
Back-end Software Development: A Look into the Importance

of Data Verification

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Jonathan Hail

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

Briana Morrison, Department of Computer Science

1

Back-end Software Development: A Look into the Importance

of Data Verification

CS4991 Capstone Report, 2022

Jonathan Hail

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

jjh3wqt@virginia.edu

Abstract
Walmart was sued for having insufficient

prevention for fraud in their financial

services department. This was in part due

the claim that associates were not properly

trained for the financial service they were

providing. To address this, I created a back-

end service to determine whether an

associate is adequately trained. I

implemented this remedy in Java Spring

Boot as a RESTful API. When the API was

finished, it returned a list of the required

courses an associate has not taken for each

action. In the future, this service could be

expanded to departments of Walmart other

than Financial Services—the Pharmacy

department, for example.

1. Introduction
With the switch to a Java back-end for

Financial Services, there needed to be the

presence of an API to confirm the ULearn

status of Financial Services associates. To

do this, I worked with one other intern to

add the ULearn integration with the

Financial Services back-end. This involved a

change from the previous batch process to a

live check with ULearn to confirm associate

eligibility when they go to perform an action

for a customer. If associates have not

completed proper coursework through

ULearn, they cannot utilize the specific

action for which their training is incomplete.

It is possible for the associate to complete

the courses they still have not done for the

action by going through it on the ULearn

website. After this, the API would update to

unlock the action in real time.

2. Related Works
We decided to use Spring Boot for this

project since the rest of our back-end was

already using Java Spring Boot. However,

this framework was probably originally

selected for a number of reasons. According

to IBM (2020), Spring Boot is built on top

of Spring Framework and is popular because

it offers Dependency Injection and other

features that provide built-in support for

many functions developers commonly use.

In addition, as opposed to only using the

Spring Framework, Spring Boot adds

configuration that makes deployment easier

on top of the Spring Framework.

This was built on top of Java, utilizing

Spring Boot to add endpoints to the code.

According to Mercer (2017), Java is a

common choice among companies, because

it has a lot of practical uses, is platform

independent, and object-oriented. Also, it is

an older language so users have a lot of

support and libraries at their disposal. For all

of these reasons, there are a lot of Java

developers, and so Java is a common choice

among companies.

3. Process Design
Before starting to write the code for our

endpoint, we had to coordinate with the

2

ULearn team to figure out how to make

proper requests to their API. We scheduled a

meeting with them to get an idea of how

their API worked. From that, we could

structure a GraphQL request that returned all

of the information we needed to handle on a

given associate.

When starting the process of creating the

ULearn API, another intern and I had to

review the existing Java code as we were

adding the endpoint to an existing back-end

environment. We looked through the other

endpoints and took note of the architecture

and general format that the rest of the code

has been written in. From there, we outlined

a sample Spring Boot API in a new class to

give basic test functionality. This endpoint

took in the parameters of store ID and

customer ID.

After that, we researched how to make a

successful API request in Java. In total, we

had to make two different API calls to get

the information necessary for proper return

information. These two API calls were to the

operator maintenance API, then the ULearn

API. The operator maintenance API was

necessary to convert the customer ID and

store ID taken in as parameters in our

endpoint and convert them to just a Walmart

ID. The ULearn API was needed to take the

Walmart ID and convert that with our input

to provide necessary course information.

We then created a new class to handle

calling each API and returning the data to

each endpoint. Calling each API was an

involved process that required proper

information such as http headers and the

request body. For the operator maintenance

API, this request body was just the store and

customer ID, but the ULearn one was a

longer GraphQL request, as we figured out

earlier. With these requests, we needed to

implement proper error handling. This

ranged from improper return from the API

(the API could be down, as well) in addition

to improper user input for our API. To add

this, we needed to extend the existing error

handling method used elsewhere in the

back-end.

After we wrote the code for a basic

integration with the two APIs, we had to

integrate with two different Walmart cloud

services. One service was to provide custom

configuration to our API, where we needed

to put information such as required courses

for each action, which is necessary to

expand this to different actions in the future;

and endpoint URLs, in case these endpoints

change. This service took a lot of research to

properly integrate, as it required the addition

of more classes in a particular format, as

well as changing existing configuration files

in the back-end. To test this functionality

locally, we needed to create some local files

that had dummy information, since the cloud

information could not be received locally.

The other service was used to store secrets,

such as passwords to prevent hard coding

them into our code. This was needed in our

code to put in our API keys, for example.

Integration also required configuration of

the config and the addition of a new class

and dummy test files for local testing.

Configuration of these new classes for

integration required some coordination with

co-workers who had experience with

implementing these cloud services.

Between all of the above steps, we created

testing classes to go along with each class

that we created. These testing classes were

designed to test all functionality of the

current class while mocking external

resources. These tests were required to pass

maven build, which needed to execute

successfully to deploy to the staging

environment.

3

When we finished all of the functionality for

our project, we submitted a GitHub pull

request to run a few checks and, if all of

them passed, deploy our code to the staging

environment. From there, we requested the

leaders of this back-end to review our code,

and if successful, merge into the main

upstream branch. We had to make several

iterations of changing our code to meet

requirements until it finally was acceptable,

and then we merged our branch into the

main branch.

After our code was approved, we added

documentation to our endpoints via the

existing Swagger page. This page described

our endpoints and how to use them, and

provided an area to test querying our API

endpoint in real time.

4. Outcomes
The ULearn API was finished and presented

to other interns and Walmart Global Tech

management. The API successfully returned

a JSON list of prohibited actions and the

courses still needed to perform these actions

on ULearn. To execute this, it is necessary

to pass the Walmart associate’s ID and store

number. This API should reach production

sometime in the future to update the existing

ULearn implementation.

5. Conclusion

This API provides Financial Services with

an updated way to access associate training

information and ensure that they have taken

the proper courses for the service they are

providing. This is legally required and can

help prevent scams from taking place. Over

the course of my internship, this feature was

successfully deployed to the staging

environment.

6. Future Work

This work could also be applied to other

fields. Currently, it only supports checking

requirements for Financial Service

associates, but this could be expanded to

work for other departments, as well. For

example, this could work with the Pharmacy

department as a way to ensure associates

have taken their proper Ulearn courses. This

could be implemented as a modification to

the cloud configuration.

References
Mercer, J. (2017, October 25). Why is Java

so popular for developers and

programmers? FRG Technology

Consulting. Retrieved September, 20, 2022

from

https://www.frgconsulting.com/insights/why

-is-java-so-popular-developers

 IBM Cloud Education. (2020). What is Java

Spring Boot? (2020, March 25). Retrieved

September, 28, 2022 from

https://www.ibm.com/cloud/learn/java-

spring-boot

https://www.frgconsulting.com/insights/why-is-java-so-popular-developers
https://www.frgconsulting.com/insights/why-is-java-so-popular-developers
https://www.ibm.com/cloud/learn/java-spring-boot
https://www.ibm.com/cloud/learn/java-spring-boot

