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Abstract

Developing complex software systems is costly, time-consuming and error-prone. Model-

driven development (MDD) promises to improve software productivity, timeliness, quality

and cost through the transformation of abstract application models to code-level imple-

mentations. However, it remains unreasonably difficult to build the modeling languages

and translators required for software synthesis. This difficulty, in turns, limits the appli-

cability of MDD, and makes it hard to achieve reliability in MDD tools. This dissertation

research seeks to reduce the cost, broaden the applicability, and increase the quality of

model-driven development systems by embedding modeling languages within established

formal languages and by using the analyzers provided with such languages for synthesis

purposes to reduce the need for hand coding of translators. This dissertation, in particular,

explores the proposed approach using relational logic as expressed in Alloy as the general

specification language, and the Alloy Analyzer as the general-purpose analyzer. Synthe-

sis is thus driven by finite-domain constraint satisfaction. One important aspect of this

work is its focus on partial specifications of particular aspects of the system, such as ap-

plication architectures and target platforms, and synthesis of partial code bases from such

specifications. Contributions of this work include novel insights, methods and tools for (1)

synthesizing architectural models from abstract application models; (2) synthesizing partial,

platform-specific application frameworks from application architectures; and (3) synthesiz-

ing object-relational mapping tradeoff spaces and database schemas for database-backed

object-oriented applications.
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Chapter 1

Introduction

Developing complex software systems is costly, time-consuming, and error-prone, in large

part due to wide conceptual gaps between application descriptions and code implementation

spaces [49]. This difficulty has led to the emergence of model-driven development (MDD),

the main goal of which is to span these gaps through the transformation of abstract, domain-

oriented application models to code-level implementations. Model-driven development is

a software development paradigm centered around the extensive use of abstract models

and top-down synthesis of implementations from such models using model transformation

and code generation techniques [99]. MDD holds out the promise of improved software

productivity, timeliness, quality and cost [49]. There are numerous success stories for

model driven development [14, 28,51,77]. It is, for example, being used in the automotive,

aerospace, electronic and communications industries.

To enable the use of a MDD approach, engineers first develop a domain-specific lan-

guage (DSL). These languages are typically specified in terms of metamodeling languages

provided by MDD frameworks. Taking a DSL specification as input, some MDD frameworks

automatically produce a model-editor for the DSL under consideration [31]. Software en-

gineers then implement model transformations for each DSL. Automated code generation

in model-driven development is achieved through such model transformations. A model

transformation maps input models in the DSL to outputs in a target language. Domain

experts model the system in the DSL, which is then automatically transformed to the target

1
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language. By shifting the focus of development from source code to model abstractions,

MDD aims to reduce development cost, improve productivity and quality, and facilitate the

engineering of complex systems.

1.1 Problem

The problems that this dissertation addresses are threefold: First, in the current state of

the art in MDD, it remains unreasonably difficult to build modeling languages and transla-

tors that are needed for software synthesis [112]. Designing language syntax and semantics

for DSLs that support modeling of complete applications in a particular domain is diffi-

cult [42]. Mernik et al. say, “DSL development is hard, requiring both domain knowledge

and language development expertise [90]”. Moreover, model transformers are complex, and

thus difficult to develop and maintain [42]. It is widely recognized that developing code

generation model interpreters is a very difficult problem [42, 97]. Second, the commitment

to heavyweight modeling languages limits the applicability of model driven development.

Ambler says, “Although the [Model Driven Architecture] MDA1 is a very wonderful idea I

suspect that it will succeed in only a very small percentage of organizations [100].” This

commitment also drives up the cost of language and translator design and implementa-

tion. Third, complexity of modeling languages and transformation systems increases the

difficulty of achieving reliability in MDD tools. Among other researchers, Karsai and his

colleagues say, “Writing translators by hand. . . is the most time consuming and error prone

phase [67]”.

1.2 Goals

The long term goal of my research is to reduce the cost, broaden the applicability, and

increase the quality of model-driven development systems. The specific goal of this research

1Model Driven Architecture (MDA) is a registered trademark of the Object Management Group (OMG)
for model driven development.
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is to show that relational logic specification languages and formal analyzers that accompany

them provide a basis for a style of specification-driven model driven development that has

significant and demonstrable potential to address these problems.

This research aims to:

• reduce the costs of developing modeling languages by enabling rapid and declarative

development of narrow DSLs and platform models;

• reduce the costs of developing translators by reducing the need for traditional hand

coding of translators using specification-driven transformation systems;

• increase the reliability of MDD by enabling formal analysis and verification of mapping

specifications;

• broaden the applicability of MDD by facilitating lightweight development and appli-

cation of MDD tools and methods within larger software development processes.

1.3 Current state of the art

There are related efforts that have made some progress in addressing the problems identified

in model driven software development. This section describes some notable attempts in this

area, and discusses shortcomings in the current state of the art.

Edwards and Medvidovic [42] developed an MDD framework, called eXtensible Tool-

chain for Evaluation of Architectural Models (XTEAM), to reduce the burden of man-

ually developing domain-specific analyzers and code generators for each target platform.

Their approach is based on separating domain-independent model interpretation logic from

domain-specific model interpretation logic, where the former is modularized in an exten-

sible transformation tool, called a model interpreter framework (MIF). For example, for

software architecture synthesis and analysis, the authors developed a generic metamodeling

language, called abstract component technology (ACT). Upon ACT, they then constructed

a model interpreter framework that provides an extensible infrastructure for implementing
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architectural analysis and synthesis. Developers can further extend the MIF to support

synthesis for particular architecture description languages (ADLs) and target platforms.

This work shows that the burden of manual development of model interpreters can be

mitigated to an extent through the design of extensible transformation tools. But it also has

some shortcomings. First, each extensible transformation tool is specialized for a particular

domain. Producing such an extensible transformer for each particular domain is costly.

For example, while the MIF the authors developed for software architecture analysis and

synthesis is independent of any particular ADL and target platform, it is specialized for the

domain of software architecture. Second, manually programming particular transformation

components that extend MIFs is still required.

Along the same line, Santos et al. [97] proposed an aspect-oriented approach, imple-

mented in a prototype tool called ALFAMA. Using ALFAMA, instead of defining the

domain-specific language and the related code generator for each platform, developers

extend the platform with an additional aspect-oriented modeling layer, called a domain

specific modeling (DSM) layer. The aim of this aspectual layer is to encode both the spe-

cialization aspects that modularize platform extension points as well as the meta-model of

the custom language specialized for the given platform. This additional layer records the

information required to generate platform- and application-specific code from application

models.

Given these DSM layers as input, ALFAMA then automatically extracts domain spe-

cific language meta-models and can generate application-specific code for instances of those

meta-models. However, these productivity gains entail a significant additional effort in-

volved in the development of DSM layers expressed in an aspect-oriented programming

language. Moreover, the domain specific languages extracted from such layers are tightly

coupled with the given platform rather than just being designed based on the application

domain.

Malavolta et al. [78] proposed a model-driven framework, called DUALLy, that auto-

mates generation of model transformations among instances of various DSLs. The basic
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idea is that they defined a minimal but extensible, set of core architectural concepts in a

meta-model called A0. The A0 is designated as a bridge among various custom languages.

For each custom language, DUALLy users then need to specify mappings, called semantic

links, between the metamodel of the given custom language and A0. As such, code genera-

tion model interpreters developed for any particular custom language is then accessible in

other domain specific languages. DUALLy thus relieves the burden of developing transfor-

mation systems for each custom language through interoperability among domain specific

architecture languages. However, two steps transformations—from source to A0 and then

to the target for which code generation is available—complicates the transformation process

which in turn reduces the traceability from implementation artifacts to input models.

1.4 Approach

To achieve the aforementioned goals, this dissertation introduces an approach, called au-

tomated synthesis from formal partial abstractions. This approach combines four key el-

ements. First, it uses general-purpose, semantically well defined relational specification

languages for modeling, rather than ad hoc or semantically unclear languages, e.g., UML

or many of domain-specific languages. Second, it uses general-purpose relational logic model

finders for synthesis, rather than custom-built model transformers. While this approach

can, in principal, accommodate a range of relational logic formalisms and tools, in this

dissertation, I have used Alloy as a specification language [64], and the the Alloy Analyzer

as a model finder. Third, the approach targets selected aspects of a system for modeling

and synthesis, rather than trying to impose a top-down MDD approach to whole system

development. For example, instead of generating complete enterprise system applications,

using this approach, one can develop partial modeling and synthesis capabilities that target

only synthesis of the database schema elements of a system.

Figure 1.1 represents a high-level view of the approach. One starts by specifying source

and target languages in relational logic. These specifications define element types, and how
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Figure 1.1: High-level view of the approach.

they are related and constrained to constitute valid expressions in these respective domains.

This task is carried out by the MDD system designers. Application engineers then use the

system by defining models in a given source language.

For example, consider an architectural style [102] as a source domain specific language,

where an architectural model is defined as an instance model of architectural style specifi-

cations. The user then expresses mapping rules as additional predicates in relational logic.

The mapping rules define the relationships required to hold between elements of the source

domain and those of the target domain.

Given source and target languages specifications, mapping rules, and an application

model as inputs, a relational logic model finder then automatically transforms the given

model instance into one (or more) target model instance(s). The transformation process

involves the synthesis of solutions that satisfy the constraints of source and target lan-

guages specifications, the particular model, as well as mapping constraints. The generated

models are relational logic structures that encode the desired solutions. These models are

then unparsed into a desirable form, such as human-readable architecture descriptions or

executable code.

I believe that this approach has significant potential to achieve the aforementioned goals

for the following reasons. First, relational logic is a highly expressive notation, particularly
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1 abstract sig Class {
2 a t t rS e t : set Attr ibute ,
3 id : set Attr ibute ,
4 parent : l one Class ,
5 i sAbs t r a c t : Bool
6 }

Listing 1.1: Part of the formal specification of a language in Alloy.

for specifying structural properties of systems [64], and it has been shown that Alloy is

appropriate for formally defining domain specific languages [69]. It is also well suited to

formalizing mapping rules between such domains. Altogether, highly expressive relational

logic enables quick development of declarative specifications of MDD concepts. Moreover,

formalizing these concepts using an analyzable specification language enables automatic

synthesis of resulting models as satisfying solutions, without having to write any code

other than specifications.

Second, the automatic formal analyzer facilitates the process of verifying the correct-

ness of specifications and mapping rules, which in turn, makes model driven software de-

velopment more reliable. By expressing essential properties intended to follow from the

specifications and mapping rules, one can use automated analysis to check them. In my

own experience, I have conducted formal validation of object-relational mapping rules in

terms of developing a set of assertions.

Finally, abstracting from application details and focusing on particular aspects of the

system relieves the synthesizer of responsibility for designing full-spectrum modeling lan-

guages and transformation systems, while facilitating use of formal analyzers for partial

synthesis. One can more easily develop little languages for model-driven development and

associated transformation systems. This, in turn, broadens the applicability of model-driven

development to many aspects of software development.

1.5 Example

To make my approach clearer, I present an illustrative example. The example is to synthe-

size relational schema for an application object model.
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1 ( c . i sAbs t r a c t=No)&&(c . ˆ parent != none) =>{
2 a l l a : Att r ibute | a in c . ˆ parent . a t t r S e t =>{
3 one f : F i e ld | f . fA s s o c i a t e=a &&
4 f in ( c . ˜ tAs so c i a t e . f i e l d s ) }
5 }

Listing 1.2: An example of a mapping rule specified in the Alloy language

The first step is to formally specify source and target languages. In this case, we need

languages for expressing source object models and target relational schemas, in a manner

that also allows for the expression of mapping rules and efficient model finding.

Listing 1.1 partially represents the formal specification of a source language in Alloy.

This code snippet defines the Class construct as a signature in the Alloy language. Signature

is a fundamental construct in Alloy, and represents the basic types of elements and the

relationships between them. Each Class signature has a set of fields: attrSet, id, parent

and isAbstract. The attrSet field in each Class signature specifies the set of attributes of

the class. The id field represents the identifier of the class. The inheritance relationship is

then represented by the parent relation. Finally, the isAbstract field denotes whether the

class under consideration is abstract or not.

Figure 1.2: A generated instance of an object-

relational mapping.

After specifying the abstractions in-

volved in the source and destination mod-

els, the next step is to express mapping

rules as additional predicates that relate el-

ements of the source models to the con-

structs in the destination. In the case of

this example, we can use object-relational

mapping (ORM) strategies [32,68] as map-

ping rules and formalize them using rela-

tional logic. Without going into the de-

tails of these ORM strategies, which are dis-

cussed in Chapter 5, Listing 1.2 represents an example of a mapping rule specified in the

Alloy language. tAssociate is a relation from a table to its associated classes, and fAssociate
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is a relation from a field in the relational schema to its associated construct in the object

model. The mapping expression thus states that the table encompasses relational fields

corresponding to all inherited attributes of the given class, should the class not be abstract.

Given the specifications and mapping constraints along with a formal specification of the

application object model, the Alloy Analyzer computes a set of relational database schemas

and associated object-relational mappings. Figure 1.2 illustrates a generated instance of

an object-relational mapping, in which the object model is represented by two tables in

the relational database. Having computed satisfying solutions, we can then unparse these

solutions from low-level Alloy objects to SQL counterparts.

1.6 Hypotheses

The main claim of this thesis is that the approach I have described promises to reduce

the costs of building narrowly targeted model-driven development languages and systems,

to provide a formal basis for quality assurance, and to broaden the applicability of model

driven development methods. More specifically, this dissertation makes the following claims

for this approach:

• the approach substantially eliminates the need for traditional hand coding of trans-

lators, replacing traditional coding with specification-driven synthesis;

• the approach supports the reuse of formal specifications of source and target languages

as well as mapping rules between them;

• the approach can be used to synthesize a variety of artifacts, ranging from code

targeted widely-used industrial software platforms to architectural models;

• the approach enables the application of lightweight formal validation techniques [64]

during the development of MDD systems;

• the approach can be employed at various stages of the software development lifecycle.
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1.7 Evaluation

The overall approach I have taken to evaluate the claims of this dissertation is based on

experimental systems methods. I do not believe it is possible to assess the potential of

the proposed approach analytically. Rather, experience applying it to, and assessing it in

the context of a diversity of applications is needed. To test my claims, I have selected

three distinctly different applications, developed MDD infrastructure for each of them,

and assessed the results in several key dimensions, including its potential to support the

reuse of formal specifications of MDD concepts—source and target languages as well as

mapping rules—to synthesize a variety of software artifacts, to formally validate correctness

of mapping rules, and in reducing the need for traditional hand coding of translators.

The first application is the mapping of high-level application models into style-specific

application architectures. The second is the mapping of application architectures into

platform-specific code frameworks, and the third is the synthesis of object-relational map-

ping (ORM) tradeoff spaces for object-oriented application architectures. For each of these

problems, I design and conduct a separate experimental system, collect the results of these

experiments, and interpret the resulting data in relation to the hypotheses. Figure 1.3

shows three high-level research components of this dissertation.

1.7.1 Synthesizing architectural models from abstract application models

The first experiment with my approach focuses on formal synthesis of software architec-

tures. Today, the success of architecture development depends heavily on the experience

of human architects, and this manual process is unreliable, costly and labor-intensive. As

our understanding of architectures grows, we can systematize and eventually formalize and

automate synthesis of architectures. Architectural styles [102] are the results of earlier

efforts to systematize successful architectures in terms of constraints on architectural ele-

ments and their patterns of composition. I develop a formally-precise, automated technique,

called Monarch [19], for mapping application models to software architectures in selected
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Figure 1.3: Three components of the thesis research

architectural styles.

There is a fundamental separation of concerns underlying this approach: given an ap-

plication model that expresses abstract application structure independent of architectural

style, we can choose a compatible architectural style and then map the application model

to architectural models in this style. I formulate the mapping problem as one of finding sat-

isfying solutions to a specification that conjoins an application model of a given application

type—a formal specification of a family of application—with an architectural style speci-

fication, and with rules for mapping application models of the given type to architectural

models in the given style. Precisely, four pieces of formal specifications are conjoined in the

process of mapping an application model to architectural models in a given style: (1) an

application type, in which the application model is defined; (2) an application model; (3) an

architectural style specification; and (4) mapping predicates that specify the relationships

required to hold between an application of the given type and an architecture in the given
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style. A formal analyzer then computes satisfying solutions to the conjoined specification,

yielding the synthesized architectures.

1.7.2 Synthesizing code frameworks from application architectures

The second experiment with my approach focuses on architecture-driven development of

applications on software platforms. In this dissertation, I use the term ‘platform’ to broadly

refer to middleware and software frameworks. Examples include the Restlet [7] framework

for implementing RESTful web applications, the HornetQ [3] middleware that supports

reliable distributed messaging, and the CouchDB [2] for data persistence. Developing ap-

plications that use such complex platforms is hard and error-prone. I develop a declarative

technique, called Pol [21], for constraint-based synthesis of partial code frameworks without

the need for hand-coded transformation systems. Rather, synthesis is driven by formal, par-

tial specifications of target platforms and application architectures, and by code fragments

encoding platform usage patterns.

Using Pol, one specifies both application architecture and target platform models in

a relational logic specification language. The user then expresses mapping rules from ar-

chitectural elements to platforms constructs as additional predicates. The approach then

involves the synthesis of a platform-specific implementation model that satisfies the con-

straints of both style and platforms specifications, and that does so in a particular manner

described by additional mapping constraints. The next step is to map such a formally

synthesized implementation model to code. Code is synthesized based on the matching of

design fragments, which are platform usage code patterns, to elements of the implementa-

tion model. Binding elements that relate code patterns to implementation model elements

are specified declaratively in a relational specification language, which in turn enables the

use of a formal analyzer to automate the binding process.
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1.7.3 Synthesizing ORM tradeoff spaces from object-oriented architec-

tures

The third experiment of my research focuses on effective persistence layers for object-

oriented application architectures. Developing object-relational (OR) mappings that

achieve desirable quality attributes for object-oriented applications is difficult, tedious,

and costly [95]. While a wealth of research has been performed [32, 63, 68] on bridging ap-

plication architecture and databases to address the object-relational impedance mismatch

problem, little has been done on automated support for derivation of OR mapping spec-

ifications. I develop a novel technique for exhaustive, formal synthesis of large spaces of

such mappings, and classifying individual mappings in these spaces into multidimensional

quality equivalence classes.

The basic idea is to formalize object-relational mapping (ORM) strategies using re-

lational logic. These mapping strategies are previously informally defined in the litera-

ture [32, 68, 95]. This formal definition of ORM strategies enables the use of a relational

model finder to generate space of possible mappings for each application object model. The

approach takes as inputs a formal specification of an object model and optional class-specific

mapping strategies for those classes that the user wants mapped in a specific manner. Em-

ploying a constraint-solving technique, it then generates the space of possible mapping

candidates subject to the user specified constraints. It uses six metrics for each candidate,

and classifies results into quality equivalence classes. Given that quality characteristics

are usually conflicting, there is generally no single optimum solution but there are several

pareto-optimal choices representing best trade-offs. The approach implementation presents

pareto-optimal solutions to the user along with the measures of its quality attributes. The

user then selects one of these candidates according to his or her tradeoff preferences.
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1.8 Contributions

The overall contribution of this work is an approach to addressing fundamental problems in

the current state of the art in model driven development, including its cost, reliability, and

breadth of applicability. In more detail, this work makes several component contributions.

The first contribution of this research is a novel approach to enable rapid and reliable

model-driven software development by substantially eliminating the need for traditional

hand coding of transformation systems, using relational logic model finders driven by par-

tial formal specifications as an alternative mechanism. More precisely, this dissertation

demonstrates that analyzable formal specification languages can be leveraged for encoding

general MDD abstractions, which in turn admits the use of constraint solvers for model

synthesis. Validation to date flows from experience of applying these ideas in three key di-

mensions of software synthesis: synthesizing architectural models, synthesizing partial code

frameworks, and synthesizing object-relational mapping tradeoff spaces for database-centric

applications.

Second, this research work, and particularly the first experiment, contributes a formally

precise approach to separate architectural style design decisions from application-specific

decisions in a way that supports formal refinement of application models into software

architecture in light of separate choices of architectural style. I developed the concepts of

application type and architectural map as key constructs needed, in addition to that of

architectural style, to achieve such a separation of concerns.

Third, the work on specification-driven synthesis of architectural code frameworks con-

tributes an evolutionary development approach combining specification-driven synthesis of

architectural code frameworks for multi-platform based applications and manual extension

of these frameworks to complete applications. This work leads to the notion that future

developers might work with hybrid code bases comprising both traditional source code as

well as formal models and code that is synthesized from them, evolving in ways that include

ongoing refactoring between imperative code and declarative specifications.
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Finally, the research work on synthesis of tradeoff space for OR mappings, backed

with formally precise definition of object-relational mapping strategies, contributes a novel

approach that aims to deliver the quality of expert-hand-crafted mappings and the pro-

ductivity benefits of automated techniques. This work, among other things, contributes a

novel formal technique to search-based software engineering (SBSE) [58]. Success in apply-

ing such a formally-specified tradeoff analysis technique, can open a new path to applying

formal SBSE in other disciplines.

1.9 Outline

The rest of this dissertation is organized as follows: Chapter 2 presents the background of

this work and puts it in context with related efforts. Chapters 3–5 present the three main

experiments I have conducted. Chapter 3 focuses on applying a formally precise approach

into an automated development of architectural models from abstract application models.

Chapter 4 discusses synthesizing partial code frameworks from application architectures.

Specifically, it illustrates that with modest and principled development of code fragments

capturing idiosyncratic use of given platforms in given applications, the proposed approach

can map architectural descriptions to object-oriented application frameworks that use a

range of modern software platforms and standards. Chapter 5 focuses on formal synthesis of

object-relational mapping tradeoff spaces for object-oriented application architectures. This

chapter discusses how this form of formal synthesis of tradeoff spaces can create valuable

opportunities for novel forms of trade space analysis. Chapter 6 evaluates this work as a

whole, and discusses its research impact, novelty, and shortcomings. Chapter 7 discusses

potential directions for future work, and introduces the notion of bottom-up model-driven

development towards the possibility of a re-conception of model-driven engineering. Finally,

Chapter 8 concludes this dissertation.





Chapter 2

Background and Related Work

In this chapter, I first discuss background and research efforts related to using constraint

solvers for code synthesis. I then present work that is related to the application of my

synthesis approach in three particular domains aforementioned in Chapter 1. This includes

work on (1) separation of application and architectural style concerns, (2) formalization of

architectural styles, (3) filling the gap between software architecture and implementation,

(4) software platforms, (5) partial code synthesis, (6) object relational mappings and (7)

derivation of database-centric implementations from formal specifications.

2.1 Constraint Solving for Code Synthesis

Constraint solving for code synthesis is an emerging class of techniques aimed at reducing

the code synthesis problem to that of solving a logical formula by means of an off-the-shelf

constraint solver, such as a SAT or SMT Solver.

Sketeching [13] is a synthesis technique in which programmers partially define the control

structure of the program with holes, leaving the details unspecified. This technique uses an

unoptimized program as correctness specification. Given these partial programs along with

correctness specification as inputs, a synthesizer—developed upon a SAT-based constraint

solver—is then used to complete the low-level details to complete the sketch by ensuring

that no assertions are violated for any inputs. This work shares with mine the common

17
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insight on both using partial models and synthesis based on constraint solving. However,

my work focuses on automating mapping from practically meaningful abstract application

models to useful, platform-specific implementations, as is done in MDD.

Along the same line, Srivastava et al. [104] developed a proof-theoretic synthesis, in

which the user provides the relation between inputs and outputs of a program in the form of

logical specifications, specifications of the program control structure as a looping template,

a set of program expressions, and allowed stack space for the program to be synthesized. It

then generates a constraint system such that solutions to that set of constraints lead to the

specified program. They have shown feasibility of their approach by synthesizing program

implementations for several algorithms form logical specifications.

While these research efforts mainly focus on low-level details of programs, this disser-

tation, by contrast, focuses on the end-to-end transformation as is done in model-driven

development. Specifically, this work uses analyzable formal specification languages for

encoding general MDE abstractions, which in turn enables utilizing constraint solvers to

provide state-of-the-art formal methods for model synthesis. It thus relieves the tedium

and errors associated with manually developing transformation systems.

2.2 Separation of Application and Architectural Style Con-

cerns

Researchers and practitioners have long separated application descriptions from choices

of architectural form. Parnas’s 1972 paper make this distinction [92], showing how one

application, key word in context (KWIC), could be mapped to two distinct architectures:

one based on a functional decomposition and one on information hiding. In analogous

work published in 2009, Taylor, et al. [107] described a lunar landing control system and

showed how it could be realized in a wide variety of architectural styles. In many research

efforts (e.g. [52, 55, 94, 102]) I found the same basic schema: an application is described,

often informally; a choice of architectural style is made; an architecture consistent with the
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style is exhibited, and relative costs and benefits of the results are compared in selected

dimensions. The problem is that the mapping process has remained implicit, informal, and

not itself subject to rigorous investigation or explicit representation and analysis. In most

work to date, the focus is on ex post analysis of the relevant properties of the resulting

architectures (e.g., performance). Key application properties are inadequately addressed

until it is too late. One of the aims of the work presented here is to move consideration

of all essential application properties to the application description level, and to precisely

determine a priori the checkable conditions under which particular architectural mappings

are allowed. This change in perspective is significant.

2.3 Formalization of Architectural Styles

The notion of architectural styles has been present since the identification of software ar-

chitecture as a discipline within software engineering [94,102].

A variety of approaches have been proposed to model and analyze architectural styles.

In this context, Alloy has been applied by numerous researchers to formal work in soft-

ware architecture [57,71,111,114]. Among others, Wong et al. [114] proposed an approach

based on the Alloy language for modeling and verification of complex systems that exploit

multi-style structures. Warren et al. [111] similarly proposed an approach to specify an

intended configuration using Alloy in order to check consistency with structural architec-

tural constraints before performing an architectural evolution. My work differs in its focus

on separating application description from style choices. Furthermore, I use Alloy not only

to check the consistency of a given description against the rules of a style, but also to

synthesize spaces of architectural models consistent with given styles.

The idea that a platform induces an architectural style, and that systems using a plat-

form are required to conform to those styles, was first considered by Di Nitto and Rosen-

blum [91], and then by others [25, 62, 103, 105]. My work maintains a separation between

architectural styles and platform constraints, while connecting them through implementa-
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tion mappings.

Along the same line, Sousa and Garlan [103], using Wright, modeled structural and be-

havioral constraints imposed by the Enterprise JavaBeans framework. Hou and Hoover [62]

also proposed a specification language for framework constraints (SCL) that provides frame-

work developers with means to define the structural constraints for using a framework, and

to check the compliance of framework instantiations with respect to framework constraints.

These approaches use formal modeling to detect architectural mismatch. My approach

prevents mismatches from arising in synthesized code.

2.4 Architecture–Implementation Mappings

A long line of research has focused on filling the gap between software architecture and

implementation. ArchJava [10] and Archface [109] are among notable attempts in this con-

text. ArchJava provides capabilities of architecture description languages within Java pro-

gramming language. Archface, by leveraging implementation-level concepts borrowed from

aspect-oriented programming [70], similarly provides a means to describe and enforce com-

ponent interactions. However, these research efforts do not explicitly support architectural

styles or application synthesis. Moreover, my work goes beyond these approaches by sep-

arating not only architectural details from implementation but also application properties

from architectural choices, and then spanning the gaps by means of automated declarative

mapping specifications and automated solvers.

Medvidovic et al. [86] focused on relating the modeling facilities of architectures and

the implementation abilities of middleware platforms, and proposed an approach for using

middleware to implement architectural connectors. Malek et al. [81] extended this work

by proposing that using application frameworks supporting architectural styles is a crucial

approach to bridging the gap between architecture description and implementation. They

suggested that the lack of support by traditional middleware platforms for architectural

abstractions leads to uncertainty about the consistency of implemented systems with their
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software architectures, making such traditional platforms a poor fit to architecture-driven

development. This dissertation presents an architecture-driven approach to improve frame-

work usability and to reduce architectural drift by explicit definition and automation of

architecture-to-platform mappings.

2.5 Software Platforms

During the past several years, a considerable number of approaches have been proposed to

improve usability of software platforms. These approaches fall into two main categories:

pattern-oriented techniques and formal approaches. The first one focuses on using patterns

as a way of documenting conventional solutions to how applications can use platform hot-

spots [46,59]. The idea of documenting software platforms as patterns is first introduced by

Ralph Johnson [65]. While pattern-oriented techniques are not aimed at documenting all

possible uses of platforms, they are targeted at reducing the burden of platform instantiation

activities by recording selected well-known usage examples in terms of platform usage code

patterns.

The second category encompasses work on formal specification of the information needed

by platform users, including what is provided by a platform and what is required to use

it, in a way that enables consistency analysis of platform instances. Although formal

verification of platform-based applications has a long tradition, automated support for

the derivation of platform instances has received little attention [62,103]. This dissertation

presents an approach that leverages the substantial advancements in both categories, design

fragments [46] to record platform usage code patterns and logical representation of platforms

as well as architecture-implementation mappings, to substantially automate the synthesis

of platform-specific code implementations.



Chapter 2. Background and Related Work 22

2.6 Partial Code Synthesis

Recent research efforts [21, 36, 115] recognize the potential benefits of the emerging class

of partial code synthesis in different domains, where partial models generate partial code

which are then combined with hand-written code to constitute the application. Among

others, recent work of Zheng and Taylor [115] on 1.x-way mapping shares our commitment

to partial synthesis from architectural models. Their work differs in supporting synthesis

from both structural and behavioral specifications, whereas to date my work has focused on

structural models. They also emphasize a deep separation model that puts synthesized code

in classes separate from hand-crafted code. Zheng and Taylor also emphasize incremental

regeneration of code from changes to architectural models, and automated notification of

developers when code changes are needed.

By contrast, my work leverages formal methods in a way that they do not attempt. My

work avoids the need for any hand-crafted synthesizer, and focuses on synthesizing code

targeting complex modern application platforms. These two bodies of work appear to be

complementary. This dissertation also suggests the insight that partial synthesis techniques

can provide a way of addressing the learning challenge that developers face when attempting

to realize the MDD [11].

2.7 Object-Relational Mapping

A large body of work has focused on object-relational mapping strategies and their impacts

to address the impedance mismatch problem [32, 63, 68, 95]. Among others, Philippi [95]

categorized the mapping strategies in a set of pre-defined quality trade-off levels, which are

used to develop a model driven approach for the generation of OR mappings. Cabibbo and

Carosi [32] also discussed more complex mapping strategies for inheritance hierarchies, in

which the various strategies can be applied independently to different parts of a multi-level

hierarchy. I propose a novel approach in this area by formalizing ORM strategies previously

informally described in some of these research efforts, and thereby automating generation
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of OR mappings for each application object model.

Drago et al. [40] also considered OR mapping strategy as one of the variation points

in their work on feedback provisioning. They extended the QVT-relations language with

annotations for describing design variation points, and provided a feedback-driven back-

tracking capability to enable engineers to explore the design space. While this work is

concerned with the performance implications of choices of per-inheritance-hierarchy OR

mapping strategies, it does not really attack the problem that I am addressing, namely

the automated and exhaustive synthesis of the equivalence classes of mixed OR mapping

specifications.

2.8 Deriving Database-centric Implementations from Formal

Specifications

Krishnamurthi et al. [74] proposed an approach to refine Alloy specifications into

PLT Scheme implementations with special focus on persistent databases. Cunha and

Pacheco [35] are similarly focused on translating a subset of Alloy into the correspond-

ing relational database operations. These research efforts share with mine an emphasis

on using formal methods. However, my work differs in its focus on separating application

description from other independent design decisions, such as choices of OR mapping strate-

gies. Furthermore, I use Alloy not only to specify the object model, but also to model the

spaces of OR mappings consistent with both a given object model and a choice of mapping

strategy, and to automate the mapping process.





Chapter 3

Synthesizing Architectural Models from Abstract

Application Models

In this chapter, I present Monarch. This is one of the three experiments the I have con-

ducted in the context of this dissertation. The specific aim of this system is to automate

the costly and unreliable process of refining abstract application models into software ar-

chitectures in selected architectural styles. To this end, I develop a formally precise and

automated approach for synthesis of architectural models from formal specification of ap-

plication models and choices of architectural style. This work introduces the application

type—a formal specification of a family of application—as a source modeling language,

and uses style specifications as target languages. This work, among other things, provides

evidence in support of reducing the costs of developing modeling languages. It supports

rapid and declarative development of narrowly targeted application types. It enables the

reuse of formal specifications of target domain specifications, including previously published

specifications of architectural styles as well as mapping rules. In support of the claim of

broadening the applicability of MDD in various stages of the software development lifecycle,

this work demonstrates a model-driven approach for development of style-specific software

architectures from high-level application structures. Finally, this work incorporates benefits

of formal specifications of architectural styles to reliably synthesize style-specific architec-

tural models.

25
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This chapter is organized as follows. Section 3.1 presents motivation and research

problems. Section 3.2 provides a high-level introduction to the approach. Section 3.3 details

the Monarch Framework I have developed to support automated development of software

architecture. In Section 3.4, I use a well-known and widely used example of the Lunar

Lander application [107] to demonstrate the key steps in the mapping process. Section 3.5

reports data from the experimental testing of the approach. Finally, Section 3.6 concludes

this chapter.

3.1 Motivation and Research Problem

Software architecture is an essential means for managing complexity and meeting demand-

ing requirements in developing complex software systems [102, 107]. Architectural styles

systematize successful architectural design practices in terms of constraints on architec-

tural elements and their composition into systems [102].

Developing a sound and appropriate architecture, however, remains a significant and

intellectually challenging activity. To develop architectural models effectively one must un-

derstand both the application domain in question and the discipline of software architecture.

However, these bodies of knowledge are typically held by different people. Domain experts

better understand requirements and specifications, while architects understand architec-

tural styles, their implications, and techniques for mapping abstract application models to

architectural models in given styles.

The required communication and coordination, and the manual mapping of applica-

tion models to architectures, are costly and error-prone activities. This has called for an

approach to close this arduous line of actions by enabling domain experts to model appli-

cation requirements more directly, while automating key parts of the work done by human

software architects.
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3.2 Approach

To address this problem, this work contributes a formally precise approach to separating

application-specific decisions from architectural style design decisions and then using these

separate decisions as inputs to an automated synthesizer. The key to this separation is

a means of reconciliation—an ‘architectural map’—connecting application descriptions to

realizations in particular architectural styles. Architectural map, in this work, defines

mapping rules required by the overall approach. Making these maps central complements

past work on architectural styles with new attention to how style choices combine with

application models to yield architectures.

Researchers and practitioners have long recognized that application models can be con-

sidered largely separately from architectural style. As long ago as 1972, for example, Par-

nas [92] described a key word in context (KWIC) system and consequences of choosing to

design it in one of two styles: functional decomposition or information hiding. As recently

as 2009, Taylor et al. [107] similarly described a lunar landing embedded control system

and showed how programs implementing it could be realized in many different styles.

The same basic idea recurs in many works [38, 52, 55, 94, 102]: a choice of application

model independent of architectural style can be combined with a separate choice of archi-

tectural style giving rise to one or more architectures for the application in the given style.

Much of this work is concerned with the implications of style choice in terms of evolvabil-

ity, reusability and other quality attributes. Research in this area has provided insights and

technology that help designers to make good architectural choices.

Work in this broad area has also led to many practically important advances, e.g.,

object-oriented design patterns [52], which abstract styles from successful instances, and

the REST architectural style [47], which systematizes architectural constraints that are im-

portant for producing scalable web-based, data-oriented systems. Yet while we already have

a theory of architectural styles, and while we understand that we should seek to separate

applications and architectural style, we have little theory for separating application models
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and architectural styles in ways that provide precise definition of the mappings that com-

bine them to produce style-specific architectures. Rather, architects gain tacit knowledge

of these mappings through study and practice, and they implement them manually. Such

work is labor-intensive and expensive, and, once completed, prohibitively hard to change.

Moreover, failure to separate these concerns complicates reasoning about application prop-

erties, and retargeting of applications to varying architectural styles and platforms. This

work seeks to automate such mappings, making architectural style more of a separate and

easily changeable variable in design.

The remainder of this section introduces the theoretical framework for the notion of

architectural map to separating application models from architectural styles and automating

the associated mappings, and then presents the correspondence of the proposed theory and

the formal structure of model-driven development.

3.2.1 Theoretical Framework

This section makes explicit and elaborates the notion that an architectural map combines

an application model, m, of a given application type, with a specification, s, of a given

architectural style, to produce a set of architectural models, {ai}, for application m in style

s. These architectural models refine the application model while complying with the rules

implied by the architectural style.

{ai : ArchModel} = ArchMap(m : AppType, s : ArchStyle)

ArchMap is the principal object of this research study. It captures architectural knowl-

edge that we seek to formalize and automate. Putting it at the center begins to balance

attention to architectural styles, with attention to how style choices combine with applica-

tion descriptions to yield architectures. Knowledge of this mapping is crucial to expertise

in software design. Given an application description, the experienced designer knows both

what architectural style to pick, and how to map an application description of the given
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kind to an architectural description in the chosen style. Clearly map is a complicated ob-

ject. In some sense, it embodies knowledge of how to realize different types of applications

in different styles. We need a way to study it in pieces.

One contribution of this work is an approach to doing this: I decompose map by treat-

ing it as a function polymorphic in both application type and architectural style. I then

investigate it for specific pairs. Thus study requires to make explicit a notion of applica-

tion type. Application descriptions come in a variety forms. Examples include composition

of functions (which is in essence how Parnas characterized KWIC [92], for example), or

state machine, or sense-compute-control [107]. Each of these application types provides

a vocabulary and structuring mechanisms for organizing application descriptions prior to

the choice of architectural style for the system implementation. An architectural map in

essence converts the structure and content of such a description into a form consistent

with a given architectural style choice. Specifically, I view ArchMap as parameterized by

type (AppType) and style (ArchStyle), and develop separate mappings for each compati-

ble AppType/ArchStyle pair. Compatibility captures the idea that not every architectural

style is appropriate for every application type.

Figure 3.1 represents the fundamental elements of this model on the basis of the archi-

tectural maps and their relationships: (1) {ai}, a set of architectural models (architectures)

derived by the processes I describe in this chapter; (2) s, an architectural style specifica-

tion; (3) conforms, a relation encoding the conformance of an architectural model, ai, to an

architectural style, s; (4) m, an application model; (5) t, an application type; (6) a (second)

conforms relation, encoding the conformance of m to t; (7) map(t,s), a map parameterized

by t and s that takes application model, m, to the set of architectural models, {ai}; (8) a

refines relation encoding the property that each such ai refines the application model, m.

Given input parameters, t, s, and m, our map yields a set of architectures because, in gen-

eral, multiple architectures in a given style satisfy the required conformance and refinement

constraints.

With these terms in hand, I can now say more precisely what I mean by architectural
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t : AppType s : ArchStyle

map(t,s)(m)

m : AppModel {ai : ArchModel}

conforms

in in

in

refines

conforms

out

Figure 3.1: Key entities and relations in architectural maps.

style as a separate design variable. For a given application model and type, one can select

among compatible styles and maps and automatically synthesize architectures in these

styles. To the extent that the essence of modularity is a decoupling of design parameters,

the approach realizes a new form of modularity: it modularizes architectural style.

3.2.2 Model-based Automation

As software systems become larger and more complex, there is an ever greater need to

employ higher levels of abstraction in application development. Model-driven development

is centered around abstract, domain-specific models and transformations of abstract models

into the constructs of specific underlying platforms. To be more precise, MDD is rooted

in a mapping that takes a platform-independent model, p, and a platform definition model,

s, to a platform-specific model, i. That is, i : PSM = map(p : PIM, s : PDM). In

my approach, application models are mapped to software architectural models, or targets,

by way of choices of a software architectural style. {ai : ArchModel} ∈ ArchMap(m :

AppType, s : ArchStyle).

The analogy between two approaches is clear in the equations. Architectural styles plays

the same role as platform descriptions in a MDD approach [99]. I believe that this obser-

vation opens a path to MDD tools that support architectural style as a separate variable

in automated development of software architectures. Figure 3.2 shows the correspondence

between terms of Architecturalmaps and the formal structure of MDD. I introduce ap-
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Model-driven Development Our Theory

Meta-model Application type

Platform Independent Model (PIM) Application Model

Model Transformation Architectural Mapping

Platform Definition Model (PDM) Architectural Style

Platform Specific Model (PSM) application- and style-specific Architecture

Figure 3.2: Correspondence between terms of Architecturalmaps and the formal structure
of MDD

plication types as styles of application description that play the same role as application

meta-models in MDD. Application models correspond to platform independent models in

MDD; architectural maps, to MDD transformations; architectural styles, to MDD plat-

forms; and synthesized software architectural models, to platform-specific models in MBD.

Given the concepts of application type and architectural style I can now concisely de-

scribe the approach. A user selects an application type. This type selects a meta-model that

parameterizes a model-based editing tool. Within such a tool one creates an application

model as an instance of the selected application type. One then selects an architectural style.

The combination of an application type and an architectural style selects the specification

of a synthesis function: an architectural map for that particular pair of input specifica-

tions. Each architectural map specifies the mapping of any application model (instance)

of the given application type to an architectural model in the given style. Application

types, architectural styles, and architectural maps are all formally specified in a notation

that supports automated analysis and synthesis. The approach involves the synthesis of an

architectural description that satisfies the constraints of both type and style specifications,

and that does so in a particular manner described by architectural mapping constraints.

The next section shows that how these ideas can be reduced to practice. There are

many possible approaches to implementing tools that compute architectural maps. This

work presents one approach, in which I use Alloy [64], which is a specification language

that has been optimized for automated analysis.
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3.3 Monarch: A Prototype Tool

Monarch is a framework for automated development of software architecture. Figure 3.3

outlines the high-level overview of the Monarch framework. Formally, the definition of a

modeling language [33,34] consists of: (1) the abstract syntax (A) that defines the language

concepts, and the relationships between them, (2) the concrete syntax (C) as a human-

centric notation, (3) the syntactical mapping (MC : C → A) that links the concrete syntax

to the abstract syntax, (4) the semantic domain (S) that specifies well-formedness rules

for models as well as the meaning of the models, and finally (5) the semantic mapping

(MS : A → S) that links the abstract syntax to the semantic domain, giving a modeling

language a meaning.

Figure 3.3: High-level overview of the Monarch framework.

The Monarch framework comprises (1) an approach to architecture-independent appli-

cation modeling using the Generic Modeling Environment (GME) [76], with application

types realized concretely as GME architecture-independent modeling language (AIML)

meta-models; (2) interpreters that transform application models, viewed as concrete in-

stances of architecture-independent modeling languages into an abstract syntax based on

Alloy [64]; (3) a mapping engine, based on the Alloy Analyzer, that takes such an applica-

tion model and a formal specification of an architectural style and that finds architectural

models that refine the application model in conformance with the given architectural style.

The mapping employed is based on the combination of the selected application type and
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the selected architectural style. The engine uses the Alloy constraint solver to compute

architectures, represented as satisfying Alloy solutions; (4) a final post-processing phase,

Alloy2ADL, translates the resulting Alloy instances into human-readable architectural de-

scription languages (ADLs). The rest of this section describes each of the modules.

3.3.1 AIML Meta-model

The definition of a concrete syntax by a meta-model is supported thoroughly by many meta-

modeling environments, e.g. Generic Eclipse Modeling System [113], MetaEdit+ [4] and

Generic Modeling Environment [76]. I have developed Architecture-Independent Modeling

Languages (AIMLs) on top of the GME to support the specification of application content

at the abstract modeling level. The reasons for choosing GME for this study include

its straightforward mechanisms for developing extensions, and its availability and proven

success for MBD.

A meta-model specification describes a particular form of model. In our earlier work [17],

we identified several possible forms of architecture-independent model, including compo-

sition of functions, aspect-enabled composition-of-functions (ACF), state-driven behavior

(SD) and sense-compute-control (SCC). Our meta-model for the sense-compute-control

(SCC) application type is shown in Figure 3.4a. I have developed GME meta-models

for several previously identified but not well elaborated application types: composition-

of-functions (CF), aspect-enabled composition-of-functions(ACF) (Figure 3.4b), and state-

driven behavior (SD) (Figure 3.4c). For brevity, and because it suffices to make our points,

I describe only the SCC meta-model in this work. Monarch supports the others as well.

Sense-compute-control (SCC) is an application type for embedded control systems. The

SCC application type is used to model applications in which a set of sensors and actuators

are connected to controllers that cycle through the steps of fetching sensors values, execut-

ing a set of functions, and emitting outputs to the actuators [107]. Figure 3.4a shows a UML

class diagram for the SCC meta-model as represented in GME. The ApplicationDescription

class, which is common among application-type meta-models, denotes the application spec-
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Figure 3.4: Meta-models in GME for application types: a) Sense-Compute-Control b)
Aspect-enabled Composition-of-Functions c) State-Driven behavior

ification diagram, which contains elements of an application model. The Controller, Sensor

and Actuator classes represent three main elements of the SCC application type. The Con-

troller’s frequency is abstracted into discrete ranges of slow and fast. The Controller can

also be specified as using a periodic, aperiodic or sporadic task.

Given such a meta-model specification of a modeling language for each architectural-

style-independent application type, GME automatically creates an architectural-style-

independent modeling environment. The designer of a system then specifies an application

description as a model using the modeling environment. I believe this approach promises

to allow domain experts to model their applications abstracted from details of software
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architectural styles.

3.3.2 Transformation to Alloy Specification

Monarch then translates an application model specified as a concrete instance of such an

architecture-independent modeling language (AIML) for a given application type into an

abstract syntax based on the Alloy language. The GME provides several ways to process

data from the model automatically. I used the Java version of the Builder Object Network

(BON), providing us access to the internal representation of the model through Java objects.

I also developed a GME interpreter for each meta-model as a syntax mapping, which

elicits the model elements and transforms the constructs of the application model to formal

specifications in the Alloy language.

Alloy is a lightweight set-theoretic specification language based on the first-order

logic [64]. It has been applied by numerous researchers to formal work in software ar-

chitecture. Kelsen and Ma [69], comparing the traditional methods of formal specifications

for modeling languages with an approach based on the Alloy language, argue that because

of both lower notational complexity and automatic analyzability, Alloy provides more con-

venient facilities for defining the formal semantics of modeling languages. I chose Alloy for

this study for two reasons. First, its ability to compute solutions that satisfy complex sets of

constraints is useful as an automation mechanism. Second, and more importantly, it allows

us to better validate our claims because we use, as inputs, architectural style specifications,

in Alloy, that others have published [71, 114]. Reusing published models is important in

that it shows our ideas and approach to be consistent with contemporary formal accounts

of architectural style.

Essential constructs of the Alloy language include: Signatures, Facts, Predicates, Func-

tions and Assertions. Signatures represent the basic types of elements and the relationships

between them. Alloy provides Facts to be used in defining constraints that any instance

of a model must satisfy. Predicates are parameterized reusable constraints that are always

evaluated to be either true or false. Functions are parameterized expressions. A function
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can be invoked by instantiating its parameter, but what it returns is either a true/false or

a relational value instead. An assertion is a formula required to be proved. It can be used

to check a certain property of a model.

With respect to the constraints in a given model, the Alloy Analyzer can be used either

to find solutions satisfying them, or to generate counterexamples violating them. The Alloy

Analyzer is a bounded checker, so a certain scope of instances needs to be specified. In

the matter of architectural styles, the scope states the number of architectural elements

of each type. To take advantage of partial models, its latest version uses KodKod [108]

as its constraint solver so that it can support incremental analysis of models as they are

constructed. The generated instances are then visualized in different formats such as graph,

tree representation or XML. I use the Alloy Analyzer to compute architectural models given

the conjunction of an architecture-independent model represented using a particular meta-

model, and a choice of formal specifications of an architectural style, also represented in

Alloy.

3.3.3 Architectural Mapping

An architectural style description specifies the co-domain of an architectural map. To

represent a map, itself, I extend the style description with mapping predicates. These

predicates take types of applications as parameters, and define relationships required to

hold between applications of given types and computed architectural models in the given

style under consideration. Mapping predicates are responsible for ensuring that computed

architectural models refine given application descriptions. Given an application description,

and a map, Monarch using the Alloy Analyzer computes corresponding architectural models

that conform to the given target architectural style.

As an example, Figure 3.5 presents part of the predicate for mapping application models

in the sense-compute-control application type to architectures in the implicit invocation

style. I describe it in more detail in Section 3.4.3.
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Figure 3.5: Part of the mapping predicate for the pair of SCC application type and II
architectural style

3.3.4 Transformation to Architecture Description Language

Having computed satisfying solutions, the Alloy2ADL transformer component parses and

transforms these solutions from low-level, XML formatted Alloy objects to high-level archi-

tecture descriptions in human-readable ADLs. During the past several years, a considerable

number of general and domain-specific ADLs have been proposed [87]. I use the Acme lan-

guage in the prototype [56]. Acme emerged as a generic language for describing software

architectures, with particular support for architectural styles. It is also designed to work as

an interchange format for mapping among other architecture description languages. In an

earlier work [18], I briefly reported on the feasibility of treating architectural style as a sep-
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arate variable in an aspect-oriented setting, with AspectualACME [53]—an aspect-enabled

extension of Acme—as a target ADL.

3.4 Example

In this section, I use Monarch to formally illustrate the process of mapping a SCC descrip-

tion of the Lunar Lander application [107] to architectural models in the implicit-invocation

style [39].

3.4.1 Application Type: SCC

In Section 3.3, I presented the concrete and human-centric realization of SCC application

type as an AIML meta-model developed atop GME. Here I focus on its abstract syntax

developed as an Alloy module.

Figure 3.6: Part of the sense-compute-control application type as an Alloy module

Figure 3.6 partially outlines sense-compute-control application type represented in Alloy.

Each meta-element in the SCC metamodel has a corresponding Alloy signature definition,

except for ApplicationDescription whose instances denoting specific application models are

mapped to separate Alloy modules. In particular, three Alloy signatures represent basic

elements of SCC application type, i.e. Actuator, Sensor and Controller. The Alloy module
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further defines two abstract signatures of dispatch protocol and frequency, which are used

in defining the specific properties of Controller elements.

3.4.2 Architectural style: II

In some cases it is helpful to model one architectural style as inheriting rules from another.

An implicit invocation object (IIObject) is thus an Object that provides both a collection

of interfaces (as with Object) and a set of events. Procedures may also be called in the

usual way. So, an IIObject extends the definition of an Object. It can, in addition, register

some of its procedures with events of the system; so those procedures will be invoked

when the events are announced. Figure 3.7 (eliding details) makes these ideas precise in

six signatures: Publish, Subscribe, PublishEvent, SubscribeEvent, IIObject and EventBus.

IIObject has PublishEvent and SubscribeEvent as its ports. EventBus is further a special

kind of Connector and has two roles, i.e. Publish and Subscribe.

Figure 3.7: Part of II style described in Alloy

The Alloy dot operator denotes a relational join. In expressions represented in lines 9

and 13, the attachments is a relation of type System × Role × Port. Therefore, the

attachments.port relation is from System to Role. The function ran, defined in the Alloy

module util/relation, returns the range of a binary relation. The “in” operator furthermore

declares the subset relation. As such, the invariants under consideration specify that each

PublishEvent port of an IIObject should be attached to a role of type Publish, and each
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SubscribeEvent port of an IIObject, in a same way, should be connected to a Subscribe

role of an EventBus.

3.4.3 Architectural Map: (SCC,II)

The architectural mapping process takes as inputs the abstract application model (trans-

formed directly from the concrete model to the Alloy module), an Alloy module specifying

the application type (meta-model), an architectural style Alloy module that specifies the

constraints to which the computed results conform, and the architectural mapping Alloy

predicates that define relationships required to hold between the application model and

computed architectural models. Each mapping predicate for the given application type

and architectural style is responsible for confirming that the satisfying solutions refine the

given application model in conformance with the given style. Overall, I have developed

eight architectural mappings validating the approach (cf. Figure 3.12).

Figure 3.5 shows such a predicate for the SCC application type and the implicit invo-

cation architectural style. At the top, the specification imports the Alloy modules for the

SCC application type and implicit invocation architectural style. The mapping predicate

then, in line 7, states that for each sensor, actuator and controller, declared as subtype

of the needHandle abstract Signature, there is an IIObject that handles it. Expressions

in lines 9–11, by using the Alloy inverse relation operator ∼, state that each Actuator’s

IIObject has a port of type SubscribeEvent or Procedure to be called implicitly or explicitly.

Likewise, each Sensor’s IIObject has a port of type PublishEvent or Procedure. The number

of SubscribeEvent ports of the Controller’s IIObject equals to the number of PublishEvent

ports of the Sensors’ IIObjects, as mentioned in lines 17–18. So, each SubscribeEvent port

of the Controller could be connected to a Sensor’s PublishEvent port to be called implicitly.

In addition, the specification, in lines 20–21, states that the Controller’s IIObject has at

most one PublishEvent port and one Call port so that the procedures of Actuators’ IIOb-

jects could be called explicitly or could register to be invoked when the PublishEvent port

of the Controller’s IIObject announces an event.
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The II architectural style provides two ways of invoking methods: procedure call and

implicit invocation. For the purpose of the former method, lines 23–28 state that for each

Procedure port, there is a ProcedureCall connector connected to it, and the Call port of

the Controller’s IIObject is connected to the Procedure port of the IIObjects handling

Sensors and Actuators via a connector of type ProcedureCall. For an implicit invocation,

the SubscribeEvent ports of the controller’s IIObject are connected to the PublishEvent

ports of Sensors’ IIObjects via an EventBus connector, as mentioned in lines 30–31. In

a similar way, the SubscribeEvent ports of the Actuators’ IIObjects are connected to the

PublishEvent port of the Controller’s IIObject through an EventBus connector.

Figure 3.8: Lunar-Lander application model in GME modeling Environment
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3.4.4 Application Model: Lunar Lander in SCC application type

In their textbook [107], Taylor et al. describe the informal mapping of a lunar lander appli-

cation to architectures in a range of architectural styles. In this application, FlightControl

maintains the state of a spacecraft based on the information provided by various sensors:

Altimeter, Gyroscope, Fuel level indicator and the engine control switch. After process-

ing control laws and computing values, FlightControl provides them for various actuators:

Descent engine controller, Attitude control thruster and Display. Taylor et al. describe

the lunar lander as an instance of a sense− compute− control application. The notion of

application type is implicit in their account. I make it explicit and formal in our theory.

Figure 3.8 shows the lunar lander’s application description modeled within GME using the

generated modeling environment for the SCC meta-model. What is also shown in the figure

is a screenshot of the Monarch architecture-synthesizer environment and how the synthesis

process is started.

Figure 3.9 illustrates the Alloy representation of the lunar lander application model

generated directly from its concrete model by Monarch Interpreter developed for the SCC

meta-model. A synthesized Alloy module contains a signature definition for each element in

the concrete model as well as a set of facts corresponding to the properties of those elements.

More specifically, It starts by synthesizing the module name representing the name of the

instance of the ApplicationDescription class within the concrete model. It then imports

the Alloy specification module(s) for application type(s). For each instance of Sensor,

Actuator, and Controller classes in a concrete model, it synthesizes a signature definition

that represents the inheritance of a concrete element from its corresponding abstract class.

The element’s properties (if any) are also specified as Alloy facts for the corresponding

signature of that element, e.g. FightControl has a periodic task with high frequency.

3.4.5 Satisfying Models

Using the Alloy Analyzer, Monarch computes architectural models, represented as satisfy-

ing solutions to the constraints of a map applied to an application model. Alloy Analyzer
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Figure 3.9: Lunar Lander application model represented in Alloy

guarantees that computed descriptions conform to the given architectural style. The map-

ping predicates are responsible for ensuring that computed architectural models refine given

application models.

Mapping SCC description of the Lunar Lander to the II architectural style yields a set

of satisfying solutions, among them, for instance, Figure 3.10 depicts the internal structure

of a result for the lunar lander example. In this diagram, the architectural description

has eight IIObjects. The FlightControl element along with related sensors and actuators,

inferred from the input specification, represents the Lunar Lander System. Each IIObject

handles an element. As a case in point, IIObject6 handles FuelLevel sensor and publishes a

notification of new value through PublishEvent1 that should be connected to an EventBus

(connections are omitted for the sake of readability). On the other hand, IIObject0, han-

dles FlightControl, subscribes to input events through SubscribeEvents ports, and will be

implicitly invoked. This allows it to update the state of the spacecraft. This in turn causes

Display, for example, to be invoked so that it refreshes its display based on new data.
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Figure 3.10: The internal structure of a result of mapping Lunar Lander application into
the II style
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3.4.6 Architectural Models

To make the outputs humanly readable and useful, the Alloy2ADL transformer converts

the Alloy-generated results, also available in an abstract XML-format, to a traditional

architecture description language. Figure 3.11 represents one of the automatic computed

instances of architecture description models in Acme. These models refine the Lunar Lander

application description specified using the SCC application type, in conformance with the

fully formal definition of the implicit invocation architectural style. The result is a set of

formally derived architectural models for the given application in the selected architectural

style.

According to the diagram, in this particular, arbitrarily selected case, three of the four

top components, for handling sensors, are connected to the FightControl through Proce-

dureCall connectors, i.e., using explicit invocation, except for the Altimeter component,

which is called implicitly via the EventBus0 connector. The actuators’ components are

also connected to the FlightControl through the EventBus1 connector.

Figure 3.11: One of the computed instances of mapping SCC description of the Lunar
Lander into the implicit invocation architectural style in Acme

The example illustrates the point that architectural styles, viewed as mappings to plat-

forms, can be one-to-N. In general, there are many possible architectures, consistent with a

given style, for a given application. The architecture in the diagram should thus be viewed
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as just one instance (and not necessarily the best) of a family of architectures, given the

specification of the II style. In general, mapping to families of architectures could be useful

in enabling optimizing search for properties influenced by architecture but not constrained

in the modeling stage. Alternatively, one could strengthen the definition of the style or the

application type and instance to limit the family of conforming instances.

3.5 Evaluation & Discussion

The claim that I make in this work is that it is feasible to formally separate application

models from architectural styles, and to synthesize architectural models in given styles from

given application models, and that the proposed separation of concerns enables automation

and the production of model-based tools for architecture synthesis. In support of the feasi-

bility of these claims, I summarize a set of case studies formally conducted using Monarch

tool-suite. Specifically, I offer support in the form of a set of implemented architectural

maps. I have developed maps for four application types and three architectural styles, as

mentioned in Figure 3.12. The types are composition-of-functions (CF), state-driven behav-

ior (SD), sense-compute-control (SCC) and aspect-enabled composition-of-functions(ACF).

The styles are pipe-and-filter (PF), object-oriented (OO), and implicit invocation (II).

Comp. Fun. State-Driven SCC ACF

Pipe-And-Filter KWIC, LL KWIC

Object-Oriented KWIC, LL KWIC MIDAS, LL

Implicit Invocation KWIC, LL MIDAS, LL

Figure 3.12: Maps defined and experiments performed. (Rows represent architectural styles;
Columns represent application types.)

Each non-empty cell in Figure 3.12 indicates an architectural map that I have imple-

mented for the given type-style pair, and a corresponding experiment using the map. The

entries in the table indicate the case studies from the literature to which I have applied

developed maps, to test the consistency of the automatically synthesized results with the

informal, manually derived results in the literature. I have applied the approach to three
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case studies: KWIC, long used in studying architectural styles and their properties [92];

the Lunar Lander (LL) case study of Taylor et al [107]; and the case study of an alarm

system of type sense-compute-control, called MIDAS [82]. The last case study is inspired

by Edwards et al. [43]. They illustrated the structuring of the MIDAS application [82] from

a family of embedded applications at Bosch, in different architectural styles, to assess the

influence of architectural style on quality attributes.

Most of the experiments attempt to replicate previously reported informal architectural

mappings. For example, (CF, OO, KWIC) experiment focuses on reproducing previous

informal studies by Parnas [92] and later studies by Shaw and Garlan [102]. I map a CF

description of KWIC to an architectural description in the OO style, or (SD, OO, KWIC)

experiment addresses the work of Garlan, Kaiser & Notkin [54], who explored, among other

things, how changing the KWIC application from batch-sequential to interactive might

demand corresponding changes in the architectural style. I note that change can be seen

as involving, at a more abstract level, a change in the type of application description, and

that this change is what really drives the need for a new architectural style. I employ state-

driven behavior as a type for interactive application description. Details of these studies

can be found in my previous technical reports [16,18]. A complete list of these case studies,

including complete versions of Alloy models, are also available at Monarch website [5].

The experiments show that architectural maps can be formalized and implemented as

executable specifications. The results of formal and automated computations are consistent

with the informally and manually produced results documented in the literature. This

work also suggests that the concept of application type is important. The experiments

further show that the concept of application type leads naturally to an abstract, user-

friendly approach to application modeling. I have demonstrated an approach taking fully

formal specifications of application models and architectural styles as inputs and producing

software architectures as outputs within the framework of MDD.

In an earlier work [20], we showed that architectural maps can also incorporate archi-

tectural tactics [27], in a formal and reusable form. More specifically, this work shows that



Chapter 3. Synthesizing Architectural Models from Abstract Application Models 48

our approach supports formal specifications of architectural tactics with respect to the ar-

chitectural maps developed for each pair of an application type and an architectural style.

This in turn enables automatic synthesis of architectural instances which conform to the

rules implied by both the application model and the target architectural style as well as

supporting the given architectural tactic.

The prototype implementation tool suite supports reasonable extension for new types

and mappings. To that end, one specifies an application type and its corresponding GME

meta-model, as well as the architectural mapping predicates for relevant styles, so that by

swapping between implementations of architectural maps, one can produce architectures

in a range of styles for a given system from a high-level application description. This

work appears to support the idea that being able to treat architectural style as a separate

variable is a plausible aspiration. With automated architectural mapping, the software

architect may also readily examine the feasibility of various architectural alternatives. The

ease of examining more architectural alternatives will also increase the quality of software

architecture. The more various alternatives are studied, the more likely it is that the most

satisfying option will be found.

It is also worth mentioning that the current tool mainly considers structural refinements

with respect to the target architectural styles. It would be of significant importance to

represent and handle other style-related aspects, such as architectural behavior and quality

attributes, which is considered as an interesting avenue for future work. Moreover, our

experiments to date were conducted on the accounts of architectural styles published in

the literature. Targeting more complicated architectural styles, such as those induced

by widely-used industrial platforms [91] or multi-dimensional architectural spaces is of

tremendous value. I believe our synthesis approach can be naturally extended to support

them, which remains an active area for future work.

Overall, the intellectual contribution of this work is the insight that software architec-

tural styles can serve as analogs to choices of platforms in model-based development. This

idea then leads naturally to a new kind of tool: one that allows for modeling of applications
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independent of subsequent architectural style choices, and for the automated mapping of

models to architectures once such style choices are made. Whereas traditional MDD work

seeks to replace the programmer, this work points the way to a future in which MDD

replaces at least some of the work of the software architect.

3.6 Summary

This work makes several contributions. First, I developed a theoretical framework for the

notion of architectural map to separating application models from architectural styles and

automating the associated mappings. Second, I developed the concepts of application type

and architectural map as key constructs needed, in addition to that of architectural style,

to achieve such a separation of concerns. This work uses application types, architectural

styles and architectural maps as source languages, target languages, and mapping rules,

respectively. Third, I showed that this separation of concerns gives rise to a natural form

of model-driven development. Fourth, I presented experimental data and a prototype tool

that support the feasibility claims and the proposition that these ideas are worth pursuing.

There are many opportunities for future work. First, architectural transformations are

generally one-to-many. The more complex a system is, and the less tightly constrained the

architectural style, the larger the set of architectures is. The need to choose from among

candidates provides an opportunity to optimize in dimensions not already constrained by

the application description. I further note that automated search could occur not only

within one style but across styles—perhaps leading to tools that can not only synthesize in

user-selected styles, but that can actually select appropriate styles for given applications.

Second, to date this work remains rather academic in that the target architectural styles

are quite simple compared to those used in actual practice. An interesting avenue for future

work thus would be to investigate the following issues among others: synthesis of multi-

style architectures; targeting of styles induced by middleware platforms and production

frameworks [91]; application models with sub-models of heterogeneous types; and replacing
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Alloy with more scalable synthesis technology.

Finally, a shortcoming of current approaches to code generation from architectural mod-

els is in the lack of flexibility with respect to architectural style [79]. The architect is forced

to develop models in the particular architectural style supported by a given approach, rather

than a suitable style chosen by the architect. In the next chapter, I present my work in

this direction to include subsequent mappings from architectural descriptions to code level

implementations.





Chapter 4

Synthesizing Code Frameworks from Application

Architectures

In this chapter, I present Pol. This is the second experiment the I have conducted in

the context of this dissertation. This work provides evidence in support of reducing the

costs of model-driven development by demonstrating a specification-driven synthesis of

platform-specific code frameworks without the need for traditional hand coding of trans-

lators. Specifically, Pol shows that a combination of formal application architecture and

platform models, implementation mappings, and platform-usage code fragments suffice.

In support of the claim of broadening the applicability of MDD in various stages of the

software development lifecycle, this work targets synthesis of object-oriented application

frameworks that use a range of widely-used industrial software platforms. Finally, this work

incorporates benefits of formal specifications of architectural styles and platform models to

reliably synthesize platform-specific implementation models, from which code framework is

then directly generated in a straightforward manner. This chapter is organized as follows.

Section 4.1 presents motivation and research problems for this aspect of my research. Sec-

tion 4.2 details the specification-driven synthesis approach, and describes how it fits into

an evolutionary development process. Section 4.3 introduces the system that I took as a

subject for the case study. Section 4.4 explains the approach in more detail with concrete

examples drawn from this system. Sections 4.5 and 4.6 report and interpret the data I

52
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measured during experimental evaluation of the approach. Section 4.7 presents an over-

all evaluation of the ideas, experimental approach, and results, addressing some possible

objections to this work. Finally, Section 4.8 concludes this chapter.

4.1 Motivation and Research Problem

Software developers have to deal with many concerns when designing a system. Examples

include architectural style, method for data persistence, component interaction protocols,

and authentication. In each such dimension of concern there is generally a range of pos-

sible choices. For example, data persistence might be handled using an SQL or a NoSQL

database; interactive web services might be handled using RESTful [47] or WSDL/SOAP-

based protocols [93]; authentication might be handled using OAuth [6] or basic HTTP

authentication. These examples point to a central point in this chapter: many such deci-

sions are in turn supported by complex platforms. In this chapter I use this term to refer to

middleware and frameworks. For example, the Restlet [7] framework supports implement-

ing RESTful web applications, the HornetQ [3] middleware supports reliable distributed

messaging, and CouchDB [2] is a document-oriented database supporting NoSQL for data

persistence. Software-intensive systems often rest on a complex set of platforms.

Such platforms provide developers with the capability of reusing not only code, but

whole platform designs. However, developing applications on such platforms is costly,

time-consuming and error prone [46, 55, 62]. Their complexity and poor documentations

often make it hard to learn and use such platforms [62]. One approach to addressing these

problems is the use of model-driven development methods to synthesize code for given

platforms. Such approaches can ease development by expressing key features in models and

refining them into code [97]. MDD holds out the promise of improved software productivity,

timeliness, quality and costs.

The problem is that developing the code generators that MDD approaches require is

difficult, costly and error-prone [67, 112]. Karsai et al. recognized that developing such
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code generation model interpreters is a very difficult problem [67]. It is hard to develop

and evolve modeling languages and code generation model interpreters for diverse, evolving

applications [112].

4.2 Synthesis Approach

In this section I discuss the specification-driven synthesis approach and briefly how it fits

into an evolutionary development process. Figure 4.1 illustrates the overall data flow struc-

ture of the approach and its two main transformational elements: a mapping engine and

an intermediate language (IL) parser, ILParser. This section presents these constructs in

more detail.

Figure 4.1: High-level overview of the Pol framework

I have developed a prototype tool implementing the approach: Pol, a Persian word for

bridge. I chose to use Alloy [64] as a specification language and constraint solver. Alloy

is helpful for formalizing modeling languages [69]. Its simple set theoretic language was

sufficiently expressive for prototyping and evaluation purposes.

4.2.1 Mapping Engine

The function of the mapping engine is to transform an application architecture in a given

architecture style to a target-platform-specific, intermediate implementation model (IIM),
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from which the ILParser generates code. The engine uses a general constraint solver to

synthesize the IIM, with no hand written, platform- or application-specific code. Rather,

it works from specifications of (1) architectural style, (2) application architecture in that

style, (3) target platforms, and (4) mapping predicates that define relationships between

architectural style and target platform constructs.

An architectural style is formalized in the manner of Kim and Garlan [71]. I define

application-specific architectural styles as extensions of more general component and con-

nector styles. An application architecture is then given as an Alloy instance of such a style.

A platform model (PM) is a partial formal model of a target platform, tailored to the ways

in which the platform is to be used in a given application. A PM models platform classes,

methods, and constraints as Alloy signatures, relations, and invariants. An implementation

mapping (IM) is a set of Alloy predicates that explain how architectural style elements map

to intermediate implementation (PM) constructs. IMs address the problem of expressing

architecture-to-implementation mappings noted by Shaw [101]. All of these specifications

are partial, lightweight models. They do not attempt to capture the complete structure

or semantics of a platform or application, but are designed to enable a desired level of

partial code synthesis. Given these inputs, Pol computes an IIM as a solution to the set of

constraints. From an IIM, the ILParser then generates code in a manner that is also driven

by specifications.

4.2.2 ILParser

The function of the ILParser is to transform an intermediate implementation model (IIM)

into an object-oriented architectural code framework. Such a framework comprises a set of

classes that refine an architectural model into platform-specific code that developers extend

by subclassing. The ILParser is parameterized by (1) platform-specific code usage patterns

documented as design fragments [46], and (2) binding elements that relate fragments to

elements of the IIM. No custom coding (beyond provision of code-level design fragments) is

required. The ILParser implementation is independent of architectural style and platform
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models.

The ILParser generates two sets of framework classes from a given IM: platform-

independent, and platform-specific. Focusing first on the platform-independent part, for

each IIM signature that extends the Component signature of the underlying component-

and-connector style, the ILParser produces an interface declaration. Port entities in an

architectural model expose the interfaces of components, and for each port in the IIM,

the ILParser generates an abstract method declaration. Certain other abstract classes are

synthesized to represent other general IIM constructs.

Second, the ILParser maps platform-specific implementation model elements to code

based in part on our variant of the design fragments method [46] that Fairbanks et al.

developed to capture platform usage patterns. A design fragment specifies how an appli-

cation uses a platform to achieve some goal. Fairbanks showed that each platform exposes

a limited number of fragments. Three principal pieces of a fragment are (1) a framework-

provided element that describes a relevant construct of the platform that an application

needs to interact with, (2) a programmer-required element that specifies both dependencies

between design fragments and the constructs that application developers must provide to

realize the design fragment under consideration, and (3) a code snippet element that de-

fines a pattern of platform use in the form of a parameterized code template. Template

parameters, identified by enclosure within $ symbols, bind IIM constructs into these code

snippets.

Fairbanks et al. proposed to use Java annotations to bind design fragments into code.

We bind fragments to code using a separate bindings file. Each binding element in a

“bindings” file welds template parameters of a design fragment to the constructs in the

implementation model (IIM). I specify binding elements declaratively. The binding process

is supported by the Alloy query analyzer, with elements of a IIM accessed through query

definitions. Constructs of a platform instance are declared in terms of intermediate language

variables (IL-Variables). Each IL-Variable is defined as a query over the IM, and the values

of these variables are dynamically realized by ILParser while parsing the implementation
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model. They are then assigned to the template parameters to generate code.

4.3 Case Study Subject

In this section, I introduce the system that I took as a subject for the case study: Cyber-

Health. In the next section I explain the approach in more detail with concrete examples

drawn from this system.

CyberHealth is part of an ongoing effort to develop requirements and architectures for

national-scale health information systems, akin to those suggested by the U.S. Department

of Health and Human Services [9] and the President’s Council of Advisors on Science and

Technology (PCAST) [61]. CyberHealth is an evolving, laboratory-scale, operational model

of a national-scale health information ecosystem. In our model of a nation-wide health

information network connecting diverse producers, stakeholders, and consumers of health

data. Its development has involved the progressive introduction of widely used platforms,

making it a reasonable subject for an initial evaluation of our approach.

The system models corporate and individual entities in the healthcare system, and

healthcare data production, transmission, and use by and among entities. Inter-corporate

communications involving clinical data are mediated by a centralized mechanism, which

I refer to as our exchange. In a running simulation, each corporate entity is observable

through a web site. A special web site is run by which the user of the model can control it,

e.g., to simulate patient arrivals at hospitals, the production and flow of clinical data, and

the distribution and use of such data. Web page views are kept up to date dynamically

using standard server push technology (currently Comet, soon the WebSocket protocol).

A key health system requirement reflected in this model is principals—entities includ-

ing patients that have rights to access and use data—should be empowered to establish

automated data-flow rules that configure the exchange and its connected entities for trans-

mission of such data. For example, a patient being seen at a hospital and several clinics

should be able to exercise her legal rights, provided by HIPAA regulations, to access, cause
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transmission of, and authorize the use of her own data: by configuring the exchange to

create data subscriptions that cause relevant past and future record updates to flow across

channels and on to destinations she designates.

Our health system vision thus includes what we call a principal control system (PCS):

a web portal by which principals (patients, agencies, etc) manage data and control flows

consistent with their rights. Each principal has an account in the PCS, and can use it to

register with clinical and non-clinical service providers and to establish connections among

them. Connection sources support both query/response and publish/subscribe mechanisms.

A patient can register a subscription with a hospital, connect it to a specified channel

causing updates to her records to be sent to that channel, and then forward them to her

account in a personal health record or research study in which she is enrolled.

Each corporate entity and the exchange itself runs as a RESTful web service [47] with

a web browser view. (Representational State Transfer, or REST, is an architectural style

for systems on the internet [47]; and systems in this style are called RESTful.) Enti-

ties include hospitals, non-clinical institutions with authorization to use clinical data, and

citizen-patients themselves. Patients are first-class entities in this concept of a future health

information ecosystem. Other entities include personal health record data banks, research

institutions, public health agencies, and data search services of the kind envisioned by the

PCAST. The actual data processed by our system is synthetic and not yet reflective of real

clinical data.

4.4 Example

This section now illustrates the approach with snippets of the artifacts from each stage

of architectural code synthesis for the CyberHealth system. I discuss the following data

elements: (1) architectural style specification; (2) application architecture model; (3) plat-

form model; (4) implementation mapping; (5) intermediate implementation model; (6)

design fragments; (7) bindings; (8) and synthesized architectural code framework.
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1 module Cyberhealth
2

3 open CH style
4

5 one sig Hosp i ta l1 extends Publ i she r {}{
6 por t s = Hospita l1Encounter
7 . . . }
8 abstract sig Hospita l1Encounter extends
9 PublishEvent {}{

10 por tProce s s e s = AnnounceEncounter
11 }
12 one sig AnnounceEncounter extends Announce{}{
13 data = Encounter + Topic
14 }
15 one sig RegisterForAnnouncement extends Reg i s t e r {}{
16 data = Topic
17 }

Listing 4.1: CyberHealth application architecture (elided).

4.4.1 Architectural Style

CyberHealth is designed in an application-specific architectural style that combines and

extends several other styles, including REST and implicit-invocation. I used existing Alloy

formalizations of such styles [114] when available. Not finding one for REST, I crafted

one [15]. Listing 4.1 presents an excerpt of the Alloy definition of the CyberHealth appli-

cation architecture, which starts by importing the style we defined: CH style. This style

provides the language in terms of which the application architecture model is developed.

4.4.2 Application Architecture

Continuing with Listing 4.1 the Hospital1 signature, lines 5-7, extend the Publisher com-

ponent definition to model a Hospital. Each component has ports describing interaction

points with its environment. Here, Hospital1Encounter is defined as a port of Hospital1.

Each port has a set of processes. A Process represents a port activity. Hospital1Encounter

extends the PublishEvent port and names AnnounceEncounter as its process (lines 8 to

11). The AnnounceEncounter is further specified as being of the Announce Process type

with Encounter and Topic as corresponding data elements.
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4.4.3 Platform Model

The goal of approach is to produce platform-specific code without custom synthesizers.

Rather, it requires partial formal platform models. I developed models for each key Cy-

berHealth platform: HornetQ [3], Cometd [1], OAuth [6], and Restlet [7]. HornetQ is a

Java-based message-oriented middleware system, popular for scalability and performance.

Cometd is a HTTP-based event routing framework for server push messaging. OAuth

2.0 enables clients to authorize third party applications to access protected web resources

without sharing of passwords.

Consider the Restlet framework for RESTful web services. There are several popular

platforms that support the REST style. Among them is the Java Restlet platform. List-

ing 4.2 presents part of the Restlet platform model. The Restlet Alloy signature models

the core Restlet class of the platform, which exposes the uniform REST interface. Resource

represents the target of a hypertext reference, including HTTP methods such as GET,

POST, PUT and DELETE. A Handler provides thread-safe processing of calls. Resource

extends Handler. A Connector enables communication between components, encapsulating

the activities of accessing resources and transferring resource representations. Clients and

Servers are Connectors. VirtualHost is a router of calls from Server connectors to Restlet

instances, such as Applications. Component is a Restlet that manages a set of Connectors,

VirtualHosts and Applications. An Application is in charge of coordinating deployment of

functionally connected Restlet instances and is directly attached to VirtualHost.

4.4.4 Implementation Mapping

An implementation mapping associates architectural style constructs to platform model

constructs and is the critical element in the synthesis of intermediate implementation models

from application architectures. Listing 4.3 shows an extract of the implementation mapping

for refining architectural models in the CyberHealth style to the target platforms. This

mapping predicate states that for each architectural EventBus connector (defined by the

imported implicit-invocation architectural style) there is a corresponding HornetQ platform
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1 module Res t l e t
2

3 abstract sig Res t l e t { . . . }
4 abstract sig Handler extends Res t l e t {}
5 sig Resource extends Handler{
6 reps : set Representat ion
7 }
8 abstract sig Connector extends Res t l e t {}
9 sig Server extends Connector {}

10 sig Router extends Res t l e t {
11 attachedResources : some Res t l e t
12 }{
13 attachedResources in Appl i ca t ion + Resource
14 }
15 sig Virtua lHost extends Router {}
16 sig Appl i ca t ion extends Res t l e t {
17 rout e r : one Router ,
18 r eou r c e s : some Resource
19 }{
20 rout e r . attachedResources in r eou r c e s
21 }

Listing 4.2: Restlet platform model in Alloy.

Topic. The next statement says that for each port process of type Announce, there is an

instance of the TopicPublisher class handling the port process, such that its destination,

Topic, is in charge of the connector to which the given port is connected. (The dot operator

denotes relational join, and ∼, relational inverse.) Next, the specification states that for

each Port of a component and each ServerPushConnector, there is an instance of a Restlet

Resource and a CometdService handling them. In this way the mapping specification maps

architectural elements to abstract platform-specific elements (not yet code).

4.4.5 Intermediate Implementation Model

Figure 4.2 shows the result of applying the implementation mapping to the CyberHealth

architecture. The model contains hundreds of elements including architectural and plat-

forms constructs and the relationships among them. I have highlighted architectural style

instances and the corresponding constructs of each platform. Having such a detailed,

implementation-level architectural model serves as a basis for defining a clear program-

ming model and promotes traceability from implementation artifacts to architecture.
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pred mapping ( ) {
a l l connector : EventBus | one t op i c : Topic |
t op i c . handle = connector

a l l portProces s : Announce | one producer :
TopicPubl i sher | producer . handle =
portProces s => portProces s [ attachments ] . ran .
˜ r o l e s = producer . d e s t i n a t i on . handle

a l l port : Port | one r e s t l e tRe s ou r c e : Resource |
r e s t l e tRe s ou r c e . handle = port and
one rest letComponent : Re s t l e t /Component , app :
App l i ca t ion | r e s t l e tRe s ou r c e in app . r e s ou r c e s
and rest letComponent . a pp l i c a t i o n s = app

a l l serverPush : ServerPushConnector | one cometd :
CometdService | cometd . handle = serverPush
. . .

}

Listing 4.3: Implementation mapping predicate.

4.4.6 Design Fragment

With an intermediate implementation model synthesized, the ILParser now operates to

produce code. Code is based on the matching of design fragments to elements of the

implementation model. Figure 4.3 partially represents the JMSPublish design fragment for

the HornetQ platform. The intent of this design fragment is to initiate a message publisher

for a topic and to publish a message using it.

4.4.7 Bindings

Bindings state how design fragments are bound to and parameterized by intermediate

implementation model elements. Figure 4.4 presents a snippet of a bindings file. In the

first binding, declared for the PublisherSetup design fragment, the entity variable is specified

as a query over the implementation model. It represents application elements extending

the Publisher signature. Other binding definitions then can refer to this variable using the

IL: prefix. Given the bindings declaration and the synthesized implementation model as

inputs, the ILParser synthesizes the architectural code framework for the target platforms.



Chapter 4. Synthesizing Code Frameworks from Application Architectures 63

Figure 4.2: Synthesized, platform-specific implementation model for the CyberHealth
architecture.

4.4.8 Architectural Code Framework

The final result of synthesis is a set of platform-independent and platform-dependent in-

terfaces and classes constituting an object-oriented framework. Listing 4.4 presents an

example of a synthesized interface for a Hospital component in which AnnounceEncounter

and RegisterForAnnouncement are defined as port processes. Listing 4.5 shows an extract

of a generated class providing a platform-specific implementation based on a mapping def-

inition. I assign each port process of type announce to a TopicPublisher element from the

HornetQ platform (cf. Listing 4.3). That element is then realized using the JMSPublish

design fragment.
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Figure 4.3: A design fragment.

4.4.9 Hand-Written Extensions

Referring to Listing 4.6, I find code implementing the IHospital1 interface. Based on the

formal specification of the Hospital1 component in the application architecture, the inter-

face declares AnnounceEncounter as an abstract method. The concrete implementation of

this method relies on the platform-specific framework: On line 7, the developer calls the an-

nounce method provided by the synthesized framework. The synthesized framework helps

the developer to implement an application that uses complex platforms by synthesizing

required APIs and calls automatically.

4.5 Evaluation Methodology

In this section, I briefly report and interpret the data I measured during experimental

evaluation of the approach. I have conducted evaluation of the approach using the case

study method of Kitchenham, Pickard and Pfleeger [72]. The steps in this method relevant
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Figure 4.4: A binding specification.

1 public interface IHosp i t a l 1 {
2 public abstract void AnnounceEncounter ( Encounter e , Topic t ) ;
3 public abstract void RegisterForAnnouncement ( Topic t ) ;
4 . . .
5 }

Listing 4.4: Synthesized platform-independent interface.

to this work are: (1) defining the hypotheses to be tested; (2) selecting a pilot project;

(3) planning (and executing) the case study; (4) analyzing and reporting the results. The

following subsections address each of these elements.

4.5.1 Hypotheses

I frame three hypotheses for this approach. First, it is feasible to synthesize architectural

code frameworks without custom code generators for software-intensive systems based on

platforms in wide use today. Second, the choice of application-specific object-oriented

frameworks as synthesis outputs helps limit the impacts on hand-crafted code of evolution-

ary changes in architectural and platform models. Third, the performance of the synthesis

approach using constraint-solving techniques is adequate for modest applications.

public void announce ( S t r ing topicName , S e r i a l i z a b l e dataElement ) {
. . .
S e s s i on s e s s i o n = Hospita l1HornetQServ ice . c r ea teConnec t i onSes s i on ( ) ;
// Create a Message Producer f o r a t op i c
Dest inat i on top i c = HornetQDestination . fromAddress ( ” jms . t op i c . ” + topicName ) ;
MessageProducer pub l i s h e r = s e s s i o n . c reateProducer ( t op i c ) ;
ObjectMessage message = s e s s i o n . createObjectMessage ( dataElement ) ;
pub l i s h e r . send (message ) ;

}

Listing 4.5: Synthesized platform-specific method.
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1 public class Hosp i ta l1 implements IHosp i t a l 1 {
2

3 @Override
4 public void AnnounceEncounter ( Encounter e , Topic t ) {
5 EncounterImpl encounter = ( EncounterImpl ) e ;
6 Hospita l1HornetQServ ice s e r v i c e = new Hospita l1HornetQService ( ) ;
7 s e r v i c e . announce ( t . topicName , encounter ) ;
8 . . .
9 }

10 . . . // de f i n e s o ther methods
11 }

Listing 4.6: Extract of a manually developed class.

4.5.2 Project Selection

To evaluate the aforementioned hypotheses, I have run the approach implementation on sev-

eral case studies, including two examples inspired from the literature, namely MIDAS [43]

and Lunar Lander [107]. More usefully, I applied the proposed technology against the needs

of a representative web-based, distributed software system. To this end, I have adopted

the CyberHealth system as a challenging problem for the proposed technology. This sys-

tem is meant as an operational model for a possible future national cyber-infrastructure

for healthcare data liquidity and service integration. As discussed in section 4.4, its de-

velopment has involved the progressive introduction of widely used platforms, making it a

reasonable subject for evaluation of the proposed approach.

4.5.3 Case Study Planning and Execution

The experimental procedure was to migrate the initial version of CyberHealth to a sub-

stantially synthesized version, then to evolve the result through additional architectural

enhancements, while measuring key parameters. To test the first hypothesis—technical

feasibility—I attempted to develop a working tool. I also assessed the range and industrial

importance of the platforms used in development of the system, the size of platforms and

architectural specifications, and the difficulty and cost to develop these models. To test

the second hypothesis—using object-oriented frameworks controlled the impacts of changes

in synthesized code—for each of three significant changes to the system, I measured lines

of code changed in the architectural model, lines of code changed in mapping specifica-
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tions, lines of code changed in synthesized architectural code framework, and lines of code

that had to be changed by hand. To test the third hypothesis—adequacy of synthesizer

performance—I measured the computational time required for deriving architectural code

frameworks.

The execution of this case study involved development of specifications for several plat-

forms, as well as application-specific architectural models. I studied how platforms were

used in the hand-crafted version and extracted usage patterns as design fragments. I de-

veloped an initial version of the architectural model for the system by reverse engineering

of the hand-crafted version, abstracting key entities and connections. I evolved the ar-

chitectural model through several stages as we sought to satisfy increasingly demanding

requirement, such as the added support for multi-party authentication. After each change

to the architectural model I used Pol to synthesize a corresponding code framework, and I

adapted the hand-crafted application code as required by changes to the underlying code

framework.

4.6 Results and Interpretation

Executing the case study produced measurement data that I report and interpret in this

section. I address each hypothesis in turn.

Synthesis without Custom Generators This work demonstrates the technical feasi-

bility of specification-driven architectural code synthesis without the need for custom code

generators tailored to particular architectural styles, architectures, platforms, or frame-

work usage patterns. A combination of formal application architecture and platform mod-

els, implementation mappings, and design fragments suffice. We interpret our evidence as

providing fairly strong support for our hypothesis of technical feasibility.

The architectural model for the application under consideration, ended up at about 300

lines of Alloy code and 50 signatures. The Restlet, OAuth, CometD and HornetQ models

are about 90, 80, 50, and 80 lines, respectively. The specifications defining our architectural
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style are about 400 lines of Alloy. The CyberHealth implementation is over 12 thousand

lines of code with more than 34% synthesized. This code implements key crosscutting

decisions in a consistent, trustworthy manner, modulo possible errors in hand-crafted code

fragments. I also measured the execution coverage of synthesized code. More than 80% of

synthesized code is executed during routine runs. Speaking subjectively, I found the ability

to evolve the architecture and to re-synthesize a complex and substantial part of the code

base to be useful. Regarding the effort required to support a new platform, it typically

took a few days to develop a new model and mappings. The challenge was not so much in

writing Alloy as in understanding the platform and how it will be used.

I interpret these data as suggesting that synthesis of architectural code skeletons within

a hybrid automated-manual, evolutionary development process is an approach worth ex-

ploring further. Consolidating the prototype technology and assessing its use in field studies

would be a natural next step for this research.

Manageability of System Evolution Architectural change in complex software is com-

mon if not inevitable [55]. One of the goals was to limit the amount of hand-written code

modifications required when an architectural code framework is resynthesized. The ap-

proach was to have synthesized code present an understandable interface to hand-written

code in the form of an object-oriented framework. To assess how well this works, I con-

ducted three small experiments. Figure 4.5 summarizes the results. Columns represent lines

of code changed in the architectural specification, mapping specifications, the synthesized

code framework, and hand-written code, respectively. The set of implementation mapping

specifications and binding definitions are collectively referred to as Mapping.

Experiment 1: Adding Support for Server-push technology. In an early version of Cyber-

Health, components pulled resource representations from servers using a pure REST style.

Now push-based web messaging technologies are important. I changed the architectural

style and model to use such technology for eager updating of client views. Components

now publish events when their states change. Subscribers express interests in classes of
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Arch. Mapping Syn. Dev.

Exp. 1 40 52 450 96

Exp. 2 12 16 108 0

Exp. 3 84 49 704 570

Figure 4.5: Experiments statistics: each cell corresponds to the LOC modifications for the
element and experiment given on the axes.

events, and receive notifications for matching events. To extend the synthesis technique to

such functions, I modeled the server-push web messaging middleware as a connector type

[86, 91] and added the ServerPushConnector signature as an extension of the Connector

signature in the CH style module.

Next I developed a model of the CometD platform as a widely used implementation of

this technology, and refined the implementation mapping and the bindings file by adding

a set of new constraints to specify the relationships required to hold between elements

of the architectural model and elements of the CometD framework. These changed pro-

duced 450 new lines of synthesized code, declaring and initiating CometD channels, a

CometdApplication resource that manages those channels, and a servlet that initiates the

CometdApplication resource. I had to modify about 100 lines of hand written code to push

specific messages to CometD service channels. The system continued to support pull-based

communication through REST APIs, so no code had to change in that area of the system.

Experiment 2: Adding Support for Logging. Next I modified the CyberHealth system

so that hospital components log requests received by their ports. I added a Log field to the

Process signature, to specify the logging level for a particular process, and a corresponding

binding definition to the bindings declaration file. The regenerated code supports logging

with no changes in hand-written code. Here connections to aspect-oriented programming

become evident.

Experiment 3: Modifying Dataflow Protocol. An early version of the system supported a

channel per patient, to which medical record updates for a patient would be pushed. When

a patient visited a hospital, the hospital would publish an encounter record on that patient’s

channel. Entities such as the personal health record service would receive notifications of
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these updates. Later we decided to change the system so that channels are created by user

request through the principal control system (PCS). Components publish/receive to/from a

given channel only if a principal establishes the appropriate connections through the PCS.

Starting from the architectural model, I added a protected port to the component

description of providers, such as hospitals, through which the PCS requests the provider

to publish record updates to a channel. This is a protected port because as unauthorized

clients do not have access to it. I also added a protected port to the component description

of data receivers through which the PCS requests the data receiver component to subscribe

to a channel. In the mappings, I added new rules and bindings for mapping the architecture

to the constructs provided by the OAuth platform. Resynthesis of the architectural code

framework generated about 700 LOC scattered in several framework classes, providing

support for the protected dataflow protocol based on the OAuth framework. The developer

needed to develop details of the application logic, which in this case required about 570

lines of hand-written code.

Overall, the experiments and our experience have provided support for the hypothesis

that the use of an object-oriented framework approach to separating synthesized and hand-

written code was consistent with a manageable change process. Architectural changes do

not result in any overwriting of the hand-written code for a system. This approach is

different from approaches that generate code skeletons that are to be filled by developers,

in many of which, regeneration overwrites hand-crafted code. The technique certainly does

not completely insulate hand-crafted code from changes in the architecture and platforms.

In general, developers will have to adapt their code to the new framework code. Of course,

they would have to do this if new underlying code were produced by hand, too. When the

architectural code framework is regenerated, the compiler was often helpful in revealing

mismatches between the hand-crafted code and regenerated code. A good topic for future

work would be to tell developers more precisely which code might have been invalidated.
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Performance To measure performance, I recorded the computational time required to

synthesize architectural code frameworks within an Alloy scope large enough to admit

non-empty solutions to given constraints. The scope states the maximum number of archi-

tectural elements or framework constructs of each type in the case of architectural models

or framework instances. I used a PC with an Intel Core i5 2.67 Ghz processor and 4 GB of

main memory, with SAT4J as the SAT solver. I conducted measurements over an increas-

ing scope, from at most 10 instances for each type to at most 30. The slowest synthesis

time (for a bound of 30 elements) was about 100 seconds, confirming that the proposed

technology based on a bounded model checker is reasonable at the scale of our experiments.

Moreover, given the apparent trend of advancements in SAT solvers we were witnessing in

recent years, similar improvements in the performance of formal application synthesis seem

to be expectable.

4.7 Discussion

In this section, I present an overall evaluation of the ideas, experimental approach, and

results, addressing some possible objections to this work and conclusions.

Partial Synthesis. This is not an attempt to raise the level of abstraction entirely

to the model level. Rather, it is a pragmatic attempt to automate a substantial part of

code production, balanced against the need for simple modeling languages, targeted at

capturing essential application structures, and to avoid the burdens of having to hand-craft

synthesizers customized to particular source and target environments. The more detailed

the input models, the more detailed a mapping specification a user can develop, and the

more complete the code that can be generated. Architectural models generally exclude

application details that are not important at the architectural level [80]. A key supposition

in this work is that one can generate significant parts of an application in this style, and

that, all things being considered, it can be valuable to do so.

Tractable specification languages vs. General-purpose modeling languages. This work
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suggests that tractable but lightweight formal languages might have a useful role to play in

program synthesis. Limited but clean formalisms can perhaps replace broad-spectrum but

complex and semantically messy notations, with general-purpose analyzers replacing hand-

crafted transformers, at the cost of incomplete synthesis. I trade away completeness and

richness of synthesis for simplicity of modeling languages and tools, avoiding the need for

custom synthesizers. Moreover, this approach involves more than synthesis. It also focuses

on ways that partial synthesis can be embedded in an architecturally-focused, evolutionary

development process. In other work [17, 22], I have also addressed synthesis of spaces in

the presence of under-constrained mappings and automated trade space tradeoff analysis.

Merging these lines of work would be a valuable avenue for future work.

Benefits of using architectural styles. This work started with the use of architectural

styles to support code synthesis. The main benefit we have seen so far is that we can

be assured that the intermediate architectures that we generate are absolutely consistent

with the rules of given styles. Synthesized code is too, modulo possible errors in our design

(code) fragments. In the future, I imagine to prove additional properties about architectural

styles, so that architects are relieved of the burden of having to prove these properties for

each implemented program. I believe that the use of fully formal and analyzable modeling

notations creates valuable opportunities in this dimension. Earlier work by other researchers

supports this idea.

Readability of formal specifications. The choice of identifier names, indentation and

comments are significant for readability [30]. I specify architecture and platform models and

mapping specifications in Alloy using the exact name of platforms classes and methods for

their corresponding Alloy entities. In specifying mappings between architectural elements

and platforms constructs, I employ concepts from the architectural style literature. All in

all, I have found them readable and producible: more readable and easier to modify than

code.

Architecture-to-platform mappings. By being able to mix code generation capabilities

with declarative specifications, the developer can easily express otherwise tacit knowledge
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of architecture-to-platform mappings; architectural decisions and those regarding imple-

mentation technologies are decoupled, making both easier to evolve. To the extent that

such mappings can be matured into richer, general forms, they would enable capturing of

important software design knowledge.

Traceability Support. Having architecture as an intermediate representation promotes

the traceability of implementation artifacts to architectural artifacts and to abstract ap-

plication elements. Using Pol, traceability links can be obtained by a query over formally

synthesized models. For example, the query, TopicPublisher.destination.handle, returns a

set of EventBus connectors handled by Topic constructs from the HornetQ platform, where

TopicPublisher message producers have those Topics as destinations.

Tool support. Using the current tool, a developer must specify bindings manually. Other

work suggests that known good patterns for using frameworks can be detected automati-

cally [59]. Although I have not yet experimented with such techniques, they seem worth

investigating in future work, to relieve developers from having to capture design fragments

by hand.

4.8 Summary

This chapter contributes an approach to using program synthesis within an evolutionary

software development process, based on trading away completeness of synthesis for simplic-

ity and rigor in modeling notations and use of general-purpose solvers in place of costly

transformation engines. The experimental data suggests that this is a line of work worth

exploring further, with potential for industrial impact.





Chapter 5

Formal Synthesis of Tradeoff Spaces for

Object-Relational Mapping

In this chapter, I present Spacemaker. This is the third experiment the I have conducted

in the context of this dissertation. The specific aim of this system is to reduce the time

to develop relational schemas and associated OR mappings, while improving quality of

mappings (in conformance to formal correctness constraints), and to enable designers to

make quantitative tradeoffs in areas in which they have previously made decisions based

on intuition or training. To this end, I develop a formally precise approach for synthesis

of large spaces of such mappings, and classifying individual mappings in these spaces into

multidimensional quality equivalence classes. This work, among other things, provides

evidence in support of reducing the costs of development by reducing the need for traditional

hand coding of translators. Specifically, formal specifications of OR mapping strategies

along with the application object model enables automating the process of synthesizing the

tradeoff spaces of corresponding relational schemas. In support of the claim of broadening

the applicability of MDD in various stages of the software development lifecycle, this work

targets development of effective persistence layers for object-oriented applications. Finally,

this aspect of my research shows the ability of the overall approach to formally validate

correctness of mapping rules. I express essential properties expected to hold as analyzable

specifications. I then use automated analysis to check them. The rest of this chapter is

75
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organized as follows. Section 5.2 presents the approach. Sections 5.3 and 5.4 reports and

discusses data from the experimental testing of the approach. Finally, Section 5.5 concludes

with an outline of future work in line this research component.

5.1 Motivation and Research Problem

Relational database and object-oriented software development are both playing central roles

in their respective areas. Object-oriented applications often need to use relational databases

for persistent storage. Transformations between instance models in these two paradigms en-

counter the so-called impedance mismatch problem [63]. Object-relational mapping (ORM)

systems are now widely used to bridge the gap between object-oriented application mod-

els and relational database management systems (DBMS), based on application-specific

mapping definitions on how object models are to be mapped to database structures.

Developing object-relational (OR) mappings that achieve desirable quality attributes

for object oriented applications is difficult, tedious, and costly. Today one has to choose

between automatic generation of mappings using pure mapping patterns [32, 63], or the

manual design of mixed mappings, in which different mapping strategies are applied to

individual classes rather than to entire inheritance hierarchies. Producing pure mappings

automatically is easy, but it often leads to sub-optimal results. Developing mixed mappings

by hand can achieve much higher quality, but it is hard and error-prone. Among other

things, it requires a thorough understanding of both object and relational paradigms, of

large spaces of possible mappings, and of the tradeoffs involved in making choices in these

spaces.

5.2 Approach

I present the approach in four parts. I first introduce Alloy-OM, a domain-specific language

that I developed within the Alloy language to let developers specify object models in Alloy.

Next, I present formalizations of object-relational mapping strategies, and then use these
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formalizations to automate synthesis of quality equivalence classes of OR mappings. Finally,

I describe algorithms that are important for the scalability of the approach. In a nutshell,

they serve to decompose large object models into smaller components for which mapping

problems can be solved independently. This element of the work helps avoid combinatorial

explosion in constraint solving. Figure 5.1 shows the high-level view of the spacemaker

tool-suite implementing the approach.

Figure 5.1: High-level view of the spacemaker tool-suite.

5.2.1 Alloy-OM

The Alloy object model (Alloy-OM) is a domain specific language (DSL), I developed in

Alloy. The user of Spacemaker then can describe object models in the Alloy-OM DSL. The

Alloy-OM meta-model has three main constructs: Class, Attribute and Association. For

each class in the object model, there is a corresponding “Class” signature in the Alloy-OM

model. Similarly, for each attribute of a given class in the object model, the corresponding

Alloy-OM Class signature contains a corresponding Alloy-OM Attribute as a member of its

attribute set. Finally, each association in the object model has a corresponding “Associa-

tion” signature in the Alloy-OM model. In the following, I will describe details of each of
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1 one sig Order extends Class {}{
2 a t t rS e t = orderID + orderValue
3 id = orderID
4 i sAbs t r a c t = No
5 no parent
6 }

Listing 5.1: Order class in Alloy-OM.

these elements.

5.2.1.1 Class Definition

Each Class signature in the Alloy-OM model has a set of fields: attrSet, id, parent and

isAbstract. The “attrSet” field in each Class signature specifies the set of attributes as

defined for the corresponding class in the object model. The “id” field in the Class sig-

nature represents the identifier of the corresponding class. The inheritance relationship in

the object model is represented by the “parent” relation in the Alloy-OM model. Specif-

ically, the inheritance relationship between classes c and p, where c inherits from p, will

represent by the expression of “parent = p” specified within the c class signature definition.

Finally, “isAbstract” field of each Alloy-OM class signature denotes whether the class under

consideration is abstract or not.

Figure 5.2: customer-order object model.

To make the idea concrete, Figure 5.2

shows an object model diagram for a simple

customer-order example. The object model

contains three classes of Order, Customer,

and PreferredCustomer. There is a one-

to-many association between the Customer

and Order classes, and PreferredCustomer

inherits from the Customer class.

To describe each class in the Alloy-OM,

I define a signature that extends “Class” signature defined within the Alloy-OM meta-

model. For example, Listing 5.1 represents “Order” class in Alloy-OM DSL.

The order class has two attributes of “orderID” and “orderValue”, which are assigned
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1 one sig PreferredCustomer extends Class {}{
2 a t t rS e t = di scount
3 parent = Customer
4 i sAbs t r a c t = No
5 id = customerID
6 }

Listing 5.2: PreferredCustomer class in Alloy-OM.

to the “attrSet” field of the Order class. The id field specifies the orderID as the identifier

of this class. The last two lines of the Order signature specification denote that Order is

not an abstract class and has no parent. Similarly, the following code snippet represents

“PreferredCustomer” signature definition. According to Fig. 5.2, this class inherits from

the Customer class. The expression on line 3, thus, specifies Customer as the parent of the

PreferredCustomer class.

5.2.1.2 Attribute Definition

To describe each attribute in the Alloy-OM, I define a signature that extends the cor-

responding data type signature. Alloy-OM DSL contains a set of predefined data types,

namely Integer, Real, string and Bool. As a concrete example, orderValue is an attribute

of type Real for the Order Class. The following code snippet represents its specification in

Alloy-OM: one sig orderValue extends Real

The user can also specify a new data type by defining an abstract signature that extends

the ”Type” signature. The following expression defines a data type named NewDataType.

abstract sig NewDataType extends Type

5.2.1.3 Association Definition

Each Association signature in the Alloy-OM model has four fields: src, dst, src multiplicity

and dst multiplicity. The src and dst fields of each Association signature specify the

source and destination classes for that association, respectively. Association multiplicity

defines the number of object instances that can be at each end of the association. The

src multiplicity and dst multiplicity fields represent Association multiplicities of source

and destination classes respectively, and can have values of either ONE or MANY.
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As a concrete example, to describe the association between customer and order in the

Alloy-OM model, I define a corresponding signature that extends “Association” signature.

The code snippet of Listing 5.3 represents CustomerOrderAssociation specification in the

Alloy-OM. The above specification states Customer and Order classes as source and desti-

nation of the CustomerOrder association, respectively. The CustomerOrderAssociation is

a “one-to-many” association, which is specified using src multiplicity and dst multiplicity

fields.

Now, we have all the elements to specify the customer-order object model diagram in

the Alloy-OM DSL. Putting all together, the specification of the Alloy-OM model for the

customer-order example is represented in Fig. 5.3. The alloy module starts by specifying

the name of the model, here module customerOrderObjectModel. We then import the

Alloy-OM declaration module by the following expression: open Declaration. The rest of

the module specifies three classes, their attributes and the association between Customer

and Order classes.

5.2.2 Formalization

The issue of mapping an object model to a set of relations is described thoroughly in the

research literature [32, 63, 68, 95]. To provide a basis for precise modeling of the space of

mapping alternatives, I have formalized OR mapping strategies in an appropriate level of

granularity. As an enabling technology, I chose Alloy [64] as a specification language and

satisfaction engine for three reasons. First, its logical and relational operators makes Alloy

an appropriate language for specifying object-relational mapping strategies. Second, its

ability to compute solutions that satisfy complex constraints is useful as an automation

mechanism. Third, Alloy has a rigorously defined semantics closely related to those of

1 one sig CustomerOrderAssociat ion extends Assoc i a t i on {}{
2 s r c = Customer
3 dst = Order
4 s r c mu l t i p l i c i t y = ONE
5 d s t mu l t i p l i c i t y = MANY
6 }

Listing 5.3: CustomerOrder Association in Alloy-OM.
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Figure 5.3: customer-order Alloy-OM model.

relational databases, thereby providing a sound formal basis for our approach.

The principal mapping strategies are explained in terms of the notations suggested by

Philippi [95], and Cabibbo and Carosi [32]. To manage association relationships, I have

formally specified three ORM strategies of own association table, foreign key embedding and

merging into single table. I have also defined three more ORM strategies for inheritance

relationships: class relation inheritance (CR), concrete class relation inheritance (CCR)

and single relation inheritance (SR). Furthermore, as the aforementioned ORM strategies

for inheritance relationships are just applicable to the whole inheritance hierarchies, I have

defined extra predicates for more fine-grained strategies: Union Superclass, Joined Subclass

and Union Subclass, suitable to be applied to part of inheritance hierarchies, letting the

developer design a detailed mapping specification using the combination of various ORM

strategies. To make the idea concrete, I illustrate the semantics of one of these strategies
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1 pred UnionSubclass [ c : Class ]{
2 c in ( i sAbs t r a c t .No) =>{
3 one Table<: c . ˜ tAs so c i a t e
4 }
5 ( c . i sAbs t r a c t=No) =>{
6 a l l a : Att r ibute | a in c . a t t r S e t =>{
7 one f : F i e ld | f . fA s s o c i a t e=a
8 && f in ( c . ˜ tAs so c i a t e . f i e l d s ) }
9 }

10 ( c . i sAbs t r a c t=No)&&(c . ˆ parent != none) =>{
11 a l l a : Att r ibute | a in c . ˆ parent . a t t r S e t =>{
12 one f : F i e ld | f . fA s s o c i a t e=a &&
13 f in ( c . ˜ tAs so c i a t e . f i e l d s ) }
14 }
15 ( c . ˜ tAs so c i a t e ) . fore ignKey = none
16 . . .
17 }

Listing 5.4: Part of the Alloy predicate for the UnionSubclass strategy

in the following.

Listing 5.4 partially outlines the Alloy predicate for the Union Subclass strategy, where

each concrete class within the hierarchy is represented by a separate table. The strategy

predicate then states, in lines 5–14, that each table encompasses relational fields corre-

sponding to both attributes of the associated class and its inherited attributes. As such,

to retrieve an individual object, only one table needs to be accessed. Finally, this strategy

implies no referential constraint over the mapped relations.

5.2.3 Design Space Exploration

In the previous section, I showed how analyzable specifications can be used to formalize OR

mapping strategies. In this section, I tackle the other aspect that needs to be clarified: how

one can apply a design space exploration approach to generate quality equivalence classes

of OR mappings based on those specifications.

A design space is a set of possible design alternatives, and design space exploration

(DSE) is the process of traversing the design space to determine particular design alterna-

tives that not only satisfy various design constraints, but are also optimized in the presence

of a set of objectives [98]. The process can be broken down into three key steps: (1) Mod-

eling the space of mapping alternatives; (2) Evaluating each alternative by means of a set

of metrics; (3) Traversing the space of alternatives to cluster it into equivalence classes.
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Modeling the Space of Mapping Alternatives

For each application object model, due to a large number of mapping options available

for each class, its attributes and associations, and its position in the inheritance hierarchy,

there are several valid variants. To model the space of all mapping alternatives, I develop a

generic mixed mapping specification based on fine-grained strategies formalized in previous

section. This generic mixed mapping specification lets the automatic model finder choose

for each element of the object model any of the relevant strategies, e.g. any of the fine-

grained generalization mapping strategies for a given class within an inheritance hierarchy.

Applying such a loosely constrained mixed mapping strategy into the object model leads

to a set of ORM specifications constituting the design space. While they all represent the

same object model and are consistent with the rules implied by a given mixed mapping

strategy, they exhibit totally different quality attributes. For example, how inheritance

hierarchies are being mapped to relational models affects the required space for data storage

and the required time for query execution.

I called this mapping strategy loosely constrained because it does not concretely specify

the details of the mapping, such as applying, for example the UnionSubclass strategy to a

specific class. An expert user, though, is able to define a more tightly constrained mixed

mapping by means of the parameterized predicates Spacemaker provides, as I demonstrate

in the next section. The more detailed the mapping specifications, the narrower the outcome

design space, and the less the required postprocessing search.

Measuring Impacts of OR mappings

Mapping strategies have various kinds of impacts in terms of quality attributes of applica-

tions. There are several approaches proposed in the literature dealing with the challenge

of defining metrics for OR mapping impacts on non-functional characteristics. It has been

shown that maintainability, storage space and performance, among the set of all quality

attributes defined by the ISO/IEC 9126-1 standard, are characteristics significantly influ-

enced by OR mappings [60]. For each of those attributes, I use a set of metrics suggested by
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Holder et al. [60] and Baroni et al. [26]. The metrics are Table Access for Type Identifica-

tion (TATI ), Number of Corresponding Table (NCT ), Number of Corresponding Relational

Fields (NCRF ), Additional Null Value (ANV ), Number of Involved Classes (NIC ) and

Referential Integrity Metric (RIM ).

To measure these metrics, I developed a set of queries to execute over synthesized

alternatives. For brevity, and because it suffices to make the point, I concisely describe one

of these metrics and the corresponding query in the following. Spacemaker supports the

others as well.

The Number of Corresponding Relational Fields (NCRF) metric specifies the extent of

change propagation for a given OR mapping. Specifically, the NCRF metric manifests the

effort required to adapt a relational schema after applying a change, such as inserting or

deleting an attribute, over a class. According to the definition, given a class C, NCRF(C)

specifies the number of relational fields in all tables that correspond to each non-inherited,

non-key attribute of C. The specification of a query we designated to measure the NCRF

metric over synthesized alternatives is given below:

NCRF(C) = #(C.attrSet - C.id).∼fAssociate.∼fields

The Alloy dot operator denotes a relational join. While attrSet specifies a set of non-

inherited attributes of a class, fAssociate is a relation from a table field to its associated

class attribute. The query expressions then, by using the Alloy set cardinality operator

(#), defines the NCRF metric.

Exploring, Evaluating and Choosing

The next step is to explore and prune the space of mapping alternatives according to quality

measures. Spacemaker partitions the space of satisfactory mixed mapping specifications

into equivalence classes and selects at most a single candidate from each equivalence class

for presenting to the end-user.

To partition the space, Spacemaker evaluates each alternative with respect to previously

described relevant metrics. So each equivalence class consists of all alternatives that exhibit
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the same characteristics. Specifically, two alternatives a1 and a2 are equivalent if value(a1,

mi) = value(a2, mi) for all metrics (mi). Because equivalent alternatives all satisfy the

mapping constraints, it suffices to select one alternative in each equivalence class to find a

choice alternative. Given that quality characteristics are usually conflicting, there is gen-

erally no single optimum solution but there are several pareto-optimal choices representing

best trade-offs.

Back-end Parser

Having computed satisfying solutions, the back-end parser component parses and trans-

forms these solutions from low-level, XML formatted Alloy objects to SQL counterparts.

This back-end parser enables integrating the formally precise object-relational mapping

synthesis approach with industrial OR mapping tools.

5.2.4 Model Splitting

As with many formal techniques, the complexity of constraint satisfaction restricts the

size of models that can actually be analyzed [45]. This approach also requires an explicit

representation of the set of all quality equivalence classes of mapping alternatives, which in

general grows exponentially in the number of elements in a model.

To address these scalability problems, I split the object model into sub-models. The key

idea is that since for association relationships with cardinality of many-to-many, there is

just one applicable mapping strategy, i.e. own association table, I make use of such relations

to split the object model into sub-models.

I consider an object model as a graph, GobjModel =< V,E >, where nodes V represent

classes, and there is an edge < vi, vj > joining two nodes vi and vj if there is a direct

relationship including association and generalization link between them. I assume that

GobjModel is connected. Otherwise, I consider each sub-graph separately. An edge joining

two nodes vi and vj in a graph is a bridge if removing the edge would cause vi and vj to lie

in two separate sub-graphs [37]. A bridge is the only route between its endpoints. In other
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words, bridges provide nodes with access to parts of the graph that are inaccessible by other

means. So, to decompose a graph GobjModel, I remove all bridges of type many-to-many

association.

Figure 5.4: The ecommerce object model.

To make the idea concrete I consider the ecommerce domain model adopted from Lau

and Czarnecki [75]. According to the diagram shown in Figure 5.4, there are two such

bridges: < Product, Asset > and < Item,Product >. By removing those bridges we

obtain three smaller sub-graphs. The gain then comes from the reduction in the sizes of

the constraint solving problems. That is, I replace a large constraint solving problem with

smaller and more manageable problems that can in particular be addressed by the formally

precise synthesis technique.

5.2.5 Formal Validation of Mapping Rules

Formalizing ORM strategies in an analyzable specification language not only enables auto-

matic synthesis of mapping alternatives for each application object model, but also provides

the basis to formally validate correctness of mapping rules. By expressing essential prop-

erties of object-relational mappings as analyzable specifications, we can use automated

analysis to check them, albeit within limited scopes. We specify such implications required

to be checked as assertions. These assertions express properties expected to hold. In other

words, assertions state a set of constraints intended to follow from the specifications of the

model [64].
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1 a s s e r t noTableForAbstractClasses {
2 a l l c : Class | c . i sAbs t r a c t=Yes => no c . ˜ tAs so c i a t e
3 }
4
5 a s s e r t t a b l eF i e l d s {
6 a l l c : Class | c . ˜ tAs so c i a t e . f i e l d s in
7 c . ˜ tAs so c i a t e . tAs so c i a t e . a t t rS e t . ˜ fA s s o c i a t e + c . ˜ tAs so c i a t e . fore ignKey + DType

. ˜ fA s s o c i a t e
8 }

Listing 5.5: Two examples of assertions

Alloy is based on relational logic which is undecidable. As such, it is impossible to auto-

matically prove whether an assertion holds for every possible case or not. Rather, the Alloy

Analyzer checks the assertion against a huge set of model instances that can be considered

as test cases. More precisely, the Alloy Analyzer is a bounded checker, guaranteeing the

validity of assertions only within a bounded instance space. If the assertion does not hold

for a certain instance, Alloy Analyzer reports it as a counterexample. Counterexample is a

particular model instance that makes the assertion false. When the analyzer finds no coun-

terexample it means that the assertion holds for all considered model instances. That means

the assertion is valid within the specified scope. Spacemaker bounds execution of assertions

with the ultimate scope of elements considered for the synthesis of application-specific OR

mappings, we thus expect the validity of assertions for all generated mappings.

To make the idea concrete, I illustrate the contents of two assertions, represented in

Listing 5.5, in the following.

The first assertion states that no table should be associated to abstract classes. The

next assertion ia about the relational fields of each table. The first part specifies that each

table can encompass relational fields corresponding to attributes of all relevant classes. I

specify that expression as “c. tAssociate.tAssociate.attrSet.∼fAssociate” in Alloy, rather

than simply defining it as “c.attrSet.∼fAssociate”. This is because in case of applying the

UnionSuperclass strategy, one table is assigned to a set of classes within an inheritance

hierarchy, and the associated class contains fields for attributes of all those classes. The

“tAssociate” is a relation from a table to a corresponding class. Using the reverse join

operator, ∼, “c.∼tAssociate” states the table associated to the class c, and then another
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join, “.tAssociate”, returns a set of all classes handled by that table. In some cases, the

associated table also contains a separate field to indicate the most specific class for the

object represented by each tuple. This field is indicated as DType in the assertion under

consideration.

To check assertions, we issue the check command to the analyzer, that instructs the

analyzer to search for situations where the assertion set is violated. In conducted experi-

ments, the Alloy Analyzer reports no counterexamples to the assertions, after checking all

possible model instances up to the scope within which OR mappings are synthesized, which

confirms the validity of assertions in generated models.

5.3 Evaluation

The claim I make for this work is twofold: (1) It is feasible to formalize the correctness

constraints for object-relational mapping strategies, thereby to automate the synthesis of

an exhaustive set of mixed object-relational mapping candidates, and that it is possible

to statistically analyze each of the candidates in dimensions of six major mapping quality

metrics, and thereby to cluster them into quality equivalence classes; (2) the performance

of the technology implementation based on a bounded model checker is adequate (on the

order of minutes) to support synthesis of modest applications (with up to 40 tables).

To test the feasibility hypothesis, I develop a prototype tool that implements it, called

Spacemaker [8]. I show that the ideas are practical by applying Spacemaker to several case

studies from the object-relational mapping literature. I then compare the discrepancies

between our formally derived OR mappings and the manual mappings published in the

literature. The differences revealed problems with their mappings, suggesting again that

manual development of OR mappings can be error-prone.

Figure 5.5 shows two applications of mixed ORM strategies, adopted from Holder et

al. [60]. White boxes represent classes, while boxes having grey titles represent correspond-

ing mapped tables. Black and white arrows represent mapping and inheritance relation-
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Figure 5.5: Examples of mixed mapping strategies

1 module personObjectModel
2 open objectModel
3
4 one sig Person extends Class {}{
5 a t t rS e t = i d e n t i f i e r+name
6 id=i d e n t i f i e r
7 no parent
8 i sAbs t r a c t = No }
9

10 one sig name extends Attr ibute {}{
11 type in s t r i n g }

Listing 5.6: Person object model in Alloy-OM

ships, respectively. Finally, foreign keys as well as the applied mapping strategies are also

mentioned in the diagrams.

Listing 5.6 formally describes part of the personObjectModel according to the diagram.

At the top, it imports the declaration of objectModel, and then defines Person and its

attribute, name, using signature extension as a subtype of Class and Attribute types. The

other characteristics of the class are also specified.

To specify a mixed OR mapping, the developer can call fine-grained ORM strategies,

given as inputs those classes to be mapped in a specific manner. Spacemaker then automati-

cally generates the corresponding mapping specifications, should they exist. The followings

outline the high-level definition of mapping specifications for Figure 5.5a.

open ORMStrategies
open personObjectModel

UnionSubclass [ Manager ]
Jo inedSubc las s [ Clerk ]
UnionSuperc lass [ Employee ]
UnionSubclass [ Student ]
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Figure 5.6 illustrates the computed result for the example of Figure 5.5a. The diagram is

accurate for the result automatically computed, but I have edited it to omit some details for

readability (fields of tables and primary key relationships, for example). In this diagram,

Table 1 is associated to Person and Employee classes, which are being mapped by the

union superclass strategy. Separate tables are associated to both Student and Manager

classes, according to the union subclass strategy. Finally, application of the joined subclass

strategy leads to a separate table for Clerk with a foreign key, omitted in the diagram, to

its superclass corresponding table.

Figure 5.6: Mapping diagram for Figure 5.5a derived automatically based on mixed map-
ping strategies of union superclass, joined subclass and union subclass

To enumerate the space of mappings for the given object model, I use the genericMixed-

Strategy, with the set of classes within the hierarchy as inputs. This generic strategy lets the

automatic model finder, here Alloy analyzer, choose for each class any of the fine-grained

strategies and to see whether their combinations applied to classes within the hierarchy is

satisfiable or not. Alloy guarantees that all computed mapping candidates conform to the

rules implied by mapping predicates formalizing correctness constraints.
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I used a PC with an Intel Core i5 2.67 Ghz processor and 4 GB of main memory, and

leveraged SAT4J as the SAT solver during the experiments. Given all the specifications and

mapping constraints, Spacemaker using the Alloy analyzer then generate 760,000 mapping

candidates, assess them, and reduce them to 40 equivalence classes, in less than 10 seconds.

The spider diagram, shown in Figure 5.7, illustrates the 6-dimensional “quality mea-

sures” for two mapping candidates represented in Figure 5.5. To display quality measures

in one diagram, I normalized the values.

Figure 5.7: Multi-dimensional quality mea-

sures for two mapping candidates

According to the diagram, if the de-

signer opts for the resource utilization, the

mapping depicted in Figure 5.5a would be

a better option. More specifically, with re-

spect to the ANV metric, representing addi-

tional storage space in terms of null values,

the mapping of Figure 5.7b requires more

wasted space. This is because instances of

four different classes, namely Person, Stu-

dent, Employee and Clerk, are stored to-

gether in a shared table. Thus, each row in

the shared table that represents an instance of the Student class, for example, contains a

null value at each relational field corresponding to the other classes. On the other hand,

if the designer opts for maintainability and performance, the mapping depicted in Fig-

ure 5.5b would be a better choice. More precisely, the mapping of Figure 5.5a negatively

affects the NCRF metric reflecting the effort required to adapt the relational schema. This

is partly because applying the UnionSubclass strategy results in duplication of relational

fields. With respect to the TATI metric which is a performance indicator of polymorphic

database queries, this mapping also poses performance problems.

Focusing on the second hypothesis, to test that Spacemaker is able to handle also non-

trivial OR mappings, I select an object model of a real ecommerce system [75]. This object
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model, shown in Figure 5.4, represents a common architecture for the kind of open source

and commercial ecommerce systems. It includes 15 classes connected by 9 associations and

consists of 7 inheritance relationships.

Without decomposition, the Alloy analyzer ran out of memory before synthesizing the

whole space of mapping alternatives. Given the splitting algorithm, we decompose the

object model to three sub-models and feed them into the Spacemaker.

Interpretation of data shows that similar to the former experiment, the synthesis time

for the Asset sub-model is in the order of seconds, but for the other two sub-models is in

the order of minutes. This is mainly because in the former case, the analyzer just considers

inheritance mapping strategies as there are no associations in those models, while in the

other models the constraints of both inheritance and association mapping strategies are

involved. So it takes more time for the model finder to generate satisfying solutions for

them.

As Spacemaker solves sub-models separately, the constraint solving bottleneck depends

on the largest sub-model to solve. Although the number of valid solutions is high, i.e. hun-

dreds of thousands of satisfiable solutions, Spacemaker is able to generate quality equiva-

lence classes of mappings in an acceptable amount of time, which confirms that the proposed

synthesis technology is feasible.

5.4 Discussion

This work shows that ORM strategies can be formalized and implemented as executable

specifications, and that Spacemaker can automatically synthesize and prune the space of

mapping alternatives in an effective manner. The formal recapitulations of previous studies

also reveals some problems. For example, the referential integrity constraint in Figure 5.5b,

is not mentioned in the source reference [60], but exists in the mapping specifications

automatically derived using Spacemaker. Discovery of such inconsistencies provides an

example of how formal synthesis technique can help designers in an error-prone task of
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developing OR mappings.

Overall, this work appears to support the idea that shifting the responsibility of find-

ing an optimized mapping specification from technicians—who better understand map-

ping strategies, their implications, and techniques for mapping object models to relational

models—to the domain experts, more aware of requirements and specifications is a plausible

aspiration.

5.5 Summary

While a wealth of research has been performed on bridging application models and

databases to address the impedance mismatch problem, little has been done on automated

support for the derivation of mapping specifications for ORM frameworks. This chapter

presents a novel approach that substantially supports automatic generation of such mapping

specifications to deliver the quality of expert-hand-crafted mappings and the productivity

benefits of fully automated techniques. This approach ultimately promises to reduce the

engineering personnel costs involved in producing high-quality modern software systems.

The new mapping approach exposes many interesting research challenges. These challenges

include exploring symmetry breaking techniques customized for the specific domain of OR

mappings to reduce the size of the solution space and integrating the mapping compiler

with industrial object-relational mapping tools.





Chapter 6

Evaluation of this Research

In this chapter, I first summarize how well the thesis of this dissertation is supported by

the evidence and analyses presented. After that, I evaluate the novelty, potential, as well

as the shortcomings and remaining problems in the proposed approach.

6.1 Thesis and Evidence

The overall goal of this research is to enable rapid and reliable model-driven development

of software applications, while broadening its applicability in various development phases.

To this end, I proposed a novel approach to substantially automating the synthesis process

without domain-specific languages or hand-crafted translators. The main claim at the

heart of this thesis is that it is feasible to use analyzable formal specification languages for

encoding general MDD abstractions and to use associated formal analyzers for synthesis

purposes. I evaluated the thesis in three dimensions of software synthesis: synthesizing

architectural models from abstract application models, synthesizing partial code frameworks

from application architectures, and synthesizing object-relational mapping tradeoff spaces

for object-oriented application architectures.

Chapter 2 presents the first experiment with my approach focusing on formal synthesis

of software architectures. This work shows that the vision of formally precise refinement of

application models into architectural models in various styles is feasible. It also supports a
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new kind of model-based engineering tool: one that is parameterized by input specifications

of architectural styles and application types and that is then capable of supporting the

editing of models of that type and automatically mapping them to architectures in the

given style.

The evaluation strategy for the first claim includes two parts: First, I evaluated the

feasibility of the proposed method for architecture synthesis by conducting a set of ex-

periments, replicating prominent earlier architectural studies from the literature using our

formal approach. I offered support in the form of a set of implemented architectural maps.

The experiments have shown that architectural maps can be formalized and implemented

as analyzable specifications, and automatically generated results are consistent with the in-

formally produced results documented in the literature. Second, I developed a quasi-formal

description of the isomorphism between the separation of application and architecture con-

cerns and that which is central to MDD. I demonstrated the utility of this bridge in a

form of a model-based prototype tool. This tool combines major achievements in MDD,

including meta-modeling tools like the Generic Modeling Environment (GME), with major

results in software architecture, including formalization of architectural styles, and with

new synthesis concepts introduced in this work, to produce a novel and promising kind of

application modeling and transformation tool.

Chapter 3 has presented the evaluation of the second element of my thesis. The eval-

uation approach was to test the proposed technology against the needs of a representative

web-based, distributed software system. To this end, I have adopted the CyberHealth sys-

tem as a challenging problem for the proposed technology. This system is meant as an

operational model for a possible future national cyber-infrastructure for healthcare data

liquidity and service integration. Its development has involved the progressive introduction

of widely used platforms, making it a reasonable subject for evaluation of the synthesis ap-

proach. The experiments and our experience have provided support for the hypothesis that

practical synthesis of platform-specific frameworks from formal architectural specifications

without hand-crafted translators is feasible, and a hybrid automated-manual, evolutionary
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development process is an approach worth exploring further.

Chapter 4 has presented the evaluation of the third element of my thesis. The evaluation

strategy includes two parts: First, to evaluate its feasibility I developed a prototype tool,

Spacemaker [8], that implements the approach; by implementing the technique for OR

mapping tradeoff space synthesis and analysis, I demonstrated that the proposed idea is

tractable in computational terms [22]. I have then conducted formal validation of mapping

rules in terms of developing a set of assertions. I applied the technology implementation to

several case studies from the object-relational mapping literature [40,60], among others an

object model of an ecommerce system developed by Lau and Czarnecki [75], that represents

a common architecture for the kind of open source and commercial ecommerce systems.

During the experiments, I measured performance of the approach implementation based on

a bounded model finder by recording the computational time required for deriving the ORM

space. The experimental data shows that formalizing ORM strategies as well as application

object models as analyzable specifications enables us to automatically synthesize and prune

the space of mapping alternatives in an effective manner.

In summary, the specific goals set forth have been achieved and the evidence and anal-

yses presented have supported my thesis. However, there are still some limitations and

shortcomings which will be discussed in section 6.3.

6.2 Novelty and Potential

The work reported in this dissertation is novel in several important dimensions. Most

fundamentally, this work contributes a novel approach to automates software synthesis,

balanced against the need for custom-built modeling languages, and to avoid the burdens of

having to hand-craft synthesizers customized to particular source and target environments.

Second, the work on “effective separation of application essence from architectural

style”—discussed in Chapter 3—does not pursue incremental elaboration of established

research directions. Rather, it develops a novel formal account of mappings from appli-
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cation models to architectures in given architectural styles. Such a rigorous account of

mappings support automating the process of refining application models to architectures.

An important insight arising from this work is that while previous work formalized archi-

tectural styles, we need a new, parallel concept of application type. Application types serve

as source languages, and architectural styles as target in this work. Just as an architecture

in a given style can be seen as an instance of that style, and just as an architectural style

can be seen as a specification of the family of architectures in that style, we need to view

an application model as an instance of an application type, and to develop this concept

of application type as a formal specification of a family of application models. The idea

that there are types of applications, just as there are styles of architecture is not new, but

the formal development of this idea in this work is a novel contribution that can help to

advance work on taxonomies of application types.

Third, the work on specification-driven synthesis of architectural code frameworks—

discussed in Chapter 4— is novel in its formal underpinnings: that abstracting from appli-

cation details and focusing on essential aspects of the system, such as architectural aspects,

relieves the synthesizer of responsibility for full application synthesis, and in turn enables

the use of formal methods for modeling and synthesis. This work trades away complete-

ness and richness of synthesis for manageability of modeling languages and tools, avoiding

the need for custom synthesizers. This approach also makes otherwise tacit knowledge of

architecture-to-platform mappings explicit in the form of mapping predicates. To the extent

that such mappings can be matured into richer, general forms, they would enable capturing

of important software design knowledge.

This work has contributed potentials in several areas. One is that the emphasis of this

work on the partial formal synthesis points to the possibility of a re-conception of model-

driven software engineering [23]. The next chapter introduces and discusses a bottom-up

approach to model-driven development based on the key notion of partial synthesis.

Finally, regarding the work on synthesis of tradeoff space for OR mapping, the formal

account of ORM strategies enables the rigorous and automatic generation of OR mappings
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for each application object model. It promises to deliver the quality of expert-hand-crafted

mappings and the productivity benefits of automated techniques. This work appears to

have a significant potential to contribute a novel formal approach to search-based software

engineering (SBSE) [58]. Success in applying such a formally-specified tradeoff synthesis

and analysis can open a new path to applying formal SBSE in other disciplines.

6.3 Limitations and Remaining Problems

In this section, I discuss limitations and shortcomings of this work.

First, to date the work has mainly considered structural refinements, and system be-

havior is addressed only to the extent that constraints on behavior are implicit or explicit

in the specifications of the employed architectural styles. As Alloy’s emphasis is on speci-

fication and automatic analysis of structural properties of systems, it may not be the best

option to specify behavioral aspects of systems. I envisage that in an ultimate implementa-

tion of this technology, one uses several specification languages and corresponding synthesis

technologies handling different aspects of the system.

Second, the architectural styles explored in the Monarch work for architecture synthesis

are canonical styles of academic interest. This work did not address more complicated

and multi-dimensional architectural styles developed based on elaborations of prominent

architectural styles. Targeting complicated styles, especially those which are particularly

relevant to practice is of tremendous value. I believe the synthesis approach can be naturally

extended to support them, subject to the scalability issue discussed in the following.

Third, as with many formal techniques, the complexity of constraint satisfaction re-

stricts the size of models that can actually be analyzed and synthesized using the proposed

approach. Although modularization techniques and the decomposition approach, especially

the one presented in Chapter 4, has alleviated the problems encountered in the case studies,

the scales of the models considered in these case studies are still relatively small. There are

several possible approaches to deal with this issue. The first one is to explore symmetry
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breaking techniques customized for the specific domain of software architecture to reduce

the size of the solution space. The other, possibly more pragmatic, approach to limit the

size of the solution space is to use partial model instances defining already known aspects of

the architecture solution. The third possible approach to avoid combinatorial explosion in

constraint solving is to decompose large models into smaller components for which synthesis

and analysis problems can be solved independently.

Another important question concerns the potential usability of the tools presented here.

Clearly the production of the required specification inputs will be a specialized skill requir-

ing knowledge of formal methods. Conducting human studies with subjects selected for

their knowledge of formal methods, and engaging them in selected modeling and synthesis

tasks, would be the natural next step for evaluating this work. We have recently begun to

collaborate with external partners to further evaluate the approach against their external

needs.

Ultimately, the values of a technology such as the one presented in this work is demon-

strated in its actual application to solve previously unsolved problems in engineering prac-

tice. This work is not yet at a stage where such an application has been possible. Rather,

the main goal of this work has been to show that the technique has enough potential to

address fundamental issues of cost, quality and breadth of applicability in MDD that they

are worth pursuing. More aggressive empirical validation in industrial application areas

will be important in future work of this approach.





Chapter 7

Future Work

The synthesis approach contributed in this dissertation exposes a range of new research op-

portunities. These research directions include: (1) integrating forward synthesis technique

with back-mappings, i.e., abstraction from code back to architectural models and hence

to application models; (2) integrating quality-attribute analysis into the presented method

and tool; (3) dealing not only with system structure but also with behavior at the abstract

modeling level; (4) providing support for automated checking of substitutability properties

to guarantee that the evolved architecture is compatible with the previous one; (5) inte-

grating the front- and back-end synthesis phases—from abstract model to architecture, and

from architecture to code—to provide end-to-end transformations; (6) conducting human

subjects studies for evaluating ease of use the approach; and (7) integrating the tradeoff

space decision-support proposed in this dissertation with the formally precise synthesis

technique.

In the rest of this section, I discuss in more detail a few of these potential directions for

future work.

7.1 Formal approach to search-based software engineering

A very interesting area of research would be to explore a possibility of a novel formal

technique to Search-based Software Engineering (SBSE) [58]. The notion of SBSE is first
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introduced by March Herman in 2006, where a software engineering task is formulated

as a search problem over the space of candidate solutions as well as a fitness function to

distinguish solution candidates [58]. It provides an automated approach to address hard

and highly constrained problems that involve conflicting objectives.

What constitutes a promising avenue for future work is to explore a formally precise

approach to synthesizing the solution space. This kind of synthesizing the solution space

lets us to formally explore such spaces. By formal exploration, I mean to iteratively restrict

boundaries of the solution space, rather than just applying meta-heuristic search techniques

which generally lead to local optimum solutions. I envision applying such a formally-

precise SBSE technique to a broad set of problems in architectural decision making and

development of embedded systems, which are involved making tradeoff decisions for various

constraints.

7.2 Bottom-up Model-driven Development

The technologies of model-driven development are generally coupled with a rationalist

stance on software development. Such a stance holds that abstract models should be the

principal artifacts developed by human hands, and concrete code, derived by top-down

refinement, should be made incidental and is best hidden from view. Software evolution,

in this paradigm, occurs through model evolution and replaying of evolving, automated

refinement procedures.

Important voices in the software engineering research community have questioned the

legitimacy of the rationalist stance. Among practitioners, Ambler says, “I’m concerned

about the viability of the [Model Driven Architecture] MDA.. . . Although the MDA is a

very wonderful idea I suspect that it will succeed in only a very small percentage of orga-

nizations [100].” He argues that current modeling languages do not support the real-world

needs of most projects (e.g., the user interface and database components needed in many

systems); developers lack adequate modeling skills; and tooling is inadequate. Fowler says,
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“Although I’ve been involved, to some extent, in . . . [model driven development] for most

of my career, I’m rather skeptical of its future. Most fans . . . base their enthusiasm on the

basis that models are ipso facto a higher level abstraction than programming languages. I

don’t agree with that argument - sometimes graphical notations can be a better abstraction,

but not always. . . [84].” McNeily says that unless executability and translatability can be

brought to the kinds of models that business, as opposed to real time embedded systems,

developers use, that modeling will remain subject to criticism as “tool-centric busy work

of dubious value, and that we should go back to using a whiteboard [85].”

Among researchers, Finkelstein is a notable critic. In a recent blog post on the Bottom

10 Challenges in Software Engineering Research [11], he stated that “...the idea that changes

could be made in a high-level specification and then somehow ‘replayed’ is appealing but

ignores the ways in which such learning arises, in the context of specific representations and

through verification or testing tied to that representation.” In this formulation, he takes an

aggressively empirical stance on the nature of software development. The empirical stance

holds that concrete representations must remain as the principal subject of human effort,

because it is only by exploring the design space at that level one can learn what must be

learned for projects to succeed.

The question is whether the technologies of MDD can be rescued from the empirical

critique? I envision a synthesis arising out of the juxtaposition of the rational and empirical

stances. My stance is scientific-empirical1 (SE). It is empirical, holding that developers

must work at the concrete level, in general. Yet, it recognizes that just as scientists seek

to formulate and test abstract theories about selected aspects of the concrete, empirical

world, so can software developers profitably develop useful, partial, formal models from

experience with concrete artifacts. Moreover, just as theories can have generative power

(e.g., in supporting analysis and synthesis of engineered systems), so software models can

also support system analysis and synthesis.

1What I mean by the word “empirical” in the context of this chapter is different from what it entails
generally in software engineering literature. Indeed, the focus here is on empirical validation of models
within a particular application, rather than empirical testing of a new development method and tool.
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The technical key to the viability of this position is found in the recent developments in

partial MDD, including my recent work [21], that provides the crucial enabling technology

for an empirical approach to formal synthesis of software, by supporting formal modeling

of selected aspects of systems, top-down formal refinement from such models to support

partial synthesis, and a clean separation and integration of model-based and hand-crafted

code artifacts.

The rest of this section introduces the working scheme of this idea, and puts it in context

with related efforts.

Bottom-up Partial Formal Synthesis

The essence of my approach is based on a set of principles different from those typically

held in traditional model-driven development (MDD) approaches. In this section, I present

the approach based on those principles.

- Bottom-up. The approach is bottom-up. In this view, models follow from code and

other concrete artifacts, rather than the other way around. Specifically, I posit that soft-

ware engineers, having worked diligently in the concrete, empirical world of code, can find it

profitable to derive and validate abstract models of selected aspects of code, which then sup-

port analysis and synthesis. The benefits are not in hiding the code behind abstract models,

but rather in leveraging the technologies of MDD for improved abstraction, productivity

and reliability going forward.

- Partial Models. Software development, in traditional MDD, is centered around model

specifications of the system, and everything is then derived from those model specifications.

The second principle, by contrast, states that it is often not practical to develop abstract

models for an entire system. Rather, it is often better to extract models for certain stabilized

aspects of the system. Indeed, the code-base for a system is divided into two parts: (1) a

part that is synthesized from partial models, and (2) a part that continues to be developed

manually. The artifacts that software engineers develop thus include both code and models

from which additional code is synthesized.
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A criterion for making a decision to lift some idiomatic aspect of the code to the model

level is that the aspect has become sufficiently well understood and stabilized. Once we have

learned what kind of code is needed for a particular kind of concern in a system, then we can

profitably mechanize the development of future instances. In some sense, for those concerns

we expect that the learning is over. As a concrete example, architectural styles are among

such aspects of the system, representing recurrent architectural situations [107]. They

are expressive abstractions for software understanding. We thus learn architectural styles

of systems and use them in documenting application architecture. Technically speaking,

we consider architectural styles as metamodels to which abstracted architectural models

conform.

- Partial Synthesis. The abstracted models are partial with respect to the underlying

empirical domain. They thus support only selective system analysis and synthesis. I use the

term partial synthesis to refer to an approach in which part of the code base is synthesized

from partial models [21]. In fact, partial synthesis technologies give us the ability to decide

which aspects of the system are dealt with formally in terms of model representations—from

which code will be synthesized—and which aspects of the system are dealt with in terms

of code. Partial synthesis techniques required for this approach thus should provide a basis

for separation of generated and non-generated code with support for merging that limits

the impacts on hand-written code modifications required when the synthesized parts are

regenerated. I envisage that in an ultimate implementation, one uses several specification

languages and corresponding synthesis technologies handling different aspects of the system.

Different from traditional MDD, where developers produce domain specific languages

for use by non-programmer domain experts, in this approach developers both produce and

consume concern-specific modeling notations within the scope of the application under

development. Specifically, given that a new requirement can be modeled in terms of the

already identified and captured model elements, development starts from the model-level.

Otherwise, it starts at the code-level.
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Related Work

This work on bottom-up MDD is related to many other efforts, including work on inferring

partial specifications from code, model-driven modernization, and partial code synthesis.

Inferring Partial Specifications. A large body of research focuses on inferring partial

specifications from code, albeit more for property checking than for synthesis. Among oth-

ers, Daikon [44] discovers likely program invariants by detecting patterns and relationships

among values taken by variables during program executions. SLAM [24] automatically

and incrementally abstracts a given program based on a set of user-provided predicates.

The abstraction is captured in terms of a boolean program, which exhibits an identical

control-flow structure to the program, but contains only boolean variables, each of which

represents a given predicate. The extracted boolean program is partial in that program

parts irrelevant to the predicates remain abstract, and are captured as “do nothing” opera-

tors. Taghdiri and Jackson [106] also proposed an iterative approach based on the CEGAR

scheme [41] to check a procedure code against a given assertion. The procedure code is

incrementally replaced by a set of partial specifications. These specifications are partial in

that they are only as complete as required to verify the given assertion.

The important concept these research efforts have in common with mine is the em-

phasis on selective specification recovery rather than extracting complete specifications. In

my work, developers progressively select aspects of the system to be captured by formal

specifications to enable, among other things, model-driven synthesis and formal analysis.

Model-driven Modernization. Model-driven modernization [12] is about migrating from

heterogenous implementation technologies to the homogenous world of models, from which

everything is generated. The initial step though would be to obtain representative models

of the legacy systems. Reus et. al [96] proposed to reconstruct UML models from exist-

ing code. Their approach is based on several model transformations to automate parts

of the migration. Mansurov and Campara [83] also proposed to extract a specific type of

architectural models, called Container Models, from existing source code as a first step in

migration towards using model-driven architecture (MDA). Along the same line of research
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in migrating legacy systems to model-based systems, van Deursen et al. [110] proposed

Symphony, a reverse engineering process designed for reconstructing architectural models

in terms of appropriate viewpoints. The process consists of two steps of reconstruction

design and reconstruction execution. During the former phase, relevant viewpoints are

identified, and mapping rules from source to target views are designed. The latter step ex-

tracts the source views, and generates the target views through applying the mapping rules

to the source views. More recently, Bruneliere et al. [29] proposed an extensible framework

(MoDisco) for model-driven reverse engineering. They suggested two consecutive steps of

model discovery (extracting high-level models from the legacy system) and model under-

standing (transforming extracted models into required target formats). MoDisco is aimed

at facilitating the development of model discoverers.

While my approach is built upon reverse engineering techniques used in this area, it

is different in several ways. First, they rely on after-the-fact model extraction from an

already developed application. In contrast, my work is geared towards the application of

an iterative model abstraction during the software development lifecycle, as opposed to a

one-time reverse engineering for software modernization of legacy systems. Second, model

is the only first class citizen in theirs, while in my approach code base is the main place for

learning and modeling is a means to capture obtained knowledge from code.

To conclude discussion of this future research direction, some researchers and leading

practitioners are concerned about the future of model-driven development (MDD). They

argue that MDD has a dim future because of its core rational assumption, that one can

develop software effectively in an iterated top-down manner from abstract specifications, is

untenable. Rather, the empiricist argues one must work directly with concrete artifacts (de-

signs, code, etc) to learn what needs to be built and how to build it. This section presents

a novel idea towards a pragmatic, bottom-up approach to model-driven development based

on the key notion of partial formal synthesis. Early validation through experience of apply-

ing these ideas to a healthcare-related experimental system in our lab supports the claim

that it promises many benefits of MDD, in intellectual control, reliability, and productiv-
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ity, while escaping the rationalist trap. This change in software development perspective,

however, imposes a set research challenges which will be discussed in the next section.

7.3 Exploring Impacts of bottom-up MDD

The other interesting area of research would be to explore the impacts of bottom-up model-

driven development. The emphasis of this work on synthesis of partial code frameworks

from partial formal systems specifications points to the possibility of a re-conception of

model-driven software engineering, from a top-down approach based on abstract models and

hidden code, to a bottom-up approach based on incremental abstraction from code to partial

models and subsequent synthesis of visible parts of a code base from such models. This work

can lead to the notion that future developers might work with hybrid code bases, comprising

both traditional imperative source code as well as formal models and code that is synthesized

from them, evolving in ways that include ongoing refactoring between imperative code and

declarative specifications. This change in software development perspective imposes a set

of interesting research impacts. In the following I discuss some of those consequences that

form important areas for future work.

Modularity mechanisms

A complex system has a range of concerns, and its development requires multiple mod-

eling languages and multiple synthesizers appropriate for different aspects of the system.

While the approach can improve separation of concerns in two dimensions: between model-

driven and manually-developed code artifacts and between different aspects of the system,

expressed in different modeling notations, at the same time, utilizing heterogeneous model-

ing notations imposes development complexity. This calls for a modularization mechanism

so that different models can be changed independently within certain constraints without

breaking the whole system. Important steps in this direction can be found in some recent

efforts in aspect-oriented software development (AOSD), specifically on weaving aspect
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mechanisms in multi-language aspect-oriented frameworks [73].

Property Preservation

Replacing a concern by a formal representation and introducing model-driven code genera-

tion for that concern, requires validation to ensure the property preservation. Specifically,

the application’s behavior is not altered once we improve its structure using MDD technolo-

gies. One approach to deal with behavior preservation would be to conduct the so-called

regression testing. A related issue is that some test cases, such as those relying on the

application structure might be invalidated, even if the application behavior does not alter.

The other more pragmatic approach is based on the concept of call preservation [88] en-

suring that all method calls are still preserved after modification. Property preservation is

an active area of research.

Refactoring mechanisms

The abstraction process in the presented approach in some sense is a refactoring operation.

Refactoring is the process of modifying a software system in such a way that it does not

change the external behavior of the system while improving its code structure [89]. Sim-

ilarly, we are refactoring the original code base into a modified version of the code and

extracted high-level specifications from which additional code would be derived. This calls

for new kinds of rafactoring tools that support poly-lingual programming at different level

of abstractions.





Chapter 8

Conclusions

The overall contribution of this work is a novel formal, specification-driven approach to

addressing fundamental problems in the current state of the art in model driven devel-

opment, including its cost, reliability, and breadth of applicability. I have evaluated this

approach with experiments in three key dimensions of software synthesis: synthesizing ar-

chitectural models from abstract application models, synthesizing partial code frameworks

from application architectures, and synthesizing object-relational mapping tradeoff spaces

from object-oriented application architectures.

Focusing on the first research component—targeting software architecture synthesis—

this work shows that it can be used to separate decisions about abstract application struc-

ture and about specific architectural styles to be employed in detailed architectural de-

scriptions. This separation, in turn, enables a formally precise, automated synthesis of

architectural models from application models and choice architectural styles, which sup-

ports a model-based development to architecture synthesis with style as a separate design

variable. The second research component shows that with modest and principled develop-

ment of code fragments capturing idiosyncratic use of given platforms in given applications

it can map architectural descriptions to object-oriented application frameworks that use a

range of modern software platforms and standards. Finally, in the context of the object-

relational mapping problem, I showed that it creates valuable opportunities for novel forms

of trade-space analysis. In the following, I summarize contributions of this dissertation in

112
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the context of each research component.

The initial phase of this research, focused on software architecture synthesis, identi-

fies the treatment of architectural style as a separate variable as a key problem area and

goal for software engineering. This work contributes a theoretical framework to make the

notion of architectural maps precise. This in effect supports a model-based development

to architecture synthesis with style as a separate design variable, which is realized in a

prototype tool, called Monarch [5]. The results of experiments indicating the viability of

the idea in supporting automated synthesis of architectural models from formal specifica-

tion of applications and choices of architectural style, suggest that this research direction

is worth pursuing. Advances in the science in this area have the potential to catalyze a

range of other technologies, among others, in product line architectures from support for

variation within architectures to variation of architectures, and in design space synthesis

and analysis.

The second phase of this research contributes a novel approach for architecture-based,

model-driven development of systems on multiple software platforms. This work addresses

two of the significant problems in software engineering: dependable automation of software

production, and facilitating evolution of application architectures. Architecture evolution

is often problematical as it has impacts across a whole system. This approach is novel in

its formal underpinnings: that abstracting from application details and focusing on certain

aspects of the system relieves the synthesizer of responsibility for full application synthesis,

while facilitating the use of formal methods for modeling and synthesis.

The third research component contributes a novel, formally precise approach that sub-

stantially supports automatic generation of application-specific object-relational mapping

specifications to deliver the quality of expert-hand-crafted mappings and the productivity

benefits of fully automated techniques. This approach ultimately promises to reduce the

engineering personnel costs involved in producing high-quality modern software systems.

This work also offers a novel formal technique to tradeoff space synthesis and analysis.

Having laid a solid foundation, this research project reveals a range of new research
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opportunities. These research directions include (1) exploring the possibility of a novel for-

mally precise technique to search-based software engineering [58]; (2) composing the front-

and back-end phases of the work that I have done (from abstract model to architecture, and

from architecture to code) to provide an end-to-end transformation approach; (3) integrat-

ing tradeoff space decision-support with the formally precise end-to-end synthesis approach;

(4) dealing not only with system structure but also with behavior at the abstract modeling

level by bringing in new formalisms and synthesis technologies handling different aspects

of the system; and (5) exploring the possibility of an agile bottom-up approach to formal

model-driven software development. This change in software development perspective have

a set of research impacts, among others, in modularity mechanisms, testing, and refactoring

tools.
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