
Modernizing Existing In-Store Legacy Stipulation Document

Approval System

CS4991 Capstone Report, 2023

Matthew Y. Samuel

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

ms3wcw@virginia.edu

ABSTRACT

Sales Managers at CarMax, the nation’s

leading used car retailer, were utilizing a

legacy system platform in-stores to perform

the final approval of customer-submitted

stipulation documents, which was expensive

to maintain, inefficient and incompatible with

other systems. To modernize this legacy

system, I designed the microsite with Figma

and developed the microsite and service using

the ASP.NET Core back-end web framework

and C# programming language, the ReactJS

front-end web framework, and the Azure web

hosting service. I utilized the agile software

development methodology, which entailed

iteratively developing the microsite and

service in two-week sprints. This new

stipulation document approval tool is being

used by sales managers at select CarMax test

stores. Before releasing the tool to all stores

nationwide, a feedback loop will be created

so sales managers can provide feedback on

the new tool, which will enable CarMax

Technology team(s) to iterate on and improve

upon the product.

1. INTRODUCTION

Sales Managers at CarMax have been

using a legacy system in-stores to perform the

final approval of customer-submitted

stipulation documents before they are sent to

the lender that the customer chooses to obtain

their car loan from. This system has been in

place since CarMax opened in 1993.

Ultimately, this legacy application is still in

use today because it still fulfills its intended

purpose. However, with how fast business

needs, consumer needs, and software are

evolving now, maintaining a legacy system

platform such as this one is not viable for

many reasons.

First, legacy system platforms are

expensive to maintain. As legacy systems get

older, the amount of technical debt (implied

cost incurred when organizations do not fix

problems with software that will need to be

fixed in the future) increases, which, in turn,

causes higher maintenance costs.

Additionally, legacy systems are inefficient.

Over time, software becomes outdated and

slows down since it is no longer receiving

frequent updates. These inefficiencies

negatively impact employee productivity,

which ends up causing a negative experience

for the consumer in some way. Finally,

legacy systems are not compatible with newer

systems. In particular, it is not easy to

integrate a legacy system with a newer

system, especially if the system was not

originally designed to integrate with other

pieces of software.

CarMax is facing these issues with the

legacy software they use to approve

customers’ stipulation documents. This is

why they have been implementing initiatives

to begin modernizing not only this software,

but all of their legacy software.

2. RELATED WORKS

Fanelli et al. (2016) developed a

framework for modernizing legacy

application systems that treats the application

code, the information system, and the

infrastructure as three different units that can

be modernized independently. Their

framework can be applied consecutively to

one section of code or in parallel to multiple

sections of code. The primary programming

languages that this modernization framework

targets are Java, C#, and C++, and the three

phases that this framework consists of are

Pre-Processing, Processing, and Post-

Processing. After the development of their

modernization strategy, Fanelli et al. (2016)

conducted a case study involving a large

financial services institution. The study’s

results showed that the institution reduced its

costs by 80%, lines of code by 89%,

operational complexity by 99%, and their

project launch timelines by about 66%.

Chiang and Bayrak (2006) describe a

legacy system modernization technique that

they implemented enabling organizations to

perform business rules extraction from legacy

code, the process of understanding and

separating the software’s business logic from

other logic. It also allows these organizations

to convert their legacy code into reusable

components in a way that conforms to the

component interconnection model, which

enables all of the components to smoothly

communicate with one another. Chiang and

Bayrak define reusable components and how

the component interconnection model works

and then go on to define business rules, as

well as a program slicing method that allows

organizations to perform business rules

extraction. Finally, they provide a brief

example of performing program slicing on a

program.

3. PROJECT DESIGN

To modernize this legacy system, I

utilized various web frameworks,

programming languages, and tools to develop

a minimum viable product (MVP) that

enables sales managers to approve stipulation

documents from within an existing site that

allows associates to do the initial approval of

these documents. This new sales manager

experience consists of multiple components:

the stipulation card stepper page, the

document viewer, and the final submission

confirmation modal/popup and submission

confirmation page. The MVP consists of a

microsite front-end developed using the

ReactJS web framework and a microservice

on the back-end developed using the

ASP.NET Core framework and the C#

programming language. The web application

is hosted using Microsoft Azure App

Services.

The stipulation card stepper page consists

of multiple sub-components. First, it contains

order details, including the vehicle stock

number, the primary buyer’s name, the co-

buyer’s name (if applicable), the store

number, and vehicle information, including

year, make, and model. Additionally, this

page includes one card for each stipulation

type (e.g., Proof of Identity, Proof of Income,

Proof of Insurance) that can be expanded to

show the specific documents required for that

stipulation type (e.g., Pay Stub for Proof of

Income).

From there, the sales manager can click

on a specific document within the stipulation

category, which will take them into the

document viewer, where they can navigate

through the files within that document and

verify additional information about the buyer,

including, but not limited to, income, contact

information, and address information. When

the sales manager returns to the stepper page

from the document viewer, they can click the

“Verify Stipulation” button to confirm that

these documents will satisfy the requirements

for the particular stipulation type.

Once the sales manager has verified

documents for all stipulation types required

for a particular vehicle order, they can click

the “Submit to Business Office” button at the

bottom of the stepper page, which will

prompt them with a popup asking if they are

sure they want to submit the order, because

after submission they will no longer be able

to edit it. If the sales manager clicks “Submit”

on this modal, they are routed to a

confirmation page, and all the input boxes on

the stepper page and document viewer

become read-only. There is also a similar

process in which the sales manager can click

the “Decline” button to decline the order and

blacklist the customer.

The front-end of this microsite was

developed with the ReactJS framework,

which utilizes an extension of the JavaScript

programming language called JSX that allows

HTML to be embedded within a JavaScript

file. Within the front-end of the site, there is a

back-end that adheres to the Backend for

Frontends (BFF) pattern, which is a variation

of the API Gateway pattern. This pattern

creates a separate API gateway for each type

of client (e.g., web app, mobile app, etc.),

which allows for separation of concerns and

easier maintenance as the size of the

application grows.

The back-end of this microsite was

developed with the ASP.NET Core

framework, which utilizes the C#

programming language. The back-end

adheres to the Orchestrator Pattern, which

involves the controller, orchestrator, service,

and repository layers. When the user interacts

with the UI of the site, input is first sent to the

controller through the BFF layer. From there,

it is passed onto the orchestrator layer

through a Data Transfer Object (DTO) that is

used to move data between the UI and the

API. The orchestrator calls the service layer

and passes it data from the DTO, and the

service layer contains business logic such as

input validation, grabbing model objects from

the repository layer, and modifying these

objects and sending them back to the

repository layer to update records in the

database, if necessary. Finally, the repository

layer takes in data from the service layer and

retrieves and/or updates data from the

database.

This web application is hosted on the

cloud using Microsoft Azure App Services,

where the resources are automatically scaled

up/down and the load balancer distributes

network traffic among multiple servers, both

done to ensure a very high rate of availability

for the site.

4. ANTICIPATED RESULTS

This new stipulation document approval

tool is being used by sales managers at select

CarMax test stores, and although the tool will

solve the problems associated with the

existing legacy system platform, as an MVP,

it is bound to have many issues that need to

be ironed out before it is released to all stores

nationwide. First, it does not support all the

stipulation types that the legacy system

supports. Furthermore, it does not support

orders that contain co-buyers. As a result, the

MVP is estimated to only support 15-35% of

orders. This will make it harder to achieve the

rapid feedback loop that is supposed to occur

after the MVP release.

It is expected that there will also be issues

with features on the microsite not working as

expected. When testing the new sales

manager experience during development, we

put a lot of time and effort into end-to-end

testing. However, since we were testing using

fake orders that we set up, there will

inevitably be things we did not account for

that will come up once sales managers use the

site to approve documents for real orders.

5. CONCLUSION

The modernization of CarMax’s legacy

stipulation document approval tool is crucial

since the current legacy system platform used

for document approval is expensive to

maintain, inefficient, and incompatible with

other systems. The approval tool MVP

involves a modern microsite and microservice

that utilizes various frameworks and

programming languages including ASP.NET

Core, ReactJS, and C#, and is hosted on the

Microsoft Azure cloud platform. This tool

offers CarMax sales managers a smooth

approval experience with features such as the

stipulation card stepper page, document

viewer, and the final submission confirmation

modal/popup and submission confirmation

page. This product will be much more easily

maintainable and scalable by CarMax. As the

tool currently undergoes testing in select

CarMax stores, its release nationwide will

allow for a more efficient document approval

process, both for the customer and for sales

managers.

6. FUTURE WORK

Before releasing the new stipulation

document approval tool to sales managers all

around the United States, the Document

Center team at CarMax needs to implement a

few additional features as well as bug fixes.

First, they will need to add support for

additional stipulation types. Additionally,

they will need to have the new tool support

orders with co-buyer(s) in addition to the

primary buyer. Furthermore, the feedback the

team receives from the sales managers at the

test stores who are currently using the new

tool will allow them to fix bugs with the

product. Once these features and bug fixes

have been implemented, the product will have

a much higher adoption rate among sales

managers nationwide.

REFERENCES

C. -C. Chiang and C. Bayrak, "Legacy

Software Modernization," 2006 IEEE

International Conference on Systems,

Man and Cybernetics, Taipei, Taiwan,

2006, pp. 1304-1309, doi:

10.1109/ICSMC.2006.384895.

T. C. Fanelli, S. C. Simons and S. Banerjee,

"A Systematic Framework for

Modernizing Legacy Application

Systems," 2016 IEEE 23rd

International Conference on Software

Analysis, Evolution, and

Reengineering (SANER), Osaka,

Japan, 2016, pp. 678-682, doi:

10.1109/SANER.2016.40.

