

output plot in our console visually displays active/quiescent 

pericyte and myofibroblast counts, and another plot that 

Fig. 3. ABM console as designed in NetLogo. The console of the ABM, as designed in NetLogo, contains a series of buttons, monitors, inputs, 

sliders, and plots that a user may utilize to study the influence of mechanical and chemical cues on the progression of IPF. The buttons setup 

and go execute the setup and go functions of the model (described in the Agent-Based Model Development and Optimization section). Monitors 

display counts of active pericytes, quiescent pericytes, and myofibroblasts currently in the model. The input field for ImageLength enables the 

user to specify the size of the tissue they want to examine. Sliders enable users to specify the initial active pericyte count (Pericyte-Number) 

and cytokine concentrations that control agent behavior. Plots graph the output values for counts of agents over time and average ECM stiffness 

over time. 

Myofibroblast

Quiescent Pericyte

Active Pericyte

Extracellular TGF-β Gradient

[VEGF] < [PDGF]

[VEGF] > [PDGF]

Active Pericyte TGF-β Deposition

Blood Vessel
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manifests the ECM stiffness provides a real-time readout at 

each time point.  

 

Number of Pericytes and ECM Stiffness  

Our initial experiments focused on studying how the 

number of active pericytes present at the start of the 

simulations altered the average ECM stiffness of the tissue 

at the end of the simulation. Figure 4 depicts how changes 

in initial active pericyte number altered the average ECM 

stiffness observed at the end of a one week long experiment. 

Per prior studies, it was expected that as the initial active 

pericyte count increased, the ECM stiffness would increase 

as well as there would be a higher number of pericytes 

present capable of differentiating into myofibroblasts. 

However, as can be seen in Figure 4, a negative association 

between the two variables was observed, counter to what 

was expected. 

 

Impacts of Parameter Perturbation on System Outcomes 

To assess the effects of the perturbation of signaling 

molecules on model outputs, we performed sensitivity 

analysis for changes in TGF-β, Thy-1, PDGF, and VEGF to 

study their influence on final myofibroblast count and ECM 

stiffness. Based on the original, baseline values of the model 

(Table 1), where [TGF-β] = 100 pg/mL, [Thy-1] = 1000 

ng/mL, [PDGF] = 80 pg/mL, and [VEGF] = 20 pg/mL, 

10%, 20%, 40%, 60%, 80%, and two-fold (i.e., 100%) 

increases and decreases in cytokine concentrations were 

tested for the analyses. As 1 week and 2 weeks are common 

timeframes for evaluating the pericyte-to-myofibroblast 

transition caused by lung injury in bleomycin-induced 

murine models, we performed the sensitivity analyses on 

each group after 1-week and 2-week simulations, which are 

equivalent to 672 and 1,344 ticks, respectively, in the 

model. Owing to the relationship between pericyte number 

and ECM stiffness (Figure 4), 60 was used as the initial 

pericyte number to avoid the bias resulting from extremely 

low or high counts. In this model, we defined 30% of the 

total initial number of pericytes as “quiescent” pericytes 

while the remaining as “active” pericytes. Consequently, 60 

counts of total initial pericytes correspond to 42 “active” 

pericytes and 18 “quiescent” pericytes at time zero. Each 

group was repeated 5 times and the mean values of 5 runs 

were used to calculate the sensitivity coefficients.  

 

Cytokine Concentration and Myofibroblast Count 

After a 1-week simulation, most conditions demonstrated 

that as the concentration of TGF-β increased, there was an 

increased number of myofibroblasts relative to baseline. 

Similarly, lower TGF-β expression was associated with 

lower myofibroblast count (Figure 5A). These findings are 

consistent with prior in vivo and in vitro findings. It is worth 

noting that the two highest sensitivity coefficients of TGF-

β occurred when the concentration was changed to a 10% 

increase and decrease from baseline. These changes were 

notably also the highest sensitivity coefficients observed 

among all groups. A similar trend was seen with percent 

decreases of TGF-β concentration, which had higher 

sensitivities after 2 weeks. However, a significant increase 

in sensitivity, contrary to previous studies, was also found. 

Among all the signaling molecules, TGF-β exhibited the 

highest sensitivity coefficient across all concentrations at 

both 1-week and 2-week time points (Figure 5B). The 

sensitivity of PDGF is extremely low after one week, but it 

significantly increases after a two-week simulation. Higher 

Thy-1 expression reduces myofibroblast activation after 1 

week, agreeing with the prior finding. Nevertheless, the 

increased Thy-1 concentrations correspond to enhanced 

myofibroblast counts after 2 weeks, which is contrary to 

what we expected. Although VEGF does not show a high 

sensitivity, the downregulation of VEGF correlates with 

increased myofibroblast presence after both 1-week and 2-

week simulations, meeting our initial expectations. 

Fig. 4. Changes in ECM stiffness as a function of the number of 

active pericytes in the model initially. As the number of active 

pericytes present in the model initially increases, the average final 

ECM stiffness of the simulated tissue decreases.  The experiment 

was run with n = 5 for each parameter value. 
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Holistically, the highest sensitivity values were seen at 

minor perturbations of –10%, +10%, and +20% in both 1-

week and 2-week simulations. 

 

Cytokine Concentration and ECM Stiffness 

Aside from the number of myofibroblasts, the increased 

tissue stiffness caused by ECM protein deposition is a vital 

feature of lung injury. Therefore, another set of sensitivity 

analysis on ECM stiffness was performed using the same 

initial conditions and comparison criteria as the analysis on 

myofibroblast count (Figure 6A). TGF-β exhibits the 

highest sensitivity holistically, which, however, is not as 

prominent as it was in the results regarding myofibroblast 

count (Figure 6B). It was also found that after 2 weeks, the 

sensitivity coefficients showed a significant increase 

following both a 10% decrease and increase in VEGF 

concentration. The downregulation of VEGF contributed to 

reduced ECM stiffness after both 1 week and 2 weeks. 

Nevertheless, the reduced ECM stiffness was also seen in 

the upregulation of VEGF after 2 weeks, which is 

contradictory to prior wet-lab studies. Overall, the 

sensitivity coefficients for both Thy-1 and PDGF are low 

within all concentration groups, suggesting the minimal 

effects of perturbations in Thy-1 and PDGF concentrations 

on pulmonary ECM stiffness. It is worth noting that 

compared to the scale bar of analysis on the number of 

myofibroblasts, the maximal and minimal values on the 

scale bar in the sensitivity analysis of ECM stiffness are two 

to three times lower, which implies the higher stability of 

ECM stiffness in response to cytokine concentration 

perturbations. 

Discussion 

The mortality of IPF has failed to be mitigated by existing 

FDA-approved therapeutics, thereby necessitating further 

study into the mechanisms through which IPF develops and 

progresses. Our project aimed to design a two-dimensional 

ABM that integrated the novel pericyte-to-myofibroblast 

transition, recently implicated in the progression of renal 

fibrosis, to elucidate its role in the progression of IPF. 

Specifically, we aimed to understand how pericytes 

involved in this transition pathway responded to diverse 

biochemical stimuli and mechanical cues, as assessed by 

myofibroblast counts and ECM stiffness. One-week and 

two-week simulations using this model aimed to mimic 

20
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timeframes for in vivo experimentation performed on mice 

with bleomycin-induced lung injuries.  

 

Firstly, it was found that there is a slight negative 

association between the initial active pericyte count in the 

tissue and eventual ECM stiffness, which was contrary to 

our expectations. The experiments completed using this 

model also suggested IPF progression, as represented by the 

final myofibroblast count and average ECM stiffness, is 

most sensitive to TGF-β signaling. As TGF-β concentration 

was decreased, a decrease in myofibroblast count and ECM 

stiffness was observed. Furthermore, as predicted, 

downregulation of VEGF correlated with increased 

myofibroblast presence, however contrary to expectations, 

simultaneously reduced ECM stiffness. Additionally, the 

role of PDGF on the pericyte-to-myofibroblast transition 

became increasingly important at longer time points, with 

the upregulation of PDGF increasing myofibroblast count 

and ECM stiffness after 2 weeks, as was expected. 

However, this linear relationship was not maintained as 

when PDGF was downregulated it increased ECM stiffness. 

Overall, the sensitivity of the model to PDGF and Thy-1 

remained relatively low over the course of both one and two 

weeks, suggesting that these two cytokines had limited 

influence over the pericyte-to-myofibroblast transition 

pathway, and ultimately the progression of IPF. Therefore, 

our team suggests that future research on IPF and its 

treatments target the downregulation of TGF-β and VEGF 

to decrease ECM stiffness observed during fibrosis most 

effectively. 

 

Overall, while there were aspects of our results that 

corroborated previously published studies regarding the 

impact pro-fibrotic cytokines had on the progression of 

fibrosis, there were findings, such as those associated with 

VEGF signaling and initial active pericyte count, that 

differed from our expectations. While these unexpected 

findings can be attributed to the study of emergent 

phenomena unique to ABMs, there are a series of future 

steps that can be taken to ensure the accuracy of these 

findings. Firstly, we recommend increasing the complexity 

of the behaviors associated with the various agent breeds. 

For example, our model did not enable myofibroblasts to 

migrate, however, it is known that myofibroblasts migrate 

to and are highly responsive to chemokines released at the 

site of injuries20. In addition, further optimizing the model’s 

parameters such that they include values specific to human 

pulmonary tissue would increase the likeness of our model 
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Fig. 6. Sensitivity analysis of simulated signaling molecules on ECM stiffness. (A) 10%, 20%, 40%, 60%, and 80% increase and decrease 

in the concentrations of signaling molecules were used to assess how cytokine concentrations perturb the stiffness of ECM. All groups were 

compared to [TGF-β] = 100 pg/mL, [Thy-1] = 1000 ng/mL, [PDGF] = 80 pg/mL, and [VEGF] = 20 pg/mL. Each color block represents the 

sensitivity coefficient calculated using Equation 4. The initial number of total pericytes and active pericytes was 60 and 42, respectively. n = 5 

for all groups. The highest coefficients occur mostly at ±10% for TGF-β and VEGF. (B) The absolute value of sensitivity coefficient at different 

concentrations was added to determine the molecule possessing the highest sensitivity on ECM stiffness. TGF-β showed the highest sensitivity 

among all groups while Thy-1 has the lowest after both 1 and 2 weeks. 
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to in vivo conditions. Thus, while this model aims to be a 

cost-effective platform for IPF research, it requires 

additional preliminary wet-lab experiments to be performed 

to enhance the accuracy of its behaviors. Furthermore, given 

that alveoli possess a three-dimensional (3D) structure, 

incorporating 3D features into the model can aid in further 

understanding patterns associated with tissue stiffening and 

myofibroblast localization. 

 

Through such changes, we project this model can aid in 

identifying a potential target for treating IPF, and eventually 

serve as an in silico testing platform for evaluating the 

effectiveness of proposed IPF therapeutics. Given the user-

friendly interface of NetLogo and its intent to be used by 

individuals of all ages and backgrounds, this model can be 

adapted by researchers of all specialties to include and test 

specific hypotheses. Thereby, reaching its goal of serving 

as a cost- and time-effective platform for IPF research.  

 

Materials and Methods 

Materials 

The entirety of this project was completed on personal 
computers with NetLogo Version 6.2.0 installed. NetLogo 
is a free, open-source software that provides users with a 
programmable modeling environment to simulate natural 
and social phenomena21. Additionally, JupyterLab, 
launched using the free Individual Edition of Anaconda, 
was used as a means of pre-processing and manipulating the 
sensitivity analysis data in Python for downstream 
visualization. 

Methods 

Design Constraints and Assumptions 

As this ABM is intended to serve as a preliminary testing 
platform for future in vivo and in vitro experimentation 
related to pulmonary fibrosis, our team aimed to simulate as 
accurately as possible the main features of native IPF lung 
tissue. However, we still had to make a series of 
assumptions regarding the various behaviors and 
environmental cues implemented in our model. Firstly, we 
assumed that all “active” pericytes differentiate directly into 
myofibroblasts. However, it is known that pericytes in vivo 
can differentiate into numerous other cell types, such as 
fibroblasts, myointimal cells, and vascular smooth muscle 
cells (VSMCs)22. This assumption enabled us to make direct 
conclusions about the influence changing cytokine 
parameters played on the pericyte-myofibroblast transition 
and alterations in ECM stiffness. Additionally, we assumed 
that “inactive” pericytes, in comparison to “active” 
pericytes which were agents activated by benchmarks for 
cytokine concentration and ECM stiffness, did not possess 
the ability to proliferate, migrate, or differentiate. 
Specifically, as we were interested in simulating one- and 
two-week timeframes, which are traditionally used for 

bleomycin-induced lung injury mice model experiments, 
the actions of these “inactive” pericytes were assumed to be 
largely insignificant, and thus omittable from our model. 

 

 With regards to the cytokine signaling pathways in our 
model, we assumed that the extracellular TGF-β 
concentration gradient was one-dimensional and at steady 
state. Per Fick’s Second Law of Diffusion (Equation 1) 
under constant boundary conditions (Equation 2), the TGF-
β concentration gradient was modeled by Equation 3 where 
C(x) represents the concentration along the horizontal axis 
of the ABM, which models lung tissue L µm in width. While 
the console of our model allows users to specify L by 
inputting an integer for ImageLength (Figure 3), we 
assumed C1 = 100 ρg/mL and C2 = 0 ρg/mL. The TGF-β 
concentration gradient can be visualized in our model as the 
blue-to-white color gradient in the background (Figure 3). 

 

 

As it relates to mechanosensing and ECM stiffness, we 
assumed that there was a linear relationship between 
collagen secreted by the active pericytes and myofibroblasts 
and ECM stiffness. Within the model, one “unit” of 
collagen deposition following the migration of an active 
pericyte or myofibroblast on to a patch caused a 1 kPa 
increase in ECM stiffness at that patch. 

 

Agent-Based Model Development and Optimization 

To reiterate, the purpose of this ABM was to integrate 
biochemical cues, such as VEGF, PDGF, TGF-β, and Thy-
1 signaling, with mechanical cues brought on by 
mechanotransduction to understand their impact on the 
pericyte-to-myofibroblast transition, and ultimately the 
stiffening of pulmonary tissue seen in IPF. The developed 
2D ABM was designed using object-oriented programming 
in NetLogo. In NetLogo, there are two major classes of 
agents – turtles and patches. Turtles possess the ability to 
interact with the system based on a logic-based ruleset, 
while patches are pixels with fixed locations in the 
simulated environment that constitute the background and 
contain information regarding the local environment. To 
implement the various desired features into our model, we 
developed new breeds of turtles – Pericytes, Quipericytes, 
and Myofibroblasts to represent active pericytes, quiescent 
pericytes, and myofibroblasts, respectively. Each of these 
breeds contained a variety of variables, such as migrate, 
mech_td, and thy-1, which guided each breed’s ability to 
migrate and respond to mechanotransduction depending on 
the breed’s associated activation level. To represent the 

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
 

 

[1] 

𝐶(0) = 𝐶1,      𝐶(𝐿) = 𝐶2 

 
[2] 

𝐶(𝑥) =  
𝐶2 − 𝐶1

𝐿
𝑥 + 𝐶1 [3] 
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extracellular TGF-β cytokine gradient, cellular cytokine 
deposition, and mechanotransduction, patches in the ABM 
contained unique variables for VEGF, PDGF, and TGF-β 
concentration, along with a patch-variable for stiffness. 
These patch variables were used to direct agent behavior per 
the flowchart depicted in Figure 2. 

 

To mimic the tortuous structure of pulmonary 
microvasculature, prior histology images of healthy lung 
tissues were used to inform the design of a standard vessel 
image that accounted for alveolar space, as seen by the gaps 
between vessel structures, which are in red (Supplementary 
Figure 1). Within the setup function of the model, which is 
run prior to any simulation, the colors of the standard vessel 
image were imported such that patches in the corresponding 
locations of the model acquired the red color representing 
the vessel branches. The setup function also ran functions 
we developed related to setting up the extracellular TGF-β 
concentration gradient per Equations 1-3, randomly 
assigning VEGF and PDGF concentrations to patches along 
the vessel, establishing a baseline tissue stiffness of 0.5, and 
assigning migrate and mech_td to appropriate Boolean 
values of True or False for each agent breed. 

 

Following the setup of the model, the go function was run 
with each tick (i.e. step of the model). For our simulations, 
each tick represented 15 minutes, as mentioned in Table 1. 
With each execution of the go function, other functions 
specific to each breed’s behavior were run. Briefly, 
quiescent pericyte behaviors in the model were limited to 
apoptosis. Active pericyte behaviors included inactivation 
(to quiescent pericytes), proliferation, migration, 
differentiation, apoptosis, TGF-β deposition, and ECM 
stiffening. Finally, myofibroblast behaviors were limited to 
ECM stiffening, but at a level three times greater than that 
of active pericytes. Each of these behaviors is directed by 
the ruleset in Figure 2, which is regulated by cytokine 
signaling pathways and mechanotransduction sensing 
capabilities of these agents. 

 

During the original iteration of the model, our team built the 
model with arbitrary values assigned to each of the relevant 
variables. However, after completing this first-generation 
model, we conducted an iterative literature review until we 
ultimately found all the parameters listed in Table 1 that best 
represented each included parameter. These optimized 
parameter values were implemented into the model by 
simply updating the values of variables representing these 
parameters. Furthermore, these optimized values served as 
baseline parameter values for sensitivity analyses that were 
performed later. Within our optimized model, we also added 
sliders that allowed users to specify cytokine concentrations 
relevant to regulating pericyte activation, migration, and 
differentiation status. This enables users to understand the 
emergent phenomena that results from cumulative changes 
in investigated cytokine concentrations. 

 

To ensure that pericyte behaviors corresponded with the 
timelines in vivo, parameter values were time-scaled to the 
ticks and dimensionally scaled to the size of the model. For 
example, the migration rate of active pericytes was both 
time- and dimensionally-scaled using the metric 1 tick 
equals 15 minutes and the dimensional variable 
ImageLength. This ensured that pericytes did not travel 
further than expected per previously acquired histology 
images of lung tissue. 

 

Sensitivity Analysis 

Sensitivity analysis aims to measure how the model reacts 
to changes in parameters or other input values23. This 
procedure helps identify parameters with the strongest 
influence on model output, thereby indicating processes in 
the model that are the most important24. Furthermore, in 
cases where parameter values are uncertain, sensitivity 
analysis can help assess the importance of these 
uncertainties. However, in our study, we aimed to use 
sensitivity analysis as a means of understanding cytokine 
signaling pathways that had the most significant impact on 
myofibroblast count and ECM stiffness in lung tissue, such 
that these pathways can be investigated as targets for future 
IPF treatments. 

 

To perform sensitivity analysis, our team used 
BehaviorSpace, an integrated software tool in NetLogo that 
allows users to perform experiments with their models. 
Within BehaviorSpace, we ran experiments altering the 
VEGF, PDGF, TGF-β, and Thy-1 parameter values at 
increments of 10% from their baseline values listed in Table 
1. Parameter values ranged from an 80% decrease from their 
baseline value to a 100% increase from their baseline value. 
For example, when running experiments altering VEGF 
concentration, which has a baseline value of 20 ρg/mL, the 
variable VEGF-Concentration took on values from 4 ρg/mL 
to 40 ρg/mL at increments of 2 ρg/mL. The other cytokine 
concentration parameter values were maintained at 
baseline, as listed in Table 1. Meanwhile, ImageLength was 
set to 500 µm and Pericyte-Number was set to 60. 
Experiments collected data from the ECM stiffness 
variable, ECM_Stiffness, and counts for the three agent 
types – Pericytes, Quipericytes, and Myofibroblasts. These 
output values were saved, along with their corresponding 
input values, into a CSV file. For this study, one cytokine 
parameter was changed in each experiment in the manner 
mentioned above. Each experiment was run 5 times (i.e. n 
= 5) for 672 ticks or 1,344 ticks to mimic one-week or two-
week in vivo mice experiments, respectively.  

 
To analyze the relationship between active pericyte count 
and average ECM stiffness, a similar experimentation 
method as above was adopted. The active pericyte counting 
variable, Pericyte-Number, was changed by increments of 
10 cells such that a range of 40 to 80 active pericytes was 
investigated while all other parameter values were 
maintained at baseline. The resulting output value, ECM 
stiffness, was graphed against the input values and a linear 
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regression was performed on the data. The coefficient of 
determination, R2, was calculated for this linear regression 
model. 

 

Data Analysis 

Output CSV files generated from the BehaviorSpace 
experiments were analyzed in Python, launched through the 
JupyterNotebook application of Anaconda. Data from the 
CSV files were structured into table objects from the Tables 
class of the datascience package. Table manipulation 
enabled output reads at final timepoints of 672 or 1,344 
ticks to be identified and then grouped by the value for the 
altered cytokine parameter. The grouped values were then 
averaged. Then, Equation 4 was applied to data columns 
containing the altered cytokine parameter and its associated 
average output values for ECM stiffness and myofibroblast 
count. In Equation 4, 𝑃0 represents the baseline value for 
the parameter being changed, 𝛥𝑃  represents the change 
from baseline of the parameter being changed, 𝑌0 represents 
the output value associated with the baseline parameter 
condition, and 𝛥𝑌  represents the change in output value 
compared to 𝑌0. Positive values for sensitivity coefficients 
indicate a positive association between the input parameter 
and the output parameter (i.e. as the input value increased, 
so did the output value). Whereas, a negative sensitivity 
coefficient indicates a negative association between the 
input and output values (i.e. as the input value increased, the 
output value decreased, or vice versa). These sensitivity 
coefficients were used to generate heatmaps such as those 
seen in Figures 5 and 6. 

 

To determine the cytokine with the greatest impact over the 
studied output – myofibroblast count or ECM stiffness – 
Equation 5 was used. In this equation, n represents the 
various concentrations studied for each cytokine and S 
equals the associated sensitivity coefficients calculated for 
each parameter value. Higher values for I indicate a greater 
impact of the parameter on the output variable, and lower 
values for I indicate a lower influence of the parameter on 
the output value. 

End Matter 
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Supplementary Figures 

 

 

 

 

 

Supplementary Figure 1. Standard vessel image used for ABM 

development. This image was used to create vessel structures in the 

ABM. This image was illustrated by leveraging previously published 

histology images of healthy lung tissue to recapitulate a section of 

microvasculature in lung tissue. The white gaps between vessel 

branches represent alveoli. 


