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Abstract

The configuration and movement of the face can indicate the presence or absence of various neuro-

logical diseases. A central brain lesion such as a stroke will cause pathological, asymmetric weakness

on the lower facial muscles on the contralateral side. However, recognizing facial weakness in existing

pre-hospital settings still remains a challenge, largely due to variability in training and experience

of non-neurologist providers. The proposed research develops an automated, accurate, and quan-

titative video-based digital screening tool for facial weakness analysis that can enable fast patient

triage and augment standard pre-hospital stroke care. The proposed approach not only achieves

equivalent performance to paramedics, but also provides visualizable and interpretable results. In

addition, to increase the model’s robustness to illumination changes, we leverage patch-wise (local)

image gradient distributions and transport-based metric for illumination-invariant face analysis. The

experiment results demonstrate that the proposed method outperforms other alternatives in several

face analysis tasks with challenging illumination conditions.
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Chapter 1

Introduction

1.1 Medical imaging & computer vision

Machine learning-based technologies including medical imaging have transformed the healthcare

sector. Many medical imaging products obtained administration approvals from the US FDA and

European CE clearance, and become available in the market [1]. Regions such as India and Thailand

start to experimentally deploy AI-guided diagnosis systems for diabetic retinopathy [2]. Other

medical imaging analysis techniques focusing on echocardiogram, CT, X-ray, and MRI scans also

led to new methods for diagnosing atrial fibrillation, liver dysfunction, and diabetic retinopathy as

well skin, breast, and colon cancer [3, 4, 5, 6, 7, 8, 9, 10, 11].

On the other hand, owing to the fact that camera-based devices become more accessible than

ever in the form of laptops, smartphones, and tablets as well as the recent radical development

of deep learning techniques for computer vision [12], as an emerging research direction, medical

computer vision [13] constitutes a critical ingredient for healthcare domain [14], which unlocks a

large amount of opportunities for the rise of virtual and contactless care, especially during the

COVID-19 pandemic [15]. To be precise, this arising research field, spanning visual detection,

tracking, recognition, and analysis of interested clinical events, is able to provide computer-assisted

understanding of clinical-relevant diagnostic information regarding complex human behaviors in

real-world settings. Successful applications are ranging from medical scene perception in hospi-

tals to physical/physiological activities monitoring [16, 17, 18, 19, 20], for examples, ICU patient

mobility monitoring, hand hygiene protocol compliance monitoring, daily living activities classifi-

cation in elderly living spaces, vital signs measurement, sleep monitoring, fall detection, and gait
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estimation. It has the potential to transform the healthcare landscape rapidly, enabling pervasive,

non-invasive, low-cost, and long-term monitoring and understanding of the target subject’s health

conditions [14]. However, clinical deployment of machine vision-based applications still encounter

several prominent challenges such as environmental variations, patient-to-patient pathological man-

ifestation and appearance variations, lack of model generalizability and transparency, and big data

v.s. rare event [14, 21, 22, 13]. If these problems could be solved successfully, one would create

a more accessible and affordable virtual healthcare system that can overcome the physical and ge-

ographical barrier and begin to make a border social impact. A more detailed survey regarding

medical computer vision and medical imaging analysis are available in [13, 22, 23, 24, 25].

Specifically, in the realm of neurology, machine learning algorithms have been developed to screen

for autism, identify language deficits in patients with dementia, detect the electrographic onset of

seizures, and monitor speech and motor manifestations of Parkinsons disease [26, 27, 28, 29, 30].

When it comes to neurological function, machine learning has been used to assess facial motion,

direction of gaze, and arm strength [31, 32] individually. The Brain Attack and Deficit Identification

Tool (BANDIT) project aims to develop an ”all-in-one” tool that can detect multiple common

neurological deficits such as facial weakness, limb drift, and abnormal eye movement at the same

time, by modeling configuration information of the face, eyes, limbs with the event of interest (e.g.,

stroke) using medical computer vision and medical imaging. Significance of the novel approach is

to provide clinically relevant information for cases when expert neurologists are not immediately

available for patient triage. This proof-of-concept study provides an illuminating example, showing

that automated video-based neurological deficits analysis is able to deliver standard neurology care

at a distance via video visits, which not only overcomes physical barriers to provide patients to

access convenient medical care [33], but also addresses shortage of neurologists in remote and rural

areas [34]. In addition, it could be naturally integrated to existing tele-neurology networks such as

NIH StrokeNet [35].

1.2 Stroke

Stroke remains the second leading cause of death worldwide, accounting for 6.6 million deaths in 2019

and 11 percent of all deaths in 2020 [36], with more than 795,000 people suffering a stroke every

year [37]. However, mortality alone does not fully capture the societal, financial, and individual

burden of stroke given that stroke is also one of the leading causes of long term disability worldwide,

as measured by disability-adjusted life years [38]. In addition to the immediate mortality and
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morbidity of stroke, the impact of stroke is also heavily intertwined with the global burden of

dementia, which shares many of the same chronic vascular risk factors and is a research priority for

the National Institutes of Health and World Health Organization, among others [39]. To prevent

severe consequences of stroke, rule of thumb for stroke treatment is ”time is the essence”. Hence,

early recognition of stroke improves patient outcomes. Numerous studies have shown that reduction

in time to treatment by as little as fifteen minutes significantly decreases mortality and disability in

stroke patients [40, 41, 42].

Therefore, Emergency Medical Services (EMS) in the prehospital setting plays a significant role

in earlier recognition of stroke and more frequent treatment with acute stroke therapy [43, 44, 45, 46].

However, the identification of stroke by non-neurologists can be challenging, as illustrated by the

finding that paramedics fail to detect stroke as high as 56% of patients when not using a diagnostic

aid [47]. Pre-hospital screening tools including the Cincinnati Prehospital Stroke Scale (CPSS) and

NIH Stroke Scale (NIHSS) administered by emergency medical providers facilitate early detection

and triage of acute stroke, but their accuracy and pervasiveness are variable. As a result, the

patient or bystander failed to recognize the stroke symptom and only approximately 50% of stroke

patients request EMS service for urgent help [48]. Even with the help from EMS, recognition of

stroke remains a challenge for EMS personnel [49, 50], who is without comprehensive neurological

training. All contribute to the high miss rate for EMS stroke alerts in the field [51, 52, 53, 47].

Furthermore, shortage of neurological expertise and the designated stroke care team, especially in

rural and underserved areas, leads to treatment delay as well [54]. Furthermore, the accuracy of

currently available stroke diagnostic aids are even more limited in rural and low access areas. One

recent study [55] shows the disparities between rural and urban regions in terms of stroke treatment.

The Joint Commission on Accreditation of Health Care Organizations certified primary stroke centers

(PSCs) account for 2.4% of rural hospitals, compared to 18.7% of their urban counterparts. As a

result, many patients either fail to receive timely treatment or are ineligible for acute stroke therapy

as time ran out. Additionally, the COVID-19 pandemic further strains prehospital stroke care by

increasing demands on emergency providers, and possibly an increased risk of severe strokes in

patients with SARS-CoV-2 infection [56, 57].

To address the aforementioned issues, recent efforts introduce the neurological expertise through

ambulance-based telemedicine [58, 59]. One study previously demonstrated that mobile video te-

leneurologic assessment in the field is feasible and correlative to an in-person examination by a

vascular neurologist [60]. However, while mobile teleneurologic assessment is a promising addition

to the current paradigm, it is not an easily generalizabile solution. The number of patients who

3



Figure 1.1: The BANDIT project.

need to be screened far exceeds the number of available neurologists and stroke specialists to help

with screening, and with an ever increasing shortage of neurologists, both in the US and worldwide,

this disparity will likely worsen [61, 62, 63].

In order to realize the full potential of prehospital stroke screening, a great need is desired

to find a solution to the problem of neurological deficit detection beyond remote evaluation by a

neurologist. Innovation that improves detection of acute stroke in the field will result in earlier

and more frequent treatment with acute stroke therapies, better patient mortality and disability

outcomes, and decreased social burden of stroke.

1.3 The BANDIT Project

The most commonly used stroke identification tools in the prehospital setting are CPSS and NIHSS,

which include assessment of facial weakness, limb weakness or drift, and dysarthria (i.e. impaired

speech) [64, 65]. Detection of these deficits renders the screen positive, prompting notification and

triage of suspected stroke to a nearby hospital [65]. Unfortunately, signs of stroke can be difficult to

recognize without comprehensive neurologic training [49, 50]. Their efficacy is similarly limited by

inaccurate and inconsistent stroke detection by non-neurologists [66].

Inspired by the existing CPSS and NIHSS examination protocols performed by the neurologists,

the Brain Attack and Deficit Identification Tool (BANDIT) project targets to automate these clinical

examination protocols using medical computer vision and imaging analysis. The screening tool

is automated, accurate, quantitative, easily-deployable, and low-cost, as shown in Fig. 1.1. The

proposed system would allow the non-neurologist users to identify neurological deficits quickly in the
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Figure 1.2: Facial weakness detection and eye deficit detection for the BANDIT project.

field and minimize inter-operator variability and operator error of standard neurological examination.

The development process is performed within a supervised learning framework. Namely, given

an input examination video, the framework tracks the motion of faces, eyes, and limbs, assesses

their configurations on-the-fly, and provides the quantitative and interpretable evaluation results.

The expected outcomes of BANDIT is to augment standard neurology care in rural and under-

served areas, expedite the diagnostics and treatment process, and provide more accurate triage of

neurological patients.

The ongoing BANDIT study focuses on the detection and quantification of facial weakness and

abnormal eye movement analysis. First, BANDIT systematically investigates several options for

facial weakness detection on static images [67, 68] and devises an novel automated facial weakness

video identification framework [69, 70]. The validation experiments of the current prototype [70]

against human raters show the proposed algorithm’s accuracy rate is equivalent to paramedics and

close to trained residents. BANDIT also investigates various methods for quantifying abnormal

eye movement, by presenting a video-based eye movement assessment workflow for abnormal eye

movement detection. The proposed workflow utilizes a ResNet-based pupil detector to detect the

center of the pupil for both eyes in a given video and analyzes the conjugacy of eye movement [71].

Experimental evaluations demonstrate that the proposed system is able to achieve equal performance

compared to the COTS eye tracker such Tobii eye tracker [72]. In addition, it has been integrated

into the Rolling Apparatus to Detect Impairment of the Eyes (RoADIE) platform, which is equipped

with various imaging and signal modalities to acquire patient video data at the emergency room [73].
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1.4 Dissertation overview

This thesis focuses on studying the topics of vision-based facial weakness detection and quantification

via medical computer vision and computational imaging. To detect and quantify this neurological

sign, it first systematically investigates different options for facial weakness analysis, including the

shape-based features, appearance-based features, combined, or CNN feature maps on static im-

ages [67, 68] or video data [69, 70]. It leverages various methods to improve models transparency.

Specifically, the pilot study presents an automatic pathological facial weakness detection tool based

on a single RGB image [67]. The proposed system is able to extract the facial landmarks and classify

facial weakness using a supervised learning method. The learning method projects the shape-based

features onto a much lower subspace, where the low-dimensional representations not only greatly re-

duce the feature dimension, but also produce the visualizable and interpretable results to understand

facial weakness as shown in Fig. 1.2 top left panel. In a subsequent study [68], we experimentally

evaluate the performance of multiple state-of-the-art landmark feature extraction methods for mea-

suring facial weakness, showing that landmark-based methods can suffer from inaccuracies in face

landmarks localization. Moreover, we then compare different facial weakness classification schemes

using various handcrafted-based features and deep learning approaches. Evaluation results demon-

strate that a combination of shape and appearance-based features produce the best results. By

visualizing the maximum weight of the SVM classifier for the HoG features and landmarks features,

it shows that the clinically meaningful information can be detected by the proposed model, as shown

in Fig. 1.2 bottom left panel. Utilizing the knowledge learned from two previous studies, we propose

to assess facial weakness from a simple video examination procedure. To achieve this, we build an

automated framework for facial weakness detection using videos from a regular RGB camera [69, 70].

Fig. 1.2 (top middle panel) depicts such a framework. For a given video, it first extracts the most

discriminant shape and appearance information regarding facial weakness, by learning a subspace

model that transforms the high dimensional shape and appearance-based features into the low di-

mensional representations. Then a recurrent neural network models the temporal dynamics of both

low-dimensional shape and appearance-based features of each frame through a Bi-LSTM network.

The system is evaluated on a ”in-the-wild” video facial weakness dataset that is verified by three

board-certified neurologists. Experimental evaluation shows that it is able to outperform other state-

of-the-art alternatives, achieve the equal performance to paramedics, and provide visualizable and

interpretable results that increases model transparency. In addition, a live and real-time prototype

with interactive GUI is implemented on a regular laptop as a proof-of-concept [74]. The important
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implication of this study is that the proposed method opens a new opportunity of providing clinical

assistance to non-neurologists (e.g, paramedics) to increase the coverage of standard neurological

prehospistal care.

When experimenting various facial weakness detection and quantification algorithms on the pa-

tient dataset acquired in real-world clinical settings (e.g., outpatient clinical room and inpatient

ward), illumination variability is an important factor that affects the algorithm’s performance. Thus

a new low-level optimal transport-based illumination-invariant image descriptor is proposed [75],

which beyond the scope of facial weakness analysis. The method is based on mathematical mod-

eling of local gradient distributions using the Radon Cumulative Distribution Transform (R-CDT).

The proposed work demonstrates that lighting variations cause certain types of deformations of

local image gradient distributions which, when expressed in R-CDT domain, can be modeled as a

subspace. Face recognition is then performed using a nearest subspace in R-CDT domain of lo-

cal gradient distributions, as illustrated in Fig. 1.3. Experiment results demonstrate the proposed

method outperforms other alternatives in several face recognition tasks with challenging illumination

conditions.

Figure 1.3: Local-Wasserstein feature sets for illumination-invariant face recognition.

1.5 Dissertation structure

Section 1 first provides an overview of the dissertation. The subsequent Section 2 and Section 3

detail methods regarding image-based and video-based facial weakness analysis as well as the ex-

perimental evaluation results. In Section 4, to address varying illumination issues encountered

in the real-patient dataset, the thesis devises a novel optimal transport-based representation for

illumination-invariant face analysis task. The following Section 5 provides the discussion regrading
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the knowledge learned from this study and future work. The final chapter Section 6 concludes the

dissertation.
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Chapter 2

Image-based facial weakness

detection and quantification

2.1 Overview

Although the in-person examination or video visit by a neurologist is still the gold standard, sys-

tems for identifying and quantifying facial weakness from static frames have emerged over the past

decade [76, 77, 78, 79, 67, 80, 81, 82, 83, 84, 85]. In this study, goal of image-based analysis is not

to clinically assess facial weakness symptom, but rather to study the best representation of facial

weakness. By investigating the optimal feature representation of facial weakness on static images,

the knowledge learned is a necessary and crucial step in the process of arriving at a full-fledged

video-based technique to clinically diagnosis facial weakness.

While a large amount of techniques have been developed for facial weakness assessment, broadly

speaking, these approaches can be categorized into landmark-based features [76, 77, 78, 79, 67,

80, 81], which encode information generally associated with position of key facial features such

as shape, and texture-based features [82, 83, 84, 85] that focus on intensity information such as

skin color, creases, texture, etc. Top and bottom right panel of Fig. 2.1 shows the shape-based

features and texture-based features. The most commonly used methods for facial weakness detection

heavily rely on extracting facial landmarks and calculating handcrafted geometric features, such

as computing distance and angle features between facial landmarks as well as asymmetry ratios

[76, 77, 78, 79, 67, 80, 81].
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Figure 2.1: Examples of left facial weakness, shape-based, and texture-based features.

The pilot study, rather than calculating handcrafted features directly, presents a supervised

learning system that is able to learn the discriminant information regrading facial weakness using

on a statistical shape analysis method [67]. Specifically, after the facial landmarks extraction and

alignment, the proposed learning approach projects the shape-based features onto a much lower

subspace. The compact and low-dimensional representation not only greatly reduces the feature

dimension, but also produces the visualizable and interpretable results. However, in this study we

also notice that the accuracy of facial landmark extraction approaches is insufficient in some cases,

because facial landmarks fail to delineate the shape of the mouth accurately, as demonstrated in the

left panel of Fig. 2.1. Thus, a subsequent study [68] first experimentally evaluates the performance

of multiple state-of-the-art landmark feature extraction methods in terms of facial weakness classifi-

cation accuracy, showing that inaccurate face landmarks localization issues can lead to classification

accuracy drop. Then, we use a straightforward linear SVM classification framework to empirically

demonstrate that a combination of landmarks and texture-based features produces the best results

when compared to use either landmarks or textures features separately. At end of the study, to

improve the interperablity of the proposed model, we visualize the maximum weight of the linear

SVM classifier for the HoG features and landmarks features, in order to show that the clinically

meaningful pathological information can be detected by the proposed model.
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2.2 Related work

Telestroke A recent strategy has been the introduction of neurological expertise in the prehos-

pital setting through telemedicine [58, 59], in order to enhance emergency response. The iTREAT

study previously demonstrated that such mobile video tele-neurological assessment in the field is

feasible [58, 59]. Other research has shown that remote evaluation of a patient in the ambulance via

telemedicine highly correlates with on-board examination by a vascular neurologist [60]. This setup

was shown to be cost-effective in starting the evaluation of stroke prior to arrival in the hospital,

saving time and potentially improving patient outcomes, when compared with the traditional stroke

evaluation process. However, while mobile tele-neurological assessment is a promising improvement

of the current paradigm it is not a comprehensive solution. The number of patients who need to be

screened far exceeds the number of available vascular neurologists. With an ever increasing shortage

of neurologists, both in the US and worldwide, this disparity will likely worsen [61, 62, 63, 35]. This

setup was complex and cost of maintenance is high. Several studies showed that the operation cost

of telestroke system in the stroke center is more than $10k USD [86, 87, 88].

Facial weakness detection Facial analysis systems have a long history in the medical applica-

tions. For instances, Almutiry et. al. [89] developed a system to recognize Parkinson’s disease by

examining facial emotional expression. Kruszka et. al. [90] also devised a system that was able

to leverage facial configuration landmarks-based geometric features to discovery the genetic disease

such as the 22q11.2 deletion syndrome. Readers can find a more comprehensive literature review

in [20]. In the realm of neurology, several works have been developed to facial weakness analy-

sis [76, 77, 78, 79, 67, 81]. Depending on the features used in their studies, they can generally be

divided into two categories: (1) landmark-based approaches; (2) intensity-based approaches. The

most popular method is to use the facial landmarks to measure facial configuration features, such

as distance and angle between facial landmarks, and use these configuration features to perform

classification. For instance, Gaber et al. [77] implemented a Kinect based system to quantify fa-

cial paralysis by calculating a symmetry index for the eyebrows, eyes, and mouth. Similarly, Park

et al. [78] proposed to calculate an asymmetry index by measuring the displacement difference be-

tween the right and left side of the forehead and mouth area. In addition to landmark-based features,

several work have been proposed to detect facial weakness based intensity-based features. To be

specific, Guo et al. [85] proposed a Convolution Neural Network (CNN) method to perform facial

weakness severity classification using a pre-trained InceptionV1 model. He et al. [82, 83] employed
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the optical flow and local binary pattern on three orthogonal planes (LBP-TOP) to perform the

facial weakness classification for video data.

2.3 Predictive models

The first section illustrates preprocessing steps include face detection, landmark extraction, and

face normalization that removes the rigid transformations such as translation, rotation, and scaling

effects. The following two sections present two aforementioned studies: [67] and [68] accordingly. The

work [67] presents a statistical shape analysis method for facial weakness analysis, while the work [68]

demonstrates the inaccurate landmarks localization issues, and provides a solution accordingly, by

using a combination of texture-based and shape-based features.

2.3.1 Prepossessing

The preprocessing step’s goal is to detect the existence of a face, extract the corresponding facial

landmarks, and align facial landmarks as well as the pixel intensities to remove translation, scaling,

and rotation effects in the images. To begin, a human face can be represented by 68 pairs of points,

in which each pair of points defines the location of a specific facial landmark, as illustrated in the left

panel of Fig. 2.1. We employs a robust facial landmark tracking system [91], including a face detector

that can detect faces and a facial landmark detector that can locate facial landmarks. Then, the

images need to be aligned, due to the fact that the image data was collected from public repositories

such as Google Image and YouTube, and the facial images contained in them are subject to random

location, orientation, and size variations. In order to remove these variations, begin by averaging

the location of each set of landmarks to produce an average template, the preprocessing step applies

a rigid body estimation method to estimate the rotation, scaling, and translation parameters that

align each image in the data set to the average template. Extracted landmarks, aligned landmarks,

raw intensity information, and aligned intensity values are shown in Fig. 2.2 (a), Fig. 2.2 (b), Fig. 2.2

(c), and Fig. 2.2 (d), respectively.

2.3.2 A shape-based method for facial weakness analysis

Approach one utilizes the penalized Linear Discriminant Analysis (pLDA) on the aligned landmarks

to model the pathological deformations regarding facial weakness by maximizing the separation for

three different classes: normal, left facial weakness, or right facial weakness [67]. Compared with the
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Figure 2.2: The facial landmarks and intensity normalization.

LDA method, which is typically burdened by ill condition problems when applied to high dimensional

spaces [92], the pLDA approach is able to address the potential issues of singularity, using an extra

penalized term. In addition, the pLDA has the advantage of exacting meaningful discriminating

features with respect to class-related information, thus increasing model transparency.

Specifically, given a set of subject landmarks denoted as ln, n = 1, · · · , N , with N being the

number of subjects, the standard LDA method is formulated as:

w∗ = argmax
w

(
wTSBw

wTSWw

)
(2.1)

where SB =
∑

c Nc(µc − l̃)(µc − l̃)T and Sw =
∑

c

∑
iϵc(li − µc)(li − µc)

T define the ’between class

scatter matrix’ and ’within classes scatter matrix’. µc is the center of class c, l̃ is the center of all

dataset, and Nc is number of instance in class c. The goal of LDA is to maximize the objective

function above and the solution of this optimization problem is identical to the solution of the

eigenvalue problem:

SBw = λSWw (2.2)
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Because of the potential issues of singularity or near singularity in SW , it is customary to replace it

by SW + αI, with I the identify matrix, Wang et. al. [93] noticed that such modification amounts

to solving a ”penalized” version of the problem. That is, the equation STw = λ (SW + αI) is the

solution of the following optimization problem:

max
w

(
wTSTw

wT (SW + αI)w

)
(2.3)

which equals to adding a penalty term defined as α −
(

wTw
wTSTw

)
to the original problem. Once

a set of directions wi, i = 1, · · · ,M has been obtained from the pLDA procedure, we assemble a

projection matrix W where each column is composed of an eigenvector from the problem above wi.

The first two eigenvectors are kept for classification. We configure the pLDA penalty weigh term

α as 0.1 and only keep first two pLDA directions, because first two eigenvectors contain the most

meaningful discriminating information, which captures the changes of mouth shape and the changes

of mouth sizes, respectively.

Therefore, a low dimensional discriminant representation for a given subject is then obtained

as l̂n = WT ln. After pLDA analysis, we utilize a KNN classifier for the classification [94] on the

low dimensional vectors l̂n. The configuration setup for the KNN classifier are 5 neighbors with

uniform weight. The classification result has three classes: normal, left facial weakness, and right

facial weakness.

Evaluation results The proposed method is evaluated on a ”in-the-wild” facial weakness dataset.

Specifically, to build such an image dataset, we gather images of healthy controls as well as facial

weakness patients from publicly available online repositories such as Google Image. Specifically,

images of people with normal smiles and with unilateral facial weakness are collected and organized

in the following groups: normal, left facial weakness, and right facial weakness. The images are

then reviewed independently by two senior resident neurologists. Each image is given a numerical

score ranging from ”1” to ”5”, which ”1” denotes the likelihood that pathology is absent and ”5”

denotes high likelihood that pathology is present. Additionally, images for which pathology (e.g.,

facial weakness in our case) is suspected are further classified as left or right denoting the side of the

droop. Only images with the same score (e.g., 1 for normal, 5-left for left facial weakness, 5-right

for right facial weakness) are used for the study. The total number of faces showing normal smile

and facial weakness is 333. Only images with consistent rating by both raters as likely normal or

likely abnormal are included for analysis. Of the 199 images analyzed, 18 images are excluded due
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Figure 2.3: Modes of variations along the first two pLDA directions.

to limitations in facial landmark extraction. Of the remaining 181 images, 87 are rated as likely

normal and 94 are rated as likely having pathological facial weakness (44 are left facial weakness and

50 are right facial weakness). The stratified 5-fold cross-validation is used to evaluate the predictive

model. Specifically, the datasets is randomly divided into 5 groups with balanced samples. Four

groups of samples are used for the training process, and the left a single group serves as the testing

data. This process repeats for 5 times.

The proposed method performs with the overall accuracy of 94.5%, precision of 94.8%, sensitivity

of 94.6%, and specificity of 96.8%. This algorithm achieves high specificity for all three classes,

indicating fewer occurrence of false negative cases. The high precision rate indicates that most of the

true positive cases can be identified correctly. Fig. 2.3 illustrates the first two pLDA discriminant

components for the test dataset. The first row is the first pLDA discriminant component, while

the second row is second pLDA discriminant component. From Fig. 2.3, it is clear that the first

discriminant component is able to detect the mouth shape differences among three classes, since the

control subjects have the symmetric mouth shape while the patient mouth shapes are more likely

to be asymmetric. The second pLDA component is about the mouth size differences. The clinical

interpretation of second pLDA component is that stroke patient loses the control of facial muscle on

the affected side. Therefore, the patient’s mouth cannot be fully open when they are smiling, thus

the mouth size of patient is relatively smaller than that of health control.

Fig. 2.4 and 2.5 are the histograms of testing data projected onto first 2 pLDA directions, showing

that the first pLDA discriminant component is able to classify the left facial weakness, normal, and

right facial weakness, while the second pLDA discriminant component is able to classify the normal

and abnormal cases (left deficit and right deficit).
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Figure 2.4: Histograms of data projected onto the first principle pLDA direction.

Figure 2.5: Histograms of data projected onto the second principle pLDA direction.
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Figure 2.6: Inaccurate landmark localization issues.

2.3.3 A texture-based approach for facial weakness analysis

Previous study [67] shows that landmark extraction algorithms, however, are at times ineffective,

thus landmark-based methods can suffer from inaccurate face landmarks localization issues as shown

in Fig. 2.6. To address this issue, we empirically demonstrate that approaches that incorporate the

texture-based features, such as Histogram of Oriented Gradients (HoG) features [95], tend to be

more accurate [68]. Therefore, the second study examines the performance of several state-of-the-art

facial landmark extractors for facial weakness detection, then presents the idea that incorporating the

texture-based information consistently improves the performance for all different landmark schemes

on a larger neurologist-verified facial weakness image benchmark dataset [68].

First, we evaluate the performance of the state-of-the-art landmark extractors in terms of facial

weakness classification accuracy. Three face detection and facial landmark extraction schemes are

assessed in our study: (1) Deformable Part Model (DPM)[96] and Coarse-to-Fine Shape Searching

(CFSS) algorithm [97]; (2) Deformable Part Model (DPM) and Ensemble of Regression Trees (ERT)

algorithm [91]; (3) Single Stage Headless (SSH) [98] algorithm and Hourglass Network (HN) [99].

The DPM+CFSS and the DPM+ERT are two learning-based schemes that placed first and second in

a recent facial tracking comparison paper [100]. The SSH+HN is a deep learning based scheme that

has achieved the best performance in another comparison paper [101]. Evaluation results of different

schemes utilizing these landmarks extractors on the facial weakness detection task are summarized

in Table 2.1. The main take-way message is that using state-of-the-art landmark schemes, even from
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Figure 2.7: A HoG features example for the near-mouth region.

the state-of-the-art facial landmark extractors, are not able to achieve the best performance in terms

of classification accuracy. A detailed discussion is available in later section.

We explore the idea that combines landmarks-based features and texture-based features to im-

prove facial weakness classification accuracy. In other words, our contribution [68] illustrates that

incorporating texture-based features consistently improves the facial weakness classification when

compared to the approaches that solely use landmark-based features or texture-based features. To

demonstrate that, we first extract landmarks feature and organize it as a standard vector l. The HoG

features, which refer to the statistical distribution of the gradient orientation as show in Fig. 2.7,

are extracted. More specifically, an image is divided into several small subareas (called cells). For

each cell, the gradient information including magnitude ∇Î = [∇xI, ∇yI] and phase θ = tan−1 ∇yI
∇xI

are calculated, then the magnitude of [∇xI, ∇yI] is rearranged into separated orientation bins.

Several cells are grouped into a block, where L2 norm based contrast normalization is performed

on the histograms from this block to remove local lighting difference. Finally, the HoG features are

formulated by concatenating these histograms from each block into a larger vector containing all

histograms estimated, denoted as g. The HoG features are extracted using the following parameters

configuration: the number of orientation bins in each cell is 9 and a cell consists of 8 by 8 pixels. In

addition, since both the landmark features and the HoG features are high-dimensional, we compute

the PCA coefficients from the training data set for the facial landmark features and the HoG fea-

tures, respectively. We reduce the dimension of the features to the number of components that can

cover 90% of the variance. After PCA transformation, we concatenate the two vectors into a single

vector x = [̂l, ĝ] that will serve as input to the predictive model.

In short, given a set of training examples denoted as X = [x1, · · · ,xn, · · · ,xN ], n = 1, · · · , N ,

with xn = [̂l, ĝ] being one particular feature vector (each image corresponds to one feature vector)
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and N being the total number of images. yt ∈ {1, · · · , c, · · · , C} is the ground truth label for tth

subject, and C is the total number of classes. In our case C equals to 3. We formulate the linear

SVM classifier using ”one-versus-one” setting, meaning that this method constructs K = C(C−1)/2

binary classifier. Each of these binary classifiers is trained using the data from two classes. Therefore,

suppose that the training data from the ith and jth classes, this binary classification problem can

be formulated to the following optimization problem [102]:

min
wij ,bij ,ξij

1

2
(wij)Twij + C

∑
t

ξijt (2.4)

subject to(wij)Txt + bij ≥ 1− ξijt if yt = i, (2.5)

(wij)Txt + bij ≤ −1 + ξijt if yt = j, (2.6)

ξijt ≥ 0. (2.7)

where C
∑

t ξ
ij
t is the penalty parameter and bij is the bias term. The training process aims to

obtain the optimal wij and bij [102]. In the testing phase, each of the K binary classifiers outputs a

classification result, the final decision function uses a majority voting strategy to obtain the largest

vote as the prediction.

Deep learning comparison method To compare with Guo et al. [85], we implement a transfer

learning based facial weakness classification framework. Rather than directly using a pretrained

ImageNet model, we choose to train a Convolutional Neural Network (CNN) model on a human

emotion recognition task [103], since it is a highly related classification task, which consists of 28709

training and 3589 testing 48x48 pixel grayscale images of aligned faces with one of seven labels: angry,

disgust, fear, happy, sad, surprise, and neutral. The base model, consisting of four convolutional

layers and two dense layers, is able to achieve 65% accuracy for the emotion classification task. Then

we fine-tune the model using the facial weakness dataset that will be discussed below. Specifically,

we modify the original last dense layer to output three classes instead of seven. Thereafter, we

fine-tune the entire network using our data set. An earlier stop strategy is used for the learning

process. The optimization goal is to maximize the categorical accuracy using an Adam optimizer

with the leaning rate of 0.001.

Evaluation results To comprehensively evaluate the proposed system, we created a facial weak-

ness dataset benchmark that consists of 437 images of people with facial weakness and health con-
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Figure 2.8: Rating distribution for images sub-dataset and video sub-datset.

trols. Firstly, three senior medical students collect 333 images (image sub-dataset) and 203 videos

(video sub-dataset) of facial weakness and normal controls from public available repositories such

as Google Images and YouTube. Specifically, images and videos of people with a smile are collected

to guarantee muscle activation for assessment of pathological asymmetry. These data are then re-

viewed by six neurology experts for verification. First, three experienced neurology trainees rate the

image sub-dataset. Each image is given a numerical score ranging from ‘1’ to ‘5’, which ‘1’ denotes

facial weakness absence, ‘2’ denotes high likelihood that facial weakness is absent, ‘3’ denotes un-

determined cases, ‘4’ denotes high likelihood that facial weakness is present, ‘5’ denotes that facial

weakness is present. Additionally, images with facial weakness are further classified as left (L) or

right (R) denoting the laterality (side of the weakness). Only images with the same score (e.g.,

‘1’ for normal, ‘5L’ for left facial weakness, ‘5R’ for right facial weakness) by all three raters are used

in this study for analysis. 95 images are excluded due to disagreement. Among these 238 images,

88 images are rated as normal (facial weakness absence), 77 images are rated as left facial weakness,

and 73 images are rated as right facial weakness. Fig. 2.8 shows the rating distributions. The first

row in Fig. 2.8 shows the rating distribution of the three experienced neurology trainees for all 333

images. The corresponding Fleiss Kappa value is 72.0% [CI 68.3%-75.6%]. In addition, in order

to augment the above-mentioned image sub-dataset, we sample one frame from each video in the

video sub-dataset and add them to the image sub-dataset. The videos are reviewed independently

by three board-certified neurologists. The video rating follows the same rating protocol, given a

numerical score ranging from ‘1’ to ‘5’, which ‘1’ denotes facial weakness absence, ‘5R’ denotes right
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Proposed method CNN
Near eye Near mouth Full face Near mouth Full face

Landmarks HoG Landmarks + HoG Landmarks HoG Landmarks + HoG Landmarks HoG Landmarks + HoG Image space Image space
DPM+CFSS (N=435) 43.2 ± 3.4% 59.3 ± 2.3% 61.4 ± 3.5% 85.5 ± 3.2% 87.6 ± 2.9% 90.1 ± 3.7% 68.3 ± 5.5% 80.7 ± 2.0% 81.1 ± 4.2% 74.4 ± 3.0% 71.4 ± 5.4%
DPM+ERT (N=435) 45.5 ± 3.2% 66.4 ± 2.1% 66.9 ± 2.9% 87.1 ± 2.8% 90.3 ± 1.4% 91.3 ± 0.9% 82.3 ± 3.5% 84.1 ± 4.2% 86.7 ± 3.7% 82.0 ± 2.9% 76.5 ± 3.4%
SSH+HN (N=413) 53.0 ± 4.3% 69.2 ± 2.6% 72.4 ± 2.5% 93.2 ± 2.6% 92.0 ± 1.6% 94.9 ± 3.5% 87.2 ± 1.7% 86.2 ± 2.5% 90.3 ± 4.0% 82.2 ± 4.9% 80.1 ± 2.0%

HA (N=437) 51.7 ± 4.5% 66.9 ± 5.2% 67.6 ± 4.6% 90.1 ± 1.9% 92.9 ± 1.5% 94.5 ± 2.1% 90.3 ± 2.7% 86.0 ± 1.6% 92.2 ± 1.1% 77.2 ± 1.6% 76.2 ± 7.7%

Table 2.1: Performance evaluation

facial weakness, and ‘5L’ denotes left facial weakness. We choose the videos with a median score

that larger than ‘4’ as the left/right facial weakness and the videos less than a median score of ‘2’ as

the normal, resulting in 48 videos with left facial weakness, 53 videos with right facial weakness,

and 98 videos with normal. Finally the frame with maximum smile activation in each video is

manually selected by a graduate student and further verified by an experienced neurology trainee.

This resulted in 199 additional images. The second row in Fig. 2.8 shows the rating distribution

for three board-certified neurologists for the 203 videos. Note that the x-axis is the score rated by

neurologists and the y-axis is the corresponding data percentage. The corresponding Fleiss Kappa

value is 73.3% [CI 68.8%-77.9%]. Finally, total together the image dataset ends up with 437 images

including 186 normal images, 125 left facial weakness images, and 126 right facial weakness images.

Each image only contains one person. Moreover a graduate manually annotates the facial landmarks

using a semi-automatic image annotation tool [104]. This tool first locates facial landmarks on the

image, then the graduate student manually inspects and corrects the facial landmarks, which are de-

notes as Hand-annotated facial landmarks (HA, N = 437, Normal: 186, Left: 125, and Right: 126).

Three ROIs: near-eye region, near-mouth region, and the full face, are evaluated in the experiment.

After the normalization, near-eye region image is resized as 64 by 224 pixels, near-mouth region is

resized as 128 by 200 pixels, and the full face is resized as 256 by 256 pixels. The stratified 5-fold

cross-validation is used in the experiments shown below. The accuracy averaged over these 5 times

is reported. The experiments results are summarized in Table 2.1. We present the evaluation results

of the proposed model using concatenated landmark features and HoG features across different ROIs

(e.g, near-eye region v.s. near-mouth region v.s. full face), as well as using either landmark features

or HoG features separately.

First, we report the performance of the face detection and facial landmark extraction algorithms

that used in this study. The DPM fails to detect faces in 2 images, while SSH fails to detect faces in

24 images. We find that the SSH experiences difficulty detecting face in the images where the person

is closed to the camera and the forehead is missing from the image. In total, the DPM+CFSS and the

DPM+ERT successfully extract 435 landmarks from the image dataset (N = 435, Normal: 186, Left:

124, and Right: 125) while the SSH+HN successfully extracts 413 facial landmarks from the image
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dataset (N = 413, Normal: 176, Left: 118, and Right: 119). Table 2.1 demonstrates the performance

of various classification schemes using different landmarks extraction algorithms (e.g, DPM+CFSS

v.s. DPM+ERT v.s. SSH+HN v.s. HA) and ROIs (near-eye v.s. near-mouth v.s. full face) in terms

of accuracy. It is worth noting that HA achieves a better performance than the DPM+CFSS and

the DPM+ERT method (N=435). The SSH+HN method also has a good performance except that

24 images are excluded for analysis due to face detection failures (N=413). Another observation

from Table 2.1 is that the HoG features have higher classification accuracy than landmark features

for the most cases. This is because the HoG features are able to tolerate some local lighting and

translation variations. In some cases where the facial landmarks can only delineate the coarse shape

of the mouth, some important information with respect to facial weakness such as the mouth corner

and lip edge shape is missing, causing incorrect prediction if the geometric features calculated from

the mouth landmarks are used. When using the combination of the landmark features and HoG

features, the classification accuracy can be improved. This indicates that combining the landmark

features and the HoG features is able to provide extra useful information for classification, thus may

mitigate some error caused by inaccurate landmarks extraction algorithms. To be specific, only using

the landmark features discard some intensity information such gradient and edge that are significant

clues for facial weakness classification. For instance, the contour of the mouth can be represented

using edges and gradients. The mouth of health control subject has smooth contour while the facial

weakness subject has irregular and sharp mouth edges. Combining the HoG features, however, allows

the classifier to make use of these gradient and edge information for classification. Moreover, the HoG

features can be treated as a nonlinear function that maps the edge orientation of the original image

into a specified orientation arrangement. This histogramming process as well as block normalization

enables the HoG features can handle some local lighting and translation variations [105]. Finally

experiment evaluations show that near-mouth region has a higher pathological manifestation of facial

weakness than near-eye region and full face in this dataset. Table 2.1 also provides the evaluation

results for deep learning method. This follows the same trend that near-mouth region is more

informative than full face. The deep learning based method has a lower performance in our dataset,

one possible reason is that the data set used in our case is relatively small and the deep learning

method typically requires a substantially larger amount of training data to be effective.

Table 2.2 provides the confusion matrix of our method and the deep learning based method for

the near-mouth region. In additional to have a higher performance, the proposed approach makes

fewer laterality errors such as misclassifying the left facial weakness as right facial weakness or vice

versa. This is clinically meaningful because correctly determining the affected (weakness) side is able
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Landmarks +
HoG

Predict
Normal

Predict
Left

Predict
Right

CNN
Predict
Normal

Predict
Left

Predict
Right

Actual
Normal

175 5 6
Actual
Normal

180 2 4

Actual
Left

9 114 1
Actual
Left

24 93 7

Actual
Right

11 2 112
Actual
Right

26 7 92

Table 2.2: Confusion matrix

to help clinical professionals to locate which part of the brain may be damaged. Another observation

is that deep learning based method is more likely to predict the result as the normal, one reason is

that the dataset have more normal samples than left and right weakness samples.

Model transparency In addition, to improve the model transparency and interpretability, we

visualize the weights of the linear SVM classifier for HoG features and landmarks features, because

several studies suggested that a larger weight in the linear SVM classifier indicates more significant

role in the decision function [106][107]. The visualization allows us to find the most significant

texture and shape information regarding facial weakness classification.

We only focus on the near-mouth region in this section. Fig. 2.9 shows the average images,

average HoG features, and average mouth landmarks over the training examples for left and right

facial weakness and those without facial weakness. An observation is that these images can be

treated as the ‘template’ for each class to show the texture (e.g., HoG features) and shape (e.g,

landmark features) information variations across three different classes. As discussed above, the

linear SVM classifier used in this study employs an one-to-one classification setting, meaning that

K = C(C − 1)/2 = 3 binary classifiers are constructed. We denotes wij as the weight of the binary

classifier for class i against class j, where i ∈ {Normal,Left,Right}, j ∈ {Normal,Left,Right} and

i ̸= j. Below we detail the procedures to visualize the maximum weight and its corresponding

orientation in each cell for these three binary classifiers, which will be able to help us to understand

what is learned for the training dataset. When extracting the HoG features, the near-mouth region

is divided into 16 by 25 cells. A histogram with 9 bins is constructed to represent each cell and each

bin is associated with a linear SVM weight. Then, in each cell we only show the maximum SVM

weight, resulting in a 16 by 25 ‘pixels’ image. In Fig.2.10, the first column shows the maximum SVM

weight of three binary classifier (‘Normal v.s Left’, ‘Normal v.s. Right’, and ‘Left v.s. Right’ from
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Figure 2.9: The average mouth image, HoG features, and landmarks for left, right, and normal
cases.

Figure 2.10: The significant cells for HoG features and the significant landmarks.
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top to bottom) for the HoG magnitude. Similarly the corresponding orientation is shown in the

second column in Fig.2.10. This visualization process enables us to understand what information

is crucial for facial weakness classification. For instance, when classifying ‘Normal v.s. Left’, the

cells on the left side of the mouth have larger weight. This makes sense as the patient with left

facial weakness is unable to show the smile on the left side while a normal control can. Therefore,

gradient information (magnitude and orientation of the edge) on the left side of the normal is more

informative to classify the left facial weakness. Likewise in the third column of Fig. 2.10 we rank the

importance of mouth landmarks using different colors (dark blue > cyan > magenta > yellow). For

example, when classifying the ‘Normal v.s. Left’, the landmark on left mouth corner (in blue color as

shown in the upper-left corner of Fig. 6) is more important than others. This is because the position

of this landmark is in a lower position for the subject with left facial weakness compared with the

healthy controls due to the fact that the subject loses the control of facial muscles on the left side

and cannot raise the left mouth corner accordingly. While the intact side (right side) of the facial

has some deformation, but it may not be as useful as the deformed landmarks of the symptomatic

side (left side). The figure in upper-left corner of the Fig. 6 shows that the linear SVM classifier

is able to learn this most discrimination information on the affected side from our dataset. Thus,

during the testing phase of the classification procedure, the linear SVM classifier will assign a larger

weight on this landmark to classify ‘Normal v.s. Left ’. Likewise, we identify three other important

landmarks and rank them based on their weights, as shown in upper-left corner of Fig. 2.10, all of

them are located on the affected side.

2.4 Summary

Through the two studies discussed above, we demonstrate that landmarks-based approach is an

effective method for facial weakness analysis [67]. However, inaccurate landmark localization issues

cause decreased classification accuracy. To address these issues, the second study [108] shows that

incorporating texture-based information together with landmarks-based features leads to improved

performance in terms of facial weakness classification accuracy. The knowledge learned from this

chapter lays a solid foundation, in order to build a full-fledged video-based solution for facial weakness

detection and quantification.
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Chapter 3

Video-based facial weakness

detection and quantification

3.1 Overview

The previous section outlines several methods for facial weakness detection on static images [67, 68],

including identifying the optimal features regarding facial weakness analysis. However, assessing

facial weakness solely from a single static image is somewhat limited, because of the availability of

the static image containing pathological information. While a doctor or trained technician, could

potentially acquire such an image, it would be preferable if a simple video examination procedure

could be used instead. In addition, the video examination contains more information (many frames)

it could be potentially more robust in identifying the signs of deficit. Fig. 3.1 demonstrates a facial

weakness video example. At the beginning when the subject is in neutral expression, clearly it is

difficulty to assess the presence of facial weakness. However, when the subject is asked to show a

smile, the facial weakness symptom becomes more distinguishable.

Figure 3.1: A video examination example facial weakness.
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Figure 3.2: Illustration of a typical user scenario.

Therefore, using the knowledge learned from Chapter 2 as building blocks, we investigate ap-

proaches for video-based facial weakness classification, including two major studies: majority voting-

based approach [69] and RNN-based approach [70]. The majority voting method performs the clas-

sification for each single frame and aggregates the frame-wise classification results using a majority

voting strategy as the overall classification result for the input video. However, this method has sev-

eral drawbacks, such as misusing the frames in which subjects display no symptoms of facial weakness

or failing to take the temporal information into account. To address these issues, we build a novel

automated and quantitative facial weakness screening framework, which not only automatically iden-

tifies the frames with maximum muscle activation but also models the temporal dynamics of both

shape and appearance-based features of each target frame through a Bi-directional Long Short-term

Memory network (Bi-LSTM). To evaluate the proposed systems, we assemble, curate, and verify

an ”in-the-wild” video dataset, which is verified by three board-certified neurologists and rated by

multiple paramedics and neurology trainees. Evaluation results show that the proposed framework

achieves equivalent performance to paramedics and provides visualizable and interpretable results.

Significance of the proposed work is that it can be beneficial to assist the paramedics to identify

the facial weakness in the field or, more importantly, whenever expertise in neurology is not available
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either for emergency stroke patient triage or chronic disease management, leading to increasing

coverage and earlier treatment. One usage example is shown in Fig. 3.2. Furthermore, this study, as a

proof-of-concept, shows that such technology could be a potential solution to the lack of neurologists

nationally and globally, serving as an essential blueprint for future innovations in the field.

3.2 Related work

Several works have been proposed to automate face weakness assessment in video data. The literature

leads to three main approaches depending on the type of features used: (1) shape-based approaches;

(2) appearance-based approaches; (3) depth-based approaches.

Analyzing the anomalies in the facial geometric cues have been most popular approach to per-

form facial weakness detection. Researchers often detected facial landmarks and directly measured

the facial geometric features, e.g, the distance and angles between landmarks, which were used to

perform the classification on a single RGB image or a sequence of images [78, 79, 77, 81, 67]. For

example, Gaber et al. [77] implemented a Kinect-based system to quantify facial paralysis by calcu-

lating a symmetry index for the eyebrows, eyes, and mouth. Guo et al. [81] computed the location

and displacement of the landmarks to formulate the shape-based features for classifying the facial

weakness. However, the drawback of shape-based methods is that the current facial landmark ex-

traction algorithms are typically trained and calibrated using normal facial configuration and may

suffer from poor accuracy for patients with facial weakness.

The face also exhibits specific texture and appearance information. Together with the emergence

of deep learning methods, researchers have investigated the appearance-based and texture-based

features as an alternative. In [82, 83], the author employed the optical flow and local binary pattern

on three orthogonal planes (LBP-TOP) to perform the facial weakness classification for videos. Guo

et al. [85] devised a convolutional neural network (CNN) method to perform facial weakness severity

classification on static image. Li et al. [84] extracted the intensity values and LBP features from

various parts of the face as input features to a two-stage support vector machine (SVM) classifier

to assess facial paralysis. Zhuang et al. [69] developed a facial weakness classification system using

the histogram of oriented gradients features. Other works also investigated the facial weakness

classification using a combination of shape and appearance-based features. Haase et al. [109] and

Modersohn et al. [110] located the local patches on the face and used a combination of the shape

and appearance-based features from the local patches to assess the asymmetry for static images.

More recently, Xu et al. proposed a Dual-path LSTM network to evaluate the facial weakness [111].
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Figure 3.3: A majority voting based approach for facial weakness video classification.

The local and global features for each frame were extracted by two autoencoder networks, then the

LSTM modeled the temporal relationship and outputed the classification result. Storey et al. [112]

proposed a 3D-ResNet network to classify facial weakness using the near-mouth region.

Several studies leveraged depth information to assess facial asymmetry. Bandini et al. [113]

utilized a RGB-D camera to conduct the facial movement analysis for patients with amyotrophic

lateral sclerosis. Alagha et al. [114] analyzed the dynamics of facial expressions in unilateral facial

palsy using a sequences of 3D images. Desrosiers et al. [115] proposed to extract Dense Scalar Field

features from a sets of 3D face images to evaluate the facial weakness treatment. The downsides of

depth-based techniques can be hindered by the need of dedicated hardware and the fact that 3D

reconstruction from depth information is often a delicate procedure that can have accuracy issues.

3.3 Video-based facial weakness detection using majority

voting

Overview The previous chapter demonstrates the effectiveness of gradient information used for

facial weakness analysis of static images. To here, goal of the first study [116] is to classify an

examination video, or a sequence of individual frames, using the most straightforward approach,

which is to perform frame-by-frame classification and to combine a sequence of classification results

into one single result. Fig. 3.3 illustrates the proposed idea. Using this idea, we develop a simple

but effective video classification method [116], named ”F-DIT-V”, for facial weakness detection. In

the following sections, we will provide the details regarding F-DIV-V.

Preprocessing and feature extraction Given an input video, F-DIT-V first decomposes it

into a total of N individual frames. For each frame, F-DIT-V extracts the corresponding facial
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landmarks and aligns each frame to remove undesired variations in terms of the size, displacement,

and orientation. After the alignment, the frames are cropped around the subject’s mouth, since

facial weakness is primarily manifested in the near-mouth region. The HoG features g are extracted

and will be used for frame-wise classification.

Predictive model The predictive model consists of a pLAD classifier and a voting classifier. The

pLDA algorithm outputs the classification result for each frame, and the voting classifier aggregates

image-level predictions into a single classification result: normal, left facial weakness, or right facial

weakness. The goal of the standard LDA method is to maximize the Fisher criterion, while the

pLDA algorithm [93] used in this study aims at maximizing the Fisher criterion and minimizing a

penalty term at the same time, which is formulated as:

max
w

(
wTSTw

wT (SW + αI)w

)
(3.1)

where SB =
∑

c Nc(µc − ḡ)(µc − ḡ)T represents the ”between scatter matrix”, SW =
∑

c

∑
iϵc(ĝi −

µc)(ĝi − µc)
T defines ”within classes scatter matrix”, µc is the center of class c, ḡ is the center of

all dataset, Nc is number of instance in class c, ST = SB + SW , α is the penalty term, and I is

the identify matrix. Once a set of directions wk, k = 1, · · · ,K has been obtained from the pLDA

procedure, we assemble a projection matrix W where each column is composed of an eigenvector

from the problem above wi. The classification result for each individual frame is predicted as

yn = WTgn, n = 1, · · · , N .

After obtaining the classification result for each frame, a voting classifier combines the image-

wise results into a single prediction result. Specifically, the voting classifier first counts how many

frames belongs to each class in the given video with N frames:

Ci =

N∑
n=1

sign(WTgn) (3.2)

where i represents facial weakness class (e.g. normal, left facial weakness, right facial weakness) and

Ci is the total number of frames for ith class. Then, the voting classifier determines the presentence

of facial weakness. If the facial weakness present, it compares the duration of facial weakness (left

or right) with a predefined threshold τ and predicts the classification result.

Experiment evaluation Given the absence of a publicly available annotated stroke deficit video

dataset, we gathered videos of healthy controls and patients with facial weakness from publicly
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available online repositories such as YouTube. In these videos, there exists a large amount of

variations of pose, lighting, distance, appearance, and environment as commonly observed ”in-the-

wild”. The videos were reviewed independently by two senior resident neurologists. Each video was

given a numerical score ranging from ”1” to ”5”, which ”1” denotes high likelihood that pathology

is absent and ”5” denotes high likelihood that pathology is present. Only videos rated concordantly

were used for the study, resulting in 37 videos with left facial weakness, 38 videos with right facial

weakness, and 60 normal videos. The total number of frames for each video ranges from 34 to 200.

Video pre-processing was comprised of face landmark extraction, alignment, and cropping, resulting

in a set of 64 by 128 pixel near-mouth region images for each video. Each individual frame in the

video was labeled and verified by one senior neurology resident and one M.D. student to train pLDA

classifier. The stratified five-fold cross-validation was used in the experiment. In this work, the

number of orientation bins in a cell is 9 and a cell consists of 8 by 8 pixels. The number of cells in

each block is 4. Since the extracted HoG features are high-dimensional, we compute the principal

component coefficients from training dataset to reduce feature dimension and avoid over-fitting. In

our case, we reduce the dimensions of the features to the components that can cover 95% of the

variance. We compared the proposed algorithm with state-of-art alternatives, including the LBP-

TOP method and a RNN-based method. Specifically, the LBP-TOP method was configured using

following the setup: the parameters of the radii along horizontal axis (X), vertical axis (Y), and

time axis (T) were 1, 1, and 2 respectively, and the number of neighbor points in the XY plane,

XT plane, and YT plane were 8. For each video, the LBP-TOP model outputs a 59 × 3 vector

which specified LBP features along the XY, XT, and YT planes. Finally, this vector was fed into a

linear SVM classifier for classification. The RNN-based method exploits and models the temporal

relationship between each individual frame and the sequence label. In our study, the RNN model

was implemented using a long-short term memory (LSTM) network with 100 hidden units. The

last hidden output was used as input to a linear layer to perform classification. The network was

optimized by minimizing the cross entropy loss using an Adam optimizer.

The accuracy , precision , recall, and specificity of the proposed F-DIT-V method are 92.9%(±3.2%),

93.6%(±2.9%), 92.8%(±3.4%), and 94.2%(±2.6%), respectively, which achieves the best perfor-

mance. Only very few videos are misclassified, because the pLDA classifier is unable to predict

enough correct number of frames for a given video, leading the voting classifier to perform the

incorrect voting and predict a incorrect result. The LBP-TOP method achieves mediocre perfor-

mance with accuracy of 80.7%(±6.2%), precision of 83.8%(±5.8%), recall of 80.8%(±6.1%), and

specificity of 83.0%(±5.4%). The LBP-TOP method has a lower performance evaluation because it
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Figure 3.4: Architecture of the RNN-based approach.

only extracts textual information from three orthogonal planes, meaning that some information is

lost which may result in a decrease in performance. The LSTM-based method has the lowest perfor-

mance with the highest deviation. The accuracy, precision, recall, and specificity are 77.9%(±7.8%),

78.0%(±7.7%), 77.8%(±7.7%), and 81.9%(±8.8%) respectively. The relative poor performance of

LSTM network on our dataset is caused by the fact that the number of videos in our dataset is

relative small while the LSTM-based method normally requires a substantially large amount of

training dataset to be effective. However, it is worth noting that the temporal information used

in LSTM-based method is not incorporated in our framework. Our next research will include

leveraging the temporal information to enhance the performance of our proposed method in term

of accuracy and robustness.

3.4 Video-based facial weakness detection and quantification

using RNN

Overview Although the F-DIT-V approach [116] is an effective solution for video-based facial

weakness classification, it is worth further exploring a new method that is able to: (1) automatically

identify a video segment of interested, where the subject’s muscle activation is maximized, (2)

and exploit the spatial temporal relationship among video frames. Therefore, we propose a new

framework [70] that is capable of not only addressing the aforementioned issues, but also leveraging

all useful information and knowledge that are learned from previous studies, as shown in Fig. 3.4. To

be specific, for a given input video, the proposed framework extracts facial landmarks and performs

landmarks and intensity normalization that removes translation, rotation, and scaling variations.

Next a facial movement detector employs the optical flow approach to measure the face movement

intensity and locates an video segment where a smile configuration is clearly evident, because our

intent is not to use all the frames but only use the frames that have the maximum muscle activation
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Table 3.1: Notation

Notation
T Number of target frames
x Input feature (either shape-based or appearance-based feature)

Wplda Projection matrix for pLDA analysis
Wpca Projection matrix for PCA analysis

x̂
Output of either

shape-based or appearance-based features from the single frame estimator
x̄ Concatenated shape-based and appearance-based features
t Frame/time index
hlt Hidden state of Bi-LSTM in layer l at frame/time t

f(·, ·) LSTM hidden state update function
Wy Projection matrix of affine layer
ŷ Classification prediction

for assessing facial weakness. Once the desired video segment is obtained, the shape and texture-

based features are extracted from the target frames inside the desired video segment. Then the

single-frame estimator projects the extracted high-dimensional shape and texture-based features

onto a low-dimensional subspace. Finally the framework classifies the input video using the low-

dimensional representation of shape and texture-based features via a Bi-LSTM network. The final

output of the framework is left facial weakness (left), right facial weakness (right), or normal control

(normal). The following paragraphs present details regarding the RNN-based framework for video-

based facial weakness classification.

preprocessing The preprocessing step decomposes the video into a sequence of individual frames

and detects faces within each video sequence correspondingly. Then a standard face alignment

algorithm is employed to align the facial landmarks and pixel intensities as discussed in our previous

studies [68] to eliminate the translation, scaling, and rotation effects, due to the fact that the facial

images contained in videos are subject to random location, orientation, and size variations. After

the alignment, only the region of interest (ROI) is kept. It is worth noting that we evaluate the facial

weakness classification scheme on two ROIs: the near-mouth region and full face in the experiment

section. Finally, we make use of the aligned 68 anatomically significant facial landmarks as shape-

based features and HoG features as the appearance-based features, as shown in Fig. 3.5, respectively.

Facial movement detector After the face normalization, rather than utilizing every frame in the

whole video, we are particular interested in a video segment, in which the subject’s facial expression

is maximized. Hence, the goal of the facial movement detector is to locate the desired video segment

that has the maximum muscle activation, as shown in Fig. 3.6. Because the facial movement can
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Figure 3.5: The shape-based (landmarks) features and texture-based (HoG) features.

be characterized by the displacement of pixels, the optical flow method is employed to identify the

full smile activation and locate the desired video segment. The first frame serves as the reference

frame I0, The optical flow estimation of the subsequent frames are computed with respected to the

reference frame I0. For example, consider a pair of reference frame I0 and target frame In (nth

frame), and a point u = [ux, uy]
T on I0 at (x, y), the goal of optical flow estimation is to find a

”similar” point’s location of v = u+ d = [ux + dx, uy + dy]
T on I1 [117]. The optical flow vector d,

which describes the movement of point u in I1 with respect to I0, consists of two components: dx

and dy. The corresponding magnitude is computed as |d|xy =
√

d2x + d2y. The total pixel movement

magnitude for frame n, therefore, can be computed as Dn =
∑

x

∑
y |d|xy. Next, we use a sliding

window to calculate the total magnitude for the T frames inside the window. Then we select

the window that has the largest magnitude as the target window. All T target frames inside the

detected window are used for further analysis. The index of the detected window can be obtained

by argmaxk
1
T

∑k+T
n=k Dn.

Single-frame estimator The single frame estimator aims at extracting the most discriminant

shape and appearance information related to facial weakness from a single frame. In order to

construct such an estimator, we model the pathological meaningful shape and appearance variation

on an neurologist-verified image dataset that is independent of the video dataset in a supervised-

learning fashion. We utilize a composition of the principle component analysis (PCA) [118] and

penalized linear discriminant analysis (pLDA) [93] method to perform the statistical shape and

texture analysis, which is able to learn the discriminating pattern to separate between multiple

classes (normal v.s. left v.s. right). This is can be represented mathematically as x̂ = WT
pldaW

T
pcax,

where x denotes either the shape feature vector or appearance feature vector. These projection
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Figure 3.6: The facial movement detector locates the video segment with the maximum muscle
activation.

Figure 3.7: The network structure of the Bi-LSTM used in this study.

matrices, Wpca and Wplda, can be estimated using the standard PCA and pLDA techniques [118, 93].

It is worth noting that each column in the projection matrices Wplda and Wpca is composed of

an eigenvector and defines a set of directions in the low-dimensional PCA and pLDA subspace.

Using this single frame estimator not only allows us to identify the most discriminant pattern of

facial weakness and provides the visualizable and interpreable result, but also facilitates the fast

computation by representing high-dimensional data in a compact form. To this end, the single

frame estimator generates a feature sequence by directly concatenating the estimated shape and

appearance-based features for each frame in the detected target video segment {vt}k+T−1
t=k as {x̄t}Tt=1,

where k is the index of the first target frame.
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Temporal modeling using RNN The temporal modeling algorithm in our study seeks to predict

the label ŷ for the feature sequence {x̄t}Tt=1 via a recurrent neural network (RNN) based approach.

The RNN network is able to learn the temporal relationship between the image sequences and maps

the learned temporal information to a sequence label [119]. We use a two-layer Bi-LSTM network

to implement the RNN as shown in Fig. 3.7. To be precise, given the input feature sequence{x̄t}Tt=1,

the first Bi-LSTM layer computes the hidden state h1
t = [

−→
h 1

t ,
←−
h 1

t ] by concatenating the forward

hidden state
−→
h 1

t and backward hidden state
←−
h 1

t at time t, while the
−→
h 1

t and
←−
h 1

t can be calculated

as:

−→
h 1

t = f(x̄t,
−→
h 1

t−1)

←−
h 1

t = f(x̄t,
←−
h 1

t+1)

(3.3)

where f(·, ·) refers to the standard LSTM update equation in a LSTM cell [119], x̄t is the input

at time t, h1
t−1 and h1

t+1 are hidden state at t − 1 and t + 1, and the superscript l of hl
t is the lth

layer of LSTM network. Likewise, using equation (3.3), the h2
t = [

−→
h 2

t ,
←−
h 2

t ] can be computed at time

t. Finally, a dense layer outputs the classification result ŷ for the given input sequence as:

ŷ = Wy · h2
T + by (3.4)

where Wy and by are the weight matrix and bias item of the fully-connected layer.

Deep learning-based comparables To evaluate the performance of the proposed algorithm, we

compared it with the LBPTOP based approach [82], 3DResNet (or 3DPalsyNet) [112], Dual-path

LSTM [111], 2DCNN+RNN [120], and Two-stream LSTM [121]. To be specific, we use the following

parameters to configure the LBPTOP approach: the radius along X axis, Y axis, and T axis are 1,

1, and 2 respectively, and the number of neighbor points are 8 for the XY plane, XT plane, and YT

plane. The 3DResNet and Dual-path LSTM are implemented as discussed in [112, 111]. The shallow

three-dimensional convolutional neural networks (3DCNN) serves as the performance baseline for

deep learning based method, which consists of two convolutional layers. The number of filters and

kernel size of first convolutional layer are 32 and 5x5x5, while the second layer are 48 and 3x3x3

respectively. A batch normalization (BN) layer is used after each convolutional layer. Then a ReLu

layer, a dropout layer with drop rate of 0.2, and a maxpooling layer with kernel size of 2 generate the

feature maps. Finally, a composition of two affine layers makes the classification. Another popular

deep learning based video classification alternative makes use of a combination of CNN and RNN.
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To be specific, the CNN network learns the optimal representation of each individual frame while

the RNN network models the changes of these spatial features along the temporal axis. We also

implement a CNN+RNN (or CNN+LSTM) network based on [120]. The CNN has 4 convolutional

layers with kernel numbers of 64, 128, 256, and 512, whose kernel size are 5x5, 3x3, 3x3, and 3x3

respectively. Then each convolutional layer is followed by a BN layer and a ReLu layer. Then

a dropout layer with dropout ratio of 0.5 is applied. A global maxpooling layer with kernel size

of 2 reduces the dimension of feature map from the CNN. A composition of two fully connected

layer with 1024 nodes generates the feature map for each individual frame. Then the RNN network

is implemented as a two-layer LSTM, each layer has 1024 hidden units. A fully connected layer

with 512 nodes is applied on the final output of the LSTM network to produce the classification

result. More recently, multiple studies indicate that incorporating the motion information, e.g, the

optical flow [121, 122, 123], increases the video classification performance. We adopt this two-stream

LSTM architecture as discussed in [121] for our study. To be precise, the two-stream LSTM utilizes

one spatial CNN network to extract the spatial information from each frame and another motion

CNN network to extract the motion information from the stacked optical flow, respectively. Then

a LSTM network concatenates the outputs from these two CNN networks and learns the long-term

dependency. In our implementation of the two-stream LSTM, its spatial CNN network shares the

similar configuration with CNN+RNN method as discussed above. The motion CNN network has

three convolutional layers. For each convolutional layer, a BN layer and a ReLu layer are applied

thereafter. The kernel sizes for each convolutional layer are 5x5, 3x3, and 3x3. The number of

convolutional kernel is 64, 128, and 256. After the ReLu layer, a maxpooling layer with kernel size

of 2 is used. Then an affine layer with 1024 nodes produces the feature map. Finally, the feature

maps from motion CNN network and spatial CNN network are concatenated and input to a two-layer

LSTM with 1024 hidden units, which generates the classification prediction result.

Experiments overview We first describe the acquisition of two independent facial weakness

datasets and the corresponding verification process by three board-certified neurologists followed by

the experiment setup description. The subsequent section provides experiment results including the

statistical shape and appearance analysis of the single frame estimator and performance comparisons

with other approaches. Furthermore, the comparison between the proposed method and human

raters is provided. At the end of this section, a prototype of our proposed approach as a proof-of-

concept is present.
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Figure 3.8: The facial weakness image dataset.

Figure 3.9: The facial weakness video dataset.
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Data collection and validation Due to the fact that no facial weakness image and video dataset

is publicly available, we assembled two independent datasets including an image dataset and a video

dataset from publicly available repositories such as Google Images and Youtube. The image dataset

was used to build the single-frame estimator, while the video dataset was used to evaluated the

proposed video classification algorithm. It is worth noting that since neurologist diagnosis is still

the gold standard for confirming the presence or absence of facial weakness, the image dataset

and video dataset were verified by three board-certified neurologists using a modified NIH stroke

score (NIHSS) [124]. To minimize the possibility that three clinical raters made the same mistake,

the median score of their ratings serves as the ground truth. The image dataset acquisition and

verification is described in [68]. In total, the image dataset consists of 236 images, including 88

normal control images, 76 left facial weakness images, and 72 right facial weakness images, as

shown in Fig. 3.8. Then it is augmented by flipping the images horizontally. The video dataset

was collected by three senior medical students. The data acquisition protocol included the videos

containing exactly one subject who faces the camera directly with full face in view and has a

neutral expression at the beginning and shows a prominent smile thereafter to ensure the presence of

maximum muscle activation. Three board-certified neurologists independently reviewed the videos.

To classify presence or absence of face deficits, the 5-point scale NIHSS scores were converted into

a modified 3-point scale: 1 denotes pathology absent, 2 denotes pathology indeterminate, and 3

denotes pathology present. Then we computed a median score from the three neurologists to serve

as the ground truth. The videos with a median score of one or three were selected in our study,

resulting in 43 left facial weakness videos, 50 right facial weakness videos, and 96 normal videos

(72 men v.s. 117 women and 155 light-skinned v.s. 34 dark-skinned in terms of demographics

information), as shown in Fig. 3.9.

Experiments setup This section specifies the experimental setup. We set the window length T ,

which equates to the length of the subject having maximum muscle activation, as 0.83 seconds (20

frames in our case). The ensemble of regression trees (ERT) algorithm [91] was chosen to perform

facial landmark extraction owing to its high performance [100]. Two ROIs were analyzed in our

study:near-mouth region and the full face. After the normalization, near-mouth region was resized

as 128 by 200 pixels and the full face was resized as 256 by 256 pixels. The parameter configuration

for the HoG features was: the number of orientation bins in each cell was 12 and a cell consists

of 16 by 16 pixels. In terms of parameter setup for the PCA method, the components that can

cover 98% of the variance of HoG features were kept and the components that can cover 96% of the
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Figure 3.10: Left video classification example.

variance of landmark features were kept. For the pLDA method, the α for HoG features was set

to 10 and for landmark features was set to 0.1 according to [93]. The Bi-LSTM network consisted

of two Bi-LSTM layers, each Bi-LSTM layer had 64 hidden units. We utilized the Adam optimizer

to optimize the network. The learning rate for Adam optimizer was set to 0.001. The β1 and β2

were set to 0.9 and 0.999, respectively. We report the accuracy averaged over these 5 times using

stratified 5-fold cross-validation scheme.

Video classification results We demonstrates three examples of video classification, namely left

facial weakness v.s. normal v.s. right facial weakness in details, as shown in Fig. 3.10, Fig. 3.11, and

Fig. 3.12, which illustrates three concrete examples about how the proposed approach works. First,

the framework measures muscle activation and detects a relevant video segment as highlighted in

the red window. Then, the single-frame estimator projects the shape and appearance-based features

of each target frame inside this video segment onto the two-dimensional pLDA subspace as shown

in the middle and bottom row. Each green dot represents a target frame inside the video segment.

This shows that the learned optimal representation of facial weakness from the image dataset by the

single-frame estimator is not overfitting and is effective for the video dataset.

Then we evaluate the performance of the proposed system in terms of accuracy. Table 3.2 presents

the evaluation results of the proposed method for two different ROIs (near-mouth v.s. full face).
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Figure 3.11: Normal video classification example.

Figure 3.12: Right video classification example.
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Table 3.2: Performance of the proposed method

Acc. Sens. Spec.

Face 88.3±1.8% 82.5±2.7% 91.2±1.3%

Near-mouth 94.3±2.1% 91.4±3.2% 95.7±1.6%

The proposed method achieves the accuracy of 88.3%, sensitivity of 82.5%, and specificity of 91.2%

for the full face region, and accuracy of 94.3%, sensitivity of 91.4%, and specificity of 95.7% for near-

mouth region. However, we also note that there are several misclassified cases due to the lighting

and appearance variations, which degrade the image quality and cause inaccurate ROI segmentation.

The proposed method shows that the near-mouth region contains more discriminant information to

identify facial weakness than that of full face, which is also verified by other studies [81, 82].

In addition, Table 3.3 presents the comparison results with other existing facial weakness detec-

tion alternatives. First, we note that the proposed algorithm outperforms other methods in terms of

accuracy, sensitivity and specificity. To quantitatively assess the performance difference between the

proposed algorithm and other comparison methods, a statistical test (Cochran’s Q test, which is a

generalized method of McNemar’s test used for evaluating multiple classifiers [125, 126]) is conducted

to show that the performance difference of our method with other methods shown in Table 3.3 is

statistically significant (p-value <0.001). Secondly, the performance varies significantly among the

other deep learning based methods. The 3DResNet achieves the best performance. When comparing

with the shallow 3DCNN, a deep learning baseline method for comparison, the higher performance of

3DResNet demonstrates that both of the depth of the network and the architecture of the network

affect classification accuracy. In terms of RNN-based methods’ performance, the results demon-

strate that LSTM network architecture is effective to learn the temporal discriminate information

to classify facial weakness. The Dual-path LSTM and two-stream LSTM obtain a better perfor-

mance compared with the CNN+LSTM approach, this is because the Dual-path LSTM takes local

information from the image patches into account and the two-stream LSTM incorporates motion

information from the optical flow features. Both operation increase classification performance [123].

Comparison with clinical raters In order to compare the performance of our algorithm with

human raters, three EMS paramedics and three upper level residents rated our video dataset using

the same protocol described above. The relative experience of the three paramedics included an

Emergency Medical Technicians (EMT) with seven years of experience total and five years of ex-

perience as an advanced life support provider, a nationally registered paramedic with over 10 years
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Table 3.3: Comparison results

Acc. Sens. Spec.
LBP-TOP [82] 84.9±7.8% 77.3±11.8% 88.7±5.9%
Shallow 3DCNN 69.3±1.9% 54.0±2.9% 76.9±1.4%

Dual-path LSTM [111] 77.1±5.8% 65.6±8.7% 82.8±4.3%
3DResNet [112] 82.0±4.8% 73.0±7.2% 86.5±3.6%

CNN+LSTM [120] 71.4±5.1% 57.1±7.7% 78.58±3.8%
Two-stream LSTM [121] 80.5±9.9% 70.7±14.9% 85.3±7.48%

Bi-LSTM (ours) 94.3±2.1% 91.4±3.2% 95.7±1.6%

Table 3.4: Performance comparison with human raters

Bi-LSTM Paramedics Residents
Accuracy 94.3% [90.2%-98.4%] 92.6% [90.1%-94.7%] 97.9% [96.4%-99.1%]
Sensitivity 91.4% [85.1%-97.7%] 87.8% [83.9%-91.7%] 96.4% [93.9%-98.5%]
Specificity 95.7% [92.6%-98.8%] 99.3% [98.2%-100.0%] 99.7% [98.9%-100.0%]

of experience, and an entry level EMT with one year of experience. The three neurology residents

have three years of highly-focused and systematic neurology training. Table 3.4 shows the accuracy,

sensitivity, and specificity with 95% confidence interval for the proposed framework, paramedics, and

senior neurology trainees respectively. The results demonstrate that the senior neurology trainees

achieve the highest performance for all three evaluation metrics. Our algorithm performance is

reaching the level of residents and equivalent to the paramedics. The paramedics have the higher

specificity as compared to the specificity of the proposed framework, while the proposed algorithm

has better sensitivity. We also perform statistical tests for the comparison between the proposed

algorithm and human raters using the McNemar’s test [125, 126]. The statistical tests show that

there is no significant difference between the performance of our algorithm and the paramedics’

performance (p-value = 0.091) while there is a significant difference between our algorithm and the

residents (p-value <0.001). Furthermore, in order to quantify the disagreement among the human

rates, we compute the Fleiss Kappa scores (a measure of agreement among individuals within a

group) for the paramedics and resident. The paramedics achieved a Fleiss Kappa statistic of 0.806

(95% CI [0.724, 0.888], p-value <0.001), while the residents had greater agreement at 0.921 (95%

CI [0.866, 0.976], p-value <0.001). The disagreement among paramedics is larger possibly because

of lack of extensive neurological training. The high Kappa score of the residents indicates that the

rating among residents are more consistent and reliable. This may be related to the fact that the

certified neurologists also trained the neurology trainees.
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Model interpretability Here we show that the single frame estimator can capture the patho-

logical facial weakness. Fig. 3.13 shows the results of projecting the shape and appearance-based

features of training (in lighter color) and testing samples (in darker color) onto a smaller pLDA sub-

space. One observation is that the between-class discriminatory information still maintains, while

the dimension of HoG features and landmarks features is significantly reduced. To quantitatively

assess the discriminatory information of the shape based features and appearance based features, we

perform a statistical test (McNemar’s test [125, 126]) and show that the classification performance

difference between the shape-based features and appearance-based features is statistically significant

(p-value < 0.001) using a 5-fold cross validation scheme. To further show that meaningful patho-

logical features can be captured by the proposed single-frame estimator, we visualize 5 modes of

variation for appearance and shape based features along the most discriminant pLDA direction for

the near mouth region. Fig.3.14 is produced by computing the value of µ + ασ and projecting it

back to the original feature space, where µ is the mean features, σ is the features variation along first

pLDA direction, and α is the coefficient that specifies the degree of variation. The sign of α contains

the class-related information (normal, left, and right) while the amplitude of α implies the degree

of deformation. Specifically, In our case, we set α equals to -3, -1.5, 0, 1.5, and 3. In Fig. 3.14, the

middle column is the mean features (µ = 0 and α = 0), which corresponds to the normal subject.

With the increase of α (α = 1.5 and 3), the mean features deform into the features corresponding

to the right facial weakness. On the other hand, when α decreases (e.g., equals to -1.5 and -3), the

features become the pattern corresponding to the left facial weakness. Another observation is that

the amplitude of α implies the degree of deformation, a larger α means a more severe facial weakness

symptom. Together, Fig. 3.13 and 3.14 show that the single-frame estimator is able to classify and

capture the clinically meaningful facial asymmetry using both shape and appearance-based features.

By visualizing the modes of discrimination in the image dataset, we can derive that the sign of

α contains the class-related information (normal, left, and right) while its amplitude indicates the

degree of deformation. Therefore, given the shape and appearance-based features of a test image

sample, we can project it onto the pLDA subspace and compute the value of α. Then using the

corresponding value of α one can determine which class it belongs to. Another benefit of our anal-

ysis is that projecting the high-dimensional features onto a low-dimensional subspace reduces the

computation complexity and increases the computation efficiency.

To further increase the interpretability and transparency of the proposed method, we examine

the geometric structure of Bi-LSTM hidden states h2
t at time t, by projecting it onto a 2-dimensional

PCA subspace [127]. To be precise, we perform PCA analysis on the Bi-LSTM hidden states h2
t=1
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Figure 3.13: The distribution of projection of appearance-based features and shape-based features
onto the pLDA subspace for image dataset: normal (blue), right (black), and left (red).

Figure 3.14: Modes of variation along first pLDA direction in HoG features space and in landmark
features space.

for all the training samples. Then the projection of the hidden states h2
t=1 for all training samples

and testing samples onto the top two principle components is shown in left panel of Fig. 3.15. The

right side of Fig. 3.15 shows the projection of Bi-LSTM hidden states h2
t=20 at time T (last frame)

using the same PCA setup. Overall, Fig. 3.15 illustrates that the hidden states of Bi-LSTM evolve

alone in a low-dimensional subspace and become more separable when Bi-LSTM continues to take

the input.

The window length T is a hyper-parameter that determines the number of consecutive frames

with maximum muscle activation for the temporal modeling component of the proposed examination.

We evaluate different values of T (corresponding to various time duration in seconds) and provide

the averaged 5-fold test accuracy as shown in Fig. 3.16. As shown in the figure the proposed system

is relatively insensitive to various values of T . Because of the heterogeneity of the dataset collected
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Figure 3.15: Evolution of hidden state of BiLSTM at time t = 1 and t = 20.

Figure 3.16: The test classification accuracy (blue marker) with standard deviation (gray line seg-
ment) for different T values.

in the wild, the duration of maximum muscle activation expressed by different subjects varies. Thus

in our study, we choose T to be 0.83 seconds (20 frames). A smaller T is undesired because it would

not be physiologically meaningful. In contrast, if T is too long, this increases the likelihood of added

unwanted variations (e.g. oscillations due to adherence to instructions, noise) could lead to reduced

predictive accuracy. Fig. 3.16 displays how the test accuracy changes with different window duration

in seconds.
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Figure 3.17: A user scenario (left), and a prototype implementation of the proposed system (right).

3.5 Prototype development

We develop a prototype that integrates the proposed algorithm and a GUI to allow users to interact

with the framework in real-time. The prototype is running on a regular laptop PC with a Intel

Dual-Core i7 processor, 16GB of RAM, 512GB of space, and an integrated graphics card. The

webcam is a Logitech C920 HD PRO webcam [128]. The software is coded in Python 3.5 with the

standard libraries such as PyQt for GUI interface design. To be specific, a typical user scenario

is the one where a suspected patient follows the standard clinical examine instructions presented

on the screen of a camera-enabled smart device whose camera records the examination as shown in

Fig. 3.17. The instructions require the patient to maintain a smile and hold for a few seconds. Then,

accurate, computationally efficient, and robust invariant feature extraction is performed followed by

analytics which quantitatively assess the risk of facial weakness. The final assessment is then utilized

by healthcare professionals to better support treatment decisions.

3.6 Summary

To sum up, the proposed approach is a proof-of-concept study showing that it can be beneficial to

assist the paramedics to identify the facial weakness in the field or, more importantly, whenever

expertise in neurology is not available either for emergency patient triage (e.g., pre-hospital stroke

care) or chronic disease management (e.g., Bell’s palsy rehabilitation screen), leading to increased

coverage and earlier treatment for prehosptial stroke care.
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Chapter 4

Optimal transport based

illumination-invariant

representation for face analysis

Illumination variation is an important issue for many computer vision tasks [129], including medical

computer vision [13, 22]. Especially, when deploying systems in real-world clinical settings, it re-

quires to take different illumination conditions into account, because poor illumination conditions are

able to greatly decrease system performance [2]. We encounter the illumination issues in the patient

dataset that are collected in outpatient clinical rooms or inpatient wards at hospitals. Specifically,

poor illumination conditions such as low lighting and partial lighting degrade image quality signif-

icantly. To address these issues, this chapter presents a novel local sliced-Wasserstein feature set

for illumination-invariant face analysis [75], which is beyond the scope of facial weakness detection.

The proposed approach makes use of lighting insensitive measures, image gradient information, to

construct a local low-level image descriptor feature set based on optimal transport metrics. To be

specific, the method depends on mathematical modeling of local gradient distributions using the

Radon Cumulative Distribution Transform (R-CDT) [130]. We demonstrate that lighting variations

cause certain types of deformations for local image gradient distributions which, when expressed in

R-CDT domain, can be modeled as a subspace. Face recognition is then performed using a nearest

subspace in R-CDT domain of local gradient distributions. Experiment results demonstrate that the

48



Figure 4.1: Images of a subject under varying illumination conditions and the corresponding his-
togram of pixel intensities.

proposed method outperforms other alternatives in several face recognition tasks with challenging

illumination conditions.

4.1 Overview

Automated face recognition is a necessary task for many machine-human interaction applications. Il-

lumination variations can cause significant appearance changes for the same person and significantly

affect recognition accuracy. Several pioneer studies observed that variations among images of the

same person owing to variable lighting can appear to be larger than those owing to change in iden-

tity [131, 132]. One example is illustrated by the well-known Yale B Extended Face database [129],

as shown in Fig. 4.1. The top row of Fig. 4.1 shows images of the same face acquired with different

lighting conditions from the face dataset [129]. The bottom row shows the corresponding histograms

of the pixel intensities, which change dramatically due to varying illumination conditions. Clearly,

identifying a person when illumination changes are drastic can be challenging. To resolve illumi-

nation issues for face recognition under varying lighting conditions, researchers have investigated
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many approaches [133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 129, 143, 144, 145]. However,

the formulation of these methods are either empirical or often lacking of theoretical understanding

with respect to illumination effects. In addition, these methods require many training images with

different lighting conditions to be effective.

To address these issues, we propose a novel transport-based local patch-wise feature set for

illumination-invariant face recognition. It leverages local patch-wise image gradient measurements

to form a new image descriptive feature set based on three key ideas: (1) it is a local image gradient-

based feature set; (2) we mathematically shows that lighting variations can cause deformations

of 2D gradient distributions; (3) certain deformations (e.g., translation and scaling) of 2D gradi-

ent distributions can be represented as subspaces in transport (sliced-Wasserstein) R-CDT domain.

To be specific, local image feature sets are widely used for face recognition. Numerous methods

following this concept have been developed such as SIFT [146], HoG [147], and LBP [148]. By

dividing images into small local patches and computing corresponding representations regarding

local gradient information within each local image patch, local low-level gradient-based descriptive

feature sets are favored, because the spatial differentiation operation naturally eliminates addi-

tive constants (i.e. brightness changes), and local patches provide more tolerance regarding slight

misalignment [146, 147]. In addition, the illumination variation assumption assumes that lighting

change is smooth in neighboring regions [149, 133, 134, 135, 136]. Thus local low-level feature sets

are capable of providing robustness to illumination variations [150]. Secondly, we illustrate that

varying illumination conditions lead to certain types of deformations of local 2D discrete distribu-

tions within an image patch. Taking this knowledge into account, we model the local image patch

with different illumination conditions as a subspace in R-CDT domain [130, 151]. Using certain

”convexifying” properties of the R-CDT transform, we are able to build classifiers that are invari-

ant to certain deformations of the gradient distribution caused by changing illumination conditions.

Experiment evaluations demonstrate that the proposed method achieves competitive performance

among comparable approaches in three face dataset with illumination variations.

4.2 Related work

Illumination-invariant face recognition methods can be classified into three main types of approaches:

(1) illumination invariant feature extraction; (2) 3D face modeling; (3) deep learning approaches with

data augmentation.
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Notations
Ω, Ωk image coordinate domain, coordinate domain for patch k
ΩN

k a set {xk
1 , ...,x

k
N} of N pixel locations on Ωk

Ik I|Ωk
:kth patch of image I

C, L, K total number of subjects, image samples, and patches
δz Dirac measure centered at z

P∇Ik 2D discrete gradient distribution of Ik
P∇θIk 1D discrete distribution of directional derivative of Ik alone angle θ
H a subset of bijection deformations from R2 to R2

H0 set of all possible compositions of translation and scaling diffeomorphisms
wθ directional vector [cos θ, sin θ]T

Ph
∇Ik

2D discrete gradient distribution deformed (push-forwarded) from P∇Ik via h ∈ H
F Discrete CDT Transform for 1D discrete distributions
F∗ Discrete R-CDT transform for 2D discrete distributions

P̂∇Ik P̂∇Ik := F∗(P∇Ik

)
Sc a generative model for images of subject c under illumination variations
Vc

k the subspace in the Discrete R-CDT domain corresponding to kth patch of subject c
d(·, ·) the discrete sliced Wasserstein distance between two 2D distributions

Most lie on the spectrum of illumination invariant feature extraction. Illumination-invariant

feature extraction approaches are capable of eliminating lighting variations by utilizing holistic

decomposition [134], quotient models [135, 136], or logarithm difference [133]. These approaches

perform illumination normalization on images in such a way that they have robust appearances under

varying illumination. One straightforward approach is to employ the log transform for illumination

normalization [152], followed by lighting invariant feature extraction [134, 142], because log transform

is able to normalize the contrast, by mapping the narrow range of low intensity values in the input

into a wide range of output levels and expanding the value of dark pixels [152]. More specifically,

Zhu et. al. first apply the log transform and then compute HoG features for face recognition [142].

Similarly, Chen et. al. use the log transform and then decompose the image into high-frequency

and low-frequency components keeping only high-frequency components for face recognition [134].

Lai et. al. calculate the difference between neighboring pixel values in log transformation domain,

formulating the logarithm-difference edge map. Then based on the size of the neighborhood, different

scales of edge maps are computed and aggregated to represent each face [133]. Other approaches

such as WebberFace [136] and GradientFace [135] are quotient-based models. To be precise, quotient

models seek to represent images in such way that the current pixel value in the new representation is

the ratio between the difference of current pixel and its neighboring pixel to the current pixel value

in original image. However, although these methods achieve excellent results on some datasets, they

are lack of mathematical understanding regarding illumination variations and often not effective for

illumination variations that include shadows.

Another research direction is to use a set of images acquired under varying lighting conditions

to build a 3D face model that can render all possible illumination variations. Several researchers
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studied the properties of learned subspace models such as convexity and dimension [153, 129, 154].

In addition, deep learning-based methods such as VGGface [137] and others [155, 138, 139, 140]

have become increasingly popular, because of the increased classification results in standard face

recognition tasks. However, this type of methods typically requires a large amount of data for train-

ing, which need to be under various illumination conditions. In addition, to overcome the issue of

limited samples, many data augmentation strategies are employed. However, even with data aug-

mentation techniques [156], deep learning-based methods tend to have relatively poor generalization

properties [157].

4.3 The proposed approach

Summary We propose a novel method for illumination invariant face representation that are based

on the following ideas: (1) first, we patchify images into multiple image patches and calculate the

2D discrete gradient distributions for each individual image patch; (2) secondly, we mathematically

show that illumination variations cause transport-type perturbation for local 2D discrete gradient

distributions; (3) thirdly, we define a sliced-Wasserstein representation for local 2D discrete gradient

distributions, which has several properties to address the transport-like variations and convexity

the classification problem in R-CDT domain; (4) built upon this new representation, we construct

a nearest subspace model to perform face recognition under varying illuminations. The rationales

behind each step is detailed in the subsequent sections.

4.3.1 Effects of varying illumination conditions on local 2D gradient dis-

tributions

First, we introduce several notations, and then mathematically demonstrate that illumination vari-

ations cause deformations of the local 2D discrete gradient distributions in a small region.

Notation We first provide the definition of an image I, its kth patch, and 2D discrete gradient

distribution P∇Ik . Namely, an image I : Ω→ R+ can be thought as a mapping from the unit square

Ω = [0, 1] × [0, 1] to the set R+ of non-negative real numbers. Let Ωk ⊂ Ω refers to a set of pixel

coordinates in the kth neighborhood in Ω and ΩN
k = {xk

1 , ...,x
k
N} ⊂ Ω is the set of N pixel locations

for patch k.

Given an image patch Ik : Ωk → R+, the corresponding 2D discrete gradient distribution P∇Ik

for the kth patch is defined as
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Figure 4.2: From image space to local 2d discrete gradient distribution space.

Figure 4.3: Top row shows face images under various real-world illumination conditions, middle row
shows the corresponding patches of face images, bottom row shows the local 2D discrete gradient
distributions.

P∇Ik :=
1

N

∑
x∈ΩN

k

δ∇I(x). (4.1)

An example image I, image patch Ik, and corresponding distribution P∇Ik are shown in Fig. 4.2.

Note that our use of measure theoretic notation δz for a delta mass positioned at z. A Dirac measure

δz on Rn is a measure with mass concentrated at z ∈ Rn (n ≥ 1) such that for any (measurable) set

A ⊆ Rn:

δz(A) =


1, z ∈ A

0, z /∈ A.

(4.2)

In other words, a set has measure 1 if it contains the point z and measure zero otherwise. In

particular, δz({z}) =1 and δz({z′}) =0 for any z′ ̸= z.

Since it is interesting to model how P∇Ik deforms under different illumination variations, we define

a bijective transformation h that is able to transform P∇Ik . One can think that the transformation
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function h is corresponding to one certain lighting condition. More formally, given the local gradient

distribution P∇Ik of a subject observed under a certain illumination condition, the corresponding

patch gradient distribution of the same subject after some illumination changes can be modeled by

a bijective transformation h as:

Ph
∇Ik

:= h♯P∇Ik =
1

N

∑
x∈ΩN

k

δh(∇I(x)), h ∈ H (4.3)

where H is a set of bijective deformations from R2 to R2 that are particular to certain illumination

assumptions. We denote the push forward of distribution P∇Ik as h♯P∇Ik .

Effects of illumination changes on 2D gradient distributions An example of one image

patch observed under different illumination conditions is shown in Fig. 4.3. The example shows

that the gradient distribution P∇Ik undergoes deformations that may include translation, scaling,

skewing, rotation, and nonrigid deformations according to the reflectance properties of the object

being imaged, its three dimensional configuration, and specific illumination conditions. This means

that in the local image patch k, one can model the 2D gradient discrete distribution as an instance

of a template 2D discrete gradient distribution observed under some deformations or confound h.

In other words, the 2D discrete distribution for the set of image patch of an person could be a fixed

pattern, but observed under affine deformation effects in the 2D gradient space, such as translations

and scaling effects which lead brightness and contrast variations in image space. Other unknown

deformations could be present as well, as shown in Fig. 4.3.

Here we propose a transport-based way of modeling such deformations. The set of gradient

distributions of a subject image patch Ik under various illumination variations with the following

template-deformation based generative model:

PH,k = {Ph
∇Ik
| h ∈ H}. (4.4)

A particular model for set H that describes illumination effects is proposed below. Here PH,k refers

to the set of all possible observations of Ph
∇Ik

. We will utilize geometric properties of PH,k in the

problem statement and solution described below.

Modeling H: local illumination changes and patch generative model The set H of defor-

mations corresponding to the set of illumination variations within a subject class can be hard to
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specify in general. However, we can make some reasonable assumptions and propose an approxi-

mate model that can enable robust classification. First, using the smoothness assumptions that are

widely used for illumination-invariant face recognition [149, 133, 134, 135, 136], for small enough

neighborhood size |Ωk| (i.e., the area of neighborhood Ωk), we postulate that,

h(z) ∼ αz+ b (4.5)

where z is a gradient coordinate (i.e. z = ∇Ik(x), x ∈ Ωk), and where α ∈ R is an unknown

scaling function, and b ∈ R2 is an unknown translation vector. The illumination model above can

be derived from the assumption that within a local patch, illumination variations can be expressed

as:

αIk(x) + β + bTx,x ∈ Ωk. (4.6)

Under the assumption that |Ωk| is small, in the equation above, α > 0 is known as contrast, β

illumination intensity, and b is a linear gradient (caused by illumination at an angle, or potentially

shadows) superimposed on the image. Under the assumption of small neighborhood |Ωk|, the model

we propose in equation (4.5) can be understood as the gradient of (4.6), and thus can be understood

in terms of illumination intensity, contrast, and linear illumination gradient.

In other words, varying parameters α and b of the illumination model, defined in equation

(4.6), can lead to changes of contrast, brightness, and shadow in image space. Here Fig.4.4 and

Fig.4.5 provide visualizations of such variations. Top and middle panels show simulated illumination

conditions in the image space using equation (4.6) where β = 0 and b = 0. The bottom panel

demonstrates the corresponding scaling effects caused by different α values in 2D discrete distribution

space. Note that equation (4.6) is applied to the entire image domain for the illustration purposes.

Fig.4.4 shows that changing α not only contributes to contrast change (top two rows) in image

space but also causes scaling effects for the corresponding local 2D discrete distributions (bottom

row). Likewise in Fig.4.5, the original face image is shown on the left, we add the linear illumination

gradient, specified by a constant vector b, to simulate the lighting coming from the side, as shown

one in right part of Fig.4.5. Simulated illumination conditions in the image space using equation

(4.6) where α = 1, β = 0, and b is a constant vector. Adding a linear gradient is able to simulate

lighting coming from the side, therefore, resulting in a translation effect in 2D discrete distribution

space. Correspondingly, the local 2D discrete distribution of the simulated image experiences a

translation effect.
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Figure 4.4: Simulated contrast effects.

Figure 4.5: Simulated partial lighting effects.

In addition, in equation (4.6), β is responsible for controlling image brightness. However, it is

eliminated automatically in derivative operation when calculating image gradients. Please note that

there are several existing works that aimed to address the contrast variations (α in equation (4.6))

by normalization. For instance, HoG features perform block-wise L2-norm normalization within a

local region [141]. Furthermore, applying the log transform is also able to normalize the contrast, by

expanding the value of dark pixels [152]. Though these approaches improve performance to certain

degree but are ineffective for challenging illumination conditions as demonstrated in experimental

results.

Leveraging the knowledge present in equation (4.6) and equation (4.5), we propose the following

patch-wise affine generative model and classification problem using gradient distributions for face

images under varying illumination conditions. Specifically, based on (4.5) above, we propose a spe-

cific transport-based model to approximate the set of bijections H that cause gradient deformations

(pushforward) of a given gradient distribution:

H0 = {h(z) = αz+ b | a > 0,b ∈ R2}. (4.7)
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Finally, using the notation established earlier, we express the set of gradient distributions observed

under an unknown illumination function h ∈ H0 as

Ph
∇Ik

:=
1

N

∑
x∈ΩN

k

δh(∇I(x)) =
1

N

∑
x∈ΩN

k

δα∇I(x)+b. (4.8)

and the set of all possible observations as

PH0,k = {Ph
∇Ik

= h♯P∇Ik | h ∈ H0}. (4.9)

We denote the set defined in equation (4.9) as a model for the gradient distribution of patch k

under illumination model H0. Specifically H0 is capable of isotropically scaling and translating a

given distribution P∇Ik .

To here, equipped with the relationship between illumination variations and 2D gradient dis-

tributions as well as the proposed local deformation set H0, we present the problem statement

using the local illumination-based generative model for local pixel intensities and local 2D gradient

distributions as below:

Problem statement: Let the local illumination-based generative model for images pertaining to

subject (class) c = 1, · · · , C be defined as:

Sc =
{
Ic,j

Ic,jk (x) = αj
kI

c
k(x) + βj

k + bj
k · x,

x ∈ Ωk, α
j
k > 0, βj

k ∈ R,bj
k ∈ R2,

k = 1, ...,K

}
, (4.10)

where Ic refers to an (unknown) template image for subject (class) c. This model defines an infinite

set, whose elements Ic,j can be generated by applying the illumination model (4.6) on each patch

k of Ic independently. In other words, the generative model is flexible to allow each patch k to

contain its own contrast, brightness, and gradient vector (αj
k, β

j
k,b

j
k) parameters. These illumination

parameters are unknown for any given photograph. Given L training images {Ic,l}Ll=1 ⊆ Sc from

each class c = 1, ..., C where Sc ∩ Sc′ = ∅ for all c ̸= c′, the goal is to determine the class of an

unknown image It obtained from the same generative model.
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Figure 4.6: An illustration example of computing a sliced one-dimensional discrete distribution for
one image patch.

It is not hard to see that ∇Ic,jk = hj
k ◦ ∇Ick where hj

k(z) = αj
kz+ bj

k. In other words, the patch

gradient distributions for each class c satisfy the affine generative model stated in (4.9), i.e.,

{P∇Ic,j
k
| Ic,j ∈ Sc} = Pc

H0,k := {Ph
∇Ic

k
| h ∈ H0}. (4.11)

Proposed solution To address the problem, we propose a straightforward, non iterative, solution

to the classification problem stated above. The solution is inspired on prior work on classification

of distributions [158, 130, 151] and utilizes the fact that the gradient distribution P∇It
k
for patch

k is an element of Pc
H0,k

, with c unknown. In other words P∇It
k
∈ Pc

H0,k
, with Pc

H0,k
= {h♯P∇Ic

k
|

h ∈ H0}, following the definition in equation (4.9), for some unknown c, we use a distance function

d(P∇It
k
,Pc

H0,k
) that measures the sliced-Wasserstein distance [159, 160] between P∇It

k
and the nearest

point in set Pc
H0,k

to compute the solution of the classification problem stated above as:

c∗ = argmin
c

K∑
k=1

d2(P∇It
k
,Pc

H0,k). (4.12)

It is easy to show that the minimization above obtains the correct solution to the problem state-

ment above, provided that for at least least one k we have that Pc
H0,k

∩ Pc′

H0,k
= ∅ whenever

c ̸= c′. Below we show how we can estimate d2(P∇It
k
,Pc

H0,k
) with the aid of a newly introduced op-

eration which we will call the Discrete Radon Cumulative Distribution transform (Discrete R-CDT).
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4.3.2 Sliced-Wasserstein representation of local 2D discrete distribution

Discrete CDT Transform

Definition Given an image I where the patch-wise representation is {Ik}Kk=1, we compute its

local gradient distribution P∇Ik as defined in equation (4.1) and use a modified version of the

Radon Cumulative Distribution Transform (R-CDT) to represent P∇Ik . In other words, a set of

one-dimensional discrete distributions is used to represent P∇Ik by the slicing operation, which

projects each ∇I(x) onto a weight vector wθ = (cos θ, sin θ)T along a slicing angle θ ∈ [0, π) as

∇θI(x) = ∇I(x) · θ. Thus for a certain θ, one can obtain an one-dimensional discrete distribution

as P∇θIk . Fig. 4.6 illustrates such a concept.

Mathematically, the 1D distribution P∇θIc
k
of projected gradients can be computed via

P∇θIk =
1

N

∑
x∈ΩN

k

δ∇I(x)·wθ
, (4.13)

where wθ = (cos θ, sin θ)T is a unit vector in the direction of θ.

Inspired on earlier work on the CDT [158] and R-CDT [130], we define a new transformation,

the Discrete CDT Transform, for one-dimensional discrete probability distributions.

Definition 3.1 (Discrete Cumulative Distribution Transform): Let PN (R) := {PZ = 1
N

∑N
i=1 δzi |

Z = {zi}Ni=1 ⊂ R} be the set of discrete probability distributions concentrated on N points on R.

The Discrete R-CDT transform F : PN (R)→ RN is defined

F(PZ) = P
[
z1, ..., zN

]T
=
[
z̃1, ..., z̃N

]T
, (4.14)

where P is a permutation matrix such that z̃1 ≤ · · · ≤ z̃N . In other words, the Discrete CDT Transform

F takes the one-dimensional discrete distribution P∇θIk as input and outputs a vector which are

concentration locations of the discrete distribution in an increasing order.

One interesting propriety of the transform F in eq. (4.14) is the composition property, which

helps to address the translation and scaling effects, thus rendering classes convex and simplifying

the classification task. Specifically, the general composition property of the transform F is defined

as:
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Composition property Let T : R→ R be a strictly increasing function and PZ ∈ PN (R), then

F
(
PT
Z

)
= T ◦ F

(
PZ

)
, (4.15)

where the composition is operated entry-wise and PT
Z = 1

N

∑N
i=1 δT (zi)) is the push-forward

1 distri-

bution of PZ by T . The property implies that for any strictly increasing T , applying the transform

F to the push-forward distribution PT
Z equates to compose T with the transform F(PZ).

Proof: Let PZ = 1
N

∑N
i=1 δzi with F(PZ) = [z̃1, z̃2, · · · z̃N ]T where z̃1 ≤ z̃2 ≤ · · · z̃N is reordered from

[z1, ..., zN ]. Observing that PT
Z = 1

N

∑N
i=1 δT (zi) and by the definition of Discrete CDT Transform,

F(PT
Z ) is the vector of which the entries are T (zi)’s in an increasing order, i.e,

F(PT
Z ) = [T̃ (z1), T̃ (z2), · · · T̃ (zN )]T (4.16)

where T̃ (z1) ≤ T̃ (z2) ≤ · · · ≤ T̃ (zN ). On the other hand, since T is strictly increasing, we have that

T (z̃1) ≤ T (z̃2) ≤ · · · ≤ T (z̃N ), which is also an reordering of T (z1), ..., T (zN ). Hence we have that

F(PT
Z ) =



T (z̃1)

T (z̃2)

...

T (z̃N )


= T ◦ F(PZ). (4.17)

In addition, there are several other properties for Discrete CDT that one can exploit and leverage

to render non-linear problems linearly separable in the transformed space. To be precise, we note

the following interesting cases where T is a translation or a scaling diffeomorphism.

Translation property Let T : R → R be the translation function where T (x) = x + a for some

a ∈ R. By the composition property, we have that

F(PT
Z ) = F(PZ) + a, (4.18)

where the addition on the RHS is operated entry-wise.

1In general the push-forward measure T♯µ of a measure µ under T : X → Y is defined by the property that
T♯µ(U) = µ(T−1(U)) for any measurable set U ⊆ Y . In particular, for any one-dimensional discrete distribution PZ ,

given any Lebesgue measurable function T : R → R, it can be shown that T♯(PZ) = 1
N

∑N
i=1 δT (zi)

.
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Scaling property Let T : R → R be a scaling where T (x) = cx for some c > 0. By the

composition property, we have that

F(PT
Z ) = cF(PZ). (4.19)

Convexity property Using the composition property, we can derive the following convexity prop-

erty of the transform F . LetG1 ⊆ H1 whereH1 = {T : R→ R : T is a strictly increasing diffeomorphism}.

Then given a one dimensional discrete distribution PZ for some Z = {zi}Ni=1, the set of transforms

F
(
PG1

Z

)
:= {F(PT

Z ) | T ∈ G1} is convex if G1 is convex.

Proof: Let T1, T2 ∈ G and λ ∈ [0, 1]. Then by the definition of the Discrete CDT Transform and

using the composition property of Discrete CDT Transform, we have that

λF
(
PT1

Z

)
+ (1− λ)F

(
PT2

Z

)
(4.20)

=λ
(
T1 ◦ F

(
PZ

))
+ (1− λ)

(
T2 ◦ F

(
PZ

))
(4.21)

=
(
λT1 + (1− λ)T2

)
◦ F
(
PZ

)
(4.22)

=F
(
P

λT1+(1−λ)T2

Z

)
∈ F

(
PG1

Z

)
(4.23)

where the inclusion in (4.23) is due to the fact that G1 is convex and in particular, λT1+(1−λ)T2) ∈

G1. Hence F
(
PG1

Z

)
is convex. This convex propriety implies that a convex combination of translated

and scaled one-dimensional discrete distributions in the transformed F domain is still convex, thus

rendering classes convex and simplifying the classification task.

Connection to the Wasserstein distance It is easy to show that F is an isometric embedding

from the 1D discrete probability distribution space with the Wasserstein metric to the transform

space with the Euclidean distance [159, 161]. To summarize, for two discrete distributions PZ(1) and

PZ(2) in P(R), the Wasserstein distance between PZ(1) and PZ(2) is computed via

W2(PZ(1) , PZ(2)) =

√
1

N
||F(PZ(1))−F(PZ(2))||2 (4.24)
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where || · || denotes the Euclidean distance on RN . In particular, for a directional derivative distri-

bution P∇θIk ∈ PN (R), it has

F(P∇θIk) := Pθ



∇θI(x
k
1)

∇θI(x
k
2)

...

∇θI(x
k
N )


=



∇̃θI(xk
1)

∇̃θI(xk
2)

...

˜∇θI(xk
N )


, (4.25)

where ∇θI(x
k
i ) = ∇I(xk

i ) ·wθ and Pθ is a permutation matrix such that ˜∇θI(x1
k) ≤ ˜∇θI(x2

k) ≤

· · · ≤ ˜∇θI(xN
k).

Furthermore, in a more general setting, for any two 1D discrete distributions PZ(1) and PZ(2) in

P(R),

W2(PZ(1) , PZ(2)) =

√
1

N
||F(PZ(1))−F(PZ(1))||2, (4.26)

where || · || denotes the Euclidean distance on RN . Indeed, for two discrete measures PZ(1) =

1
N

N∑
i=1

δ
z
(1)
i

and PZ(2) = 1
N

N∑
i=1

δ
z
(2)
i

, the 2-Wasserstein distance between the two measures is the

same as the Euclidean distance between the mass location vectors sorted in an increasing order,

i.e., W2(PZ(1) , PZ(2)) =

√
1
N

∑N
i=1(z̃

(1)
i − z̃

(2)
i )2, where z̃11 ≤ · · · ≤ z̃1N and z̃21 ≤ · · · ≤ z̃2N are sorted

versions of z
(1)
1 , ..., z

(1)
N and z

(2)
1 , ..., z

(2)
N respectively. This can be seen as a special case of Proposition

2.17 in [161].

Discrete R-CDT transform

To here, we illustrate the optimal transport representation for one-dimensional discrete distribution

PZ and its several interesting properties, which could be extended to 2D discrete distributions. In

this section, we will present the Discrete R-CDT transform for 2D discrete gradient distributions.

To be precise, leveraging the ”slicing” idea shown in (4.13) and the Discrete CDT Transform defined

in (4.14), the Discrete R-CDT transform for 2D discrete distributions is defined as:

Definition 3.2 (Discrete R-CDT transform): Let PN (R2) := {PZ = 1
N

∑N
i=1 δzi | Z = {zi}Ni=1 ⊂ R2}

be the set of discrete probability distributions concentrated on N points on R2. The Discrete R-CDT

transform F∗ : PN (R2)→
(
RN
)[0,π)

:= {v : [0, π)→ RN}, denoted as P̂Z := F∗(PZ), is defined such

that for each θ ∈ [0, π): (
F∗(PZ)

)
(θ) = F

(
PZθ

)
, (4.27)
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where PZθ
= 1

N

∑N
i=1 δzi·wθ

is a one-dimensional distribution concentrated on the projected values of

Z onto the directional vectorwθ. This definition is an extension for 2D discrete distribution, meaning

that applying F∗ on the PZ equates to applying F on a sequence of projected one-dimensional

representations PZθ
2 of PZ by weight vector wθ = (cos θ, sin θ)T , indexed by an angle θ ∈ [0, π).

Convexity property of Discrete R-CDT transform The convex property can also be ex-

tended to F∗(·) in 2D case, if the deformation function h is an element of PH0,k. Namely, we will

show that the set F∗(PH0,k

)
is convex.

Proof: Let Ph1

▽Ic
k
, Ph2

▽Ic
k
∈ PH0,k where h1(z) = a1z + b1, h2(z) = a2z + b2 ∈ H0. By definition, for

any θ ∈ [0, π)

F∗(Ph1

▽Ic
k

)
(θ) = a1F∗(P (▽Ick)

)
+ b1 ·wθ

F∗(Ph2

▽Ic
k

)
(θ) = a2F∗(P (▽Ick)

)
+ b2 ·wθ

Given λ ∈ [0, 1], we have that

(
λF∗(Ph1

▽Ik

)
+ (1− λ)F∗(Ph2

▽Ik

)
(θ)

)
(θ)

=
(
λa1 + (1− λ)a2

)
F∗(P (▽Ik)

)
+
(
λb1 + (1− λ)b2

)
·wθ,

=F∗(Phλ

∇Ik

)
(θ),

where hλ(z) =
(
λa1 + (1− λ)a2

)
z+ λb1 + (1− λ)b2 ∈ H0. Hence λF∗(Ph1

▽Ik

)
+ (1− λ)F∗(Ph2

▽Ik

)
=

F∗(Phλ

∇Ik

)
∈ F∗(PH0,k

)
.

With (4.24) in mind, we define the Discrete Sliced Wasserstein Distance [160]

d
(
PZ(1) , PZ(2)

)
: = ||P̂Z(1) − P̂Z(2) ||L2([0,π),RN )

= ||F∗(PZ(1)

)
−F∗(PZ(2)

)
||L2([0,π),RN )

=

√∫ π

0

||F
(
P
Z

(1)
θ

)
−F

(
P
Z

(2)
θ

)
||2dθ (4.28)

where || · || denotes the Euclidean norm in RN . In particular, when PZ is a gradient distribution,

say PZ = P∇Ik , then

P̂∇Ik(θ) =
(
F∗(P∇Ik)

)
(θ) = F(P▽θIk). (4.29)

2This projection to wθ direction for every θ is similar to the sliced projections in Radon transform, and this is why
we have ”Radon” in the name of this new transform.
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In other words, applying the Discrete R-CDT (operator F∗) on the local 2D discrete distribution

(i.e, P∇Ic
1,k

) equates to applying Discrete CDT Transform(i.e., F) on a collection of projected one-

dimensional representations3 of (e.g., P∇θIk), indexed by θ ∈ [0, π). The corresponding Discrete

Sliced Wasserstein distance between two patch gradient distributions P∇It
k
and P∇Ic,j

k
is

d(P∇It
k
, P∇Ic,j

k
) = ||P̂∇It

k
− P̂∇Ic,j

k
||L2([0,π),RN )

=

√∫ π

0

||F
(
P∇θIt

k

)
−F

(
P∇θI

c,j
k

)
||2dθ. (4.30)

The minimization problem (4.12) is hence equivalent to

c∗ = argmin
c

K∑
k=1

d(P∇It
k
,Pc

H0,k)

= argmin
c

K∑
k=1

min
hk∈H0

||P̂∇It
k
− P̂hk

∇Ic
k
||L2([0,π),RN ). (4.31)

Remark 3.1: In practice, we take θ from a finite set {θ1, ..., θm} for some positive integer m,

P̂∇Ik = F∗(P∇Ik) can be represented by a matrix of size N ×m and reshaped as a long vector of

length m ∗N .

In summary, the Discrete R-CDT transform takes 2D discrete distribution as input and outputs

a sequence of vectors indexed by θ in some finite set.

4.3.3 Nearest subspace learning

Next we leverage the generative model as in (4.10) together with the Discrete R-CDT transform F∗

to form a nearest subspace classification method to facilitate the classification strategy in (4.12). It

is not hard to see that F∗(Pc
H0,k

)
is convex, meaning that λF∗(Ph1

∇Ic
k

)
+ (1 − λ)F∗(Ph2

∇Ic
k

)
lies in

F∗(PH0,k

)
for all λ ∈ [0, 1] and h1, h2 ∈ H0. Indeed, the deformations H0 in 2D discrete distribution

space also cause the corresponding translation and scaling effects in Discrete R-CDT transform

3This projection is similar to the sliced projections in the Radon transform, and this is why we have ”Radon” (R)
in the name of this new transform.
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space:

F∗(P(α∇Ik+b)

)
(θ) = F

(
P(α∇θIk+b·wθ)

)
= αF(P∇θIk) + b ·wθ

= αF∗(P∇Ik)(θ) + b ·wθ, (4.32)

where the second equation follows from the composition property of the Discrete CDT transform

(please see Section 4.3.2) and the addition on the RHS is operated entry-wise. We then expand

the convex set F∗(PH0,k

)
to form a subspace Vc

k = span
(
F∗(Pc

H0,k
)
)
and further assume that when

c ̸= c′, there exists a patch k such that Pc
H0,k
∩ Vc′

k = ∅, which is consistent with the assumption

that the image class of subject c will not overlap with images of a different subject c′ under all pos-

sible illumination variations. With the above considerations in mind, the constrained minimization

problem in (4.12) or (4.31) can be modified to a simple subspace projection problem (4.33), which

can be solved by basic linear algebra techniques in transform domain as shown in sections below:

c∗ = argmin
c

min
P̂∈Vc

k

K∑
k=1

||P̂∇It
k
− P̂ ||L2([0,π),RN ) (4.33)

= argmin
c

K∑
k=1

d
(
P̂∇It

k
,Vc

k

)
= argmin

c

K∑
k=1

dck

where dck := d
(
P̂▽It

k
,Vc

k

)
is the d(·, ·) distance of P̂▽It

k
to the subspace Vc

k, which can be computed in

a convenient form as a least squares projection as shown below. In summary, the class is determined

by the smallest distance dc =
∑K

k=1 d
c
k.

We prove that using the smallest dc in equation (4.33) solves the classification problem.

Proposition: Assume that for any c ̸= c′, there exists a k0 (possibly depending on c, c′) such that

Pc
H0,k0

∩ Vc′

k0
= ∅. Then given a test image It ∈ Sc,

dc =

K∑
k=1

dck =

k∑
k=1

d(P∇It
k
,Vc

k) = 0, (4.34)

while

dc
′
=

K∑
k=1

dc
′

k =

k∑
k=1

d(P∇It
k
,Vc′

k ) > 0, (4.35)
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if Vc′

k0
is a closed subspace4.

Proof: Generally speaking, given a closed subspace V of a metric space with distance metric d,

d(v,V) > 0 if and only if v /∈ V. To show (4.34), it suffices to show that P∇It
k
∈ Pc

H0,k
⊆ V c

k for

k = 1, ...K, which follows from the definition of the generative model Sc and the fact that It ∈ Sc.

On the other hand, to show (4.35), it suffices to show that there exists a k0 such that P∇It
k0

/∈ V c′

k ,

which follows from the assumption that Pc
H0,k0

∩ Vc′

k0
= ∅ and the fact that P∇It

k0
∈ Pc

H0,k0
. Hence

we have that dc
′

k0
= d(P∇It

k0
,Vc′

k0
) > 0.

In particular, if a test image It belongs to subject c,
∑K

k=1 d
c
k <

∑K
k=1 d

c′

k for any c′ ̸= c.

Implementation

We present implementation details regarding the proposed algorithm for the training and testing

phases. Specifically, the training phase is to build a subspace for each image patch of each subject

using all training samples. In the testing phase, firstly, for each image patch, the distance between

the testing sample and the subspace of each image patch of each subject is computed. Then, the

distance from image patch is aggregated. Finally, the classification result is the subject who has the

shortest aggregated distance. The detailed training and testing algorithms are described below.

Training Given a total of {Icl }Ll=1 L training images for cth subject. Each image Il is partitioned

into K image patches {Icl,k}Kk=1. We approximate the subspace Vc
k using L training images {Icl }Ll=1

by

Vc
k = span

(
{P̂∇Ic

1,k
, · · · , P̂∇Ic

L,k
} ∪ UT

)
, (4.36)

where UT = {µ1(n, θ), µ2(n, θ)} with µ1(n, θ) = cos θ, µ2(n, θ) = sin θ can be used to automatically

model translation and scaling within a subject gradient distribution class by observing equation

(4.32)[151, 162].

For each class c and each patch k,

1. Compute the transforms P̂∇Ic
1,k

, · · · , P̂∇Ic
L,k

corresponding to the training images

2. Use Principal Component Analysis (PCA) [163], keeping enough components to retain 99%

of the training data variance, to orthogonalize {P̂∇Ic
1,k

, · · · , P̂∇Ic
L,k
} ∪ UT to obtain a set of

4In practice, Vc′
k0

is a finite dimensional space and is hence closed.
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orthonormal basis vectors {vc1,k, vc2,k, · · · } and form a matrix Bc
k with {vc1,k, vc2,k, · · · } as its

columns:

Bc
k = [vc1,k, v

c
2,k, · · · ]. (4.37)

When enough training data is available, we split the training data into training and valida-

tion sets, and choose the smallest number of components that allow for highest classification

accuracy on the validation set.

It is worth noting that if the deformation strictly follows the set H0, only taking span of one

transformed training example with UT is necessary. However, in reality it is often the case that more

complicated illumination effects than defined in H0 are present. We can enhance H0 by using any

available training images using eq. (4.36) to take span of multiple transformed training examples with

UT . This technique allows the proposed method to learn from more complicated lighting variations.

Testing Given a testing image It, the first step is to segment It into K image patches {Itk}Kk=1

and calculate the Discrete R-CDT transform representation {P̂∇It
k
}Kk=1. Then, for each image patch

k, we compute the distance

d(P̂∇It
k
,Vc

k) = ||P̂∇It
k
−Bc

k(B
c
k)

T P̂∇It
k
)||, (4.38)

where (Bc
k)

T is the transpose of matrix Bc
k and || · || denote the Euclidean norm.

Finally, we compute dc by summing the distance contribution dck and search for the nearest

subspace as the classification result via:

argmin
c

dc =

K∑
k=1

dck. (4.39)

4.4 Experiment

In order to evaluate the proposed algorithm, we compare it with multiple illumination-invariant

face recognition algorithms [134, 133, 135, 136, 142, 147] and several deep learning based alter-

natives [139, 138, 140] with illumination data augmentation strategy on three face dataset with

challenging illumination conditions [129, 164, 165]. We first present the experiment setup, discuss

the experimental evaluation results, and provide a hyperparameter study regarding parameter se-

lection at the end.
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Table 4.1: Image acquisition setup for Extended Yale Face Database B

Number of Images Azi. & Ele. angles
Training set 11 -10 ≤ Azi. ≤ 10 and -20≤ Ele. ≤ 20
Test subset 1 10 -25 ≤ Azi. <-10 or 10<Azi. ≤ 25

Test subset 2 18
-60 ≤ Azi. <-25 or 25< Azi. ≤ 60;
Azi.=0 and Ele. = 35 or = 45

Test subset 3 12 -95≤ Azi. < -60 or 60 < Azi. ≤ 95

Test subset 4 13
Azi. < -95 or Azi. > 95;
Azi.=0 and Ele.=90

4.4.1 Experiment setup

We evaluate the proposed method on three different face recognition datasets with illumination vari-

ations: Extended Yale Face Database B [129], CAS-PEAL dataset [164], and AR Face Dataset [165].

The Extended Yale Face Database B [129] has 38 different subjects, each of which has 64 images

under different illumination conditions. It is worth noting that several subjects do not have 64

images due to corrupted images during the acquisition phase as explained in [129]. Face images

are collected by changing angles between light source direction and the camera axis, as indicated

in Table 4.1, thus having various illumination effects. Based on the degree of lighting conditions,

the dataset is divided into five subsets as commonly done [135, 136, 133]. Specifically, the training

subset, test subset 1, test subset 2, test subset 3, and test subset 4 contain 11, 10, 18, 12, and 13

images, respectively, as shown in Table 4.1. Each image has a distinct lighting condition. Fig. 4.7

and Fig. 4.8 exemplify face images from the training subset and testing subset. It is easy to ob-

serve that images from testing subset has a high degree illumination variations, including the most

extreme illumination conditions in testing set 4 where subjects are hardly visible in dark environ-

ments. CAS-PEAL dataset [164] has 233 subjects, each of which has more than 9 images under

different lighting conditions. However, unlike the Extended Yale Face Database B, each subject has

only one ”clean” image that is acquired under standard illumination. Others are the images with

varying lighting effects. Based on the azimuth angle (e.g., {−90,−45, 0, 45, 90}) and elevation angle

(e.g., {−45, 0, 45}), the face images with various levels of illumination are categorized into three

different subsets as well. The azimuth angle for Test subset 1, Test subset 2, and Test subset 3 are 0

degree, -45 or 45 degree, and -90 or 90 degree, respectively. Fig. 4.7 and 4.8 illustrate sample images

from the CAS-PEAL-R1 dataset, including the ”clean” images and images with changing lighting

conditions. Compared with the previous two datasets, the AR face dataset has less illumination

variations as shown in Fig. 4.9. Each subject in AR face dataset has two sets of images that are
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Figure 4.7: Clean images from the Extended Yale face database B and CAS-PEAL-R1 dataset.

taken in two separated sessions. Each set contains one ”clean” image and 3 images with different

levels of illumination. In total, each subject has 2 clean images and 6 images with different lighting

variations. Accordingly, we construct the test subset 1 and test subset 2 for testing. The images

with left and right illumination are included in test subset 1. The images with side lighting on are

contained in test subset 2. The clean images serve as the training samples.

The experiment evaluation focuses on comparisons between the proposed method and the

illumination-invariant feature extraction based approaches, plus the deep learning based approaches

with illumination data augmentation, because illumination-invariant feature extraction methods,

which aim to eliminate lighting effects by holistic decomposition [134], quotient models [135, 136],

or logarithm difference [133], are the mainstream algorithms for illumination-invariant face analysis,

while deep learning based approaches with illumination augmentation are the most popular meth-

ods. Specifically, we consider three state-of-the-art deep learning models: VGGFace, ResNet-50

and DenseNet-121. We use 90% and 10% of the original training data for training and validation,

respectively. Validation is performed every ten iterations, the final test accuracy is based on the

model checkpoint that has the best validation accuracy. When there is only one training sample

available, each sample is augmented 5 times using the illumination model stated in equation 4.6.

For all the experiments we use an Adam optimizer [166] with a learning rate of 0.001.
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Figure 4.8: Image examples with changing illumination effects from one subject in Extended Yale
face database B and CAS-PEAL-R1 dataset.

Figure 4.9: Image examples from AR face dataset.
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4.4.2 Evaluation results

Two experiments, denoted as Test 1 and Test 2, were conducted to evaluate the proposed approach

using different training strategies on the Extended Yale Face Database B. Test 1 trains the proposed

model by utilizing all images in the training set, and performs evaluations on Test subsets 1, 2, 3, &

4. respectively. We further remark that in Test 1, since there are multiple training images available,

we set aside a validation set to choose the number of components in the orthogonalization step (please

see Method Section) using PCA. Specifically, We use a 66% and 33% of original training data for

training and validation. We use the validation set to define the smallest number of components that

maximize classification accuracy. Test 2 trains the proposed model using one single sample, which

is randomly selected from the training set, then it follows the same testing procedure as discussed

above in Test 1. Table 4.2 presents experimental evaluation results of Test 1 and Test 2. Clearly,

the proposed method achieves the top and most robust performance across different test subsets in

both of Test 1 and Test 2. Specifically, in Test subset 1&2 of Test 1, most of the approaches achieve

satisfactory performance, meaning that they are able to address mild illumination effects for face

recognition tasks. With increasing levels of illumination conditions in Test subset 2,3,&4, such as

when uneven and large areas of shadow are present, other methods experienced significant decreases

in performance. A similar trend can be observed in Test 2 as well. Of the comparison methods,

the WebberFace, GradientFace, and MSLDE approaches consistently achieve better performance

than their deep learning counterparts, indicating that they are able to eliminate some illumination

effects after the ”normalization” stage, especially in the test subsets (e.g., Test subset 1&2 ) with

low-level of illumination variations. In addition, incorporating the log transform into HoG + SVM

pipeline also improves performance. With regards to the deep learning-based methods, some achieve

excellent performance in Test subset 1&2 of Test 1 and Test 2, where the minimum illumination

effects exist. Nevertheless, for Test subset 3&4, their classification accuracy decrease significantly.

This may be due to the fact that only a limited number of training samples are available. As

commonly done in the machine learning literature, we employed a data augmentation strategy to

address the shortage of training data. Specifically, we adopt the model stated in equation (4.6) to

randomly augment training samples with different levels of illumination (e.g., to simulate various

contrast and brightness changes)5. Each parameter in equation (4.6) is randomly configured as

α ∈ [0.1, 3], β ∈ [1, 30], b ∈ [0.1, 3]). We observe that for deep learning approaches illumination data

augmentation strategy improves classification performance to a degree in cases where illumination

5Please note in here equation (4.6) is applied to the entire image domain rather than a single patch.
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Table 4.2: Classification accuracy for Yale face dataset

Extended Yale face database
(Number of classes = 38)

Test 1 Test 2
Test subset 1 Test subset 2 Test subset 3 Test subset 4 Test subset 1 Test subset 2 Test subset 3 Test subset 4

WebberFace + SVM 100% 95.1% 94.2% 90.6% 92.1% 78.8% 70.1% 74.4%
MSLDE + SVM 100% 93.3% 82.0% 79.1% 87.6% 64.9% 60.8% 64.0%

GradientFace + SVM 100% 91.5% 88.4% 85.1% 80.5% 58.6% 65.2% 60.0%
Log + DCTface + SVM 97.8% 80.5% 70.7% 43.6% 72.8% 41.3% 39.8% 24.6%

HoG + SVM 100% 82.4% 49.1% 65.9% 68.6% 47.2% 30.7% 42.0%
Log + HoG + SVM 100% 91.1% 70.5% 80.6% 73.1% 51.9% 44.2% 51.0%

VGGface 67.8% 14.6% 3.7% 2.4% 15.0% 5.7% 2.4% 2.6%
VGG face with data aug. 98.6% 77.1% 55.5% 25.3% 66.0% 33.5% 10.6% 7.7%

ResNet-50 96.5% 50.3% 9.5% 4.0% 63.9% 14.9% 3.5% 2.2%
ResNet-50 with data aug. 97.8% 73.3% 42.0% 26.9% 91.0% 49.3% 23.8% 14.4%

DenseNet-121 85.5% 36.4% 5.9% 3.8% 57.1% 15.5% 4.6% 2.0%
DenseNet-121 with data aug. 98.1% 58.7% 23.4% 14.8% 78.4% 24.8% 9.2% 2.0%

Discrete R-CDT + NS(ours) 100% 98.8% 96.2% 94.4% 98.4% 95.5% 92.4% 91.8%

changes are small (e.g., in Test subset 1&2 ). However, when illumination effects become severe, e.g.,

in Test subset 3&4, data augmentation become less effective. Though using data augmentation is

a valid option to increase performance, it is still extremely difficulty to prescribe how to augment

the data, in addition to other issues such as computational complexity and out of distribution

performance issues [162]. Finally, we note that the performance of deep learning-based approaches

can vary significantly due to the network architecture.

In this experiment with respect to CAS-PEAL-R1, the model only utilizes the single clean image

of each subject for training. Evaluations are performed on three testing subsets: Test subset 1,

2, & 3. Table 4.3 summarizes the experiment results. Overall, the proposed method outperforms

other alternatives by a large margin, which is a consistent trend across the three testing subsets.

With respect to the comparison methods, GradientFace and MSLDE achieve the best performance.

Deep learning-based approaches are not able to perform well perhaps due to the limited number of

training samples, even illumination data augmentation strategies are used.

Finally, we evaluate and compare the proposed method on AR face dataset which has 100 sub-

jects. It is worth noting that the framework Log + HoG [142] method achieves the best performance

while the method proposed here obtains comparable performance. Other methods such as MSLDE

and GradientFace also have high accuracies. It is worth noting that illumination data augmentation

are most effective for the AR face dataset, which allows deep learning approaches to gain signifi-

cant performance improvement, implying that employing data augmentation is an effective route to

address mild illumination variations.

Simulated mouth dataset for facial weakness analysis We also evaluate the proposed method

on a neurologist-verified mouth dataset [108]. The mouth dataset contains 361 mouth images in-

cluding 76 mouth images with left facial weakness, 72 mouth images with right facial weakness,
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Table 4.3: Classification accuracy for CAS-PEAL dataset

CAS-PEAL face dataset
(Number of classes = 233)

Test subset 1 Test subset 2 Test subset 3
WebberFace + SVM 16.2% 19.5% 27.5%
MSLDE + SVM 18.0% 17.9% 40.0%

GradientFace + SVM 21.1% 20.0% 38.4%
Log + DCTface + SVM 11.4% 8.5% 4.0%

HoG + SVM 19.3% 13.2% 19.0%
Log + HoG + SVM 22.8% 17.2% 24.3%

VGGface 2.3% 1.7% 0.7%
VGG face with data aug. 5.5% 3.5% 2.6%

ResNet-50 3.8% 1.8% 1.0%
ResNet-50 with data aug. 6.9% 4.8% 5.1%

DenseNet-121 1.4% 1.1% 0.8%
DenseNet-121 with data aug. 3.3% 2.0% 1.0%

Discrete R-CDT + NS(ours) 42.2% 50.2% 49.7%

Table 4.4: Classification accuracy for AR face dataset

ARFace dataset
(Number of classes = 100)

Test subset 1 Test subset 2
WebberFace + SVM 93.7% 87.0%
MSLDE + SVM 97.5% 94.5%

GradientFace + SVM 97.5% 93.0%
Log + DCTface + SVM 87.5% 73.0%

HoG + SVM 99.7% 83.5%
Log + HoG + SVM 100.0% 95.5%

VGGface 19.7% 11.5%
VGG face with data aug. 80.2% 58.4%

ResNet-50 59.5% 7.5%
ResNet-50 with data aug. 92.7% 80.0%

DenseNet-121 54.2% 9.0%
DenseNet-121 with data aug. 89.9% 82.4%

Discrete R-CDT + NS(ours) 99.5% 94.5%
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Figure 4.10: The perturbed mouth dataset.

and 213 mouth images without facial weakness (normal). We first perform the standard 5-fold

cross-validation testing to show the effectiveness of all methods on the unperturbed mouth dataset.

Then we perform a out-of-distribution test to illustrate that the proposed method is robust to

simulated lighting perturbations as shown in Fig 4.10. To be precise, during the test phase of out-of-

distribution test, test images are transformed via eq.(4.6) while the training images were the original

images. We report the accuracy averaged over these 5 times in Table. 4.6. The second column of

Table. 4.6 demonstrates that all methods achieve similar performance to discriminate three classes.

We use two illumination perturbation models: J(x) = c1I(x) + c0 (c1 ∈ [0.1, 3], c0 ∈ [1, 30]) to

simulate contrast and brightness variations and J(x) = c1I(x) + c0 + bTx (c1 ∈ [0.1, 3], c0 ∈ [1, 30],

bx ∈ [0.1, 3], by ∈ [0.1, 3]) to simulate contrast and brightness variations plus a smooth linear lighting

gradient. It is easy to observe that the proposed method outperforms other comparison methods

while performance of state-of-the-art deep learning models suffer significantly under simulated illu-

mination variations. Especially, the linear gradient item b causes notable performance decrease for

all methods except the proposed one.

Hyper-parameter study The experimental results presented above show that the face recogni-

tion approach we proposed is more robust to variations in illumination conditions than a variety of

existing methods. The method is based on splitting face images into finite support neighborhoods

Ωk, and using a Discrete R-CDT representation for the gradient distribution within each neighbor-

hood. As such, certain parametric choices (number of projections in R-CDT, neighborhood size,

and neighborhood overlap) have to be made. To study the best choices for these parameters, we

followed the same training and testing strategy used in Test 2 for the Yale Face dataset and focus

on the Test subset 4, which has the most challenging illumination conditions. Table 4.5 provides

performance comparison using different parameter configurations such as varying cell size, overlap

size, and number of projections. When varying different patch sizes, the overlap size is set as 0.

Overall, results show that utilizing smaller patch improves the performance. We postulate this may

be because the illumination model described in equation (4.6) is more accurate for small neighbor-
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Table 4.5: Hyper-parameter study

Number of projections
2 3 4 8 20 45

cell size = 16 35.1% 40.0% 38.7% 39.7% 39.5% 40.0
cell size = 8 62.4% 65.3% 63.2% 69.7% 69.4% 69.5
cell size = 4 78.5% 86.5% 87.3% 89.3% 89.3% 89.3

Overlap size
0

cell size = 8
2

cell size = 8
4

cell size = 8
0

cell size = 4
1

cell size = 4
2

cell size = 4
Accuracy 63.2% 73.2% 76.9% 87.3% 91.8% 93.4

Table 4.6: Classification accuracy for the perturbed mouth dataset

Cross validation
Perturbation model:
J(x) = c1I(x) + c0

Perturbation model:

J(x) = c1I(x) + c0 + bTx
HoG + SVM [141] 92.5 1.4 88.6 3.0 64.8 5.9
ResNet-18 [138] 96.4 1.8 77.0 4.0 42.4 9.8
ResNet-50 [138] 94.7 2.3 66.2 3.6 44.9 7.5
VGG-16 [139] 95.0 2.2 83.3 5.6 57.1 2.7

DenseNet-121 [140] 94.7 5.0 71.7 2.8 38.5 8.0
Discrete R-CDT + NS (ours) 95.0 1.6 92.2 1.3 81.1 4.4

hoods. Secondly, when the neighborhood size is fixed, increasing number of projections and overlap

size are able to provide performance improvement to some extend.

75



Chapter 5

Discussion and future work

5.1 Vision-based facial weakness detection

We study the topics of vision-based facial weakness detection and quantification from static images

or videos on several datasets labeled and verified by board-certified neurologists. The proposed

study first presents an automatic pathological facial weakness detection tool for static images using

a supervised learning method, showing that shape-based (e.g, landmarks) features are informative

for classifying normal v.s. pathological facial weakness. The second study illustrates that landmark-

based approaches suffer from inaccurate localization issues, even these landmarks are extracted from

several state-of-the-art landmark extraction algorithms. To address this issue, a straightforward so-

lution is to utilize a combination of shape-based features and landmarks-based features. In addition,

we employ a linear SVM classifier to show that the shape-based features and texture-based features

contain clinically meaningful information for identifying facial weakness. Utilizing the knowledge

learned from two previous studies, we aim to examine facial weakness from video data. The pro-

posed framework first leverages a subspace learning model, which is derived from the previous two

studies, to extract the most discriminant shape and appearance information regarding facial weak-

ness from each individual frame. Then a recurrent neural network models the temporal dynamics

through a Bi-LSTM network and generate the prediction. Experimental evaluation shows that our

solution is able to outperform other state-of-the-art alternatives, achieving the equal performance to

paramedics. Most importantly, it is able to provide visualizable and interpretable results regarding

facial weakness, which greatly increases model transparency and interpretability. Furthermore, a

live and real-time prototype with interactive GUI is implemented on a regular laptop. The proof-
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of-concept prototype is ready to be validated in the real-world clinical settings. The important

implication of this study is that the proposed method opens a new opportunity of providing clini-

cal assistance to non-neurologist providers such as paramedics to increase the coverage of standard

neurological care in the prehospistal setting.

A substantial amount of experiences and lessons is gained from our study. First, building such

an “in-the-wild” dataset not only time-consuming, labor-intensive but also expensive in terms of

neurology expertise. The researchers spend numerous hours to collect and curate the image and

video dataset based on the data acquisition protocol. It is also extremely costly to obtain the

ratings from the board-certified neurologists for the verification process as well as other clinical

raters such as paramedics and neurology residents. Therefore, collecting a real-patient dataset will

be much challenging due to the prevalence of the disease, heterogeneity of symptom manifestations,

and patient privacy standards. However, we believe the experience gained from assembling the “in-

the-wild” dataset streamlines the data acquisition pipeline and enables us to avoid potential pitfalls,

thus laying a solid foundation to enroll patients in the real-clinical setting. For the prototype

implementation, one important issue is the head pose, because it is important to ensure that the

subject faces the camera directly with a full view. Therefore, a head pose estimation model is

embedded into the prototype, in order to check the subject’s head. In the meanwhile, we also notice

that multiple videos experience facial landmark detection failures due to the lighting and appearance

variations. Therefore, in order to improve the landmark extraction accuracy, future work will also

include to train a dedicated facial landmark extractor for facial weakness patients. In terms of

ground truth labelling, given the fact that the data was collected from open access repositories and

the in-person examinations of the same person were not available, it is still possible for all neurology

experts to make the same mistakes for ground truth labeling. Therefore, to minimize the possible

mislabeling issues, three board-certified experienced neurologists rated the image and video dataset

independently. Only the image and video data with the concordant ratings are used our study in a

such way that the ground truth labeling issues are minimized.

To sum up, to arrive at a full-fledged video solution for facial weakness detection and quantifica-

tion that could be used in the real-world clinical setting, multiple future research efforts are required,

such as collecting images and videos of real patients with in-person examinations results (e.g., the

clinical diagnosis, imaging findings, and electronic health records), development of a dedicated facial

landmark extractor, and testing the proposed facial weakness analysis framework on patients in the

real-world clinical settings to improve the model generalizability and avoid overfitting issues.
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5.2 Illumination-invariant face recognition

We propose a novel method for illumination invariant face representation that are based on the fol-

lowing ideas: (1) first, we patchify images into multiple image patches and calculate the 2d discrete

gradient distributions for each individual image patch; (2) secondly, we shows that illumination

variations cause optimal transport type of perturbation for local 2D discrete gradient distributions;

(3) thirdly, we define a sliced optimal transport based representation to represent local 2D discrete

gradient distributions, which has several properties to address the transport-like variations in 2D dis-

crete gradient space and convexity the classification problem; (4) built upon this new representation,

we construct a nearest subspace model to perform face recognition under varying illuminations. The

experimental evaluations demonstrate the advantages of the proposed approaches when compared

with other alternatives.

However, there are multiple interesting perspectives worth further exploring as future work.

Firstly, in here, we empirically demonstrate that incorporating log transform into existing pipeline

is able to increase classification accuracy. Specifically, as a widely used preprocessing step for mul-

tiple illumination-invariant face analysis work [134, 142, 133], the log transformation [152] is able

to circumvent illumination effects. Thus, we also applied the log transform as a preproccessing step

in the proposed approach. Table 5.1 demonstrates classification results as well as the performance

improvement (as highlighted using an upward arrow) for three face datasets used in the experiment.

Overall, leveraging log transform enhances the classification accuracy in most of testing cases, espe-

cially for the dataset that has large areas of illumination effects such as test subset 4 in the Yale Face

dataset. However, because using log transform changes the equation (4.6), a careful mathematical

analysis of incorporating the log transform in our gradient distribution representation will be the

subject of future work. Secondly, besides the translation and scaling effects, there are multiple other

interesting effects such as rotation, anisotropic scaling, and shearing that could be future studied to

improve the system’s performance. In addition, in existing implementation, the proposed approach

uses an equal weight coefficient strategy when aggregating the distance from each image patch. How-

ever, it is clear that several image patches (e.g., patches include eyes, noses, and mouths) contain

more informative information, it is worth to investigate a learning-based approach to derive such

weight coefficients for potential performance improvements. Last but not the least, equation (4.36)

means that taking the span of multiple transformed training examples allows the proposed model

to capture more complicated lighting variations than the ones captured by the set H0. Table 4.2 is

able to support this claim, by demonstrating that with an increasing number of training images, the
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Table 5.1: Classification accuracy using log transform

Accuracy
Test subset 1 Test subset 2 Test subset 3 Test subset 4

Yale Face database (Test 1 ) 100% 98.9% (0.1% ↑) 96.6% (0.4% ↑) 95.7%(1.3% ↑)
Yale Face database (Test 2 ) 98.9%(0.5% ↑) 95.5% 95.5%(3.1% ↑) 96.3%(4.5% ↑)

Test subset 1 Test subset 2 Test subset 3 -
CAS-PEAL-R1 dataset 45.2%(3.0% ↑) 54.3%(4.1% ↑) 52.4%(2.7% ↑) -

Test subset 1 Test subset 2 - -
ARFace dataset 99.5% 95.5%(↑ 1.0%) - -

classification accuracy improves. The same trend is also applied to the CAS-PEAL-R1 face dataset.

When the test subset 1 and test subset 2 are included into the training set, the classification accuracy

increases from 49.7% to 82.51% accordingly.

To sum up, future work for illumination-invariant face recognition will include: (1) studying log

transform; (2) modeling rotation, anisotropic scaling, and shearing effects of 2D discrete gradient

distribution in discrete R-CDT domain; (3) obtaining weight coefficients for image patches in the

nearest subspace learning setting.
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Chapter 6

Conclusion

Facial weakness is a common neurological deficit that associated to lack of facial muscle control due

to neurological injury. Thus, the configuration and movement of the face can indicate the presence

or absence of several neurological diseases. In order to detect and quantify facial weakness from

static images and videos, we develop an automated video-based system that can detect and quantify

facial weakness using medical imaging analysis and computer vision. Our studies start from the

image-based facial weakness analysis by showing that (1) shape-based features and texture-based

features are effective for facial weakness detection and quantification, and (2) clinically meaningful

pathology can be detected by the proposed approach. In addition, we provide a fully-automated

video solution for facial weakness detection and quantification, which not only achieves equivalent

performance to paramedics, but also provides the visualizable and interpretable results to illustrate

how shape and appearance-based features are used. Lastly, a prototype is implemented on a regular

laptop to demonstrate the feasibility of our study as a proof-of-concept.

In the meantime, in our studies, illumination variability is able to affect performance of the

proposed algorithm. To address lighting variations issues, inspired by the fact that patch-wise

texture-based features compare favorably to other alternatives in our case, we present a new sliced-

Wasserstein distance based representation for face analysis that is beyond the scope of facial weakness

analysis. The proposed approach makes use of the lighting-insensitive measure, image gradients, to

construct a low-level patch-wise image feature set based on optimal transport metric. To be specific,

first we mathematically demonstrate that lighting variation causes a transport-type perturbation

for the 2D discrete distributions of the image gradient. The transport-type perturbation can be

alleviated using optimal transport-based metric in R-CDT domain, which convexifies the associated
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face analysis tasks. After being convexified, a nearest subspace learning approach is utilized to

classify these convex sets in discrete R-CDT domain. The experiment results demonstrate the

superiority of the proposed method compared to other approaches.
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[31] Thibaud Sénéchal, Jay Turcot, and Rana El Kaliouby. Smile or smirk? automatic detection
of spontaneous asymmetric smiles to understand viewer experience. In Automatic Face and
Gesture Recognition (FG), 2013 10th IEEE International Conference and Workshops on, pages
1–8. IEEE, 2013.

[32] Lex Fridman, Joonbum Lee, Bryan Reimer, and Trent Victor. ‘owl’and ‘lizard’: patterns of
head pose and eye pose in driver gaze classification. IET Computer Vision, 10(4):308–314,
2016.

[33] Jaime M Hatcher-Martin, Jamie Lynn Adams, Eric R Anderson, Riley Bove, Tamika M Burrus,
Mahan Chehrenama, Mary Dolan O’Brien, Dawn S Eliashiv, Deniz Erten-Lyons, Barbara S
Giesser, et al. Telemedicine in neurology: telemedicine work group of the american academy
of neurology update. Neurology, 94(1):30–38, 2020.

[34] Amy K Guzik and Jeffrey A Switzer. Teleneurology is neurology. Neurology, 2020.

[35] Ralph L Sacco. Neurology: Challenges, opportunities, and the way forward. Neurology,
93(21):911–918, 2019.

[36] Philip B Gorelick. The global burden of stroke: persistent and disabling. The Lancet Neurology,
18(5):417–418, 2019.

[37] Center for Disease Control DHDSP. Stroke facts, sep 2020.

[38] Valery L Feigin, Gregory A Roth, Mohsen Naghavi, Priya Parmar, Rita Krishnamurthi,
Sumeet Chugh, George A Mensah, Bo Norrving, Ivy Shiue, Marie Ng, et al. Global bur-
den of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the
global burden of disease study 2013. The Lancet Neurology, 15(9):913–924, 2016.

[39] The Lancet Neurology. The shared burden of stroke and dementia. The Lancet Neurology,
15(9):891, 2016.

[40] Jeffrey L Saver, Gregg C Fonarow, Eric E Smith, Mathew J Reeves, Maria V Grau-Sepulveda,
Wenqin Pan, DaiWai M Olson, Adrian F Hernandez, Eric D Peterson, and Lee H Schwamm.
Time to treatment with intravenous tissue plasminogen activator and outcome from acute
ischemic stroke. Jama, 309(23):2480–2488, 2013.

[41] Sunil A Sheth, Reza Jahan, Jan Gralla, Vitor M Pereira, Raul G Nogueira, Elad I Levy,
Osama O Zaidat, Jeffrey L Saver, and SWIFT-STAR Trialists. Time to endovascular reperfu-
sion and degree of disability in acute stroke. Annals of neurology, 78(4):584–593, 2015.

[42] David S Liebeskind, Reza Jahan, Raul G Nogueira, Tudor G Jovin, Helmi L Lutsep, and
Jeffrey L Saver. Early arrival at the emergency department is associated with better collaterals,
smaller established infarcts and better clinical outcomes with endovascular stroke therapy:
Swift study. Journal of neurointerventional surgery, 8(6):553–558, 2016.

84



[43] Abdul R Abdullah, Eric E Smith, Paul D Biddinger, Deidre Kalenderian, and Lee H Schwamm.
Advance hospital notification by ems in acute stroke is associated with shorter door-to-
computed tomography time andincreased likelihood of administration of tissue-plasminogen
activator. Prehospital emergency care, 12(4):426–431, 2008.

[44] James S McKinney, Krishna Mylavarapu, Judith Lane, Virginia Roberts, Pamela Ohman-
Strickland, and Mark A Merlin. Hospital prenotification of stroke patients by emergency
medical services improves stroke time targets. Journal of Stroke and Cerebrovascular Diseases,
22(2):113–118, 2013.

[45] Ian Mosley, Marcus Nicol, Geoffrey Donnan, Ian Patrick, Fergus Kerr, and Helen Dewey. The
impact of ambulance practice on acute stroke care. Stroke, 38(10):2765–2770, 2007.

[46] David J Gladstone, Lance H Rodan, Demetrios J Sahlas, Liesly Lee, Brian J Murray, Jon E
Ween, James R Perry, Jordan Chenkin, Laurie J Morrison, Shann Beck, et al. A citywide
prehospital protocol increases access to stroke thrombolysis in toronto. Stroke, 40(12):3841–
3844, 2009.

[47] Wade S Smith, Marshal Isaacs, and Megan D Corry. Accuracy of paramedic identification of
stroke and transient ischemic attack in the field. Prehospital Emergency Care, 2(3):170–175,
1998.

[48] Kaiz S Asif, Marc A Lazzaro, and Osama Zaidat. Identifying delays to mechanical thrombec-
tomy for acute stroke: onset to door and door to clot times. Journal of neurointerventional
surgery, 6(7):505–510, 2014.

[49] M Hansen, SH Sindrup, PB Christensen, NK Olsen, O Kristensen, and ML Friis. Interobserver
variation in the evaluation of neurological signs: observer dependent factors. Acta neurologica
scandinavica, 90(3):145–149, 1994.

[50] A Mohd Nor, C McAllister, SJ Louw, AG Dyker, M Davis, D Jenkinson, and GA Ford.
Agreement between ambulance paramedic-and physician-recorded neurological signs with face
arm speech test (fast) in acute stroke patients. Stroke, 35(6):1355–1359, 2004.

[51] J Adam Oostema, John Konen, Todd Chassee, Mojdeh Nasiri, and Mathew J Reeves. Clinical
predictors of accurate prehospital stroke recognition. Stroke, 46(6):1513–1517, 2015.

[52] Craig W Brown and Mary J Macleod. The positive predictive value of an ambulance prealert
for stroke and transient ischaemic attack. European Journal of Emergency Medicine, 25(6):411–
415, 2018.

[53] Allison E Arch, David C Weisman, Steven Coca, Karin V Nystrom, Charles R Wira III,
and Joseph L Schindler. Missed ischemic stroke diagnosis in the emergency department by
emergency medicine and neurology services. Stroke, 47(3):668–673, 2016.

[54] Noreen Kamal, Shubin Sheng, Ying Xian, Roland Matsouaka, Michael D Hill, Deepak L
Bhatt, Jeffrey L Saver, Mathew J Reeves, Gregg C Fonarow, Lee H Schwamm, et al. Delays
in door-to-needle times and their impact on treatment time and outcomes in get with the
guidelines-stroke. Stroke, 48(4):946–954, 2017.

[55] Sergio Gonzales, Michael T Mullen, Lesli Skolarus, Dylan P Thibault, Uduak Udoeyo, and
Allison W Willis. Progressive rural–urban disparity in acute stroke care. Neurology, 88(5):441–
448, 2017.

[56] Thanh N Nguyen, Mohamad Abdalkader, Tudor G Jovin, Raul G Nogueira, Ashutosh P
Jadhav, Diogo C Haussen, Ameer E Hassan, Roberta Novakovic, Sunil A Sheth, Santiago
Ortega-Gutierrez, et al. Mechanical thrombectomy in the era of the covid-19 pandemic: emer-
gency preparedness for neuroscience teams: a guidance statement from the society of vascular
and interventional neurology. Stroke, 51(6):1896–1901, 2020.

85



[57] Thomas J Oxley, J Mocco, Shahram Majidi, Christopher P Kellner, Hazem Shoirah, I Paul
Singh, Reade A De Leacy, Tomoyoshi Shigematsu, Travis R Ladner, Kurt A Yaeger, et al.
Large-vessel stroke as a presenting feature of covid-19 in the young. New England Journal of
Medicine, 382(20):e60, 2020.

[58] Jason M Lippman, Sherita N Chapman Smith, Timothy L McMurry, Zachary G Sutton,
Brian S Gunnell, Jack Cote, Debra G Perina, David C Cattell-Gordon, Karen S Rheuban,
and Nina J Solenski. Mobile telestroke during ambulance transport is feasible in a rural ems
setting: the itreat study. Telemedicine and e-Health, 22(6):507–513, 2016.

[59] Sherita N Chapman Smith, Prasanthi Govindarajan, Matthew M Padrick, Jason M Lippman,
Timothy L McMurry, Brian L Resler, Kevin Keenan, Brian S Gunnell, Prachi Mehndiratta,
and Christina Y Chee. A low-cost, tablet-based option for prehospital neurologic assessment
the itreat study. Neurology, 87(1):19–26, 2016.

[60] Tzu-Ching Wu, Stephanie A Parker, Amanda Jagolino, Jose-Miguel Yamal, Ritvij Bowry,
Abraham Thomas, Amy Yu, and James C Grotta. Telemedicine can replace the neurologist
on a mobile stroke unit. Stroke, 48(2):493–496, 2017.

[61] Enrique C Leira, Brian Kaskie, Michael T Froehler, and Harold P Adams Jr. The growing
shortage of vascular neurologists in the era of health reform: planning is brain! Stroke,
44(3):822–827, 2013.

[62] Timothy M Dall, Michael V Storm, Ritashree Chakrabarti, Oksana Drogan, Christopher M
Keran, Peter D Donofrio, Victor W Henderson, Henry J Kaminski, James C Stevens, and
Thomas R Vidic. Supply and demand analysis of the current and future us neurology workforce.
Neurology, 81(5):470–478, 2013.

[63] Donna C Bergen. Training and distribution of neurologists worldwide. Journal of the neuro-
logical sciences, 198(1):3–7, 2002.

[64] Nancy K Glober, Karl A Sporer, Kama Z Guluma, John P Serra, Joe A Barger, John F Brown,
Gregory H Gilbert, Kristi L Koenig, Eric M Rudnick, and Angelo A Salvucci. Acute stroke:
current evidence-based recommendations for prehospital care. Western Journal of Emergency
Medicine, 17(2):104, 2016.

[65] Rashmi U Kothari, Arthur Pancioli, Tiepu Liu, Thomas Brott, and Joseph Broderick. Cincin-
nati prehospital stroke scale: reproducibility and validity. Annals of emergency medicine,
33(4):373–378, 1999.

[66] Ethan S Brandler, Mohit Sharma, Richard H Sinert, and Steven R Levine. Prehospital stroke
scales in urban environments a systematic review. Neurology, 82(24):2241–2249, 2014.

[67] Y. Zhuang, O. Uribe, M. Mcdonald, I. Lin, D. Arteaga, W. Dalrymple, B. Worrall, A. Souther-
land, and G. Rohde. Pathological facial weakness detection using computational image anal-
ysis. In Biomedical Imaging (ISBI), 2018 IEEE 15th International Symposium on.

[68] Y. Zhuang et al. Facial weakness analysis and quantification of static images. IEEE Journal
of Biomedical and Health Informatics, 2020.

[69] Y. Zhuang et al. F-dit-v: An automated video classification tool for facial weakness detection.
2019 IEEE EMBS International Conference on Biomedical Health Informatics (BHI), pages
1–4, 2019.

[70] Yan Zhuang, Mark M McDonald, Chad M Aldridge, Mohamed Abul Hassan, Omar Uribe,
Daniel Arteaga, Andrew M Southerland, and Gustavo K Rohde. Video-based facial weakness
analysis. IEEE Transactions on Biomedical Engineering, 68(9):2698–2705, 2021.

86



[71] Mohamed Abul Hassan, Xuwang Yin, Yan Zhuang, Chad M Aldridge, Timothy McMurry,
Andrew M Southerland, and Gustavo K Rohde. A pilot study on video-based eye movement
assessment of the neuroeye examination. In 2021 IEEE EMBS International Conference on
Biomedical and Health Informatics (BHI), pages 1–4. IEEE, 2021.

[72] Mohamed Abul Hassan Ameen, Chad M Aldridge, Yan Zhuang, Xuwang Yin, Timothy Mc-
Murry, Gustavo K Rohde, and Andrew M Southerland. Approach to quantify eye movements
to augment stroke diagnosis with a non-calibrated eye-tracker. submitted to IEEE TBME.

[73] Andrew Southerland, Mohamed Hassan, Chad Aldridge, Yan Zhuang, Timothy McMurry, and
Gustavo Rohde. Comparison of calibration vs non-calibration techniques in the automated
capture of eye movement data: Initial validation of the roadie device (4324), 2021.

[74] Yan Zhuang, Mark Mcdonald, Chad Aldridge, Mohamed Abul Hassan, Omar Uribe, Daniel
Arteaga, AndrewM Southerland, and Gustavo Rohde. Facial weakness detection demo. https:
//youtu.be/4KKaNqFGRwk, 2021. Online; accessed 29 January 2021.

[75] Yan Zhuang, Shiying Li, Xuwang Yin, Abu Hasnat Mohammad Rubaiyat, Gustavo K Rohde,
et al. Local sliced-wasserstein feature sets for illumination-invariant face recognition. arXiv
preprint arXiv:2202.10642, 2022.

[76] A. Song, G Xu, X. Ding, J. Song, G Xu, and W. Zhang. Assessment for facial nerve paral-
ysis based on facial asymmetry. Australasian physical & engineering sciences in medicine,
40(4):851–860, 2017.

[77] A. Gaber, M. Taher, and M. Wahed. Quantifying facial paralysis using the kinect v2. In Con-
ference proceedings:... Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference,
volume 2015, page 2497, 2015.

[78] H. Kim, S. Kim, Y. Kim, and K. Park. A smartphone-based automatic diagnosis system for
facial nerve palsy. Sensors, 15(10):26756–26768, 2015.

[79] T. Wang, S. Zhang, J. Dong, L. Liu, and H. Yu. Automatic evaluation of the degree of facial
nerve paralysis. Multimedia Tools and Applications, 75(19):11893–11908, 2016.
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