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Abstract

The last 20 years have seen the development of several technologies that individually play an important role

to enable Wireless Sensor Nodes to become a reality. First, the energy consumption has been reduced to

the order of decades of µW thanks to digital and analog ultra-low power circuits that are able to operate

reliably in the subthreshold regime. Second, the ability to harvest energy from the environment eliminates

the dependency on bulky batteries and elongates the life of sensor nodes. These sensors must support

sensing modalities and processing capabilities for a broad range of applications that can go from the most

commonly showcased ECG (Electrocardiogram) to more demanding applications as wheezing detection for

asthma management. All these components considerably increment the design complexity associated with

these highly integrated SoCs. Developing a node for each application with the current RTL methodologies is

not possible due to the prohibitive Non Recurring Costs (NRE) associated with the design and verification of

such a complex systems. On the other hand, it has been proven that the optimum operation point for an ultra

low power system highly depends on the application and the activity factor associated with it, thus a platform

optimum for one application might be sub-optimal or not suitable for others. This scenario raises awareness

to a question that has not been explored yet in the sensor nodes literature, ”How do we efficiently integrate

these complex Systems On Chip (SoCs) taking into account the application particular requirements”.

This thesis explores these system level questions associated with SoC design and proposes two comple-

menting approaches to address them. First, we design a re-use and verification aware methodology for

wireless sensor nodes. This methodology uses interface based design and block abstraction. The combina-

tion of these two techniques, enable RTL configurability at the system level to meet particular application

requirements, and allow hardware evolution/modification reducing the design NRE costs. We applied this

methodology during the integration of a 6.45µW Self-Powered IoT SoC with Integrated Energy-Harvesting

Power Management and ULP Asymmetric Radios. This SoC has the highest level of integration to its

publication date. Second, inspired by the necessity of a system level approach, that covers architecture ex-

ploration and application validation in wireless sensor nodes, we setup an Application Oriented framework.

This framework facilitates the communication between the algorithm developer, the hardware designer and

the hardware verifier in order to explore the hardware trade-offs associated to a particular application. We

called this framework AVEBoS and is intended for early exploration or late validation. Early exploration is
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needed so the architecture is defined taking into account the requirements of one or a set of applications. Late

validation is required to evaluate the performance of the node for a particular application under a specified

condition. Using this framework and the re-use ideas explored for the SoC integration, we design, verified

and evaluated the performance of a Short Time Fourier Transform accelerator for wheezing detection and a

FFT-IFFT based 6 µW Pulse Oximetry Digital Signal Processing Data Path.

Following these system level strategies we expect to optimize the engineering effort invested in a single

SoC, to start paving the path towards an architecture that gives birth to a family of SoCs able to adapt to

different application requirements and operation conditions with a design cost that is spread across different

solutions by the use of truly re-usable IP.
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Chapter 1

INTRODUCTION

The last 20 years have seen the development of several technologies that enabled Wireless Sensor Nodes

to become a reality. Obstacles as bulky size due to batteries, and the energy constrains due to the wireless

nature of the nodes, have been addressed; i.e. Novel Power Management Units (PMUs) with end to end high

efficiency enable energy harvesting. This energy is collected in supercapacitors that support the whole node

operation[1]. CMOS circuits in both the analog and digital domain optimized to operate in the subthreshold

regime enable power consumption on the order of a couple of decades of µ W[2][3][4]. Ultralow power

radios combined with heavy duty cycling[5] allow wireless communication during important programmable

events[6][7]. All these circuits designed on isolation represent the best on their classes, and one of the

remaining challenge is yet to address. How do we integrate all these components?

1.1 Outline

1.1.1 Integration Complexity

This thesis addresses some of the challenges faced during the Integration at the RTL behavioral level of a

6.45µW Self-Powered IoT SoC with on-chip Energy-Harvesting Power Management and Ultralow Power

Asymmetric Radios[8]. The increased complexity of a node of this nature has a direct impact on the Non

Recurring Costs (NRE) associated with development. Fig.1.1 shows the design complexity increment fol-

lowing Moore’s law, in contrast with the productivity per engineer evolution over time. The productivity

10



CHAPTER 1. INTRODUCTION 11

gap created by the different evolution rates, dramatically increment the cost of design, placing this issue as

one of the main threats for the semiconductor industry Moore’s law[9].

Figure 1.1: The productivity gap[10] predicted by SEMATHEC in 1997 and discussed by the ITRS in
2011[9] and 2013[11]

Chapter 2.1, proposes the use of interface-based design, block abstractions and a verification aware method-

ology for reducing the NRE costs associated with the design of highly integrated wireless sensor nodes. By

using our methodology we argue digital design effort savings between 30−90%.

1.1.2 Application Oriented System Optimization and Verification Awareness

Wireless Sensor Nodes sense, process, and transmit physiological and environmental data. The conception

of such a system starts with an application or a set of applications to be supported on node, i.e ECG or pulse

oximetry. During the first stages of architecture conception, hardware architects, digital designers, verifiers

and algorithm developers start modeling efforts that are usually disconnected. This broken link between

SoC development collaborators leads to duplicated efforts in model generation.

Chapter 3.1 proposes An Architecture Agnostic Verification Environment (AVEBoS) that connects the Al-

gorithm Developers and the Hardware Engineers. This chapter describes a tool that enables Hardware

Architects, Digital Designers and Functional Pre-silicon Verifiriers to re-use the models generated by the

Algorithm Developers during exploration/evaluation/development. At the same time, proposes an RTL de-
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velopment methodology for Digital Designers to generate architecture agnostic IP that can be placed in a

library for re-use across architectures.

The combination tool+methodology enables both ways communication. It enables the algorithm developer

to explore bio-signal processing algorithms in a hardware aware way with the closest software description of

a hardware IP: ”Its behavioral RTL description”. On the other hand, It allows the digital designer to integrate

the modeling efforts started during algorithm development for platform validation and exploration.

Section 3.5, uses AVEBoS to generate a verification environment for a Short Time Fourier Transform (STFT)

accelerator used for Wheezing Detection.

Beyond ECG

Chapter 4 presents a parameterizable pulse oximetry digital signal processing datath. This IP was desgined

using the techniques described in Chapter 2.1 and Chapter 3.1, to create a truly re-usable IP block. In this

way, we can easily generate an IP for a platform driven by energy constrains, with very low sampling rate

and low precision demands or place the same IP in a platform that requires high levels of precision but have

more energy available. AVEBoS enabled us to validate the IP for all the options, while generates a model

that can be used at higher levels of abstraction.

And how does Ultralow Power fit in all this?

Energy consumption described by equation 1.1 is one of the most important optimization knobs for Wireless

Body Sensors

E =
1
2

CV 2 f α + Ileak (1.1)

An Ultralow power SoC designed to fit the demands of a wireless sensor typically show cases one or several

techniques for energy optimization. i.e. Subthreshold operation combined with a reduction in the operat-

ing frequency reduces the Voltage (V) and Frequency (f) [12]. Serializing the processing data path at the

arithmetic unit level i.e. a serial adder[13], or at the block level i.e. IIR channels that share arithmetic units
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[14] reduces the factor Capacitance (C) and leakage current (Ileak). And finally, Power gating and Clock gat-

ing reduces the consumption of idle power in under-utilized blocks (Ileak). However all this optimizations

present tradeoffs, breaking points or optimum energy operation points, that will be dictated by application

requirements as: activity factor α , sampling Ts and processing rates F , or expected accuracy. Fig.1.2 shows

the Energy Vs VDD for different ne f f for an AND chain, where n is the length of the chain and α is the

activity factor.

Figure 1.2: Energy Vs VDD for different ne f f for an AND chain, where n is the length of the chain and α is
the activity factor [15]

Chapter4 describes power consumption considerations in a pulse oximetry datapath taking into account the

particular constrains of the application in consideration.

1.2 Contributions of this thesis

This thesis makes the following contributions

• Proposes a methodology for Block abstraction and interface based design for body sensor nodes that

reduces NRE costs in design and verification (Chapters 2.1 and 3.1)

• Uses this methodology to facilitate bus architecture evolution, modification, and or migration with no

NRE cost associated (Chapter 2.1)
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• Proposes an Architecture Agnostic Verification Environment for Body Sensor Nodes and demon-

strates its use for the development of an accelerator for Wheezing Detection.(Chapter 3.1)

• Demonstrates a pulse oximeter FFT-IFFT based digital signal processing data path that operates un-

der 6.4µW . Architecture decisions are based on the application constrains. Application oriented

architecture optimizations in the register files shows the tradeoffs in area and power relevant for the

application.(Chapter 4)



Chapter 2

BSN

2.1 Introduction

The IoT term is used to describe a network in the near future where just about every device has embedded

connectivity and some sort of intelligence. Some predictions talk about a value added to the global economy

of $1.6-$4.6 trillions of dollars with a dramatic impact on city planning, first responders, military, health

and dozens of other environments[16]. This recent explosion of the IoT will require a family of ultra low

power SoCs targeted for a broad set of applications with very different sensing and processing requirements.

However, the NRE cost associated to such a platform design can still be prohibitively high.

Since re-use and verification aware methodologies has the potential to increase productivity up to %340[9],

thus reducing the development costs; we designed a re-use and verification aware methodology for Wireless

Sensor Nodes. The methodology was adopted to develop our highly integrated, flexible SoC platform, which

supports multiple sensing modalities, extracts information from data flexibly across applications, harvests

and delivers power eficiently, and communicates wirelessly[8].

Note : Dear reader, Since several people (by several I mean 12 co-authors and a lot more that got drawn by

the force, in one way or another) contributed to the development of this node, section 2.2 gives an overview

of the platform while the rest of this chapter follows with the re-use and verification aware methodology

proposed and tested for this development. For more information about the cutting-edge individual blocks

and other integration details please refer to the following references: [1][2][3][4][6][7]

15
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2.2 The Ultra Low Power IoT SoC

Figure 2.1: Self-powered IoT SoC Block Diagram[8].

We developed a 21.3A 6.45 µW self-powered IoT SoC with integrated energy-harvesting power manage-

ment and ULP asymmetric radios, shown in Fig.2.1. This SoC integrates a power management unit (PMU)

with a boost converter for solar and TEG energy harvesting and a single-inductor, multiple-output (SIMO)

DC-DC converter for high end-to-end self-powered efficiency. An asymmetric radio leverages ULP ultra-

wideband (UWB) transmission and an always-on ULP receiver to reduce RF power significantly relative

to prior SoCs for communication at higher data rates in an energy harvesting platform. The sensing in-

terface includes a 4-channel (2W/channel) AFE[17] and SPI with variable voltage output pads (0.4-3.3V)

for commercial sensor compatibility. The OpenMSP430 (OMSP) processor[18] and a suite of accelerators
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can execute numerous biomedical and environmental signal processing algorithms (e.g. filtering, peak de-

tection, histograms) combining ASIC energy efficiency and flexibility. A lightweight control unit (LCU)

can manage chip data and node control while the OMSP is on, and uses a custom ISA and interrupt-driven

programs to reduce the program size. The chips flexible clocking unit, containing a programmable ADPLL

and configurable system clock, can drive the system clock from a low-power crystal. The digital blocks run

in sub-threshold on a 0.5V supply from the PMU, while the radios use both the 1.2V and 0.5V rails.

The chip uses two independent buses controlled by either the OMSP or LCU (for bus 1) or by the two-

channel DMA (bus 2). The LCU can configure the OMSP as the main controller or as a bus peripheral that

is used only for ALU or background operations. Since most data transfer occurs between the peripherals

and the on-chip memories, the two-channel DMA (configured by OMSP or LCU) allows data movement

on bus 2 in parallel with chip control on bus 1. Peripheral block wrappers decode and route bus data and

manage independent block reset, clock gating, power-gating, and power mode settings. Most peripherals

contain three power domains: always-on configuration registers, a bus decoder domain, and a block core

logic domain, see Fig. 2.7. Programmable peripherals include a 4-channel, programmable FIR filter, a

CORDIC, 16-point complex FFT/IFFT, two timer modules with capture/compare, a multiplier, and heart

rate (R-R) AFIB detection. This suite of hardware accelerators supports flexible processing for a wide range

of applications. The SoC has a 4 kB data memory and three, 2kB memories: Tx buffer, LCU instruction

memory, and OMSP instruction memory. All SRAMs use an 8T sub-threshold bitcell and a read before

write scheme. The memories are partitioned into 1 KB, independently power gate-able banks and operate

down to 0.35V.

2.2.1 Measured Results

The chip was tested end-to-end for motion capture with an ADXL362Z accelerometer (over SPI). Fig.2.2

shows the SoC datapath tested. To date, this work has the highest level of integration, including energy

harvesting and a full transceiver, for the lowest power. This work also has the highest energy harvesting /

regulation efficiency, and achieves lower RF connectivity power by 38X. The carefully integrated ULP com-

ponents on this SoC support numerous IoT applications on a self-powered platform. The chip micrograph

is shown in Fig.2.3, indicating the high level of integration between system modules.
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Figure 2.2: Measured Results for the SoC IoT using an accelerometer to sense Position and temperature,
and start data transmission.

2.3 Integration Methodology

2.3.1 Literature review for Sensor Nodes architectures

Typically, the digital section of platforms alike, contains one or several micro controllers (drivers) as General

Purpose Processor[17], openMSP430[8][19], ARM Cortex M0[20] or Custom Micro controllers[17][8], that

allow for processing flexibility and control over the whole chip. This section also provides the glue logic that

holds everything together. In order to achieve savings of up to 6800X in energy consumption, accelerators

are connected through a bus as slave blocks to perform Digital Signal Processing (DSP), mixed signal blocks

control and status monitoring, and memory interfaces. There can be one or several buses, driven by one or

several drivers. Figs.2.4[a-d] show generalized block diagrams from the most recent Sensor Nodes found in

literature.

Each new iteration of a Sensor Node of this nature with minor new features, or changes in the architecture,

is costly in time and resources. Replacing one of the micro controllers would require the re-writing of at

least 32% of the total HDL description files. Getting rid of one of the busses or changing the decodification

scheme from local to global would have the same impact in time and resources. Even if the accelerators are

re-used, every single one of them must be connected to a new bus, requiring changes at each block level that
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Figure 2.3: Chip Micropgraph for the Self-powered IoT SoC

must be re-verified, so a set of new testbenches and stimulus are required. Using a re-use methodology can

increment productivity by up to 340%[9] in design and verification. However, regular strategies hardwire

the RTL signals, see Fig.2.5a, in such a way that architecture re-use or evolution is almost impossible.

This section addresses the limitations of the current approach and propose a methodology for re-use, re-

configurabilty at the behavioral RTL level, and verification-awareness[21] for a sensor node. According with

[21], a verification-aware design methodology is based in Formalization, Abstraction and Decomposition.

Our methodology follows the three in the following way:

1. Formalization: We use SystemVerilog as a formal language to describe the system that is precise,

unambiguous and require just a moderate extra-effort from designers due to its similarities with widely

popular HDL description languages.

2. Abstraction: We use SystemVerilog interfaces and modports capabilities to remove the details of the
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Figure 2.4: BSN Architectures. a) A Batteryless 19uW MICS/ISM-Band Energy Harvesting Body Sensor
Node SoC for ExG Applications[17]. b) 21.3A 6.45uW self-powered IoT SoC with integrated energy-
harvesting power management and ULP asymmetric radios[8]. c) 18.3A multi-parameter signal-acquisition
SoC for connected personal health applications[20]. d) An energy-efficient biomedical signal processing
platform[19].e) Block Diagram of the Generic Digital Subsystem using Abstraction and Decomposition
proposed. f) Timing Diagram for Local interface assumed to connect the custom units.

interface at the system level. The interface abstraction allow us to integrate the major components of

the system without hard wiring across the whole behavioral description detailed signals. An example

of system level integration using interfaces is shown in Fig.2.5b.

3. Decomposition: We decompose the BSN architecture into basic components that can be designed

and verified independently. More importantly it can be swapped and replaced according with the

architecture needs without requiring major modifications on the integrated system.

The behavioral system level description is shown in Fig.2.4e. We conceptually divide the bus architecture in

three major blocks: Bus top (BT), Bus Local Generic input (LI), Bus Local Generic Output (LO). To facili-

tate a homogeneous integration of the units we define a generic Peripheral Wrapper (PW) that contains the

LI, LO and the unit itself. The basic blocks are connected to each other by two SystemVerilog interfaces:

Generic Driver Interface (DIfc) and Generic Peripheral Interface (PIfc). We rely on the individual basic

components re-definition to allocate for changes in the architecture. The less standard part of the general-

ization is the connection between the Peripheral Wrapper’s and the custom UNITS, Local Interface (LIfc).

For this we assume a write and read protocol as shown in Fig.2.4f which has been the case for our previous

developments. Unfortunately, changes in this interface, might require re-definition of the Peripheral Wrap-
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per. A regular non-reusable implementation of a system with an openMSP430 is shown in Fig.2.5a while

our proposed implementation is shown in Fig.2.5b.

Figure 2.5: Sensor Node integration at the digital top level following: a) Typical integration. b) Re-use and
verification aware methodology.

2.3.2 Bus architectures

Typically sensor node architectures use decoders to ensure that data is sent and received by the correct pe-

ripheral using a bus address. Global and local decoding are two of the main topologies. Global decoding

relies on a single block, to decode the address and generate a unique enable signal used to connect the appro-

priate block to the bus. On the other hand, the local scheme, relies on each block for decoding the address

and access the bus. Finding the right architecture, depends on the target application and the operational

conditions [2]. Our methodology, allows us to move between different bus topologies with minimal design

and verification extra cost. We re-define and swap the basic block abstractions BT and LI, and the interface

PIfc. This is equivalent to only 2% of the total HDL description.

Fig. 2.6[a-b] compares the behavioral simulation results for the global vs local decodification schemes, while

reading the I/Os connected to the bus. The DUT is a toy system with 2 units attached to the bus. Each unit

has 5 I/Os. The systems has the following characteristics:

1. The DIfc is the same in both cases since we keep the same openMSP430 as a driver.
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2. Global Decodification: The Peripheral Interface shows two 10 bits enable signals for read and write.

One signal per I/O connected to the bus.

3. Global Decodifcation: At the Peripheral Wrapper, the unit has 5 I/O to be attached to the bus. In this

case the read and write enable signals are 5 bits wide.

4. Local Decodification: The Bus top let the driver signals pass unmodified to the peripheral units

Figure 2.6: On the left simulation results for a 4 bits address bus system set for Global, Local and Semi-Local
schemes. On the right, corresponding block diagrams for the implementations.

Fig. 2.6c, shows a more interesting decoding scheme. A semi-local bus architecture, can be implemented

to benefit from the lower active energy of the global decodification scheme[2] while reducing its routing

complexity. The semi-local approach divides the peripheral space in sub-groups. An enable signal for each

sub-group is generated in the Bus top out of the most significant bits in the address bus, and routed only

to the peripherals that belong to the sub-group. The remaining bits are routed to each Peripheral Wrapper

to perform local decodification. Fig.2.6c, shows the signals for this approach. This system characteristics

are:

1. The most significant bit of the address is used to generate the read and write enable routed to periph-

erals belonging only to the same sub-group ;
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2. The remaining bits [2:0] are passed to the local decodification.;

At rigth, Fig.2.6 shows the block diagram for each implementation and the average power consumption for

the three approaches. The example code shown in Fig. 2.5b is valid for any of the three bus architectures,

local, global or semi-local.

2.3.3 BSN Example

We independently designed and verified the parameterizable Generic Local Input as a unit that can be re-

used across all the peripheral units. The bus top was redefenided as a buffering stage for the signals coming

from the drivers. All the connections between blocks at the system level and peripheral level uses the Difc,

PIfc and the LIfc specified in Fig.2.6b which allow us to re-use the architecture for global, local or semi-local

approaches by swapping the interface and basic block abstraction definition. Removing one of the busses

would require changes limited to the Bus Local Generic Output/Input module which represents only 1% of

all the verilog files. This version of the chip, follows a local decoding scheme as shown in Fig.2.7.

2.4 Limitations and Future Work

Re-use by abstraction and interface based design has a great potential in reducing costs of design and veri-

fication. However, this can be jeopardized by the extra time (up to 2.5X) it takes to make re-usable compo-

nents. From[21], this extra time is attirbuted to:

1. The effort required to do an extensive analysis of the block and its potential application domains.

2. A more robust and complete set of test-benches has to be generated to verify the functionality of all

the possible IP features.

3. The preparation of good documentation is vital to enable the re-usability of this components.

2.4.1 Specific Limitations for BSN

• For our BSN we included a Configuration Register block which is paramaterized and re-used across

the whole architecture. Nevertheless it is hard to justify its use in other scenarios, and removing it
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Figure 2.7: Block Diagram of the Peripheral Wrapper, Since the bus follows a local decodification scheme,
the bus top is a module with buffering stages.

might cost a full re-definition of the Peripheral Wrappers, that beats the purpose of the abstractions.

To fix this, we could have included the Register in the Bus Local Generic Output, so it could be easily

discarded from a new architecture by simple re-definition of this block.

• The LIfc that connects with the custom UNIT is still an open question. Units that do not agree with

the protocol specified require extra-work to adapt to the hard wire LIfc in the wrapper. This hinders

in generality desired in the Peripheral Wrapper.

• Although, dropping in a new microprocessor can be easily accomplished by replacing the DIfc and

basic block abstractions at the behavioral level; the stimulus generation associated with the binary

code generation from Assembly or C code is more challenging to re-purpose. Exploration for a

different abstraction at this level might be required to accomplish fully re-usability in this realm.
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2.5 List of Contributions

Two revisions of this SoC were taped out. I partially participated on the first revision by collaborating in

methodology, file directory structure organization and a CORDIC accelerator.

For the second revision I designed a unique re-usable methdology for Sensor Nodes system architectures

that allows rapid prototyping and early integration. Below the list of specific contributions:

• I replaced hard-wired RTL interfaces for mixed signal blocks as memories, AFE, radios and power

management by SystemVerilog interfaces. By abstracting the interfaces I started earlier system level

integration without being affected by later modifications on these blocks. By defining the interfaces

once and only once and let it be propagated through the hierarchy, we removed the potential for typing

errors and disconnected nodes. Moreover, changes on this interfaces did not affect the integrated

system since those changes were localized to just the SystemVerilog interface and the digital module

that handles the communication with the mixed signal block.

• By using the methodology for bus abstraction and interfaces I generated 5 re-usable verilog compo-

nents. A bus top, an input decoder, an output decoder and a configuration register. These modules

are totally parameterized and were fully verified at the block level. The bus structure is connected

using SystemVerilog interfaces. This changes helped to speed up the integration process. We moved

to generate and verify a new decoder structure for each block attached to the bus to instantiate a fully

verified object. These changes, gave an homogeneous structure to the entire bus, that helped the de-

bugging process. As a verifier, I no longer needed to be familiar with the intricacies of each block to

run system level tests. But make sure I can access the inputs and outputs of the blocks in a systematic

way. Furthermore, this is the first architecture, designed for truly re-usability at the system level. The

interfaces and block units can be replaced to remove a bus, add a bus, change the driver, move to

global or semiglobal decodification, expand the accelerators memory space and expand or reduce the

processing data-path with minimum impact in the RTL at the wrapper level, or system level.

• I created behavioral models for the mixed system blocks for verification purposes.

• Thanks to the changes described before, I created an early prototype of the the system level and a

system level end to end test for the digital system. This allowed us to incrementally integrate new
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blocks making sure that we always had a working copy in th repository. How many times was the test

broken after submission!

• I designed a unified memory interface for the 2 instruction memories, data memory and Tx and Rx

buffers. This helped to speed up design process since we passed from create and verify 5 different

verilog modules to 1 single module. Changes in the memory interface, were immediatly propagated

to the 5 memory controllers instead of having to modify one by one.

• Since the system does not have any hand-shaking meachanism, the drivers relay on the timer to check

task completion. I re-designed the timer to allow for completelly independent operation.

• I designed an ultra low power CORDIC accelerator able to calculate up to 7 mathematical operations.

• I Integrated the OpenMSP430 with emphasis in the UART unit.

• I Co-Implemented the testport interface, which is the debug and program port for the whole chip.

• I created a verification environment for the SoC used during pre-silicon verification and post-silicon

validation. The verification environment is able to generate stimulus for all the digital IO in the SoC

pad ring or write LCU or openMSP430 code directly in the memory models used for verification.

This environment, integrates an LCU compiler; which was helpful for system level verification due

to the simplicity of the LCU ISA. The code is translated to the dual phase test port protocol in a

transparent way which is usefull for post silicion validation. This environment is easy to use for pre-

silicon, particularly helpful for new programmers. For post-silicon validation generates stimulus for

both, a commerical Pattern Generator or is especially optimized for the use of an FPGA as a pattern

generator, since the stimulus generation is based in a small state machine that simply reads from a

memory

• I integrated at the RTL behavioral level all the blocks to the system.

• Planned, created and run system and block level tests
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2.6 Conclusion

We presented the methodology we used to integrate our ultralow power highly flexible SoC in order to

achieve re-usability and facilitate evolution of the architecture. A re-use and verification aware methodol-

ogy can help to accelerate and reduce the costs of design and verification in the digital section of Sensor

Nodes. For this we create a generic platform in two steps. First, we replace the regular HDL ports with sys-

tem verilog interfaces (abstraction). Second, we identify typical building blocks (decomposition) that can

be developed and verified independently to be instantiated across the whole architecture as generic blocks.

The modularity of our approach enables early system level integration, even before individual blocks com-

pletion, allowing incremental architecture evolution. The re-usability of the abstractions and the blocks

decomposition, enable us to migrate evolve or modify the system architecture by modifying only %2-3 of

the files vs an optimistic %32 if following a regular methodology. We also eliminate the need of new test

bench or stimulus generation when migrating between architectures. Following this methodology we can

migrate from local, global and semi-local decodification or change the architecture basic parameters as bus

address size or data size by swapping the basic building blocks definitions.



Chapter 3

Application Oriented, Architecture

Agnostic, Verification Environment for

Body Sensor Nodes, AVEBoS

3.1 Introduction

Fig. 3.1, depicts how Sensor Nodes architectures have evolved from sampling and transmitting raw data

using General Purpose Processors (GPPs)[22] to highly integrated systems able to do relatively complex

computation under the limited power budget of 19uW[17]. The future of the BSNs requires even more

sophisticated energy efficient on node algorithms able to not only do signal based detection, but to predict

events or even make decisions based on data analysis. The increasing complexity of these sensors is also

reflected in an increment in Design and Verification Costs.

The Development of a typical SoC follows three basic stages. Idea generation, Definition and finally

Implementation[23]. The Idea generation usually starts with an application or a set of applications to be

supported. i.e. ECG, EMG, Pulseoximetry or Asthma monitoring. During the definition stage, a high level

model of the algorithms is developed and evaluated. In current methodologies, algorithm modeling efforts,

and design and verification tasks are disconnected. In fact, these models are often thrown away after ex-

ploration and experiments are completed. Furhtermore, they are often duplicated, once the models for the

28
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Figure 3.1: Evolution of Wireless Body Sensor Nodes driven by energy consumption optimization.

verification environment building starts.

Motivated by the effort duplication, and time and resources wasted, we designed AVEBoS, an Application

aware Verification Environment for Body Sensors (AVEBoS) that enable us to re-use the codes built for

algorithm development and exploration during the hardware development phase at different levels of the

design hierarchy. Since AVEBoS is architecture agnostic, it enables the designer to port algorithms to

different architectures and design without re-writting the models or the verification environment. AVEBoS

provides the architect, designer and verifier with a communication path that links the Model, the Testbench,

and, the Design Under Test (DUT). This new communication channel allows us to evaluate the hardware

platform performance under the particular application characteristics. The main contributions of AVEBoS

are:

1. Enables the Architect, Designer or Algorithm Expert to develop the model for initial exploration and

experiments as a hardware and verification aware model. This allows to re-use the otherwise discarded
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models across several stages of the hardware design. The process of building these models has to

be transparent for the Algorithm depveloper so it does not represent an extra burden for algorithm

exploration. On the other hand, the models have to be leveraged with minimum extra effort for

verification purposes

2. Developing a Model that can be re-used as an application oriented verification tool at the block level,

system level and across sensor nodes architectures.

3. Enables the Architect to evaulate the feasibility of using a hardware architecture or a block for a

particular application.

3.2 AVEBoS as an Architecture Agnostic Verification Environment

Figure 3.2: Verification Environment a) Typical Verification Environment block Diagram[23]. b) AVEBoS
Functional Virtual Prototype.

A generic Verification Environment (VE) is shown in Fig.3.2a, and contains the following items:

• Functional Virtual Prototype (FVP): A golden functional representation of the complete design

and its testbench. A FVP unifies the use of system models for software, architectural analysis, and

functional verification

• Stimulus Generator: Creates the data that the testbench uses to stimulate the design.
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• Transactors: Change the level of abstraction in a testbench. The most common use is to translate from

implementation-level signaling to a higher level transaction or the reverse.Transactors can behave as

master, initiating activity with the design, as slaves responding to requests generated by the design, or

as both a master and a slave.

• Monitors: Check the correct signaling and protocol of data transfer across design interfaces. In

addition to passively monitoring the data transfers across interfaces, these monitors can encapsulate

the data to be communicated to response checkers. The interface monitors should be application

independent and written in a manner that allows their easy re-use.

• Response Checkers: The most application specific information in the testbench. The most efficient

method for implementing the response checkers is to reuse the FVP as a reference model in the

response checker.

To guarantee re-usability across Sensor Node architectures and portability we focus our approach in the

components that are architecture agnostic, marked with color in Fig3.2. This components are basic build-

ing blocks since they don’t change across architectures, or design hierarchy, therefore can be easily re-

used.

3.3 AVEBoS Structure

AVEBoS is built using Perl, MATLAB and bash. MATLAB handles the signal representation, DSP, and,

algorithm modeling. Perl creates a wrapper aroung MATLAB, the Testbench and the RTL behavioral simu-

lation tool, to present an unified interface to the engineer.

The input for AVEBoS is a simple text file, that defines the verification environment. Fig. 3.3, shows extract

examples to define: the input signal characteristics (a), the width for the processing data-path (b), parameters

applied to only particular pieces of the algorithm (c)(d), The signals in the RTL to be monitored mapped to

a reference model (e) and finally user defined post-processing scripts (f) if required.

Since the transactor is totally architecture dependant, it has to be created by the user. On the other hand,

AVEBoS generates: monitors, stimulus and response checkers from the MATLAB model, using the param-

eters specified in the input file.
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Figure 3.3: AVEBoS User Interface

The Functional Virtual Prototype is the heart of the system and is built in Matlab using the AVEBoS library.

Since AVEBoS is application oriented and architecture agnostic, this FVP focuses on algorithms implemen-

tations such as ECG heart beat extraction or Afibrilation Detection. The expert develops the algorithm as

usual, replacing the built in Matlab functions by functions in the AVEBoS library. This library, is conformed

by wrappers for typical Matlab built in functions as the FFT shown in Fig. 3.3g, or custom algorithms de-

veloped by the user. Each wrapper can include functionality to export the Inputs, Outputs, Parameters and

Coefficients required for RTL simulation.

Each Matlab function in the library is paired with an RTL description of the block. These RTL descriptions
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should follow the methodology described in Section 3.4.1 to be fully parameterizable, which enables true

re-usability of a block for evaluation or implementation under different constrains and architectures.

Due to the modularity of AVEBoS different RTL implementations of the same block can share the same

model. This, gives freedom to the verilog designer for optimization without incurring in incremented verifi-

cation costs. As a simple example, a synthesized register file can have different rows and word sizes which

are easily set using verilog parameters; on the other hand, it can be optimized for low power consumption

with per row clock gating, per bank clock gating and more advanced techniques as granular power gating.

This optimization require a change in the verilog description, but no change in the high level modeling of

the block or in the verification protocols. For this cases, all the three different optimizations would share

the same model. Also, new models can be easily included to the library for later designs by following the

generic stucture shown in 3.3g.

3.4 Verification at the Block Level

Reusing design blocks is prevalent today in large complex designs. It seems easier to reuse or modify a

block from a previous design than to design a block from scratch. However, true re-usability of a block is

hindered by:

1. The lack of abstraction of an IP that requires full modification of the behavioral description to adapt

it to the new design.

2. The extra effort required for verification environment development and full verification of the adpated

IP

3.4.1 Abstraction

To address the lack of abstraction we propose to write RTL block descriptions where basic processing,

control logic, register banks, and basic arithmetic blocks are de-atached from each other. Fig3.4 shows the

block diagram of a generic system that uses the FFT Core. Thanks to the interface abstractions, the basic

building blocks of a full FFT solution are implemented in de-attached modules connected by adaptable

interfaces. The re-usable FFT core in blue is part of the AVEBoS library. The Control logic is included in the
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examples section but depends on the application and the architecture. In this way a fully verified FFT logic

with parameters for Input Data Size, and FFT length N, can be instantiated without further modifications in

new architectures as shown in Section 3.5 and Chapter ??.

Figure 3.4: Block diagram of an example of the FFT core integrated as part of a system using the interfaces
abstraction and the modularity of our approach.

3.4.2 Verification

One of the main requirements for a re-usable IP is a portable verification environment that enable coverage

for all the valid combinations. Manual full validation is prone to errors and time consuming. AVEBoS

allows the designer to loop through parameters, generating valid stimulus and checking the output. Fig.

3.5b shows the real part of the FFT for a 1 Hz sine wave input for different FFT N lengths. Fig. 3.5c shows

the error vs Input data size. Fig. 3.5a shows a block diagram of the verification environment for the FFT

parameterizable core.
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Figure 3.5: Block Level Verification
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Figure 3.6: Wheezing Algorithm [24]

3.5 AVEBoS as an application oriented verification environment. System

Level Example: Wheezing Detection

AVEBoS as a system level VE can leverage the block level models, or new models can also be created as

part of a project, or to be added to the AVEBoS library. This Chapter described the Short Time Fourier

Transform accelerator designed for Wheezing Detection following the re-use methodology described in

Chapter 2.1 and Chapter 3.1.

3.5.1 Wheezing Detection Algorithm

Wheeze monitoring provides information about the extent of a wheezing episode. This information corre-

lates well with conventional indices of asthma activity and is helpful in assessing efficacy of treatment[25].

Wheezes are musical adventitious lung sounds that last between 80ms to 250ms. Their frequency range

extends from approximately 100 Hz - 1 kHz.[26]. Wheezes are detected using a microphone that records

the breathing sound. The sound is then digitized and processed to detect a wheezing event.

Several algorithms has been proposed for wheezing detection[27][28], however, algorithms based on Short
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Time Fourier Transfer (STFT) has shown better performance than others. Standard Fourier analysis allows

the decomposition of a signal into individual frequency components, it does not tell us however, when those

frequencies occurred[29]. On the other hand the STFT shifts a window across the data and calculates a

Fourier transform for each new window position[30]. This enable the observer to identify a window interval

for when the frequency occurred. An STFT based algorithm for wheezing detection is showed in Fig.3.6 and

is based in [24]. First the Short Time Fourier Transform is calculated using a sliding 256 sample Haming

window, with an overlap of 128 samples in the time domain. See Fig.3.6b. Second the trend of the frequency

content is found and subtracted from the original to remove the underlying basic breath sound from the total

breath sound. Doing so, large amplitude variations between samples are removed and a much smoother

signal is produced. Fig3.6c . Lastly, peaks are identified and the following criteria is applied:

• The number of peaks coexisting at each time instance should be not greater than four, taking into

account that wheezes usually have no more than three harmonics

• Peaks should have time duration greater than 150 ms

3.5.2 Wheezing detection hardware exploration and verification

The Block diagram for the spectrogram generator is shown in Fig.3.7a. This architecture shares 4 multipli-

ers, (one per FFT butterfly) with three controllers: The FFT core, the Windowing Controller and the PSD

controller. We setup the VE environment for the wheezing detection system as shown in Fig.3.7b. Blue

components in the FVP are completely re-used at the system level from block level. The same applies for

the RTL description. Fully validated RTL descriptions are re-used unaltered from the AVEBoS hardware

library.

For the Spectrogram, we re-use the FFT hardware description as it is. However, based on the FFT original

model, we create a new model that can be added to the AVEBoS library. This model generates the checkers

for the windowing function, FFT and PSD required to generate an spectrogram. It enables three monitors

that we use to check the interface at the windowing controller, the FFT and the PSD. Fig 3.8 shows the

results for the spectrogram for different configurations of the hardware.
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Figure 3.7: Spectrogram accelerator VE for wheezing detection.

3.5.3 AVEBoS vs commercial tools

Verification Languages

There are several verification languages as Specman (e), Open Vera and Proprietary Specification Language

(PSL). These languages and the tool set that goes with it, are intended to facilitate writing test benches,

stimulus, automatic checkers and check coverage. The development of a verification environment using

these tools has three disadvantages when rapid prototyping is required:

• It implies the existence of a verification team that starts to develop the environment as soon as the

architecture is drafted

• It is disconnected and discards the algorithm development, which models the expected results of the

system for a given input.

• It will not be available until later during the development process. Usually when the verification

environment is ready, the RTL is also well advanced.
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Figure 3.8: Spectrogram Results from AVEBoS varying the Sampling Frequency, the FFT length N and the
input data size.

• It is specific for a particular architecture and limits the ability for re-use across design hierarchies and

architectures

Although, AVEBoS does not intend to replace functional pre-silicon verification, this tool:

• Was designed to quickly evaluate whether a Sensor Node SoC supports a particular application re-

quirements during pre-silicon verification at any stage of the development: Architecture definition,

verification, validation. (Application Oriented).

• Generates Expected output, monitors and Functional Models that are Architecture agnostic. Mean-

ing that the verification infrastructure can be re-used across block level, system level and different

architectures with no effort for portability.

• The sample HDL library was designed following the re-use methodology: Abstraction and interface

based design enabling the easy portability of the blocks.
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3.5.4 Contributions

The MATLAB codes used as models for the wheezing detection accelerator, and the audio records used

for testing were provided by Saba Semrani[31] (semrani@ncsu.edu) a graduate student at North Carolina

State University. The Perl Wrapper that enables the communication between MATLAB, the HDL simulator

and the MATLAB API was developed by Qing Qin (qq3za@virginia.edu) an under graduate student at

UVA. I designed AVEBoS architecture, wrote the parameterized verilog, set up the directory structure, and

collaborated in Perl, MATLAB and shell code development, testing and application validation.



Chapter 4

Pulse Oximetry

4.1 Introduction

We present a synthesizable IP block for digital signal processing of Photoplethysmogram (PPG) signals.

This block combines Fast Fourier Transform (FFT) and Inverse FFT (IFFT) to create an ideal filter in the

frequency domain which addresses the necessity of very sharp cut off frequencies for noise removal. We an-

alyze the effect of varying architecture knobs such as Input Data Width (IDW), FFT length N and Sampling

Rate Ts on the application performance, average power consumption and memory requirements. Applica-

tions that rely on the time of occurrence, i.e. the peak positions, are mostly affected by the sampling rate.

On the other hand applications that depend on the feature value itself, i.e. the peak value, are affected by

the number of bits used, IDW, to represent the PPG signal. To address different application needs we create

a fuly parameterizable behavioral description of the system. To accelerate the design process, we use Stan-

dard Cell based Memory (SCM), which typically results on an increment in area and power consumption. To

counteract this effect we combine architectural modifications in the memory banks and memory controllers

to reduce the area to half while keeping the same average power performance. To showcase the IP block

we use a Global Foundries 65 nm library optimized for near threshold operation for synthesys. Simulation

results show an average power consumption of 6.2µW at 166KHz.

41
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4.2 Pulse Oximetry

Pulse oximetry is one of the most popular techniques for physiological data acquisition. A typical PPG

signal, Fig. 4.1a, contains a notable AC component caused by the heartbeat; it also shows a slower wandering

movement due to the respiratory effect, a DC component originated by changes in the skin, and motion

artifacts. Fig. 4.1b shows the Spectral Density (PSD) of the PPG signal, where two peaks can be easily

identified. One peak located at the 0.1 Hz vicinity, corresponds to the Respiratory Rate (RR), and another

one around 1-2 Hz vicinity, that corresponds to the Heart Rate (HR). A bandpass filter is typically used to

extract the components under analysis. However, the main challenge is to obtain a very sharp cutoff filter

able to separate the AC component from the DC component; and more challenging the HR from the RR

while still being able to operate under an ultra low power regime. In this chapter we address the necessity

for a very sharp filter by implementing a programmable FFT based filter, explained in section 4.3

Figure 4.1: PPG Signal. a) Typical raw PPG signal before and after filtering. b) PPG signal spectrum before
and after filtering
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The signal processing requirements for a PPG signal changes according with the operation conditions. i.e.

It is of the best interest of a fitness monitoring device to maximize the use of available energy. On the other

hand, a new-born monitoring system relaxes the constrain in energy availability and emphasizes the need for

improved HR resolution. A system able to meet the high HR resolution might not fit in the ultra low power

regime and vice versa. This, added to the cost of design and verification of nowadays systems, motivates

the re-use methodology we describe in Section 4.4.2. The rest of Chapter 4 is dedicated to explore the effect

of architecture knobs on the application performance. One of the main drawbacks of FFT based algorithms

is the high memory utilization. Section 4.5 describes the post-synthesis simulation results of the IP block

and the optimizations proposed for the SCM to reduce the area occupied by the memory and the power

consumed by idle portions of it.

4.3 Feature Extraction Algorithm

Figure 4.2: PPG Processing algorithm

Fig. 4.2 shows a typical PPG processing data flow. Bandpass filtering helps to remove the baseline wan-

dering, noise and motion artifacts. This, is commonly implemented using Finite Impulse Response (FIR)

and Infinite Impulse Response (IIR) filters. Nakajima [32] used a 1024 taps FIR filter to separate the RR

from the HR information. The FIR filter has low noise suppression performance while IIR filters might

cause system instability. A third filtering method based on the Discrete Cosine Transform (DCT) removes

unwanted frequency ranges of the signal by blocking specific DCT index in the DCT domain. The attrac-

tiveness of this method, Index Block Discrete Cosine Filter Method (IB-DCTFM) [33], resides on the filter

ideal frequency response, which allows for precise selectivity in the frequency content. For this work, we
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use an Index Block FFT Filter Method IB-FFTFM instead of an IB-DCTFM. A DCT based approach, has

one main advantage over the FFT in this case. Due to the real response of the DCT vs. the complex response

of the FFT, the memory required by a DCT is only half of the memory required by a FFT. However, direct

mapping of the DCT to a hardware accelerator results in irregular implementations difficult to scale to higher

order DCTs which compromisses the re-usability of the Block as IP. Besides, for filtering purposes we are

not interested in the analysis of the PPG signal or feature extraction in the frequency domain; but in the

ability to discriminate frequency content precisely which can be achieved with the FFT. Finally, wearable

sensors often benefit from FFT accelerators[1][8].

Fig. 4.1 (below) shows the PPG spectrum after filtering out the DC and RR components. Fig. 4.1 (above)

shows the PPG after filtering whithout wandering or DC component. After filtering, several PPG appli-

cations require feature extraction in the time domain. HR is usually calculated by detecting the Peak’s

positions. RR requires to filter out the HR and noise and valley’s positions detection. The SpO2 requires the

calculation of the AC
DC ratio. To find the AC we calculate the difference between consecutive Peaks and Val-

leys. Also, Pulse Transient Time PTT and Pulse Width Time PWT analysis are used for blood pressure[34],

stress monitoring[35] or apnea studies[36]. For all this, we include a Peak/Valley detection algorithm fol-

lowing the bandpass filter.

4.4 Architecture

Figure 4.3: DSP accelerator Block diagram for pulse oximetry applications.
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Fig. 4.3 shows the block diagram for the PPG digital signal processor. A FFT-IFFT block with length N and

DPW as parameters, constitutes the heart of the system. We implement a hardware efficient FFT engine with

”in-place” reduced addressing logic based on the ideas described on [37]. For this application, we include

six independent memory banks. Four banks each with N
2 rows are used for receiving new data until N

samples for Infra-Red (IR) and Red (R) signals have been completed, and FFT calculation. Two extra banks

allows easy data transfer for IFFT calculation. A Control block is used to multiplex the FFT-IFFT engine

between the two channels. This control, also captures the DC component of the signal for SpO2 calculation

and the filtered version of both PPG signals. To support filter programmability, we include a register based

mask that identifies the blocking indexes described in Section II. The Filtered version of the signal is sent to

a custom Peak/valley Detection accelerator that identifies the Peaks, Peak’s Positions, Valleys, and Valleys

Positions. The outputs of this IP Block can be the FFT of the PPG, the filtered version of the PPG, or the

peak/valley positions.

Fig4.4, shows the data flow through the memory banks for the IP Block with an FFT of length 64. The

events are enumerated at the top and described below:

Figure 4.4: Verilog simulation results for the full datapath

1. Receive N
2 of R (Bank0) and IR (Bank2) samples and keep it in the bank while the window is com-

pleted.

2. Receive N
2 of R (Bank1) and IR(Bank3) samples and keep it in the bank while the window is com-

pleted.

3. FFT calculation for Channel 1 (Bank0-Bank1).
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4. Read the FFT results for Channel 1, block the frequency index to be filtered out and write it in a new

memory location. (Bank4-Bank5)

5. IFFT calculation for Channel 1 (Bank4-Bank5)

6. Read the recovered signal after filtering and pass it trhrough peak/valley detection. The dsp ready

signal identifies when a new peak or valley has been detected.

7. During the same time interval, start FFT calculation for Channel 2.(Bank2-Bank3)

8. Read the FFT results for Channel 2, block the frequency index to be filtered out and write it in a new

memory location. (Bank0-Bank1)

9. IFFT calculation for Channel 2 (Bank0-Bank1)

10. Read the recovered signal after filtering and pass it trhrough peak/valley detection. The dsp ready

signal identifies when a new peak or valley has been detected.

4.4.1 Architecture knobs analyzed for application optimization

Using a Matlab model for HR, RR and AC
DC calculation combined with the parameterizable behavioral HDL

description of the system, we evaluate the following architecture knobs and its impact on the architecture

performance:

• Sampling Rate Ts

• Input Data Width (IDP)

• FFT length N

Sampling Rate

Fig. 4.1b, shows that the PPG spectrum has all the relevant information in the [0-7]Hz frequency range,

thus the minimum sampling rate dictated by Nyquist is 14Hz. However the accuracy of the HR, RR or any

other application that depends of the peak/valley positions depend on the sampling rate Ts used to digitize

the PPG. Each peak position can be detected with a maximum resolution of ±∆Ts/2, as shown in Fig. 4.5a.
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Figure 4.5: a) PPG signal zoom in around the peak showing the HR resolution dependency on the sampling
rate. c) Ratio error varying the number of bits used to represent the PPG signal. b) HR calculated with a
signal sampled at 14Hz. c) HR calculated with a signal sampled at 300 Hz. d) HR Resolution for different
sampling rates. e) Averaged HR resolution for 14Hz and 300 Hz

Thus the HR Resolution is calculated using Eq. 4.1 and is plotted in Fig. 4.5e. The Nyquist sampling rate

results in a poor HR resolution of ±26 bpm while at 300 Hz the resolution is ±1 bpm.

ResolutionHR =
1

(PeakPos2−PeakPos1)±∆Ts
(4.1)

Input Data Width

Although the number of bits used to represent the signal barely affects the HR or RR calculation, it affects

the SpO2 calculation. The theoretical error of the AC
DC ratio is calculated as shown in Eq. 4.2 where ∆NB
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represent the minimum resolution achieved for a particular number of bits (IDW).

ErrorAC/DC =
AC
DC

(
AC

±∆NB
+

DC
±∆NB

)
(4.2)

Fig. 4.5c shows the error for AC
DC when varying the number of bits to represent the signal from 4 to 14. When

using 4 bits the normalized error is rounded to 0.2. When using 14 bits the error is reduced to 1x10−6

FFT length (N) considerations

The FFT size depends on the sampling rate used to acquire the data. The minimum N should include enough

data to detect a minimum of 3 peaks to obtain at least one valid HR and one AC
DC calculation per window.

Fig.4.5e shows the FFT N required for different sampling rates. The optimum sampling rate, depends on the

application requirements. Fig. 4.5c shows the Matlab results of the HR calculated with a PPG sampled at 14

Hz, compared with a PPG signal digitized at 300 Hz, on Fig. 4.5d. The error of ±26bpm is very noticeable

at the lower sampling frequency. However, when post-processing the HR results with a moving average filter

the average HR for both versions are nevertheless very similar, see Fig. 4.5f. In a fitness monitoring device,

for example, there is no advantage on incrementing the sampling rate beyond the Nyquist frequency and a

FFT length of 32Hz might suffice. On the other hand, a system for neo-natal monitoring requires an error of

less than ±5bpm [38] which translates into a minimum fs of 75Hz and a FFT length N of 128.

4.4.2 Parameterizable behavioral description

In order to target different operation scenarios, and reduce the design and functional verification costs,

we developed a parameterized behavioral description of the proposed architecture. Fig.4.6 contrasts the

behavioral simulation results for an architecture set for N=128 compared with an architecture set for N=64.

The more noticeable difference between these two simulations, is the time it takes to first complete the

window, 128 samples vs 64 samples, and then complete the FFT-IFFT calculations for both channels. By

changing a single parameter N, we can generate the behavioral description for a fitness monitor, being its

main requirement ultra low power consumption; or a neo-natal monitoring system where the HR resolution

is more important than the power limitation. Two more parameters can be set and propagated throughout

the architecture: the IDW and Data Path Width according with the expected operation conditions for the IP
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Figure 4.6: Verilog simulation results for a PPG processor with FFT length of 64 compared with a PPG
processor with FFT length of 128. Also, see a physical implementation of a memory bank with clock gating
per row (left) and without clock gating per row (right)

Block and the application requirements.

4.5 Results

As an example, we synthesized the behavioral description to obtain an architecture that supports a sampling

rate between 15 and 40 Hz with a FFT of length N = 64 to obtain a HR error of less than ±10bpm. The logic

receives a 7 bits input to obtain an error in the AC
DC ratio of less than ±0.2. We synthesized this system using

a Global Foundries 65 nm library optimized for nearthreshold operation at 500 mV. Optimizing the memory

deserves special mention since a good portion of the area and the power consumption can be attributed

to this portion of the design. We implement the memory as SCMs because of the reduced design effort,
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Figure 4.7: Current consumption for a memory bank implemented with per-row Clock gate (above) vs
Global clock gate. The numbers on top of the simulated current corresponds to the average power consump-
tion for that period of time in µW .

compared with custom based designs as SRAMS[39]. A typical approach to avoid the clock propagation

to idle registers and reduce the power consumption in the memory is to add per row clock gate logic.

This is effective in reducing the average power consumption at expenses of almost doubling up the area.

Fig. 4.6, compares the size of both implementations after Place & Route. However, a close observation to

the behavioral simulations waveform, Fig 4.4, shows that out of 6 banks only 2 are active simultaneously,

for the majority of the window processing time. Therefore instead of a clock gate per row we implement

a global clock gate strategy. Fig.4.7 compares the current consumed by a memory bank with global vs.

per row clock gating. This approach reduces the the power consumption on the idle banks from 0.6µW to

0.2µW at the expense of increasing the power consumed on the active banks. To gain granularity in the

clock gating approach, we divide each memory bank in sub-banks that can be clock gated independently.

In the simulation results for this example, Fig. 4.8, we show the progressive increment in current when the

clock is activated in a per sub-bank basis up to the point where all the bank is active. (Stage 1). Similarly,

when the full memory bank is idle simulation results shows that the power consumption is reduced to

0.2µW −0.1µW .

Table4.1, compares the average power for the six banks in the system with the average power consumed by a

memory bank following the per row clock gate approach. To complement the global clock gate approach, we

implement a clock gate controller. This block piggy back in the input data counters and the state machines

that multiplex the FFT-IFFT core between the channels to activate the clock enable signals for the memory
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Table 4.1: Power Consumption per block.

banks and sub-banks.

4.6 Conclusion

In this work we present a parameterizable block IP for PPG processing to be optimized according witht

the operation conditions and metrics of interest of the application. An ideal configurable FFT-IFFT based

bandpass filter allow us to effectively extract DC, HR and RR information. We synthesized the system with

an optimized library for near-threshold operation at 500mV, 166KHz to allow ultra low power. We used

SCMs for the FFT’s memory banks. Optimizations in area and power can be achieved by careful analysis

of the system activity. For sections of the memory with low utilization, a global clock gating scheme yields

the same average power consumption than a per row scheme and reduces the area by roughly 50%.
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Figure 4.8: Current Consumption for each component in the data path. The numbers on top of the simulated
current corresponds to the average power consumption for that period of time in µW . Note: There is a
missing part in the current for the controller due to memory issues in the server.



Chapter 5

Conclusions and Future Work

1 trillion nodes on the IoT requires SoCs that are portable, consume power on the order of decades of µW ,

and wirelessly communicates events that are relevant to the user. Technology developments on the area of

energy harvesting and analog and digital subthreshold design have enabled the development of these new

kind of SoCs. However two main areas have not been really explored:

• The elevated NRE costs associated with the increased levels of integration required to develop these

nodes.

• The lack of system level analysis prior to architecture definition taking into account specific applica-

tion requirements.

5.1 NRE Costs

The BSN Team created a ULP wireless SoC with integrated power management, transceiver, sensing inter-

faces, DSP, and flexible clocking. This platform achieved the highest level of integration, including energy

harvesting and a full transceiver, for the lowest power on both versions of the node. Furthermore, it included

flexible sensing interfaces and on-chip processing for a diverse set of target applications.

This thesis in particular addressed the challenge of integration complexity by designing an implementing a

re-use and verification aware methodology for Sensor Nodes:

53
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• We removed the detailed descriptions of inter-block communication by using SystemVerilog inter-

faces.

• We defined lego block abstractions that can be easily replaced for architecture evolution, migration or

modification.

• The combination of the two previous items enable us to :

– Perform architecture evolution, modification or migration by changing only 1% or 2% of the

total HDL description vs an optimistic %32.

– Start early system level integration with abstract components that don’t need to be fully devel-

oped or even defined. This methodology reduces the risk of blocks and interfaces that are still

changing delaying or affecting the system level integration evolution.

– Facilitates the verification process by creating an homogeneous, standardized architecture.

Figure 5.1: ASIC development timeline example. In gray the part of the development flow that this work
addresses by designing re-use and abstraction methodologies. [40]
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5.2 System Level Analysis from the Application perspective

Several techniques as Sub-threshold design, Clock gating, Power Gating, and DSP accelerators can be used

for minimizing the power consumption of a wireless sensor node. However, the efficacy of all these tech-

niques depend on the activity factor dictated by the application. Very little work has been done to address

the evaluation of these SoCs from the applications perspective. We created a tool that enables the evalua-

tion/exploration of a platform at the system level by re-using the algorithm codes for verification/hardware

architecture exploration.

Beyond the verification of individual blocks, The major potential for AVEBoS is that it enables system

level evaluation/exploration of applications with no extra engineering cost. We take advantage of the codes

already developed during algorithm exploration. Furthermore, we use languages and tools that are already

widely used by the designer and the algorithm developer, thus no extra difficulty is inserted to the process.

Finally this application aware, architecture exploration is useful for an already existing platform (Algorithm

validation, System Verification) or during the architecture definition stage.

5.2.1 Final Remarks

This work addresses for the first time the evaluation and exploration of Wireless Sensor Nodes from a system

level perspective. We take the application requirements as the main driver to make informed decissions about

the architecture in sub-blocks that can be incorporated in larger systems. With this methodology, we shift

the view of a single SoC, to a family of SoCs able to adapt to different applications or operation conditions

spreading the development and verification costs, see Fig.5.1, among different products.

5.2.2 Future Work

The application to be supported in a Wireless Sensor Node, should make a great impact during the archi-

tecture design stage. Although, in this work we start closing the gap between application and system level

design, this area is just starting to be explored and there is still work to do in the following fronts:

• Integration Methodology:
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– There is still a need for rapid energy and power consumption estimations at the system level.

– The pulseoximetry and the wheezing detection algorithm was not taped-out. Combining the

results of each individual exploration as an application aware single accelerator that handles

memory resources, power gating and clock-gating according the individual needs of the appli-

cation is yet to be done.

– The proposed concept of an architecture that is bus agnostic was show cased using toy models.

The SoC described in Section 2.1 was designed with this idea in mind. However, this idea has

yet to be explored at the full system level.

• AVEBoS:

– Work in the AVEBoS tool flow to enable multivariable exploration.

– AVEBoS architecture was designed to be modular. This modularity was thought to enable mod-

els from other sources as C models, and different HDL simulators. However this feature was

never tested or explored.

– AVEBoS handles a directory structure that enables true HDL re-usability. It generates a list of

directories and files required to include a block as part of an architecture for the HDL simulator.

This functionality can be expanded to automatically generate the list of files and directories re-

quired for the Synthesis flow. This reduce the potential for human errors when using a distributed

RTL library as the proposed as part of AVEBoS.

– Given the modularity and abstraction of the blocks and interfaces of the proposed approach,

exploration towards automatic generation of sensor nodes seems feasible by using AVEBoS

awareness of the re-usable IP properties.
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