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Overall Dissertation Abstract  

 This dissertation seeks to investigate measurement problems related to using multi-item 

measures in two classes of quasi-experimental designs. It features three chapters with each 

chapter functioning as an independent paper. The first paper focuses on the Difference-in-

Difference design and uses simulation to outline the possible effects of sum scoring and 

measurement invariance when using survey scale like measures. The second paper shows how 

this works empirically by rescoring an already completed paper with different IRT methods and 

showcasing the resultant differences. Finally, the third paper investigates the viability of using a 

measurement model to integrate information from multiple raters in RD designs. Together the 

three papers help improve the rigor of quasi-experimental evaluations by integrating advances in 

measurement with those in causal inference.     

Keywords: quasi-experimental; program evaluation; measurement; causal inference; methods 
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Dissertation Overview 

 Often in education the outcomes policymakers and researchers are interested in are intangible, 

also known as latent, variables. These socio-emotional and cognitive outcomes are typically 

measured using tools that use multiple items to estimate the construct of interest. For example, 

survey scales, a set of related survey questions, are commonly used to measure psychological 

constructs like parental perceptions of school engagement (Schueler et al., 2017). Other multi-

item tools include observer protocols and tests. When used in any type of analysis, including 

evaluations, the multiple items from these tools must be combined in some way.  

 Prior work by Soland, Kuhfeld, and Edwards (2022) has delineated the many measurement 

decisions surrounding the combination of these items that can have impacts on analysis. 

Unfortunately, many researchers are unaware of the importance of these decisions and default to 

the simplest approach, sum scoring (D. Bauer & Curran, 2015). Flake et al. (2017) found that 

only 21% (37 out of 177) of the studies they reviewed used a latent variable model rather than a 

sum score and a mere 2% of author-developed scales reported any evidence of internal structure 

(3 out of 124). Given the strong assumptions underlying sum scoring (McNeish & Wolf, 2020), it 

is not surprising that using sum scores can bias parameters in complex procedures like growth 

curve modeling (Kuhfeld & Soland, 2020).  

 Importantly, for education policy, sum scoring can also bias causal estimates. Work with 

experiments has shown that sum scoring can result in treatment estimates that are up to 25% 

understated (Soland, 2022) while in regression discontinuity designs treatment effect estimates 

can be understated by up to 40% (Soland, Johnson, et al., 2022) . This bias could potentially 

mislead policymakers into thinking a policy or intervention is ineffective.  There are also other 
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measurement problems like differences in measurement across groups or timepoints, known as 

measurement noninvariance, that have been flagged as potential problems (Soland, 2021). 

   The already demonstrated impact of measurement on causal inference with latent variables 

creates a need for further examination of measurement in quasi-experimental designs. There is 

potential for measurement problems to manifest itself differently in form or magnitude given 

each quasi-experimental design’s unique logic and the different types of multi-item outcomes 

that can be used.  In particular, DiD designs might be more susceptible to measurement problems 

because of their reliance on the parallel trends assumption (Cunningham, 2020) and 

observational protocols have rater effects (Jones & Bergin, 2019; Styck et al., 2021) that 

introduce additional complications.   

 This dissertation focuses on these two issues through three studies: two related to measurement 

with DiD designs and one regarding the use of multi-rater observational protocols in an RD 

design. Both types of quasi-experimental designs are important for education policy evaluation. 

The DiD design is important because it is one of the most highly flexible and widely applicable 

tools for causal evaluation, while the RD design is important because it is a design that can 

exploit the frequent use of tests and ratings to place students and direct resources in education.  

The dissertation, as a whole, expands research on the measurement decisions that accompany 

using survey scales or other multi-item instruments to measure an outcome of interest in quasi-

experimental designs.  The goal is to outline and illustrate measurement challenges and provide 

guidance on the feasibility and tradeoffs of possible solutions.  

Measurement in the DiD Design  

 The first two chapters of my dissertation cover measurement in the DiD design. The DiD design 

works by accounting for the differences between treated and untreated group(s) before treatment 
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when comparing the outcomes of those groups. Its core logic is that any differences between the 

treatment and non-treatment groups will remain consistent over time and adjusted for, allowing 

for an unbiased causal estimate (Caniglia & Murray, 2020).  This logic is formalized as the 

parallel trends assumption (Wing et al., 2018) and makes the DiD design susceptible to 

measurement problems. This susceptibility springs from the inability of the classic estimating 

equation of a DiD model to account for measurement differences, even though the DiD design is 

built to account for potential group or time differences.  

 In the first chapter I explore these issues through Monte-Carlo simulation in a sole authored 

study entitled “Difference in Differences and the Impact of Multi-Item Instrument Scoring 

Decisions.” This paper examines the effects of using a DiD with short to medium length multi-

item scales for three measurement issues. These were model misspecification from using sum 

scores, measurement noninvariance between control and treatment groups, and measurement 

noninvariance caused by response shifts.  Before diving into the simulations, the paper walks 

through the logic of how problems with scoring can arise for a substantive researcher audience. 

This allows readers to understand the results of the simulation better and conceptually grasp the 

problems of using the most popular scoring approach. The paper then examines the three 

measurement problems in three separate simulation studies.  In each study item loadings, sample 

size, length of survey scale, and treatment effect were varied to create plausible conditions with a 

basic DiD design to illustrate how different scoring approaches might affect causal estimates.   

The main finding regarding sum score bias was that sum score bias was greatest for short scales 

with low item loadings. When this was the case the treatment effect was biased down by 

approximately 40% of the true treatment effect.  The main finding regarding measurement 

noninvariance between control and treatment groups was that CT invariance could counteract 
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sum score bias in some cases but made the recovery of evidence supporting the parallel trends 

assumption more difficult. Finally, the main finding regarding response shifts is that they can 

result in bias of up to 50%.  

   Besides these findings, the major contribution of this paper is introducing scoring as a factor 

that should be considered by users of the DiD designs who might have previously neglected 

measurement issues. Using a Monte-Carlo simulation, this paper demonstrates, in the most basic 

DiD design, what could happen under plausible measurement invariance, sample size, loading, 

and effect size conditions. This draws attention to scoring as an issue in the DiD design and 

builds a foundation for future methodological investigation into scoring and the DiD design.     

The second chapter builds upon the simulation results of the first. I present a co-authored paper 

with James Soland entitled “Can Scoring Decisions Affect Results from Quasi-experimental 

Studies?” This paper aims to examine the practical impact of different scoring methods by 

rescoring a previously published study (Whitney & Candelaria, 2017) using Item Response 

Theory methods. The original study covers many outcomes and contains both null and 

significant results making the study’s  rescoring an appropriate illustration of how scoring 

methods are not merely a technical concern and how they can change substantive findings from a 

study.  The second chapter complements the first chapter by focusing on the practical 

implications that different scoring approaches can have on a study’s substantive conclusions.  

The major contribution of the second chapter is connecting prior technical work to a real 

evaluation of an already implemented policy. The study found that using a scoring model that 

better reflected the data and study design recovered different subgroup treatment effects and 

more statistically significant treatment effects for the entire student population. This helps build 

the case that scoring is something that is both important and feasible for substantive researchers 
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to consider. The study recaps the decisions that are made when scoring a measure, how they have 

been shown to affect analysis in other studies, and the conceptual reasons they would affect 

measurement. Combined with the empirical results, the study makes a strong case that 

researchers should pick scoring methods that align with the structure of their study and data.  

This chapter parallels other work that shows how scoring can affect studies that use other 

quantitative methods (Soland, Kuhfeld, et al., 2022).   

Multi-rater Observer Protocols in an RD Design  

Instead of focusing solely on a single type of outcome and quasi-experimental design, the last 

chapter of my dissertation focuses on the conjunction of the RD design with observer protocols, 

specifically RD designs that use outcomes observed by multiple raters. RD designs exploit the 

variability around decision rules to estimate causal effects. For example, the state of North 

Carolina assigns quality ratings for early childcare education on a 1-5 star scale based on a 

continuous measure of quality (Bassok et al., 2019).  Those close to either side of the cutoff of 

three vs. four stars are similar allowing for the estimation of a causal estimate by using those just 

below the cutoff as a control group and those just above as the treatment group.   

However, observational protocols introduce their own problems that go beyond the measurement 

issues addressed in the first two papers that are more aligned with survey scores. Specifically, 

there are many sources of variation, such as the context of the rating or the rater’s perspective, 

that can introduce additional variability into the produced score (Ho & Kane, 2013) . One 

strategy to mitigate this problem is to use multiple raters, but there is evidence that in order to be 

more useful than using a single rater a researcher must use a psychometrically defensible 

measurement model (van Dulmen & Egeland, 2011).   
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 In the third chapter I present a simulation study named “Combining Multi-Rater Observer 

Protocols with Regression Discontinuity Design for Unbiased Causal Effect Estimation” that was 

co-authored with James Soland. This last chapter introduces a new model that combines the tri-

factor model proposed by Bauer et al. (2013) called the RD multi-rater model. The study 

evaluates the feasibility of using the model and the potential gains in power and bias that using a 

properly specified SEM model can have in comparison to alternate approaches of dealing with 

multiple raters or using a single rater with observational protocols. The paper includes both fuzzy 

and sharp RD designs. Like the first chapter this study explores the impact of scoring method 

when using multi-item outcomes in a quasi-experimental design but focuses on a different 

research design and type of outcome. 

         The major contribution of this chapter is to expand on previous work that outlined how 

using SEM to estimate treatment effects on a latent variable outcome in a RD design can 

improve power and reduce bias (Soland, Johnson, et al., 2022), and to propose a new model that 

researchers can use to improve the accuracy of causal estimates in education research. In the 

chapter we identified the difficulties associated with using observer protocol data from multiple 

raters in education research, specifically when utilizing regression discontinuity (RD) designs 

and explained why our proposed model, the RD Multi-rater model might be a solution. Our 

findings indicated that the RD Multi-rater model necessitates large sample sizes to achieve 

sufficient power, but it is still preferable to other approaches when sub-optimally powered, as 

inappropriate measurement models can result in significant bias and increased Type II error rates. 

Moreover, our study indicated that averaging multiple ratings may lead to a false sense of 

accuracy, and substandard measurement may negate the benefits of increasing sample sizes in 

RD designs.    
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     Together these three chapters aim to provide a base for substantive researchers to understand 

the impact that scoring methods can have on the evaluations that use the DiD and RD designs 

and provide methods to produce more accurate treatment effect estimates. This will improve the 

rigor of evaluations and has the potential to integrate advances in measurement with those in 

causal inference.   
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Chapter 1  Abstract 

  The Difference in Difference (DiD) design is a popular quasi-experimental technique that is 

used to evaluate many types of policies. Many of the outcomes evaluated using DiD are 

measured using multiple items, such as surveys or observer checklists.   The most common way 

of scoring these instruments is to take the average or the sum of the items, a practice known as 

sum scoring. However, this scoring approach introduces additional assumptions about the 

underlying relationship between the items and the target outcome that may not hold. Using 

Monte Carlo simulation this paper demonstrates how the decision to use sum scoring can bias the 

causal estimate of a DiD design and affect the evidence supporting the parallel trends 

assumption. This paper shows how an alternate approach that utilizes structural equation 

modeling, an analytic tool popular in psychology, can resolve these problems and spotlights 

conditions where these problems may be particularly impactful.    

 

Keywords: structural equation modeling; difference-in-difference designs; program evaluation; 

causal inference. 
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Difference in Differences and the Impact of Multi-Item Instrument Scoring Decisions 

 Researchers often use quasi-experimental designs to evaluate the impact of policies and 

interventions in situations where an experiment is impractical or impossible. In particular, 

Difference-in Difference (DiD) designs are a popular quasi-experimental approach because they 

use data that is often already collected and can be applied to evaluate policy decisions in many 

situations.  Recent within-study comparison results have shown that DiD designs are often able 

to replicate effect estimates in field settings from an experimental benchmark with the same 

target population (Bifulco, 2012; Hallberg et al., 2020; Somers et al., 2013; St. Clair et al., 2014), 

and methodological work has highlighted ways to improve estimates in more complex conditions 

such as multiple treatment periods (Callaway & Sant’Anna, 2020) and variations in treatment 

timing (Goodman-Bacon, 2021).  However, less attention has been given to fully exploring the 

potential impact of how outcomes are measured on the analysis of a DiD design.  

 Potential problems arising from the construction of measurement instruments are not new and 

have been described in the context of threats to validity. For example, Shadish, Cook, and 

Campbell discuss instrumentation,  where the nature of a measure changes over time in a way 

that can be confused for a treatment effect, and give an example of how a more expansive 

definition of crime by the Chicago police led to an illusory increase in crime (2002). Such 

descriptions, however, do not provide a formal understanding of the problem that can inform 

researchers of: the extent of the potential threat to internal validity, diagnostic procedures, or 

possible solutions. This paper explores how the construction of a specific type of measurement 

instrument is a threat to validity.  Specifically, it addresses how scoring methods of survey scales, 

observer checklists, and other multi-item instruments can quantitatively affect a DiD analysis.  
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 The examination of survey-based and other multi-item instrument outcomes is of growing 

importance as many of the constructs education researchers are interested in cannot be measured 

with a single item. For example, while wages are often reported to various government agencies 

as a single number, education data often looks at cognitive and emotional outcomes like 

engagement that require survey scales to measure (Parsons & Taylor, 2011). While currently less 

commonly used as outcome measures in evaluations, these constructs are often linked to the 

internal logic of policies. For example, an early critique of school accountability policies was the 

potential to induce stress in students and negatively impact their achievement (Sheldon & Biddle, 

1998).  Whitney & Candelaria (2017)  were able to test this theory using survey outcomes and a 

DiD design. As education moves towards understanding how and why policy changes and 

interventions impact students, multi-item measures will likely become increasingly popular as an 

outcome in quasi-experimental evaluations.     

 The paper builds on prior work showing that measurement problems that arise from the 

combination of multiple item responses can bias effect estimates in both randomized control 

trials (Soland, 2022) and regression-discontinuity designs (Soland, Johnson, & Talbert, 2022).  

This bias arises in two primary ways. The first is if the items are combined in a way that does not 

reflect the true relationship between the items and the outcome they are meant to measure 

(McNeish & Wolf, 2020). Any misspecification of the relationship between the items and the 

construct it is meant to measure can produce a biased score because the items are improperly 

weighted (Rhemtulla et al., 2019). These biased scores can, in turn, bias effect estimates. For 

example, mean scores are often used to score surveys, and are produced by simply averaging the 

item responses. Such an approach assumes that all items should be given equal weight when 

measuring the latent construct. This assumption, as well as several others, is strong, and often not 
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met. For example, a scale meant to measure science behavioral engagement (Wang et al., 2016) 

features both the items: “I put effort into learning science” and  “I talk about science outside of 

class”. Such items may represent different levels science behavioral engagement, which would 

make treating them as equivalent inappropriate. This paper will show that incorrect scoring of 

outcomes can bias estimates in DiD approaches and suggest methods for addressing this issue.   

The second problem is that, even if the correct approach to combining multiple items is adopted 

initially, the effects of the treatment or other factors can result in changed internal standards, 

values, or conceptualization of the construct, also known as a response shift (Oort, 2005; 

Sprangers & Schwartz, 1999).  In turn, a response shift might mean that the scoring approach 

used initially is no longer appropriate, even if an approach more sophisticated than using mean 

scores is employed. Instead of detecting the true effect, an evaluation might detect changes in 

how an instrument functions because the respondent is thinking about the questions in a different 

way.  For example, Fokemma et. al (2013) found that therapy tends to result in patients 

overreporting depression because they became more familiar with depression symptoms and that 

this biased the estimated treatment effect downward. 

      This paper extends prior work (Soland, 2021, 2022; Soland et al., 2022) by describing how 

these problems might manifest in DiD designs, and how biases are not “differenced out” over 

time. The paper examines how biases arising from incorrect scoring decisions of multi-item  

outcomes may be particularly large for DiD approaches because of the complications of using 

non-equivalent control and treatment groups. The different compositions of the control and 

treatment groups provide more opportunities for differential effects in how respondents relate to 

the instrument – that is, measurement invariance may be more plausible in a DiD design than, 

say, an RCT design. For example, if there are more poor students in the treatment group that can 
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be adjusted for statistically, but if poverty affects how students respond to a survey instrument 

that impact on measurement will not be accounted for. If a math engagement instrument is 

particularly inaccurate for poor students because they are more likely not to complete surveys 

and the treatment improves poor student’s math engagement greatly the treatment estimate would 

be biased down. This problem might be even worse for DiD designs that have differential timing 

in treatment where multiple units experience treatment at different times, and there may be 

secondary complications around the evidence supporting the parallel trends assumption. 

 This paper proceeds as follows. In section 1, I provide background that explains how using 

multi-item instruments to measure an outcome can affect DiD designs, and the contexts and 

conditions under the associated problems that are most likely to be a problem in education DiD 

studies; in section 2, I discuss the design and analysis plan of a Monte Carlo simulation for 

evaluating the bias caused by scoring decisions for multi-item instruments ; in section 3, I 

present the results of the Monte Carlo simulation study; and in section 4, I discuss implications 

of results and offer recommendations for education researchers using the DiD design with multi-

item instrument outcome data.  

Background  

The DiD Method 

    First used in the 1850’s by John Snow in his analysis of the cause of cholera (Snow, 1855), 

DiD is one of the oldest quasi-experimental research designs. Its logic revolves around 

comparing the different trajectories of entities that are affected by a treatment, and other entities 

that are not affected by the treatment (Dimick & Ryan, 2014). Usually, these entities are grouped 

in cross-sectional units such as schools or districts. Both the time period (denoted by t) and group 

of an observation of an entity (denoted by g) is crucial to obtaining a causal estimate. This is 
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because it allows for the generation of potential outcomes. Concretely, let 𝐷௧ represent an 

observation at time t and in group g.  𝐷௧ = 1 if a unit is exposed to treatment at time t, 

otherwise, 𝐷௧ = 0. To obtain a causal estimate we need the outcome for both when that 

observation is treated ( 𝑌(1)௧) and when the observation is not treated ( 𝑌(0)௧).  Given that we 

cannot observe both, in the DiD design we use untreated observations to generate 𝑌(0) for 

treated observations based on the assumption that important unmeasured variables are either 

time-invariant group attributes or time-varying factors that are group invariant, the parallel trends 

assumption (Wing et al., 2018) . This is done through the equation:  

𝑌(0)௧ = 𝑎 + 𝑏௧ + 𝜀௧ 

( 1 ) 

where 𝑎 represents combined effects of time-invariant characteristics of group g and 𝑏௧ 

represents the combined effects of the time-varying but group-invariant factors. Integrating the 

observed outcomes with this equation leads to the generalized DID estimating equation: 

𝑌௧ = 𝑎 + 𝑏௧ + 𝛿𝐷௧ + 𝜀௧ 

( 2 ) 

  To highlight the possible effects of measurement we simplify from this generalized form to a 

situation where there are only two groups, one treated and one not, and two time points, pre and 

post treatment. This is the simplest version of the DiD design known as the 2X2 (two by two) 

DiD. With only two time periods and two groups we can represent group membership and the 

time period using dummy variables, 𝑇 and 𝑃௧ respectively.  This means the treatment effect is an 

interaction between the two (𝐷௧ = 𝑇 x  𝑃௧).   Thus, the estimating equation for the 2X2 DiD is: 
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𝑌௧ = 𝛽 + 𝛽ଵ𝑇 + 𝛽ଶ𝑃௧ + 𝛽ଷ(𝑇 x  𝑃௧) + 𝜀௧ 

( 3 )  

In the above,  𝛽ଵ represents the unit difference between the two groups before the treatment on 

the outcome, 𝛽ଶ represents the unit change in the outcome for the control group, and the 

interaction term, 𝛽ଷ, represents the mean treatment effect (the parameter of interest). Notably 𝑌௧ 

is typically treated as a single variable that is measured perfectly.  

Imperfect Measurement and the DiD Design  

 Treating the outcome in this way introduces an estimation assumption that is separate from the 

identification assumptions of the DiD design.  This assumption of perfect measurement is 

unlikely to be met for most educational constructs, especially those measured by surveys. Any 

given item on a survey is an imperfect representation of the target latent construct and so most 

surveys use multi-item instruments to obtain a better measure. When using such a multi-item 

instrument, 𝑌௧ is a composite of several items rather than a single variable. Accordingly, one 

problem that can arise is if the items are scored in such a way that items are mis-weighted. 

Scoring approaches can be as simple as taking the sum of every item in the instrument (a so-

called “sum score”) or complex as using measurement models based on Item Response Theory 

(Van der Linden & Hambleton, 2013). Regardless of the method used, the computed score is an 

imperfect representation of the outcome, which is often a latent variable (e.g., student 

achievement or self-efficacy).  If the items are substantially mis-weighted this can result in a 

biased causal estimate.  To show how this can work, let us begin with a case where there is only 

a single latent variable (our dependent variable) of interest, and that latent variable is regressed 
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on indicators of time, treatment, and treatment by time.  A possible measurement model for this 

latent variable using four items for person i is portrayed in Figure 1. 

 

Figure 1. Example individual measurement model 

  To further simplify we focus on a single item that we assume is continuous. While the potential 

for mis-weighting is magnified when there are multiple items, mis-weighting effects can be 

demonstrated in a single item.  For this single item case, in equation form, the measurement 

model can be translated as:    

𝑦 = 𝑣 +  𝜆𝜂 + 𝜀 

( 4 ) 

Where 𝒚𝑖 is the observed item response for item j, 𝒗 is the intercept, 𝝀 is the loading for that 

item, 𝜂 is the single latent outcome for person i, and 𝜀 is the residual (with a mean of zero) 

where 𝑉𝐴𝑅(𝜀 ) = 𝛉.  
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We can then use a slight variation of equation( 3 ) in which the latent outcome rather than the 

score is the dependent variable, to provide the framework to use the measurement model to 

produce a causal estimate.   

𝜂 =  𝛽 + 𝛽ଵ𝑇 + 𝛽ଶ𝑃௧ + 𝛽ଷ(𝑇 x  𝑃௧) + 𝜀௧ 

( 5 ) 

 As the new equation’s dependent variable is now latent it needs to be put back in terms of the 

observable item responses. This can be done by plugging equation ( 5 into the measurement 

model given by equation ( 4 assuming 𝒗 is 0 (done for convenience, though not necessary) and  

𝛽  is 0 (i.e. the control group average is 0). This gives us : 

𝑦 = 𝜆( 𝛽ଵ𝑇 + 𝛽ଶ𝑃௧+𝛽ଷ(𝑇 x  𝑃௧) + 𝜀௧) +  𝜀 

( 6 ) 

We can then determine what the expected value is to derive the causal estimate.  

Given 𝐸(𝜖) = 0 and 𝐸(𝜀)= 0, 

𝐸(𝑦) = 𝐸(𝜆൫ 𝛽ଵ𝑇 + 𝛽ଶ𝑃௧+𝛽ଷ𝑇𝑃௧൯) 

( 7 ) 

For the control group before treatment is applied, 𝑎 = 0 and 𝑡 = 0 so the expectation of the 

observed score for 𝐸(𝑦) is zero.  For the control group after treatment is applied 𝑎 = 0 and 𝑡 =

1 so 

𝐸൫𝑦 | 𝑇 = 0 & 𝑃௧ = 1൯ =  𝜆 𝛽ଶ𝐸(𝑡) =   𝜆 𝛽ଶ 

( 8 ) 
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For the treatment group before treatment the expectation is:  

𝐸൫𝑦 | 𝑇 = 1 & 𝑃௧ = 0൯ =  𝜆 𝛽ଵ𝐸(𝑡) =   𝜆 𝛽ଵ 

( 9 ) 

Finally for the treatment group post-treatment no terms have an expectation of zero so:  

𝐸൫𝑦  | 𝑇 = 1 & 𝑃௧ = 1൯ = 𝜆 𝛽ଵ𝐸(𝑡) +  𝜆 𝛽ଶ𝐸(𝑡) +  𝜆 𝛽ଷ𝐸(𝑡) =   𝜆 𝛽ଵ +  𝜆 𝛽ଶ +  𝜆 𝛽ଷ 

( 10 ) 

Therefore, the expectation of the observed scores between control and treatment groups adjusted 

for baseline differences is: 

[𝐸൫𝑦 | 𝑇 = 1 & 𝑃௧ = 1൯ −  𝐸൫𝑦  | 𝑇 = 1 & 𝑃௧ = 0൯] − [𝐸൫𝑦 | 𝑇 = 0 & 𝑃௧ = 1൯ −

𝐸൫𝑦  | 𝑇 = 0 & 𝑃௧ = 0൯ = (𝜆 𝛽ଵ +  𝜆 𝛽ଶ +  𝜆 𝛽ଷ) − (𝜆 𝛽ଵ) − (𝜆 𝛽ଶ) − 0 =  𝜆 𝛽ଷ 

( 11 ) 

 As Equation( 11 shows, the difference in the means of the control and treatment observed 

scores adjusted for differences in the observed score at baseline would be the true treatment 

effect, 𝛽ଷ, weighted by the item loading (𝜆).  This means if you use the observed score and the 

item loading is less than one the estimated treatment effect will be lower than the true treatment 

effect and if the item loading is greater than one the estimated treatment effect will be greater 

than the true treatment effect. For example, imagine a treatment results in a one unit increase on 

one item. If the loading of that item on the latent variable is .4 a one unit increase is really a .4 

increase on the outcome you are interested in. Thus, mis-specifying the loadings can bias a 

treatment effect even in a simplified situation where the assumptions of the DiD are met and it 

mimics an experiment perfectly.  
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 While we demonstrated this problem on a single item, the problem emerges similarly for 

multiple items. Instead of the causal estimate being weighted by a single loading, it is weighted 

by a vector of the loadings of the component items.  A common approach like sum scoring that 

forces the loadings to be equal across items when they are not could bias the estimate of a 

treatment’s effect on the treated.    

 For example, the Gates Foundation’s Measures of Effective Teaching project (“Learning about 

Teaching,” 2010) used a survey scale of seven Likert items to measure student effort.  A common 

way to transform the seven questions that make up the scale into a score for analyses is to add up 

the item responses and divide by the number of items to produce a sum score. As McNeish and 

Wolf (2020) demonstrate, this practice translates to a measurement model in which each item is 

contributing equally to the construct and the residual variances are constrained to be equal. In 

terms of equation 3, this means for each item 𝝀 and 𝜀 are the same constants.  Depending on the 

scale this might be an unlikely assumption. For example, Beck’s Depression inventory, a 

common scale used to measure depression (Beck & Beamesderfer, 1974), has items related to 

sleep patterns and subjective emotional experience making it unlikely that it is appropriate to 

treat those items as equivalent.  Thus, bias can be introduced by using sum scores if not all the 

items should have equal weights (i.e., there are not equal associations between the latent variable 

and the observed item responses), but that constraint is imposed anyway. 

 Bias induced by mis-weighting is not unique to DiD designs. Prior work has shown how the 

same problem manifests itself in experiments and regression discontinuity designs (Soland, 

2022; Soland et al., 2022). However, in the DiD design this problem entails additional 

complications because the use of non-equivalent groups and the resultant reliance on the parallel 

trends assumption opens up the possibility that there will be measurement invariance between 
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the groups and timepoints and that this will violate the parallel trends assumption.  This means 

that each group at each timepoint must be treated separately as in Figure 2, which introduces 

more potential for bias, as loadings and intercepts do not cancel out (See Appendix I for 

supporting derivations).    

 

Figure 2. Example DiD measurement model 

 

Plausible Measurement Scenarios 

 How this bias manifests exactly depends on which time points and groups have measurement 

noninvariance.  In this paper we investigate three different measurement noninvariance 

scenarios.  In the first scenario there is no measurement noninvariance or in other words the 

model is measurement invariant. Accordingly, there is no violation of any identification 
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assumptions and there should be no impacts on the causal estimate or evidence of parallel trends 

unless there is mis-weighting.   

 In the second scenario there is measurement noninvariance between the control and treatment 

groups, with differences in the two groups’ loadings. Differences in loadings might occur due to 

the different compositions of the control and treatment groups. For example, the control group 

might have more students that refuse to answer one item leading to a weaker loading on the 

latent outcome.  

 In this scenario even though the identification assumptions are met the typical estimating 

equation does not account for different loadings across groups, which can result in bias in the 

causal estimate.  In addition to these direct effects on the causal estimate, this form of 

measurement noninvariance has the potential to influence the evidence needed to support the 

parallel trends assumption. Pre-treatment trends are often examined both visually and through 

statistical tests  (Angrist & Pischke, 2008; Cunningham, 2020) to establish the plausibility of the 

parallel trends assumption.   Biased scores have the potential to distort pre-treatment trends 

affecting both the perceived credibility of the parallel trends assumption and any decisions 

around compensating for violations of the parallel trends assumption. Importantly, this is distinct 

from the validity of the parallel trends assumption itself.     

 In the third scenario, the form of measurement noninvariance the treatment group at the post-

treatment timepoint is measurement non-invariant with the other three groups. This form of 

measurement noninvariance is usually the result of the treatment changing a respondent’s  

internal standards of measurement, values, or conception of the measured construct and can be 

categorized into three types of response shifts (Sprangers & Schwartz, 1999).  Each type is 

manifested through changes in item loadings, thresholds, or intercepts.  Recalibration, a change 
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in the respondent’s internal standards of measurement corresponds to a change in threshold or 

intercept values. Reprioritization, a change in the importance a respondent places on an item 

when thinking about the outcome, is manifested by an increase or decrease of item loadings. 

Finally, reconceptualization, a change in the respondent’s understanding of the target construct, 

results in a reduction of one or more item loadings to zero or a new loading(s) onto new item(s).  

   Response shifts are a direct violation of the parallel trends assumption because they are neither 

a time-invariant group attribute nor a time-varying factor but still affect the measured treatment. 

Thus, they can be expected to bias the causal estimate directly as well as affect the evidence for 

parallel trends.  However, unlike other violations of the parallel trends assumption this violation, 

can be accounted for by letting the loadings vary. To what extent each form of measurement 

noninvariance and the degree of measurement noninvariance affects analysis of a DiD design 

given a researcher’s scoring strategy is a key question yet to be explored.  

The Current Study 

     The goal of the current study is to investigate how measurement model misspecification 

affects analysis of a DiD design in the context of the current dominant scoring strategy of using 

sum scores.  I am examining three forms of measurement model misspecification and their 

impact on bias in DiD estimates: improper use of sum scores, noninvariance between control and 

treatment groups, and response shifts.  

Three research questions will be addressed in three simulation studies.  

1. To what extent does model misspecification due to misapplication of sum scoring in a 

DiD design affect bias in the produced estimates? 

2. To what extent does model misspecification due to measurement noninvariance 

between groups in a DiD design affect bias in the produced estimates? 
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3. To what extent does model misspecification due to a response shift in a DiD design 

affect bias and statistical significance in the produced estimates? 

 

 Answering these three questions could help establish a clear picture of the potential problems 

and benefits of the various strategies to combining multiple items so that they can be used in the 

DiD analytic approach. This would help researchers make informed decisions about what 

strategy is appropriate for a given situation.  

Simulation Specifications  

Overall Data-generating Process 

  To answer the research questions, I produced three variations of a shared data generating 

process, one for each simulation study. For the first study, measurement invariance holds in the 

data-generating model, and the factor loadings of the items are varied. For the second, there was 

measurement noninvariance between the treatment and control group in the data-generating 

model. And for the third, a response shift results in measurement noninvariance in the post-

treatment treatment group only.   

 Besides these variations the simulated data for each study was generated using the same data-

generating model. Figure 3 below shows this data-generating model, which mimics a scenario 

where two groups are slowly increasing on a measure, but one group is lower than the other by a 

set amount until there is a plateau. In Figure 3, 𝑦 represents i item, 𝜆 represents the loading for 

𝑦, 𝜇(𝜂) represents the mean of a latent variable at n timepoint, 𝜎
ଶ represents the variance of a 

latent variable at n timepoint, and 𝑡 represents the treatment.  
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Figure 3. Data-generating Model 

  This model was generated with Mplus version 8.7 (Muthén & Muthén, 2017) in conjunction 

with the R package Mplus automation (Hallquist & Wiley, 2018) and assumed that the true 

generating model for the outcome was a latent variable that explained responses to a set of 

observed items. The items were generated as continuous variables for simplicity and to 

generalize to many different types of multi-item outcomes. Six timepoints were generated: four 

pre-treatment and two post-treatment with correlations of .5 between the latent variables at each 

timepoint to mimic the mean .46 autocorrelation found by Barnard-Brak et al. (2021) . These six 

timepoints were generated for two groups, a group that did not receive treatment, the “control 

group”, and a group that did, the “treatment group.” For both groups, the latent means were 

standardized to the first time point of the control group. The control group had a latent mean of 0 

SDs at timepoint 1, .1 SDs at timepoint 2, .2 SDs at timepoint 3, and .3 SDs at timepoints 4-6.  In 

contrast, the treatment group had a latent mean of -.3 SDs at timepoint 1, -.2 SDs at timepoint 2, 
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-.1 SDs at timepoint 3, 0 SDs at timepoints 4, and means equal to the treatment effect at 

timepoint 5 and 6. The variance for the latent variables at each timepoint for both groups was set 

to 1, in part to facilitate interpretation of the loadings as fully standardized.  

Systematically Varied Conditions in the Data-generating Process 

  From this base-data generating model several conditions were varied. The key condition that 

separated the three simulation studies was the presence and degree of measurement 

noninvariance. In addition to this condition, selected other conditions were varied to represent a 

wide range of realistic scenarios.  

Presence and Degree of Measurement Noninvariance  

The primary factor that was varied was the presence of measurement invariance. In the 

first simulation study, addressing research question 1, measurement invariance was established 

across timepoints and groups which meant the factor loadings were the same at every timepoint 

(though they differed by item). In the second simulation study, addressing research question 2, 

there was measurement invariance between the control and treatment groups, which meant there 

were differences in the loadings for the same item at the same timepoint between the control and 

treatment groups, but within each group the parameters were invariant. Finally, in the third 

simulation study, addressing research question 3, there was measurement noninvariance in the 

treatment group post-treatment (timepoints 5 and 6 in the treatment group), but the other item 

parameters were invariant across groups and over time.  

 Within the second and third simulation studies the degree of measurement invariance was also 

varied.  There is little direct research on the plausible degree of measurement noninvariance 

between the control and treatment groups in a DiD design, and it is likely dependent on how 

similar the groups are. Accordingly, for the second simulation study I evaluated a small and 
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medium magnitude of measurement noninvariance in the loadings between the control and 

treatment groups. This meant that in the small magnitude condition there was a positive increase 

of 0.10 in the loadings of items 1 & 4 and in the medium magnitude of noninvariance there was a 

positive increase of 0.25 in the loadings of items 1 & 4. These values were chosen based on 

previous research that defined these differences when the factor was standardized for one group 

(Stark et al., 2006; Yoon & Millsap, 2007). For both the 4-item and 8-item condition these two 

items were the sources of measurement noninvariance. This means that the proportion of 

invariant items for the 8-item condition was smaller than that of the 4-item condition. The fixed 

number of invariant items reflects a plausible scenario, where a larger scale that contains 

invariant items is reduced to save money or time and the shorter form of the scale contains the 

invariant items.   

         For the third simulation study, the degree of measurement invariance was determined by 

the type of response shift. I tested two of the response shifts outlined by Schwartz & Sprangers  

(2000; 1999).  Reprioritization was simulated through the increase of item 4’s loading by .4, 

reflecting the magnitude observed by Fokemma et al. (2013). This corresponds to respondents 

finding item 4 more relevant to the measured construct in the treatment group after intervention. 

This type of response shift might be caused by the treatment increasing a respondent’s 

understanding of an item or triggering the recall of relevant information.  To simulate 

reconceptualization, a change in the understanding of a construct, item 4’s loading was reduced 

to zero. This type of response shift occurs if the treatment changes respondents’ understanding of 

a construct enough to render an item irrelevant or make an additional item relevant.  For 

example, this might occur if there is a common misconception about the construct that treatment 

changes.    
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Factor Loadings 

        Within each simulation study, the most important condition that was varied was the pattern 

of factor loadings.  Three plausible factor loading patterns were chosen: a high condition where 

all standardized item loadings fell between .7-.9, a low condition where the item loadings fell 

between .3-.5, and a mixed condition where item loadings fell between .1-.8.  Item loadings can 

be squared to obtain the proportion of the variance in the item that the latent variable explains.  

Accordingly, the high condition reflected a well-designed scale in which the latent variable 

explains a high amount of variance for each of the items, the low condition reflected a poorly 

designed scale in which the latent variable explains a low amount of variance for each of the 

items, and the mixed condition represented a scale in which the latent variable explains a lot of 

variation for some items and little for others.  

Other Conditions Varied During Data Generation  

       In addition to measurement invariance and factor loadings, three other conditions were 

varied. The first was sample size. Two sample sizes were chosen: 500 and 3700 per group. These 

values were chosen to reflect the average number of students of two commonly used groups in 

education, public schools and districts (Snyder et al., 2019). The second was number of items 

comprising the outcome variable. 4 and 8 were identified as representative of the length of many 

social-emotional survey scales (Wang et al., 2016; West et al., 2018), as well as subscales of 

observation protocols (Goodman, 1997; Pianta et al., 2008). The third was treatment effect size. 

The majority of educational interventions that are well powered resulted in effect sizes less than 

.2 (Cheung & Slavin, 2016; Kraft, 2020; Rocconi & Gonyea, 2018).  
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 Accordingly, .1 and .2 were chosen as plausible treatment effect sizes and a null effect was 

tested for comparison.  

    For each group of datasets generated, every condition, summarized in Table 1, was crossed 

with every other condition within each simulation study. For every set of unique conditions 100 

datasets were produced. Full data generating code is available at https://osf.io/jp2xs/.  

 

 

 Analyzing Generated Item-level data 

 For each simulation study two types of analysis were used.  The first was the commonly used 

approach of averaging items to produce a score and then using parametric regression to produce 

a causal estimate.  The second used structural equation modeling (SEM) to model each item’s 

relationship with the latent construct by group and timepoint. For the second and third simulation 

Table 1.  Summary of Conditions of the Data-generating Process 

Condition Options Simulation Studies 

Item Loadings High, Low, Mixed 1, 2, 3 

Sample Size  500 & 3700 1, 2, 3 

No. of Items  4 & 8 1, 2, 3 

Treatment Effect Size  0, .1, .2, ,3 1, 2, 3 

Control-Treatment Noninvariance 

Small (.1 increase), Medium (.25 

increase) 2 

Response Shift  Reconceptualization, Reprioritization 3 
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studies both a correctly specified SEM model and an incorrectly mis-specified model that 

assumed measurement invariance was used. Below I detail the SEM models further.    

SEM Models 

    For every SEM analysis, I used a structured mean model with multiple groups to model the 

DiD data. In this model each timepoint in the control and treatment groups were treated 

separately, which allows for tests of measurement invariance between timepoints in groups using 

the procedures laid out in (Oort, 2005). Rather than only focusing on a single causal estimate, 

bias can be examined in the latent means and variances by timepoint for each group such that the 

effects on differences in trends can be better dissected. 

 The three variations of this model that were used to in the simulation studies are shown in Figure 

4 below.  

 

Figure 4. Loading Constraints for Three Measurement Models 
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The measurement invariant model (SEM (MI)) constrained the loadings of each item between 

every timepoint in the control and treatment groups to be equivalent. This model was used in all 

three simulations studies. For simulation studies 2 and 3 the presence of noninvariance meant it 

was a mis-specified model for those studies. The Control-Treatment Noninvariance model (SEM 

(CT)) constrained loadings of each item between every timepoint within the control and 

treatment groups to be equivalent but allowed them to vary between the two groups.  This model 

was only used for simulation study 2, as the correctly specified model. Finally, the response shift 

model (SEM (RS)) constrained all groups and timepoints loadings except the treatment group 

post-treatment to be equivalent.  This model was only used for simulation study 3, as the 

correctly specified model. Table 2 summarizes the type of analysis used for each simulation 

study.   

Table 2.  Summary of Analysis Models by Simulation Study 

 

Sum Scoring SEM (MI) SEM (CT) SEM (RS) 

Simulation Study 1 X X 

  
Simulation Study 2 X X X 

 
Simulation Study 3 X X 

 

X 

 

 

 While modeling latent variables directly is preferred because latent variables are difficult to 

capture through scoring (Grice, 2001), the SEM models described above can be used to create 

factor scores that can be used in conjunction with parametric models, which may be useful for 

researchers who want to improve measurement but use tools developed outside a SEM 
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framework. Results included in Appendix II demonstrate that factor scores produce treatment 

estimates that are close to those produced by modeling the latent variables directly.   

         

Evaluation Criteria 

   The primary focus of this study was on the estimate of means by timepoint and group which 

was key to both the treatment effect and the establishment of parallel trends. I examined the bias 

and variance in the means, as well as the bias in the treatment estimate for each analytic method.  

In addition, to these two aspects I also evaluated the recovery of the loading parameters as a 

check on how well each measurement model recovered the parameters of the data generating 

process.           

 

Results 

 Across all studies, there were no convergence failures, and parameter recovery when fitting the 

true model to the generated data was excellent (see Appendix II Table 6).  

Simulation Study 1: Impact of Misapplication of Sum Scoring 

 In datasets in which measurement invariance held across groups and timepoints sum scores 

induced bias that ranged from -.076 to .009. As seen in figure 4 there were clear patterns. Sum 

scores performed best when there were more items, and the loadings were high. The amount of 

bias was proportional to the size of the treatment effect with more bias induced for larger effects 

because the mis-weighting of sum scores has a multiplicative impact.  Interestingly, in the 4-item 

condition larger sample sizes increased bias. This is likely because the larger sample amplified 
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the effect of the mis-weighting.   In contrast, there was very minimal bias across conditions and 

treatment effects when using the SEM model ranging from -.003 to .009.  

 

Figure 5. Sum score bias by loading pattern for Simulations Study 1  

 

Examining the mean estimates underlying the treatment effect estimates, reveals a more 

comprehensive picture of the impact of analysis type. Consider the condition in which the 

treatment effect estimate is most biased, the low loading, 4-item, large sample size condition, 

shown in Figure 6 below. Sum scoring biases the estimated means, so that the estimated pre-

treatment trends are not parallel. While the true slope of both the control and treatment group is 

.1, the median estimated slope is .064 for the control group and .062 for the treatment group.  In 

contrast, SEM recovers the means of each timepoint accurately and recovers the true pre-

treatment trends. However, there is a tradeoff with variance because the estimation of SEM 
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loadings entails greater variance in the estimated latent means. The SEM mean estimates 

standard deviations were twice as large as that of sum scoring standard deviations (.03 vs. 015) 

for this condition.     

 

Figure 6. Boxplots showing means by timepoint across all 100 replications for .2 treatment 

effect, Low Loading, N=3700, 4-item condition in Simulation Study 1   

 Even when conditions are ideal for sum scoring and the treatment estimate is minimally biased 

sum scoring still has biased mean estimates. Figure 7 shows the means for the high loading, 8-

item, small sample size condition. In this condition the individual means are still biased but they 

are biased by similar amounts in each group allowing for the minimally biased recovery of the 

treatment effect and the recovery of parallel pre-trends. Additionally, there is a proportionally 

smaller variance trade-off (.04 SD vs. 05 SD) between sum scoring and SEM.  
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Figure 7. Boxplots showing means by timepoint across all 100 replications for .2 treatment 

effect, High Loading, N=500, 8-item condition in Simulation Study 1   

 

Simulation Study 2: Impact of Control-Treatment Measurement Noninvariance  

 For the datasets that had Control-Treatment noninvariance each scoring strategy induced some 

bias. This was extremely small in the case of SEM (CT) (.001 to .012) because the model 

matched the data-generating process, but was larger in sum scoring and for SEM (MI). As shown 

in Figures 8 the amount of bias was affected by the amount of CT noninvariance with a greater 

amount of CT noninvariance shifting the bias of every scoring strategy up.  This meant that sum 

scoring produced treatment effect estimates that were closer to the true treatment effect when 

there was a medium amount of CT noninvariance but increased the amount of bias for SEM 
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(MI). This pattern of bias is probably due to the increase in loadings in the treatment group vs. 

the control group. The reverse would likely result in negative bias that would exacerbate the 

negative bias seen with sum scores in simulation study 1.  Like sum scoring the amount of bias 

in the SEM (MI) treatment estimates was proportional to the treatment effect estimate size.  

 

Figure 8.  Bias by loading pattern, .2 treatment effect for Simulation Study 2    

 

 Biases in the treatment effect estimates are reflected in the means by timepoints as shown in 

Figure 9 below. In the low loading, 4-item, large sample size condition shift, CT noninvariance 

results in lower mean estimates for timepoints 5 and 6 in the control group, which results in a 

larger treatment effect estimates. It also distorts recovery of parallel trends further. In the 

presence of medium CT noninvariance the sum score produced median estimated slope is .06 for 
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the control group and .07 for the treatment group and the SEM (MI) produced median estimated 

slope is .085 for the control group and .113 for the treatment group. The variance tradeoff 

remains the same as it is in Simulation Study 1.  

 

 

Figure 9. Boxplots showing means by timepoint across all 100 replications for .2 treatment 

effect, Low Loading, N=3700, 4-item condition in Simulation Study 2   

 

 Similar to simulation study 1, when conditions are optimal for sum scoring, such as the high 

loading, 8-item, small sample size condition sum scoring still induces some bias in the mean 

estimates but this bias is mostly consistent and only shifts all the mean estimates down. There is 

only a negligible impact on SEM (MI).    
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Figure 10. Boxplots showing means by timepoint across all 100 replications for .2 treatment 

effect, High Loading, N=500, 8-item condition in Simulation Study 2   

  

Simulations Study 3: Impact of Response Shifts  

 Like in the other two simulations studies SEM that allowed for noninvariance (SEM (RS)) had 

the least amount of bias. However, for both reconceptualization and reprioritization, SEM (RS) 

had notable bias for the 4-item mixed loading conditions that ranged from -.034 to .01 but had 

less bias (0 to .01) for the other conditions.  For SEM (MI) and sum scoring the amount of bias 

induced was dependent on loadings, sample size, and number of items as shown in Figure 11. 

These patterns were in line with the patterns in the other simulation studies except the 4-item 

mixed loading condition was notably biased.   
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Figure 11.  Bias by Loading Pattern, .2 Treatment Effect for Simulation Study 3 

    Examining the 4-item mixed condition more closely as shown in Figure 12 below it is clear 

that the treatment effect bias is the result of smaller mean estimates in the treatment group at 

timepoints 5 and 6. Unlike CT noninvariance, neither type of response shift prevented the 

recovery of parallel pre-treatment trends. The variance tradeoff was particularly high (.015 SD 

vs. .055 SDs) likely because of the increased variability in the loadings caused by the response 

shifts.   
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Figure 12. Boxplots showing means by timepoint across all 100 replications for .2 treatment 

effect, Mix Loading, N=3700, 4-item condition in Simulation Study 3   

When the conditions were more optimal for sum scoring, like in the high loading, 8-item, small 

sample size condition shown in Figure 13, there were clear deviations from the true mean 

estimates that led to an underestimation of the treatment effect.   
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Figure 13. Boxplots showing means by timepoint across all 100 replications for .2 treatment 

effect, High Loading, N=500, 8-item condition in Simulation Study 3  

 

 Due to the number of conditions not every result is relayed in this section. A summary of the 

treatment effect bias for every condition as well as the recovery of loadings are presented in 

Appendix II and mean timepoints are located online at https://osf.io/jp2xs/.     

 

Discussion  

 DiD designs can be applied in many contexts in which latent variables are of interest, and 

generally, these types of variables are measured using multiple items.  In particular, survey scales 
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are a popular way to measure latent constructs, and they are typically aggregated as sum scores, 

which rely on a number of oftentimes unjustifiable assumptions (McNeish & Wolf, 2020).  When 

using a DiD design these assumptions have a greater potential to be violated due to the 

differences between control and treatment groups and the measurement across time that happens 

in DiD. Furthermore, measurement changes have the potential to violate the parallel trend 

assumption of the DiD design also inducing bias. The results of this study show how these 

measurement issues can affect a DiD analysis.   

 First, the simulation results show that, especially when factor loadings are low and there are 

small number of items in a measure, sum scoring can induce substantial bias into treatment effect 

estimates.  Wrongly fitting a sum score model resulted in understating a true treatment effect of 

.2 units by anywhere from .01 to .08 units depending on the true loadings in the model.  In other 

words, using a sum score model when its assumptions were violated led to a downward bias of 

up to 40% of the true treatment effect. Importantly, a larger sample size counterintuitively made 

the bias worse. This creates tradeoffs for analysts who wish to use sum scores, as a large sample 

size is desirable for detection of small effects and interactions. In contrast, the bias from SEM 

was negligible.   

 There are also implications for the parallel trends assumption because the pre-treatment trend 

recovery was hampered by the use of sum scoring. The proportional nature of sum score bias 

means that it can contribute to illusory trends that could mislead an analyst about the viability of 

the parallel trends assumption. Even though this does not change the validity of the parallel 

trends assumption itself, it can impact the results of a study through an analyst’s behavior. While 

the differences were small in this simulation, this is likely to be a greater problem when the 

trends are steeper.    
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 Second, the simulation results show that stable measurement noninvariance between control and 

treatment groups in a DiD can have substantial impacts on treatment estimates if measurement 

invariance is assumed. While the form of CT measurement noninvariance induced mostly 

counteracted the downward bias of sum scoring, this is not guaranteed and requires specific 

circumstances to work perfectly. Balancing two sources of bias that are in opposite directions 

means that not accounting for differences in measurement can cause unpredictable problems and 

it is not safe to assume that sum scoring will always give a conservative estimate of the treatment 

effect.  

      For SEM the assumption of measurement invariance inflated the true treatment effect. This 

led up to a maximum of a 35% overstatement of the true treatment effect with medium CT 

noninvariance.  While this might not be a problem for detection of effects, other types of CT 

noninvariance are likely to understate the true treatment effect by the same magnitude. 

Furthermore, the study results show the presence of CT noninvariance has the potential to make 

the problem of recovery pre-treatment trend recovery worse. Accounting for CT noninvariance 

could be key to determining if a dataset is usable in a DiD design or if adjustments need to be 

made to meet the parallel trends assumption.  

    Finally, when response shifts lead to measurement noninvariance between control and 

treatment groups in a DiD, ignoring those shifts (as when using a sum score model or a model 

that assumes invariance) led to the greatest amount of bias in treatment effect estimates.  

Ignoring the measurement noninvariance led to the true treatment effect being understated by  

50% or more in several conditions.   

   

Recommendations for Education Researchers 
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 Given these results there is a strong argument for using scoring strategies that are flexible and 

have minimal assumptions. This is especially true when the dependent variable is composed 

from a small number of items and in the presence of measurement noninvariance. Education 

researchers that are using multi-item outcomes in a DiD design should first carefully consider the 

nature of their data. If the groups are diverse, or the study time covers developmental periods it is 

particularly important to avoid sum scoring.  Even if the sample size is too small or the analysis 

too complicated to implement entirely in SEM researchers should consider using factor scoring 

or similar approaches instead of sum scoring.  

  If researchers must use sum scores for ease of interpretation or other logistical reasons, 

researchers should at a minimum determine how well the items load on to the construct. Ideally, 

they should also test for measurement invariance to understand the possible impact that sum 

scoring could have on the analysis.    

Limitations and Future Directions  

 This study has a few limitations that are important.  First, it is essential to note that this study 

assumes that variations in measurement arise due to changes in how participants perceive and 

answer survey questions, and the simulations are based off of this scenario. However, in 

empirical data it is possible that such differences in measurement are actually signaling other 

factors that undermine the validity of a DiD design. In those cases, the benefits of SEM outlined 

in this study are not likely to be realized. Second, while I tried to cover a broad range of 

simulation conditions, there are many more scenarios to consider.  For example, I only examined 

loading measurement noninvariance. Measurement noninvariance of intercepts or variances 

could also have important impacts. There are many more factors that could be explored in future 

research. Furthermore, this study used the most basic of DiD designs and did not include 
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covariates. The impact of scoring on more complicated DiD designs or those that use covariates 

need to be explored so that researchers understand the impact of scoring in more complicated 

DiD designs.    

 Going forward, the study’s results also suggest a greater need for research understanding the 

tradeoffs between scoring methods when sample sizes are very small.  On one hand, the study 

clearly shows that using a latent variable model can address measurement error and reduce 

measurement bias, which in turn can bias treatment effect estimates.  On the other, sum scores 

treat many measurement model parameters as fixed, and therefore do not introduce uncertainty 

into estimates of parameters like loadings.  These tradeoffs merit additional research, including 

in other quasi-experimental contexts and more complicated DiD designs. 

 Finally, the present study operates on the assumption that the data generating model we use 

correctly approximates the data generating model for DiD data. Unfortunately, it is impossible to 

ascertain the exact measurement model of empirical data. As a result, the gains in accuracy 

observed in our study represent a ceiling. If the true measurement model of empirical data 

deviates from the data generating model, we used the misspecification may result in bias. 

Nonetheless, sum scoring is unlikely to match the data generating model better, indicating that 

the comparative advantages identified in our study will endure. 
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Chapter 1: Appendix I 

The effects of treating each timepoint separately can be seen mathematically by modifying the 

assumptions of equation 5. Removing the assumptions that 𝒗 is zero and  𝛽  is zero gives us: 

𝑦 = 𝑣 + 𝜆(𝛽 +  𝛽ଵ𝑎 + 𝛽ଶ𝑡+𝛽ଷ𝑎𝑡 + 𝜖) +  𝜀 

( 1 ) 

Given 𝐸(𝜖) = 0 and 𝐸(𝜀)= 0, 

𝐸(𝑦) = 𝐸(𝑣 + 𝜆(𝛽 +  𝛽ଵ𝑎 + 𝛽ଶ𝑡+𝛽ଷ𝑎𝑡)) 

( 2) 

When measurement is not invariant then the intercept and loading between the groups are not 

equivalent and both 𝜆 and 𝑣 require a g subscript. Therefore, for each group the expected value 

of 𝑦 are as follows: 

For the control group before treatment 

𝐸(𝑦 | 𝑎 = 0 & 𝑡 = 0) = 𝑣 + 𝜆𝛽 

( 3 ) 

For the control group after treatment 

𝐸(𝑦 | 𝑎 = 0 & 𝑡 = 1) =  𝑣 + 𝜆𝛽 + 𝜆 𝛽ଶ𝐸(𝑡) =   𝑣 + 𝜆𝛽 + 𝜆 𝛽ଶ 

( 4 ) 

For the treatment group before treatment 
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𝐸(𝑦 | 𝑎 = 1 & 𝑡 = 0) = 𝑣 + 𝜆𝛽 + 𝜆 𝛽ଵ𝐸(𝑎) =  𝑣 + 𝜆𝛽 + 𝜆 𝛽ଵ 

( 5 ) 

For the treatment group after treatment 

𝐸(𝑦 | 𝑎 = 0 & 𝑡 = 1) =  𝑣 + 𝜆𝛽 + 𝜆 𝛽ଵ𝐸(𝑎) + 𝜆 𝛽ଶ𝐸(𝑡) + 𝜆 𝛽ଷ𝐸(𝑎)𝐸(𝑡)  

=   𝑣 + 𝜆𝛽 + 𝜆 𝛽ଵ + 𝜆 𝛽ଶ + 𝜆 𝛽ଷ 

( 6 ) 

Thus the expectation of the observed causal estimate is: 

 𝐸(𝑦 | 𝑎 = 1 & 𝑡 = 1) −  𝐸(𝑦 | 𝑎 = 1 & 𝑡 = 0)] − [𝐸(𝑦 | 𝑎 = 0 & 𝑡 = 1) −

𝐸(𝑦 | 𝑎 = 0 & 𝑡 = 0) = 𝑣 + 𝜆𝛽 + 𝜆 𝛽ଵ + 𝜆 𝛽ଶ + 𝜆 𝛽ଷ − 𝑣 + 𝜆𝛽 + 𝜆 𝛽ଵ − 𝑣 +

𝜆𝛽 + 𝜆 𝛽ଶ − 𝑣 + 𝜆𝛽 

( 7 ) 

As seen in Equation 17 the true causal estimate 𝛽ଷis not only modified by 𝜆 as it is in equation 

10 but the other coefficients and variations of 𝜆 and 𝑣. Measurement invariance means that the 

observed scores for each group are weighted by their own unique variations of 𝜆 and 𝑣 which 

can introduce more bias into the causal estimate if not accounted for.  
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Chapter 1 Appendix II 

A.2 Table 1. Simulation Study 1 Bias by Condition 

Sample 

Size 

Treatment Effect 

(SDs) 

# 

Item

s 

Loadin

gs 

Factor Score 

Bias 

SEM 

Bias 

Sum Score 

Bias 

500 0 4 High 0.009 -0.001 0.007 

500 0 4 Low 0.015 0.002 0.008 

500 0 4 Mix 0.011 0.005 0.009 

500 0 8 High 0.002 0.008 0.002 

500 0 8 Low 0.002 0.008 0.002 

500 0 8 Mix -0.001 0.005 0.001 

3700 0 4 High -0.001 -0.001 0.000 

3700 0 4 Low -0.003 -0.003 -0.001 

3700 0 4 Mix -0.003 -0.001 -0.002 

3700 0 8 High 0.000 -0.001 0.000 

3700 0 8 Low -0.001 -0.002 0.000 

3700 0 8 Mix 0.002 0.000 0.001 

500 0.1 4 High 0.007 -0.001 -0.001 

500 0.1 4 Low 0.013 0.002 -0.030 

500 0.1 4 Mix 0.009 0.004 -0.024 
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500 0.1 8 High 0.000 0.008 -0.003 

500 0.1 8 Low 0.000 0.008 -0.023 

500 0.1 8 Mix -0.003 0.005 -0.017 

3700 0.1 4 High -0.002 -0.001 -0.009 

3700 0.1 4 Low -0.004 -0.003 -0.039 

3700 0.1 4 Mix -0.005 -0.001 -0.036 

3700 0.1 8 High -0.002 -0.001 -0.005 

3700 0.1 8 Low -0.003 -0.002 -0.024 

3700 0.1 8 Mix 0.000 0.000 -0.017 

500 0.2 4 High 0.005 -0.001 -0.010 

500 0.2 4 Low 0.010 0.002 -0.067 

500 0.2 4 Mix 0.006 0.004 -0.058 

500 0.2 8 High -0.002 0.008 -0.009 

500 0.2 8 Low -0.002 0.008 -0.047 

500 0.2 8 Mix -0.005 0.005 -0.035 

3700 0.2 4 High -0.004 0.000 -0.018 

3700 0.2 4 Low -0.006 -0.003 -0.076 

3700 0.2 4 Mix -0.007 -0.001 -0.069 

3700 0.2 8 High -0.004 -0.001 -0.010 
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3700 0.2 8 Low -0.005 -0.002 -0.048 

3700 0.2 8 Mix -0.002 0.000 -0.036 

 

       

       

 

A.2 Table 2. Simulation Study 2 Bias by Condition (Small CT Noninvariance) 

Sample 

Size 

Treatment 

Effect (SDs) 

# 

Items 

Loading

s 

Factor 

Score 

Bias 

SEM 

(CT) Bias 

SEM 

(MI) Bias 

Sum 

Score 

Bias 

500 0 4 High 0.009 -0.001 -0.001 0.016 

500 0 4 Low 0.014 0.003 0.000 0.021 

500 0 4 Mix 0.012 0.005 0.004 0.022 

500 0 8 High 0.003 0.008 0.008 0.007 

500 0 8 Low 0.003 0.009 0.009 0.009 

500 0 8 Mix 0.001 0.007 0.007 0.008 

3700 0 4 High 0.000 0.000 0.000 0.009 

3700 0 4 Low -0.001 -0.002 -0.003 0.011 

3700 0 4 Mix -0.003 -0.001 -0.001 0.010 

3700 0 8 High 0.001 -0.001 -0.001 0.005 

3700 0 8 Low 0.000 -0.002 -0.002 0.008 
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3700 0 8 Mix 0.004 0.000 0.000 0.008 

500 0.1 4 High 0.006 -0.001 0.001 0.011 

500 0.1 4 Low 0.011 0.002 0.005 -0.010 

500 0.1 4 Mix 0.009 0.005 0.009 -0.005 

500 0.1 8 High 0.001 0.009 0.010 0.004 

500 0.1 8 Low 0.001 0.010 0.012 -0.011 

500 0.1 8 Mix -0.001 0.007 0.009 -0.007 

3700 0.1 4 High -0.003 0.000 0.002 0.004 

3700 0.1 4 Low -0.004 -0.002 0.002 -0.019 

3700 0.1 4 Mix -0.005 -0.001 0.004 -0.017 

3700 0.1 8 High -0.001 -0.001 0.000 0.002 

3700 0.1 8 Low -0.002 -0.002 0.000 -0.013 

3700 0.1 8 Mix 0.002 0.000 0.002 -0.007 

500 0.2 4 High 0.002 -0.001 0.003 0.006 

500 0.2 4 Low 0.006 0.002 0.010 -0.041 

500 0.2 4 Mix 0.005 0.005 0.014 -0.033 

500 0.2 8 High -0.003 0.009 0.011 0.000 

500 0.2 8 Low -0.003 0.010 0.015 -0.032 

500 0.2 8 Mix -0.005 0.007 0.011 -0.022 
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3700 0.2 4 High -0.007 0.000 0.004 -0.001 

3700 0.2 4 Low -0.008 -0.002 0.007 -0.050 

3700 0.2 4 Mix -0.009 -0.001 0.009 -0.044 

3700 0.2 8 High -0.005 -0.001 0.001 -0.002 

3700 0.2 8 Low -0.006 -0.002 0.003 -0.034 

3700 0.2 8 Mix -0.002 0.000 0.005 -0.023 

 

 

 

A.2 Table 3. Simulation Study 2 Bias by Condition (Medium CT Noninvariance) 

Sample 

Size 

Treatment 

Effect (SDs) 

# 

Items 

Loading

s 

Factor 

Score 

Bias 

SEM 

(CT) Bias 

SEM 

(MI) Bias 

Sum 

Score 

Bias 

500 0 4 High 0.008 -0.001 -0.001 0.028 

500 0 4 Low 0.014 0.002 -0.002 0.038 

500 0 4 Mix 0.011 0.006 0.004 0.039 

500 0 8 High 0.005 0.008 0.009 0.015 

500 0 8 Low 0.004 0.011 0.011 0.021 

500 0 8 Mix 0.002 0.009 0.009 0.019 

3700 0 4 High 0.001 0.001 0.001 0.022 
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3700 0 4 Low 0.000 -0.002 -0.002 0.029 

3700 0 4 Mix -0.003 -0.001 -0.001 0.027 

3700 0 8 High 0.002 0.000 0.000 0.013 

3700 0 8 Low 0.001 -0.002 -0.001 0.018 

3700 0 8 Mix 0.004 0.000 0.000 0.018 

500 0.1 4 High 0.005 0.000 0.005 0.029 

500 0.1 4 Low 0.011 0.002 0.011 0.017 

500 0.1 4 Mix 0.008 0.006 0.015 0.021 

500 0.1 8 High 0.002 0.009 0.013 0.015 

500 0.1 8 Low 0.002 0.011 0.018 0.005 

500 0.1 8 Mix -0.001 0.009 0.016 0.008 

3700 0.1 4 High -0.002 0.001 0.007 0.022 

3700 0.1 4 Low -0.003 -0.002 0.010 0.008 

3700 0.1 4 Mix -0.006 -0.001 0.010 0.010 

3700 0.1 8 High 0.000 0.000 0.004 0.013 

3700 0.1 8 Low -0.001 -0.001 0.006 0.003 

3700 0.1 8 Mix 0.002 0.000 0.007 0.007 

500 0.2 4 High 0.001 0.000 0.011 0.029 

500 0.2 4 Low 0.007 0.002 0.023 -0.004 
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500 0.2 4 Mix 0.004 0.007 0.026 0.003 

500 0.2 8 High -0.001 0.010 0.017 0.015 

500 0.2 8 Low -0.002 0.011 0.026 -0.011 

500 0.2 8 Mix -0.004 0.009 0.023 -0.003 

3700 0.2 4 High -0.006 0.001 0.014 0.022 

3700 0.2 4 Low -0.006 -0.002 0.023 -0.014 

3700 0.2 4 Mix -0.009 -0.001 0.021 -0.008 

3700 0.2 8 High -0.003 0.001 0.008 0.013 

3700 0.2 8 Low -0.005 -0.001 0.013 -0.013 

3700 0.2 8 Mix -0.001 0.000 0.013 -0.004 

 

 

 

A.2 Table 4. Simulation Study 3 Bias by Condition (Reprioritization) 

Sample 

Size 

Treatment 

Effect 

(SDs) 

# 

Items 

Loading

s 

Factor 

Score 

Bias 

SEM 

(MI) Bias 

SEM (RS) 

Bias 

Sum Score 

Bias 

500 0 4 High 0.008 0.000 -0.001 0.007 

500 0 4 Low 0.019 0.003 0.002 0.008 

500 0 4 Mix 0.014 0.006 0.008 0.009 
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500 0 8 High 0.001 0.007 0.007 0.002 

500 0 8 Low 0.001 0.006 0.005 0.001 

500 0 8 Mix -0.003 0.003 0.003 0.000 

3700 0 4 High -0.002 -0.001 -0.001 0.000 

3700 0 4 Low -0.002 -0.003 -0.002 -0.001 

3700 0 4 Mix -0.015 -0.001 -0.003 -0.002 

3700 0 8 High -0.001 -0.001 -0.002 0.000 

3700 0 8 Low -0.001 -0.003 -0.003 0.000 

3700 0 8 Mix 0.001 0.000 0.000 0.001 

500 0.1 4 High 0.007 -0.004 -0.001 -0.012 

500 0.1 4 Low 0.015 -0.009 0.002 -0.046 

500 0.1 4 Mix -0.006 -0.027 -0.001 -0.040 

500 0.1 8 High 0.000 0.006 0.008 -0.009 

500 0.1 8 Low 0.000 0.001 0.005 -0.032 

500 0.1 8 Mix -0.004 -0.005 0.003 -0.026 

3700 0.1 4 High -0.003 -0.004 0.000 -0.020 

3700 0.1 4 Low -0.004 -0.015 -0.002 -0.055 

3700 0.1 4 Mix -0.022 -0.034 -0.002 -0.052 

3700 0.1 8 High -0.002 -0.003 -0.002 -0.010 
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3700 0.1 8 Low -0.002 -0.008 -0.003 -0.033 

3700 0.1 8 Mix -0.001 -0.008 0.000 -0.026 

500 0.2 4 High 0.004 -0.008 -0.001 -0.032 

500 0.2 4 Low 0.010 -0.021 0.003 -0.099 

500 0.2 4 Mix -0.026 -0.058 -0.011 -0.090 

500 0.2 8 High -0.002 0.005 0.008 -0.019 

500 0.2 8 Low -0.001 -0.004 0.006 -0.065 

500 0.2 8 Mix -0.007 -0.013 0.003 -0.053 

3700 0.2 4 High -0.005 -0.008 0.000 -0.039 

3700 0.2 4 Low -0.006 -0.027 -0.002 -0.108 

3700 0.2 4 Mix -0.029 -0.066 -0.002 -0.101 

3700 0.2 8 High -0.004 -0.004 -0.002 -0.020 

3700 0.2 8 Low -0.004 -0.014 -0.003 -0.066 

3700 0.2 8 Mix -0.003 -0.016 0.000 -0.053 

 

A.2 Table 5. Simulation Study 3 Bias by Condition (Reconceptualization) 

Sample 

Size 

Treatment 

Effect (SDs) 

# 

Items 

Loading

s 

Factor 

Score 

Bias 

SEM 

(MI) 

Bias 

SEM (RS) 

Bias 

Sum Score 

Bias 

500 0 4 High 0.009 0.000 -0.001 0.007 
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500 0 4 Low 0.017 0.003 0.002 0.008 

500 0 4 Mix 0.023 0.007 0.001 0.009 

500 0 8 High 0.001 0.007 0.007 0.001 

500 0 8 Low 0.001 0.006 0.006 0.001 

500 0 8 Mix -0.003 0.002 0.000 0.000 

3700 0 4 High -0.002 0.000 0.000 0.000 

3700 0 4 Low -0.004 -0.003 -0.002 -0.001 

3700 0 4 Mix -0.005 -0.001 -0.001 -0.002 

3700 0 8 High -0.001 -0.001 -0.002 0.000 

3700 0 8 Low -0.002 -0.003 -0.003 0.000 

3700 0 8 Mix 0.001 0.000 0.000 0.001 

500 0.1 4 High 0.008 -0.005 -0.001 -0.020 

500 0.1 4 Low 0.012 -0.007 0.001 -0.042 

500 0.1 4 Mix -0.002 -0.049 -0.022 -0.053 

500 0.1 8 High 0.000 0.005 0.007 -0.013 

500 0.1 8 Low 0.000 0.002 0.006 -0.030 

500 0.1 8 Mix -0.004 -0.010 0.001 -0.033 

3700 0.1 4 High -0.002 -0.005 0.000 -0.028 

3700 0.1 4 Low -0.006 -0.013 -0.002 -0.051 
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3700 0.1 4 Mix -0.013 -0.058 -0.002 -0.064 

3700 0.1 8 High -0.002 -0.004 -0.002 -0.014 

3700 0.1 8 Low -0.003 -0.007 -0.003 -0.031 

3700 0.1 8 Mix 0.000 -0.012 -0.001 -0.032 

500 0.2 4 High 0.005 -0.010 -0.001 -0.048 

500 0.2 4 Low 0.008 -0.016 0.002 -0.091 

500 0.2 4 Mix -0.026 -0.104 -0.034 -0.115 

500 0.2 8 High -0.002 0.003 0.008 -0.028 

500 0.2 8 Low -0.002 -0.002 0.007 -0.061 

500 0.2 8 Mix -0.007 -0.022 0.001 -0.066 

3700 0.2 4 High -0.004 -0.011 0.000 -0.055 

3700 0.2 4 Low -0.009 -0.022 -0.002 -0.100 

3700 0.2 4 Mix -0.021 -0.113 -0.002 -0.126 

3700 0.2 8 High -0.004 -0.006 -0.002 -0.028 

3700 0.2 8 Low -0.005 -0.011 -0.003 -0.062 

3700 0.2 8 Mix -0.003 -0.024 -0.001 -0.065 
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A.2 Table 6. Loading Recovery Check  

Sample 

Size 

# 

Items 
Loadings 

Measurement 

Invariance 

Recovered Loading 

Bias 

3700 4 High Invariant -0.001 

500 4 High Invariant 0.000 

3700 4 Low Invariant -0.001 

500 4 Low Invariant 0.001 

3700 4 Mix Invariant -0.001 

500 4 Mix Invariant 0.000 

3700 8 High Invariant -0.001 

500 8 High Invariant -0.001 

3700 8 Low Invariant 0.000 

500 8 Low Invariant 0.000 

3700 8 Mix Invariant 0.000 

500 8 Mix Invariant 0.000 

3700 4 High Medium CT -0.001 

500 4 High Medium CT -0.001 

3700 4 Low Medium CT 0.000 

500 4 Low Medium CT 0.001 

3700 4 Mix Medium CT 0.000 
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500 4 Mix Medium CT 0.002 

3700 8 High Medium CT -0.001 

500 8 High Medium CT 0.000 

3700 8 Low Medium CT -0.001 

500 8 Low Medium CT -0.001 

3700 8 Mix Medium CT 0.000 

500 8 Mix Medium CT -0.002 

3700 4 High Reconceptualization -0.001 

500 4 High Reconceptualization 0.000 

3700 4 Low Reconceptualization -0.004 

500 4 Low Reconceptualization -0.003 

3700 4 Mix Reconceptualization 0.004 

500 4 Mix Reconceptualization 1.912 

3700 8 High Reconceptualization -0.001 

500 8 High Reconceptualization -0.001 

3700 8 Low Reconceptualization -0.001 

500 8 Low Reconceptualization 0.000 

3700 8 Mix Reconceptualization -0.001 

500 8 Mix Reconceptualization 0.000 
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3700 4 High Reprioritization -0.001 

500 4 High Reprioritization 0.000 

3700 4 Low Reprioritization -0.002 

500 4 Low Reprioritization -0.004 

3700 4 Mix Reprioritization -0.004 

500 4 Mix Reprioritization -0.079 

3700 8 High Reprioritization -0.001 

500 8 High Reprioritization -0.001 

3700 8 Low Reprioritization -0.001 

500 8 Low Reprioritization 0.000 

3700 8 Mix Reprioritization 0.000 

500 8 Mix Reprioritization 0.000 

3700 4 High Small CT 0.000 

500 4 High Small CT 0.000 

3700 4 Low Small CT 0.000 

500 4 Low Small CT 0.001 

3700 4 Mix Small CT 0.000 

500 4 Mix Small CT 0.002 

3700 8 High Small CT -0.001 



76 
 

500 8 High Small CT -0.001 

3700 8 Low Small CT -0.001 

500 8 Low Small CT -0.001 

3700 8 Mix Small CT 0.000 

500 8 Mix Small CT -0.003 
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Chapter 2 Abstract 

     The Difference-in-Difference (DiD) design is a useful tool for evaluating the impact of 

policies on various outcomes. It accounts for differences between treated and untreated groups 

before treatment by comparing their outcomes over time. Educational evaluators use DiD 

designs to produce unbiased and precise estimates, including outcomes related to students' 

academic, psychological, and socio-emotional attributes measured using surveys and tests. The 

use of survey-based outcomes in DiD designs is growing due to the increasing availability of 

socio-emotional learning (SEL) data and popularity of SEL policies. However, a challenge in 

using survey-based outcomes is scoring the item responses, which can affect the causal 

estimates. Most related work on scoring has been conducted using simulated data and not in the 

context of DiD designs. This research aims to investigate the impact of scoring decisions in a 

DiD context by rescoring a study by Whitney and Candelaria (2017).  

 Keywords: measurement; item response theory; difference-in-difference designs; program 

evaluation. 
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Can Scoring Decisions Affect Results from Quasi-experimental Studies? 

Revisiting Effects of No Child Left Behind on Children’s Socioemotional Outcomes 

 The Difference-in-Difference (DiD) design is one of the most useful designs to evaluate the 

causal impact of education policies. The DiD design works by accounting for the differences 

between treated and untreated groups pre-intervention when comparing the outcomes of those 

groups. The core logic of DiD is that any differences between the treatment and non-treatment 

groups will remain consistent over time, allowing for an unbiased causal estimate (Caniglia & 

Murray, 2020). Using its relatively simple and flexible design, educational evaluators can, under 

the right assumptions, produce unbiased and precise causal estimates (Somers et al., 2013). The 

most basic DiD design only needs data from before and after a policy for two groups, a group 

affected by a policy and a group that has not been affected (Wing et al., 2018). This basic design 

can then be modified to account for more complex situations, such as multiple groups with 

differential treatment timings (Callaway & Sant’Anna, 2020).   

  DiD designs are often used to estimate the impact of polices on easily quantifiable  outcomes 

like funding levels (Delaney & Kearney, 2015). However, in education, there is also interest in 

outcomes related to students’ academic, psychological and socio-emotional attributes, which are 

latent and often measured using surveys and tests. For instance, outcomes like mathematics 

engagement are of interest to educational researchers and are regularly studied (e.g. Fredricks et 

al., 2018; Talbert et al., 2019). While few studies have used these outcomes in a DiD design, 

related studies are starting to emerge given the growing interest in socio-emotional learning 

(SEL) outcomes in education (Gehlbach & Hough, 2018). For example, under the 2017 Every 

Student Succeeds Act, states are able to use funds under Title I and Title II, Part A to address SEL 

(Grant et al., 2017). At the state level (Eklund et al., 2018) and local levels (Mahoney et al., 
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2020) policies and programs are being created and implemented to improve socio-emotional 

outcomes and more data are being collected about them. For example, CORE, a collaboration of 

several districts with over a million children in California, uses SEL outcomes as improvement 

measures and collects SEL data annually (Gehlbach & Hough, 2018).   

   The increasing availability of SEL data and popularity of SEL policies drives the opportunity 

and need for using survey-based outcomes in DiD designs. A recent example of such a study is 

one conducted by Whitney and Candelaria (2017) that uses a DiD design to investigate the 

impact of The No Child Left Behind (NCLB) Act of 2001 on various socio-emotional outcomes 

such as mathematics interest. In that study, they found that the NCLB had both positive and 

negative effects on socio-emotional outcomes, with possible improvements in math competence 

and interest, but also an increase in academic anxiety. Their subgroup analysis suggested that the 

treatment effect on math interest and competence varied by SES and sex, with significant 

positive effects for students from lower SES backgrounds, male students for math interest, and 

female students for math competence. However, a challenge with the use of survey-based 

outcomes in evaluation is how to score the survey item responses. In many studies, including 

Whitney and Candelaria (2017), scores are often produced by taking an average or the sum of  

item responses, known as sum scoring (McNeish & Wolf, 2020). The frequent use of sum 

scoring occurs despite research demonstrating that scoring approaches (e.g., the model used to 

calibrate item parameters and score the item responses, as well as the approach to producing 

those scores in an item response theory [IRT] context) can bias the treatment estimates under 

realistic conditions in a variety of designs. For example, studies examining  randomized control 

trials (Gorter et al., 2016; Soland, 2021, 2022), regression discontinuity designs (Soland, 

Johnson, et al., 2022), and longitudinal designs more generally (Bauer & Curran, 2015; Gorter et 
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al., 2015; Kuhfeld & Soland, 2020; Soland, Kuhfeld, et al., 2022) all used conditions that were 

based on the results of empirical studies or relevant literature.  This body of work clearly 

suggests that scoring decisions—including measurement model misspecification—could impact 

causal estimates derived from the DiD design.   

      However, most related work on how scoring affects inferences drawn in program evaluation 

contexts has two limitations in terms of understanding scoring in a DiD context. First, almost all 

of the analyses were conducted using simulated data, not empirical data1. Thus, the practical 

implications are somewhat murky. Second, the effect of scoring has not been investigated in the 

DiD context specifically, only in the context of other quasi-experimental methods like regression 

discontinuity (Soland, Johnson, et al., 2022).  To make the impact of scoring decisions more 

concrete in this context, work specific to the DiD design using real data is needed.    

 To that end, this study investigates how different IRT scoring approaches affect the substantive 

findings from Whitney and Candelaria (2017), and specifically how these approaches affect our 

understanding of how NCLB impacted students’ socio-emotional outcomes. We decided to re-

examine the evaluation by Whitney and Candelaria (2017) because it was a comprehensive DiD 

evaluation of an important policy that analyzed several outcomes and discovered both non-

significant and significant statistical results. Further, these outcomes were produced by using 

rudimentary scoring approaches that can lead to biased treatment effect estimates (e.g., Gorter et 

al., 2020). An additional benefit of revisiting Whitney and Candelaria is that it uses a well-known 

educational dataset, the Early Childhood Longitudinal Study Kindergarten-Fifth Grade (ECLS-

K) (Tourangeau et al., 2009), which means other researchers can use our code to score measures 

 

1 While some studies do include empirical demonstrations these are typically only brief, illustrative empirical 
examples. 
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of interest from the dataset, to understand how common uses of those scores are impacted by 

measurement decisions. By re-examining the study, we are able to investigate the following 

research questions: 

1. Do conclusions about the effects of accountability via NCLB on children’s socio-

emotional outcomes change dependent on which scoring approach is used? 

2. Are conclusions about different effects by socioeconomic status and sex sensitive to the 

scoring approach is used? 

Background 

Existing Knowledge on How Measurement Decisions Can Affect Study Results 

 There are several decisions that go into scoring a measure, especially in an evaluation context. 

These decision stages were enumerated previously by Soland, Kuhfeld, and Edwards (2022). By 

virtue of the effects such decisions can have on bias and variability in observed scores, those 

decisions can in turn have impacts on the analyses conducted using them. We briefly detail those 

decision stages here. 

      Step 1. Deciding whether to use a measurement model versus sum scores. The first 

decision revolves around choosing whether to use an explicit measurement model. Sum scoring, 

which includes the common strategy of taking the sum or average of the item responses, does not 

have an explicit measurement model. However, researchers have argued that it involves an 

implicit measurement model assuming that every item is equally representative of the measured 

construct (i.e., that all discrimination/slope parameters are identical) and that those parameters 

are invariant over time (McNeish & Wolf, 2020).  In contrast, more complex statistical 

approaches, like those based in IRT, estimate a measurement model that allows for items to have 

unique discrimination/slope parameters, including over time for the same item. Thus, one could 
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argue that, while sum scores do not involve an overt measurement model, they are equivalent to 

fitting an extremely constrained measurement model that imposes large assumptions relative to, 

say, the 2 parameter logistic (2PL) IRT model.  Further, when such assumptions are violated, 

common uses of longitudinal scores relevant to DiD can lead to biased estimates. For instance, 

Kuhfeld and Soland (2020), showed that, for growth modeling under certain scenarios, using 

sum scores led to an understatement of true latent slope parameter means and variances by nearly 

50%. Similarly, for evaluation studies, treatment effect estimates can be understated by up to 

40% in a regression discontinuity design (Soland, Johnson, et al., 2022) and up to 25% in an 

experiment (Soland, 2021) when using sum scores.      

      Step 2. Deciding on the specific measurement model. After deciding an explicit 

measurement model is appropriate, there are a number of choices that can be made around the 

specific measurement model used.  One of the most important is the decision about how to 

calibrate the item parameters.  There are several possible measurement models and, in the case of 

longitudinal data, samples that could be used to calibrate item parameters in a measurement 

model. For example, if a researcher was conducting a longitudinal study with children in middle 

school, they could choose to calibrate using only a cross-section of students from different grades 

(akin to vertical scaling), based on the first timepoint only, or using a multi-timepoint 

multidimensional IRT (MIRT) model to calibrate all the item responses at once.  More complex 

calibration requires more data, but choosing a calibration method that does not align with the 

data generating process can lead to understating parameters by around 20% in growth modeling 

(Kuhfeld & Soland, 2020) and over 50% in some experimental scenarios (Soland et al., 2022).   

This bias occurs because of a mismatch between the measurement model and the data-generating 

process. For example, using a unidimensional IRT model with longitudinal data includes no 
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explicit correlation of scores over time in the model, and assumes there is only a single mean and 

variance in the population as opposed to time-specific means and variances. Neither assumption 

is likely to be met, which potentially leads to bias.      

       Step 3. Producing scores.  Finally, after the model is selected, a researcher must decide how 

to estimate scores from the measurement model. Researchers can typically use a frequentist 

approach like MLE (Maximum Likelihood Estimation) or Bayesian approaches like EAP 

(Expected A Posteriori) or MAP (Maximum A Posteriori). Choosing between MLE versus a 

Bayesian approach like EAP can involve complex tradeoffs. For instance, MLE scores are 

asymptotically unbiased and their standard errors are associated with the information function 

(Baker, 1992). However, MLE cannot easily produce scores for measures where only a single 

response category is used (Soland, Kuhfeld, et al., 2022). In these cases, the scores are undefined 

and must be replaced by arbitrary maximums or minimums or left missing.  This issue is 

especially problematic when short self-report measures (like those used to capture SEL 

outcomes) are employed because respondents frequently use only the top response category of 

the Likert scale (Soland & Kuhfeld, 2020).  

 Bayesian approaches also have their own tradeoffs. Bayesian methods incorporate information 

about the population through the specification of a prior distribution of scores, either using 

something generic like the standard normal distribution or factoring in something we might 

know about the construct prior to the study (Bock & Mislevy, 1982). In EAP, the standard 

normal distribution is typically used, and the estimates of the latent construct are shrunk toward 

the population mean. Shrinking towards this mean can improve accuracy if the mean aligns with 

the parameter the researcher is trying to estimate (Soland, Kuhfeld, et al., 2022), but can induce 

bias if the measurement model does not align with the study design. For example, applying a 
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single group IRT model using EAP to a scenario with two groups—such as control and treatment 

conditions—will result in scores being shrunk to a common mean. That is, the model assumes 

that control and treatment groups are exchangeable. In so doing, the estimated difference 

between the two groups can be biased downwards because EAP would shrink the scores of the 

two groups to an overall mean somewhere in between their group-specific means.   

Measurement Decisions in Difference in Difference Studies 

 These measurement decisions could affect the DiD design in many of the same ways they do 

other study designs. In particular, decisions made in Step 2 (Calibration) are key to the DiD 

design. The DiD design hinges on an assumption about both changes over time (pre/post 

intervention) and group differences in changes over time. Specifically, the key DiD assumption, 

the parallel trends assumption, posits that important unmeasured variables are either time-

invariant group attributes or time-varying factors that are group invariant (Wing et al., 2018). 

When the parallel trends assumption holds, theoretically, accounting factors that might affect the 

causal estimate are differenced out and the basic DiD design produces an unbiased causal 

estimate. 

 However, if the measurement model is not calibrated on the control and treatment groups by 

timepoint, any differences in the means between groups or over time are not incorporated into 

the measurement model. If a measurement model disregards either time or group, it implies that 

the control and treatment groups, or the timepoints, can be interchanged. These are hidden 

assumptions different from the DiD identification assumptions that are more well-known but are 

also important.  For example, even if the parallel trends assumption, the assumption that 

important unmeasured variables are either time-invariant group attributes or time-varying factors 

that are group invariant (Wing et al., 2018), is met perfectly it does not imply that the groups are 
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exchangeable because even though the group and time attributes are accounted for in the 

estimating model they are not accounted for in the measurement model.   

  Unfortunately, both the exchangeability of groups and timepoints are likely untenable 

assumptions for a DiD design because the design features distinct groups that are observed over 

time.  Unlike in an experiment there is no expectation that the treated and untreated groups are 

statistically equivalent and the design is often used for situations where there are known 

differences between the groups on the target construct.  Similarly, DiD designs, especially those 

in education, often take place over long periods of time. Developmental changes or random 

events like a social media craze may affect the target construct making an assumption of 

exchangeability between timepoints unsustainable. While for the parallel trends assumption these 

events need to have a differential effect by time or group to constitute a violation, any difference 

between the groups or timepoints will affect an assumption of exchangeability.    

Findings from Whitney and Candelaria  

  In their study, Whitney and Candelaria used subscales from the children’s Self-Descriptive 

Questionnaire (SDQ), an instrument supported by validity evidence for assessing children’s self-

concept according to field testing (Atkins-Burnett & Meisels, 2001; Pollack et al., 2005), to 

create measures of ten socio-emotional outcomes. There are several reasons the use of sum 

scoring in this context could be problematic. First, each measure was short, composed from only 

two to five items. Shorter scales can result in more bias because the weighting of each individual 

item has more importance magnifying the impact of incorrect weightings (Kuhfeld & Soland, 

2020; Soland, 2021, 2022; Soland, Kuhfeld, et al., 2022). Second, the measures all involved self-

report. Self-report items are vulnerable to differences in interpretation by respondents that could 

affect measurement. Third, short self-report measures make decisions about which measurement 
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model to use, as well as whether to use MLE versus EAP scoring, especially consequential 

(Soland, Kuhfeld, & Edwards, 2022). For example, shrinkage will be greater for shorter, less 

reliable measures; therefore, decisions about whether to use a unidimensional, versus multi-

timepoint multigroup MIRT model that better matches the data can be more impactful. 

      Measurement issues aside, Whitney and Candelaria (2017) found both beneficial and 

detrimental effects of NCLB on socio-emotional outcomes2.  Overall, their analysis suggested 

that NCLB caused an increase in academic anxiety and possible improvements in math 

competence and interest.  These impacts were relatively small. The increase in academic anxiety 

was estimated to range from .08 to .14 standard deviations (SDs) while the increase in math 

competence and interest were estimated to range from .06 to .07 and .05 to .06 SDs respectively. 

In every model specification, neither the increase in academic anxiety nor the increases in math 

was statistically significant at the .1 level, but the point estimates were consistent.  For the other 

seven outcomes, none of the model specifications produced estimates that were significant at the 

.1 level.   

     Subgroup Findings. Whitney and Candelaria (2017) also conducted a subgroup analysis 

using the SES and sex variables. These analyses revealed differences in subgroups in the self-

reported constructs of math competence and interest by SES and sex.  NCLB was estimated to 

increase math interest by .093 SDs and math competence by .086 SDs in the bottom half of the 

SES distribution. In comparison, there was an estimated treatment effect of  -.001 SDs (math 

interest) and .027 SDs (math competence) in the top half of the SES distribution.  The treatment 

 

2 Results from Whitney and Candelaria (2017) are exact matches for the sum score results in Appendix I & II   
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effect was statistically significant at the .05 alpha level for the bottom half of SES distribution 

and not significant for the top half.  

      There were also less dramatic differences in math interest and competence by sex. The 

treatment effect of NCLB on math interest appeared to be greater for male students (.067 SDs, 

p<.1) than female students (.023 SDs). The reverse was true for math competence with a 

treatment effect of .042 SDs for male students and .071 SDs for female students (p<.1)3.    

Methods 

Sample 

 Like the original Whitney and Candelaria (2017) study, this study uses the restricted version of 

the ECKLS-K dataset, which is nationally representative of kindergartners in 1998–1999 school 

year. Data were collected in the fall and spring of the kindergarten year, spring of the first-grade 

year (with a fall subsample), and spring of the third-, fifth-, and eighth-grade years. Like the 

original study, ours only used data from spring of the first and third grade years, which occurred 

immediately before and after the passage of NCLB. 

IRT Approaches for Item Parameter Calibration 

 After deciding whether to use a sum score (Step 1), and assuming one prefers an IRT model of 

some kind, the next decisions for scoring a multi-group, multi-timepoint survey like the one used 

in Whitney and Candelaria’s (2017) DiD study, are the calibration and scoring approaches (Steps 

2 and 3). We used several such approaches, including a simplistic calibration approach 

employing a unidimensional model, as well as an approach more likely to match the data.  More 

 

3 For both the subgroup and total population analysis the authors were concerned that the multiple comparisons 
made meant that the evidence that they produced was not conclusive.   
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precisely, the first calibration approach used a unidimensional model to calibrate item parameters 

using both groups and both timepoints, while in the second, all item parameters were calibrated 

using a longitudinal multigroup MIRT model that allowed population means and variances to 

differ by timepoint and group.   

 Given the original study used Likert-type items, for every scoring approach in our own study, 

item calibration was accomplished using some version of the graded response model or GRM 

(Samejima, 1969).  We outline this model in the following equations. Let there be 𝑗 = 1, … , 𝑛 

items and 𝑖 = 1, … , 𝑁 individuals. Let the response from individual i to item j at timepoint t 

be 𝑦௧, where 𝑦௧ has K response categories. It can be assumed that 𝑦௧ takes integer values 

from (0, … , 𝐾 − 1). Let the cumulative category response probabilities be 

 

 
𝑃൫𝑦௧ ≥ 1ห𝜃) =

1

1 + exp[−(𝑐ଵ + 𝑎𝜃)]
 

 

                                                                    ⋮ (1)  

 
𝑃൫𝑦௧ ≥ 𝐾 − 1ห𝜃) =  

1

1 + exp[−(𝑐,ିଵ + 𝑎𝜃)]
 

 

The category response probability is the difference between two adjacent cumulative 

probabilities 

 𝑃൫𝑦௧ = 𝑘ห𝜃) = 𝑃൫𝑦௧ ≥ 𝑘ห𝜃) − 𝑃൫𝑦௧ ≥ 𝑘 + 1ห𝜃), (2)  

 

where P(𝑦௧ ≥ 0|𝜃) is equal to 1 and P(𝑦௧ ≥ 𝐾|𝜃) is zero. The item parameter 𝑎 is the slope 

parameter describing the relationship between item j and the latent factor and 𝑏୨ଵ, … , 𝑏,ିଵ are a 
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set of 𝐾 − 1 (strictly ordered) parameters. The thresholds denote the point on the latent variable 

separating category 𝑘 from category 𝑘 + 1.  

 In the unidimensional case, the logit in Equation 1 can be re-expressed in a more convenient 

slope-threshold form as 𝑐 + 𝑎𝜃 = 𝑎(𝜃 − 𝑏), where 𝑏 = −𝑐/𝑎 is the threshold (also 

referred to as severity or difficulty) parameter for category 𝑘. The 𝑘th threshold denotes the point 

on the latent variable separating category 𝑘 from category 𝑘 + 1. However, the slope-threshold 

form does not generalize well to multidimensional models, so we adopted the slope–intercept 

parameterization for every IRT model that we used. Next, we discuss the specific versions of the 

GRM used to calibrate item parameters for the survey item responses. 

 Approach 1. Groups Pooled, Pooled Timepoints, Unidimensional IRT Model. The first 

approach we used to calibrate the item data was by pooling groups and timepoints.  The model 

was fit with both control and treatment participants at both timepoints, scored all together and 

ignoring the dependence among item responses from the same person a shown in Figure 1.  The 

item parameters were estimated using a unidimensional IRT model and then the parameters were 

used to score all item responses in both timepoints and groups.  Again, as described in the 

background section, such an approach has many limitations, including assuming that treatment 

and control groups are exchangeable in the population (Gorter et al., 2015; Kuhfeld & Soland, 

2020). 

      Approach 2. Groups Unpooled, Separate Timepoints, Multigroup MIRT Model.  In a DiD 

design, researchers are not only interested in changes in time (pre/post intervention); they are 

interested in group differences in changes over time. Thus, we fit a multigroup, multi-timepoint 

MIRT model shown in Figure 2.  This model allows one to relax assumptions including equality 

of the latent means and variances across groups/over time (exchangeability).   This calibration 
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approach provides the most flexibility and, perhaps, best matches the nature of DiD data.  For 

example, such a model would allow pre/post scores to have different covariances between 

control and treatment groups, as well as different variances at one or both timepoints.  This 

model would also allow for different latent means pre/post treatment for both groups. 

 MIRT models can be further expanded by incorporating demographic subgroups into the model 

as separate groups for each timepoint as shown in Figure 3. Doing this helps model potential 

treatment effect heterogeneity for those demographic subgroups by allowing each subgroup at 

each timepoint to have a different latent mean. If a treatment results in a mean change for a 

particular demographic subgroup but not another, treating subgroups separately in the 

measurement model prevents shrinkage towards the total population mean at a given timepoint.     

 

 

Figure 1. Unidimensional IRT model 



92 
 

 

Figure 2. Multi-timepoint Multigroup Measurement Model 

 

 

Figure 3. Multi-timepoint Multigroup Measurement Model with Subgroups 
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IRT Scoring Approaches 

 For the single timepoint calibration approach, we used two scoring approaches: MLE and EAP. 

For the Multigroup MIRT we used only EAP. MLE is not recommended for use with multi-

dimensional models because it does not use information from the population distribution, which 

can cause convergence issues in score estimation, and undefined standard errors (Vector 

Psychometric Group, 2021). In combination, calibration and scoring approaches led to three 

distinct sets of scores that were compared to the original sum scoring approach that was used by 

Whitney & Candelaria (2017). Altogether, these combinations included: a univariate model 

calibrated with pooled timepoints scored with EAP, a univariate model with pooled timepoints 

scored with MLE, and a MIRT model calibrated with all timepoints scored with EAP. For 

Whitney and Candelaria’s subgroup analysis, we also incorporated the SES and gender 

demographic subgroups into the MIRT model. 

Estimating the Difference-in-Difference  

 For each scoring approach we estimated the Difference in Difference model using the 

specification originally used by Whitney and Candelaria (2017) reflected in the below equation: 

𝑌௦௧ = 𝜇௦ + 𝛽ଵ𝑃𝑜𝑠𝑡௧ +  𝛽ଶ(𝑇௦𝑥𝑃𝑜𝑠𝑡௧) + 𝑿௧
ᇱ 𝛾 + 𝜀௦௧ (3)  

where 𝑌௦௧is the socioemotional outcome of interest for student i in state s in year t, standardized 

within year t; 𝑃𝑜𝑠𝑡௧ is a binary indicator variable that takes value 1 in the year 2003–2004 and is 

equal to 0 in the year 2001–2002; 𝑇௦ is a binary indicator variable that takes value 1 if a student 

resides in a state that did not have prior consequential accountability and 0 otherwise; 𝜇௦ is a 

state-specific fixed effect; 𝑿௧ is a vector of time-varying and time-invariant covariates; and 
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𝜀௦௧ is a mean-zero random error term. We included the model specification robustness checks 

the results of which are included in Appendix II but focused on the specification of the model 

that used state fixed effects and included the covariates but was not weighted for the total 

population analysis. For the subgroup analysis we used the same unweighted no covariate 

specification that Whitney and Candelaria (2017) used.    

Evaluation Measures 

 To evaluate the impact of different scoring methods we focused on the treatment estimates 

produced. The original study used standardized sum scores putting them on the same scale as the 

scores produced by IRT methods.  This allowed us to examine the shifts in point estimates of the 

treatment effect and standard errors in SDs and the impacts on interpretations that these shifts 

had.   

Results 

Treatment Effect Point Estimates  

 Overall, there was some, but not substantive, variation in the treatment effect point estimates 

produced by each scoring method. Sum scoring results matched the estimates from the original 

Whitney and Candelaria (2017) study exactly and the unidimensional scoring methods produced 

particularly similar point estimates.  

All Students 

 Point estimates for the entire student sample over the various outcomes are shown in Figure 4. 

Across outcomes there were no perfectly consistent relationships between scoring methods, but 

the MGMT EAP method often produced an estimate that was larger in magnitude compared to 

the other methods. There was greater than a .02 SD difference between the smallest and largest 
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point estimates produced using the different scoring methods for five out of the ten outcomes 

with the Externalizing Behavior estimates the farthest apart at .04 SD. Generally, the univariate 

IRT scoring methods were close to each other for a given construct with an average difference of 

.008 SDs between the estimates over all the outcomes, indicating that the scoring approach had a 

minor impact on treatment estimates relative to the calibration approach.   

  The impact that scoring method did have likely reflects that the MGMT model better matches 

the structure of the data and the logic of the DiD design.  The treatment and control groups in 

this study encapsulated students in states that had state-level accountability before NCLB and 

those that did not and the pre-post treatment timepoints were greater than a year apart. Using the 

MGMT model, which can incorporate into measurement differences by timepoint or group, is 

more in-line with the data-generating process, and therefore more likely to capture a true 

treatment effect than a scoring method that assumes that students in the treatment and control 

groups are exchangeable.   
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Figure 4. Treatment Estimate with Standard Error Bars by Scoring Method (Total Population) 

Subgroups 

.......     Overall, there were more and larger differences between the treatment effects produced by 

each scoring method in the subgroup analysis as seen in Figure 5.  The median difference 

between the smallest and largest point estimates across all scoring methods in the SES subgroup 

was .04 SDs and the maximum difference was .07 in School Interest Bottom 50% SES. 

Similarly, for the comparisons by sex, the median difference between the smallest and largest 

point estimates across all scoring methods was .035 SDs.  As seen in Figures 5 and 6, these 

differences often widened the gaps between the subgroups of each outcome. The average gap 
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was .049 SDs between SES subgroups for the MGMT EAP that took into account SES and .039 

SDs for sum scoring and .034 for regular MGMT EAP.   For the sex subgroups, the average gap 

was .058 SDs for the MGMT EAP that took into account sex and .025 SDs for sum scoring and 

.023 for regular MGMT EAP. Notably, for externalizing behavior with sex groups the scoring 

methods resulted in large differences as seen in Figure 6. We discuss possible explanations for 

this in more detail in the discussion.  

 

 

Figure 5. Treatment Estimate with Standard Error Bars by Scoring Method (SES Subgroups) 
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Figure 6. Treatment Estimate with Standard Error Bar by Scoring Method (Sex Subgroups) 

 

Power and Significance 

 One of the most important aspects of a study is the ability to detect effects. Even for well-

designed educational interventions most effect sizes are below .2 (Cheung & Slavin, 2016; Kraft, 

2020) so studies need to be able to detect effects smaller than that.  The scoring method 

influenced the ability to detect small effects through the standard errors (standard errors can be 

seen in Appendix I).  In particular, the MGMT EAP scoring method consistently shrank standard 

errors. On average across outcomes the standard errors the MGMT EAP method produced were 

.0075 SDs smaller than the ones produced by the sum score when considering all students and 
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.01 SDs smaller than those produced by sum scores in the subgroups. These results reflected the 

shrinkage towards individual group/timepoints means of the MGMT EAP method. 

 Accordingly, the smaller standard errors and differential magnitude of the treatment effect 

estimates resulted in shifts in the p-values for many of the outcomes.  When considering all 

students, the change in p-values associated with the MGMT EAP was enough to shift the 

significance levels for 3/10 outcomes. In the SES subgroups 8/20 had significance level shifts 

and in the sex subgroups 4/20 did. Some of these shifts were drastic. For example, the estimate 

of how much NCLB increased academic anxiety in all students had a p-value of .04 originally 

but using MGMT EAP produced a p-value of .003.  Overall, the use of MGMT EAP increased 

the number of effects identified as significant. For all students, four of the ten constructs 

produced significant treatment effects using MGMT EAP compared to only two when using sum 

scores. 

 

Discussion 

 Measurement decisions have been shown to affect the results of studies from those that  use 

growth modeling (Kuhfeld & Soland, 2020) to those that use regression discontinuity designs 

(Soland, Johnson, et al., 2022). However, most of this work has been focused on simulation and 

does not apply specifically to the DiD design. This leaves the question of what practical 

implications measurement decisions have for DiD designs. We began to answer this question by 

showcasing how treatment estimates change in a DiD study that used several short survey scales 

and used a subgroup analysis to examine differential treatment effects.    

   The results showed that the scoring method can affect the significance level for all students 

even if it only shifted the point estimates slightly. Using a scoring method that incorporated the 
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muti-group and multi-timepoint nature of the DiD design tended to produce larger treatment 

effect estimates that were more often significant, a result in line with findings from Monte Carlo 

studies (e.g., Soland, Kuhfeld, & Edwards, 2022).  

 For example, consider the treatment effect of NCLB on academic anxiety The original study 

used a sum scoring approach and recovered a treatment effect that ranged from .076 to .145 SDs 

depending on the model specification and only had 4/8 specifications significant at a .1 alpha 

level.  In contrast, using the MGMT scoring method in our study we recovered a treatment effect 

ranging from .1 to .159 SDs and every specification was significant at a .1 alpha level with the 

main specification producing a p-value of .003.  In short, the scoring approach tended to have a 

substantive effect on statistical power. Some of this increase in statistical power comes from the 

reduction in the standard error driven by how MGMT shrinks scores towards the mean of each 

group. This increases the likelihood of false positives. On the other hand, alignment between 

study design and measurement decisions should result in more accurate point estimates and 

allow researchers to make more valid inferences including when there is a null or minimal 

treatment effect.  

 The importance of measurement decisions was reinforced by results of the subgroup analysis. 

When investigating the potential differential effect of a policy or treatment it is sensible to also 

incorporate the demographic trait that the researcher is investigating into the measurement model 

(Curran et al., 2016). This helps distinguish true treatment effects from those caused by 

measurement misspecification. In our case, incorporating demographic traits into MGMT scoring 

revealed several strong effects that were not apparent in the original study, while also 

strengthening or weakening the evidence for other findings. Particularly notable was the increase 

in externalizing behavior for female students that was estimated as -.007 in the original study, but 
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was estimated as .221 when using the MGMT EAP method that took into account sex. This 

effect was twice as large as the increase in academic anxiety (.079) , the main effect from the 

aggregate student analysis in the original study.  

 Crucially, externalizing behavior was a short measure and there were theoretical reasons to 

believe that scoring should be different by sex. The questions that made up the externalizing 

behavior measure focused on behavior that was disruptive. These questions are theoretically not 

likely to capture externalizing behavior equally well for male and female students because each 

sex tends to have different disruptive behaviors. Male students are much more likely to get into 

and punished for fighting (Lo & Cartledge, 2007; Mendez & Knoff, 2003; Monge et al., 2000) 

while girls can be criticized for talking loudly and boisterously (Koonce, 2012; Morris, 2007; 

Murphy et al., 2013).  Thus, our results clearly outline how important scoring can be when 

conducting analysis of subgroups.  

 Overall, using scoring procedures that were aligned with the logic of the DiD and subgroup 

analysis seemed to give results that would have strengthened the original study. If the authors 

used MGMT EAP scoring the findings would have helped the authors make stronger claims 

about the impact of NCLB and revealed other differential treatment effects that should be 

investigated. While the results of our study indicate that the scoring approach has some influence 

on treatment effect estimates, especially the significance of results, we are unable to verify 

whether using the MGMT EAP method was more accurate. However, prior simulation research 

has shown that the MGMT EAP  is better at recovering true treatment when data is collected at 

multiple timepoints (Kuhfeld & Soland, 2020; Soland, 2022, 2022). This combined with the 

theoretical alignment between MGMT EAP and the logic DiD design suggests that it should be 

used instead of sum scoring. While there is no gurantee any scoring method is the correct one, 
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MGMT EAP  aligns more closely than the alternate scoring methods that we examined. Even if it 

is not the correct or “true” measurement model it is likely to perform better than one that is likely 

to be highly misspecified.        

Limitations and Future Directions 

 Our study has a few limitations that bear mention.  The primary limitation is that this is a re-

analysis of a single study, so the results are not necessarily generalizable. In particular, the short 

lengths of the measures are likely an important factor that enhances the impact of using different 

scoring methods and may not apply to longer survey scales.  Conversely, the relatively simple 

DiD design used means that there may be additional complications in using scoring methods 

with more complex DiD designs. More research that uses different measures and explores more 

complicated DiD designs is needed.  

 Another important consideration is that this study assumes that any underlying differences in 

measurement is caused by shifts in how participants understand and respond to survey questions 

relative to each other. Measurement differences could also reflect threats to a DiD design’s 

validity that cannot be adjusted for by using different scoring approaches. For example, in 

Whitney and Candelaria’s study if there was an incentive to show increases in reading interest in 

the treatment group after the NCLB is passed this might result in an over-reporting of reading 

interest in the treatment group. While this would be a measurement change that biases the 

treatment effect, it generally would not affect the loadings of items and would be undetectable 

using statistical procedures.  Measurement changes like that one should be treated as a violation 

of the DiD identification assumptions and must be detected using tools like interviews rather 

than statistical procedures.     
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Conclusion 

     Our study shows that scoring can matter and can affect the conclusions of an empirical 

analysis with policy implications.  In line with mathematical derivations and simulation research 

on survey scoring generally (Kuhfeld & Soland, 2020; Soland, 2021, 2022; Soland, Kuhfeld, et 

al., 2022) and specific to the DiD design (Chapter 1) some of the largest differences in estimates 

produced by scoring were in the shortest measures. When sample sizes are large enough, our 

results support an argument that researchers should seek to incorporate what they know about 

how the data are collected into the scoring model. For subgroup analyses specifically, including 

relevant demographic factors in the measurement model can help distinguish between differences 

in measurement and differential treatment effects across groups.    
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Chapter 2 Appendix I: Main Estimate Tables 

Table A1.1 Total Population Coefficients and Standard Errors by Outcome (Unweighted State Fixed Effects Model 

with covariates) 

Outcome Sum Scoring Univariate EAP Univariate ML MGMT EAP 

Externalizing Attention 0.011 (0.023) 0.007 (0.024) 0.001 (0.027) 0.002 (0.015) 

Externalizing Behavior 

-

0.002 (0.037) 0.015 (0.035) 0.017 (0.037) 0.038 (0.022)* 

Internalizing Sad/Lonely 

-

0.029 (0.032) 

-

0.023 (0.034) 

-

0.015 (0.036) 

-

0.007 (0.021) 

Internalizing Academic Anxiety  0.079 (0.037)** 0.084 (0.04)** 0.085 (0.041)** 0.103 (0.031)*** 

Math Interest  0.046 (0.036) 0.052 (0.035) 0.062 (0.036) 0.046 (0.032) 

Math Competence 0.057 (0.031)* 0.062 (0.031)* 0.042 (0.027) 0.050 (0.026)* 

Reading Interest 0.010 (0.034) 0.007 (0.036) 0.013 (0.034) 

-

0.025 (0.032) 

Reading Competence 

-

0.026 (0.038) 

-

0.028 (0.036) 

-

0.042 (0.033) 

-

0.050 (0.029) 

School Interest 0.026 (0.031) 0.019 (0.033) 0.011 (0.034) 0.014 (0.027) 

School Competence  0.048 (0.049) 0.056 (0.049) 0.058 (0.048) 0.074 (0.04)* 

Note. * p<.1, **p< .01, ***p<.001 
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Table A1.2 SES Subgroup Coefficients and Standard Errors by Outcome (Unweighted  No Covariate Model) 

Outcome Subgroup Sum Scoring MGMT EAP MGMT EAP (SES) 

Externalizing Attention Bottom SES 0.023 (0.045) 0.010 (0.027) 0.006 (0.03) 

Externalizing Attention Top SES 

-

0.005 (0.028) 

-

0.010 (0.017) 

-

0.024 (0.015) 

Externalizing Behavior Bottom SES 0.024 (0.068) 0.035 (0.038) 0.051 (0.044) 

Externalizing Behavior Top SES 

-

0.029 (0.029) 0.040 (0.019)** 0.033 (0.017) 

Internalizing Sad/Lonely Bottom SES 

-

0.017 (0.049) 

-

0.008 (0.031) 0.013 (0.034) 

Internalizing Sad/Lonely Top SES 

-

0.041 (0.033) 

-

0.005 (0.022) 

-

0.081 (0.02)*** 

Internalizing Academic Anxiety  Bottom SES 0.084 (0.057) 0.108 (0.045)** 0.087 (0.05)* 

Internalizing Academic Anxiety  Top SES 0.071 (0.033)** 0.096 (0.027)*** 0.086 (0.025)*** 

Math Interest  Bottom SES 0.093 (0.043)** 0.096 (0.037)** 0.066 (0.038)* 

Math Interest  Top SES 

-

0.001 (0.043) 

-

0.005 (0.04) 0.003 (0.039) 

Math Competence Bottom SES 0.086 (0.037)** 0.090 (0.031)*** 0.092 (0.032)*** 

Math Competence Top SES 0.027 (0.036) 0.011 (0.03) 

-

0.005 (0.028) 
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Reading Interest Bottom SES 0.016 (0.042) 

-

0.014 (0.04) 

-

0.039 (0.04) 

Reading Interest Top SES 

-

0.003 (0.042) 

-

0.042 (0.039) 

-

0.034 (0.038) 

Reading Competence Bottom SES 

-

0.015 (0.056) 

-

0.035 (0.043) 

-

0.047 (0.046) 

Reading Competence Top SES 

-

0.038 (0.034) 

-

0.067 (0.025)** 

-

0.074 (0.024)*** 

School Interest Bottom SES 

-

0.002 (0.052) 

-

0.013 (0.044) 

-

0.073 (0.048) 

School Interest Top SES 0.056 (0.044) 0.042 (0.038) 0.071 (0.035)* 

School Competence  Bottom SES 0.039 (0.066) 0.070 (0.051) 0.070 (0.055) 

School Competence  Top SES 0.06 (0.048) 0.081 (0.039)** 0.079 (0.034)** 

Note. * p<.1, **p< .01, ***p<.001 
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Table A1.3 Sex Subgroup Coefficients and Standard Errors by Outcome (Unweighted No Covariate Model) 

Outcome Subgroup Sum Scoring MGMT EAP MGMT EAP (Sex) 

Externalizing Attention Male  0.037 (0.03) 0.010 (0.017) 0.016 (0.018) 

Externalizing Attention Female -0.02 (0.034) 

-

0.010 (0.023) 0.062 (0.024)** 

Externalizing Behavior Male  

-

0.001 (0.053) 0.015 (0.029) 0.000 (0.028) 

Externalizing Behavior Female 

-

0.007 (0.042) 0.058 (0.026) 0.221 (0.027)*** 

Internalizing Sad/Lonely Male  

-

0.028 (0.037) 

-

0.010 (0.023) 

-

0.021 (0.024) 

Internalizing Sad/Lonely Female 

-

0.031 (0.041) 

-

0.005 (0.026) 0.007 (0.027) 

Internalizing Academic Anxiety  Male  0.089 (0.046)* 0.108 (0.037)*** 0.074 (0.038)* 

Internalizing Academic Anxiety  Female 0.062 (0.049) 0.091 (0.04)** 0.058 (0.04) 

Math Interest  Male  0.067 (0.036) 0.067 (0.032)** 0.074 (0.033)* 

Math Interest  Female 0.023 (0.055) 0.024 (0.049) 

-

0.033 (0.048) 

Math Competence Male  0.042 (0.042) 0.029 (0.034) 0.038 (0.035) 

Math Competence Female 0.071 (0.043)* 0.072 (0.036)* 0.046 (0.036) 
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Reading Interest Male  0.003 (0.034) 

-

0.028 (0.032) 

-

0.009 (0.033) 

Reading Interest Female 0.011 (0.047) 

-

0.028 (0.042) 

-

0.046 (0.042) 

Reading Competence Male  

-

0.051 (0.041) 

-

0.065 (0.03) 

-

0.044 (0.03) 

Reading Competence Female 

-

0.001 (0.049) 

-

0.034 (0.04)* 

-

0.072 (0.04)* 

School Interest Male  0.024 (0.039) 0.017 (0.032) 0.015 (0.032) 

School Interest Female 0.027 (0.052) 0.009 (0.045) 

-

0.034 (0.046) 

School Competence  Male  0.06 (0.052) 0.086 (0.043)* 0.058 (0.043) 

School Competence  Female 0.037 (0.061) 0.065 (0.05) 0.012 (0.05) 

Note. * p<.1, **p< .01, ***p<.001 
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Appendix II: Robustness Check Results 

 

 

 

 

Table A2.3 Total Population Coefficients and Standard Errors by Outcome (Unweighted Child Fixed Effects No Covariates 
Model) 

Outcome Sum Scoring 
Univariate 

EAP Univariate ML MGMT EAP 
Externalizing Attention 0.008 (0.033) 0.006 (0.034) 0.000 (0.037) 0.002 (0.02) 
Externalizing Behavior 0.005 (0.053) 0.022 (0.05) 0.022 (0.053) 0.044 (0.03) 
Internalizing Sad/Lonely -0.024 (0.043) -0.019 (0.045) -0.010 (0.049) 0.001 (0.025) 
Internalizing Academic Anxiety  0.079 (0.053) 0.083 (0.056) 0.085 (0.058) 0.100 (0.042)** 
Math Interest  0.047 (0.05) 0.052 (0.049) 0.060 (0.051) 0.045 (0.043) 
Math Competence 0.061 (0.044) 0.064 (0.043) 0.044 (0.038) 0.051 (0.036) 
Reading Interest 0.015 (0.05) 0.013 (0.051) 0.022 (0.048) -0.018 (0.043) 
Reading Competence -0.020 (0.05) -0.022 (0.049) -0.038 (0.044) -0.044 (0.037) 
School Interest 0.025 (0.042) 0.019 (0.045) 0.012 (0.047) 0.013 (0.037) 
School Competence  0.049 (0.069) 0.058 (0.069) 0.060 (0.068) 0.075 (0.055) 

Note. * p<.1, **p< .01, ***p<.001 

Table A2.1 Total Population Coefficients and Standard Errors by Outcome (Unweighted State Fixed Effects No 
Covariates Model) 

Outcome Sum Scoring 
Univariate 

EAP 
Univariate 

ML MGMT EAP 

Externalizing Attention 0.009 (0.024) 0.005 (0.034) 
-

0.001 (0.027) 
-

0.001 (0.015) 

Externalizing Behavior 
-

0.004 (0.039) 0.013 (0.037) 0.016 (0.038) 0.036 (0.024) 

Internalizing Sad/Lonely 
-

0.029 (0.032) 
-

0.023 (0.034) 
-

0.015 (0.036) 
-

0.007 (0.021) 
Internalizing Academic Anxiety  0.076 (0.037)** 0.081 (0.04) 0.083 (0.041)* 0.100 (0.031)*** 
Math Interest  0.044 (0.035) 0.051 (0.034) 0.060 (0.036) 0.045 (0.031) 
Math Competence 0.055 (0.032)* 0.059 (0.031) 0.041 (0.027) 0.049 (0.026)* 

Reading Interest 0.007 (0.036) 0.004 (0.037) 0.011 (0.035) 
-

0.028 (0.034) 

Reading Competence 
-

0.026 (0.037) 
-

0.028 (0.036) 
-

0.042 (0.032) 
-

0.049 (0.028) 
School Interest 0.025 (0.031) 0.018 (0.033) 0.010 (0.035) 0.013 (0.027) 
School Competence  0.048 (0.049) 0.056 (0.049) 0.058 (0.049) 0.075 (0.04)* 

Note. * p<.1, **p< .01, ***p<.001 
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Table A2.4 Total Population Coefficients and Standard Errors by Outcome (Weighted State Fixed Effects Model No covariates) 

Outcome Sum Scoring Univariate EAP Univariate ML MGMT EAP 
Externalizing Attention -0.010 (0.05) -0.023 (0.05) -0.010 (0.053) -0.019 (0.032) 
Externalizing Behavior -0.058 (0.064) -0.061 (0.064) -0.077 (0.064) -0.017 (0.044) 
Internalizing Sad/Lonely -0.055 (0.057) -0.044 (0.055) -0.023 (0.052) -0.024 (0.036) 
Internalizing Academic Anxiety  0.132 (0.076)* 0.154 (0.074)** 0.159 (0.073)** 0.153 (0.058)** 
Math Interest  0.066 (0.047) 0.054 (0.047) 0.020 (0.055) 0.050 (0.043) 
Math Competence 0.068 (0.039)* 0.067 (0.039)* 0.040 (0.044) 0.059 (0.034)* 
Reading Interest 0.013 (0.056) 0.002 (0.061) 0.001 (0.059) -0.023 (0.055) 
Reading Competence 0.031 (0.066) 0.026 (0.063) 0.000 (0.055) -0.001 (0.051) 
School Interest 0.028 (0.047) 0.021 (0.049) 0.009 (0.05) 0.019 (0.042) 
School Competence  0.043 (0.057) 0.059 (0.058) 0.060 (0.058) 0.082 (0.047)* 

Note. * p<.1, **p< .01, ***p<.001 
 

 

 

 

 

Table A2.5 Total Population Coefficients and Standard Errors by Outcome (Weighted State Fixed Effects Model with covariates) 

Outcome Sum Scoring Univariate EAP Univariate ML MGMT EAP 
Externalizing Attention -0.004 (0.049) -0.018 (0.048) -0.004 (0.051) -0.014 (0.029) 
Externalizing Behavior -0.049 (0.062) -0.053 (0.062) -0.070 (0.063) -0.009 (0.043) 
Internalizing Sad/Lonely -0.051 (0.055) -0.040 (0.054) -0.018 (0.051) -0.020 (0.034) 
Internalizing Academic Anxiety  0.138 (0.076)* 0.159 (0.075)** 0.163 (0.074)** 0.157 (0.059)* 
Math Interest  0.065 (0.046) 0.052 (0.047) 0.019 (0.055) 0.048 (0.044) 
Math Competence 0.070 (0.039)* 0.068 (0.038)* 0.042 (0.043) 0.060 (0.034)* 
Reading Interest 0.015 (0.055) 0.003 (0.06) 0.002 (0.059) -0.022 (0.054) 
Reading Competence 0.029 (0.066) 0.024 (0.063) -0.002 (0.054) -0.003 (0.051) 
School Interest 0.027 (0.046) 0.020 (0.048) 0.007 (0.049) 0.018 (0.041) 
School Competence  0.045 (0.056) 0.060 (0.057) 0.062 (0.057) 0.083 (0.046)* 

Note. * p<.1, **p< .01, ***p<.001 
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Table A2.6 Total Population Coefficients and Standard Errors by Outcome (Weighted Child Fixed Effects with Covariates 
Model) 

Outcome Sum Scoring 
Univariate 

EAP Univariate ML MGMT EAP 
Externalizing Attention -0.001 (0.068) -0.012 (0.066) 0.004 (0.07) -0.006 (0.037) 
Externalizing Behavior -0.026 (0.081) -0.030 (0.081) -0.048 (0.082) 0.013 (0.049) 
Internalizing Sad/Lonely -0.043 (0.077) -0.029 (0.073) -0.006 (0.068) -0.011 (0.042) 
Internalizing Academic Anxiety  0.145 (0.103) 0.163 (0.103) 0.168 (0.102) 0.159 (0.079)* 
Math Interest  0.060 (0.071) 0.047 (0.072) 0.017 (0.082) 0.042 (0.066) 
Math Competence 0.057 (0.06) 0.054 (0.06) 0.026 (0.066) 0.044 (0.052) 
Reading Interest 0.016 (0.08) 0.007 (0.083) 0.011 (0.079) -0.018 (0.072) 
Reading Competence 0.026 (0.085) 0.018 (0.083) -0.015 (0.075) -0.008 (0.067) 
School Interest 0.021 (0.066) 0.015 (0.067) 0.008 (0.066) 0.012 (0.056) 
School Competence  0.029 (0.079) 0.045 (0.079) 0.049 (0.079) 0.065 (0.063) 

Note. * p<.1, **p< .01, ***p<.001 
 

 

 

 

 

 

Table A2.7 Total Population Coefficients and Standard Errors by Outcome (Weighted Child Fixed Effects No Covariates Model) 

Outcome Sum Scoring 
Univariate 

EAP Univariate ML MGMT EAP 
Externalizing Attention -0.007 (0.068) -0.017 (0.066) -0.001 (0.07) -0.010 (0.037) 
Externalizing Behavior -0.030 (0.081) -0.035 (0.08) -0.053 (0.081) 0.010 (0.049) 
Internalizing Sad/Lonely -0.044 (0.078) -0.032 (0.075) -0.009 (0.07) -0.010 (0.043) 
Internalizing Academic Anxiety  0.141 (0.106) 0.160 (0.106) 0.165 (0.104) 0.157 (0.081)* 
Math Interest  0.063 (0.068) 0.051 (0.069) 0.019 (0.081) 0.045 (0.063) 
Math Competence 0.061 (0.058) 0.057 (0.058) 0.027 (0.065) 0.046 (0.051) 
Reading Interest 0.015 (0.078) 0.007 (0.08) 0.010 (0.076) -0.018 (0.071) 
Reading Competence 0.033 (0.088) 0.026 (0.086) -0.005 (0.078) -0.002 (0.069) 
School Interest 0.024 (0.065) 0.019 (0.067) 0.011 (0.067) 0.015 (0.056) 
School Competence  0.030 (0.081) 0.046 (0.082) 0.048 (0.083) 0.066 (0.066) 

Note. * p<.1, **p< .01, ***p<.001 
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Chapter 3 Abstract 

 Regression Discontinuity (RD) designs are a valuable tool for estimating causal effects in 

educational and behavioral research when randomized control trials (RCTs) are not feasible. In 

education, they are commonly used to examine outcomes from multi-item measures, such as 

survey scales, teacher/student observational protocols, and tests. However, observational 

protocols that rely on multiple raters present a unique challenge, as multiple ratings must be 

combined and previous research has highlighted the limitations of using simplistic measurement 

models like those implicit to sum scores. To address this challenge, we propose a new model, the 

RD Multi-rater model, which incorporates information from multiple raters in a structural 

equation modeling (SEM) framework. Through simulation, we investigate the feasibility of the 

model and assess the reduction in bias and Type II errors in comparison to other methods for 

handling multiple ratings. We find sample size is the main limiting factor but even using a 

suboptimal sample size the RD Multi-rater model still performs better than more simplistic 

measurement models. 

Keywords: Regression discontinuity, observational protocols, structural equation modeling, 

multi-rater  
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Combining Multi-Rater Observer Protocols with Regression Discontinuity Design for 

Unbiased Causal Effect Estimation 

 Regression Discontinuity (RD) designs can be used to estimate unbiased causal effects in 

educational and behavioral research when randomized control trials (RCTs) are not feasible 

(Bloom, 2012; Hahn et al., 2001; Lee & Lemieux, 2010). In an RD, units are assigned to 

treatment based on a cutoff score on one or more variables. If one assumes units close to either 

side of the cutoff only differ by virtue of measurement error on the assessment being used to 

make treatment assignments (Berk et al., 2010; Black et al., 2005; Shadish et al., 2011), then 

those units are ignorably assigned to treatment.  When this assumption is met, RDs produce 

results comparable to those from RCTs (Aiken et al., 1998; Berk et al., 2010; Black et al., 2005; 

Shadish et al., 2011). 

 In fields like education, the outcomes RDs are used to assess typically come from multi-item 

measures including survey scales, teacher/student observational protocols, and tests.  For non-

achievement measures, scores are often generated using a simple sum score model (Bauer & 

Curran, 2015) even though sum scores rely on large, oftentimes untenable assumptions 

(McNeish & Wolf, 2020).  Flake et al. (2017) quantified the wide use of sum scores in 

psychology by reporting that only 21% (37 out of 177) of the studies they reviewed used a latent 

variable model rather than a sum score and a mere 2% of author-developed scales reported any 

evidence of internal structure (3 out of 124).  Thus, in education and psychology, when 

standardized test scores are not the dependent variable, results are often based on scores from 

measurement models that are simplistic and make unjustifiable assumptions.   

 In an RD context, Soland et al. (2022) revealed the potential benefits of better incorporating 

measurement models for latent variables into the design rather than using sum scores. They 
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showed using a latent variable model rather than sum scores avoids biased treatment effect 

estimates that can result when the assumptions of sum scoring are not met under realistic 

conditions.  However, these benefits were explored mostly in the context of short survey 

measures. There are other multi-item measures that may be used in RD designs. In particular, 

observational protocols are increasingly likely to be included in educational administrative 

datasets and RDs have already been used in the teacher evaluation (Dee & Wyckoff, 2015) , 

classroom quality improvement (Bassok et al., 2019), and child development (Hutcheon et al., 

2020) contexts. These observational protocols have documented limitations.  Responses to 

observational protocols rely on rater knowledge of the target, which may be limited, and other 

factors like who does the rating and the time of the rating can introduce extraneous sources of 

variation.   For example, Ho and Kane (2013) when examining a  teacher observation protocol 

based on Charlotte Danielson’s Framework for Teaching (Danielson, 2014), when administrators 

rather than a teacher’s peers conducted the rating the variance of the construct was 50% higher. 

While a construct might legitimately vary across factors, researchers are often interested in the 

stable component of the construct.   Therefore, to compensate for these limitations multiple raters 

can be utilized, but those ratings need to be combined in a psychometrically defensible way. 

Failure to use psychometrically defensible aggregation methods can lead to challenges, such as a 

lack of optimal informant selection (Kraemer et al., 2003), and may result in no improvement in 

predictive validity compared to a single rater (van Dulmen & Egeland, 2011).  

   However, there are many psychometrically defensible models and choosing one requires its 

own considerations. For example, the Correlated Trait/Correlated Uniqueness model (CTCU; 

Marsh, 1989), an early model for multi-rater data, has been criticized for failing to separate 
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method variance from error variance, potentially leading to underestimation of the reliability of 

the measured variables (Eid, 2000; Lance et al., 2002; Pohl & Steyer, 2010).   

  To choose a model we considered the situations where multiple raters may be used in 

educational evaluation. Broadly speaking there are three scenarios that multiple raters might be 

used in education. In the first scenario, multiple highly trained raters rate a target under very 

similar conditions. An example of this scenario is when several raters grade an essay using a 

predetermined rubric or when trained researchers rate a recorded teaching session. Another 

scenario is where ratings happen under similar but much less controlled conditions. Live ratings 

of teachers or classes as well as when raters have variable training are all examples of this type 

of scenario.  In the last scenario, researchers are interested in the different perspectives of the 

raters, such as that provided by teachers and parents.  Both the raters and the situations they 

conduct their ratings intentionally vary and raters often are untrained or minimally trained. For 

example, to collect data for the NICHD Study of Early Child Care and Youth Development 

information was collected from both the teachers and parents of students (Network, 2006).   

Given the resource and other logistical constraints that accompany large number of teacher and 

student evaluations, the latter two varied rater situations are more likely in educational 

evaluation.  

     Accordingly, for this study, we identified the trifactor model proposed by Bauer et al. (2013) 

as a model that was suitable for these varied rater scenarios. The tri-factor model partitions 

variance between raters, the observation protocol items, and the target construct making it easy 

to understand and flexible enough to accommodate the varied rater scenarios where there are 

many sources of variability. Building upon Soland et al. (2022), we introduce the RD Multi-rater 

model, which integrates the SEM model from Soland et al. (2022) and Bauer et al.'s tri-factor 
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model. However, combining these two models requires estimation of at least six parameters per 

shared item as well as the structural components of the RD, a large number of parameters, and 

the tri-factor model has not been used extensively with causal evaluations. Thus, we begin by 

assessing the feasibility of our model, with a focus on the number of observations needed, and 

then evaluate its potential benefits.  

  In particular we are interested in two benefits. First, given a common rationale for using 

multiple raters is to improve accuracy of ratings, we are interested in how the RD Multi-rater’s 

combination of raters affects bias and how this compares to using a single rater and misspecified 

models. Second, we are interested in how the use of multiple raters can affect variance and 

power given the estimate that in education an RD study needs between 9 and 17 times as many 

schools or students as an RCT to produce an impact with the same level of statistical precision 

(Deke & Dragoset, 2012). To achieve these objectives, we address two research questions that 

reflect critical considerations when employing this model: 

1. Under what sample size conditions is it feasible for the RD Multi-rater model to 

recover treatment effects of various magnitudes?  

2. To what extent does incorporating information from multiple raters in the RD Multi-

rater model reduce bias and Type II errors in treatment effect estimates compared to 

using sum scores, ignoring multiple raters, or using single raters? 

We explore these questions in two separate simulation studies, which will build on the results of 

Soland et al. (2022) by expanding the findings to an outcome assessed by multiple raters.  

Background 

 In this section, we briefly describe the logic of the RD model we use before explaining how 

using a sum score versus a SEM for the dependent variable might generally affect power and 
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bias due to misspecifying the measurement model in ways common to sum scores. We first use a 

survey scale type latent variable as a simplified example before covering the additional 

complications of using observation protocols. Finally, we present a model that allows for the 

combination of observations from multiple raters in an RD design. 

Regression Discontinuity Designs  

 RDs, like RCTs, estimate causal effects of a treatment by using a control group to approximate 

the counterfactual (Lee & Lemieux, 2010). In an RD, treatment is assigned based on one or more 

variables known as the running or assignment variable(s). This can be through a sharp cutoff 

score where the probability of treatment goes from 0 to 1 (sharp RDs) or a situation where the 

probability of receiving treatment is only strongly influenced by the cut score on the running 

variable(s) (fuzzy RDs). However, one limitation of the RD design is that, for the full sample to 

be used to estimate the casual effect at the discontinuity, the running variable must be properly 

controlled for. While one approach is to approximate the relationship between the running 

variable and the outcome using statistical information criteria or cross-validation to choose the 

degree of a higher order polynomial, Gelman and Imbens (2019) have shown that the use of 

higher order polynomials can lead to noisy estimates that are sensitive to the degree of the 

polynomial.  For simplicity, in this paper, we discuss a parametric RD model that is applied to a 

bandwidth where a local linear or quadratic approximation is valid and cases outside the 

bandwidth are not used, in line with the approach of Hahn et al. (2001). 

    Turning to the specific RD model, let 𝑟 be the rating score for person i (also referred to as the 

running variable or the forcing variable).  This rating variable must be continuous or semi-

continuous with discrete values, such as test scores with integer values (see Lee and Card 

[(2008)] and Kolesár and Rothe [(2018)] for using semi-continuous rating variables). Let 𝑟∗ be 
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the cut score for this variable (also called the treatment threshold).  Oftentimes, 𝑟 is centered at 

𝑟∗ such that 𝑟∗ = 0, which makes interpretation of regression coefficients more straightforward.  

A participant 𝑖’s assigned treatment is represented by 𝑧, such that: 

𝑧 = I{𝑟  ≥ 𝑟∗} = ൜ 
1 𝑖𝑓 𝑟  ≥ 𝑟∗

0 𝑖𝑓 𝑟 <  𝑟∗ .  (1) 

For now, we will assume that 𝑧 is equal to 𝑡, the treatment the participant actually experiences 

(a sharp RD).  If our observed score on the outcome of interest is denoted as 𝑜𝑏𝑠, then a basic 

RD formulation would be.   

𝑜𝑏𝑠 = 𝛽 +   𝛽ଵ𝑟 + 𝛽ଶ𝑧 + 𝛽ଷ𝑧𝑟 +  𝜖   (2) 

    The interaction term, 𝛽ଷ𝑧𝑟, allows for the slope to differ within the bandwidth near the cutoff. 

Further, quadratic terms can be added that are the same or different on either side of the cut 

score.  As previously discussed, estimates are only unbiased if the functional form correctly 

models the relationship between treatment status and the outcome and does so on each side of the 

cut score. In our model the RD design estimates local average treatment effects using data with 

forcing variable values near the cut score where a local or quadratic proximation of the 

relationship between the outcome and the forcing variable is likely to hold. Results are thus 

influenced by the bandwidth used to estimate the treatment effect.   

      In the case of a fuzzy RD, 𝑧 does not necessarily equal 𝑡. For instance, a policy might 

require students with a math score below a set threshold to receive extra instruction, but not all 

students below the cut score ultimately get the treatment.  To address the issue of imperfect 

assignment, IVs are used to account for a potential correlation between treatment status and the 

outcome of interest. This adds another source of variability but corrects for imperfect 

assignment.  In a fuzzy RD the assignment, 𝑧, serves as the instrument that affects the outcome 
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only through its effect on the actual treatment status, 𝑡.  This exclusion of a direct causal link 

between the instrument and the outcome is called the “exclusion restriction” and helps address 

concerns about omitted variable bias.  That is, we can estimate the indirect effect of 𝑧 through 𝑡 

on the outcome, which does not suffer from selection bias, and use that indirect effect to produce 

an unbiased estimate of the direct effect of the treatment. Thus, the full RD specification involves 

submodels for both our observed outcome 𝑜𝑏𝑠, the outcome of interest, and 𝑡, the actual 

treatment status.  An example of these two-stage equations are below. 

𝑡 = 𝛼 + 𝛼ଵ𝑟 + 𝛼ଶ𝑧 + 𝛼ଷ𝑧𝑟 + 𝜇    (3) 

𝑜𝑏𝑠 = 𝛽 +   𝛽ଵ𝑟 + 𝛽ଶ�̂� + 𝛽ଷ𝑧𝑟 +  𝜖    (4) 

In the above equations, the treatment effect is being estimated based only on the variance in 

treatment status 𝑡  that can be explained by assignment to treatment 𝑧, which is not affected by 

selection bias.   

 One can also express an IV model in the form of an SEM path diagram, depicted in Figure 1  

(Murnane & Willett, 2010).  In that figure, 𝑦ଵ through 𝑦 are observed indicators of the 

construct of interest (e.g., survey item responses) and 𝜂 is a latent variable underlying those 

observed indicators and is the outcome of interest. As the figure shows, there is a path from 𝑧 to 

𝑡, but no covariance between 𝑧 and 𝜂 otherwise—a visual representation of the exclusion 

restriction.  Further, in this path diagram, the correlation in the error terms between 𝜂 and 𝑡 is 

expressed directly and estimated. One should note that, if 𝑧 and related interaction terms were 

eliminated from the model, we would have the sharp RD design. Also, unlike in the two-stage 

approach, all constituent models in the RD are estimated simultaneously.  We discuss the 

measurement and structural components of such models more below. 
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Figure 1. Path diagram for an example fuzzy RD model. 

Measurement Bias Common to Sum Scores in RDs 

    A strong argument in favor of using an SEM to estimate an RD is avoiding bias common to 

sum scores and their assumptions. Misspecification of the measurement model used to score the 

dependent variable can lead to outright bias in parameter estimates, including treatment effect 

estimates (D. Bauer & Curran, 2015; Gorter et al., 2016; McNeish & Wolf, 2020; Soland et al., 

2022).  Such misspecification is especially likely when surveys or other measures are scored by 

simply summing or taking the average of the observed item responses (McNeish & Wolf, 2020).  

As McNeish and Wolf (2020) demonstrate, such sum score approaches are the equivalent of 

fitting a highly constrained measurement model that assumes (often wrongly) that items should 

be weighted equally (typically by constraining loadings equal to one, as discussed above) and 

that the error terms are equivalent across items (and typically equal to zero).   
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 Use of sum scores to produce the dependent variable (or other related forms of model 

misspecification) could lead to biased treatment effect estimates in an RD.  Let us consider the 

simple case of an SEM with a single latent variable measured by one or more observed indicators 

and a structural model in which treatment status for person i, 𝑡, is the only predictor (this could 

easily be extended from the RCT scenario we examine here to a sharp RD in which 𝑟 and other 

relevant covariates are included). Our measurement model would be 

𝒚 =  𝒗 +  𝝀𝜂 + 𝝐  (5) 

Where 𝒚 is an 𝑁 𝑥 1 vector of observed item responses for items 1… 𝑁, 𝒗 is an 𝑁 𝑥 1 vector of 

intercepts, 𝝀 is an 𝑁 𝑥 1 vector of loadings, 𝜂 is the single latent variable for person i, and 𝝐 is 

an 𝑁 𝑥 1 vector of residuals with 𝑉𝐴𝑅(𝝐) = 𝚯 = 𝑑𝑖𝑎𝑔(𝜃ଵଵ, 𝜃ଶଶ … 𝜃ேே).   

The structural model is 

𝜂 = 𝛼 + 𝛾𝑡 + 𝜁  (6) 

with true score variance 𝜙 and 𝑡 treatment status.   

     For illustration, we will assume 𝛼 is zero (i.e., the mean 𝜂 for the control group is zero) and 

𝒗 is a vector of zeros (done for convenience, though not necessary).  One should note that we 

will treat the observed indicators as continuous, but the logic of what follows would hold if a link 

function were used.  For example, 𝒗 would be a vector of zeros when using a probit link, and the 

𝑦’s interpreted as 𝑦
∗’s.   

If one were to substitute the structural equation into the measurement equation, the result would 

be   

𝒚 =   𝝀(𝛾ଵ𝑡 + 𝜁) + 𝝐     (7) 

Given 𝐸(𝜁) = 0 and 𝐸(𝜖) =  0, 
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𝐸(𝒚) = 𝐸(𝝀(𝛾𝑡 + 𝜁) + 𝝐) = 𝝀(𝛾ଵ𝑡)     (8) 

Since 𝑡 = 0 for the control group, the expectation of the observed outcome for the control group 

𝐸(𝒚) is simply an 𝑁 𝑥 1 vector of zeros.  Meanwhile, 𝐸(𝒚) for the treated group is  

𝐸(𝒚 |𝑡 = 1) = 𝝀(𝛾(1)) = 𝝀𝛾     (9) 

Given this result, one could solve for the true treatment effect, 𝛾, by multiplying both sides of the 

equation by a 1 𝑥 𝑁 vector where each element is simply one divided by the sum of the elements 

of 𝝀.  For example, let’s assume a three-item survey.  If we limited only to those study 

participants in the treatment (recalling the mean true score of the control group is zero), we 

would have 

𝐸 

𝑦ଵ 
𝑦ଶ

𝑦ଷ

൩ =  

𝜆ଵ

𝜆ଶ

𝜆ଷ

൩  𝛾      (10) 

 

 Here, if the loadings are below one, the true treatment effect relative to the observed treatment 

effect will be larger.  If the loadings are above one, the reverse is true.  However, when we use a 

sum score model, we are constraining the loadings to be one, or at least to be the same across 

items (McNeish & Wolf, 2020).  Therefore, with a misspecified sum score model, we would 

have a biased estimate of the treatment effect when the true loading is not equal to one.  For 

example, if the loadings were all .7, the true treatment effect would be larger than the observed.  

But, if we were to constrain the loadings to be one as in a sum score model, the estimate of 𝛾 

would equal the observed treatment effect and would be downwardly biased. 

Impact of Observer Protocols  
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 Up to now for simplicity we have focused on a RD that has a survey type measure as an 

outcome. Observer protocols introduce more complications because they introduce one or more 

rater(s) conducting the observation. This extra source of variation could exacerbate the issues of 

bias that we have outlined for the survey case. Sum scoring treats all items from each rater 

equally, a flawed assumption as demonstrated by Ho and Kane (2013), who showed that scores 

from observational protocols are influenced by various factors related to the rater and rating 

situation. In contrast, a model with multiple raters that takes into account differences between 

raters and items can distinguish between sources of variability, such as different contexts or rater 

perspectives, reducing the bias in the causal estimates.  

   While researchers in the social sciences have not commonly used outcomes assessed by 

multiple raters with RDs in the past, they often obtain ratings of a construct of interest provided 

by multiple raters and many largescale datasets include item responses from multiple raters. 

Researcher and evaluator motivations for involving multiple raters typically stem from two 

reasons connected to the varied rater scenarios in the introduction. The first is to gather different 

perspectives. For example, ratings of a child’s position on a latent social-emotional learning 

continuum (e.g., self-efficacy) might be provided by teachers and parents (Bandura, 1994; 

Wheeler & Ladd, 1982) each which see a child in different contexts. The other is to improve the 

quality of information such as when the effectiveness of a given teacher’s instruction might be 

evaluated by multiple observers, or classroom management practices by the students in the class 

(Schweig, 2014). 

 Research from the Measures of Effective Teaching (MET), a Gates Foundation-funded project 

emphasizes the importance of using multiple raters when observations are high stakes. A study 

using MET data conducted by Kane and Staiger (2012) revealed that roughly 37% of the 
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variability in raters' item responses was attributed to true trait-level differences in teacher 

effectiveness, while the rest was accounted for by factors such as the lesson, the rater, the 

section, and the interactions among those sources of construct-irrelevant variance.  This means 

that in any single evaluation, a minority of the variance in an observational protocol score is the 

result of a target’s behavior. Thus, using multiple ratings is essential when trying to detect causal 

effects.   

 However, the collection of multiple ratings brings new challenges. On the positive side, having 

multiple perspectives from a measurement tool can increase the reliability of the obtained scores 

by reducing the impact of individual evaluator biases. On the other hand, disagreement among 

raters, due to rater preferences and the context of ratings, is a frequent occurrence (De Los Reyes 

& Kazdin, 2005; Jones & Bergin, 2019; Styck et al., 2021), and researchers need models that can 

be used to estimate a true score in the face of such discrepancies in observed ratings,  regardless 

of whether the discrepancies are due to rater error or contextual differences. Failure to do so has 

could lead to many potential measurement issues, including inaccurate Item Response Theory 

(IRT) person and item parameter estimates and inflated measurement reliabilities (Chen & 

Thissen, 1997; Jiao et al., 2005; Wilson & Hoskens, 2001). This leaves open the question of 

whether using multiple raters is more beneficial than using a single rater if an improper 

measurement model is used. 

Proposed Model 

 Fortunately, many models have been developed to address this need and account for rater 

discrepancies. These include multi-trait multi-method (MTMM) models in an SEM framework 

(Geiser et al., 2019), as well as several IRT approaches, such as the many-facet Rasch model 

(Myford & Wolfe, 2003), the rater bundle model (Wilson & Hoskens, 2001), and the hierarchical 
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rater model (Patz et al., 2002). However, many of these measurement models are infeasible 

because they are misaligned with the purposes and situations that education policy researchers 

tend to use observational protocols. For example, the hierarchical rater model is designed for the 

case where there are several ratings from well-trained observers on a single instance with the 

goal of subtracting error that the raters might introduce while accounting for the dependency 

between the ratings (Patz et al., 2002). While this might be feasible in a clinical setting or in 

standardized test settings, where highly trained observers observe a limited number of subjects, it 

is much less viable in education evaluation and research where resources are constrained and 

observations are often made by people without extensive training on an observational protocol, 

like parent and teachers.    

 Accordingly, for this study we chose a model designed not only to account for multiple raters 

when producing scores, but also to be more conceptually understandable and easier to use when 

there are multiple raters who have different perspectives or are rating in different contexts ( 

Bauer et al., 2013; Shin et al., 2019). This model has been developed independently under 

various names by several researchers, including the trifactor model by Bauer et al. (2013) and the 

third-order IRT model by Rijmen et al. (2014).  

 As presented by Bauer et al. (2013), the trifactor model decomposes the variance in item 

responses between two or more raters (e.g., a teacher and an independent researcher) into 

variance shared by both raters (a “common” factor), idiosyncratic to each rater (hereafter referred 

to as a “rater” factor), and shared by common items administered to both raters (hereafter 

referred to as an “item” factor).  This easy-to-understand partitioning of variance makes it ideal 

for substantive education researchers who might hesitate to use more opaque models. The 

trifactor model can be estimated in either an SEM or IRT framework and aims to generate scores 
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that are free of rater bias, but also can be used to determine how much of the variance is due to 

rater or item differences.   

      We combine the trifactor model with the RD SEM model outlined by Soland et al. (2022) 

which is shown in Figure 1. This model is a fuzzy RD model that can integrate ratings from 

multiple raters as shown in Figure 2 below. In that figure, 𝑦ଵଵ through 𝑦ଵ are observed 

indicators of the construct of interest as rated by rater 1 while 𝑦ଵଶ through 𝑦ଶ  are observed 

indicators of the construct of interest as rated by rater 2. Orthogonality constraints are imposed 

on all the factors in the model so that there is one common factor 𝜂 that accounts for shared 

variance across all responses and is the outcome of interest, two rater factors (𝜂ଵ and 𝜂ଶ) that 

account for the variance idiosyncratic to each individual rater, and 6 item factors (𝑆ଵ −  𝑆) that 

account for the residual dependence due to the same item being completed by multiple raters. As 

in Figure 1, assignment to treatment  𝑧 and related interaction terms represent the instrumental 

variable part of the fuzzy RD design and 𝑡 represents treatment status. In Figure 2, unlike Figure 

1, residual error terms (𝜖ଵ − 𝜖) are not shown.  While Figure 2 shows a scenario with six shared 

items across two raters the model can account for scenarios with more than two raters or when 

all items are not shared. In those cases, only the items that are shared across raters have an item 

factor.   

        While this model combines other models proposed in the prior literature (trifactor [Bauer, 

2013], SEM for RD designs [Soland et al., 2022]), little is known about how well it might 

perform under realistic conditions occurring in education research. In particular, the model’s 

ability to recover true treatment effects has not been investigated. The following simulation 

studies are designed to examine the model’s performance and, thereby, give researchers using 

multi-rater data in quasi-experimental settings a sense for whether it might be useful in their own 
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work. Secondarily, the simulations will demonstrate the utility of multiple raters in an RD design 

when using the RD Multi-rater model as well as popular simpler alternatives with single or 

multiple raters. 

 

 

Figure 2. Path diagram for the data-generating fuzzy RD model. 

Simulation Studies 

 In these two studies, we simulated RDs in an SEM framework and examined the potential 

improvements in the recovery of estimated treatment effects that come from incorporating 

information from multiple raters in a properly specified measurement model.  The path diagram 

in Figure 2 served as our baseline generating model.  As the figure shows (and according to the 

hypotheticals in the background section), there is a single latent variable of interest.  That 

variable is measured using observed indicators, that are rated by two observers. There is a true 
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treatment effect of .2 (though we do vary the value of 𝛾 in the first simulation study).  The 

loadings on the construct and observer latent variables as well as the residuals differ by item.  

While the figure presents a fuzzy RD (in which the correlation between the assignment variable 

and actual treatment status is .8), the same model was also used to create a sharp RD for the 

simulation studies, but with all paths from 𝑧 and 𝑟𝑧, the correlation between 𝜁ଵ and 𝜁ଶ, and the 

path from 𝑟 to 𝑡 constrained to zero.  In each study below, we varied the values of 𝜽 and 𝝀 or 

some combination of the two. The values of 𝜽 and 𝝀 formed three conditions that were based on 

items of an observer protocol reported by Bauer et al. (2013), as well as six items from the 

CLASS (Pianta et al., 2008) and six items from the MQI (Hill et al., 2008) as reported by Kaine 

and Staiger (2012). These conditions are summarized in Table 1 below.  
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Table 1. Loading and Residual Variance Conditions 

Condition 1 - Bauer et al. (2013) scale 

Item Common λ Rater 1 λ Rater 2 λ Item λ 

 

Residual Var. 

1 0.52 0.39     

 

0.578 

2 0.41 0.33     

 

0.723 

3 0.31 0.48     

 

0.674 

4 0.08 0.5     

 

0.744 

5 0.65 0.42     

 

0.401 

6 0.6 0.51 0.51 0.34 

 

0.264 

7 0.27 0.59 0.59 0.67 

 

0.13 

8 0.22 0.62 0.62 0.5 

 

0.317 

9 0.4 0.62 0.62 0.49 

 

0.216 

10 0.52   0.49   

 

0.49 

11 0.64   0.51   

 

0.33 

12 0.35   0.63   

 

0.481 

13 0.56   0.44   

 

0.493 

Condition  2 - CLASS from Kaine and Staiger (2012) 

Item Common λ Rater 1 λ Rater 2 λ Item λ 

 

Residual Var. 

1 0.75 0.18 0.18 0.2 

 

0.365 

2 0.51 0.28 0.28 0.69 

 

0.185 
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  These conditions reflect the two varied rater situations in which educational evaluators might 

use multiple raters with observational protocols identified in the introduction and background 

sections. Condition 1 represents a situation where perspectives from multiple raters, such as a 

parent and a teacher, are being collected. The scales used by each rater are slightly different and 

only four items are shared between them. These shared items are binary checklist-type items. 

The decision to include four shared items was made to align with the number of shared items 

used in previous studies that had similar scale lengths and multiple raters (Gresham & Elliott, 

1990).  In contrast, in Conditions 2 and 3, we simulate a scenario where multiple raters are 

3 0.1 0.35 0.35 0.58 

 

0.531 

4 0.9 0.1 0.1 0.14 

 

0.16 

5 0.2 0.29 0.29 0.7 

 

0.386 

6 0.4 0.4 0.4 0.1 

 

0.67 

Condition  3 - MQI from Kaine and Staiger (2012) 

Item Common λ Rater 1 λ Rater 2 λ Item λ 

 

Residual Var. 

1 0.6 0.2 0.2 0.2 

 

0.56 

2 0.51 0.5 0.5 0.1 

 

0.48 

3 0.05 0.35 0.35 0.51 

 

0.615 

4 0.4 0.1 0.1 0.35 

 

0.708 

5 0.2 0.29 0.29 0.6 

 

0.516 

6 0.3 0.601 0.601 0.7 

 

0.059 
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utilized in high-stakes evaluations, such as teacher evaluations, to ensure objectivity. In the high-

stakes scenario, both raters use the same scale that includes all six items, which are more 

complex continuous items. 

 All conditions were replicated 1000 times in Mplus version 8.7 (Muthen & Muthen, 2017). 

Treatment effects based on simulated data were estimated using a Weighted Least Squares Means 

and Variance (WLSMV) adjusted estimator for the models that included categorical variables 

and a Maximum Likelihood (ML) estimator for those models with only continuous variables. As 

suggested by Bauer et al. (2013), the latent variables were scaled by standardizing the common 

factor and one of the rater factors, but freely estimating the mean and variance of the other rater 

factor.   

Simulation Study 1. Feasibility Methods 

    In the first simulation study, we evaluated the capability of the RD Multi-rater model to 

recover different treatment effects with various sample sizes within the bandwidth. To do this, we 

generated simulated datasets with sample sizes ranging from 100 to 5000 participants within the 

bandwidth at intervals of 100, using the three loading and residual variance conditions specified 

in Table 1. These sample sizes covered a broad range of possible sample sizes, although the 

upper end would only be feasible with access to national or state level administrative data. In 

addition, we considered three different treatment effect sizes of 0, 0.1, and 0.2 SDs with a .2 SD 

effect size chosen to represent the upper limit of the majority of educational interventions that are 

well powered (Cheung & Slavin, 2016; Kraft, 2020; Rocconi & Gonyea, 2018). This range of 

true effect sizes allowed us to determine the potential for both false positives (Type I errors) and 

negatives (Type II errors/statistical power). After generating the simulated data, we then used the 

RD Multi-rater model to try to recover the true treatment effect.  
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 Finally, model performance, including recovery of these estimated treatment effects, was 

examined in several ways.  We first examined convergence rates, which were quantified by 

reporting the number of replications that converged out of the 1000 replications conducted per 

simulation. We then examined the mean treatment effect estimate (relative to the true data-

generating parameters) and variance of the estimated treatment effects across all replications and 

sample sizes.  Finally, we examined the Type I and II error rates of the treatment effect estimates.   

Simulation Study 1. Feasibility Results 

Convergence Rates.   

   Figure 3 shows convergence rates by sample size and loading condition for both sharp and 

fuzzy RDs. True treatment effect condition had no impact on convergence rates, so only 

convergence rates for the models with .2 treatment effect sizes are shown.   As the figure shows, 

convergence rates vary between 667 and 998 out of 1000 replications when there are 100 

observations within the bandwidth but improve steadily as the sample size increases. The extra 

parameters in the fuzzy design seemed to affect the ability to successfully complete all 

replications in two of the loading conditions even at higher sample sizes.  This problem could 

likely be solved by using an alternate Bayesian approach.   
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Figure 3. Convergence Rate by Loading Condition (.2 Treatment Effect Size) 

 

Treatment Effect Recovery.  

  Figures 4-6 show the mean treatment effect estimate with bars representing 1 SD across 

replications for each loading condition for both sharp and fuzzy designs. For each model, all 

model parameters including the treatment effect were estimated using only the participants 

within the bandwidth. As seen below, bias was only a problem for smaller sample sizes and was 

most problematic in the fuzzy design. In particular, bias was present for the lower sample sizes 

of the Bauer condition in the fuzzy design where the bias started at 40% at sample size = 100. 
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However, by a sample size of 500, bias was negligible for every condition.  After 500 

participants, the variance of the treatment estimate was the main obstacle to the effective 

deployment of the RD Multi-rater model. For sharp RDs, around 800 participants in the 

bandwidth was sufficient such that there was no longer overlap between the error bars of all three 

treatment effects as seen in Figures 2-4, but it takes approximately 3000 more participants so that 

the error ribbons no longer overlap for a treatment effect of .1 and .24.   For fuzzy RDs it took 

approximately 1300 participants so that there is no longer overlap between a treatment effect of 0 

and .2, and even with 5000 participants, there was still overlap between the SDs of the estimated 

treatment effect of .1 from .2 in the Bauer condition (Figure 2).  The greater variance in the fuzzy 

design likely occurred because the use of an IV introduces another source of variability. If the 

correlation between z and t was stronger than the .8 value used in our simulation the differences 

in the variance between the Fuzzy RD and Sharp RD would likely be smaller and conversely a 

weaker correlation would have magnified the differences.  

 

4 The overlapping of CIs does not necessarily imply that the difference between two statistics is statistically 
significant (Knezevic, 2008). In this case it is being used to show at what sample sizes you may get the same point 
estimate for different true effect sizes.   
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Figure 4. Mean Treatment Estimate with 1 SD Error Bar by Sample Size (Bauer) 

 

Figure 5. Mean Treatment Estimate with 1 SD Error Bar by Sample Size (CLASS) 
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Figure 6. Mean Treatment Estimate with 1 SD Error Bar by Sample Size (MQI) 

 

Type I and II Errors.  

 To further investigate how variability in the estimates affected results, the proportion of 

significant results (p<.05) are shown in Table 2.  There were relatively low Type I error rates (< 

1.2%) that tended to be greater for Fuzzy RDs, but varied over sample size and loading 

condition. In contrast, the Type II error rates were higher and clearly driven by true effect size, 

sample size, loading condition, and type of research design (fuzzy versus sharp).  Larger effect 

sizes and sample sizes had lower Type II error rates while Sharp RDs had lower Type II error 

rates than Fuzzy RDs.  For loading conditions, the CLASS condition had the lowest Type II error 

rate likely because both raters rated all items, and its loadings resulted in lower levels of residual 

variance. The condition with the next lowest Type II error rate, the MQI condition, also had all 
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items rated by both raters but explained less variance.  Finally, the Bauer condition had the 

highest Type II error rate, likely because only 4/13 items were rated by both raters. Thus, while 

sample sizes and effect sizes were important the exact observational protocol used also drove 

Type II error rates. 

Table 2. Percent Significant Treatment Effect Coefficients for Selected Sample Sizes 

N Effect Size 
  

Prop. Significant Fuzzy 

RD   
Prop. Significant Sharp RD 

   
Bauer CLASS MQI 

 

Bauer CLASS MQI 

500 0 
 

0.062 0.044 0.053 

 

0.057 0.046 0.059 

500 0.1 
 

0.113 0.145 0.126 

 

0.117 0.2 0.15 

500 0.2 
 

0.238 0.39 0.291 

 

0.307 0.577 0.459 

1000 0 
 

0.058 0.061 0.062 

 

0.062 0.047 0.045 

1000 0.1 
 

0.143 0.218 0.177 

 

0.184 0.311 0.231 

1000 0.2 
 

0.386 0.64 0.495 

 

0.536 0.847 0.704 

2000 0 
 

0.064 0.067 0.05 

 

0.071 0.053 0.049 

2000 0.1 
 

0.197 0.368 0.281 

 

0.315 0.59 0.434 

2000 0.2 
 

0.641 0.892 0.785 

 

0.81 0.987 0.945 

5000 0 
 

0.047 0.06 0.062 

 

0.055 0.05 0.05 

5000 0.1 
 

0.473 0.732 0.589 

 

0.619 0.927 0.807 

5000 0.2   0.956 1 0.99   0.991 1 1 

...........................................................................................................................................................  
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 Overall, the first simulation study showed that the RD Multi-rater model can provide unbiased 

estimates on average, but that it might take relatively large sample sizes within the bandwidth to 

provide unbiased estimates. The requirement for a large sample size may be mitigated using 

cases outside the bandwidth to estimate some parameters (and, in particular, measurement model 

parameters [Soland, Johnson, & Talbert, 2022]), but a more in-depth examination of such 

considerations is beyond the scope of this study.  While raw sample size is important, other 

aspects like how well the items load on to the latent construct, how many items are shared, and 

the research design itself can drive the ability to detect treatment effects.  These factors drove 

reductions in Type II error rates that ranged from .4% to 25.1%, and sometimes exceeded the 

reductions in Type II error rates that accompanied doubling the sample size (3% to 27.4%).         

Simulation Study 2. Comparative Benefit Methods 

 In the second study, we compared the RD Multi-rater model with misspecified models that 

included both raters or discarded one, on recovery of treatment effect parameters. Two types of 

misspecified models were examined:  a model in which a sum score model is wrongly fit, and a 

measurement model that treats raters as exchangeable.  Figure 2 was the basis for the data 

generation with the true treatment effect set to .2 SDs.  Once again, all three conditions in Table 

1 were used and loadings were changed accordingly.  As in the first simulation study, treatment 

effects were first estimated using a SEM model that integrated multiple ratings, the RD Multi-

rater model. We then fit a similar model, but used a measurement model that mimicked sum 

scores to represent the dependent variable. To avoid scale indeterminacy in the dependent 

variable that can result from using sum scores, the sum scores were produced by fitting a highly 

constrained measurement model akin to the one described by McNeish and Wolf (2020).  

Specifically, we constrained all the loadings equal and set (𝜃ଵଵ =  𝜃ଶଶ = 𝜃ଷଷ = 𝜃ସସ = 𝜃ହହ =



145 
 

𝜃).  To ensure this approach matched the use of actual sum scores, we produced scaled mean 

scores based on the generated item responses, and verified that they corresponded to scaled 

factor scores produced using our highly constrained SEM (that is, we made sure they had a 

correlation equal to one). Finally, to examine the case where rater differences are ignored, we 

estimated treatment effects using the simple latent variable model in Figure 1. That model 

effectively ignores the distinction between the two raters while still fitting a measurement model 

that puts latent variables on a scale comparable to the ones used in the other conditions (Horton 

& Fitzmaurice, 2004; Kraemer et al., 2003; van Dulmen & Egeland, 2011).  

 All in all, there were three models were used to analyze the datasets and two of the models had 

variants where one or both raters were used. This meant there were five analysis conditions: the 

sum score all raters (SS-all), sum score one rater (SS-1r), simple latent variable all raters (SLV-

all), simple latent variable one rater (SLV-1r), and the RD Multi-rater (RDMR). These conditions 

are summarized below in Table 3. Given results from study 1, the sample size within the desired 

bandwidth was set equal to 1,000.  We evaluated the accuracy of each model's estimated 

treatment effects by comparing their means, variances, and Type II error rates. 

Table 3. Analysis Conditions used in Simulation Study 2 

Condition Abbreviation Description 

Sum Score (All raters) SS-all 

This condition takes the ratings from each 

rater and pools them together by weighting 

each item regardless of rater equally.  
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Sum Score (One rater) SS-1r 

This condition discards the ratings from the 

second rater and weights equally the items 

scored by the first rater. 

Simple Latent Variable SLV-all 

This condition takes the ratings from each 

rater and pools them together by estimating 

the loading of each item separately and then 

using them to estimate a latent variable. 

Simple Latent Variable (One 

Rater) 
SLV-1r 

This condition discards the ratings from the 

second rater then estimates the item 

loadings for the items scored by the first 

rater to estimate a latent variable. 

RD Multi-rater RDMR 

This condition treats the ratings from each 

rater as distinct and uses the difference 

between the two sets of ratings to partition 

the variance between the target latent 

variable, item latent variables, and rater 

latent variables. 

 

Simulation Study 2. Comparative Benefit Results 

Treatment Effect Mean and Variance Results.  

 Figure 7 shows a plot with the average estimated treatment effect across all 1,000 replications 

with 1SD error bars by loading condition and scoring method for a sample size of 1000.  Several 
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aspects of the figure are worth noting.  For one, the variability of the results tends to be smaller 

for the sum score results for the items that use continuous measures than any of the SEM models.  

This smaller variance likely occurs because (a) the sum score constrains all the loadings to one, 

which would reduce the estimated variance of the latent variable because each item is always 

weighted the same (b) there is error in the loadings when they are estimated rather than fixed, 

and (c) the model assumes any common score is identical regardless of the items that produced 

it.  Both the SLV and sum score models had much smaller variances than the RD Multi-rater 

model, likely because the number of parameters estimated in the RD Multi-rater model was 

much larger.   

 Another takeaway is that we see a large downward bias in the treatment effect estimates when 

using sum scores and the simple latent variable model due to model misspecification. For the 

sum score models, there are two misspecifications: (1) the item loadings are fixed for each item 

to one when they are below one and not equal and (2) the multiple rater structure is ignored. For 

the simple latent variable model, only the multiple rater structure was ignored, but there were 

still large amounts of bias that ranged from .045 to .13 SDs out of .2 SDs. The SLV models 

generally had less bias than the sum score models, but the results were inconsistent. In the Bauer 

condition, sum score models showed less bias than SLV models. This was likely because 

ignoring the rater structure resulted in item loadings that were farther from those in the true 

measurement model compared to the fixed loadings of a sum score. The RD Multi-rater model, 

on the other hand, showed minimal bias (<.005 SDs) across all three loading conditions in both 

fuzzy and sharp RDs. 

 A third takeaway is that using two raters with a misspecified measurement model decreased the 

variance of the estimate, but did not consistently reduce the bias of the treatment estimate. For 
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most of the loading conditions the treatment estimates were very similar between the models that 

used all and one rater for both the sum score and SLV models likely because the raters had 

similar means, variances, and loadings. In contrast, the RDMR model which used the 

information from the two raters more effectively had minimal bias. One of the primary 

theoretical benefits of using multiple raters is that it provides more information that can lead to 

better and more accurate estimates. Our results indicate that using a missspecified measurement 

model can negate these benefits. 

 

Figure 7. Mean Treatment Estimate with 1 SD Error Bars by Analysis Model 

Type II Error Results.  

 Both the variance and bias influenced Type II error rates for each analysis model, which are 

shown in Figure 8. Despite the variability of the RD Multi-rater model, it had the least Type II 

errors of the analysis models. This was the result of the large amounts of bias in the other 
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analysis models, which outweighed the accompanying reduction in variability. Only in the Sharp 

RD, CLASS condition did any other model have equivalent Type II error rates (SLV-all).  On 

average, in the fuzzy designs, the RD Multi-rater model resulted in 9% less Type II error rates 

than the all-rater sum score model and 3% less Type II error rates than the SLV-all model. In 

sharp designs there was a marginally better improvement with the RD Multi-rater model 

producing 10% less Type II error rates than the SS-all model and 4% less Type II error rates than 

the SLV-all model. 

 

 

Figure 8. Type II Error Rates by Analysis Model 



150 
 

Discussion 

 The use of RD designs in education is growing in popularity, and they have been applied to 

observer protocol data in the past. However, when working with multiple raters in observer 

protocols, challenges arise in terms of how to effectively combine ratings and accurately estimate 

the target latent variable.  The simple approach of using sum scores, relies on a number of 

oftentimes unjustifiable assumptions (McNeish & Wolf, 2020) and has been shown to bias more 

simple multi-item measures like survey scales (Soland et al., 2022).  When dealing with more 

complex data from multiple raters in observational protocols, it is likely that the same or greater 

biases will occur when using the sum score approach.  In our study, we quantify these biases 

while investigating the feasibility of a possible solution, the RD Multi-rater design.  Results 

provide several insights that are relevant to applied researchers and program evaluators. 

 First, we determined that the RD Multi-rater design requires large samples to be adequately 

powered to detect medium and small effects. These sample sizes may be difficult to obtain. 

Given the impact of loadings, shared items, and design on the variance of the estimated treatment 

effect the RD Multi-rater model is most effective with a sharp design and with raters using the 

same well validated scale. Ideal sample sizes for a fuzzy RD would be greater than  3000 but the 

model can provide valuable insights especially with well-designed observer protocols with a 

sample size of 500.  In a brief follow up analysis using the CLASS condition with a fuzzy RD we 

showed the large sample size requirement was not merely the result of more parameters being 

estimated. Even when measurement model parameters were fixed there was minimal impact on 

the treatment effect standard error. This may indicate that the large variance-bias tradeoff comes 

from properly modeling observer protocols, which are noisy measures of a target construct.         
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    However, we show that even when not optimally powered using a sample size of a 1000 the 

RD Multi-rater model is superior to four other approaches of using multi-rater data. We 

demonstrated that using a sum score model when its assumptions are violated can induce 

substantial bias into treatment effect estimates.  Further, under the conditions we used, those 

treatment effect estimates were downwardly biased.  In both sharp and fuzzy RD designs, 

wrongly fitting a sum score model resulted in understating a true treatment effect of .2 units by .1 

to .13 units depending on the true loadings in the model.  In other words, using a sum score 

model when its assumptions conflicted with a complex multi-rater structure led to a downward 

bias of over 50% of the true treatment effect.   

 Similar problems were present when using a simple latent variable model that ignored rater 

structure. While the additional flexibility of allowing item loadings to vary by item meant that 

there was a bias of only .05 units in the CLASS condition the bias reached .13 units in the Bauer 

condition. The large biases reflected the major distortion that ignoring the multiple rater structure 

inflicts. Our results indicate that simply treating observer protocols as if they were survey 

question is likely to be inadvisable.     

 Unsurprisingly, the large amounts of bias also increases Type II error rates.  Thus, even if one 

does not care about the point estimate of a treatment effect, only whether it is significant or not, 

using an improper measurement model with can be hugely problematic.  By contrast, estimating 

the RD treatment effect with the RD Multi-rater model led to practically no bias, on average, and 

much lower Type II error rates. 

 Furthermore, our examination of bias showed that the models that include one rater produced 

mostly equivalent treatment estimates on average to their counterparts that include both raters. 

Practically this means that the additional ratings, which are often resource intensive to obtain, did 
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not provide a meaningful boost in accuracy and only decreased variability slightly. Thus, using 

multiple ratings or conducting multiple ratings in the RD context provide very little benefits 

without using a properly specified measurement model.  Averaging the two ratings may provide a 

false impression that the resulting product will be more accurate, and although this is a finding 

specific to the RD design it draws into question the use of observer protocols in high stakes’ 

evaluations.   

 All told, these results provide a strong initial argument in favor of attempting to estimate RDs 

using the RD Multi-rater model when multi-rater data is available. Even when sample sizes are 

small the model still successfully ran in most replications and the model can provide additional 

information about the likely range of treatment effects. Furthermore, we revealed that using other 

simpler models can drastically underestimate the treatment effect and that using an overly 

simplified measurement model negates the benefit of using multiple raters.  Given the amount of 

time that researchers and program evaluators invest in power calculations prior to evaluations, 

paying equal attention to measurement issues appears warranted.  In fact, our results indicate that 

poor measurement could, in many cases, wipe out the benefits of substantially increasing sample 

sizes in RDs and the considerable expense of using multiple raters.    

 While this is a strong initial argument for the use of the RD Multi-rater model, a major obstacle 

is the large sample sizes required to reduce variance. For RD designs, a sample size with over 

1000 observations in the bandwidth might not be feasible.  Fortunately, there are plausible 

improvements that can be implemented and could reduce the sample sizes needed greatly. In 

particular, observations outside the bandwidth could be used to calibrate the parameters for the 

tri-factor portion of the RD-multi rater model. This would free that portion of the model from the 
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constraints of only using bandwidth observations, while keeping the benefits of using a 

bandwidth for estimating the treatment effect.       

Limitations and Future Directions 

 Our study has a few limitations that bear mention.  First, the simulation conditions covered are 

not exhaustive and do not consider other potential measurement problems that might occur.  For 

example, other research on the tri-factor model has shown the impact of raters with drastically 

different loadings (Soland & Kuhfeld, 2022), which was not covered in this study.  Second, the 

dearth of easily accessed empirical data that includes multiple raters in RD design means that we 

were unable to show how using the RD Multi-rater model might affect a study’s conclusions.  

Thus, the findings from our simulation studies should be interrogated using empirical data.   

 Going forward, as mentioned above, our results also suggest that better methods need to be 

developed for observational protocols and RD designs that work for smaller sample sizes.  

Besides using observations outside the bandwidth to calibrate parts of the model, research around 

methods that employ Bayesian or other approaches that can utilize information from other 

datasets should be explored. Future research could also evaluate whether other measurement 

models are more appropriate for select applications than the tri-factor model we used for this 

study. 

 Finally, this study assumes that the true data generating model for observation protocols is 

adequately represented by the tri-factor model. While we outlined why we believe that the tri-

factor model is appropriate, it is impossible to determine the true measurement model of 

empirical data. This means that the gains in accuracy in this study are a ceiling.  If the tri-factor 

model is a significant misspecification of the data generating model for the empirical data it is 

utilized with, there is a likelihood of bias. However, the alternative approaches we investigated 
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are unlikely to be better specified, which suggests that the comparative benefits observed in our 

study will persist. 

Conclusion 

 Our study highlighted the challenges of using observer protocol data from multiple raters in 

education research, specifically in the context of regression discontinuity (RD) designs. The 

traditional approach of using sum scores is shown to be biased and inaccurate, and an RD Multi-

rater model is proposed as a possible solution. The study finds that the RD Multi-rater model 

requires large sample sizes to be adequately powered but is still superior to other approaches 

when not optimally powered because improper measurement models lead to substantial bias and 

increased Type II error rates. Additionally, the study suggests that simply averaging multiple 

ratings may provide a false impression of accuracy and that poor measurement could wipe out 

the benefits of increasing sample sizes in RD designs. Finally, the study suggests improvements 

to the RD Multi-rater model that could reduce the required sample sizes. 
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