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Abstract

A key limitation of existing generative models, specifically explicit density mod-

els such as autoregressive models, normalizing flows, VAEs, and energy-based mod-

els (EBMs), is that they tend to assign higher likelihood values on out-of-distribution

data than on in-distribution data. In this work we investigate an adversarial training-

based generative model that overcomes this limitation. Inspired by recent work that

shows adversarially robust classifiers learn high-level, interpretable features, we in-

vestigate training a binary classifier to discriminate in-distribution data from adver-

sarially perturbed out-of-distribution data. Our analysis shows that in this setup,

the binary classifier learns the support of the in-distribution data, and the learning

process is closely related to MCMC-based maximum likelihood learning of EBMs.

The training objective of the binary classifier can also be interpreted as a maximin

two-player zero-sum game, and is related to GANs’ minimax game. Based on the

above analysis, we propose improved training techniques for generative modeling

with adversarial training (AT), and show that this AT generative model is capable

of generating diverse and realistic images, and at the same time has the expected

behavior on (normal and worst-case) out-of-distribution inputs. We further investi-

gate the AT generative model’s applications to image restoration (denoising and in-

painting), image-to-image translation, detecting adversarial examples, (worst-case)

out-of-distribution detection, and generative classification.
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Chapter 1

Introduction

1.1 Motivation

Generative modeling is one of the most active research areas of artificial intelligence. The task

of generative modeling can be broadly categorized as data generation and density estimation.

In data generation, the goal is to learn a generator function that can generate more data sam-

ples from the same training data distribution. A prominent example is generative adversarial

networks (GANs) [56], whose primary purpose is to learn a generator that can produce more

data samples. Data generation can be used in many applications, such as data augmentation, art

creation, code/text generation, audio synthesis, and simulation in reinforcement learning. Some

applications, although cannot be directly solved using data generation, can be reformulated so

that they can be solved using a generator. For instance, super-resolution, inpainting, denoising,

and image-translation can all be solved using GANs.

We can also use generative models to perform density estimation, that is, to determine the

probability density function of the training data. This is a classical problem in statistics and

machine learning. Traditional approaches such as kernel density estimators and histogram es-

timators only work well when the data is in low dimensional space. More complex neural

network-based models such as autoregressive models, normalizing flows, variational autoen-
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coders (VAEs), and energy-based models (EBMs) have been developed to address density es-

timation in high-dimensional space. Density estimation has a broad range of applications. For

instance, once we have obtained the density function, we can use it to analyze properties of the

studied probability distribution. We can also use the density function to identity observations

that lie in low-density areas of the density function. This task is called out-of-distribution (OOD)

detection, also known as outlier detection, novelty detection, and anomaly detection. OOD de-

tection has many practical applications, such as fraud detection in financial transactions, fault

detection in manufacturing, intrusion detection in a computer network, spotting potential risk or

medical problems in health data, etc.

Unfortunately, most of the generative models fail at the task of OOD detection. It is ob-

served that the learned density functions of many generative models cannot properly estimate

the likelihood of out-of-distribution inputs — state-of-the-art explicit density models including

Glow [93], PixelCNN [133], VAEs [91, 146], and RealNVP [43], tend to assign a higher like-

lihood to out-distribution data than to in-distribution data [75, 94, 128, 128, 158]. This result

is very counterintuitive: since the estimated density function is normalized, by maximum likeli-

hood training on in-distribution data, the density function should in principle be able to outputs

higher likelihood values on in-distribution data.

There is one exception — energy-based models (EBMs) can in fact work reasonably well

on OOD detection. EBMs are in fact unnormalized density models, so they cannot be directly

optimized with maximum likelihood estimation. Standard EBMs training makes use of the gra-

dient of the log-likelihood which can be approximated with MCMC sampling. The learning

process allows EBMs to explicitly suppress spurious modes outside the support of the target data

distribution, so the learned density function are able to output lower (unnormalized) likelihood

on out-of-distribution data than on in-distribution data. However, when the OOD samples are

perturbed by adding small adversarial noise, EBMs become much less effective [9]. The failure

of EBMs on adversarial (or worst-case) OOD detection indicates that there still exists a large

amount of spurious modes in the learned density function.
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Inspired by recent work that shows adversarially robust classifiers learn high-level inter-

pretable features, we investigate an adversarial training-based generative model that overcomes

the above limitation. Our theoretical analysis shows that in a setting where a binary classifier is

trained to distinguish in-distribution (target distribution) data from adversarially perturbed out-

of-distribution data, the binary classifier learns a special kind of energy function that models the

support of target distribution, and the learning process is closely related to MCMC-based maxi-

mum likelihood learning of EBMs. The training objective of the binary classifier is also related

to GANs’s objective: they both solve a two player zero-sum game with the same utility function,

with one solving a maximin game, and the other solving a minimax game. The above analysis

explains why adversarially trained (binary) classifier has a strong generative property, and moti-

vates us to apply (binary) adversarial training to generative modeling. Based on our interpretation

of the binary classifier as an energy-based model, we propose improved training techniques for

generative modeling with AT, and show that this AT generative model is capable of generating

realistic and diverse data samples, and at the same time has low probability outputs on normal

and worst-case out-of-distribution inputs. In addition to the theoretical analysis and evaluation

of the proposed model on the standard image generation task, we investigate the AT generative

model’s applications to denoising, inpainting, image-to-image translation, out-of-distribution de-

tection, adversarial example detection, and generative classification. Our results suggest that the

proposed AT generarive model provides competitive solutions to the above problems.

1.2 Contributions

This thesis introduces a new approach to learning energy-based models. The specific contribu-

tions are:

• Contribution 1: Adversarial training-based approach to learning energy-based mod-

els. We show that (binary) AT learns a special kind of energy function that models the

support of the data distribution. The above result is based on an analysis of the optimal

3



solution to the training objective and a comparative analysis of the training algorithms

and training objectives of the proposed approach and standard EBMs. We further develop

several techniques to improve the generative modeling performance of the AT generative

model. Aside from the evaluation of the proposed model on image generation, we demon-

strate the model’s applications to denoising, inpainting, and image-to-image translation.

Compared to regular EBMs, the proposed AT approach provides the following benefits:

the model is stable to train, the learned energy function has the expected behavior on

worst-case OOD inputs, and the model can be directly applied to image-to-image transla-

tion. We in addition provide a game theory-based analysis of the training objective of the

AT generative model, and show its close connection with GANs.

• Contribution 2: Adversarial training for detecting adversarial examples. We propose

a novel approach to detecting adversarial examples that can withstand adaptive attacks.

The idea is to partition the input space into subspaces based on the classifier’s decision

boundary, train a binary classifier in each subspace to distinguish in-class samples from

adversarially perturbed samples of other classes, and then use the binary classifiers to per-

form clean/adversarial example classification in the subspaces. We provide a comprehen-

sive evaluation of the proposed approach, including a thorough evaluation of the robustness

of individual binary classifiers and the overall performance of proposed adversarial exam-

ple detection approach under different adaptive attacks. The proposed approach not only

outperforms existing methods by a large margin, but also shows strong interpretability.

• Contribution 3: Worst-case out-of-distribution detection. On CIFAR-10 our approach

achieves comparable performance to state-of-the-art approaches that make uses of class

labels of in-distribution data. Our results on high resolution datasets show that the model

not only is capable of generating diverse and realistic images, but also achieves a good

worst-case OOD detection performance on novel OOD datasets. This suggests that the

model has correctly captured the data distribution, and demonstrates the benefits of the
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proposed approach to learning energy-based model by contrasting in-distribution data with

adversarially perturbed real OOD data.

• Contribution 4: Generative classification. Training adversarially robust discriminative

(i.e., softmax) classifier has been the dominant approach to robust classification. Building

on our work on AT generative models, we explore using AT to learn unnormalized class-

conditional density models and then performing generative robust classification. Our result

shows that, under the conditions of similar model capacity, the generative robust classifier

achieves comparable performance to a baseline softmax robust classifier when the test data

is clean or when the test perturbation is small, and much better performance when the test

perturbation exceeds the training perturbation. The generative classifier is also able to gen-

erate samples and counterfactuals that more closely resemble the training data, suggesting

that the generative classifier can better capture the class-conditional distributions.

1.3 Outline

The thesis is organized into two parts, where in part I (Chapter 2) we investigate theoretical

properties of the proposed AT generative model, evaluate its performance on the standard image

generation task, and demonstrate its application to denoising, inpainting, and image translation,

and in part II (Chapter 3) we investigate the model’s applications to detecting adversarial ex-

amples, out-of-distribution detection, and generative classification. We briefly summarize each

parts as follows.

Part I: Learning energy-based model with adversarial training. We study a new ap-

proach to learning energy-based models (EBMs) based on adversarial training (AT). We show

that (binary) AT learns a special kind of energy function that models the support of the data

distribution, and the learning process is closely related to MCMC-based maximum likelihood

learning of EBMs. We also provide a discussion about the connection between the studied ap-

proach and GANs. We further propose improved techniques for generative modeling with AT,
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and demonstrate that this new approach is capable of generating diverse and realistic images. We

further demonstrate the studied approach’s applications to image restoration including denoising

and inpainting, and image-to-image translation.

Part II: Applications. We investigate several applications of the proposed generative model,

with a focus on the adversarial scenario where the data is adversarially modified to reduce the

performance of the model on the given task. We first provide a background review on adversarial

machine learning, and then discuss the specific applications to detecting adversarial examples,

detecting worst-case OOD inputs, and generative robust classification.

Finally, Chapter 3 concludes this work with a brief summary and directions for future re-

search.
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Chapter 2

Learning Energy-Based Model With

Adversarial Training

2.1 Introduction

In unsupervised learning, energy-based models (EBMs) [101] are a class of generative model

that uses an energy function to model the probability distribution of the observed data. Unlike

explicit density models, EBMs model the unnormalized density function, which makes it difficult

to evaluate the likelihood function. Maximum likelihood learning of EBMs hence makes use of

the likelihood function’s gradient which can be approximated using Monte Carlo methods. Each

iteration of the learning process involves first generating synthesized data by sampling from

the current model, and then updating the model to maximize the energy difference between

synthesized data and observed data. This process leads to an energy function that outputs low

energies on the data manifold and high energies on other regions. EBMs find applications in

image restoration (denoising, inpainting, etc), out-of-distribution detection, and various sample

generation tasks. The main difficulties of training EBMs lie in the computational challenges from

the sampling procedure and some training stability issues [45, 46, 61, 62, 130, 131, 193, 216].

Another line of work on adversarial training (AT) show that adversarially robust classifiers
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learn high-level, interpretable features, and can be utilized to solve various computer vision

tasks including generation, inpainting, super-resolution, and image-to-image translation [50, 80,

154, 177]. Compared to state-of-the-art generative models, this AT approach does not provide

a competitive generation performance and is therefore of limited value in many of these tasks.

Nonetheless, the generative properties of the robust classifier suggest that the model has captured

the distribution of the training data, although the underlying learning mechanism is not yet well

understood.

At a high level, both EBMs training and AT are based on the idea of first using gradient-

based optimization to generate samples that reach high activation under the current model, and

then optimizing the model to minimize its activation on the generated samples. In addition, both

approaches synthesize new samples by performing gradient descent on the trained model. These

similarities suggest that there are some connections between these two approaches.

In this work we investigate the mechanism by which AT learns data distributions, and propose

improved techniques for generative modeling with AT. We focus on binary AT [206] which does

not requires class labels and hence naturally fits the generative modeling task. We first analyze

the binary AT objective and the corresponding training algorithm, and show that binary AT learns

a special kind of energy function that models the support of the observed data. We then draw

a connection between AT and MCMC-base maximum likelihood learning of EBMs by showing

that the binary AT objective can be interpreted as a gradient-scaled version of the likelihood

objective in EBMs training, and the PGD attack can be viewed as an non-convergent sampler

of the model distribution. This connection provides us with intuition of how AT learns data

distributions from a maximum likelihood learning perspective, and suggests that binary AT can

be viewed as an approximate maximum likelihood learning algorithm.

We further propose improved techniques for generative modeling with AT based on the above

analysis. Our empirical evaluation shows that this AT approach provides competitive generation

performance to explicit EBMs, and at the same time is stable to train (just like regular adversarial

training), is well-suited for image translation tasks, and exhibits strong out-of-distribution adver-
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sarial robustness. The main limitation of the studied approach is that it cannot properly learn

the underlying density function of the observed data. However, this problem is not unique to

the studied approach - most existing work on learning EBMs relies on short-run non-convergent

sampler to improve the training efficiency, and the learned model typically does not have a valid

steady-state that reflects the distribution of the observed data [130, 131].

In summary, the contributions of this work are: 1) We show that binary AT learns a special

kind of energy function that models the support of the data distribution, and the learning pro-

cess is closely related to MCMC-based maximum likelihood learning of EBMs. 2) We propose

improved techniques for generative modeling with AT, and demonstrate competitive image gen-

eration performance to state-of-the-art explicit EBMs. 3) We show that the studied approach is

stable to train, has competitive training and test time sampling efficiency, and can be applied to

denoising, inpainting, image translation, and worst-case out-of-distribution detection.

2.2 Background

2.2.1 Generative models

The high-level idea of generative modeling is to learn a representation of the data distribution

in order to perform density estimation and/or sample generation. Existing generative models

can be roughly categorized as density-based models and generator-based models. Density-based

approaches explicitly model the density function of the data with a parametric function, and

learn the parameters of the function by maximum likelihood estimation. Most of the existing

generative models, such as autoregressive models, normalizing flows, variational autoencoders

(VAEs), energy-based methods (EBMs), and diffusion models, are density-based models. The

Generator-based approach aims to learn a generator function that can produce more samples

from the same training distribution. A prominent example of the generator-based approach is

generative adversarial networks (GANs) [56]. Density-based approaches can be further divided
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into tractable density models (e.g., autoregressive models, normalizing flows, diffusion mod-

els), unnormalized density models (e.g., EBMs), and approximate density models (e.g., VAEs).

Tractable density models can be directly trained by maximum likelihood estimation. EBMs is

typically trained by making use of the gradient of the log-likelihood which can be approximated

by MCMC sampling. VAEs is trained by maximizing the evidence lower bound (ELBO) of the

log-likelihood. VAEs is a widely used generative model, but samples generated by VAEs tend to

be blurry and are generally considered inferior to those produced by state-of-the-art models such

as GANs. Diffusion models is a class of generative model that formulates sample generation as

a denoising process. Diffusion models is currently one of the best performing generative models

for high-resolution image generation.

2.2.2 Energy-based models

Energy-based models (EBMs) [101] represent probability distributions by converting the outputs

of a scalar function fθ into probabilities through a Gibbs distribution:

pθ(x) =
exp(fθ(x))

Z(θ)
, (2.1)

where the normalizing constant Z(θ), also known as the partition function, is an integral over the

unnormalized probability of all states: Z(θ) =
∫
exp(fθ(x))dx. The energy function is defined

as Eθ(x) = −fθ(x), and thus has the property of attributing low energy outputs on the support

of the target data distribution and high energy outputs in other regions.

For many interesting models, the partition function Z(θ) is intractable, and therefore maxi-

mum likelihood estimation (MLE) of the model parameters θ is not directly applicable. Standard

maximum likelihood learning of EBMs makes use of the gradient of the log likelihood function.

Denote the distribution of the observed data as pdata, the gradient of the log likelihood takes the

form

∇θEx∼pdata [log pθ(x)] = Ex∼pdata [∇θfθ(x)]− Ex∼pθ(x)[∇θfθ(x)]. (2.2)
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Intuitively, maximizing log-likelihood with this gradient causes fθ(x) to increase on pdata sam-

ples and decrease on samples drawn from pθ; when pθ matches pdata, the gradient cancels out

and the training terminates.

Evaluating Ex∼pθ(x)∇θfθ(x) requires sampling from the model distribution. This can be

done with Markov chain Monte Carlo (MCMC) methods. Recent work scaling EBMs training to

high-dimensional data [45, 130, 131, 197] makes use of the SGLD method [185] which samples

the model distribution by

x0 ∼ p0, xi+1 = xi +
λ

2
∇xfθ(xi) + ϵ, ϵ ∼ N (0, λ), (2.3)

where p0 is some random noise distribution. A proper SGLD sampler requires a large number of

update steps in order for the distribution of sampled data to match pθ. Due to the high computa-

tional cost of this sampling process, many authors resort to short-run non-convergent MCMC to

improve the sampling efficiency[45, 61, 130, 131, 197]. The resulting model typically does not

have a valid steady-state that reflects the distribution of the observed data, but is still capable of

generating realistic and diverse samples [130, 131].

2.2.3 Binary adversarial training

Binary adversarial training [206] is a method for detecting adversarial examples. In a K class

classification problem, the detection method consists of K binary classifiers, with the k-th binary

classifier trained to distinguish clean data of class k from adversarially perturbed data of other

classes. A committee of K binary classifiers then provides a complete solution for detecting

adversarially perturbed samples of any classes.

Denote the data distribution of class k as pdata, the mixture distribution of other classes as

p0 =
1

K−1

∑
i=1,...,K,i̸=k pi, the k-th binary classifier is trained by maximizing the objective

J(D) = Ex∼pdata [logD(x)] + Ex∼p0 [ min
x′∈B(x,ϵ)

log(1−D(x′)))], (2.4)
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where D : X ⊆ Rd → [0, 1] is the classification function, and B(x, ϵ) is a neighborhood of x:

B(x, ϵ) = {x′ ∈ X : ∥x′ − x∥2 ≤ ϵ}. In practice, D is defined by applying a logistic sigmoid

function to the output of a neural network:

D(x) = σ(fθ(x)), (2.5)

where fθ is a neural network with a single output node and parameters θ.

The inner minimization in Eq. (2.4) is solved using the PGD attack [99, 112], a first-order

method that employs an iterative update rule of (L2-based attack):

x0 ∼ p0, xi+1 = Proj(xi − λ
∇x log(1−D(xi))

∥∇x log(1−D(xi))∥2
), (2.6)

where λ is some step size, and Proj is the operation of projecting onto the feasible set B(x, ϵ).

Because the gradient vector in Eq. (2.6) is normalized to have unit norm, we can equivalently

implement the attack by directly performing gradient ascent on fθ:

x0 ∼ p0, xi+1 = Proj(xi + λ
∇xfθ(xi)

∥∇xfθ(xi)∥2
). (2.7)

2.3 Related Work

Learning EBMs

Due to the intractability of the normalizing constant in the EBMs likelihood function, maximum

likelihood learning of EBMs makes use of the gradient of the log-likelihood which can be ap-

proximated using MCMC sampling. Recent work [45, 130, 131, 197] scaling EBMs training

to high-dimensional data performs sampling using SGLD [185] and initialize the chain from a

noise distribution. The sampling process involves estimating the model’s gradient with respect to

the current sample at each step and therefore has high computational cost. To improve the sam-

12



pling efficiency, many authors consider short-run non-convergent SGLD sampler in combination

with a persistent sampling buffer [45, 46, 61, 62, 131, 193]. Although a short-run sampler is

sufficient for learning a generation model, the resulting energy function typically does not have

a valid steady-state [130, 131]. The mixing time of the sampling procedure also depends on how

close the chain-initialization distribution is to the model distribution. A recent trend hence con-

siders initializing the sampling chain from samples produced by a generator fitted on the target

distribution [6, 62, 68, 69, 98, 132, 134, 193, 198, 202, 203].

Maximum likelihood learning of EBMs also has some training stability issues, and vari-

ous techniques have been developed to address these issues. These techniques include 1) us-

ing weight normalization [151], Swish activation [144], gradient clipping, and weight decay

(see [193]), 2) gradient norm clipping on model parameters and using a KL term in the train-

ing objective (see [46]), 3) adjusting learning rate and SGLD steps during training and adding

Gaussian noise to input images (see [61]), 4) gradient clipping on SGLD and model parameters

and spectral normalization (see [45]), and 5) multiscale training and smooth activation functions

(see [216]). Overall, there does not seem to have a consensus on how to stabilize EBMs training.

Due to the computational challenge of MCMC sampling and stability issues, the successful ap-

plication of EBMs to modeling high-dimensional data such as 256×256 images is only achieved

in some very recent works [193, 216].

Aside from MCMC-based maximum likelihood learning of EBMs, alternative approaches

for learning EBMs exist. Score matching [79] circumvents the difficulty of estimating the par-

tition function by directly modeling the derivatives of the data distribution. Score matching has

recently been successfully applied to modeling large natural images and achieves competitive

performance to state-of-the-art generative models such as GANs [78, 162, 163, 164]. Noise con-

trastive estimation (NCE) [67] learns data distributions by contrasting the observed data with

data from a known noise distribution. Similar to our approach, NCE makes use of a logistic re-

gression model. The main difference is that in NCE, the logit of the classifier is the difference in

log probabilities of the model distribution and the noise distribution, whereas in our approach the
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logit directly defines the estimator (i.e., the energy function). Unlike other EBMs, NCE typically

does not scale well to high-dimensional data [26, 67, 147].

Maximin interpretation of EBMs.

When the noise term in the SGLD sampler is disabled, the learning process of EBMs can be

interpreted as solving a maximin game [199, 200, 201]. This interpretation coincides with our

formulation in Eq. (2.12). The key differences lie in the value function, the setting of the sampler

(SGLD vs. PGD attack), and the Markov chain initiation distribution.

Understanding and improving AT generative models

Our work is related to [182] which is also an attempt to understand and improve AT’s genera-

tive capability. The authors’ focus is on the supervised setting, where they make a connection

between the standard multiclass AT [112] and the Contrastive Energy-based Model (CEM) pro-

posed by the authors. Our analysis is in an unsupervised setting, where we connect binary AT

with the standard EBMs formulation (Eq. (2.1)). Although [182] also considers the unsupervised

scenario, their generative model is a contrastive learning model [87] which requires training sam-

ples to do test time sampling. Our generative model is based on binary AT and follows the stan-

dard practice of MCMC sampling from the learned energy function. In addition to the theoretical

analysis, we propose improve training techniques which allow us to obtain a significantly better

FID on CIFAR-10 (Tab. 2.5) and successfully scale the training to 256x256 datasets.

2.4 Binary AT Generative Model

In this section we develop a generative model based on binary AT. We first analyze the optimal

solution to the binary AT problem, and then investigate the mechanism by which binary AT learns

the data distribution, and finally interpret the learning process from the maximum likelihood

learning perspective. Our main result is that under a proper configuration of perturbation limit
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and p0 data, binary AT learns a special kind of energy function that models the support of pdata.

Based on these theoretical insights, we proposed improved training techniques.

2.4.1 Optimal solution to the binary AT problem

We consider the optimal solution of Eq. (2.4) under the scenario of unbounded perturbation:

B(x, ϵ) = X . This allows us to further simplify the PGD attack by removing the Proj operator:

x0 ∼ p0, xi+1 = xi + λ
∇xfθ(xi)

∥∇xfθ(xi)∥2
. (2.8)

Perturbing p0 samples can be thought of as moving p0 samples via a translation function T (x) =

x+∆x, with ∆x being the perturbation computed on sample x. We can write the density function

of the perturbed distribution pT using random variable transformation:

pT (z) =

∫
X
p0(x)δ(z − T (x))dx. (2.9)

The inner problem in Eq. (2.4) can then be interpreted as determining the distribution which has

the lowest expected value of log(1−D(x)):

p∗T = argmin
pT

Ex∼pT [log(1−D(x))]. (2.10)

The objective of the outer problem is then the log-likelihood in a logistic regression model which

discriminates pdata samples from p∗T samples:

J(D) = Ex∼pdata [logD(x)] + Ex∼p∗T
[log(1−D(x))]. (2.11)

We can equivalently formulate Eq. (2.4) as a maximin problem

max
D

min
pT

U(D, pT ) = Ex∼pdata [logD(x)] + Ex∼pT [log(1−D(x))], (2.12)
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and obtain its optimal solution by following the standard approach to solving maximin problems:

Proposition 1. The optimal solution of maxD minpT U(D, pT ) is U(D∗, p∗T ) = − log(4), where

D∗ outputs 1
2

on Supp(pdata) and ≤ 1
2

outside Supp(pdata), and p∗T is supported in the contour set

{D = 1
2
}.

Proof. Let

p∗T = argmin
pT

Ex∼pT [log(1−D(x))], (2.13)

then

max
D

min
pT

U(D, pT ) = max
D

U(D, p∗T ). (2.14)

We solve maxD U(D, p∗T ) by first deriving its upper bound. Let α = maxX D, then Ex∼p∗T
[log(1−

D(x))] is minimized when p∗T is supported in {x : D(x) = α}. With this result, we can derive

an upper bound of U(D, p∗T ):

U(D, p∗T )

=

∫
X
pdata(x) logD(x)dx+

∫
X
p∗T (x) log(1−D(x))dx

=

∫
X
pdata(x) logD(x)dx+

∫
X
p∗T (x) log(1− α)dx

≤
∫
X
pdata(x) log(α)dx+

∫
X
p∗T (x) log(1− α)dx

= log(α) + log(1− α)

≤ − log(4), (2.15)

where the last inequality follows from the fact that the function f(α) = log(α) + log(1 − α)

achieves its maximum value of − log(4) at α = 1
2
. It is not hard to see that equality holds if and

only if i) maxX D = 1
2
, ii) D = 1

2
on Supp(pdata), and iii) Supp(p∗T ) ⊆ {x : D(x) = 1

2
}. In
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summary, maxD minpT U(D, pT ) achieves its optimal value of − log(4) at (D∗, p∗T ) where

D∗(x) =


1
2

x ∈ Supp(pdata)

≤ 1
2

x ∈ X \ Supp(pdata)
, (2.16)

and p∗T is supported in the contour set {D = 1
2
}.

The above maximin problem can also be interpreted as a two-player zero-sum game, and is

closely related to GANs [56]’s minimax game which has the form

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))]. (2.17)

The game-theory point of view provides a convenient way to understand their differences. We

provide a game theory-based analysis of maxD minpT U(D, pT ) and a comparative analysis of

GANs in Sec. 2.4.4.

2.4.2 Learning mechanism

Proposition 1 states that by solving maxD minpT U(D, pT ) we can obtain a D that outputs 1
2

on the support of pdata and ≤ 1
2

on other regions. This result is obtained by assuming that for

any D, the inner minimization Eq. (2.10) is always perfectly solved. In practice, when D is

randomly initialized, it has many local maxima outside the support of pdata. Because the inner

minimization is solved by taking p0 samples and then performing gradient ascent on D with

Eq. (2.8), this process can get trapped in different local maxima of D. Hence we can think of this

process as searching for these local maxima and then put the perturbed p0 data in these regions.

Then in the model update stage (outer maximization), D is updated by increasing its outputs on

pdata samples and decreasing its outputs on the perturbed p0 data. By repeating this process, local

maxima get suppressed and the model learns to correctly model Supp(pdata).

The algorithm for solving the maximin problem is described in Algorithm 1. Fig. 2.1 left
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panel shows the 2D simulation result of the algorithm when the p0 dataset contains random

samples from the uniform distribution. It can be seen that when the algorithm converges, local

maxima outside Supp(pdata) are suppressed, and D (approximately) outputs 1
2

on Supp(pdata)

as predicted by Proposition 1. Meanwhile, D retains the gradient information for translating

out-distribution samples to Supp(pdata).

Because the PGD attack is deterministic gradient ascent, its ability to discover different local

maxima depends on the diversity of p0 samples. Fig. 2.1 right panel shows that when p0 data

is concentrated in the bottom left corner, the final D still has local maxima outside the support

of pdata. These local maxima are not suppressed because they were never discovered by the

perturbed p0 data.

The above analysis reveals how binary AT learns data distributions: the learning starts with

a randomly-initialized D solution, and then iteratively refine the solution by suppressing local

maxima outside the support of the observed data. This process is similar to EBMs training

where the model distribution’s spurious modes are constantly discovered by MCMC sampling

and subsequently suppressed in the model update stage. However, unlike the EBMs likelihood

objective Eq. (2.2), the AT objective Eq. (2.12) cannot properly learn the density function, but

can only capture its support. This is corroborated by the 2D experiment where D outputs 1
2

uniformly on the support of pdata (blue points).

Algorithm 1 Binary Adversarial Training
1: repeat
2: Draw samples {xi}mi=1 from pdata, and samples {x0

i }mi=1 from p0.
3: Update {x0

i }mi=1 by performing K steps PGD attack Eq. (2.8) on each sample. Denote the resulting
samples as {x∗

i }mi=1.
4: Update D by maximizing 1

m

∑m
i=1 logD(xi) +

1
m

∑m
i=1 log(1−D(x∗

i )) (single step).
5: until D convergences
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Figure 2.1: Plots of contours and (normalized) gradient vector fields of the D functions learned
with different p0 data. Left and right panel respectively show the initial state (1a and 2a) and final
state (1b and 2b) of D when p0 data is respectively uniformly distributed (red points in 1a) and
concerntrated in the lower left corner (red points in 2a). pdata is a Gaussian distribution centered
at (0, 0) (blue points).

2.4.3 Maximum likelihood learning interpretation

We next consider the learning process of binary AT from a maximum likelihood learning point

of view. Both binary AT and MCMC-based EBMs learning employ an iterative optimization

algorithm, where in each iteration the contrastive data is computed by performing gradient as-

cent on the current model, and then the model is updated by maximizing its outputs on the

observed data and minimizing its outputs on the contrastive data. The following analysis shows

that the PGD attack can be viewed as a non-convergent sampler of the model distribution, and

the binary AT objective Eq. (2.11) can be interpreted as a gradient-scaled version of the EBMs

objective Eq. (2.2). Tab. 2.1 summaries their key differences.

Table 2.1: Key differences between binary AT and maximum likelihood EBMs.

Objective gradient EBMs: Ex∼pdata [∇θfθ(x)]− Ex∼pθ(x)[∇θfθ(x)]

Binary AT: Ex∼pdata [(1− σ(fθ(x)))∇θfθ(x)]− Ex∼p∗T
[σ(fθ(x))∇θfθ(x)]

Contrastive data EBMs: x0 ∼ p0,xi+1 = xi +
λ
2
∇xfθ(xi) + ϵ, ϵ ∼ N (0, λ)

Binary AT: x0 ∼ p0,xi+1 = xi + λ ∇xfθ(xi)
∥∇xfθ(xi)∥2

p0 data EBMs: A noise distribution or a distribution close to pdata

Binary AT: A real and diverse out-distribution dataset
(80 million tiny images for CIFAR-10 and ImageNet for 256× 256 datasets).
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Contrastive data computation

In EBMs training, the contrastive data is computed by MCMC-sampling, typically with Langevin

dynamics Eq. (2.3). In binary AT, the contrastive data is computed using the PGD attack Eq. (2.8).

Comparing Eq. (2.8) with Eq. (2.3), we find that both approaches compute the contrastive data

by first initializing from some out-distribution data, and then performing gradient ascent on fθ.

The main differences are that the PGD attack does not have the noise term, and makes use of

normalized gradient. Intuitively, the noise term enables the sampler to explore different modes

by helping gradient ascent escape local maxima. Although the PGD attack does not have the

noise term, its ability to explore different modes can be enhanced by using a diverse p0 dataset

(Fig. 2.3).

In the PGD attack, as the normalized gradient vector has unit norm, the perturbation imposed

on xi is λ; in a K iterations of the update, the overall perturbation ∥x∗
i − xi∥2 is always ≤ λK.

Hence with the PGD attack we can more easily control the distribution of the contrastive data.

In contrast, Langevin dynamics adjusts xi in a scale that corresponds to the magnitude of the

gradient of fθ at xi; when fθ is updated during training, the overall perturbation may undergo

a large change. This behavior of Langevin dynamics can be a source of some training stability

issues [131].

Gradient of the training objective

By definition Eq. (2.5), the gradient of D’s training objective Eq. (2.11) takes the form

∇θJ(D) = Ex∼pdata [(1− σ(fθ(x)))∇θfθ(x)]− Ex∼p∗T
[σ(fθ(x))∇θfθ(x)]. (2.18)

Comparing the above equation with Eq. (2.2) we find both equations consisting of gradient terms

that yield similar effects: the first term causes fθ outputs on pdata samples to increase, and the

second causes fθ outputs on the contrastive samples to decrease. Specifically, as (1− σ(fθ(x)))
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and σ(fθ(x)) are scalars in the range 0 to 1, the two gradient terms in Eq. (2.18) are respectively

the scaled versions of the gradient terms in Eq. (2.2). It should be noted that although these

scalars do not change the gradient update direction of individual terms in the model parameter

space, the overall gradient update directions of Eq. (2.18) and Eq. (2.2) can be different.

Eq. (2.18) also helps to understand why binary AT can only learn the support of the ob-

served data. In Eq. (2.2), when pθ(x) matches pdata, the gradient cancels out and training

terminates, whereas in Eq. (2.18), when p∗T matches pdata the gradient becomes Ex∼pdata [(1 −

2σ(fθ(x)))∇θfθ(x)] and only vanishes when σ(fθ(x)) =
1
2

everywhere on the support of pdata.

This result is consistent with Proposition 1 and the 2D experiment result.

2.4.4 Connection with GANs

Generative adversarial networks (GANs) [56] is a popular approach to generative modeling.

GANs learn a generator function G and a discriminator function D by solving the following

two-player minimax game:

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))]. (2.19)

The generator G implicitly defines a distribution pg by mapping a prior distribution pz from a

low-dimensional latent space Z ⊆ Rz to the high-dimensional data space X ⊆ Rd. D : X →

[0, 1] is a function that distinguish the target distribution pdata samples from pg samples. It can be

shown that in the optimal solution to this minimax game, pg = pdata.

To make a connection to our formulation in Eq. (2.12), we use pg to define GANs’ minimax

problem:

min
pg

max
D

U(D, pg) = Ex∼pdata [logD(x)] + Ex∼pg [log(1−D(x))], (2.20)

Comparing Eq. (2.12) with Eq. (2.20) we find both problems making use of the same objective

function, but order of minimization and maximization is reversed. In fact, both formulations
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solve a two-player zero-sum game, a mathematical representation of a situation in which one

player’s gain is balanced by another player’s loss. Such a game is described by its payoff function

f : Rp+q → R, which represents the amount of payment that one player (player 1) makes

to the other player (player 2). The goal of player 1 is to choose a strategy u ∈ Rp such that

the payoff is minimized, while the goal of player 2 is to choose a strategy u ∈ Rq such that

the payoff is maximized. The best strategies for both players, and the resulting payoff, can be

solved via minumaxv f(u, v) or maxv minu f(u, v). Depending on the order of maximization

and minimization, the game can be played by following two different rules.

In Eq. (2.12), U is the payoff function, and the goal of player pT is to choose a strategy p∗T

such that the payoff is minimized, whereas the goal of player D is to choose a strategy D∗ such

that the payoff is maximized. This maximin game is played by following such a rule: player D

makes the first move by choosing a D; player pT , after learning that player D has made the move,

will choose a pT to minimize its payment, which results in a payoff of minpT U(D, pT ); player

D, who is informed of player pT ’s strategy, will chooses a D such that the worse case payoff

minpT U(D, pT ) is maximized, which results in an overall payoff of maxD minpT U(D, pT ). The

best strategies of both players and the maximum payoff can be derive from Proposition 1 : In

the maximin game maxD minpT U(D, pT ), the best strategy for player D is to choose a D∗ that

outputs 1
2

on Supp(pdata) and ≤ 1
2

outside of Supp(pdata), the best strategy for player pT is to

choose a p∗T which is supported in {x : D(x) = 1
2
}, and the maximum payoff is − log(4).

In Eq. (2.20), V is the payoff function. Similar to Eq. (2.12), the goal of player pg is to

minimize the payoff, and the goal of player D is to maximize the payoff. In contrast to Eq. (2.12),

player pg makes the first move. The solution to this minimax game is analyzed in [56]: the best

strategy of player pg is to choose a p∗g which minimizes the Jensen-Shannon divergence (JSD)

between pg and pdata: p∗g = argminpg JSD(pg ∥ pdata) = pdata, and the best strategy of player D

is to choose D∗(x) = pdata(x)
pdata(x)+p∗g(x)

= 1
2
. Under these strategies, the payoff function U measures

the JSD between pg and pdata: U(D∗, p∗g) = − log(4) + 2 · JSD(p∗g ∥ pdata) = − log(4), which

coincides with the U solution in the maximin game. Note that in the minimax game, D∗ does
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not need to be defined outside of Supp(pg) ∪ Supp(pdata) [56].

The main differences between the maximin game solution and minimax game solution can

be summarized as: 1) In the minimax game, p∗T = pdata, whereas in the maximin game, p∗T is

only required to be supported in {x : D(x) = 1
2
}. (2) While both D∗s output 1

2
in Supp(pdata),

their outputs outside of Supp(pdata) are different: in the maximin game, D∗ outputs ≤ 1
2

outside

of Supp(pdata), whereas in the maximin game, D∗ is undefined outside of Supp(pdata).

Due to the above differences these two formulations give rise to different applications. The

minimax formulation, which is the formulation used by GANs, is ideal for learning a gener-

ator model that can produce a distribution that matches pdata. The discriminator, because of

its undefined behavior outside of Supp(pdata), may not be very useful for certain downstream

tasks like out-of-distribution detection. In the maximin formulation, when the model is trained

with a diverse p0 dataset, we can obtain a D solution where spurious modes are suppressed and

therefore can be used for out-of-distribution detection. The D solution at the same time retains

gradient information for translating out-distribution samples to Supp(pdata), and thus can be used

in generation, image-to-image translation, and some image restoration tasks like denoising and

inpainting.

The pseudo code for solving the minimax problem is outlined in Algorithm 2. Fig. 2.2

shows the simulation results in two settings where p0 data is respectively uniformly distributed

(left panel) and concentrated in the lower left corner (right panel). In can be seen that in both

cases p∗T matches pdata when the algorithm converges. The right panel shows that when p0 data is

concentrated in the lower left corner, the D solution has undefined outputs outside of Supp(pdata).

Algorithm 2 Solving the minimax problem

1: Draw samples {xi}mi=1 from pdata, and samples {x∗
i }mi=1 from p0.

2: repeat
3: Update D by maximizing 1

m

∑m
i=1 logD(xi) +

1
m

∑m
i=1 log(1−D(x∗

i )) (until converge).
4: For each x ∈ {x∗

i }mi=1, update its value by
x← x+ λ ∇D(x)

∥∇D(x)∥2 (single step).
5: until {x∗

i }mi=1 = {xi}mi=1
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Figure 2.2: Plots of contours and (normalized) gradient vector fields of the D functions learned
with different p0 data. Left and right panel respectively show the initial state (1a and 2a) and final
state (1b and 2b) of D when p0 data is respectively uniformly distributed (red points in 1a) and
concerntrated in the lower left corner (red points in 2a). pdata is a Gaussian distribution centered
at (0, 0) (blue points).

2.4.5 Improved training of AT generative model

Diverse p0 data

As discussed in Sec. 2.4.2, a diverse p0 dataset improve the PGD attack’s ability to explore differ-

ent local maxima of D. To validate this 2D intuition generalizes to high dimensions, we evaluate

the CIFAR-10 image generation performance under different settings of p0. It can be seen from

Fig. 2.3 that the best FID is obtained when p0 is the 80 Million Tiny Images dataset [172], the

most diverse dataset among the three p0 datasets.

We follow existing work on adversarial training and use a p0 dataset that contains real data

samples to train the model. Using a real dataset (as opposed to a noise distribution) helps

the model achieve out-of-distribution adversarial robustness (Sec. 2.5.3 OOD detection) and

learn informative gradient for transforming real out-distribution samples (not just noise samples)

into valid samples of pdata. The latter can be a useful feature in image translation applications

(Sec. 2.5.3). The setting of p0 in our experiments can be found in Tab. 2.1.

Training with unconstrained perturbations

Existing work on using adversarial training to train robust classifiers uses a small, fixed pertur-

bation limit [112]. In the generative modeling task, we would like the perturbed p0 data to travel
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Figure 2.3: FIDs obtained with models trained with different p0 datasets on CIFAR-10. We use
the same source images and PGD attack configuration to do generation in these experiments.

in a larger space to find more local maxima. This can be achieved by taking more PGD attack

steps (K) in step 3 of Algorithm 1. Fig. 2.4 shows that a larger K results in better FID scores.

The downside of a large K is that it converges slower because more gradient steps are taken

in each iteration (Fig. 2.5 K = 25 vs. K = 5). To improve the training efficiency we propose

a mixed scenario in which we progressively increase the K value during training. We observe

that this progressive training scenario converges faster than training with fixed-K (Fig. 2.5 K =

0, 1, ..., 25 vs. K = 25). The pseudo code for progressive training is in Algorithm 3.

Algorithm 3 Progressive Binary Adversarial Training

1: for K in [0, 1, . . . , N ] do
2: for number of training iterations do
3: Draw samples {xi}mi=1 from pdata, and samples {x0

i }mi=1 from p0.
4: Update {x0

i }mi=1 by performing K steps unconstrained PGD attack Eq. (2.8) on each sample.
Denote the resulting samples as {x∗

i }mi=1.
5: Update D by maximizing 1

m

∑m
i=1 logD(xi) +

1
m

∑m
i=1 log(1−D(x∗

i )).
6: end for
7: end for
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Figure 2.4: FID scores obtained with different
Ks in Algorithm 1 on CIFAR-10.
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Figure 2.5: Progressive training vs. training
with fixed-K on CIFAR-10.

Regularization

While other generative models typically require some forms of regularization, the proposed

model can be trained successfully without using any regularization. One trick that we find ben-

eficial for achieving better FID (Fig. 2.6, R1 reg = 30, pretrained vs. from scratch) is to pretrain

the D model on the ImageNet classification task. (This requires adding auxiliary output nodes

which are ignored when later training the D model.) When using the pretrained model, we find

it necessary to use R1 regularization [119], otherwise the FID stops improving after a few hun-

dred iterations (Fig. 2.6, R1 reg = 0 pretrained). Note that when D is trained from scratch, R1

regularization is not strictly required, but adding the regularizer does not hurt the performance

(Fig. 2.6, R1 reg = 0 from scratch vs. R1 reg = 30 from scratch).

2.5 Experiments

In this section we provide an empirical evaluation of the proposed AT generative model. We

first evaluate the approach’s image generation performance, then demonstrate its applications

to denoising, inpainting, and image-to-image translation, and finally provide training stability

analysis, nearest neighbor and interpolation analysis, and an discussion on sampling efficiency.
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Figure 2.6: The effect of R1 regularization on CelebA-HQ.

2.5.1 Setups

We evaluate our method on CIFAR-10 [96] (50K training samples), CelebA-HQ 256 [89] (30K

training samples), AFHQ-CAT [32] dataset (5153 training samples), and LSUN-Church [208]

(126227 training samples). AFHQ [32] is a recently introduced benchmark dataset for image-to-

image translation.

On CIFAR-10 we use the standard ResNet50 [70] architecture with ReLU activation for the

D model. On CelebA-HQ 256, AFHQ-CAT 256, and LSUN-Church 256 we use a customized

architecture (Tab. 2.2) adapted from [32].

We use Algorithm 3 to train the models. The training hyperparameters for each task can be

found in Tab. 2.3. For the 256×256 tasks, we pretrain the D model on the ImageNet classification

task. To mitigate overfitting, we perform random resized cropping, random horizontal flipping

on pdata samples. The performance (FID score) of the model is monitored during training and

the best-performing model to used to report the final FID score. For CIFAR-10, we use the 80

million tiny images dataset as the p0 dataset, and for the rest datasets we use the ImageNet p0.

We use Inception Score (IS) [153] and FID score [77] to evaluate the quality of generated

samples. We follow [90] and compute the FID score between 50k generated samples and all

training samples (IS is also calculated on the generated 50K samples).
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Table 2.2: Network architecture for the D model used in CelebA-HQ 256, AFHQ-CAT 256, and
LSUN-Church 256.

Layer Resample Output shape

Conv1× 1 - 256× 256× 64
ResBlock AvgPool 128× 128× 128
ResBlock AvgPool 64× 64× 256
ResBlock AvgPool 32× 32× 512
ResBlock AvgPool 16× 16× 512
ResBlock AvgPool 8× 8× 512
ResBlock AvgPool 4× 4× 512
LeakyReLU - 4× 4× 512
Conv4× 4 - 1× 1× 512
LeakyReLU - 1× 1× 512
Reshape - 512
Linear - 1

Table 2.3: Training hyperparameters. We use β1 = 0.0, β2 = 0.99 for the Adam optimizer.

CIFAR-10 CelebA-HQ 256 AFHQ-CAT 256 LSUN-Church 256

Batch size 32 40 40 32
Training iterations 172K 218K 225K 215K
Optimizer Adam Adam Adam Adam
Learning rate 5e-4 5e-5 5e-5 5e-5
K 0,...,25 0,...,40 0,...,25 0,...,35
Epochs per K 5 5 50 1
PGD attack step-size 0.1 2.0 2.0 2.0
R1 regularization 0.01 30 100 100

2.5.2 Image generation

The generated samples for FID and IS evaluation are produced by performing PGD attacks on

50K samples randomly drawn from the p0 dataset. The settings for the p0 dataset and the PGD

attack can be found in Table 2.4.

Tab. 2.5 shows that on CIFAR-10 [96] our approach achieves the best Inception Score (IS) [153]

and FID [77] among AT generative models. Our approach also improves over state-of-the-art

explicit EBMs in terms of IS, and at the same time has a slightly worse FID. Compared to
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Table 2.4: Sample generation setting.

Task p0 dataset PGD step size PGD steps

CIFAR-10 80 million tiny images [172] 0.2 32
CelebA-HQ 256 ImageNet [40] 8.0 20
AFHQ-CAT 256 ImageNet [40] 8.0 14
LSUN-Church 256 ImageNet [40] 8.0 17

VAEBM [193], our method does not require an auxiliary model to train, and has better test time

sampling efficiency (Sec. 2.5.5). Diffusion Recovery [53] trains a sequence of conditional EBMs,

with each one defining the conditional distribution of a noisy sample given the same sample at

a higher noise level. Similar to score-based approaches, these conditional EBMs do not directly

model the data distribution of the observed data, so it is unclear how these models can be ap-

plied to tasks which require explicit knowledge of the data distribution (e.g., OOD detection).

Uncurated CIFAR-10 generation results can be found in Fig. 2.7.

Tab. 2.6 shows that on CelebA-HQ 256 [89] our method outperforms or is on par with state-

of-the-art generative models except GANs. On LSUN Church [208] our method outperforms

a latest energy-based model VAEBM [193] (the authors only provided the 64 × 64 result), but

falls bellow DDPM and GANs. Fig. 2.8 shows sample image generation results. Fig. 2.9 left

panel shows uncurated generation samples on CelebA-HQ 256. We find that some generated

images contain significant artifacts. By first applying Gaussian smoothing (σ = 10) to the source

images (p0 data), we are able to obtain more visually pleasing results (Fig. 2.9 right panel). The

generated samples contain less artifacts, but have a slightly worse FID. The smoothing filters

out high frequency components, and seems to be playing a similar role as reduced-temperature

sampling [178, 193] and the “truncation trick” [19], where better-looking results (typically with

reduced diversity) can be generated from latent noise sampled from the high density area of the

latent space. Uncurated generation samples on AFHQ-CAT 256 and LSUN-Church 256 can be

found in Fig. 2.10.
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Table 2.5: IS and FID scores on CIFAR-10.

Method IS↑ FID↓

AT
Ours 9.10 13.21
CEM [182] 8.68 36.4
Adversarially Robust Classifier [154] 7.5 -

Explicit
EBMs

Diffusion Recovery [53] 8.30 9.58
VAEBM [193] 8.43 12.19
CoopFlow(pretrained Flow) [203] - 15.80
CF-EBM [216] - 16.71
ImprovedCD [46] 7.85 25.1
VERA [62] - 27.5
EBMs + VAE [202] 6.65 36.2
JEM [61] 8.76 38.4
IGEBM (Ensemble) [45] 6.78 38.2
Short-Run EBMs [130] 6.21 44.16

GANs

StyleGAN2 w/o ADA [90] 8.99 9.9
BigGAN [19] 9.22 14.73
SNGAN [123] 8.22 21.7
WGAN-GP [65] 7.86 36.4

Score-based

Stochastic Differential Equations [164] 9.89 2.20
DDPM [78] 9.46 3.17
NCSNv2 [163] 8.4 10.87
NCSN [162] 8.87 25.32
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Table 2.6: FID scores on CelebA-HQ 256, AFHQ-CAT [32], and LSUN Church 256.

Dataset Method FID↓

CelebA-HQ 256

Ours 17.31
VAEBM [193] 20.38
CF-EBM [216] (128× 128) 23.50

NVAE [178] 45.11
GLOW [93] 68.93

Adversarial Latent Autoencoders [140] 19.21
ProgressiveGAN [89] 8.03

AFHQ-CAT
Our (256× 256) 13.35
StyleGAN2 (512× 512) [90] 5.13

LSUN Church

VAEBM (64× 64) [193] 13.51
Our (64× 64) 10.84
Our (256× 256) 14.87
DDPM (256× 256) [78] 7.89
ProgressiveGAN (256× 256) [89] 6.42

Source images Generated images

Figure 2.7: Uncurated CIFAR-10 generated samples.
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Figure 2.8: Source images (top panel) and generated images (bottom panel, 256×256 resolution)
on CelebA-HQ, AFHQ-CAT, and LSUN Church.

Generated samples using original source
images

Generated samples using blurred source
images

Figure 2.9: Uncurated generation samples on CelebAHQ 256.
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Figure 2.10: Uncurated generation samples on AFHQ-CAT 256 and LSUN-Church 256.

2.5.3 Applications to image restoration and image translation

Image-to-image translation

Fig. 2.11 and Fig. 2.12 show that the AFHQ-CAT model can be used to transform CelebA-HQ

images into cat images, and vice-versa. Note that these two models are trained independently

without knowledge of the source domain, indicating that our approach may generalize better to

unseen data than approaches (e.g., pix2pix [81], CycleGAN [220], and StarGAN [32]) that ex-

plicitly use the source domain dataset to train the model. The translation results may be further

improved by finetuning the trained model on the source domain dataset, or including the source

domain data in the p0 dataset during training. The proposed approach is also more flexible than

approaches that employs a fixed generator, as it allows the user to choose how much transforma-

tion to apply, and/or create cinematic effect from intermediate transformation results.
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PGD attack PGD attack

Figure 2.11: Image-to-image translation demonstration.

Figure 2.12: Uncurated image translation results on CelebA-HQ 256 and AFHQ-CAT 256.
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Denoising and inpainting

Fig. 2.13 shows the denoising and inpainting results on CelebAHQ 256. To perform denoising or

inpainting, we take the noise images or occluded images and then perform gradient ascent on the

model. The strength of the denoising or inpainting can be controlled by limiting the number of

gradient update steps. Tab. 2.7 shows that the denoised images have significantly better structural

similarities to the groundtruth images than the noise images. For inpainting we further consider

a nearest neighbor (NN) baseline. As can be seen in Fig. 2.14, in some cases, the patch found

by NN is not semantically consistent with other parts of the image. The recovered images by

NN search using the original images or occluded images as input are different from the original

images. Tab. 2.8 shows that on average, the proposed approach outperforms the NN baseline in

terms of SSIM.

Table 2.7: SSIM [184] of the first 10 noise image and denoised images in Fig. 2.13.

1 2 3 4 5 6 7 8 9 10

Noise image 0.186 0.342 0.265 0.132 0.259 0.262 0.161 0.244 0.269 0.218
Denoised image 0.301 0.522 0.421 0.297 0.388 0.467 0.349 0.416 0.526 0.378

Table 2.8: SSIM [184] of the first 10 occluded image and recovered images by the proposed
model (Fig. 2.13) and the nearest neighbor (NN) baseline (Fig. 2.14).

1 2 3 4 5 6 7 8 9 10 Average

Occluded 0.846 0.817 0.836 0.881 0.809 0.822 0.769 0.799 0.773 0.817 0.817
Recovered (ours) 0.827 0.815 0.811 0.902 0.829 0.839 0.804 0.832 0.806 0.813 0.828
Recovered (NN-patch) 0.863 0.823 0.867 0.879 0.809 0.857 0.794 0.826 0.807 0.826 0.835
Recovered (NN-original image) 0.391 0.245 0.256 0.433 0.316 0.278 0.339 0.322 0.216 0.316 0.311
Recovered (NN-occluded image) 0.428 0.220 0.249 0.360 0.320 0.285 0.225 0.322 0.160 0.316 0.288
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Original images (1st row), images with additive Gaussian noise of standard deviation of 0.1
(2nd row), and recovered images (last row)

Original image (1st row), occluded images (2nd row), and recovered images (last row)

Figure 2.13: Uncurated denoising and inpainting results on CelebA-HQ 256.

Figure 2.14: Inpainting result obtained with nearest neighbor (NN) search. 1st row: original
image, 2nd row: occluded images, 3rd row: recovered images by NN search with the groundtruth
patch, 4th row: recovered images by NN search with the original image, 5th row: recovered
images by NN search using the occluded image. To perform inpainting with NN using the
groundtruth patch, we search the dataset for the patch that has the minimum L2 distance to the
groundtruth patch, and then copy this patch to the occluded region.
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2.5.4 Nearest neighbor and interpolation

Fig. 2.15 and Fig. 2.17 show the pixel space and inception feature space nearest neighbors of

the generated samples on CIFAR-10, CelebA-HQ 256. Note that none of the nearest neighbors

resemble the generated samples, suggesting that the models have not memorized the training

data. The interpolation results in Fig. 2.16 show that the models are able to smoothly interpolate

between generated samples.

Generated samples (left panel)
and pixel space nearest neighbors

(right panel)

Generated samples (left panel)
and Inception feature space

nearest neighbors (right panel)

Figure 2.15: Nearest neighbors of generated samples on CIFAR-10.

CelebA-HQ 256 AFHQ-CAT 256

Figure 2.16: Interpolation results on CelebA-HQ 256 and AFHQ-CAT 256. Intermediate images
are generated by performing PGD attacks on linear interpolations between the source images
used to generate the leftmost and rightmost samples.
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Generated samples (left panel) and
pixel space nearest neighbors (right

panel

Generated samples (left panel) and
inception feature space nearest

neighbors (right panel)

Figure 2.17: Nearest neighbors of generated samples on CelebA-HQ 256.
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2.5.5 Sampling efficiency

Tab. 2.9 shows that our method has competitive training and test time sampling efficiency to

state-of-the-art EBMs. Although VAEBM typically requires much fewer update steps than our

method, its per-step efficiency is much worse (Tab. 2.10), suggesting that its VAE component

has considerable computational complexity. We also observe that the quality of our generated

samples is not sensitive to the number of sampling steps as long as the overall perturbation (#step

× step-size) remains the same (Tab. 2.11). This allows us to use a much larger step size than the

one used during training to speedup test time sampling in real applications.

Table 2.9: The number of update steps in the PGD attack (our method) and Langevin dynamics
(other methods). “PCD” refers to using a persistent sampling chain.

Ours VAEBM [193] CF-EBM [216] JEM [61]

CIFAR-10 (train) 25 6 (PCD) 50 20 (PCD)
CIFAR-10 (test) 32 16 50 100
CelebA-HQ 256 (train) 40 6 (PCD) 90 N/A
CelebA-HQ 256 (test) 20 24 90 N/A

Table 2.10: Number of steps and wall-clock time to generate 50 CIFAR-10 samples. Data of
NCSN and VAEBM are from [193].

Model Steps Wall-clock time GPU device

NCSN [162] 1000 107.9 seconds RTX Titan
VAEBM [193] 16 8.79 seconds RTX Titan
Ours 32 2.34 seconds RTX 2080 Ti

Table 2.11: FID scores of samples generated using different combinations of number of steps
and step-sizes.

Number of steps × step-size FID

CIFAR-10
64× 0.1 13.07
32× 0.2 13.21
16× 0.4 13.49

CelebA-HQ 256
40× 4.0 19.19
20× 8.0 18.97
10× 16.0 19.19
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2.5.6 Training stability analysis

To gain some insight into the training stability of our approach we investigate whether the PGD

attack can be used with the EBMs training objective Eq. (2.2). Specifically, in Algorithm 3,

we perform step 5’s update on θ using the gradient ∇θ(
1
m

∑m
i=1 fθ(xi) − 1

m

∑m
i=1 fθ(x

∗
i )). We

observe that even under a small learning rate of 1e−6, 1
m

∑m
i=1 fθ(xi)− 1

m

∑m
i=1 fθ(x

∗
i ) quickly

increases and eventually overflows. This suggests that the stability of the AT approach can be

largely attributed to the log-likelihood objective Eq. (2.11). We argue that the stability is due

to the gradient cancelling effect of this objective: when fθ has a large positive output on a

sample x ∼ pdata, 1 − σ(fθ(x)) approaches 0 and therefore the corresponding scaled gradient

in Eq. (2.18) vanishes, and similarly σ(fθ(x
∗))∇θfθ(x

∗) vanishes when fθ has a large negative

output on a sample x∗ ∼ p∗T . In contrast, the EBMs objective Eq. (2.2) does not have constraints

on fθ’s outputs and is therefore prone to divergence.

2.6 Conclusion

We have studied an AT-based approach to learning EBMs. Our analysis shows that binary AT

learns a special kind of energy function that models the support of the data distribution, and the

training procedure can be viewed as an approximate maximum likelihood learning algorithm.

We further propose improved techniques for generative modeling with AT, and demonstrate that

this new approach is capable of generating diverse and realistic images. Aside from having com-

petitive image generation performance to explicit EBMs, the studied approach has competitive

sampling efficiency, is stable to train, and is well-suited for image restoration and image trans-

lation tasks. The main drawback of the proposed AT generative is that its generative modeling

performance falls behind state-of-the-art generative models such as GANs and diffusion mod-

els. To further improve the model, we consider using data augmentation and self-supervised

learning to mitigate overfitting. These strategies have been successfully applied in GANs train-
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ing [30, 90, 109, 175, 176, 215, 217]. We have also demonstrated the AT generative model’s

applications to denoising, inpainting, and image translation. In future work, we plan to do a

more comprehensive evaluation of the above applications.
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Chapter 3

Applications

In this charter we investigate the AT generative model’s applications to detecting adversarial

examples, detecting out-of-distribution (OOD) samples, and generative classification. For OOD

detection and generative classification, we focus on the adversarial scenario, where we assume

that the OOD inputs or the samples to be classified are adversarially perturbed. Before discussion

these applications, we first provide a review on adversarial machine learning, discussing the

existence of adversarial examples, approaches to performing adversarial attacks, and various

defense mechanisms.

3.1 Adversarial Machine Learning Background

In machine learning, an adversarial example is an input sample that is intentionally modified

to cause misclassification of a predictive model. An adversarial examples is created by adding

adversarial perturbation to a naturally-occurring data sample, where the adversarial perturbation

is constrained to have a small Lp norm (typically L2 or L∞ norm) such that it is imperceptible

to the human eye. Both state-of-the-art deep neural network classifiers and other classical ap-

proaches such as logistic regression, SVMs, and nearest neighbor classifiers, are vulnerable to

adversarial examples [15]. Beside classification models, semantic segmentation and object de-

43



tection models, and some generative models such as generative adversarial networks (GANs) and

variational autoencoders, have been found to be vulnerable to adversarial attacks [95, 168, 195].

Adversarial examples not only exist in digital world; it is possible to print out 2D images or 3D

objects and then use them to perform adversarial attack against camera-based object recognition

systems [7, 99].

The vulnerability to adversarial examples have become a major security concern for ma-

chine learning models. Designing effective defense mechanisms against adversarial attacks has

attracted significant interest of the research community [12, 64, 88, 112, 139, 160]. These ef-

forts have in turn motivated the design of stronger attacks that defeat the proposed defenses

[8, 24, 28, 57, 71, 99, 100, 192].

In what follows, we first review the high linearity hypothesis [57] which explains the exis-

tence of adversarial examples, then discuss methods for computing adversarial examples, and

finally discuss how to defend against adversarial inputs.

3.1.1 On the existence of adversarial examples

Although the discovery of adversarial examples for neural networks dates back to 2013 [166],

researchers have not reached a consensus on the reasons of why adversarial examples exist [20,

35, 38, 54, 57, 83, 86, 97, 106, 126, 150, 159, 167, 169, 170, 170, 173, 211]. Here we briefly

review one of the first and most popular hypotheses — the high linearity hypothesis [57] which

explains why adversarial examples exist for deep neural networks in high-dimensional space.

The high linearity hypothesis attributes the cause of adversarial examples to deep neural

networks’ linear behavior in high-dimensional space [57]. We can first consider a linear function

f : Rd → R defined as

f(x) = w⊤x+ b, (3.1)

where x,w ∈ Rd are respectively the input and weight vector. We can show that after adding a
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L∞ norm-constrained perturbation δ ∈ Rd to the input, the maximum change of the output is

max
∥δ∥∞≤ϵ

|f(x+ δ)− f(x)| = w⊤δ∗ = ϵ∥w∥1, (3.2)

where the optimal perturbation is δ∗ = ϵsign(w). The linearity hypothesis [57] states that when

the input dimension is high (i.e., d is a large number), ∥w∥1 can add up to cause a large change in

the output even when ϵ is a smaller number. In the case of a nonlinear function, we can consider

f ’s local behavior around a given input x0 using its first order Taylor expansion

f(x) ≈ ∇xf(x0)
⊤(x− x0) + f(x0), (3.3)

and similarly it can be shown that the maximal output change is

max
δ:∥δ∥∞≤ϵ

|f(x+ δ)− f(x)| = ∇xf(x0)
⊤δ∗ = ϵ∥∇xf(x0)∥1, (3.4)

where the optimal perturbation is given by δ∗ = ϵsign(∇xf(x0)). Similar to the linear case, in

high-dimensional space, ∥∇xf(x0)∥1 can add up to cause a large change in the output. This ap-

proach of computing the optimal adversarial perturbation by δ∗ = ϵsign(∇xf(x0)) is known as

the fast gradient sign method (FGSM). We can apply FGSM to attacking a classifier by defining

an appropriate loss function as the optimization objective (see Eq. (3.12)). It has been shown that

FSGM is effective against neural network classifiers on MNIST and CIFAR-10 [57].

3.1.2 Adversarial attacks

Notation

In a K class problem, let X = [0, 1]d be the input space, Y = {1, ..., K} be the label space,

f : X → [0, 1]K be the classification function which outputs the predicted probabilities over the

class labels. Let x be an input sample within X , and y ∈ Y be the corresponding groundtruth
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label. Let F (x) = argmaxi∈Y fi(x) be the classifier that outputs the predicted label, where fi is

the output of the i-th class.

Attack with minimum perturbation

Early work on adversarial attacks focus on finding adversarial examples that has the minimum

distances (as measured by different vector norms) to the original samples. Adversarial attacks

can be targeted or untargeted. In an targeted attack, the adversary aims to find a perturbation

that causes the input to be classified to a predefined label t ∈ Y , t ̸= y:

δ∗ = argmin
δ
∥δ∥p subject to F (x+ δ) = t,x+ δ ∈ X . (3.5)

The untargeted attack instead aims to find the minimum perturbation that only causes misclassi-

fication:

δ∗ = argmin
δ
∥δ∥p subject to F (x+ δ) ̸= y,x+ δ ∈ X . (3.6)

For most classification models, f is a highly nonlinear function of the input, so the above prob-

lems do not have closed form solutions. Although existing attacks can only give approximate

solutions, in practice they are still very effective against state-of-the-art classifiers. In the follow-

ing we review several representative attacks.

Box-constrained L-BFGS [166] is one of the early methods for performing targeted attacks

against deep neural networks. The attack attempt to solve the following problem

δ∗ = argmin
δ

λ ∥δ∥p + L(f(x+ δ), t) subject to x+ δ ∈ X , (3.7)

where the regularization coefficient λ control the relative importance of the two loss terms and

its optimal value is found through line-search. The loss function L measures the discrepancy

between the model prediction and the target label (e.g., the cross-entropy loss). The attack solves

the above problem using the box-constrained L-BFGS algorithm, a second-order method for
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solving optimization problems.

DeepFool [125] performs targeted attack. Consider a linear binary classifier h(x) = w⊤x+b,

let x0 be a input sample that satisfies h(x0) < 0, then it can be shown that the minimum L2

perturbation that changes the prediction to h(x0 + δ) ≥ 0 is

δ∗ = −h(x0)

∥w∥22
w. (3.8)

For a nonlinear binary classifier, h can be approximated by its first order Taylor expansion around

x0, and the optimal perturbation can be similarly derived as

δ∗ = − h(x0)

∥∇xh(x0)∥22
∇xh(x0). (3.9)

Due to the linear approximation, δ∗ is not guaranteed to be a valid adversarial perturbation that

causes the sign of the output to change. To increase the attack’s effectiveness, DeepFool itera-

tively update the perturbed sample by

xt+1 = xt −
h(xt)

∥∇xh(xt)∥22
∇xh(xt). (3.10)

The attack can be extended to multiclass problems by considering a multiclass classifier as a set

of binary classifiers, with each one separating samples of a particular class from samples not in

that class.

CW [24] performs targeted attack by maximizing the difference between the attacked class’s

logit output and the largest logit output of the rest classes:

δ∗ = argmin
δ

λ∥δ∥p + ( max
k∈Y,k ̸=t

zk(x+ δ)− zt(x+ δ))+,

subject to x+ δ ∈ X ,
(3.11)

where x+ is the shorthand for max(x, 0), zk(·) is the logit output of class k, and λ balances the
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weight of the two loss terms. Unlike some attacks that make use of the cross-entropy loss, CW

attack’s objective is defined in terms of the logit output of the classifier. This makes the attack

less susceptible to the vanishing gradient problem.

JSMA [138] aims to find the adversarial examples with the minimum number of modified

pixels (i.e., L0-based attack). The attack uses an iterative algorithm where in each iteration the

pixel that has the greatest impact on the output (as measured by the Jacobian) is modified; the

iteration stops when a successful attack is found.

The above attack methods all makes use of the gradient of the input to compute the adversarial

perturbation. They assume that the parameters of the attacked model are known, and therefore

they are known white-box attacks. It is also possible to perform black-box attacks by only making

use of the final output of the model. Boundary attack [18] is such an black-box method. Given

an input sample x and its label y, the boundary attack first draws an adversarial example x′ from

a noise distribution. (Here, “adversarial” means that the noise sample is classified as the attacked

class in a targeted attack or a class different from y in an untargeted attack.) The attack then

gradually reduce the distance between x′ and x by adding random perturbations to x′, where the

random perturbation δ is configured in such a way that x′ + δ remains an adversarial example

and the distance between x′ + δ and x is reduced. The boundary attack is able to reliably find

adversarial examples. In certain cases, the adversarial perturbations found by boundary attack

are even smaller than perturbations found by some white-box attack methods.

Attack under perturbation constraint

The attacks discussed in the previous section aim to find adversarial examples that have the

minimum distance to the original samples. More recently, researchers consider the problem of

finding the optimal attack that satisfies a perturbation constraint as measured by some vector

norm. For instance, in the case of untargeted attack, these attacks attempt to solve
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δ∗ = argmax
∥δ∥p≤ϵ

L(f(x+ δ), y). (3.12)

FGSM [57] is one approach to solving the above problem under a L∞ constraint:

δ∗ = ϵsign(∇xL(f(x), t)), (3.13)

where it satisfies ∥δ∥∞ ≤ ϵ. To increase the attack’s effectiveness, a multi-step variant of the

FGSM algorithm is proposed [99]:

xt+1 = Proj(xt + αsign(∇xL(f(x
t), y))), (3.14)

where α is some step-size, and Proj is the operation of projecting xt on to the set B(x0, ϵ) =

{x ∈ X : ∥x−x0∥∞ ≤ ϵ}, with x0 being the original input. The corresponding L2-based attack

is

xt+1 = Proj(xt + α
∇xL(x

t, y)

∥∇xL(xt, y)∥2
), (3.15)

with B(x0, ϵ) = {xt ∈ X : ∥xt − x0∥2 ≤ ϵ}. This iterative version of FGSM is also known as

the PGD attack [112], and it is currently the most effective norm-constrained attack.

3.1.3 Defense mechanisms

Existing approaches to defending against adversarial inputs can be categorized into three groups:

1) input preprocessing, where the input is preprocessed so that the “adversarial noise” is filtered

out, 2) robust classification, where the classifier is hardened so that its prediction becomes in-

variant to adversarial perturbations of the input, and 3) adversarial example detection, where

the input is examined by a detector and subsequently rejected if it is deemed an adversarially

modified input.
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Input preprocessing

Input preprocessing attempts to eliminate the adversarial noise from the input. Input prepro-

cessing is motivated by the observation that the adversarial noise is not changing the semantics

of the original clean input, and therefore it must not changing the clean input along the man-

ifold directions. Hence we should be able to eliminate the adversarial noise by projecting the

input onto basis vectors which encode the manifold directions and then reconstructing the input.

Approaches based on difference basis are developed, including principle component analysis

(PCA) [14], JPG and JPEG compression [39, 48], DCT transform [3], bit compression [204],

and nonlinear manifold learning models such as denoising Autoencoders [118]. The approach

based on denoising Autoencoders has been shown to be vulnerable to adaptive attacks [23].

Robust classification

Robust classification modifies the classifier to make its prediction invariant to adversarial per-

turbations of the input. Different approaches to robust classification have been developed, such

as making use of alternative loss function [136] or activation function [191], changing network

architecture or using denoising filters [66, 85, 104, 196], model weight quantization [157], and

model regularization [2, 27, 37]. Most of the above approaches are heuristics and some of them

have been shown to be vulnerable to adaptive attacks [174].

Two approaches that are widely considered as reliable defenses are provable defenses [122,

143, 186] and adversarial training [57, 99, 112]. A provably robust classifier’s output is strictly

invariant to adversarial perturbation of the input, so long as the perturbation is inside the pre-

defined threat model. This property is achieved by minimizing the loss function’s upper bound

under the specified threat model when training the classifier. Different approaches to computing

the upper bound are proposed, but they all suffer from high computational cost. Adversarial

training, in contrast, cannot provide a certificate to its performance, but is much faster to train

and therefore more practical. Adversarial training also provides much better clean and robust
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accuracies than provable defenses.

The basic idea of adversarial training is to use adversarial examples to train the classifier.

Given a dataset D comprising data samples and their groundtruth labels, the adversarially robust

classifier is trained by

f ∗ = argmin
f

E(x,y)∼D[ max
x′∈B(x,ϵ)

L(f(x′), y)], (3.16)

where B(x, ϵ), also known as the threat model, is a neighborhood of x: B(x, ϵ) = {x′ ∈ X :

∥x′ − x∥p ≤ ϵ}. Intuitively, the inner maximization attempts to find the adversarial examples

that would incur the highest classification loss, and the outer minimization trains the classifier

by minimizing the classification loss of these “hard samples”. The inner minimization is solved

using the PGD attack [99, 112] (see Eq. (3.14) and Eq. (3.15)). The outer maximization is solved

using gradient-based optimizer such as the Adam optimizer [92]. In each training iteration, the

adversarial examples are first computed using the PGD attack, and then the model parameters

are updated to minimize the loss on the adversarial examples.

Adversarial training is widely recognized as the most effective and promising approach to

robust classification. Since it was firstly introduced [57, 112], multiple variants and enhance-

ments have been developed [5, 11, 29, 42, 44, 51, 58, 84, 103, 108, 111, 115, 129, 137, 161,

179, 181, 183, 187, 189, 190, 194, 205, 212, 214, 218]. By employing various heuristics, such

as early stopping [148], using additional unlabeled or generated data [4, 25, 59, 76, 127, 210],

data augmentation [145] (combined with model weight averaging [59]), and using high-capacity

model [59, 188], the performance (clean and robust accuracies) of adversarially trained classifier

has been significantly improved [34]. The main drawback of adversarial training is that adver-

sarially robust classifiers typically have reduced accuracy on clean data, and it is posit that there

is an inherent trade-off between the standard accuracy and adversarially robust accuracy of a

model [80, 177].
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Detecting adversarial examples

To defend the classifier against adversarial inputs, we can also use an auxiliary detector to detect

and thereby reject adversarial inputs. The advantage of using a detector is that we do not need

to modify the original classifier, but because some clean samples can also be rejected along with

adversarial inputs, this approach also affect the performance of the classifier (on clean samples).

There exists a large body of work on detecting adversarial examples [10, 13, 52, 55, 63, 74,

105, 110, 120, 135, 149, 171, 204, 219]. Most of these methods are based on the following core

idea: given a trained K-class classifier, f : Rd → {1, ..., K}, and its corresponding clean training

samples, D = {xi ∈ Rd}Ni=1, generate a set of adversarially attacked samples D′ = {x′
j ∈

Rd}Mj=1, and devise a mechanism to discriminate D from D′. For instance, Gong et al. [55] use

this exact idea and learn a binary classifier to distinguish the clean and adversarially perturbed

sets. Similarly, Grosse et al. [63] append a new “attacked” class to the classifier, f , and re-train a

secured network that classifies clean images, x ∈ D, into the K classes and all attacked images,

x′ ∈ D′, to the (K +1)-th class. These methods make use of precomputed adversarial examples

and therefore can only handle non-adaptive threats, for which the attacks are not specifically

tuned/tailored to bypass the detection mechanism, and the attacker is oblivious to the detection

mechanism. Indeed, Carlini and Wagner [21] shows that all the above methods are vulnerable

to adaptive attacks.

There are also approaches [120] that explicitly consider adaptive attacks and propose to

harden the detector against such attacks. For example, Metzen et al. [121] propose to attach

a low-capacity detection network to the intermediate layer of the main classification network,

and then use the intermediate layer output to train the detector to identify adversarial examples.

The adversarial examples are generated by considering both the classifier and detector, using a

variant of the L∞ PGD attack (Eq. (3.14)):

xi+1 = Proj(xi + α[(1− λ)sign(∇xLc(xi, y)) + λsign(∇xLd(xi, 1))]), (3.17)
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where Lc and Ld are respectively the classifier loss and detector loss (adversarial examples are

labeled as 1s), α is the step-size, and λ is the convex combination coefficient and is randomly

sampled from a [0, 1] uniform distribution during training. Because the adversarial examples

depend on the detector, they are recomputed in each iteration whenever the parameters of the

detector are updated. Although the detector is hardened against adaptive attacks, it still relies

non-robust features from the classifier to identify adversarial examples, and it remains unclear

whether the adaptive objective Eq. (3.17) is optimal. Carlini and Wagner [21] show that in order

to break this defense, they need to use a larger perturbation budget than the one used to break

other detection methods.

To evaluate detection-based approaches under adaptive attacks, Carlini and Wagner [21] pro-

pose to perform attacks on a new function g constructed by concatenating the logit outputs of the

classifier and detector:

g(x)i =


zf (x)i, if i ≤ K

(zd(x) + 1) ·maxj zf (x)j, if i = K + 1

(3.18)

where zf (x) and zd(x) are respectively the logit outputs of the classifier and detector, and K is

the number of classes. It is straightforward to see that whenever x is detected as an adversarial

example, zd(x) is greater than zero and therefore g(x)K+1 has the largest output. Hence in order

to create an adversarial example that fools the classifier and at the same time evades detection,

we can perform adversarial attack on g, and make sure neither the output corresponding to the

groundtruth label nor K + 1-th output are the largest.

In summary, the majority of the current detection mechanisms focus on non-adaptive threats,

for which the attacks are not specifically tuned/tailored to bypass the detection mechanism, and

the attacker is oblivious to the detection mechanism. These defenses [13, 52, 55, 63, 74, 105,

110, 120] are significantly less effective under adaptive attacks [8, 22].
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3.2 Adversarial Training for Detecting Adversarial Examples

The vulnerabilities of deep neural networks against adversarial examples have become a sig-

nificant concern for deploying these models in sensitive domains such as health care, finances,

autonomous driving, and defense-related applications. Devising a definitive defense against such

attacks is proven to be challenging, and the methods relying on detecting adversarial samples are

only valid when the attacker is oblivious to the detection mechanism. In this section we propose

an adversarial example detection mechanism that can withstand adaptive attacks. Inspired by

one-versus-the-rest classification, in a K class classification problem, we train K binary clas-

sifiers where the i-th binary classifier is used to distinguish between clean data of class i and

adversarially perturbed samples of other classes. At test time, we first use a trained classifier to

get the predicted label k̂ of the input, and then use the k̂-th binary classifier to determine whether

the input is a clean sample (of class k̂) or an adversarially perturbed example (of other classes).

We further devise a generative approach to detecting adversarial examples by interpreting each

binary classifier as an unnormalized density model of the class-conditional data. We provide

comprehensive evaluation of the above adversarial example detection methods, and demonstrate

their interpretability and competitive performances.

3.2.1 Proposed approach

The proposed approach to detecting adversarial examples is based on the following simple idea.

Assume there is an input sample x, and it is predicted as k̂ by the classifier f , then x is either

a true sample of class k̂ (assuming no misclassification) or an adversarially perturbed sample of

other classes. To determine which is the case we can use a binary classifier that is specifically

trained to distinguish between clean samples of class k̂ and adversarially perturbed samples of

other classes. Because k̂ can be any one of the K class, we need to train a total of K binary

classifier in order to have a complete solution. Fig. 3.1 provides a schematic illustration of the

above detection idea. We next provide a mathematical justification of this detection approach.
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Figure 3.1: A schematic illustration of the proposed method for determining whether an input
sample x (represented by the gray star) is an adversarial example. The first figure shows the case
where x is predicted by f as class 1 and then x is identified as an adversarial example by D1. The
following two figures shows the other two cases where x is respectively predicted as class 2 and
class 3 and then D2 and D3 is respectively used to predict whether x is an adversarial example.
(Note that there might be some confusion between an outlier and an adversarial example due to
space constraints of the 2D drawing. An adversarial example is created by adding adversarial
noise to a clean test sample. The adversarial noise changes the decision but does not change
the semantic of the clean sample. Therefore in a more realistic setting where the data lie in
high dimensional space, the adversarial example would be in the same distribution as the clean
samples, even though it is predicted to a different class. But due to space constraints, we are
unable to depict such a situation in a 2D drawing.)

In a K(K ≥ 2) class classification problem, given a dataset of clean samplesD = {xi}Ni=1,xi ∈

Rd, along with labels {yi}Ni=1, yi ∈ {1, ..., K}, let f : Rd → {1, ..., K} be a classifier on D, and

D′ be a set of p-norm bounded adversarial examples computed fromD: D′ = {x+δ : f(x+δ) ̸=

y, f(x) = y,x ∈ D, δ ∈ S}, S = {δ ∈ Rd | ∥δ∥p ≤ ϵ}. We use Df
k = {x : f(x) = k,x ∈ D}

and D′f
k = {x : f(x) = k,x ∈ D′} to respectively denote the clean samples and adversarial

examples which are predicted by f as class k. Let H = {dk}Kk=1, where dk : Rd → [0, 1] is a bi-

nary classifier trained to distinguish between samples from Df
k (assigned as class 1) and samples

from D′f
k (assigned as class 0). We use dk(x) to model p(x ∈ Df

k |x) and predict x ∈ Df
k when

dk(x) > 0.5 and x ∈ D′f
k when dk(x) ≤ 0.5 . Consider the following procedure to determine

whether a sample x is an adversarial example (i.e., whether it comes from D or D′):

First obtain the estimated class label k̂ = f(x), then use the k̂-th detector to predict:

if dk̂(x) >= 0.5 then categorize x as a clean sample, otherwise categorize it as an

adversarial example.
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This algorithm can be viewed as a binary classifier, and its accuracy is given by

∑K
k=1 |{x : dk(x) > 0.5,x ∈ Df

k}|+ |{x : dk(x) ≤ 0.5,x ∈ D′f
k}|

|D|+ |D′|
. (3.19)

Because the errors of individual detectors are independent, maximizing Eq. (3.19) is equivalent to

optimizing the performances of individual detectors. dk solves the binary classification problem

of distinguishing between samples from Df
k and samples from D′f

k , and therefore can be trained

with a binary classification objective:

θ∗
k = argmin

θk

Ex∼D′f
k

[
L(dk(x;θk), 0)

]
+ Ex∼Df

k

[
L(dk(x;θk), 1)

]
, (3.20)

where L is a loss function that measures the discrepancy between dk’s output and the supplied

label (e.g., the negative log likelihood loss). In order to harden dk against adaptive attacks, we

follow [112] and incorporate the adversary into the training objective:

min
θk

ρ(θk), where ρ(θk) = Ex∼Df
\k

[
max

δ∈S,f(x+δ)=k
L(dk(x+δ;θk), 0)

]
+Ex∼Df

k

[
L(dk(x;θk), 1)

]
,

(3.21)

where Df
\k = {x : f(x) ̸= k, y ̸= k,x ∈ D}, and we assume that ϵ is large enough such that

∀x ∈ Df
\k , ∃δ ∈ S , s.t. f(x+ δ) = k.

The equality constraint f(x+ δ) = k in Eq. (3.21) complicates the inner maximization. We

observe that by dropping this constrain we have the following upper bound of the first loss term:

max
δ∈S,f(x+δ)=k

L(dk(x+ δ;θk), 0) ≤ max
δ∈S

L(dk(x+ δ;θk), 0).

Because we are minimizing L(dk(x + δ;θk), 0), we can instead minimizing this upper bound.

This gives us the unconstrained objective

ρ(θk) = Ex∼Df
\k

[
max
δ∈S

L(dk(x+ δ;θk), 0)
]
+ Ex∼Df

k

[
L(dk(x;θk), 1)

]
. (3.22)
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We can further simply this objective by using the fact that when D is the training set, f can

overfit on D such that D\k = {xi : yi ̸= k} and Dk are respectively good approximations of Df
\k

and Df
k :

min
θk

ρ(θk), where ρ(θk) = Ex∼D\k

[
max
δ∈S

L(dk(x+ δ;θk), 0)
]
+ Ex∼Dk

[
L(dk(x; δk), 1)

]
.

(3.23)

In words, each detector is trained using clean samples of a particular class and adversarially

perturbed samples of other class. The inner maximization is solved using the PGD attack [112].

We use the negative log likelihood loss as L and minimize it using gradient-based optimization.

A generative approach to detecting adversarial examples

The proposed approach to detecting adversarial examples makes use of a trained classifier f to

get the predicted label, but f is not strictly necessary: we can use H = {dk}Kk=1 in place of f to

perform classification.

We can interpret H as an one-versus-the-rest (OVR) classifier. In a K class classification

problem, a OVR classifier consists of K binary classifiers, with each one trained to solve a two-

class problem of separating samples in a particular class from samples not in that class. H differs

from a regular OVR classifier in that dk is trained to distinguish between samples in class k and

adversarially perturbed samples of other classes, but because the loss on adversarial inputs is an

upper bound of the loss on clean samples, the binary classifier should also be able to separate

samples of class k from clean samples of other classes. When H is interpreted as an OVR

classifier, we can get the prediction by

H(x) = argmax
k

dk(x). (3.24)

We can also interpretH as a generative classifier. Our experiments show that dk has a strong

generative property: performing adversarial attacks on dk causes high-level features of class k

57



to appear in the attacked data, and in some cases, the attacked data become valid samples of

class k. Although a similar phenomenon is observed in standard adversarial training [50, 154,

177], our model seems to have a much stronger generative property than a softmax adversarially

robust classier (Fig. 3.3, Fig. 3.5, and Fig. 3.6). These results motivate us to reinterpret dk as

an unnormalized density model (i.e., an energy-based model [101]) of the class-k data. This

interpretation allows us to obtain the class-conditional probability of an input by:

p(x|k) = exp(−E
k
(x))

Zk

, (3.25)

where E
k
(x) = −zdk(x), with zdk being the logit output of dk, and

Zk =

∫
exp(−E

k
(x))dx (3.26)

is an intractable normalizing constant known as the partition function. We can then apply the

Bayes classification rule to obtain a generative classifier:

H(x) = argmax
k

p(k|x) = argmax
k

p(x|k)p(k)
p(x)

= argmax
k

zdk(x), (3.27)

where we have assumed all partition functions Zk, k = 1, ..., K and class priors p(k), k =

1, ..., K to be equal. Because we explicitly model p(x, k), we can use this quantity to reject

low probability inputs which can be any samples that do not belong to class k. In this work

we focus on the scenario where low probability inputs are adversarially perturbed samples of

other classes and the rejected samples are considered as adversarial examples. Because dk(x) is

computed by applying the logistic sigmoid function to zdk(x), and the logistic sigmoid function

is a monotonically increasing function of its argument, the generative classifier (Eq. (3.42)) is

equivalent to the OVR classifier (Eq. (3.24)).

In the following sections, we will use integrated detection to refer to the original detection

approach where we make use an extra classifier f , and generative detection to refer to this alter-
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native approach where we first use the generative classifier Eq. (3.27) to get the predicted label

k̂ of an input x, and then use dk̂ to determine whether x is adversarial input.

3.2.2 Evaluation methodology

Binary classifier robustness evaluation

We use AUC (area under the ROC Curve) as the detection performance metric. AUC is an aggre-

gated measurement of detection performance across a range of thresholds, and can be interpreted

as the probability that the binary classifier assigns a higher score to a random positive sample

than to a random negative example. For a given binary classifier dk, the AUC is computed on the

set in which clean samples from class k are labeled as 1s and adversarially perturbed samples

from other classes labeled are as 0s.

Adversarial example detection performance

Having validated the robustness of individual binary classifier, we evaluate the overall perfor-

mance of the proposed approach to detecting adversarial examples. According to the detection

algorithm, we first obtain the predicted label k̂ = f(x), and then use the k̂-th binary classifier’s

logit output to predict: if zdk̂(x) ≥ T , then x is a clean sample, otherwise it is an adversarially

perturbed sample. For the purpose of this evaluation, we use a universal threshold for all the

detectors: ∀k ∈ {1, ..., K}Tk = T , and report detection performance at a range of different T

values. In practice, however, the optimal value of each detector’s detection threshold Tk should

be determined by optimizing a utility function.

We use D = {(xi, yi)}Ni=1 to denote the test set that contains clean samples, and D′ =

{(xi + δi, yi)}Ni=1 to denote the corresponding perturbed test set. For a given T , we compute the

true positive rate (TPR) on D and false positive rate (FPR) on D′ (here, clean samples are in the
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positive class). These two metrics are respectively defined as

TPR =
1

|D|
|{x : zdk̂(x) ≥ T, k = f(x), (x, y) ∈ D}|, (3.28)

and

FPR =
1

|D′|
|{x : zdk̂(x) ≥ T, k = f(x), f(x) ̸= y, (x, y) ∈ D′}|. (3.29)

We observe that for the norm ball constraint we considered in the experiments, not all perturbed

samples can cause misclassification on f , so we use f(x) ̸= y in the FPR definition to constrain

that only adversarial inputs that actually cause misclassification are counted as false positives.

Given a clean sample x and its groundtruth label y, we consider three approaches to creating

the corresponding adversarial example x′ = xi + δi. Here we will focus on untargeted attacks.

Classifier attack. This attack corresponds to the scenario where the adversary is oblivious to

the detection mechanism. Inspired by the CW attack [24], the adversarial example x′ is computed

by minimizing

L(x′) = zf (x
′)y −max

i ̸=y
zf (x

′)i, (3.30)

where zf (x
′) is the classifier’s logit outputs.

Detector attack. In this scenario adversarial examples are produced by attacking only the

detector. We first construct a detection function H by aggregating the logit outputs of individual

binary classifiers:

zH(x)i = zdi(x). (3.31)

The adversarial example x′ is then computed by minimizing

L(x′) = −max
i ̸=y

zH(x
′)i. (3.32)

According to our detection rule, a low value of a binary classifier’s logit output indicates the

detection of an adversarial example, and therefore by minimizing the negative of the logit output
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we make the adversarial input harder to detect. H can also be used with the CW loss Eq. (3.30)

or the cross-entropy loss, but we find the attack based on Eq. (3.32) to be more effective.

Combined attack. The combined attack is an adaptive method that considers both the classi-

fier and the detector. We consider two loss functions for the combined attack. The first is based

on the adaptive attack of [22] which has been shown to be effective against existing detection

methods. We first construct a new detection function H with Eq. (3.31) and then use H’s largest

logit output maxk ̸=y zH(x)k (low value of this quantity indicates detection of an adversarial ex-

ample) and the classifier logit outputs zf (x) to construct a new classifier g:

zg(x)i =


zf (x)i if i ≤ K,

(−maxj ̸=y zH(x)j + 1) ·maxj zf (x)j if i = K + 1.

(3.33)

The adversarial example x′ is then computed by minimizing the loss function

L(x′) = max
i

zg(x
′)i −max

i ̸=y
zf (x

′)i. (3.34)

In practice we observe that the optimization of Eq. (3.34) tends to stuck at the point where

maxi ̸=y zf (x
′)i keeps changing signs while maxj ̸=y zH(x)j staying as a large negative number

(which indicates detection). In light of the above issues we derive a more effective attack by

combining Eq. (3.30) and Eq. (3.32):

L(x′) =


zf (x

′)y −maxi ̸=y zf (x
′)i if zf (x′)y ≥ maxi ̸=y zf (x

′)i,

−maxi ̸=y zH(x
′)i else.

(3.35)

In words, if x′ is not yet an adversarial example on f (case 1), optimize it for that goal, otherwise

optimize it for evading the detection (case 2).

Adaptive attack for generative detection. We note that the above three attacks are for the origi-

nal detection approach (i.e., integrated detection). The generative detection approach (Sec. 3.2.1)
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does not make use of f and we use Eq. (3.32) to create adversarial examples for generative de-

tection.

3.2.3 Experiments

MNIST

Training. We train four detection models (each consists of ten binary classifiers) by using

different combinations of p-norm and perturbation limit ϵ (Tab. 3.1). The adversarial examples

used for training and validation are computed using PGD attacks of different steps and step-sizes

(Tab. 3.1). At each step of the PGD attack we use the Adam optimizer [92] to perform gradient

descent, both for L2-based and L∞-based attacks. We use 50K samples from the original training

set for training and the remaining 10K samples for validation, and report the test performance

based on the checkpoint which has the best validation performance. All binary classifiers are

trained for 100 epochs, where in each iteration we sample 32 in-class samples as the positive

samples, and 32 out-class samples to create adversarial examples as negative samples.

We use the same neural network architecture as in [112] for the binary classifier models. The

network consists of two convolutional layers each with 32 and 64 filters, and a fully connected

layer with 1024 hidden nodes and 1 output node.

Table 3.1: Training setups for MNIST models.

Training perturbation Training attack steps, step-size Validation attack steps, step-size

L2, ϵ = 2.5 100, 0.1 200, 0.1
L2, ϵ = 5.0 200, 0.1 200, 0.1
L∞, ϵ = 0.3 100, 0.01 200, 0.01
L∞, ϵ = 0.5 100, 0.01 200, 0.01

Robustness of binary classifiers. Tab. 3.2 and Tab. 3.3 show that the first two binary classifiers

d1, d2 are able to withstand PGD attacks with different steps and step-sizes, for both L2-based and

L∞-based attacks. The binary classifiers also exhibit robustness when the attack uses different
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p-norms or perturbation limits than those used for training the model (Tab. 3.4). The models are

also robust when the attacks use multiple random restarts (Tab. 3.5).

Table 3.2: AUC scores of the first two binary classifiers d1, d2 evaluated under different configu-
rations of the PGD attack. In each step of the PGD attack we use the Adam optimizer to perform
gradient descent.

Attack steps, step-size
L∞, ϵ = 0.3 model L∞, ϵ = 0.5 model

d1 d2 d1 d2

200, 0.01 0.99959 0.99971 0.99830 0.99869
2000, 0.005 0.99958 0.99971 0.99796 0.99861

Attack steps, step-size
L2, ϵ = 2.5 model L2, ϵ = 5.0 model

d1 d2 d1 d2

200, 0.1 0.99962 0.99968 0.99578 0.99987
2000, 0.05 0.99927 0.99900 0.99529 0.99918

Table 3.3: AUC scores of the first two binary classifiers d1, d2 evaluated under different config-
urations of PGD attacks. In each step of the PGD attack we use normalized gradient [112] (the
update rules for L2-based and L∞-based attacks are respectively xt+1 = xt − γ ∇f(xt)

∥∇f(xt)∥2 and
xt+1 = xt − γ · sign(∇f(xt))).

Attack steps, step-size
L∞, ϵ = 0.3 model L∞, ϵ = 0.5 model

d1 d2 d1 d2

200, 0.01 0.99962 0.99973 0.99820 0.99901
2000, 0.005 0.99959 0.99971 0.99795 0.99872

Attack steps, step-size
L2, ϵ = 2.5 model L2, ϵ = 5.0 model

d1 d2 d1 d2

200, 0.1 0.99906 0.99916 0.99960 0.99997
2000, 0.05 0.99855 0.99883 0.99237 0.99994

Table 3.4: AUC scores of the first two binary classifiers d1, d2 under cross-norm and cross-
perturbation attacks. The L∞-based attack uses steps 200 and step-size 0.01, and The L2-based
attack uses steps 200 and step-size 0.1.

Model Attack perturbation
Training perturbation

L∞, ϵ = 0.3 L∞, ϵ = 0.5 L2, ϵ = 2.5 L2, ϵ = 5.0

d1

L∞, ϵ = 0.3 0.99959 0.99966 0.99927 0.99925
L∞, ϵ = 0.5 0.99436 0.9983 0.99339 0.99767
L2, ϵ = 2.5 0.99974 0.99969 0.99962 0.99944
L2, ϵ = 5.0 0.96421 0.98816 0.97747 0.99577

d2

L∞, ϵ = 0.3 0.99971 0.99967 0.99949 0.99984
L∞, ϵ = 0.5 0.99778 0.99869 0.99397 0.99961
L2, ϵ = 2.5 0.99965 0.99955 0.99968 0.99987
L2, ϵ = 5.0 0.98268 0.98687 0.98117 0.99986

Adversarial example detection performance. Figure 3.2 shows the performances of integrated

detection and generative detection under different attacks. Combined attack with Eq. (3.35) is the

most effective attack against integrated detection, and is much more effective than the combined
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Table 3.5: AUC scores of d1 evaluated under fixed-start and multiple random-restarts attacks.
The L∞, ϵ = 0.5 model is attacked using L∞, ϵ = 0.5 constrained PGD attack of steps 200 and
step-size 0.01, and the L2, ϵ = 5.0 model is attacked using L2, ϵ = 5.0 constrained PGD attack
of steps 200 and step-size 0.1.

L∞, ϵ = 0.5 model L2, ϵ = 5.0 model

fixed start 0.99830 0.99578
50 random restarts 0.99776 0.99501

attack with Eq. (3.34). Overall, generative detection outperforms integrated detection when they

are evaluated under their respective most effective attack. It is also interesting to see that when the

adversarial examples are created by attacking only the classifier (Eq. (3.30)), integrated detection

is able to perfectly detect these adversarial examples (see the red curve that overlaps the y-axis).

Given that generative detection is more effective than integrated detection, we compare it with

state-of-the-art detection methods [22]. Tab. 3.6 shows that generative detection outperforms the

state-of-the-art method by a large margin.

Attack visualization. We can gain some insight into the robustness of the proposed defense by

visualizing the adversarial attacks. Since generative detection (Sec. 3.2.1) is our most effective

defense, we focus on generating and visualizing attacks against the generative detection. We can

generate attacks against the binary classifier dk to inspect the features dk has learned. This would

be equivalent to performing targeted attacks against the generative classifier Eq. (3.27). Fig. 3.3

shows the clean samples and attacked samples against the generative classifier and the softmax

robust classifier [112]. The generative classifier’s perturbed samples have visible features of

the target class, indicating that individual binary classifiers have learned the high-level features

of each classes, and the perturbations have to change the semantics for a successful attack. In

contrast, the adversarial perturbations generated by attacking the softmax robust classifier mostly

affect the background and are not very interpretable.
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Table 3.6: Mean L2 distortion (higher is better) of perturbed samples when the detection method
has 1.0 FPR on the perturbed MNIST test set and 0.95 TPR on the clean MNIST test set.

Detection method Mean L2 distortion

State-of-the-art [22] 3.68
Ours (with L∞, ϵ = 0.3 training perturbation) 4.40
Ours (with L∞, ϵ = 0.5 training perturbation) 5.65
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Figure 3.2: Performances of integrated detection and generative detection under L∞, ϵ = 0.3
constrained attack.

Natural samples Perturbed samples (generative classifier) Perturbed samples (robust classifier)

Figure 3.3: Clean samples and corresponding perturbed samples produced by performing tar-
geted attacks against the generative classifier and the softmax robust classifier [112]. Targets
from the top row to the bottom row are digit class from 0 to 9. We perform the targeted attack by
maximizing the logit output of the targeted class, using L∞, ϵ = 0.4 constrained PGD attack of
steps 100 and step size 0.01. Both classifiers are trained with L∞, ϵ = 0.3 constraint.
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CIFAR-10

Training. On CIFAR-10 we train two detection models: one trained with L∞, ϵ = 8 constrained

PGD attack of steps 40 and step-size 0.5, and the other trained with L2, ϵ = 80 constrained PGD

attack of steps 20 and step-size 10 (note that the scale of ϵ and step-size here is 0-255, as opposed

to 0-1 as in MNIST). We train the CIFAR-10 binary classifiers using a ResNet model [112, 113].

To speedup training, we take advantage of pretrained classifier: the subnetwork of f that defines

the output logit zf (·)k is already a “binary classifier” that would outputs high values for samples

of class k, and low values for samples of other classes. The final binary classifier is then trained

by finetuning this subnetwork using Eq. (3.23). The pretrained classifier has a test accuracy of

95.01% [113]. At each iteration of training we sample a batch of 300 samples, from which in-

class samples are used as positive samples, and an equal number of out-of-class samples are used

for creating adversarial examples as negative samples. Adversarial examples for training L2 and

L∞ models are both optimized using normalized steepest descent based PGD attacks [114].

Robustness of binary classifiers. Tab. 3.7 and Tab. 3.8 show that both the L∞-based and

L2-based binary classifiers d1 and d2 are able to withstand PGD attacks with different steps and

step-sizes. Tab. 3.9 shows that the binary classifier d1 is robust when the attack uses p-norms

or perturbation limits that are different than those used for training. The binary classifier is also

robust when the attacks use multiple random restarts (Tab. 3.10).

Table 3.7: AUC scores of the first two CIFAR-10 L∞, ϵ = 8 binary classifiers d1, d2 under
L∞, ϵ = 8 constrained PGD attacks of different steps and step-sizes.

PGD attack steps, step-size d1 d2

20, 2.0 0.9224 0.9533
40, 0.5 0.9234 0.9553
200, 0.1 0.9231 0.9550
200, 0.5 0.9205 0.9504
500, 0.5 0.9203 0.9500

Adversarial example detection performance. Consistent with the MNIST result, Figure 3.4

shows that combined attack with Eq. (3.35) is the most effective attack against integrated detec-
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Table 3.8: AUC scores of the first two CIFAR-10 L2, ϵ = 80 binary classifiers d1, d2 under
L2, ϵ = 80 constrained PGD attacks of different steps and step-sizes.

PGD attack steps, step-size d1 d2

20, 10 0.9839 0.9924
50, 5.0 0.9837 0.9922

Table 3.9: AUC scores of the first CIFAR-10 L∞, ϵ = 8 binary classifier d1 evaluated under PGD
attacks of different norms and perturbation limits.

PGD attack AUC

L2, ϵ = 80 (steps 20, step-size 10) 0.9814
L∞, ϵ = 2 (steps 10, step-size 0.5) 0.9841

Table 3.10: AUC scores of CIFAR-10 d1 under fixed start and multiple random restarts attacks.
The L∞, ϵ = 2.0 model is evaluated under PGD attack of steps 10 and step-size 0.5, and the
L∞, ϵ = 8.0 model is evaluated under PGD attack of steps 40 and step-size 0.5.

L∞, ϵ = 2.0 model L∞, ϵ = 8.0 model

fixed start 0.9866 0.9234
10 random starts 0.9866 0.9233

tion, and generative detection similarly outperforms integrated detection. Table 3.11 shows that

generative detection outperforms the state-of-the-art adversarial detection method.

Attack visualization. Same as the MNIST experiment, we visualize adversarial attacks against

the proposed defense. Fig. 3.5 shows perturbed samples produced by attacking the generative

classifier and the softmax robust classifier [112]. Compared to the softmax robust classifier, the

generative classifier’s perturbed samples have more visible features of the attacked classes. We

also follow [154] and use class-conditional Gaussian noise to perform the attacks. Fig. 3.6 shows

that the generated samples of the generative classifier resemble the training samples. In contrast,

most of the generated samples of the softmax robust classifier are not recognizable.
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Table 3.11: CIFAR-10 mean L2 distortion (higher is better) of perturbed samples when the de-
tection method has 1.0 FPR on perturbed set and 0.95 TPR on clean set.

Detection method Mean L2 distortion (0-1 scale)

State-of-the-art [22] 1.1
Ours (with L∞, ϵ = 8.0 training perturbation) 1.5
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Figure 3.4: Performances of generative detection and integrated detection under L∞, ϵ = 8
attack.

Natural samples Perturbed samples (generative classifier) Perturbed samples (robust classifier)

Figure 3.5: Clean samples and corresponding perturbed samples by performing targeted attack
against the generative classifier and the robust classifier [112]. The targeted attack is performed
by maximizing the logit output of the targeted class. We use L∞, ϵ = 12 constrained PGD attack
of steps 30 and step-size 2.0 to produce these samples.
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(a) Seed images sampled from
class-conditional Gaussians

(b) Generated samples of the gen-
erative classifier

(c) Generated samples of the soft-
max robust classifier

Figure 3.6: Seed images and generated images produced by performing targeted adversarial
attack on the generative classifier and the softmax robust classier [112]. We use PGD attack
of steps 60 and step-size 0.5 × 255 to perform L2, ϵ = 30 × 255 constrained attack (same as
in Santurkar et al. [154].

3.2.4 Conclusion

We proposed a principled adversarial example detection method that can withstand adaptive

attacks. The idea is to partition the input space into subspaces based on the classifier’s deci-

sion boundary, train a binary classifier in each subspace to distinguish in-class samples from

adversarially perturbed samples of other classes, and then use the binary classifiers to perform

clean/adversarial example classification in the subspaces. We provide a comprehensive evalua-

tion of the proposed approach, including a thorough evaluation of the robustness of individual bi-

nary classifiers and the overall performance of proposed adversarial example detection approach

under different adaptive attacks. Our results show that our approach not only is able to withstand

adaptive attacks, but also outperforms existing adversarial example detection approaches by a

large margin. Finally, we visualized targeted adversarially attacks against the proposed defense

and the attacked data show high-level features of the target classes and this further corroborates

the robustness of the proposed defense.
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3.3 Worst-Case Out-Of-Distribution Detection

3.3.1 Introduction

Out-of-distribution (OOD) detection, also known as outlier detection, novelty detection, or anomaly

detection, deals with the problem of identifying abnormal or unusual observations. Existing ap-

proaches to OOD detection can be roughly categorized as density estimation-based approach,

reconstruction-based approach, and one-class classification. Density estimation-based approaches

first estimate the density function of the in-distribution data, and then use the learned density

function to identify OOD inputs which are supposed to lie in low-density areas of the density

function. For low-dimensional data, density estimation can be effectively solved using classic

approaches such as kernel density estimators (KDE), histogram estimators, and Gaussian mix-

ture models (GMMs). Density estimation in high-dimensional space is much more challenging,

and more complex, neural network-based approaches, known as deep generative models, have

been developed. Unfortunately, it was observed that certain types of deep generative models

(specifically explicit density models), such as Glow [93], PixelCNN [133], PixelCNN++ [152],

VAEs [91, 146], and RealNVP flow model [43] tend to assign higher likelihood to OOD inputs

than to in-distribution inputs [75, 94, 128, 158]. Reconstruction-based approach aims to learn

the manifold structure of the in-distribution data. The model is optimized to well-construct on-

manifold data points; a high reconstruction error under the model would then detect off-manifold

inputs. Both linear approaches to manifold learning such as PCA and nonlinear approach such

as kernel PCA and autoencoders have been adapted for OOD detection. One-class classifier such

as Support Vector Data Description (SVDD) aims to learn the smallest hypersphere that encloses

the in-distribution data. This can be interpreted as learning a decision boundary that corresponds

to a certain density level set of the target distribution. One-class classification is closely con-

nected to binary classification, and can directly incorporates labeled OOD samples to improve

the model’s performance on OOD detection.
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There is also a plethora of OOD detection methods [1, 31, 73, 102, 107, 116, 142, 155]

that make use of statistics computed from the predictions or intermediate activations of standard

classifiers trained on in-distribution data. For example, Lee et al. [102] fit class conditional

Gaussian distributions using intermediate activations of the classifier, and then use Mahalanobis

distance to compute confidence scores to identify OOD inputs. Liang et al. [107] improves

the effectiveness of a softmax score-based detection approach by using temperature scaling and

adding small perturbations to the input. The performance of OOD detection can be significantly

improved by making use of large quantities of OOD data to train the model. A notable example is

Outlier Exposure (OE) [75], which improves OOD detection by training the model with a large,

diverse OOD dataset. OE has been widely adopted as a baseline method for OOD detection.

While some approaches based on generative models and standard classifiers can yield high

performances on naturally-occurring OOD inputs, several such methods have been shown [9, 17,

117, 156] to be vulnerable to adversarial manipulation of the OOD inputs. This should come

as no surprise as both generative models and standard classifiers themselves are vulnerable to

adversarial attacks [95, 141, 166]. Given the above limitation of current approaches, some recent

work considers the problem of OOD detection in an adversarial setting [9, 17, 72, 117, 156]. Hein

et al. [72] showed that ReLU neural networks produce arbitrarily high confidence predictions far

away from the training data, and used adversarial training [112] on out-distribution to enforce

low confidence predictions in a neighborhood around OOD inputs. A similar idea is explored by

Augustin et al. [9] where the authors also performed adversarial training on in-distribution data.

Meinke and Hein [117] uses a density estimator to provide guarantees on the maximal confidence

around L2 ball for uniform noise. Bitterwolf et al. [17] uses interval-bound-propagation (IBP)

to certificate worst case guarantees for general OOD inputs under a L∞ threat model. Methods

based on adversarial training on real OOD data [9, 72] are by far the most effective approaches

for detecting real adversarial OOD inputs [9, 17].

In this work we apply the AT generative model to worst-case OOD detection. Specifically,

following Sec. 2.2.3 and Eq. (2.4), we train the detection model by maximizing the following
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objective:

J(D) = Ex∼pdata [logD(x)] + Ex∼p0 [ min
x′∈B(x,ϵ)

log(1−D(x′)))], (3.36)

where pdata is the normal data distribution, and p0 is a large and diverse OOD dataset. It can

be seen that our approach also performs adversarial training on OOD data, but unlike the above

work [9, 17, 72, 117, 156], we focus on training a binary classifier to solve the worst-case OOD

detection problem. Compared to the above approaches’ multiclass classification objectives which

often have some optimization issues [9], our training objective is a simple binary classification

objective and is much easier to optimize.

3.3.2 Experiments

Training

We evaluate the proposed OOD detection approach on CIFAR-10 [96], CelebA-HQ 256 [89],

AFHQ-CAT 256 [32], and LSUN-Church 256 [208]. The training setups for the later three

datasets can be found in Sec. 2.5.1. For CIFAR-10, we use the 80 million tiny images dataset [172]

as the p0 dataset, and train the model with in- and out-distribution adversarial training [9], where

in-distribution AT uses a L2-ball of radius 0.25 and PGD attacks of steps 10 and step-size 0.1,

and out-distribution AT uses a L2-ball of radius 0.5 and PGD attacks of steps 10 and step-size

0.1. Following Augustin et al. [9], we use a batch size of 128 and use the recommended Au-

toAugment policy from Cubuk et al. [36]. The model is trained for 400 epochs using a SGD

optimizer with a fixed learning rate of 0.1.

Results

Tab. 3.12 shows that our model achieves comparable OOD detection performance to the state-

of-the-art method of RATIO [9]. We note that OE, RATIO, and JEM are all classifier-based

approaches; they perform OOD detection by utilizing a classifier that has low confidence pre-
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dictions on the out-distribution data (normal or worst-case). In RATIO, the worst-case out-

distribution data is computed by performing PGD attacks on 80 million tiny images [172],

whereas in JEM it is computed via Langevin dynamics initialized from uniform random noise.

RATIO and our approach’s strong worst-case OOD detection performances demonstrates the

benefits of using a real and diverse out-distribution dataset to train the model. Our approach does

not make use of class labels and therefore can be considered as a unsupervised variant of RATIO.

Tab. 3.13 shows that on CelebA-HQ 256, AFHQ-CAT 256, and LSUN-Church 256 our ap-

proach similarly achieves good standard and worst-case OOD detection performances. Although

the models are trained with the ImageNet as the OOD dataset, they generalize to unseen OOD

datasets even in the worst-case scenario. Note that we have used the same models as in Sec. 2.5.2

for OOD detection evaluation, so the models also have a strong generative property (see Fig. 2.9

and Fig. 2.10). These results suggest that the models have capture the data distributions so that

they can be used both for sample generation and for normal and worst-case OOD detection.

Table 3.12: CIFAR-10 standard and worst-case OOD detection results (AUC scores). We use the
same settings of AutoAttack [33], number of OOD samples, and perturbation limit as in [9] to
compute adversarial OOD samples. Results of OE, JEM, and RATIO are from [9].

OOD dataset
Classifier-based approach

Ours
OE [75] JEM [61] RATIO [9]

Standard OOD detection

SVHN 99.4 89.3 96.5 93.5
CIFAR-100 91.4 87.6 91.6 88.7
ImageNet 89.8 86.7 91.3 89.7
Uniform Noise 99.5 11.8 99.9 100

Worst-case OOD detection

SVHN 0.6 7.3 81.3 83.0
CIFAR-100 2.7 19.2 73.0 70.6
ImageNet 1.5 21.2 73.5 72.5
Uniform Noise 43.1 2.5 99.8 100
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Table 3.13: Standard and worst-case OOD detection results (AUC scores) on 256×256 datasets.
Adversarial OOD samples are computed by maximizing the model output in a L2-ball of radius
7.0 (0-1 scale) around OOD samples via Auto-PGD [33] with 100 steps and 5 random restarts.
Results are computed using 1024 in-distribution samples and 1024 out-distribution samples.

OOD dataset
In-distribution dataset

CelebA-HQ 256 AFHQ-CAT 256 LSUN-Church 256

Standard OOD detection

Uniform noise 1.0 1.0 0.9476
SVHN 0.9967 0.9944 0.9668
CIFAR-10 0.9978 0.9930 0.9081
ImageNet validation set 0.9986 0.9971 0.9409
AFHQ-CAT 256 0.9984 N/A 0.9691
CelebA-HQ 256 N/A 0.9900 0.9794
LSUN-Church 256 0.9999 0.9997 N/A

Worst-case OOD detection

Uniform noise 1.0 1.0 0.9330
SVHN 0.9928 0.9880 0.9566
CIFAR-10 0.9952 0.9859 0.8857
ImageNet validation set 0.9973 0.9937 0.9270
AFHQ-CAT 256 0.9958 N/A 0.9587
CelebA-HQ 256 N/A 0.9773 0.9714
LSUN-Church 256 0.9998 0.9991 N/A

3.3.3 Conclusion

In this section we investigate the AT generative model’s application to worst-case OOD detection.

On CIFAR-10, our approach achieves comparable performance to the state-of-the-art approach

of RATIO [9]. Our results on CelebA-HQ 256 and AFHQ-CAT 256 are especially encouraging:

the model not only is capable of generating diverse and realistic data samples, but also achieves

a good worst-case OOD detection performance on novel OOD datasets. This suggests that the

model has correctly captured the data distribution, and demonstrates the benefits of the proposed

approach to learning energy-based model by contrasting in-distribution data with adversarially

perturbed real OOD data. In terms of applications, the proposed model can be used both for

content creation and for detecting adversarially created fake content.
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3.4 Generative Robust Classification

In this section we apply the AT generative model introduced in Chapter 2 to generative clas-

sification. We first review the general idea behind discriminative classification and generative

classification, and then move on to the proposed generative robust classifier. In the experiment

section we compare the generative classifier with the discriminative classifier in terms of standard

accuracy, robust accuracy, and interpretability. We then provide ablation on how model capac-

ity, weight decay regularization, training perturbation size, data augmentation, and combining

in- and out-distribution adversarial training affect the performance of the binary classifiers. We

conclude

3.4.1 Introduction

Discriminative classification and generative classification are two different approaches to solving

classification problems. In discriminative classification, we directly model the posterior distribu-

tion of the class labels p(k|x). This posterior distribution is typically obtained by applying the

softmax function to the logit outputs of the classifier:

p(k|x) = exp(ak)∑K
j=1 exp(aj)

, (3.37)

where ak is the model’s k-th output. Because the discriminative classifier makes use of the

softmax function, it is also known as softmax classifier. The discriminative classifier is in fact

modeling the decision boundary between different classes. An alternative approach is to first

model the class-conditional distributions p(x|k) and then obtain the posterior distribution using

Bayes’ theorem

p(k|x) = p(x|k)p(k)
p(x)

, (3.38)

where the prior distribution p(k) can be estimated from the fractions of the training set data points

in each of the classes. This is the generative approach to solving classification problems. It seems
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that in order to solve the classification problem, the generative classifier needs to solve a more

complex problem of modeling the class-conditional distributions. Indeed, the class-conditional

distribution may contain a lot of structure that has little effect on p(k|x) [16]. But directly

modeling p(x|k) can be advantageous when we want to use p(x|k) to detect out-of-distribution

inputs.

Deep neural network-based discriminative classifier is the dominant approach to solving clas-

sification problems. A widely known issue of this approach is the existence of adversarial ex-

amples. Various defense mechanisms have been proposed to address adversarial examples, with

Adversarial training (AT) being the most successful one. AT improves the classifier’s robust-

ness by training the classifier against adversarially perturbed inputs. One issue of AT is that

adversarially robust classifiers tend to have a lower accuracy on clean data than standard, non-

robust classifiers. Tsipras et al. [177] conjecture that the reduced accuracy on clean data is the

consequence of robust classifiers learning fundamentally different features than standard clas-

sifiers. Recent work on AT has been focus on using data augmentation (combined with model

weight averaging [82]) [145], synthetic training data produced by generative models [60, 145],

and high capacity models [4, 59, 194] to improve the standard and robust accuracies. Discrimi-

native classifier also has the issue of producing overconfident predictions on out-of-distribution

inputs. Augustin et al. [9] propose to address this problem by combining in- and out-distribution

adversarial training to enforce low confidence on adversarial out-of-distribution samples.

Compared to discriminative robust classification, generative robust classification is a less-

explored area. Generative robust classification requires the density model pθ(x|k) to have low

likelihood outputs on regular as well as adversarial out-of-distribution samples, which is not

achievable with existing density models. In this work we explore modeling p(x|k) with the

proposed AT generative model, and then using these conditional models to perform generative

robust classification. We demonstrate that this generative robust classifier achieves comparable

standard and robust classification accuracies to a state-of-the-art softmax robust classifier, and at

the same time is more interpretable. One issue with the proposed generative classifier is that it
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does not easily scale to problems with many classes. However, we note there are many practical

problems with limited number of classes [47], and our approach may find applications in this

kind of problems.

We note that generative classification is also investigated in our previous work [206]. In

terms of the formulation of the generative classifier, both [206] and this work use AT to train a

binary classifier to model the unnormalized density function of the class-conditional data. The

key difference is that this work does not assume that the normalizing constants of the density

functions of different classes to be equal, and instead treat the normalizing constants as learnable

parameters of the generative classifier. In terms of implementation, our previous work’s genera-

tive classifier is ten times larger than the softmax robust classifier [112], and yet its performance

is much worse [174]. In summary, our specific contributions in this work are:

• We show that when the overall model capacities are similar, the generative classifier achieves

comparable standard and robust accuracies to a baseline softmax robust classifier. In par-

ticular, the generative classifier is much more robust when the test perturbation is large.

• We study the interpretability of the generative classifier and show that the generative classi-

fier is more interpretable in terms of the qualities of generated samples and counterfactuals.

• We propose to combine in- and out-distribution adversarial training to improve the model’s

robustness.

• We perform comprehensive ablation to study how calibration, model capacity, weight de-

cay regularization, training perturbation size, data augmentation, and combining in- and

out-distribution AT affect the model performance.

3.4.2 Generative robust classification

In a K class classification problem, the proposed generative classifier consists of K binary classi-

fiers, with the k-th binary classifier trained to distinguish clean data of class k from adversarially

perturbed data of other classes. Following Yin et al. [207], denote the data distribution of class k
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as pk, the out-of-distribution dataset as p0, then the k-th binary classifier Dk : X ⊆ Rd → [0, 1]

is trained by maximizing the following objective:

J(Dk) = Ex∼pk [logDk(x)] + Ex∼p0 [ min
x′∈B(x,ϵ)

log(1−Dk(x
′)))], (3.39)

where B(x, ϵ) is a neighborhood of x: B(x, ϵ) = {x′ ∈ X : ∥x′ − x∥2 ≤ ϵ}. Dk is defined

as Dk(x) = σ(dk(x)), where σ is the logistic sigmoid function, and dk : Rd → R is a neural

network with a single output node.

As is discussed in Yin et al. [207], training with a larger perturbation ϵ causes the model to

learn to generate more realistic and diverse samples of pk. Unfortunately, there is typically a

trade-off between Dk’s discriminative capability and its generative capability. In this work we

focus on optimizing the model’s (standard and robust) discriminative performance by choosing

an approximate ϵ to train the model. Yin et al. [207] also suggests that the p0 should be diverse

in order for Dk to better capture pk. However, in order to have a fair comparison with the

discriminative classifier which does not use additional data, we use the the mixture distribution

of other classes as the out-of-distribution dataset: p0 = p\k =
1

K−1

∑
i=1,...,K,i ̸=k pi.

Following Yin et al. [207], we interpret dk(x) as an unnormalized density model of p(x|k).

We can obtain the normalized density function by

p(x|k) = exp(dk(x))

Zk

, (3.40)

with Zk being the partition function:

Zk =

∫
exp(dk(x))dx. (3.41)

We can then apply the Bayes classification rule to obtain a generative classifier g(x) : Rd →
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{1, ..., K}:

g(x) = argmax
k

p(k|x)

= argmax
k

p(x|k)p(k)
p(x)

= argmax
k

exp(dk(x))p(k)

Zk

,

(3.42)

Calibration

In general, Zk is intractable, and Zk of different classes are not equal, so g(x) is also intractable.

While Zk cannot be computed directly, we can treat Zk as learnable parameters of the generative

classifier, and obtain their values by optimizing the generative classifier’s performance on a val-

idation set. Absorbing Zk into the exp and assuming that p(k) of different classes are equal, the

generative classifier can be simplified as

g(x) = argmax
k

dk(x) + ck, (3.43)

where the calibration constants {c1, ..., cK} can be learned on a validation set.

Combining in- and out-distribution adversarial training

The robustness of the generative classifier can be further improved by combining in- and out-

distribution adversarial training. Consider an adversarially perturbed sample x′ = x+ δ, where

x is a clean sample of class k, and δ is an adversarial perturbation. In order to correctly classify

x′, the generative classifier Eq. (3.43) needs satisfy

∀i ∈ {1, ..., K}\{k} dk(x+ δ) + ck > di(x+ δ) + ci. (3.44)

However, in Eq. (3.39), dk is only trained to have high outputs on clean samples of pk, not per-

turbed samples of pk. We can increase dk’s outputs on perturbed samples of pk by also performing
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in-distribution adversarial training:

J(Dk) = Ex∼pk [ min
x′∈B(x,ϵ1)

logDk(x
′)] + Ex∼p\k [ min

x′∈B(x,ϵ2)
log(1−Dk(x

′)))]. (3.45)

By explicitly training dk to have high outputs on adversarially perturbed samples of class k, we

make Eq. (3.44) easier to satisfy. In Sec. 3.4.4 we provide an ablation on combining in- and

out-distribution adversarial training.

3.4.3 Experiments

Training setup

We evaluate the generative classifier on the CIFAR-10 dataset, a widely used benchmark for ro-

bust classification [34]. The proposed generative classifier consists of K binary classifiers in a K

class classification problem. In order to have a fair comparison with the discriminative approach

which typically uses a single model, we limit the capacity of the binary classifier so that the

overall capacities of these two approaches are similar. Specifically, we use a customized model

“ResNet18Thinner” (see also in Fig. 3.12) to train the binary classifiers. The ResNet18Thinner

model is an ResNet18 architecture with a width multiplier of 0.5, and has 10M parameters. The

baseline discriminative robust classifier [49] is based on the ResNet50 architecture which has

90MB parameters.

All the binary classifier are trained with the SGD optimizer using a batch size of 128 and

weight decay of 10−4 for 2000 epochs. For classes 2, 3, 4, 5, 7, 8, 9 we use a starting learning

rate of 0.1, and for classes 0, 1, 6 we find the 0.1 learning rate being too high and instead use a

starting learning rate of 0.05. The learning rate is reduced to 0.01 after epoch 1500. The training

perturbation size is 0.3 (L2 norm), in contrast to the perturbation size of 0.5 used in training the

softmax robust classifier. Following the common practice in the adversarial machine learning

literature [148], we use early stopping on the CIFAR-10 test set to select the model.
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Evaluation

We evaluate the generative classifier and softmax robust classifier on the clean test set (clean

accuracy) and the adversarially perturbed test set (robust accuracy). The adversarial perturbations

are computed by performing untargeted adversarial attacks against the classifiers. Given a test

sample x ∈ Rd and its label y, for the softmax robust classifier f , the adversarial perturbation δ∗

is computed by solving

δ∗ = argmax
δ∈Rd,∥δ∥p≤ϵ

L(f(x+ δ), y), (3.46)

where L is the cross-entropy loss. We solve this optimization using the PGD attack [112]. For

the generative classifier, it has been shown that directly optimizing the cross-entropy loss is

suboptimal [174], so we instead use the attack proposed by Tramer et al. [174]. The attack first

computes

δ∗
k = argmax

δ∈Rd,∥δ∥p≤ϵ

dk(x+ δ) (3.47)

for k = 1, ..., K, k ̸= y and then computes δ∗ by

δ∗ = argmax
k=1,...,K,k ̸=y

dk(x+ δ∗
k). (3.48)

Standard accuracy and robust accuracy

Tab. 3.14 shows that the generative classifier has lower standard accuracy but higher robust ac-

curacy compared to the softmax robust classifier. We also evaluate these two classifiers using

the test set perturbed with different levels of adversarial noise. Fig. 3.7 shows that when there

is no perturbation or when the test perturbation is small, the softmax robust classifier has better

performance, and when the test perturbation is of moderate size or large size, the generative clas-

sifier outperforms the softmax robust classifier, and the larger the test perturbation is, the larger

the performance gap is.

In adversarial machine learning, it has been observed that there is a trade-off between stan-
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dard accuracy and robust accuracy [177] — training with adversarially perturbed data allows

the classifier to learn more robust and semantically meaningful features to achieve improved ro-

bust accuracy at the expense of the standard accuracy. Engstrom et al. [49] further show that

larger training perturbations cause the model to perform better under large test perturbations but

worse under small or no test perturbations. As Fig. 3.13 suggests, this trade-off between stan-

dard performance and robust performance also exists when we use Eq. (3.39) to train the binary

classifiers. Note that the training perturbation of the generative classifier is already much smaller

than that of the softmax robust classifier (0.3 vs. 0.5). Based on these results, we conjecture

that the generative classifier is able to learn more semantically meaningful features by capturing

the class-conditional distributions and therefore has a better robust accuracy. Indeed, Tab. 3.15,

Fig. 3.8, and Fig. 3.9 show that the generated samples of the generative classifier have better

quality than that of the softmax robust classifier, suggesting that the generative classifier has a

better captured the class-conditional distributions.

Table 3.14: CIFAR10 standard accuracy and robust accuracy (ϵtest = 0.5, L2 norm).

Model Standard accuracy Robust accuracy

Generative classifier 88.12% 72.27%
Softmax robust classifier[49] 90.83% 70.17%

0.0 0.2 0.4 0.6 0.8 1.0
Test perturbation size (L -based distance)

0.4

0.5

0.6

0.7

0.8

0.9

Ro
bu

st
 a

cc
ur

ac
y 

(1
K 

te
st

 sa
m

pl
s)

Robust accuracy evaluated under different test perturbations
Generative classifier
Softmax robust classifier

0.00 0.01 0.02 0.03 0.04 0.05
Test perturbation size (L -based distance)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ro
bu

st
 a

cc
ur

ac
y 

(1
K 

te
st

 sa
m

pl
es

)

Robust accuracy evaluated under different test perturbations
Generative classifier
Softmax robust classifier

Figure 3.7: The performance of the generative classifier and the softmax robust classifier evalu-
ated under different test perturbation sizes.
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Interpretability

We also study the interpretability the generative classifier. We use three approaches to evaluate

the classifier’s interpretability. First, we visualize the “learned concepts” of the classifier by gen-

erating synthetic samples that cause high-confidence predictions. This allows us to understand

how the model makes prediction in general and can be considered as a global interpretability

method [124]. Second, we use integrated gradient (IG) [165] to visualize how the input features

affect the prediction. This helps us understand why did the model make a certain prediction

for an instance and can be considered as a local interpretability method [124]. And lastly, we

consider counterfactual explanation [180] which is also used by previous work [9] to evaluate

the interpretability of adversarially robust classifiers. To access the quality of generated samples

(or counterfactuals), we compute the FID [77] between the training samples and the generated

samples. FID is a distance metric that measures the similarity between two sets of data samples,

and is widely used for evaluating the quality of images produced by generative models.

Generated samples. To generate samples that cause high-confidence predictions, we follow San-

turkar et al. [154] and fit a multivariate normal distribution to the class-conditional data and then

generate seed images by sampling from the this normal distribution. We then generate samples

by performing targeted PGD attacks against the model with the seed images. We use a large per-

turbation limit so that the generated samples cause high-confidence predictions. Fig. 3.8 shows

the seed images and generated images of the generative classifier and the robust discriminative

classifier. In both cases, the generated samples resemble the class-conditional data, suggesting

the classifiers have captured the high-level features of the target classes. Qualitatively, generated

samples of the generative classifier have less artifacts and the foreground objects are more rec-

ognizable. To provide a quantitative assessment, we compute the FID of the generated samples.

Tab. 3.15 shows that the generated samples of the generative classifier has lower FID than that

of the softmax robust classifier under different configurations of the PGD attack, suggesting that

the generated samples of the generative classifier more closely resemble the training data. We

83



note that samples produced with different PGD attacks have different FIDs, but the samples gen-

erated by the generative classifier have consistently lower FIDs than that of the softmax robust

classifier.

Counterfactuals. The idea of counterfactual explanation is to find the minimum change to an

input sample such that the modified sample is classified to a predefined target class. To generate

counterfactuals we take input samples and then perform targeted adversarial attacks against the

classifier. For standard, non-robust models, this process would lead to adversarial examples [57]

which do not have visually meaningful changes. If on the other hand the classifier has captured

the class-specific features, then the classifier’s decisions change only when class-specific features

appear in the attacked data. Fig. 3.9 shows both the generative classifier and softmax robust clas-

sifier are able to generate plausible counterfactual explanations. The counterfactuals generated

with the two approaches are qualitative similar in terms of the emergence of class specific fea-

tures. We again use FID as a quantitative measure and Tab. 3.15 shows that the counterfactuals

of the generative classifier has better quality in terms of the FID score.

Table 3.15: FID of generated samples and counterfactuals of the generative classifier and softmax
robust classifier under different PGD attacks.

Generated samples Counterfactuals

L2 PGD attack of steps 7 and step-size 1.0

Generative classifier 50.38 37.92
Softmax robust classifier [49] 61.84 43.65

L2 PGD attack of steps 10 and step-size 1.0

Generative classifier 54.78 42.33
Softmax robust classifier [49] 66.15 50.85

Integrated gradient interpretability. Fig. 3.10 shows the integrated gradient (IG) masks gen-

erated with different classifiers. The IG mask highlights the features that affect the prediction.

The highlighted regions of the IG masks of the generative classifier and softmax robust classifier

align with the foreground objects in the input images. The highlighted regions of the IG masks
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(a) Seed images (b) Generated samples (genera-
tive classifier)

(c) Generated samples (softmax
robust classifier)

Figure 3.8: Seed images and generated images generated by performing targeted adversarial
attack on the generative classifier and the robust discriminative classifier. The PGD attack is
L2-based attack of steps 10 and step-size 1.0.

(a) Seed images (b) Counterfactuals for the gener-
ative classifier

(c) Counterfactuals for the soft-
max robust classifier

Figure 3.9: Seed images and counterfactuals generated by performing targeted adversarial attack
on the generative classifier and the robust discriminative classifier. The PGD attack is L2-based
attack of steps 10 and step-size 1.0.

of the regular softmax classifier are scattered and do not align well with the foreground objects.

3.4.4 Ablation study

In this section we study how calibration, model capacity, weight decay regularization, training

perturbation size, data augmentation, and combining in- and out-distribution adversarial training
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(a) Input images from class 0 to class 9

(b) IG masks generated with the generative classifier

(c) IG masks generated with the softmax robust classifier

(d) IG masks generated with the regular softmax classifier

Figure 3.10: Integrated gradients (IG) masks generated by different classifiers

affect the model performance. To make the analysis more concrete, we study how the above

factors affect the performance of individual binary classifiers. We consider both the normal

and adversarial scenarios, where in the normal scenario we evaluate the binary classifier on the

task of separating clean in-distribution test samples from out-distribution test samples, and in

the adversarial scenario we evaluate the binary classifier on the task of separating adversarially

perturbed in-distribution and out-distribution test samples. We use the AUC (area under the ROC

curve) score as the performance metric.

Calibration

The calibration parameters {c1, ..., cK} are learned by minimizing the cross-entropy loss of the

generative classifier Eq. (3.43) on the training set of CIFAR10. We use early stopping on the test

set to select {c1, ..., cK}. The binary classifiers turn out to be well-calibrated, and the calibration
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does not have much effect on the generative classifier’s performance (Tab. 3.16). Tab. 3.17 shows

the values of the learned {c1, ..., cK} (the initial values of {c1, ..., cK} are set to zeros). Fig. 3.11

shows the histogram of dk’s outputs on samples of class k and samples of other classes. It can

be seen that the learned {c1, ..., cK} are tiny compared to the outputs of dk, so they do not have

much effect on Eq. (3.43). We note that although the calibration does not have much effect on

the evaluated dataset (CIFAR-10), it does not by itself exclude the possibility that for certain

datasets the calibration can be helpful.

Table 3.16: Accuracies on the training set and test set before and after calibration.

Training accuracy Test accuracy

Generative classifier 95.25% 88.12%
Generative classifier after calibration 95.43% 88.15%

Table 3.17: The values of the learned {c1, ..., cK}.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.068 -0.015 0.066 0.067 -0.037 0.066 -0.068 -0.067 -0.058 0.062
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Figure 3.11: Histogram of dk’s outputs on samples of class k and samples of other classes,
k = 1, 2, 3. (Note that the x axes of the subplots are shared.)
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Model capacity and regularization

Consistent with the previous findings [4, 59, 112, 194], we find models with a higher capacity

tend to have better robustness (Fig. 3.12). Note that overfitting happened even with ResNet18Thinner,

the model with the lowest capacity. To mitigate overfitting, we apply weight decay and Fig. 3.12

shows that the weight decay help the model achieve better robustness.
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Figure 3.12: Adversarial AUC score of the class 1 models of different capacities.
“ResNet18Thin” and “ResNet18Thinner” are two ResNet18 models respectively with a width
multiplier of 0.75 and 0.5.

Training perturbation size.

Similar to Tsipras et al. [177], in Fig. 3.13 we observe a decline in standard performance as the

training perturbation size increases. Meanwhile, training with a larger perturbation helps the

model achieve better adversarial robustness.

Data augmentation

Data augmentation is a widely used regularization technique for reducing overfitting in learning

standard classification models. Unfortunately, the use of data augmentation in training robust

classifiers is not as successful. On CIFAR-10, beyond the widely adopted random padding and
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Figure 3.13: Standard and adversarial performances of the class 1 model when trained with
different perturbation sizes.

cropping augmentation strategy, none of the more sophisticated augmentation techniques are

beneficial for improving model robustness [59, 148]. Rebuffi et al. [145] study this phenomenon

and find that when combined with model weight averaging [82], heuristics-driven augmentation

techniques such as Cutout [41], CutMix [209] and MixUp [213] can improve robustness. How-

ever, data-driven data augmentation approaches such as AutoAugment [36] have not been found

to be helpful. In contrast to these work, we find it straightforward to apply AutoAugment in our

training to reduce overfitting and obtain better robustness (Fig. 3.14).

Combining in- and out-distribution adversarial training

Fig. 3.15 shows the effect of combining in- and out-distribution adversarial training. It can

be seen that combining in- and out-distribution AT helps the model achieve better adversarial

performance at the expense of decreased standard performance.
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Figure 3.14: Adversarial AUC score of the class 1 model when trained with different data aug-
mentation policies.
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Figure 3.15: Clean and adversarial AUC scores of the class 1 model when trained with combined
AT and out-distribution AT only.

3.4.5 Conclusion

We have investigated applying the AT generative model to learning class-conditional distribu-

tions and then using the conditional models to perform generative classification. Compared to

the baseline softmax robust classifier, the generative classifier achieves comparable performance

when there is no adversarial perturbation or when the perturbation is small, and much better

performance when the perturbation is of moderate or large sizes. The generated samples and

counterfactuals produced by the generative classifier are also more similar to the training data
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(as measured by FID) than that of the softmax robust classifier, suggesting that the generative

classifier has better captured the class-conditional distributions. We note that the above results

are obtained when we use a much smaller model for the binary classifiers so that the overall

capacities of the generative classifier and softmax classifier are similar. We further show how

model capacity and training perturbation size affect the model performance in a similar way as

they would in standard adversarial training. Compared to the softmax robust classifier, we find it

much easier to apply advanced augmentation such as AutoAugment in our training. We leave the

evaluation of other data augmentation such as CutMix and MixUp to future work. The analysis

in [207] also suggests that using a diverse out-distribution dataset improve the generative model-

ing performance of the binary classifier, but it is unclear whether using auxiliary OOD data helps

improve the binary classifier’s discriminative capability. Of related work is [9] which show that

incorporating auxiliary OOD data helps the robust classifier achieves better standard and robust

accuracies on CIFAR-10. In addition, some recent work show that generated in-distribution data

produced by some generative models can be leveraged to achieve better robustness [60, 145].

We leave the investigation of using auxiliary OOD data and generated in-distribution data in our

approach to future work.
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Chapter 4

Conclusions and Future Work

Not being able to correctly estimate the likelihood of out-of-distribution data is a key limitation

of existing generative models. In this work we introduce an adversarial training-based approach

to learning energy-based models (EBMs) that overcome this limitation. Inspired by recent work

that shows adversarially robust classifier has a strong generative property, we investigate training

a binary classifier to separate in-distribution and adversarially perturbed out-distribution data.

Our analysis shows that in this setup the binary classifier learns a special kind of energy function

that models the support of the data distribution, and the learning process is closely related to

MCMC-based maximum likelihood learning of EBMs. The training objective of the binary

classifier can also be interpreted as a maximin two-player zero-sum game, and is closely related

to GANs’ minimax game. Based on the above analysis, we propose improved training techniques

for generative modeling with adversarial training (AT), and show that this AT generative model is

capable of generating realistic and diverse images. Our quantitative evaluation shows that the AT

generative model achieves competitive image generation performance to state-of-the-art EBMs,

and does not have the training stability issues of standard EBMs. Our evaluation of the model on

worst-case OOD detection (Chapter 3) also indicates that the model has the expected behavior

on normal and worst-case OOD data. Our results demonstrate the viability of the AT approach to

generative modeling and OOD detection, suggesting that AT is a competitive alternative approach
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to learning EBMs.

One interesting property of the AT generative model is its capability of transforming out-

of-distribution samples into in-distribution samples. This makes the model particularly suitable

for image-to-image translation and image restoration tasks such as denoising and inpainting. In

Chapter 2 we provide a demonstration of the AT generative model’s applications to these tasks.

We note that the AT generative model is not specifically trained to perform these tasks, and a

single model can be applied to all of these tasks without retraining or finetuning. However, a

more systematic evaluation and comparison with existing approaches may be needed in order to

fully understand the strengths and weaknesses of the proposed solution to these problems.

In Chapter 3 we investigate applications of the AT generative models to detecting adversarial

examples, detecting worst-case OOD inputs, and generative robust classification. For a K class

classification problem, the proposed solution to detecting adversarial examples consists of K

binary classifiers, with each one trained to distinguish clean samples of a particular class from

adversarially perturbed samples of other classes. Based on the analysis in Chapter 2, we can view

the binary classifiers as unnormalized density models of the class-conditional distributions, and

interpret the process of detecting adversarial examples as using these density models to identify

OOD inputs. The proposed defense not only outperforms existing approaches by a large margin,

but also is robust to adaptive attacks, as demonstrated by our mathmatical justification, systematic

evaluation, and independent verification by other researchers. Adversarial training is widely

considered reliable defense against adversarial attacks, and has become the de facto approach

to training adversarially robust classifiers. Our novel approach to detecting adversarial examples

allows us to employ adversarial training to train a robust defense, and unifies robust classification

and detecting adversarial examples under the same framework of robust optimization.

Our result on worst-case OOD detection shows that the AT generative model not only is

able to generate diverse and realistic images, but also has low probability outputs on normal and

worst-case OOD inputs. This suggests that the AT generative model can be applied to both con-

tent generation and verification. This is in stark contrast with existing generative models which
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can generate realistic data samples but are unable to tell whether the input belongs to the training

distributions. However, this generative property on in-distribution data and discriminative prop-

erty on OOD data is achieved by using a large and diverse OOD dataset to train the model. For

a given task, such a dataset may not be readily available.

We explored generative classification by using the AT generative model to learn the class-

conditional distributions. Our result shows that under the condition of similar model capacity,

the generative classifier achieves comparable performance to a baseline softmax robust classifier

when there are no adversarial perturbation or when the test perturbation is small, and much

better performance when the test perturbation size exceeds the training perturbation size. The

generative classifier is also more interpretable than the softmax robust classifier in the sense that

it can generate synthetic samples or visual counterfactuals that more closely resemble the training

data. As the generative classifier needs to train separate models for each classes, this approach

may not scale well to problems with a large number of classes.

The main drawbacks of the AT generative model are that it requires a large, diverse OOD

dataset to train, and its image generation performance falls behind state-of-the-art generative

models such as GANs and diffusion models. As discussed in Chapter 2, the diversity of the

OOD dataset has a large impact on the AT generative model’s performance, so the OOD dataset

should be chosen carefully. One possible issue that can affect the model’ generative modeling

performance is overfitting, a problem that also plagues other related generative models such as

GANs. In future work, we plan to improve the AT generative model by mitigating overfitting

using transfer learning, (differentiable) data augmentation, and self-supervised training. In addi-

tion to continuing improving the AT generative model, we are also interested in applying the AT

generative model to sequential data.
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