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Abstract 
 

Numerous studies have found interactions between socioeconomic status (SES) and the 

heritability of cognitive ability in samples from the United States, with individuals from lower 

SES backgrounds showing decreased heritability compared to those reared in higher SES 

environments. However, nearly all published studies of the Scarr-Rowe interaction have been 

univariate and cross-sectional. In this study, we sought to increase statistical power by fitting 

multivariate models of gene (G) x SES interaction, including longitudinal models. Cognitive 

ability data collected at up to five time points between ages 7 and 15 years were available for 566 

twin pairs from the Louisville Twin Study. We used hierarchical and latent factor models to pool 

intelligence subtest scores cross-sectionally. To examine interactions longitudinally, we fit latent 

growth curve models to IQ scores. G x SES interactions were significant more often in 

multivariate analyses than in univariate analyses, suggesting that the multivariate approach 

increased power. The predicted interaction effect was observed at most ages in cross-sectional 

multivariate analyses. In longitudinal analyses, we found significant G x SES interactions on 

mean-level (intercept) full scale IQ and performance IQ (ps < .001), but not verbal IQ intercept 

(p = .08). SES did not significantly moderate the heritability of change in IQ over time (slope). 

Interaction appeared to be driven by DZ twin correlations declining at a faster rate than MZ 

correlations as a function of SES.   
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Highlights 
 

• G x SES interaction on intelligence is found across mid-childhood/early adolescence 

• The interaction appears to be driven by divergence in DZ twins  

• Multivariate methods may boost power to detect G x SES interaction   
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Multivariate Analysis of the Scarr-Rowe Interaction Across Middle Childhood and Early 

Adolescence 

Low socioeconomic status (SES) is associated with negative outcomes in a variety of 

important domains, including cognitive ability (Bradley & Corwyn, 2002). Turkheimer, Haley, 

Waldron, D’Onofrio, and Gottesman (2003) observed an interaction of SES and the heritability 

of IQ in 7-year-old U.S. twins, wherein children from lower SES families showed reduced 

heritability compared to more affluent peers. This finding supported the Scarr-Rowe hypothesis, 

which holds that environmental disadvantage hinders the ability of individuals reared in lower 

SES households to realize their intellectual potential (Rowe, Jacobson, & Van den Oord, 1999; 

Scarr-Salapatek, 1971).  

Modification of cognitive performance heritability by SES has since been observed in 

most studies using U.S. samples, and a recent meta-analysis of such studies found a moderately 

sized interaction effect (Tucker-Drob & Bates, 2016). Significant gene (G) x SES interaction has 

been observed across the life span, including in early childhood (Rhemtulla & Tucker-Drob, 

2012; Tucker-Drob, Rhemtulla, Harden, Turkheimer, & Fask, 2011), middle childhood 

(Turkheimer et al., 2003), adolescence (Harden, Turkheimer, & Loehlin, 2007; Rowe et al., 

1999), and adulthood (Bates, Lewis, & Weiss, 2013). Several U.S. studies, however, have failed 

to find significant moderation (Grant et al., 2010; Kremen et al., 2005), including a recent study 

by Figlio, Freese, Karbownik, and Roth (2017). G x SES interaction is not typically present in 

samples from Western Europe and Australia, where factors associated with environmental 

enrichment (e.g., quality education and healthcare) are more widely accessible (Grasby, 

Coventry, Byrne, & Olson, 2017; Tucker-Drob & Bates, 2016). There are, however, exceptions 



MULTIVARIATE ANALYSIS OF G X SES INTERACTION                                                   5 
 

to this pattern as well, especially in cohorts from previous generations (Fischbein, 1980; 

Turkheimer, Beam, Sundet, & Tambs, 2017). 

Despite the growing body of work on G x SES interaction on cognitive ability, existing 

studies have been limited in several important ways. First, many studies have lacked sufficient 

statistical power, decreasing the likelihood of detecting interaction effects (Tucker-Drob & 

Bates, 2016). Second, few studies have examined G x SES interaction longitudinally. Tucker-

Drob and colleagues (2011) observed significant interaction on change in mental ability between 

ages 10 months and 2 years. Rhemtulla and Tucker-Drob (2012) found that individual 

differences in mathematics skills (but not reading) among four-year-olds were moderated by 

SES, and that this interaction was not explained by interaction effects on mental ability at age 2. 

However, Rhemtulla & Tucker-Drob (2012) did not test for SES moderation of change in 

cognitive ability between 2 and 4 years. We are unaware of previous studies that have examined 

G x SES interaction longitudinally at later ages.  

 In the present study, we sought to address these limitations by investigating heritability x 

SES interaction across middle childhood and early adolescence using cross-sectional and 

longitudinal multivariate techniques. Compared to univariate twin models, both cross-sectional 

and longitudinal multivariate models offer increased power, as long as observed measures are 

sufficiently correlated (Schmitz, Cherny, & Fulker, 1998). Data were drawn from the recently 

revived Louisville Twin Study (LTS; Rhea, 2015; Wilson, 1983). A preliminary univariate study 

found a trend-level (p < .07) G x SES interaction in 7-year-old LTS twins (Turkheimer, Beam, & 

Davis, 2015). Since that report, additional cognitive data for other ages (up to 15 years) have 

been recovered, increasing the overall sample size by approximately 100 twin pairs. 

Furthermore, although preliminary analyses used index-level cognitive performance scores (i.e., 
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full scale IQ, performance IQ, and verbal IQ), subtest scores are also available for all LTS twins 

at all measurement occasions, making it possible to conduct multivariate analyses of the common 

variance across subtests. Finally, a large subset of LTS twins participated in cognitive testing at 

multiple time points, enabling us to perform longitudinal analyses of cognitive performance 

heritability x SES interaction across middle childhood and early adolescence. We hypothesized 

that we would observe modest interaction effects at all ages, and that multivariate results would 

be more consistently significant than univariate results due to greater power. Specifically, we 

expected the proportion of variance in cognitive performance attributable to additive genetic 

factors (A) and shared environmental factors (C) to increase and decrease, respectively, as a 

function of SES.    

Method 

Participants 

Data collection for the LTS ran from 1957 until the late 1990s, generating one of the 

most comprehensive data sets on the early cognitive development of U.S. twins ever collected 

(Rhea, 2015; Wilson, 1983). Participants were all from the Louisville, Kentucky area. Twin pairs 

were included in the current analyses if 1) both twins in a set participated in at least one 

cognitive assessment at ages 7, 8, 9, 12, or 15; and 2) family-level SES was available. We 

analyzed data from 566 twin pairs in total (Table 1; 282 monozygotic (MZ), 284 dizygotic (DZ); 

236 same sex female, 210 same sex male, 120 opposite sex). Zygosity was determined by blood 

serum analysis. The sample was of average intelligence and SES (Table 1; Table 2) and 90.37% 

Caucasian. Age 12 data were omitted from cross-sectional analyses due to insufficient sample 

size. 80.04% of the sample participated in data collection at three or more ages. Missing data 

information for longitudinal analyses is presented in Table 3.   
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Table 1 
Demographic and Descriptive Information 
 

 
* Cross-sectional analyses were not performed on age 12 data due to insufficient sample size. Opp: opposite. FSIQ 
and SES presented as mean (standard deviation).  
 
Table 2 
Correlations of Full Scale IQ Across Ages and SES  
 

 
Pearson’s correlation coefficients. All pairwise correlations were significant (p < .05).  
 
Table 3 
Missing Cognitive Data Information for Longitudinal Analyses  
 

 
Values on the diagonal indicate the proportion of the total sample that had cognitive data at each age. Off-diagonal 
values represent the proportion of the total sample available to calculate a covariance between cognitive measures at 
two ages. 
 
Measures  

Three versions of the Wechsler Intelligence Scale for Children (WISC) were 

administered during the LTS: the WISC, WISC-R, and WISC-III (Wechsler, 1949, 1974, 1991). 

We used index and scaled subtest WISC scores in cross-sectional analyses, and only index scores 

Age (Years) n MZ/DZ Pairs
n Same/Opp. 

Sex Pairs
n Pairs Both Female/
Both Male/Opp. Sex

% Female % Caucasian FSIQ SES

7 235/236 374/97 204/170/97 53.61 88.85 98.34 (14.06) 47.99 (26.80)
8 250/253 401/102 215/186/102 52.88 90.95 101.80 (14.02) 47.53 (26.38)
9 191/199 297/94 160/137/94 52.94 88.87 102.82 (14.48) 46.84 (27.15)

12* 71/82 113/40 55/58/40 49.02 81.37 100.76 (14.49) 44.75 (29.11)
15 191/184 304/71 164/140/71 53.20 93.07 99.87 (14.02) 46.41 (26.20)

All Ages 282/284 446/120 236/210/120 52.30 90.37 100.68 (14.25) 47.80 (26.56)

IQ 7 IQ 8 IQ 9 IQ 12 IQ 15 SES
IQ  7 1 - - - - -
IQ 8 .88 1 - - - -
IQ 9 .88 .90 1 - - -
IQ 12 .85 .88 .88 1 - -
IQ 15 .78 .82 .83 .91 1 -
SES .39 .36 .37 .50 .36 1

Age (Years) 7 8 9 12 15
7 0.83 - - - -
8 0.74 0.89 - - -
9 0.55 0.66 0.69 - -
12 0.27 0.25 0.25 0.27 -
15 0.54 0.64 0.51 0.19 0.66
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in longitudinal analyses. Paternal SES at birth was measured with the Hollingshead Four Factor 

Index of Socioeconomic Status, which is a continuous zero to 100-point scale based on parental 

occupation, education, sex, and marital status (Hollingshead, 1975).  

Procedure 

 We used R to calculate descriptive statistics and prepare the data (R Core Team, 2018). 

Twin models were fit in Mplus Version 8 (Muthén & Muthén, 2017) using full information 

maximum likelihood estimation to handle missing data.  

Univariate Analyses. To build upon existing univariate, cross-sectional examinations of 

G x SES interaction, we first modeled MZ and DZ covariances for each index and subtest score 

as a function of standardized SES at ages 7, 8, 9, and 15. We used a modified twin correlation 

model (MTCM; Figure 1; Turkheimer et al., 2017), which differs from the commonly used 

Purcell model (Purcell, 2002) in several important ways. First, cognitive variables are 

standardized within the MTCM, meaning that the twin covariances are correlations. This is done 

by creating a latent variable (Z) that has a variance of one and is indicated by the observed 

cognitive measure (e.g., IQ, as depicted in the figure), which has its residual variance fixed to 

zero. The internal standardization results in a factor loading weight equal to the observed 

standard deviation of the phenotype (SD), which can then be examined for heteroscedasticity 

with respect to the moderator using an exponential function.  
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Figure 1 
Modified Twin Correlation Model 

 
IQ: placeholder for the observed cognitive variables we analyzed. Z: latent variable that standardized the cognitive 
variable to a mean of 0 and standard deviation of 1, thereby transforming the twin covariances into correlations. 
rMZ/rDZ: monozygotic/dizygotic twin correlations for cognitive ability. SD: standard deviation of the cognitive 
variable. We fit separate linear models of SES (b0 + b1 * SES) to rMZ and rDZ to examine whether twin correlations 
changed as a function of SES. A log-linear model of SES (e(.5*bv0 + .5*bv1 * SES)) was fit to the phenotypic variance to 
account for phenotypic heteroscedasticity. The .5 term in the exponential expression for the variance is included 
because SD is a standard deviation, not a variance. 
   

Second, in the MTCM, SES linearly modifies the MZ and DZ twin correlations (rMZ/rDZ). 

The twin correlations and their moderation can then be linearly transformed into additive genetic 

(A), shared environmental (C), and non-shared environmental (E) variance components. This 

contrasts the Purcell model, wherein SES modifies the paths from the ACE components to the 

measured outcome. The Purcell model is therefore implicitly a quadratic model of the ACE 

variances, which are necessarily constrained to be greater than zero. The MTCM’s focus on 

SES

SES2

rMZ/rDZ

IQ1 IQ2

Z2Z1

b0+b1*SES

SD SD
e(.5*bv0+.5*bv1*SES) e(.5*bv0+.5*bv1*SES)

0 0

1 1

Twin 1 Twin 2
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moderation of the twin correlations allows the correlations to assume moderated values that 

would result in negative C estimates, which violates the ACE parameterization of the classical 

twin model. Permitting the ACE parameters to be modeled as negative makes it possible to 

model the twin correlations accurately, particularly when the DZ twin correlation is less than half 

of the MZ correlation, as has been observed in previous studies of cognitive ability (Turkheimer 

et al., 2017). Finally, in addition to controlling for linear main effects of SES on cognitive ability 

as in the Purcell model, we also controlled for quadratic main effects in univariate analyses.   

Consistent with the classical twin model, we constrained the means and variances of 

cognitive measures to be equal across twins in a pair. Expected MZ and DZ covariances were 1 

and 0.5, respectively. We tested for significant G x SES interaction (in both univariate analyses 

and the multivariate models discussed below) using a Wald test with two degrees of freedom, 

which examined whether the A and/or C moderation parameters differed significantly from zero 

as a function of linear SES.    

Power analysis. Given our sample sizes and the power limitations of previous studies 

(Tucker-Drob & Bates, 2016), we suspected that our univariate analyses might be underpowered. 

To test this, and to justify a multivariate approach, we performed a power analysis of the 

univariate MTCM. We generated 1000 data sets that each included 250 MZ and 250 DZ twins, 

roughly equivalent to our sample sizes at each age. SES values were randomly drawn from a 

uniform distribution with a mean of zero and standard deviation of one. MZ and DZ correlations 

in each data set were calculated as 0.7 – 0.025 * SES and 0.5 – 0.05 * SES, respectively, 

resulting in a b1 A change of 0.05 per standard deviation of the moderator. Thus, the DZ 

correlation declined faster than the MZ correlation with rising SES. We then fit our univariate 

model to the 1000 data sets.  
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Cross-sectional Multivariate Analyses. Within each age, we pooled information from 

all 12 WISC subtests using two multivariate models, both of which were extensions of the 

univariate model described above. The first was a hierarchical model (Figure 2). The top part of 

the model is the same as the univariate MTCM described above. The 12 observed subtest scores 

(represented as empty squares) were treated as a repeated measure nested within a subject-level 

cognitive ability latent variable (G). The MTCM was fit to all available subtest scores 

simultaneously within each individual, and standard errors were corrected to account for the fact 

that the subtest scores came from the same individual. 
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Figure 2 
Hierarchical Model  

 
Empty squares represent the 12 WISC subtests. G: general cognitive ability. The top part of the model is identical to 
the modified twin correlation model (MTCM) presented in Figure 1. For each participant, we fit the MTCM to the 
12 subtests simultaneously and adjusted the standard errors.       
 

The second was a latent factor model (Figure 3) in which the MTCM was applied to a 

common factor (G) that was estimated from the 12 WISC subtests (depicted as empty squares) 

for each twin. We fixed the loading of the first subtest to one, thereby fixing the variance of the 

latent factor, and then standardized the latent factor inside the model using the same method as 

described for the univariate analyses. Residual variances of the subtest scores were correlated 

across twins. SES modified the MZ and DZ twin correlations for latent cognitive ability in the 

same manner as in the univariate MTCM. 

SES

SES2

rMZ/rDZ

G1 G2

Z2Z1

b0+b1*SES

SD SD
e(.5*bv0+.5*bv1*SES) e(.5*bv0+.5*bv1*SES)

1 1

0 0

Twin 1 Twin 2

Subtests within individual

Subject level
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Figure 3 
Latent Factor Model  

 
G: latent cognitive factors generated from the 12 WISC subtests, which are represented by empty squares. The top 
part of the model is identical to the modified twin correlation model (MTCM) presented in Figure 1. We fit the 
MTCM to each individual’s latent factor.   

The hierarchical model and the latent factor model differed in that the former analyzed 

both common and unique error variance across multiple subtests for each participant, whereas 

the latter only analyzed common variance. Because of this, the hierarchical model was expected 

to result in smaller twin correlations than the latent factor model. More theoretically, these 

models represent two ways of handling subtest scores. The hierarchical model treats subtest 

SES

SES2

rMZ/rDZ

G1 G2

Z2Z1

b0+b1*SES

SD SD
e(.5*bv0+.5*bv1*SES) e(.5*bv0+.5*bv1*SES)

1 1

0 0

Twin 1 Twin 2

1 1
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scores as multiple observations of a participant’s ability. The standard errors of the parameter 

estimates are corrected to take subject-level covariation among the subtests into account. The 

latent factor model, in contrast, treats each subtest score as a manifestation of a single underlying 

ability. 

Longitudinal Multivariate Analyses. Next, we examined G x SES interaction 

longitudinally by fitting a latent growth curve (LGC) model to full scale, performance, and 

verbal IQ (FSIQ, PIQ, and VIQ, respectively) data from ages 7, 8, 9, 12, and 15 (Figure 4). As 

with the cross-sectional multivariate models, our LGC model is largely an extension of the 

univariate MTCM. In LGC analyses, individual differences in phenotypic change are modeled as 

random effects using two factors. The intercept factor quantifies performance at the first age of 

measurement, and the slope factor indexes rate of change from initial performance over time. In 

this study, we created latent IQ intercept (I) and slope (S) factors for each twin and fixed the 

intercept at the first time point (7 years). IQ loadings on the intercept factor were all fixed to 1, 

while slope loadings were weighted to model the time elapsed between observations. SES 

modified the intercept and slope twin correlations directly, controlling for linear effects of SES, 

and separate Wald tests were performed on the twin correlations for the intercept and slope 

factors. As in the univariate MTCM, the modification parameters were linearly transformed into 

equivalent values of the A and C components. To model autoregressive effects (i.e., the extent to 

which the variance of one observation explained the variance of subsequent observations), 

observed IQ at each age was regressed on IQ measured at the previous age. IQ scores had 

residual variances (E), which correlated across twins for corresponding measurement occasions. 
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Figure 4 
Latent Growth Curve Model 
 

 
I: latent intercept factor. S: latent slope factor. E: residual variance. rMZ/rDZ: monozygotic/dizygotic twin correlations 
for cognitive ability. For both I and S, we fit separate linear models of SES (b0 + b1 * SES) to rMZ and rDZ to 
examine whether twin correlations changed as a function of SES.   
 

Results 

 Univariate Analyses. Power analysis results suggested that our univariate model lacked 

sufficient power to detect significant interaction effects. Although the b1 A parameter was 

recovered without substantial bias (mean = 0.05), only 7.9% of the estimated parameters were 

significant (Figure 5a; Supplementary Table 1). Perhaps because of limited power, significance 

of the Wald test fluctuated across ages and cognitive measures in a manner that did not follow a 

discernible pattern (Figure 5b). Despite being underpowered, however, univariate analyses 

SES

Twin 1

I11 S1 1

IQ151IQ121IQ91IQ81IQ71

E121 E151E91E81E71

11 1 1 1

Twin 2

S2 1I21

IQ72 IQ82 IQ92 IQ122 IQ152

E82E72 E92 E122 E152

1 1111

b0+b1*SES

rMZ/rDZrMZ/rDZ
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provided tentative evidence of G x SES interaction: modified twin correlations tended to assume 

values that resulted in A increasing as a function of SES while C decreased (Supplementary 

Table 1; mean b1 A = 0.03, 57% positive; mean b1 C = -0.06; 72% negative). Overall, the 

univariate results suggested that increasing power using a multivariate approach may be 

worthwhile. 

Figure 5 
5a. Univariate Model Power Analysis Results          5b. Univariate Model Wald Results  
 

       
5a) Count: frequency that bA1 parameter estimates took a given value on the x axis. 1000 simulations were 
performed in total. 5b) Points above hashed and dotted lines: significant at p < .05 and p < .01, respectively. Values 
< 2 are jittered slightly. Orange dot: overall median Wald for all measures and ages. Pic: picture. Comp: 
comprehension. Arrange: arrangement. Obj: object.  
 

Cross-sectional Multivariate Analyses. Complete hierarchical and latent factor model 

results are presented in Table 4 and Figure 6. 
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Table 4 
Cross-sectional Multivariate Results 
 

 
*p < .05. Wald: result of Wald chi-square test with two degrees of freedom. ME: main effect. Quad: quadratic. 
Parameter estimates presented as value (standard error).   
 
Figure 6 
Cross-Sectional Multivariate ACE Results  
 

 
Hierarchical: results of hierarchical cross-sectional model. Latent: results of latent factor cross-sectional model. 
Variance: proportion of variance in cognitive ability attributable to A, C, and E (presented in red, green, and blue, 
respectively). SES is standardized to a mean of 0 and standard deviation of 1. 
 

Hierarchical model. We did not observe significant G x SES interaction in hierarchical 

analysis of age 7 data (p > .05). However, SES modified twin correlations for cognitive ability at 

ages 8 and 9 such that DZ correlations decreased more quickly than MZ correlations with rising 

SES. When twin correlations were transformed into ACE variances, the predicted pattern of A 

Model Age Wald Linear ME Quad ME b0 rMZ b1 rMZ b0 rDZ b1 rDZ b0 A b1 A b0 C b1 C b0 E b1 E
7 4.78 0.24 (0.03)* -0.07 (0.03)* 0.53 (0.01)* -0.03 (0.01)* 0.38 (0.03)* -0.02 (0.03) 0.30 (0.06)* -0.01 (0.06) 0.24 (0.05)* -0.02 (0.05) 0.47 (0.01)* 0.03 (0.01)*
8 11.12* 0.22 (0.02)* -0.03 (0.03) 0.57 (0.01)* -0.03 (0.01)* 0.42 (0.02)* -0.06 (0.02)* 0.31 (0.05)* 0.06 (0.05) 0.26 (0.05)* -0.09 (0.04)* 0.43 (0.01)* 0.03 (0.01)*
9 9.18* 0.23 (0.03)* -0.02 (0.03) 0.61 (0.02)* -0.03 (0.02) 0.38 (0.03)* -0.07 (0.03)* 0.45 (0.06)* 0.08 (0.06) 0.16 (0.05)* -0.11 (0.05)* 0.39 (0.02)* 0.03 (0.02)
15 12.15* 0.22 (0.03)* -0.02 (0.03) 0.62 (0.02)* -0.05 (0.02)* 0.37 (0.03)* -0.04 (0.03) 0.49 (0.06)* -0.02 (0.06) 0.13 (0.06)* -0.04 (0.05) 0.39 (0.02)* 0.05 (0.02)*
7 6.25* 0.96 (0.10)* -0.23 (0.11)* 0.92 (0.02)* -0.03 (0.02) 0.56 (0.05)* -0.09 (0.05) 0.71 (0.10)* 0.11 (0.10) 0.21 (0.10)* -0.14 (0.09) 0.08 (0.02)* 0.03 (0.02)
8 4.91 0.99 (0.10)* -0.08 (0.11) 0.91 (0.02)* -0.02 (0.01) 0.60 (0.05)* -0.07 (0.04) 0.63 (0.10)* 0.10 (0.09) 0.28 (0.09)* -0.12 (0.09) 0.09 (0.02)* 0.02 (0.01)
9 3.31 1.06 (0.12)* -0.09 (0.13) 0.93 (0.02)* -0.02 (0.02) 0.58 (0.05)* -0.07 (0.05) 0.71 (0.11)* 0.09 (0.10) 0.22 (0.10)* -0.11 (0.10) 0.07 (0.02)* 0.02 (0.02)
15 4.16 1.02 (0.12)* -0.03 (0.12) 0.94 (0.01)* -0.03 (0.04)* 0.60 (0.05)* -0.01 (0.05) 0.69 (0.11)* -0.04 (0.10) 0.25 (0.11)* 0.01 (0.10) 0.06 (0.01)* 0.03 (0.01)*

Hierarchical

Latent
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increasing and C decreasing as a function of SES was observed. Wald tests of the b1 A and C 

parameters were significant at both ages 8 and 9 (age 8: 𝜒2 (2, n = 503 pairs) = 11.12, p = .004; 

age 9: 𝜒2 (2, n = 390 pairs) = 9.18, p = .01). Although the Wald test was also significant at age 

15 (𝜒2 (2, n = 375 pairs) = 12.15, p = .002), the b1 A estimate was slightly negative, which did 

not conform to the predictions of our model. 

Latent factor model. As predicted, the latent factor model yielded larger twin correlations 

than the hierarchical model. Results of latent factor analyses suggested that 7-, 8-, and 9-year-old 

DZ twins diverged in cognitive ability more rapidly with rising SES than MZ twins. As a result, 

A increased and C decreased as a function of SES at all three ages. The Wald test of the 

interaction was significant at age 7 (𝜒2 (2, n = 471 pairs) = 6.25, p = .04), but not age 8 or 9 (ps > 

.05). Although age 15 twin correlations and corresponding A and C variances did not follow the 

expected interaction pattern, neither A nor C was significantly different from zero (p > .05).        

 Longitudinal Multivariate Analyses. Results of LGC models are presented in Table 5, 

Figure 7, and Supplementary Tables 2 and 3. We observed significant SES modification of twin 

correlations for FSIQ intercept (𝜒2 (2, N = 566 pairs) = 17.02, p < .001) and PIQ (𝜒2 (2, N = 566 

pairs) = 14.22, p < .001). As in most of the cross-sectional multivariate results, DZ correlations 

declined more quickly than MZ correlations with rising SES. This drove the interaction observed 

after transformation into ACE variances, where A increased and C decreased as a function of 

SES. SES did not significantly modify twin correlations for VIQ intercept, or twin correlations 

for FSIQ, PIQ, or VIQ slope (ps > .05).  
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Table 5 
Latent Growth Curve Model Results 
 

 
*p < .05. Wald: result of Wald chi-square test with two degrees of freedom. ME: main effect. Parameter estimates 
presented as value (standard error). 
 
Figure 7 
Latent Growth Curve Intercept ACE Results  
 

 
Variance: proportion of variance in cognitive ability attributable to A, C, and E (presented in red, green, and blue, 
respectively). SES is standardized to a mean of 0 and standard deviation of 1.   
 

Discussion 

 The results of this study provide evidence of G x SES interaction on cognitive ability 

across middle childhood and early adolescence among U.S. twins. In most multivariate analyses, 

SES modified twin correlations for cognitive ability such that individuals from more affluent 

families showed increased heritability compared to less privileged peers. Significant interaction 

effects were nearly all in the expected direction (i.e., A increasing and C decreasing as a function 

of rising SES), and were observed in both cross-sectional and longitudinal multivariate analyses. 

Index Factor Wald Linear ME b0 rMZ b1 rMZ b0 rDZ b1 rDZ b0 A b1 A b0 C b1 C b0 E b1 E
Intercept 17.02* 4.94 (0.50)* 0.92 (0.02)* -0.04 (0.01)* 0.59 (0.05)* -0.06 (0.04) 0.65 (0.10)* 0.04 (0.09) 0.27 (0.10)* -0.08 (0.09) 0.08 (0.02)* 0.04 (0.01)*

Slope 0.93 -0.02 (0.06) 0.82 (0.09)* 0.03 (0.04) 0.63 (0.19)* 0.06 (0.11) 0.39 (0.39) -0.06 (0.23) 0.43 (0.37) 0.09 (0.22) 0.18 (0.09)* -0.03 (0.04)
Intercept 14.22* 3.63 (0.48)* 0.91 (0.02)* -0.05 (0.01)* 0.58 (0.05)* -0.07 (0.04) 0.67 (0.11)* 0.04 (0.09) 0.24 (0.11)* -0.08 (0.09) 0.09 (0.02)* 0.05 (0.01)*

Slope 1.13 -0.12 (0.07) 0.90 (0.26)* 0.12 (0.12) 1.06 (0.38)* 0.01 (0.18) -0.32 (0.78) 0.23 (0.42) 1.23 (0.72) -0.11 (0.37) 0.10 (0.26) -0.12 (0.12)
Intercept 5.15 5.33 (0.52)* 0.91 (0.02)* -0.03 (0.01)* 0.61 (0.05)* -0.03 (0.04) 0.59 (0.10)* 0.00 (0.08) 0.32 (0.10)* -0.03 (0.07) 0.10 (0.02)* 0.03 (0.01)*

Slope 0.71 0.00 (0.08) 0.81 (0.10)* 0.03 (0.04) 0.61 (0.17)* 0.04 (0.08) 0.40 (0.36) -0.02 (0.17) 0.41 (0.33) 0.04 (0.16) 0.19 (0.10)* -0.03 (0.04)

FSIQ

PIQ

VIQ

−0.25

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2

FSIQ

−0.25

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2

PIQ

−0.25

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2

VIQ

A

C

E

SES

Va
ria
nc
e



MULTIVARIATE ANALYSIS OF G X SES INTERACTION                                                   20 
 

Consistent with the results of Tucker-Drob and Bates’ (2016) meta-analysis, which reported an 

interaction effect of 0.074 for U.S. G x SES studies, we observed effect sizes in a similar range.   

 Algebraically, G x SES interaction on cognitive ability can arise from MZ twin 

correlations increasing more rapidly with rising SES than DZ twin correlations, DZ twin 

correlations decreasing quicker than MZ correlations as SES increases, or a combination of those 

two mechanisms. The interaction effects that we observed were driven primarily by DZ twin 

correlations diminishing at a faster rate than MZ correlations as a function of rising SES; there 

was little evidence of greater phenotypic convergence in MZ twins at higher levels of SES. 

When twin correlations were transformed into ACE variance components, greater DZ divergence 

resulted in A increasing more quickly or decreasing less quickly with rising SES than C. In some 

analyses, greater divergence in DZ twins resulted in C approaching zero or even taking negative 

values at higher levels of SES. This finding could reflect effects of phenotype-environment 

correlation (Beam & Turkheimer, 2013); as SES rises, twins are able to self-select into 

increasingly different environments. Because they are less genetically, and therefore 

phenotypically, similar, DZ twins select into more discrepant environments than MZ twins. 

Greater environmental disparity, in turn, causes DZ twins to exhibit larger within-pair 

phenotypic differences than MZ twins, creating a reciprocal feedback loop between phenotype 

and environment. Ultimately, this process results in DZ twins being less correlated for cognitive 

ability than MZ twins as a function of increasing SES, driving G x SES interaction. However, 

there are other possible explanations, and future studies should work to identify the specific 

mechanisms that underlie the interaction. Enabling twin correlations to assume values that result 

in negative ACE components, as we did here using the MTCM, may be an important step 

towards understanding those mechanisms.   
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 Our results suggest that multivariate models of G x SES interaction are likely superior to 

more traditional univariate methods due to the substantial increase in power that they offer 

(Schmitz et al., 1998). Although we observed significant G x SES interaction in some univariate 

analyses, we did so more consistently in both cross-sectional and longitudinal multivariate 

analyses, in which we gathered as many cognitive measurements as possible within and between 

ages, respectively. When thinking about how to boost power, researchers tend to focus on 

enlarging sample sizes. While that is one solution, recruiting additional participants can be a 

difficult endeavor when funding is limited and/or data collection has ceased. Therefore, when 

designing future studies of the Scarr-Rowe interaction, it may be advantageous for researchers to 

plan on collecting more data per available participant. Using multivariate approaches to re-

analyze data sets in which G x SES interaction has previously been examined with univariate 

models may also be worthwhile.   

 Results of our two cross-sectional multivariate models were mostly consistent with each 

other. Although the hierarchical model resulted in more significant effects than the latent factor 

model, trends of the moderated twin correlations and ACE components were generally 

comparable across approaches. Thus, our results did not indicate that one model is statistically 

preferable to the other. Given this, it may be acceptable to base the choice between the models 

on theory. The hierarchical model could be favorable in applications where subtests are regarded 

as multiple repeated observations of cognitive ability, whereas the latent factor model may be 

more appropriate when subtests are treated as indicators of a unitary latent ability. 

To our knowledge, this was the first study to investigate G x SES interaction on cognitive 

ability using a latent growth curve model, the first longitudinal G x SES interaction study to 

utilize more than two time points, and the first study to examine G x SES interaction 
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longitudinally beyond early childhood. Pooling IQ measurements from up to five time points 

between ages 7 and 15 years, we observed significant SES moderation of the heritability of 

mean-level IQ and PIQ (intercept). These findings are consistent with our cross-sectional 

multivariate results, and with the results of previous cross-sectional studies that found significant 

interaction effects in middle childhood (Turkheimer et al., 2003) and adolescence (Harden et al., 

2007; Rowe et al., 1999). Also consistent with Turkheimer et al. (2003), we did not observe a 

significant effect on VIQ intercept. However, significant interaction of verbal performance 

heritability and SES has been observed in another previous study of American twins (Rowe et 

al., 1999), and we found a significant VIQ effect at age 15 in univariate analyses. The extent to 

which SES modifies the heritability of some facets of intelligence more than others therefore 

remains unclear.   

The fact that we did not observe a significant interaction of SES and the heritability of IQ 

slope could stem from our use of scaled scores, which are standardized to a mean of 100 and 

standard deviation of 15 at each age. In contrast to the variances of raw cognitive ability scores, 

which would be expected to increase across development, scaled score variances are by 

definition held constant over time. This invariance could have obscured slope interaction effects, 

should they exist, by limiting the extent to which children’s scores could change between ages. 

Alternatively, it is possible that SES modifies the heritability of IQ starting point (intercept), but 

not the heritability of age-related changes in IQ (slope). This would diverge from the results of a 

study that observed significant interaction effects on change in mental ability in infancy (Tucker-

Drob et al., 2011), and perhaps indicate that G x SES interaction effects on slope are present only 

in the early stages of cognitive development. Future studies will be needed to resolve this 

definitively.   
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 In addition to the use of scaled scores in longitudinal analyses, our results should be 

interpreted in light of several other limitations. First, our sample was of average SES, lacking 

substantial numbers of children raised in poverty. Given evidence that G x SES interaction may 

not be present in samples that have more universal access to enriching environmental resources 

(Tucker-Drob & Bates, 2016), analyzing a lower SES sample may have increased our likelihood 

of observing significant interaction effects. Second, the SES measure we used is a broad 

composite measure of environmental quality. The results of this study therefore do not clarify 

which specific environmental factors drive G x E interaction on cognitive ability. Finally, even 

with the power boost offered by a multivariate approach, our power might have been less than 

ideal due to limited sample size, and we were unable to perform cross-sectional analyses at age 

12.    

This study adds to the substantial body of literature demonstrating significant G x SES 

interaction on cognitive ability among U.S. samples. It is now clear that merely partitioning the 

variance of cognitive performance into ACE components does not appreciate the complex 

interplay of genetic and environmental factors driving cognitive development. Existing G x E 

interaction studies, however, have not been as statistically robust as desired (Tucker-Drob & 

Bates, 2016). Multivariate analyses as performed here may help address this limitation and, in 

the case of longitudinal analyses, provide valuable insight into how G x SES interaction unfolds 

over the life course.  
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Supplementary Tables 
 
Supplementary Table 1 
Univariate Results 
 

 
*p < .05. Wald: result of Wald chi-square test with two degrees of freedom. ME: main effect. Quad: quadratic. 
Parameter estimates presented as value (standard error).  
 

 

Age Index/Subtest Wald Linear ME Quad ME b0 rMZ b1 rMZ b0 rDZ b1 rDZ b0 A b1 A b0 C b1 C b0 E b1 E
FSIQ 5.31 0.39 (0.04)* -0.09 (0.04)* 0.80 (0.02)* -0.05 (0.02)* 0.55 (0.04)* -0.04 (0.04) 0.50 (0.09)* -0.01 (0.09) 0.30 (0.09)* -0.04 (0.09) 0.20 (0.02)* 0.05 (0.02)*
VIQ 0.94 0.39 (0.04)* -0.06 (0.04) 0.75* (0.03) -0.02 (0.03) 0.57 (0.04)* -0.03 (0.04) 0.37 (0.09)* 0.01 (0.10) 0.38 (0.08)* -0.04 (0.08) 0.25 (0.03)* 0.02 (0.03)
PIQ 5.27 0.30 (0.04)* -0.11 (0.04)* 0.72 (0.03)* -0.06 (0.03)* 0.45 (0.05)* -0.05 (0.05) 0.54 (0.11)* -0.02 (0.11) 0.18 (0.10) -0.04 (0.11) 0.28 (0.03)* 0.06 (0.03)*

Information 1.14 0.33 (0.04)* -0.01 (0.04) 0.62 (0.04)* 0.03 (0.04) 0.51 (0.05)* -0.02 (0.05) 0.22 (0.11) 0.11 (0.11) 0.40 (0.10)* -0.08 (0.10) 0.38 (0.04)* -0.03 (0.04)
Similarities 0.13 0.31 (0.04)* -0.06 (0.04) 0.53 (0.04)* 0.00 (0.05) 0.46 (0.05)* -0.02 (0.05) 0.13 (0.13) 0.03 (0.14) 0.40 (0.10)* -0.03 (0.11) 0.47 (0.04)* 0.00 (0.05)
Arithmetic 4.64 0.23 (0.04)* -0.06 (0.04) 0.53 (0.04)* -0.05 (0.04) 0.45 (0.05)* -0.10 (0.05) 0.17 (0.13) 0.10 (0.12) 0.36 (0.11)* -0.15 (0.10) 0.47 (0.04)* 0.05 (0.04)

Vocabulary 1.41 0.33 (0.04)* -0.03 (0.04) 0.54 (0.04)* 0.01 (0.05) 0.35 (0.06)* 0.07 (0.06) 0.37 (0.14)* -0.12 (0.14) 0.17 (0.12) 0.13 (0.12) 0.46 (0.04)* -0.01 (0.05)
Comprehension 0.16 0.26 (0.04)* -0.08 (0.04) 0.45 (0.05)* -0.02 (0.05) 0.39 (0.05)* 0.00 (0.05) 0.13 (0.14) -0.04 (0.13) 0.32 (0.11)* 0.02 (0.11) 0.55 (0.05)* 0.02 (0.05)

Digit Span 0.71 0.23 (0.04)* -0.14 (0.04)* 0.52 (0.05)* -0.04 (0.05) 0.35 (0.06)* -0.01 (0.06) 0.34 (0.14)* -0.05 (0.14) 0.18 (0.12) 0.01 (0.12) 0.48 (0.05)* 0.04 (0.05)
Pic. Comp. 0.38 0.21 (0.04)* -0.07 (0.04) 0.47 (0.05)* -0.03 (0.05) 0.24 (0.06)* 0.02 (0.07) 0.46 (0.15)* -0.08 (0.16) 0.01 (0.13) 0.06 (0.14) 0.53 (0.05)* 0.03 (0.05)

Pic. Arrange. 0.50 0.21 (0.04)* -0.10 (0.04)* 0.44 (0.05)* -0.03 (0.05) 0.29 (0.06)* 0.00 (0.06) 0.31 (0.15)* -0.07 (0.14) 0.13 (0.13) 0.03 (0.12) 0.56 (0.05)* 0.03 (0.05)
Block Design 2.00 0.24 (0.04)* -0.10 (0.04)* 0.57 (0.04)* -0.05 (0.04) 0.36 (0.06)* -0.04 (0.07) 0.42 (0.13)* -0.02 (0.16) 0.15 (0.12) -0.03 (0.14) 0.43 (0.04)* 0.05 (0.04)

Object Assembly 3.12 0.18 (0.04)* -0.09 (0.04)* 0.50 (0.05)* -0.07 (0.04) 0.29 (0.06)* 0.02 (0.06) 0.41 (0.15)* -0.19 (0.15) 0.08 (0.13) 0.12 (0.13) 0.51 (0.05)* 0.07 (0.04)
Coding 0.09 0.16 (0.04)* -0.03 (0.04) 0.52 (0.05)* -0.01 (0.06) 0.33 (0.06)* -0.01 (0.05) 0.37 (0.14)* 0.01 (0.15) 0.15 (0.12) -0.02 (0.12) 0.48 (0.05)* 0.01 (0.06)
Mazes 2.96 0.19 (0.04)* -0.12 (0.05)* 0.46 (0.06)* -0.04 (0.05) 0.28 (0.07)* -0.11 (0.07) 0.36 (0.17)* 0.15 (0.17) 0.10 (0.15) -0.19 (0.14) 0.54 (0.06)* 0.04 (0.05)
FSIQ 8.77* 0.36 (0.04)* -0.04 (0.04) 0.79 (0.02)* -0.05 (0.02)* 0.58 (0.04)* -0.07 (0.04) 0.42 (0.08)* 0.04 (0.08) 0.37 (0.08)* -0.09 (0.08) 0.21 (0.02)* 0.05 (0.02)*
VIQ 3.01 0.38 (0.04)* -0.01 (0.04) 0.77 (0.02)* -0.04 (0.02) 0.53 (0.04)* -0.03 (0.04) 0.48 (0.09)* -0.02 (0.09) 0.29 (0.09)* -0.02 (0.08) 0.23 (0.02)* 0.04 (0.02)
PIQ 10.47* 0.26 (0.04*) -0.07 (0.04) 0.68 (0.03)* -0.07 (0.03)* 0.55 (0.04)* -0.09 (0.04)* 0.26 (0.10)* 0.03 (0.09) 0.42 (0.09)* -0.10 (0.08) 0.32 (0.03)* 0.07 (0.03)*

Information 1.48 0.37 (0.04)* -0.05 (0.04) 0.68 (0.03)* 0.03 (0.03) 0.43 (0.05)* -0.02 (0.04) 0.51 (0.11)* 0.10 (0.10) 0.18 (0.10) -0.08 (0.09) 0.32 (0.03)* -0.03 (0.03)
Similarities 3.00 0.33 (0.04)* -0.02 (0.04) 0.64 (0.03)* -0.05 (0.04) 0.48 (0.05)* -0.05 (0.05) 0.33 (0.11)* -0.01 (0.11) 0.32 (0.10)* -0.04 (0.09) 0.36 (0.03)* 0.05 (0.04)
Arithmetic 1.93 0.19 (0.04)* 0.01 (0.04) 0.51 (0.04)* -0.07 (0.05) 0.31 (0.06)* 0.01 (0.06) 0.39 (0.14)* -0.15 (0.14) 0.12 (0.12) 0.09 (0.12) 0.49 (0.04)* 0.07 (0.05)

Vocabulary 2.60 0.34 (0.04)* 0.00 (0.04) 0.57 (0.04)* 0.02 (0.04) 0.40 (0.05)* -0.08 (0.06) 0.34 (0.12)* 0.21 (0.13) 0.23 (0.11)* -0.18 (0.11) 0.43 (0.04)* -0.02 (0.04)
Comprehension 2.10 0.20 (0.04)* 0.01 (0.04) 0.58 (0.04)* -0.05 (0.03) 0.36 (0.05)* 0.01 (0.05) 0.43 (0.13)* -0.12 (0.11) 0.15 (0.11) 0.07 (0.01) 0.42 (0.04)* 0.05 (0.03)

Digit Span 10.05* 0.22 (0.04)* -0.01 (0.04) 0.51 (0.05)* 0.04 (0.04) 0.30 (0.06)* -0.16 (0.05)* 0.41 (0.14)* 0.40 (0.13)* 0.09 (0.12) -0.36 (0.11)* 0.50 (0.05)* -0.04 (0.04)
Pic. Comp. 0.16 0.12 (0.04)* -0.02 (0.04) 0.33 (0.05)* 0.02 (0.05) 0.31 (0.06)* 0.00 (0.05) 0.27 (0.14) 0.05 (0.14) 0.17 (0.12) -0.03 (0.12) 0.56 (0.05)* -0.02 (0.05)

Pic. Arrange. 4.84 0.16 (0.04)* -0.01 (0.04) 0.53 (0.04)* -0.09 (0.04)* 0.41 (0.05)* -0.03 (0.05) 0.26 (0.13)* -0.11 (0.13) 0.28 (0.11)* 0.02 (0.11) 0.47 (0.04)* 0.09 (0.04)*
Block Design 10.08* 0.21 (0.03)* -0.10 (0.04)* 0.58 (0.04)* -0.08 (0.04)* 0.34 (0.06)* -0.12 (0.05)* 0.47 (0.13)* 0.08 (0.12) 0.11 (0.11) -0.17 (0.11) 0.42 (0.04)* 0.08 (0.04)*

Object Assembly 0.68 0.20 (0.04)* -0.07 (0.04) 0.34 (0.05)* 0.04 (0.06) 0.35 (0.05)* -0.02 (0.05) -0.04 (0.15) 0.12 (0.15) 0.37 (0.12)* -0.08 (0.12) 0.66 (0.05)* -0.04 (0.06)
Coding 12.15* 0.20 (0.04)* -0.07 (0.04) 0.62 (0.04)* -0.05 (0.03) 0.46 (0.05)* -0.15 (0.05)* 0.32 (0.12)* 0.20 (0.11) 0.30 (0.10)* -0.25 (0.09)* 0.38 (0.04)* 0.05 (0.03)
Mazes 2.19 0.19 (0.04)* -0.01 (0.05) 0.35 (0.07)* 0.02 (0.06) 0.35 (0.07)* -0.10 (0.07) 0.00 (0.18) 0.20 (0.18) 0.35 (0.14)* -0.20 (0.14) 0.65 (0.07)* 0.00 (0.06)
FSIQ 3.54 0.37 (0.04)* -0.04 (0.05) 0.83 (0.02)* -0.03 (0.02) 0.54 (0.05)* -0.04 (0.05) 0.56 (0.10)* 0.02 (0.09) 0.26 (0.09)* -0.05 (0.09) 0.17 (0.02)* 0.03 (0.02)
VIQ 0.54 0.39 (0.04)* -0.04 (0.05) 0.81 (0.02)* -0.01 (0.02) 0.53 (0.05)* -0.04 (0.05) 0.55 (0.10)* 0.06 (0.10) 0.26 (0.10)* -0.06 (0.10) 0.10 (0.02)* 0.01 (0.02)
PIQ 2.60 0.27 (0.04)* -0.03 (0.05) 0.74 (0.03)* -0.04 (0.03) 0.47 (0.05)* -0.04 (0.05) 0.55 (0.12)* 0.08 (0.11) 0.19 (0.11) -0.05 (0.11) 0.26 (0.03)* 0.04 (0.03)

Information 3.09 0.39 (0.04)* -0.04 (0.05) 0.75 (0.03)* 0.03 (0.03) 0.46 (0.05)* -0.07 (0.05) 0.58 (0.11)* 0.20 (0.12) 0.17 (0.11) -0.17 (0.11) 0.25 (0.03)* -0.03 (0.03)
Similarities 9.94* 0.36 (0.04)* -0.04 (0.05) 0.58 (0.04)* -0.13 (0.05)* 0.47 (0.05)* -0.09 (0.05) 0.22 (0.13) -0.09 (0.13) 0.36 (0.11)* -0.04 (0.11) 0.42 (0.04)* 0.13 (0.05)*
Arithmetic 1.12 0.25 (0.04)* -0.03 (0.05) 0.57 (0.05)* 0.00 (0.05) 0.34 (0.06)* -0.07 (0.07) 0.47 (0.15)* 0.15 (0.16) 0.10 (0.13) -0.14 (0.14) 0.43 (0.05)* 0.00 (0.05)

Vocabulary 1.39 0.33 (0.04)* 0.00 (0.05) 0.61 (0.04)* -0.04 (0.05) 0.47 (0.05)* -0.05 (0.06) 0.27 (0.13)* 0.03 (0.14) 0.34 (0.11)* -0.07 (0.12) 0.40 (0.04)* 0.04 (0.05)
Comprehension 3.72 0.23 (0.04)* -0.06 (0.05) 0.55 (0.05)* -0.02 (0.05) 0.33 (0.06)* 0.11 (0.06) 0.44 (0.15)* -0.26 (0.15) 0.11 (0.13) 0.24 (0.12) 0.45 (0.50)* 0.02 (0.05)

Digit Span 2.42 0.21 (0.04)* -0.07 (0.05) 0.62 (0.04)* -0.01 (0.05) 0.35 (0.06)* -0.10 (0.06) 0.55 (0.14)* 0.17 (0.15) 0.07 (0.13) -0.18 (0.13) 0.38 (0.04)* 0.01 (0.05)
Pic. Comp. 0.33 0.17 (0.04)* -0.03 (0.05) 0.51 (0.05)* 0.01 (0.05) 0.22 (0.07)* -0.04 (0.08) 0.57 (0.17)* 0.10 (0.17) -0.06 (0.14) -0.09 (0.16) 0.49 (0.05)* -0.01 (0.05)

Pic. Arrange. 0.24 0.15 (0.04)* 0.00 (0.05) 0.50 (0.05)* -0.02 (0.05) 0.19 (0.07)* -0.02 (0.07) 0.64 (0.17)* -0.01 (0.16) -0.13 (0.14) -0.01 (0.14) 0.50 (0.05)* 0.02 (0.05)
Block Design 1.78 0.20 (0.04)* -0.06 (0.05) 0.66 (0.04)* 0.01 (0.03) 0.39 (0.06)* -0.06 (0.05) 0.53 (0.13)* 0.16 (0.12) 0.13 (0.12) -0.14 (0.11) 0.34 (0.04)* -0.01 (0.03)

Object Assembly 0.91 0.13 (0.04)* -0.05 (0.05) 0.51 (0.05)* 0.04 (0.05) 0.36 (0.06)* -0.04 (0.07) 0.28 (0.15) 0.15 (0.16) 0.22 (0.13) -0.11 (0.14) 0.50 (0.05)* -0.04 (0.05)
Coding 2.57 0.25 (0.04)* 0.03 (0.05) 0.63 (0.04)* -0.03 (0.04) 0.46 (0.06)* -0.08 (0.05) 0.34 (0.13)* 0.11 (0.12) 0.28 (0.11)* -0.13 (0.11) 0.37 (0.04)* 0.03 (0.04)
Mazes 5.54 0.18 (0.04)* 0.02 (0.05) 0.39 (0.06)* -0.02 (0.07) 0.15 (0.07)* -0.16 (0.07)* 0.47 (0.19)* 0.27 (0.19) -0.08 (0.16) -0.29 (0.15)* 0.61 (0.06)* 0.02 (0.07)
FSIQ 9.20* 0.36 (0.04)* -0.03 (0.05) 0.86 (0.02)* -0.04 (0.01)* 0.54 (0.05)* -0.04 (0.05) 0.63 (0.10)* -0.01 (0.10) 0.23 (0.10)* -0.04 (0.10)* 0.14 (0.02)* 0.04 (0.01)*
VIQ 6.98* 0.40 (0.04)* 0.01 (0.05) 0.88 (0.02)* -0.04 (0.02)* 0.55 (0.05)* -0.02 (0.05) 0.65 (0.10)* -0.04 (0.10) 0.23 (0.10)* 0.00 (0.10) 0.12 (0.02)* 0.04 (0.02)*
PIQ 4.00 0.25 (0.05)* -0.06 (0.05) 0.76 (0.03)* -0.04 (0.03) 0.46 (0.06)* -0.08 (0.06) 0.59 (0.12)* 0.08 (0.12) 0.17 (0.11) -0.12 (0.11) 0.25 (0.03)* 0.04 (0.03)

Information 1.60 0.37 (0.04)* 0.00 (0.05) 0.76 (0.03)* 0.00 (0.03) 0.52 (0.05)* -0.06 (0.05) 0.49 (0.11)* 0.12 (0.11) 0.27 (0.10)* -0.12 (0.10) 0.24 (0.03)* 0.00 (0.03)
Similarities 11.01* 0.39 (0.04)* -0.01 (0.05) 0.81 (0.02)* -0.06 (0.02)* 0.47 (0.06)* -0.01 (0.05) 0.67 (0.11)* -0.11 (0.10) 0.14 (0.11) 0.50 (0.10) 0.19 (0.02)* 0.06 (0.02)*
Arithmetic 2.50 0.20 (0.04)* 0.03 (0.05) 0.58 (0.05)* -0.07 (0.05) 0.41 (0.06)* -0.06 (0.06) 0.33 (0.14)* -0.02 (0.15) 0.24 (0.12)* -0.05 (0.13) 0.42 (0.05)* 0.07 (0.05)

Vocabulary 1.08 0.35 (0.04)* -0.02 (0.05) 0.60 (0.04)* -0.04 (0.05) 0.40 (0.06)* -0.05 (0.07) 0.41 (0.14)* 0.04 (0.16) 0.19 (0.13) -0.07 (0.14) 0.40 (0.04)* 0.04 (0.05)
Comprehension 1.80 0.31 (0.04)* 0.01 (0.05) 0.58 (0.05)* -0.05 (0.04) 0.29 (0.07)* 0.02 (0.07) 0.57 (0.15)* -0.14 (0.16) 0.01 (0.14) 0.09 (0.14) 0.42 (0.05)* 0.05 (0.04)

Digit Span 5.57 0.23 (0.04)* -0.02 (0.05) 0.64 (0.04)* -0.05 (0.04) 0.36 (0.06)* -0.14 (0.07)* 0.57 (0.14)* 0.19 (0.15) 0.08 (0.13) -0.23 (0.13) 0.36 (0.04)* 0.05 (0.04)
Pic. Comp. 0.43 0.14 (0.04)* 0.01 (0.05) 0.48 (0.05)* -0.03 (0.05) 0.33 (0.07)* -0.01 (0.06) 0.30 (0.16) -0.04 (0.16) 0.18 (0.14) 0.01 (0.13) 0.52 (0.05)* 0.03 (0.05)

Pic. Arrange. 0.51 0.10 (0.04)* -0.06 (0.05) 0.45 (0.06)* 0.04 (0.06) 0.22 (0.07)* 0.00 (0.07) 0.42 (0.17)* 0.08 (0.18) 0.03 (0.15) -0.04 (0.15) 0.55 (0.06)* -0.04 (0.06)
Block Design 9.61* 0.20 (0.04)* -0.09 (0.05) 0.74 (0.03)* -0.02 (0.03) 0.37 (0.06)* -0.17 (0.06)* 0.73 (0.13)* 0.30 (0.12)* 0.01 (0.12) -0.32 (0.11)* 0.26 (0.03)* 0.02 (0.03)

Object Assembly 4.28 0.14 (0.04)* -0.05 (0.05) 0.58 (0.05)* -0.10 (0.05)* 0.29 (0.07)* -0.03 (0.06) 0.58 (0.16)* -0.14 (0.15) 0.00 (0.14) 0.04 (0.12) 0.42 (0.05)* 0.10 (0.05)*
Coding 0.13 0.25 (0.04)* -0.04 (0.05) 0.74 (0.03)* 0.01 (0.02) 0.40 (0.06)* 0.01 (0.06) 0.68 (0.13)* 0.00 (0.13) 0.06 (0.12) 0.01 (0.13) 0.26 (0.03)* -0.01 (0.02)
Mazes 4.52 0.06 (0.04) -0.02 (0.04)* 0.27 (0.07)* -0.11 (0.07) 0.17 (0.07)* 0.09 (0.06) 0.20 (0.19) -0.38 (0.18)* 0.07 (0.16) 0.28 (0.14)* 0.73 (0.07)* 0.11 (0.07)
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Supplementary Table 2 
Autoregressive Parameter Estimates from Latent Growth Curve Model 
 

  
*p < .05. Parameter estimates presented as value (standard error).   
 

Supplementary Table 3 
Residual Variance Twin Covariances from Latent Growth Curve Model 
 

 
*p < .05. E: residual variance. MZ: monozygotic. DZ: dizygotic. Parameter estimates presented as value (standard 
error).   
 

 

 

Measure 8 on 7 9 on 8 12 on 9 15 on 12
FSIQ 0.04 (0.01)* 0.05 (0.02)* 0.06 (0.04) 0.06 (0.07)
PIQ 0.05 (0.01)* 0.09 (0.02)* 0.14 (0.05)* 0.22 (0.08)*
VIQ 0.04 (0.01)* 0.06 (0.02)* 0.08 (0.05) 0.09 (0.08)

Measure E7 MZ E7 DZ E8 MZ E8 DZ E9 MZ E9 DZ E12 MZ E12 DZ E15 MZ E15 DZ
FSIQ 0.36 (0.08)* 0.10 (0.10) 0.09 (0.10) 0.13 (0.11) 0.34 (0.08)* 0.15 (0.10) 0.47 (0.11)* 0.20 (0.17) 0.46 (0.19)* 0.14 (0.32)
PIQ 0.32 (0.09)* 0.00 (0.08) 0.05 (0.10) 0.21 (0.09)* 0.25 (0.08)* 0.05 (0.09) 0.39 (0.13)* 0.47 (0.11)* 0.36 (0.16)* 0.05 (0.18)
VIQ 0.29 (0.08)* 0.27 (0.09)* 0.08 (0.09) 0.11 (0.11) 0.26 (0.08)* 0.17 (0.09) 0.46 (0.11)* -0.21 (0.15) 0.26 (0.39) 0.28 (0.45)


