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Abstract

The classical least squares estimation approach has several potential problems when

applied to economic variables. Quantile regression, on the other hand, provides us

with an alternative way to work in non-Gaussian settings and obtain a more complete

picture on the distribution of the forecasted variables. However, how to utilize this

extra distributional information to obtain an optimized forecast is of great concern.

This thesis intends to overcome this problem and explore the application of quantile

regression in the examination of relationship among economic variables and in the

prediction of equity returns.

We develop a new methodology that incorporates market evolvement dynamics

to combine quantile regression results. We assume that the market state movement

is controlled by a three state Markov chain, and the expected return at each state

is proportional to different quantiles. The prediction is given as a weighted sum of

estimated quantiles where the weights are the transition probabilities. By including

market movement process in the prediction, we can obtain a way to combine different

quantiles into an optimized point forecast. The empirical results show that our

model improves both in sample fitness and prediction accuracy.

Our first application of the new specification is to forecast equity risk premium.

With the application of the combination method, we show that our model outper-

forms both OLS and fixed weighted quantile regression model. We also employ the

model to check the relationship between excess return of portfolios and the three

Fama French factors. The proposed model fits the data better than OLS, and has

greater predictive power. The future work includes generalization of the model and

issues regarding portfolio construction.
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Chapter 1

Introduction

The research of the prediction of portfolio return and equity risk premium is in-

tensive, since it is of great value to both academics and practitioners. Different

variables and different techniques are employed in the related literature. Most of

the previous research are relied on the classical least-squares method and maximum

likelihood estimators. However, there are potential problems with these approaches.

First, it requires a Gaussian assumption for the return distribution. We know that

there are numerous evidence showing the asymmetric leptokurtic feature of stock

return distributions. Therefore the Gaussian assumption is questionable. Second,

these methodologies only offer a conditional mean view of the relationship between

the predictors and the forecasted variable, which indicates that the covariates are

restricted to only contribute to a location shift of return distributions. However,

the predictors are allowed to influence the whole conditional distributions. Quan-

tile regression method offers us a broader view and a more complete picture of

this relationship, so that enhances our possibilities to more clearly understand the

relationship among economic variables, and ultimately, to a better forecast.

My PhD thesis aims to explore the application of quantile regression in the field
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of finance. Koenker and Bassett (1978) propose the quantile regression methodology,

which gives us a brand new way to work in non-Gaussian settings, as well as the

possibility to examine the behavior of the whole conditional distribution of the

response variables. Both theoretical and empirical research have been carried out in

the related area, including model extensions, new inferential procedures and various

empirical applications. However, the application of quantile regression in the area

of finance has not been explored until quite recently. Most of the work has focused

on risk management (VaR model). Other applications include asset management

(Feng, Chen and Basset (2008), Ma and Pohlman (2008)), the analysis of the cross

section of stock market returns (Barnes and Hughes (2002)) and hedge fund pricing

(Meligkotsidou, Vrontos and Vrontos (2009)).

With quantile regression, we are able to obtain a clearer idea of the conditional

distribution. The question is how to use this information to give better prediction.

To address this problem, we take the market condition into consideration. We

assume that there are three states in the stock market: bull, normal and bear. Given

the state, there is a conditional distribution to model the stock return behavior. We

use a Markov chain to model the market evolution dynamics, and use quantile

regression results to estimate the forecasted variable. The mean of the forecasted

variable is given as a combination of the three forecasts at different states, and the

weights are determined by the state of the previous time period. This is our main

idea of the application of quantile regression.

To legalize the use of our model, we present the theoretical results. Firstly, we

make assumptions on the autocorrelation structure of the time series data. Under

AR model set up and some mild assumptions about residuals, we show the asymp-

totic properties of the estimation of quantile regression. Moving forward, we also

prove the consistency of the estimation of the parameters related with Markov chain,
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including the state variables and transition probabilities. What is more, we obtain

the asymptotic normality of the transition probabilities estimates.

Unfortunately, the asymptotic distribution of the coefficient estimation in quan-

tile regression model is irregular, which means that we do not have the normality

to support statistical inference. To overcome this difficulty, we perform simulation

study on the time series data with quantile regression model. The simulation results

confirm our consistency property. We also find that the asymptotic distribution is

close to normal. Such results justify our use of confidence interval in estimation.

Then we use two sets of data to do the empirical analysis.

The first set of data is the quarterly data from Welch and Gayol (2008). With

this set of data, we aim to explore the application of quantile regression in equity

risk premium forecast. The equity risk premium is calculated as the difference be-

tween the continuously compounded S&P 500 returns and the Treasury Bill rate.

We select 15 predictors, consistent with literature, to do the regression. The sample

spans from 1947:1 to 2011:4. We split it into in-sample and out-of-sample period.

The in-sample period data is used to do the model estimation, and the equity risk

premium for out-of-sample period is predicted by an expanding window. We apply

the combination methods proposed by Rapach, Strauss and Zhou (2009) to obtain

more stable and reliable results. Besides the widely used benchmark, historical aver-

age, OLS prediction is also considered as a baseline model. We compare our method

with the fixed weight quantile regression approach proposed by Meligkotsidou et. al.

(2012) as well. Their method is a simple combination of different quantiles given by

quantile regression model, so they do not utilize the market evolution information.

We make this comparison to test whether such information contributes significantly

to the forecast. We choose three model comparison criteria to compare the models.

R2
os tests the out of sample performance in the sense of mean squared prediction
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error; ENC − T tells whether one model contains useful information for prediction

that is not present in another competing model; ∆U , the utility difference, and ∆W ,

the wealth gain, give the economic evaluations of the models. Results show that our

model significantly improves the forecast from benchmark models, and the market

movement information is crucial to precise prediction.

The other data set we use is monthly return data of thirty industry portfolios.

The data is obtained from CRSP database. We use this data set to explore the

use of quantile regression in portfolio construction. OLS estimates of Fama French

three factor model is used as the benchmark. We again apply the quantile regression

combined with a Markov chain to do the prediction, with much shorter tails as the

extreme states. The estimation is conducted for both models where the predictors

and portfolio returns are in the same time period and where the latter is one time

period ahead of the former. We do in sample analysis for both cases. We apply

mean squared error, and the less commonly used mean absolute deviation as model

comparison criteria. The first reason that we consider the absolute value of the

prediction errors is due to the possibility of heavy tail distributions of portfolio

returns. In this case, the usual mean squared error puts too much weight on the

extreme values. The second reason is that mean squared error is served as the loss

function of OLS method. Therefore we apply a more robust criterion to do the test

so that we can get a clearer view. We also carry out the out of sample analysis for

one month lag model, since the one period lag structure resembles the real world

when an investor makes prediction. We use a fixed window to do the prediction.

Results show that our model outperforms OLS for both in sample and out of sample

case. The application of quantile regression to portfolio construction is left for future

study.

The rest of the thesis is organized as follows. Chapter 2 describes the model.
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Theoretical results are presented in Chapter 3. Numerical study is contained in

Chapter 4. Chapter 5 gives the empirical results and Chapter 6 concludes the

project.
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Chapter 2

The Markov Quantile Regression

Approach

2.1 Quantile Regression Models

Assume Y is the variable whose future values are of interest, such as equity excess

return. X = {x1, x2, ...xp} is a set of predictors that are assumed to influence Y .

The simplest way to model the relationship between Y and X is a linear regression

model:

Y = XTβ + ε.

Here, we assume each predictor in X is linearly correlated with the response Y .

The error term ε is assumed to be normally distributed with mean 0 and a constant

standard deviation σ. The coefficient vector β is interpreted as the partial contri-

bution of the factors X to the mean of the response Y . Under these assumptions,

given values of X, the conditional distribution of Y is normal, expressed as,

Y | X ∼ N(XTβ, σ2).



7

Now consider a data set of n observations, {(y1, X1), (y2, X2), ...(yn, Xn)}, The esti-

mates of β are obtained by minimizing the square loss function

β̂ = argmin
b∈B

n∑
i=1

(yi − xTi b)2,

where B is the parameter space. The loss function of OLS method aims to minimize

the sum of squared deviations between individual observation, yi, and its fitted value.

Therefore, the in-sample prediction given by OLS regression is an estimate of the

conditional mean of the response variable. Given X = X0, the predicted value of Y

is obtained by:

Ŷ = XT
0 β̂.

However, this standard regression approach may not be appropriate in cases where

the distribution of Y exhibits some particular characteristics, for instance, a high

degree of non-normality, fat tails, excess kurtosis and skewness. For example, in the

case of fat tails, the square loss function puts too much weight on the extreme values.

Another example is when there is extreme skewness or outliers, mean prediction is

not as robust as forecasts based on quantiles. In the presence of these characteristics

the conditional mean specification for the response Y may not capture the effect of

the independent variables to the entire distribution of Y and may provide estimates

which are not robust.

On the other hand, the quantile linear regression approach provides an alternative

to standard linear regression for examining the impact of independent variables on

the entire distribution of Y. Quantile regression is first introduced by Koenker and

Bassett (1978) and has increasingly attracted attention as a robust alternative in the

field of economics and finance. This approach can be useful in uncovering potential
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differences in the effect of the independent variables across quantiles of Y. A τth

quantile linear regression can be specified as follows:

QY |X(τ) = XTβτ + ετ , (2.1)

where QY |X(τ) is the τth quantile of the conditional distribution of Y given X. βτ

are interpreted as the partial effect of X to the τth quantile of Y . ετ are assumed

to have zero as its τth quantile. Here in this model, we assume that X has a linear

relationship with the τth quantile of Y , and we do not put distribution assumption

on the error term, ε. The estimations of βτ , denoted as bτ , are calculated by

minimizing the following term:

bτ = argmin
b∈B

n∑
i=1

ρτ (yi − xTi b), (2.2)

where ρ(·) is the check function defined by Koenker and Bassett (1978)

ρτ (e) = (τ − I(e < 0))e,

where I(e < 0) =

 1,when e < 0

0,when e ≥ 0
,

in which e is the residual and calculated by ei = yi−xTi b. Based on the loss function,

we can see that we look for the values of the coefficients that minimize a weighted

sum of absolute differences between the observations and xTi b. This provides an

estimate of the τth quantile of the conditional distribution of the response variable

Y . Based on the estimation for different τ , we can estimate the conditional quantile

function, which is the inverse of the conditional probability distribution function.

Therefore quantile regression allows us for an estimate of the whole picture of the
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distribution of the response variable, instead of focusing only on the conditional

mean as OLS method does.

Now that we have two different tools for a linear model, which one should we apply?

Since the basic difference between the two set-ups is that in the quantile regression,

the partial effect of X is assumed to be different for different quantiles of Y , therefore

the results of a tentative QR might be helpful. If the estimations bτ vary significantly

according to different quantiles, then we think QR will be more appropriate.

2.2 Our Specification

Assume {(yt, Xt); t = 1, ..., T} is a time series data set where yt is an economic

variable whose future values are of interested and Xt is a vector of pre-determined

values of explanatory variables which contain the information we have up to time

T . This means that Xt can either take values of current time period when we are

interested in the relationship between Y and X, or denote time lag values when

we do prediction. Observation at time t, yt, lies in one of the three ranges of

the conditional distribution of the dependent variable, defined as (−∞, QYt|Xt(τ1)),

[QYt|Xt(τ1), QYt|Xt(τ3)) and [QYt|Xt(τ3),+∞), where QYt|Xt(τ1) and QYt|Xt(τ3) are low

and high quantiles of the conditional distribution of Yt given Xt, namely, τ1 < 0.5

and τ3 > 0.5. Let St be the state variable at time t, which takes three possible values

{1, 2, 3}, each representing one of the three states of the stock market: bull, normal

and bear, respectively. We use St as an indicator representing the range where yt

is. To model the serial dependency of observations over time, we assume that St

follows a 3-state first-order Markov chain with the transition probabilities defined

as

P (St+1 = j | St = i) = Pij, i, j = 1, 2, 3. (2.3)
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Note that it is not hidden Markov chain because St is observable in the defini-

tion. Moreover, conditional on St = 1, it is assumed that Yt does not exceed

a low percentile QYt|Xt(τ1) of the marginal distribution of asset returns. That is

P (Yt > QYt|Xt(τ1)) = 0 and P (Yt < QYt|Xt(τ1)) = 1. Furthermore,we assume that

conditional on St and Xt, the conditional mean and standard deviation are deter-

mined by

E(Yt | St = 1) = c1 ×QYt|Xt(τ1),

σ(Yt | St = 1) = σ1,

where c1 is a constant,while the value of QYt|Xt(τ1) depends on Xt. Statistically,

the above assumptions about the first two moments are sensible because as defined

above, the distribution conditional on St = 1 is a Pareto distribution, which has the

property that its mean is proportional to the upper limit with a constant.

Similarly, conditional on St = 3, it is assumed that Yt is larger than a high percentile

QYt|Xt(τ3) of the marginal distribution of asset returns, and the conditional mean

and standard deviation are determined by

E(Yt | St = 3) = c3 ×QYt|Xt(τ3),

σ(Yt | St = 3) = σ3.

Conditional on St = 2, it is assumed that Yt can only take a value between the two

quantiles with the first two moments given by

E(Yt | St = 2) = c2 ×QYt|Xt(τ2),

σ(Yt | St = 2) = σ2,
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where QYt|Xt(τ2) is the median of the conditional distribution of yt given Xt. by

definition we assume QYt|Xt(τ1) < QYt|Xt(τ2) < QYt|Xt(τ3).

By Baye’s Theorem, we can get the property of the marginal distribution under this

set up. Given Xt, the conditional mean of Yt is given by

E(yt|Xt) = P (St = 1)c1QYt|Xt(τ1) + P (St = 2)c2QYt|Xt(τ2) + P (St = 3)c3QYt|Xt(τ3).

(2.4)

Note that the above model specification does not require the specification of the

entire probability distribution for Yt. By assigning different values of quantiles, we

can examine differently types of distribution. For example, we can choose relatively

extreme high and low quantiles for fat tail distribution; we can select asymmetric

quantiles when there is excess kurtosis and skewness. Also, we are free to examine

the tail behaviors for some specific quantiles. Our model can also be generalized to

multi-state cases if more than three quantiles are of interest.

The new idea that lies into our specification is that we link the regression with the

market evolution dynamics. We know that data obtained from the stock market

are mostly time series data, which are hardly i.i.d.. On the contrary, there usually

exhibits a high degree of autocorrelation. Such autocorrelation provides us with

a lot of information about how the market changes, thus allows us for a deeper

understanding of the behavior of the stock distribution.

Previous models, such as QRAD location and QRAD probability proposed by L. Ma

and L. Pohlman (2008) has already presented some idea of linking the regression with

market evolution, however, the dynamic is too simple. Our model is a generalization

of both of the QRAD methods. The assumption of QRAD location is that stock

returns remain the same quartile over periods. That is to say, they specify the



12

probability transition matrix as the identity matrix


1 0 0

0 1 0

0 0 1


The problem with this method is that it’s very likely in reality that the stock re-

turns sometimes could change dramatically and switch between different quartiles

over times as we have seen in the stock markets recently. Alternatively, QRAD

probability method assume the expectation of the marginal distribution takes the

weighted average of forecasted quartiles.

E(yt|Xt) = w1QYt|Xt(τ1) + w2QYt|Xt(τ2) + w3QYt|Xt(τ3),

where wi are a set of pre-assigned values and satisfy
∑k

i=1wi = 1. For example, if

we choose k = 3 and {τ1, τ2, τ3} = {0.1, 0.5, 0.9}, then one reasonable selection of

the weights could be {w1, w2, w3} = {0.1, 0.8, 0.1}. This model is also one of the

sub-models of our specification. They are equivalent if the probability transition

matrix are chosen as 
0.1 0.8 0.1

0.1 0.8 0.1

0.1 0.8 0.1


Without the change of the conditional probabilities, this method does not take the

evolution of the market into consideration. Another practical question is that by

simply combining the predictions of different quantiles, what we get are predictions

close to the mean, thus the improvement from OLS methods is unsatisfactory.

The main problem of QRAD methods lies with the i.i.d. assumption for returns.
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To overcome this shortcoming of QR, It’s worth trying to build some serial depen-

dence structure in return forecast. Therefore we propose the above new specification

that combines quantile regression with a Markov chain which models the evolution

dynamic of the market.

2.3 Predictive Methods

One important issue in the study of equity risk premium is to predict future values.

Quantile regression enables us to obtain the behavior of stock returns in different

quantiles, the next question is, how can we take advantage of that information to

better predict future stock returns?

For prediction of yt, we consider the following:

ŷt = P̂1St−1 ĉ1Q̂Yt|Xt(τ1) + P̂2St−1 ĉ2Q̂Yt|Xt(τ2) + P̂3St−1 ĉ3Q̂Yt|Xt(τ3)

where Q̂Yt|Xt(τk) is the estimated τkth conditional quantile regression given by

Q̂Yt|Xt(τk) = XT
t β̂τk ,

and ĉk is estimated as follows.

For each in-sample time period, we identify its market state by the comparison

between the observation and the fitted values of each quantile.

Ŝt =


1, when yt < Q̂Yt|Xt(τ1)

3, when yt ≥ Q̂Yt|Xt(τ3)

2, otherwise
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Based on the estimated values of St, we can identify each period with a state,

and obtain three sub-samples, namely SS1, SS2 and SS3, corresponding to each of

the three states respectively. Then we use the sample standard deviations of the

sub-samples as the estimates of the conditional standard deviations, σ1, σ2, and σ3

respectively. As for the constants c1, c2 andc3, we obtain their estimates by dividing

the sample mean of a sub-sample by the average of the fitted quantile values for

that sub-sample, i.e.,

ĉk =
ȳSSk

¯̂yτk,SSk
. (2.5)

It can be shown that this formula gives a consistent estimate of ck.

The transition probabilities P̂ij are estimated in the statistical standard way. Denote

nij =
T−1∑
t=1

I(yt ∈ SSi and yt+1 ∈ SSj)

and

ni =
T−1∑
t=1

I(yt ∈ SSi),

where again, I(·) is the indicator function. The estimate of the transition probability

is thus given by:

P̂ij =
nij
ni
. (2.6)

As nij follows a Binomial distribution, the standard deviation of the transition

probability is estimates by:

σ̂Pij =

√
P̂ij(1− P̂ij)
T − 1

.

Therefore, based on the above specification, we carry out the parameter estimation
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as follows:

• 1. Fit return data to QR with three quantiles and identify each in sample

period with one of the three market states St.

• 2. Assuming that {S1, ..., ST} follows a three-state first-order Markov chain,

estimate the transition probabilities.

• 3. Based on the values of St, we divide the data set into three sub-samples,

and estimate c1, c2 andc3.

• 4. Use the above prediction formula to give forecasts.

Notice that if we use a rolling window to do the predictions, all the parameter

estimates are updated each period, including Pij and ci.

2.4 Evaluation Criteria

To measure the model performance, we introduce several evaluation criteria. Some

of the criteria put more emphasis on the in sample performance, while others are

more associated with out of sample performance, which is to say, they measure the

predictive power of the model.

2.4.1 In Sample Evaluation

We consider two statistics to measure model’s in sample performance. The first one

is the widely used mean squared error, denoted as MSE, which is given by

MSE =
1

n

n∑
i=1

(yi − ŷi)2, (2.7)
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where n is the sample size, yi are the observations and ŷi are the fitted values given

by the model. By calculating the mean of the squared deviations, MSE gives us a

measure of the distance between the model and the real data.

In the basic OLS settings, the deviations are assumed to be normal, thus their

distribution has relatively thin tails. However, in the non-normal settings, the dis-

tribution of the error term might exhibits some particular characteristics, like fat

tails. In this case, the squared deviations put too much weight on the extreme val-

ues. Our model is distribution free, therefore we also consider another more robust

measure, mean absolute deviation, denoted as MAD

MAD =
1

n

n∑
i=1

| yi − ŷi | . (2.8)

MAD is the average of the absolute deviations from the model to the data, therefore,

it assigns each observation with the same weight, thus gives a more robust measure.

2.4.2 Out of Sample Evaluation

Out Sample R-Square

We use R2
os, proposed by Campbell and Thompson (2008) to compare the out of

sample performance of two models. R2
os, as a comparison of model A and the

standard benchmark model, historical average, is given by

R2
os = 1−

∑k
s=1(ym+s − ŷm+s,A)2∑k
s=1(ym+s − ȳm+s)2

, (2.9)

where m is the number of time periods that are used for model estimation, and

k is the length of the prediction period. ŷm+s,A is response variable y at time

m + s forecasted by model A and ȳm+s is the average of the observations from the
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beginning of the sample until time m+s−1.This statistic measures the reduction in

mean squared predictive error for model A relative to the natural benchmark model,

historical average. When R2
os > 0, model A outperforms the benchmark.

Since the value of R2
os is sample dependent, we need to perform statistical tests

to collect statistical evidence. The test we apply is the prediction accuracy test, or

DM test proposed by Diebold and Mariano (1995). For notation convenience, define

prediction error of model i as

um+s,i = ym+s − ŷm+s,i

for time period m+s. Allow the prediction loss function to be an arbitrary function

of the prediction error, g(um+s). The null hypothesis of DM test is that E[g(ut,1)] =

E[g(ut,2)] or E[dt] = 0, where dt = g(ut,1) − g(ut,2) is the loss difference. Thus,

the ”equal accuracy” null hypothesis is equivalent to the null hypothesis that the

population mean of the loss differential series is 0. Consider {dm+s}ks=1 as a sample

of loss differences. We have

√
k(d̄− µ)

d−→ N(0, 2πfd(0)), (2.10)

where

d̄ =
1

k

k∑
s=1

(g(um+s,1)− g(um+s,2))

is the sample mean of loss difference, and

fd(0) =
1

2π

∞∑
τ=−∞

γd(τ)
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is the spectral density of the loss difference at frequency zero, and

γd(τ) = E((dt − µ)(dt−τ − µ))

is the autocovariance of the loss difference at displacement τ , and µ is the population

mean of loss difference. The formula for fd(0) shows that the correction for serial

correlation can be substantial, even if the loss differential is only weakly serially

correlated, due to cumulation of the autocovariance terms.

Specifically, in our case, the prediction is one time period ahead, which means that

the prediction errors are independent. Therefore, the test reduces to the classical

population mean test. We present the complete test above for future use. Here, we

would like to apply DM test to test null hypothesis R2
os = 0 against the alternative

hypotheses R2
os > 0. Define mean square prediction error of model A and historical

average, as

MSPEA = E(yt − ŷt,A)2,MSPEbm = E(yt − ȳt)2.

This pair of hypothesis is equivalent with MSPEA = MSPEbm against MSPEA <

MSPEbm. We choose the loss function g(ut) = u2
t , then we see that DM test can

be applied to the test of R2
os. In this case, we have

dm+s = u2
m+s,A − u2

m+s,bm

and the test statistic is calculated as

DM =
√
k
d̄

σ̂d
, (2.11)
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where d̄ and σ̂d are the sample mean and sample standard deviation of d, respec-

tively. The test statistic follows a t distribution, which in large sample case, can be

approximated by a standard normal distribution.

ENC − T Test

The other test we apply is ENC − T , developed by A. Harvey, Leybourne and

Newbold (1998). This test compares between two competing models, and checks

whether one of them contains useful information for prediction that the other model

does not. Consider a composite forecast ŷt,o, which is a convex combination of the

forecast from model A, usually but not restricted to be the parsimonious model,

ŷt,A and another model B, ŷt,B. The optimal combination is assumed to be ŷt,o =

(1 − λ)ŷt,A + λŷt,B, 0 ≤ λ ≤ 1. λ = 0 means that the optimal forecast assigns

zero weight to model B, which is defined as model A ”encompasses” model B. The

test based on ENC − T statistics is to test the null hypothesis, λ = 0, against the

one-sided alternative hypothesis, λ > 0. The case of the null hypothesis is defined

as model A is ”conditionally efficient” with respect to model B by Granger and

Newbold. Under the alternative hypothesis, model B contributes to the optimal

prediction, therefore, contains information for forecast that is not present in model

A.

Define the forecast errors of model A and B, respectively, as ut,A = yt− ŷt,A, ut,B =

yt − ŷt,B, by the combination relationship among the three models, we can write:

ut,A = λ(ut,A − ut,B) + ut,o.

The combined forecast will then have smaller expected square error than model A

unless the covariance between ut,A and (ut,A − ut,B) is 0. Given a series of forecast
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errors, (ut,A, ut,B), t = 1, 2, ...n, to implement the test, it is natural to regress the

differences on ut,A by OLS method to get the estimate and perform the standard

regression-based test. However, Harvey, Leybourne and Newbold (1998) show that

this widely used test statistics is not robust to non-normality. They propose the

ENC − T test to avoid this problem. Let

dt = (ut,A − ut,B)ut,A,

then the ENC − T statistic is given by

ENC − T =
√
k

d̄√
ˆV ar(d)

, (2.12)

where d̄, ˆV ar(d) are the sample mean and sample variance of d over the out-of-

sample period. Asymptotically, ENC−T statistic follows a standard normal distri-

bution under the null hypothesis. In the finite sample case, Harvey, Leybourne and

Newbold (1998) show that we can apply the student’s t distribution with T − k− 1

degrees of freedom. As the argument above, this is an upper tailed test. In practice,

the natural benchmark(model A) is historical average. We also compare between

the quantile regression models and OLS model.

The significance of ENC − T test shows that model A contains useful information

for forecast that is not captured by model B, however, this does not necessarily lead

to the conclusion that model A outperforms model B. Rapach, Strauss and Zhou

(2008) apply the test to individual models to collect statistical evidence for their

combination method. Similar with what they do, to compare the performances be-

tween two models, we also run the test at the opposite direction. The other way
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test is conducted by defining

d′t = (ut,B − ut,A)ut,B

and calculating the statistics as the above equation. This test is equivalent with

testing λ = 1 against λ < 1 in the above set-up. If both of the tests are significant,

then we have the conclusion that 0 < λ < 1, which means we should combine model

A and model B to get the optimal forecast. However, if the test of model A against

model B is significant and the other one is not, we can draw the conclusion that

model A outperforms model B.

Economic Evaluations

At last, we also employ economic evaluation measures. The reason is that there are

several limitations of statistical evaluation. One is that even if the test is significant

under statistical tests, the value is still unreasonably small. For example, typical

significant R2
os values are around 2 percent. However, a reduction of two percent of

mean square prediction error does not mean too much to the market. The other

limitation would be that the statistics lack economic intuition behind them. From

Campbell and Thompson (2008) and Rapach, Strauss and Zhou (2010), even small

values of R2
os may increase the utility of a CRRA investor by a considerable amount.

Based on these concerns, the utility-based evaluation method which is proposed by

Edison and Cho (1993), has been used widely in literature.

Assume in a market where the investment opportunity consists of a risk-free bond

and a risky asset. A risk-averse investor constructs her portfolio by assigning dif-

ferent allocations between them. Since the only source of risk comes from the risky

security, we can solve the allocation problem in a standard way. In the mean-
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variance framework, the optimal investment strategy assigns the following weight

(ωt) to the risky asset

ωt =
Et(rt+1)

γV art(rt+1)
,

where γ is the investor’s Relative Risk Aversion coefficient, Et(rt+1) and V art(rt+1)

are the conditional expectation and conditional variance at time t, of rt+1, the equity

risk premium at time t + 1, respectively. The conditional variance is estimated by

the historical variance, based on a ten-year rolling window. The conditional mean

is forecasted by the model the investor chooses. Different models give different

invest strategies, thus induce different utilities. It is natural to consider a model

to be better if it results in higher utilities to investors. The idea of the economic

evaluation is based on this fact, and compares the utility difference generated by

two different models.

The resulting portfolio gross return, Rt+1,o, obtained by the optimal allocation is

calculated as

Rt+1,o = ωtrt+1 +Rt,f ,

where rt+1 is the realized excess return of the risky security at time t + 1 and

Rt,f = 1 + rt,f is the gross return of the risk-free asset from period t to t+ 1.

Given the initial wealth W0 and quadratic utility, the average utility over the out-

of-sample period is given by

Ū =
W0

k

k−1∑
t=0

(Rt+1,o −
γ

2(1 + γ)
R2
t+1,o). (2.13)

For different models, we obtain different strategies, thus different average utilities.

We prefer model with high average utility. The utility gain, comparing model A
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with a benchmark, is given by

∆Ū = 400(
ŪA − Ū bm

Ū bm
),

where ŪA is the average utility over the out-of-sample period generated by model

A, and Ū bm is the respective value generated by the benchmark model A is com-

pared with. The scaler 400 here is to express the utility gain to average annualized

percentage return.

Following Edison and Cho (1993)’s idea, we also consider the wealth change in the

mean-variance framework. Under the above set-up, consider an investor who has

one unit initial wealth. At each time period she constructs her portfolio in the above

way, then reinvests all her returns to the new portfolio she constructs in the next

time period. In this way, her total wealth at time m+ k would be

WT =
k∏
t=1

Rm+t,A, (2.14)

where Rm+t,A is the realized gross return she obtains if she employ model A. The

wealth difference can be calculated by

∆W =
k∏
t=1

Rm+t,A −
k∏
t=1

Rm+t,bm. (2.15)
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Chapter 3

Theoretical Results

In this chapter, we present the theoretical results related with our model.

3.1 Autocorrelation Structure

In finance field, especially related with asset pricing, the data are mostly time series

data. Therefore we need to first model the autocorrelation structure. We first

consider the data generating process of the factors. Following the literature, we

model the predictor xt as a near unit root process, since most of the predictors are

highly persistent. Specifically, following Cavanagh et al. (1995), we assume that the

predictor xt is a finite order autoregressive process:

xt = α0 + vt, (3.1)

(1− α1L)b(L)vt = ε1t, (3.2)
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where b(L) =
∑k

i=0 biL
i with b0 = 1. The roots of b(L) are fixed and inside the unit

circle. The above equation can be rewritten as:

∆xt = β0 + β1xt−1 + ζ(L)∆xt−1 + ε1t, (3.3)

where β0 = (1 − α1)b(1)α0, β1 = (α1 − 1)b(1), and ζ(L) = −
∑k

j=1 L
−1[bj −

(1 − α1)
∑k

i=j bi]L
j. By this representation, it is straightforward that xt follows

an AR(k + 1) process with the largest root 1
α1

. Following Wang’s (2012) set-up, we

consider the local-to-unity specification, in particular, α1 = 1 + c
T

, where c ≤ 0 and

T is the sample size. When c < 0 is the mean reverting case while c = 0 generalizes a

unit root process. The predictors such as earnings and economic ratios are modeled

by this framework in the literature, due to their highly persistent while stationary

properties.

By the functional central limit theory, similarly with Wang(2012), we can obtain

the limit distribution of ε1t.

Proposition 1. Using the above notation, assume that ε1t is a martingale difference

sequence with variance σ1, we have that

T−
1
2

[Tr]∑
t=1

b−1(L)ε1t
d−→ Z1(r) = ωB(r), (3.4)

where ω =
σ

1
2
1

b(1)
, B(r) is a Brownian motion, and [·] denotes the floor function.

Furthermore, the asymptotic properties of xt can be generalized in a similar way.

Define the diffusion process Jc by dJc(s) = cJc(s)ds+ dB1(s) with initial condition

Jc(0) = 0. We represent the demeaned variables by superscript µ. That is to say,

xµ = xt − (T − 1)−1
∑T

t=2 xt−1 and Jµc (s) = Jc(s) −
∫ s

0
Jc(r)dr. Following Phillips

(1987), we have proposition 2.
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Proposition 2. Using the above notation, we have

T−
1
2xµ[Tr]

d−→ ωJµc , (3.5)

T−2
∑

(xµt−1)2 d−→
∫

(ωJµc )2dr, (3.6)

T−1
∑

xµt−1b
−1(L)ε1t

d−→
∫
ωJµc dZ1, (3.7)

when T →∞, where Z1 denotes Brownian motion at time 1, which is the standard

normal distribution.

The following standard result gives the asymptotic distribution of the t-statistic

associated with the largest root of the autoregressive model for xt in (3.16), when

this root is modeled local-to-unity.

Proposition 3. The asymptotic representation of the standard t-statistics used to

test H0 : β1 = 0 is given by

tβ1
d−→ c

b(1)
[

∫
(Jµc )2dr]

1
2 +

∫
Jµc dB1

[
∫

(Jµc )2dr]
1
2

. (3.8)

3.2 Quantile Regression Models

Next, we consider the relationship between x and y. Denote Ft as the σ-algebra

(information set) up to time t. The standard mean prediction model is given by

yt = γ0 + γ1xt−1 + ε2t, (3.9)

where E[ε2t|Ft−1] = 0. In our framework, yt is typically a financial return and xt

is a predictor whose predictive power is of interest. Under this classic set-up, the

mean prediction is given by E[yt|Ft−1] = γ0 + γ1xt−1.
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Let F (·) and Ft−1(·), which equals P (ε2t < ·|Ft−1), denote the cumulative and

conditional cumulative distribution functions of ε2t, respectively. Define the τth

unconditional and conditional quantiles of ε2t by Qε2t(τ) = F−1(τ) and Qε2t|Ft−1(τ) =

F−1
t−1(τ), respectively. In a quantile regression model, we allow xt−1 to impact not

only the mean of yt, but also the distribution of its error term, therefore, in addition

to the following equation which holds in OLS set-ups,

Qyt|Ft−1(τ) = γ0 +Qε2t(τ) + γ1xt−1, (3.10)

we also have

Qε2t|Ft−1(τ) = γ0(τ)− γ0 + (γ1(τ)− γ1)xt−1. (3.11)

Combining the above two equations, we obtain the quantile regression model

Qyt|Ft−1(τ) = γ0(τ) + γ1(τ)xt−1. (3.12)

The quantile regression model provides a flexible specification allowing the effect of

xt−1 to be heterogeneous across the quantiles of yt. We put the following assumptions

of the error term in our framework.

Assumption 1. The error term ε2t is a martingale difference sequence with variance

σ2.

Assumption 2. ε1t and ε2t are independent.

Assumption 3. ε2t has a continuous density function f(·), which is positive on

{ε2t : 0 < F (ε2t) < 1}.

Assumption 4. The conditional distribution function Ft−1(·) = P (ε2t < ·|Ft−1) has

derivative ft−1(·) a.s.; ft−1(·) is uniformly integrable for any sequence sn → F−1(τ),

and E[f ξt−1(F−1(τ))] <∞ for some ξ > 1.
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The standard quantile regression coefficient estimates are given by

(γ̂0(τ), γ̂1(τ)) = arg min
(γ0,γ1)∈R2

T∑
t=1

ρτ (yt − γ0 − γ1xt−1), (3.13)

where ρ is defined by ρτ (u) = uψτ (u) with ψτ (u) = τ − I(u < 0).

Define ε2tτ = ε2t − F−1
t−1(τ) = yt − γ0(τ) − γ1(τ)xt−1 and Qε2tτ |Ft−1(τ) as the τth

quantile of ε2t conditional on Ft−1, we may rewrite (3.9) as

yt = γ0(τ) + γ1(τ)xt−1 + ε2tτ = γ(τ)′zt−1 + ε2tτ , (3.14)

where Qε2tτ |Ft−1(τ) = 0. By the definition of ψ, we have that the conditional expec-

tation E[ψτ (ε2tτ )|Ft−1] and the variance of the indicator function I(·) are τ(1− τ).

The following proposition, comparable to Assumption A of Xiao (2009) is useful

when we derive the asymptotic properties of parameter estimates.

Proposition 4. Under the above set-up, we have

T−
1
2

[Tr]∑
t=1

ψτ (ε2t)
d−→ Zψ(r) =

√
τ(1− τ)B(r), (3.15)

where B(r) is a Brownian motion. It follows that T−1
∑
xµt−1ψτ (ε2t)

d−→
∫
ωJµc dZψ.

The following theorem provides the limiting distribution of the predictive quantile

regression estimator.

Theorem 1.(Wang, 2013) The asymptotic distribution of the regression coefficient

estimates is

DT (γ̂(τ)− γ(τ))
d−→ 1

f(F−1(τ))
[

∫
J̄cJ̄

′
c]
−1[

∫
J̄cdZψ]. (3.16)
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For the slope coefficient, in particular,

T (γ̂1(τ)− γ1(τ))
d−→ 1

f(F−1(τ))
[

∫
(ωJµc )2]−1[

∫
ωJµc dZψ], (3.17)

where DT =

 T
1
2 0

0 T

 and J̄c = (1, ωJc)
′.

The proof of Theorem 1 is given in Appendix B in Wang’s paper (2012). The

following corollary is a direct application of Theorem 1.

Corollary 1. The estimate of the τth quantile of the distribution of Yt|Xt−1,

Q̂Yt|Xt−1(τ |Ft−1) = XT
t−1γ̂(τ) (3.18)

is consistent.

The ultimate forecast given by our method is a combination of different quantile

predictions. Therefore, moving forward, we need to discuss the relationship between

estimates with respect to different quantiles. Let {τ1, τ2, ..., τL} be a set of quantiles

with τ1 ≤ τ2 ≤ ... ≤ τL. Accordingly, we introduce ε2tτi , γ(τi), ψτi and Zψτi as

the variables and parameters with respect to different quantiles. The following two

lemma will be needed for the theorem providing the asymptotic covariance.

Lemma 1.

T−
1
2

[Tr]∑
t=1

 ψτi(ε2t)

ψτj(ε2t)

 d−→

 Zψτi (r)

Zψτj (r)

 = BM(0,Ωij), (3.19)

where i < j and Ωij =

 τi(1− τi) τi(1− τj)

τi(1− τj) τj(1− τj)

.
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Proof. By functional central limit therom,

cov(Zψτi (r), Zψτj (r)) = cov(ψτi(ε2t), ψτj(ε2t)), (3.20)

while since ψτl = τl − I(ε2t < F−1(τl)) for l = i, j, we have E(ψτl) = 0. Therefore,

cov(ψτi(ε2t), ψτj(ε2t)) = E(ψτi(ε2t)ψτj(ε2t))− E(ψτi(ε2t))(ψτj(ε2t))

= P (ε2t < F−1(τi))(τi − 1)(τj − 1) + P (F−1(τi) ≤ ε2t < F−1(τj))τi(τj − 1)

+P (ε2t ≥ F−1(τj))τiτj

= τi(τi − 1)(τj − 1) + (τj − τi)τi(τj − 1) + (1− τj)τiτj

= τi(1− τj).

By Proposition 4, we have that T−
1
2

∑[Tr]
t=1 ψτi(ε2tτi) → Zψτi (r) =

√
τi(1− τi)B(r)

and T−
1
2

∑[Tr]
t=1 ψτj(ε2tτj) → Zψτj (r) =

√
τj(1− τj)B(r). Combining the results we

get the conclusion.

Lemma 2. Given that X is independent of both Y1 and Y2, and E(Y1) =

E(Y2) = 0, we have that

cov(XY1, XY2) = EX2cov(Y1, Y2). (3.21)

Proof.

cov((XY1, XY2) = E(XY1XY2)− E(XY1)E(XY2)

= EX2E(Y1Y2)− (EX)2E(Y1)E(Y2)

= EX2E(Y1Y2)

= EX2cov(Y1, Y2)
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Then we have the following theorem.

Theorem 2. The joint asymptotic distribution of the regression coefficient esti-

mates is

MDT



γ̂(τ1)− γ(τ1)

γ̂(τ1)− γ(τ2)

...

γ̂(τL)− γ(τL)


d−→



1
f(F−1(τ1))

[
∫
J̄cJ̄

′
c]
−1[

∫
J̄cdZψτ1 ]

1
f(F−1(τ2))

[
∫
J̄cJ̄

′
c]
−1[

∫
J̄cdZψτ2 ]

...

1
f(F−1(τL))

[
∫
J̄cJ̄

′
c]
−1[

∫
J̄cdZψτL ]


, (3.22)

where MDT = IL
⊗

DT . The asymptotic variance matrix is Ω = (ωij)L×L with

ωij =


1

f(F−1(τi))
1

f(F−1(τj))
τi(1− τj)

∫
E[(

∫
J̄cJ̄

′
c)
−1J̄c(s)]

2ds, when i ≤ j

1
f(F−1(τi))

1
f(F−1(τj))

τj(1− τi)
∫
E[(

∫
J̄cJ̄

′
c)
−1J̄c(s)]

2ds, when i > j
.

Proof. Noting that

∫
J̄cdZψτl = lim

∆s→0

∑
J̄c(sn)(Zψτl (sn)− Zψτl (sn−1)). (3.23)

For notation simplicity, denote K = [
∫
J̄cJ̄

′
c]
−1. Consider the covariance between the

summations cov(K
∑
J̄c(sn)(Zψτi (sn)−Zψτi (sn−1)), K

∑
J̄c(sn)(Zψτj (sn)−Zψτj (sn−1))).

By lemma 1,

 Zψτi (r)

Zψτj (r)

 is a two dimensional Brownian motion, therefore, we have

that the expectation of the increments is zero as well as that the increments with

respect to non-overlapping time periods are independent with each other. Thus we
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have

cov(KJ̄c(sn)(Zψτi (sn)− Zψτi (sn−1)), KJ̄c(sm)(Zψτi (sm)− Zψτi (sm−1)))

= E(K2(J̄c(sn)(Zψτi (sn)− Zψτi (sn−1))J̄c(sm)(Zψτi (sm)− Zψτi (sm−1)))

−E(KJ̄c(sn)(Zψτi (sn)− Zψτi (sn−1)))E(KJ̄c(sm)(Zψτi (sm)− Zψτi (sm−1)))

= E(K2J̄c(sn)J̄c(sm))E(Zψτi (sn)− Zψτi (sn−1)))E(Zψτi (sm)− Zψτi (sm−1))

−E(KJ̄c(sn))E(Zψτi (sn)− Zψτi (sn−1)))E(KJ̄c(sm))E(Zψτi (sm)− Zψτi (sm−1))))

= 0,

for m 6= n.

Therefore we have

cov(K
∑

J̄c(sn)(Zψτi (sn)− Zψτi (sn−1)), K
∑

J̄c(sn)(Zψτj (sn)− Zψτj (sn−1)))

=
∑

cov(KJ̄c(sn)(Zψτi (sn)− Zψτi (sn−1)), KJ̄c(sn)(Zψτj (sn)− Zψτj (sn−1)))

=
∑

E(KJ̄c(sn))2cov(Zψτi (sn)− Zψτi (sn−1)), (Zψτj (sn)− Zψτj (sn−1)))

=


∑
E(KJ̄c(sn))2τi(1− τj)∆s, when i ≤ j∑
E(KJ̄c(sn))2τj(1− τi)∆s, when i > j

→


∫
E(KJ̄c(s))

2τi(1− τj)ds, when i ≤ j∫
E(KJ̄c(s))

2τj(1− τi)ds, when i > j
.

(3.24)

The first equation is due to the above argument; the second one is based on As-

sumption 2 and lemma 2; the third equation is derived from the lemma 1 and the

last one is by the definition of Riemann Integral. Reorganize the items and multiply

the constant we get the covariance matrix. Combining with the results in Theorem
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1, we prove the conclusion.

3.3 Markov Chain

Moving forward, we consider the set up of state variable St. Let τ1 < τ2 < τ3 be

three quantiles with given value. Separate the range of Yt|Xt−1 into three parts:

(−∞, QYt|Xt−1(τ1)), [QYt|Xt−1(τ1), QYt|Xt−1(τ3)) and [QYt|Xt−1(τ3),+∞). St, taking

values 1, 2, and 3, denotes the interval in which Yt falls. We have the following

assumptions for St.

Assumption 5. St is exogenous, which means, St is independent with Xt process.

Assumption 6. St follows a three state first order Markov Chain.

Assumption 7. St is irreducible and aperiodic, therefore ergodic.

Assumption 5 assures the exogeneity of St. This makes economic sense, since St

denotes the state of the whole market, thus a macro-index. The predictors, such as

economic ratios, are micro-indices changing independently with market states. As-

sumption 6 is consistent with literature (e.g., Goutte(2012), Bai and Wang (2010)).

Assumption 7 imposes a mild restriction on the structure of the state variable. By

Assumption 6, we see that the state space E = {1, 2, 3}, which is finite. For a finite

state Markov chain, which is recurrent as well as irreducible and aperiodic tends

to be ergodic. We know that the market moving trend is difficult to predict; the

existence of such huge noise means that it is reasonable for us to assume that the

transition probabilities of the Markov chain is non-zero. Therefore by our definition

of the state variable, we can see that each state is communicated with the others,

and Pii 6= 0,∀i. By the above argument, we can see that the ergodic property is a

natural assumption for market state variables.

By Assumption 7, we conclude that the limiting distribution of St exists. Implied
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by the definition, the limiting distribution of St is the following

St =


1, with probability τ1

2, with probability τ3 − τ1

3, with probability 1− τ3

.

The estimation of the state variable St, which is given by

Ŝt =


1, when yt < Q̂Yt|Xt−1(τ1)

3, when yt ≥ Q̂Yt|Xt−1(τ3)

2, otherwise

can be rewritten as

Ŝt = 1I(yt < Q̂Yt|Xt−1(τ1)) + 3I(yt ≥ Q̂Yt|Xt−1(τ3))

+2(1− I(yt < Q̂Yt|Xt−1(τ1))− I(yt ≥ Q̂Yt|Xt−1(τ3))).

Denote Î1 = I(yt < Q̂Yt|Xt−1(τ1)) and Î3 = I(yt ≥ Q̂Yt|Xt−1(τ3)), we have

Ŝt = Î1 + 3Î3 + 2(1− Î1 − Î3)

= 2− Î1 + Î3.

Let

St =


1, when yt < QYt|Xt−1(τ1)

3, when yt ≥ QYt|Xt−1(τ3)

2, otherwise
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The following theorem shows that Ŝt converges to St in probability.

Theorem 3. Using the notations above, we have that

lim
T→+∞

E|Ŝt − St| = 0, (3.25)

where T denotes the sample length of the data used for parameter estimation.

Proof. Denote I1 = I(yt < QYt|Xt−1(τ1)) and I3 = I(yt ≥ QYt|Xt−1(τ3)), by the same

argument, we have

St = 2− I1 + I3. (3.26)

Let’s first show that Î1 is L1-convergent to I1.

Î1 − I1 =


1, when QYt|Xt−1(τ1) ≤ yt < Q̂Yt|Xt−1(τ1)

−1, when Q̂Yt|Xt−1(τ1) ≤ yt < QYt|Xt−1(τ1)

0, otherwise

.

Therefore

E|Î1−I1| = P (yt ∈ [min{QYt|Xt−1(τ1), Q̂Yt|Xt−1(τ1)},max{QYt|Xt−1(τ1), Q̂Yt|Xt−1(τ1)}].

Denote the interval as A.

From corollary 1, we have that Q̂Yt|Xt−1(τ1) is a consistent estimator of QYt|Xt−1(τ1),

which means that, for any ε > 0 and δ > 0, there exists N , such that for any

T > N , P (|Q̂(T )
Yt|Xt−1

(τ1)−QYt|Xt−1(τ1)| > ε) < δ
2
, where Q̂

(T )
Yt|Xt−1

(τ1) is the estimator

of QYt|Xt−1(τ1) based on T time periods. Let’s denote the interval [QYt|Xt−1(τ1) −
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ε, QYt|Xt−1(τ1) + ε] as B and its complement as C. Therefore,

P (yt ∈ A) = P ({yt ∈ A} ∩ {Q̂(T )
Yt|Xt−1

(τ1) ∈ C}) + P ({yt ∈ A} ∩ {Q̂(T )
Yt|Xt−1

(τ1) ∈ B})

≤ P (Q̂
(T )
Yt|Xt−1

(τ1) ∈ C) + P ({yt ∈ A} ∩ {Q̂(T )
Yt|Xt−1

(τ1) ∈ B})

≤ δ

2
+ max{F (QYt|Xt−1 + ε)− F (QYt|Xt−1), F (QYt|Xt−1)− F (QYt|Xt−1 − ε)}.

δ can be set as close to zero as needed, and by assumption 3 and 4, the second item

decreases to zero as ε tends to zero. Therefore, we can set ε small enough such that

max{F (QYt|Xt−1 + ε)− F (QYt|Xt−1), F (QYt|Xt−1)− F (QYt|Xt−1 − ε)} ≤
δ

2
. (3.27)

So we have shown that

lim
T→+∞

E|Î1 − I1| = 0. (3.28)

Similarly, we have

lim
T→+∞

E|Î3 − I3| = 0. (3.29)

So

E|Ŝt − Ŝ| = E|(2− Î2 + Î3)− (2− I1 + I3)|

= E|Î3 − I3 − (Î1 − I1)|

≤ E|Î1 − I1|+ E|Î3 − I3|

also converges to zero.

Next we consider the transition probabilities for St: Pij = P (St+1 = j|St = i).
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The estimation is given by:

P̂ij =

∑T−1
t=1 I(Ŝt+1 = j and Ŝt = i)∑T−1

t=1 I(Ŝt = i)
. (3.30)

The following theorem shows the consistency of P̂ij.

Theorem 4. Given that Ŝt is a consistent estimator of St, we have

P̂ij
p−→ Pij, (3.31)

where P̂ij is calculated by equation (3.30).

Proof. Denote πi as the limiting probability of state i. By definition, we have

∑
I(St = i)

T − 1

p−→ πi. (3.32)

Also, we have

E|
∑
I(St = i)

T − 1
−

∑
I(Ŝt = i)

T − 1
| ≤ 1

T − 1

∑
E|I(St = i)− I(Ŝt = i)|

≤ 1

T − 1

∑
P (St 6= Ŝt)→ 0,

by the probability convergence of Ŝt. Therefore, we have that

∑
I(Ŝt = i)

T − 1

p−→ πi. (3.33)

Now consider

∑
I(St+1 = j and St = i)

T − 1

p−→ P (St+1 = j and St = i) = Pijπi.
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This can be obtained by considering {St, St+1} as a nine state Markov chain with

limiting probabilities Pijπi. Similarly, we have that

E|
∑
I(St+1 = j and St = i)

T − 1
−

∑
(Ŝt+1 = j and St = i)

T − 1
|

≤ 1

T − 1

∑
E|I(St+1 = j and St = i)− I(Ŝt+1 = j and St = i)|

≤ 1

T − 1

∑
(P (St 6= Ŝt) + P (St+1 6= Ŝt+1))→ 0,

also by the probability convergence of Ŝt. Thus we have

∑
I(Ŝt+1 = j and Ŝt = i)

T − 1

p−→ Pijπi. (3.34)

By Slutsky’s Theorem, we have that

P̂ij
p−→ Pijπi

πi
= Pij. (3.35)

To explore further the property of the estimation of transition probability, we

first extend St into a nine state Markov chain, {(St, St+1)} = {Xt}. The following

lemma shows the property of this new Markov chain.

Lemma 3. {Xt} is also ergodic, and hence has stationary distribution, which is

given by

π(i, j) = Pijπi, (3.36)

where Pij and πi are the transition probabilities and the limiting probabilities of

St, respectively. The limiting distribution is defined in the state space of Xt:
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E ′ = {(i, j), i, j = 1, 2, 3}.

Proof. The ergodic property is easy to show after writing down the transition prob-

ability matrix of Xt in terms of Pij, which is



(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

(1, 1) P11 P12 P13 0 0 0 0 0 0

(1, 2) 0 0 0 P21 P22 P23 0 0 0

(1, 3) 0 0 0 0 0 0 P31 P32 P33

(2, 1) P11 P12 P13 0 0 0 0 0 0

(2, 2) 0 0 0 P21 P22 P23 0 0 0

(2, 3) 0 0 0 0 0 0 P31 P32 P33

(3, 1) P11 P12 P13 0 0 0 0 0 0

(3, 2) 0 0 0 P21 P22 P23 0 0 0

(3, 3) 0 0 0 0 0 0 P31 P32 P33



.

From the matrix, we can see that ∀(i, j), (i′, j′) ∈ E ′,

(i, j) 
 (i′, j′)⇐⇒


i
 j

i′ 
 j′

j 
 i′

. (3.37)

Hence we can see that the irreducible property of Xt is promised by that of St.

What is more,

Pjj 6= 0 =⇒ P(j,j),(j,j) 6= 0.

Therefore the aperiodic property can also be deduced by that of St. Furthermore,
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since Xt is a finite state Markov chain, we can see that it is ergodic.

The expression of the limiting distribution can be directly obtained by its definition

and the limiting distribution of St.

To show the normality of the transition probability estimations, in addition to

consistence, we need further acquire the rate of the convergence. So here we first

state one more assumption to control the rate of the convergence of St.

Assumption 8. {St} is geometrically ergodic, which is to say,

∀ initial distribution λ0 on E, ||P t(λ0, ·)− π(·)|| ≤Mρt,

where M is a finite positive number and 0 < ρ < 1. Assumption 8 seems to put

further restrictions on St, however, since St is a finite state Markov chain, ergodic is

equivalent with geometrically ergodic. Therefore, Assumption 8 contains no further

information than Assumption 7. Stating it here individually is aimed to explicitly

show the property we base on at each step.

The following theorem holds once we have assumption 8.

Theorem 5. Let St be a geometrically ergodic Markov chain, we have that

1√
T

T∑
t=1

(I(St = i, St+1 = j)− πiPij)
d−→ N(0, σ2

f ), (3.38)

where

σ2
f = V ar(f(X0)) + 2

∞∑
t=1

Cov(f(X0, f(Xt)) (3.39)

and

f(Xt) = I(i,j)(Xt). (3.40)

Remark. This theorem is a direct application of GL.Jones’s work in 2004, Theorem

2 and Theorem 5, since f(Xt) is a Borel function of Xt. The limiting variance is
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finite since,

∞∑
t=1

Cov(f(X0, f(Xt))

=
∞∑
t=1

(E(I(i,j)(X0) · I(i,j)(Xt)− EI(i,j)(X0)EI(i,j)(Xt))

=
∞∑
t=1

(P [X0 = (i, j), Xt = (i, j)]− P [X0 = (i, j)]P [Xt = (i, j)])

=
∞∑
t=1

P [X0 = (i, j)](P [Xt = (i, j)|X0 = (i, j)]− P [Xt = (i, j)]).

For t large enough, P [Xt = (i, j)] ≈ π(i, j), therefore by geometric ergodic property,

we have
∞∑
t=1

Cov(f(X0, f(Xt)) ≤
∞∑
t=1

P [X0 = (i, j)] ·M · ρt <∞.

By theorem 5, we can see that if we estimate the transition probability by the true

empirical estimation, given by

P̃ij =

∑T−1
t=1 I(St+1 = j and St = i)∑T−1

t=1 I(St = i)
, (3.41)

we will get asymptotic normality. Notice that this expression is obtained by re-

placing Ŝt with St in the estimation of Pij given by (3.43). The following lemma

provides us with a bridge to connect the normality of P̃ij with P̂ij.

Lemma 4. Let {Xt}, {Yt} be two sequences of random variables, assume

Xt
d−→ X0,

|Yt −Xt|
p−→ 0,
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then we have

Yt
d−→ X0. (3.42)

Proof. To show that Yt
d−→ X0, equivalently, we can show that ∀x ∈ C(FX0),

FYt(x) → FX0(x), i.e., P (Yt ≤ x) → P (X0 ≤ x), where F are the cumulative

distribution functions and C(·) denotes the continuous points of a function.

Let Et = {|Yt −Xt| > ε}, and ∀x ∈ C(FX0), we have

P (Yt ≤ x) = P (Yt ≤ x;Et) + P (Yt ≤ x;Ec
T )

≤ P (Et) + P ((Yt ≤ x;Ec
T ),

when (Yt, Xt) ∈ Ec
t = {|Yt − Xt| ≤ ε}, Yt ≤ x implies Xt ≤ x + ε. Therefore, we

have that

P (Yt ≤ x) ≤ P (Et) + P (Xt ≤ x+ ε).

Taking limsup on both hand sides, we obtain

lim
t→∞

supP (Yt ≤ x) ≤ 0 + P (X0 ≤ x+ ε).

Let ε↘ 0, by continuity of FX0 at x,

lim
t→∞

supP (Yt ≤ x) ≤ P (X0 ≤ x). (3.43)
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On the other hand, we have

P (Yt ≤ x) ≥ P (Yt ≤ x;Ec
t ),

and when (Yt, Xt) ∈ Ec
t , Xt ≤ x− ε implies Yt ≤ x, therefore, we have

P (Yt ≤ x) ≥ P (Xt ≤ x− ε;Ec
t )

≥ P (Xt ≤ x− ε)− P (Et).

The second inequality is because

P (Xt ≤ x− ε;Ec
t )

= P (Xt ≤ x− ε)− P (Xt ≤ x− ε ∩ Et)

≥ P (Xt ≤ x− ε)− P (Et).

Take liminf on both hand sides, we have that

lim
t→∞

infP (Yt ≤ x) ≥ P (X0 ≤ x− ε)− 0,

and let ε↘ 0, again, by continuity of FX0 at x,we obtain

lim
t→∞

infP (Yt ≤ x) ≥ P (X0 ≤ x). (3.44)

Combining (3.43) and (3.44) we obtain that ∀x ∈ C(FX0),

lim
t→∞

P (Yt ≤ x) = P (X0 ≤ x). (3.45)
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Thus we complete the proof of the lemma.

With the conclusion of Lemma 4, now we are only one step to the normality

property of transition probability estimation. The following Lemma 5 fills this gap.

Lemma 5. In the above set up, we have

1√
T

(
T∑
t=1

I(Ŝt = i, Ŝt+1 = j)−
T∑
t=1

I(St = i, St+1 = j))
p−→ 0. (3.46)

Proof. By (3.16) in Theorem 1, we have that the convergence rate for the quantile

regression coefficients γ̂(τ) is  T
1
2 0

0 T

 .

Since Q̂Yt|Xt−1(τ |Ft−1) = Xt−1 · γ̂(τ), we can obtain a bound for the convergence rate

of Q̂Yt|Xt−1(τ |Ft−1), which is T
1
2 . This leads us to the result that, ∀ε > 0,

P (|Q̂Yt|Xt−1(τ |Ft−1)−QYt|Xt−1(τ |Ft−1)| > ε) ≤ 1

T
·Mε, (3.47)

the above inequality is a straightforward application of Chebyshev’s Inequality,

P (|X − EX| > ε) ≤ V ar(X)
ε2

.

Recall that the estimations and the true values of state variable St is given by

Ŝt = 1I(Yt < Q̂(τ1) + 2I(Yt ∈ [Q̂(τ1), Q̂(τ3))) + 3I(Yt ≥ Q̂(τ3)),

St = 1I(Yt < Q(τ1) + 2I(Yt ∈ [Q(τ1), Q(τ3))) + 3I(Yt ≥ Q(τ3)),

where for notation simplicity, Q̂(τi) and Q(τi) are abbreviations for Q̂Yt|Xt−1(τi|Ft−1)
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and QYt|Xt−1(τi|Ft−1) respectively. Thus we have

P (Ŝt 6= St) = P (|Q̂(τ1)−Q(τ1)| > ε ∪ |Q̂(τ3)−Q(τ3)| > ε for some ε > 0)

≤ P (|Q̂(τ1)−Q(τ1)| > ε for some ε > 0) + P (|Q̂(τ3)−Q(τ3)| > ε for some ε > 0)

≤ 2 · 1

T
·Mε.

So we get that

E| 1√
T

T∑
t=1

I(Ŝt = i, Ŝt+1 = j)− 1√
T

T∑
t=1

I(St = i, St+1 = j)|

≤ 1√
T

T∑
t=1

P [(Ŝt, Ŝt+1) 6= (St, St+1)]

≤ 1√
T

T∑
t=1

[P (Ŝt 6= St) + P (Ŝt+1 6= St+1)]

≤ 1√
T

T∑
t=1

2 · 2 · 1

T
·Mε

=
1√
T
· 4Mε → 0 as T →∞.

The above inequality holds for any ε > 0. Therefore we showed the convergence in

probability conclusion in the lemma.

Combining the results in Theorem 5, Lemma 4 and Lemma 5, we immediately

get the following

1√
T

T∑
t=1

(I(Ŝt = i, Ŝt+1 = j)− πiPij)
d−→ N(0, σ2

f ), (3.48)

where σ2
f is defined by (3.39) and (3.40).

By similar argument in the proof of Theorem 4, and the application of ergodic
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theorem, we also have

1

T

T∑
t=1

I(Ŝt = i)
p−→ πi (3.49)

Combining (3.48) and (3.49) we obtain the normality property, which is given by

Theorem 6.

Theorem 6. With all the assumptions and notations above, we have

√
T (P̂ij − Pij) =

√
T (

∑T−1
t=1 I(Ŝt+1 = j, Ŝt = i)∑T−1

t=1 I(Ŝt = i)
− Pij)

d−→ N(0, σ2) (3.50)

where σ2 =
σ2
f

π2
i
.

In this chapter, we represent the primary theoretical results related with our model.

First, based on the property of economic data, we construct the autocorrelation

structure of the dependent variables. An AR model is applied to capture the evolu-

tion dynamics of economic factors. Next, we show the consistency of the parameter

estimation in a quantile regression model with time series data. Furthermore, the

asymptotic covariance between the parameter estimation of different quantiles is

given.

In addition, with some mild assumptions, we show that the estimates of the under-

lying Markov chain which controls the movement of the market state variable are

consistent. Particularly, the estimations of the state variables and the transition

probabilities given in chapter 2 are consistent, and we further obtain the asymptotic

normality property.
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Chapter 4

Numerical Study

Theorem 2 in the last chapter shows that the estimates of the coefficients in our

quantile regression method is consistent. However, in order to further generate

statistical inference, we need additional properties such as asymptotic normality of

the estimates. Unfortunately, the form of the asymptotic distribution is irregular

unless in some very rare cases. Therefore in this chapter, we present the simulation

studies of the time-series data quantile regression to further explore the properties

of the estimates.

Let’s first come back to an OLS set up, where the linear relationship between the

response variable y and independent variable x can be modeled by

yt = γ0 + γ1xt−1 + εt. (4.1)

In this standard set up, we have the assumption that x is independent with the

error term ε. By such independence, we can see that x imposes the same influence

on different quantiles of y. That is to say, if equation (4.1) is our true model, which

means, we generate the response variable y according to this relationship, then the
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true value of the slope remains to be γ1 for all of the quantiles while the true value

of the intercept shifts from γ0 by the amount that determined both by the quantile

we estimated on and the distribution of ε. Actually, given Ft, the τth quantile of yt

is

Qyt|Ft−1(τ) = γ0 + γ1xt−1 +Qεt(τ). (4.2)

Therefore we obtain,

γ0(τ) = γ0 + F−1(τ), (4.3)

γ1(τ) = γ1, (4.4)

where F is the cumulative distribution function of the error term εt given the infor-

mation up to time t− 1.

The reason why we introduce quantile regression as an alternative to OLS is that

in some cases, the above independence assumption does not hold, that is to say, x

can also influence the distribution of the error term. In particular, we model the

conditional quantile of the error term as

Qεt|Ft−1(τ) = γ0(τ)− γ0 + (γ1(τ)− γ1)xt−1, (4.5)

then we will have

Qyt|Ft−1(τ) = γ0(τ) + γ1(τ)xt−1. (4.6)

From this argument, we can see that in a quantile regression model, the indepen-

dent variable x can influence the distribution of the error term, thus has different

contribution to different quantiles of y.
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In this simulation study, we assume that x has linear influence in the error term,

εt = (δ0 + δ1xt−1)ut, (4.7)

where ut are i.i.d. errors, and δ0 6= 0. Combining this assumption with (4.1), we

obtain that

yt = γ0 + γ1xt−1 + (δ0 + δ1xt−1)ut. (4.8)

Under this case, the true value of the parameters in (4.6) is given by,

γ0(τ) = γ0 + δ0G
−1(τ), (4.9)

γ1(τ) = γ1 + δ1G
−1(τ), (4.10)

where G is the cumulative distribution function of u. Notice that if we set

δ1 = 0, (4.11)

then the error term is independent of xt, thus we obtain an OLS set up. Other than

this circumstance, both γ0(τ) and γ1(τ) depend non-trivially on τ .

In the simulation study, the independent variable x is generated by (3.1) and (3.2).

For convenience reason, we set xt = (1 + c
T

)xt−1 + ε1t, where ε1t are i.i.d. errors

independent with ut. The response variable y is generated by equation (4.8), where

γ0, γ1, δ0 and δ1 are predetermined values.

We run 1000 replications for each parameter combination of (τ, c, δ1), where τ ranges

from 0 to 1, c from 0 to −T , and δ1 is chosen between 0 and 1
10
γ1.

The following table represents the parameters we choose for the simulation.
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Table 4.1: Simulation Parameters

T 1000 γ0 1
σ1 0.1 γ1 2
σ2 1 δ0 0.1

The mean and standard deviations of the 1000 estimations along with the true

values of each coefficient is presented in the tables in next page.

Table 4.2 and Table 4.3 represent the results of the intercept and slope estimation,

respectively, with their true values in the second column. Different values of δ1 pro-

vide us with different true models. By assigning 0 to it, we obtain an OLS setting.

Notice that in this case the true value of slope does not vary across the quantiles.

The value of c controls the autocorrelation structure of the independent variable Xt,

with the first order autocorrelation ρ1 = 1+ c
T

. Particularly, when c = −T = −1000,

Xt is an i.i.d. sequence. When c gets greater, the autocorrelation becomes stronger.

We require c ≤ 0, and when c = 0, time series Xt is not stationary. We choose

c = 0,−500, and −1000 in our simulation. Finally, the quantiles τ vary from 0.1 to

0.9, with an interval of 0.1, so that we can see the performance of the estimation

across different quantiles.

The results in the table first confirm our conclusion of consistency of the estimates.

From the table we can see that for all of the parameter combinations, the mean of

the estimates is close to its true value, with an acceptably small standard devia-

tion. The estimation for quantiles around the median is slightly better than the tail

quantiles. This can also be seen from the standard deviations of the estimates. For

both the intercept and slope estimates, as the quantile increases, the standard devi-

ation gradually decreases for the lower quantiles, after passing the median, it then
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Table 4.2: Simulation Results-Intercept

δ1 = 0
c = 0 c = −500 c = −1000

τ True Value Mean Est (SD) Mean Est (SD) Mean Est (SD)
0.1 0.8718 0.8766(0.0579) 0.8716(0.0263) 0.8722(0.0295)
0.2 0.9158 0.9175(0.0500) 0.9155(0.0224) 0.9163(0.0232)
0.3 0.9476 0.9488(0.0474) 0.9476(0.0206) 0.9480(0.0220)
0.4 0.9747 0.9761(0.0455) 0.9746(0.0198) 0.9750(0.0214)
0.5 1.0000 1.0014(0.0437) 1.0000(0.0201) 1.0004(0.0213)
0.6 1.0253 1.0272(0.0477) 1.0250(0.0200) 1.0262(0.0208)
0.7 1.0524 1.0531(0.0487) 1.0518(0.0208) 1.0527(0.0223)
0.8 1.0842 1.0847(0.0530) 1.0829(0.0227) 1.0847(0.0232)
0.9 1.1282 1.1269(0.0650) 1.1269(0.0268) 1.1297(0.0278)

δ1 = 0.2
c = 0 c = −500 c = −1000

τ True Value Mean Est (SD) Mean Est (SD) Mean Est (SD)
0.1 0.8718 0.8748(0.0619) 0.8698(0.0533) 0.8726(0.0457)
0.2 0.9158 0.9179(0.0525) 0.9158(0.0445) 0.9158(0.0381)
0.3 0.9476 0.9490(0.0477) 0.9467(0.0404) 0.9476(0.0353)
0.4 0.9747 0.9738(0.0443) 0.9748(0.0391) 0.9757(0.0344)
0.5 1.0000 0.9979(0.0442) 0.9990(0.0378) 1.0009(0.0346)
0.6 1.0253 1.0245(0.0446) 1.0249(0.0387) 1.0265(0.0350)
0.7 1.0524 1.0512(0.0465) 1.0523(0.0402) 1.0533(0.0365)
0.8 1.0842 1.0837(0.0497) 1.0849(0.0435) 1.0835(0.0398)
0.9 1.1282 1.1282(0.0616) 1.1292(0.0521) 1.1268(0.0484)

increases. This phenomenon is consistent with the form of the limiting distributions

of the estimations, since the constant τ(1− τ) is maximized at τ = 0.5.

For most of τ and δ1 combinations, the sample standard deviations increase as c

increases to zero. This is also expected. We know that when c gets closer to 0, the

autocorrelation of Xt gets bigger, so the distribution of [
∫
J̄cJ̄

′
c]
−1 in Theorem 1,

which is the counterpart of the matrix (XX ′)−1 in OLS, is more spread. Therefore

the convergence rate of the estimation to the true value is slower when c is closer

to zero. Notice that when c = 0, which is the case that Xt is not stationary, the



52

Table 4.3: Simulation Results-Slope

δ1 = 0
c = 0 c = −500 c = −1000

τ True Value Mean Est (SD) Mean Est (SD) Mean Est (SD)
0.1 2 1.9996(0.0536) 2.0009(0.0456) 1.9998(0.0546)
0.2 2 1.9999(0.0467) 2.0009(0.0389) 1.9995(0.0437)
0.3 2 1.9999(0.0432) 2.0002(0.0362) 1.9994(0.0413)
0.4 2 1.9999(0.0415) 2.0004(0.0346) 1.9995(0.0402)
0.5 2 1.9999(0.0408) 2.0004(0.0351) 1.9992(0.0398)
0.6 2 1.9998(0.0445) 2.0008(0.0348) 1.9984(0.0389)
0.7 2 2.0000(0.0444) 2.0012(0.0363) 1.9995(0.0418)
0.8 2 2.0000(0.0483) 2.0026(0.0391) 1.9991(0.0435)
0.9 2 2.0001(0.0598) 2.0028(0.0465) 1.9970(0.0524)

δ1 = 0.2
c = 0 c = −500 c = −1000

τ True Value Mean Est (SD) Mean Est (SD) Mean Est (SD)
0.1 1.7437 1.7399(0.1264) 1.7478(0.0970) 1.7433(0.0993)
0.2 1.8317 1.8333(0.1103) 1.8318(0.0809) 1.8332(0.0824)
0.3 1.8951 1.8973(0.0988) 1.8973(0.0734) 1.8957(0.0771)
0.4 1.9493 1.9524(0.0949) 1.9491(0.0720) 1.9471(0.0752)
0.5 2.0000 2.0040(0.0927) 2.0015(0.0692) 1.9978(0.0756)
0.6 2.0507 2.0515(0.0926) 2.0509(0.0715) 2.0481(0.0758)
0.7 2.1049 2.1078(0.0955) 2.1042(0.0741) 2.1029(0.0787)
0.8 2.1683 2.1719(0.1056) 2.1663(0.0800) 2.1697(0.0861)
0.9 2.2563 2.2612(0.1255) 2.2538(0.0961) 2.2591(0.1035)

estimation is still consistent.

Now let’s compare the case δ1 = 0 with δ1 = 0.2. We know that in the first case,

variable Xt is independent with the error term, so that the influence of Xt on Yt

remains the same for different quantiles. Reflected in the model, we can see that

the true values for the slope do not change. In this case, OLS is a better option

for us, and we need to deal with over-fitting issues with QR model. The first panel

of Table 4.3 shows us the performance of QR in this case. We can see that for

all of the quantiles, the estimates of the slope is close to the constant true value
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2. By comparing the difference among themselves with respect to their standard

deviations, we can see we won’t reject the null hypothesis βτ1 = βτ2 = ... = βτ9 .

This means that if we apply QR in the case where OLS is a proper model, it still

gives us consistent results, and based on its results we eventually turn to the right

model.

Next, let us consider the performance of OLS model under quantile regression set-

tings. With other parameter values in Table 4.1, we choose δ1 = 0.4 to make the

true model further away from OLS settings. Again, we run 1000 replications for each

parameter combination of (τ, c), and the candidate values of (τ, c) are the same as

before. Based on the results, we generate the following plots.

Figure 4.1: Comparison between OLS and Quantile Regression Estimates

The above plots compare the 95% confidence intervals of the slope estimations of

OLS and QR models. The red lines and horizontal blue lines represent the confi-

dence intervals under quantile regression models and OLS model, respectively. The

upper and lower lines are the upper and lower bounds of the interval, while the

middle lines are the locations of the mean of the 1000 estimates. The bounds of the

confidence interval is computed as the 2.5th and 97.5th empirical percentile of the

estimates. The black dashed line marks the true value of the slope across different

quantiles. The plots are for the cases of c = 0, c = −500 and c = −1000 from left

to right, respectively.
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First, notice that the patterns are similar across different value assignments of c,

which means that our conclusion is robust. However, when c = 0, the confidence

interval is wider than other cases, which is consistent with the above conclusion

that the limiting distribution is more spread when the independent variable is not

stationary. Also, we can see that the mean of the estimates are close to the true

mean, which confirms our consistency conclusion.

Since δ1 = 0.4 > 0, the true value along with the estimates of the slope of QR model

is increasing as τ becomes greater. This means that the influence of Xt is greater on

the larger values of Yt, while OLS model cannot capture this phenomenon. We can

see that the OLS confidence interval crosses with QR intervals at the place around

median, while they stagger each other at the tails. This shows that OLS estimates

only convey the average effect to the whole distribution. From the plots we can

see that at the tails, the confidence intervals do not overlap, which means that the

influence in the tails is significantly different from the average influence. Therefore

we can draw the conclusion that under such circumstance, OLS is not adequate to

provide a whole picture of the relationship between the two variables.

Finally, let’s examine how far the limiting distribution is from a normal distribution.

We know that the limiting distribution is not normal unless Xt is not autocorre-

lated. However, it is not a regular distribution as well. In order to perform inference

analysis for the coefficient estimates, we need at least an approximate normality. We

check the histogram and qq-plots of the 1000 estimations for each combination of the

parameter (τ, c). The following plots shows the results for c = −500 and δ1 = 0.2.

The other combinations generate similar results.
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Figure 4.2: QQ Plots of Slope Estimation

Figure 4.3: Histograms of Slope Estimation
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Figure 4.4: QQ Plots of Intercept Estimation

Figure 4.5: Histograms of Intercept Estimation
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From the above plots we can see that the histograms show a normal pattern

of the estimates, which is bell-shaped, single-peaked and with thin tails. This ob-

servation is also supported by the QQ plots. The dots are roughly linear though

there is a little deviation at the tails. We can draw the conclusion that the limiting

distributions is close to a normal distribution.

Since normality is served for statistical inference, we also compared the ’empirical’

confidence interval with ’theoretical’ confidence interval. The ’empirical’ interval is

calculated as above, the α
2
th and (1 − α

2
)th empirical quantile of the 1000 simula-

tion results, while the ’theoretical’ one is computed under the assumption that the

distribution is normal, i.e.

¯̂
βi ± z1−α

2
sβ̂i , (4.12)

where
¯̂
βi is the sample mean of the simulation estimates, sβ̂i is the sample standard

deviation, and z1−α
2

is the 1− α
2
th quantile of the standard normal distribution.

The following plots show the results of the comparison of the 95% confidence interval.

Figure 4.6: Comparison of Confidence Intervals

The middle lines are the average estimates along with the true values, the upper

and lower red lines are the ’empirical’ confidence intervals, and the upper and lower



58

blue lines are the ’theoretical’ ones. From the plots we can see that for both slope

and intercept, it does not induce much error if we assume normality when we give

confidence interval estimation.

Next, we proceed further from the normal error term set up. Normal error is a

standard assumption in an OLS model, however, when the noise no longer has such

nice property, the estimations in OLS, though remain to be consistent, may not be

efficient any more. Nevertheless, in our model, the assumption we put on the error

term is martingale difference sequence, which allows us to explore a wide range of

distribution families.

Now let us consider a skewed distribution - χ2 distribution. Assume ut in equation

(4.7) follows a χ2 distribution. To guarantee the noise term martingale difference

sequence, we shift the distribution so that the mean is zero. To keep consistent with

previous example, we also scale the distribution so that the standard deviation of

the error term stays the same. We keep the linear dependence between xt and εt

as in (4.8). The fixed parameters are the same as Table 4.1, and the parameter

combination of (τ, c, δ1) are also kept consistent with previous study. The results we

present here are obtained when ut follows a χ2 distribution with degree of freedom

4, which has skewness equal to
√

2. We also try different degrees, the results are

similar.

Table 4.4 and 4.5, similar to table 4.2 and 4.3, show the results of simulation with

skewed noise.
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Table 4.4: Simulation Results for Skewed Noise-Intercept

δ1 = 0
c = 0 c = −500 c = −1000

τ True Value Mean Est (SD) Mean Est (SD) Mean Est (SD)
0.1 0.8962 0.8957(0.0272) 0.8962(0.0114) 0.8960(0.0106)
0.2 0.9169 0.9164(0.0319) 0.9170(0.0130) 0.9166(0.0123)
0.3 0.9362 0.9356(0.0363) 0.9362(0.0153) 0.9359(0.0140)
0.4 0.9559 0.9567(0.0421) 0.9553(0.0173) 0.9559(0.0157)
0.5 0.9773 0.9775(0.0475) 0.9773(0.0195) 0.9777(0.0174)
0.6 1.0016 1.0008(0.0524) 1.0020(0.0226) 1.0026(0.0207)
0.7 1.0311 1.0323(0.0635) 1.0308(0.0263) 1.0318(0.0245)
0.8 1.0703 1.0751(0.0808) 1.0701(0.0326) 1.0710(0.0293)
0.9 1.1336 1.1371(0.1146) 1.1317(0.0452) 1.1346(0.0417)

δ1 = 0.2
c = 0 c = −500 c = −1000

τ True Value Mean Est (SD) Mean Est (SD) Mean Est (SD)
0.1 0.8962 0.8962(0.0405) 0.8959(0.0226) 0.8952(0.0197)
0.2 0.9169 0.9156(0.0468) 0.9169(0.0249) 0.9159(0.0222)
0.3 0.9362 0.9342(0.0535) 0.9365(0.0279) 0.9346(0.0245)
0.4 0.9559 0.9556(0.0605) 0.9571(0.0307) 0.9551(0.0268)
0.5 0.9773 0.9779(0.0684) 0.9788(0.0346) 0.9753(0.0304)
0.6 1.0016 1.0015(0.0777) 1.0024(0.0390) 1.0010(0.0362)
0.7 1.0311 1.0334(0.0927) 1.0326(0.0451) 1.0297(0.0436)
0.8 1.0703 1.0756(0.1114) 1.0722(0.0577) 1.0706(0.0543)
0.9 1.1336 1.1362(0.1639) 1.1364(0.0852) 1.1365(0.0768)

Table 4.4 and 4.5 present the simulation results for intercept and slope estimates,

respectively. From the results we can see that, first, our estimation is still consistent

when we switch to a skewed noise set up. The estimations are close to the true values

of the parameters, and the standard deviations of the estimates are relatively small.

What is more, in the case when δ1 = 0, in which the error term is independent of

the explanatory variable, the estimates of the slope remain stable across quantiles.

This shows that in the case where OLS is actually preferred to quantile regression

model, we can easily discern this misuse by simply comparing the results. Also,
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Table 4.5: Simulation Results for Skewed Noise-Intercept

δ1 = 0
c = 0 c = −500 c = −1000

τ True Value Mean Est (SD) Mean Est (SD) Mean Est (SD)
0.1 2 2.0000(0.0212) 2.0001(0.0179) 2.0007(0.0214)
0.2 2 2.0001(0.0253) 1.9998(0.0201) 2.0009(0.0248)
0.3 2 2.0001(0.0286) 2.0001(0.0238) 2.0008(0.0283)
0.4 2 2.0000(0.0331) 2.0011(0.0272) 2.0003(0.0313)
0.5 2 2.0000(0.0378) 2.0001(0.0308) 1.9994(0.0348)
0.6 2 2.0001(0.0417) 1.9996(0.0354) 1.9983(0.0414)
0.7 2 1.9999(0.0500) 2.0005(0.0414) 1.9992(0.0493)
0.8 2 1.9996(0.0634) 2.0006(0.0517) 1.9997(0.0592)
0.9 2 1.9997(0.0905) 2.0032(0.0712) 1.9998(0.0830)

δ1 = 0.2
c = 0 c = −500 c = −1000

τ True Value Mean Est (SD) Mean Est (SD) Mean Est (SD)
0.1 1.7924 1.7926(0.0430) 1.7930(0.0421) 1.7948(0.0430)
0.2 1.8337 1.8348(0.0480) 1.8344(0.0459) 1.8364(0.0479)
0.3 1.8723 1.8739(0.0533) 1.8731(0.0521) 1.8759(0.0530)
0.4 1.9118 1.9122(0.0589) 1.9103(0.0573) 1.9142(0.0578)
0.5 1.9545 1.9543(0.0653) 1.9524(0.0639) 1.9592(0.0654)
0.6 2.0032 2.0033(0.0731) 2.0027(0.0719) 2.0047(0.0774)
0.7 2.0621 2.0597(0.0854) 2.0601(0.0840) 2.0654(0.0926)
0.8 2.1406 2.1352(0.1106) 2.1375(0.1061) 2.1402(0.1159)
0.9 2.2672 2.2646(0.1533) 2.2617(0.1551) 2.2613(0.1667)

the changing pattern of the estimation standard error with respect to different c

values, which imply different autocorrelation structure of Xt, stays the same as in

the previous results.

Next, let us compare the results in table 4.4 and 4.5 with those in table 4.2 and

4.3. Both of the estimates are consistent, while in the skewed error term case, the

standard deviation of the estimates no longer achieves its minimum value around

median. We can see that almost in all cases, the standard deviation gradually in-

creases as the quantile gets greater. This phenomenon is not surprising since χ2



61

distribution is a right skewed distribution; it has a long tail in the right while no tail

at all in the left. Therefore, as the quantile proceeds to the higher part, the errors

vary a lot more significantly than in the lower tail case, thus introduce more variance

in the estimation. One interesting thing here is that given other parameters fixed,

when we change the value of the quantile, most of the standard deviations of the

estimates are less than those in the normal error case. For example, let us compare

the second panel of table 5 with that of table 3. We can see that in c = 0 case, eight

of the standard deviations are less than the minimum standard deviation in the nor-

mal error case with the same parameter combination. In other two cases, there are

still at least six of them. Such pattern firstly indicates that quantile regression is a

robust method. What is more, when we deal with skewed data, the model presents

an overall better performance at the cost of poorer accuracy in the tail. We know

that in the right skewed case, most of the data are aggregates in the range cover-

ing the lower quantiles, therefore, if we can determine that this somewhat ’normal’

range is more important to our study, then the sacrifice of the accuracy in the tail

estimations is worthwhile so that we can obtain a better precision for lower quantile

estimations.

This observation is especially interesting when we research with economic data. We

know that the errors in economic data are relatively less regular, and in quite a few

cases, there are some unexpected shock in it. Therefore, we would like to separate

the influence of the outliers from that of the normal data. However, this is hard to

implement since most of the economic data evolve over time, therefore the noise are

hidden under the structure of autocorrelation. For example, in our model, the factor

Xt evolves according to the AR model, as in (3.1) and (3.2). Therefore by directly

looking at the magnitude of Xt values, we can hardly determine which range the

error term beneath Xt falls into. By this argument, we cannot separate data into



62

difference circumstances. However, with quantile regression, at least we can see that

it provides us with accurate estimation under less extreme cases.

Next, let us compare the performance of quantile regression with OLS model in this

skewed noise case. Plot 4.7 is constructed in the same way as Plot 4.1. We change

δ1 = 0.4 to make the true model deviated further away from OLS settings.

Figure 4.7: Comparison between OLS and Quantile Regression Estimates for Skewed

Noise

Comparing Plot 4.7 with Plot 4.1, we can see that the difference of the patterns

among the three cases is not as significant as that in Plot 1. This shows that the ir-

regularity of the distribution of the noise to some extent absorbs the difference in the

evolution dynamic of the data. Therefore, in the case where we have non-standard

error terms, the quantile regression model is more robust to the autocorrelation

structure of the time series data.

Anther point that is worthwhile noticing is that, since the noise distribution is

skewed, OLS estimate line no longer crosses QR estimate line at around τ = 0.5.

Since this distribution is skewed, the mean effect is drawn above by the long right

tail so that they cross at around τ = 0.6. This shows that the extreme values and

outliers can impose considerable influence in OLS estimates. In the case where we

study time series data, such extremeness is hard to explain since, as argued above,

they are concealed in the autocorrelation structure of the data. Also, if we are more
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interested in the lower quantiles’ influence, where more data are clustered around,

then OLS would give us a biased result. For example, if we assume the data above

80 percent quantile is influenced by an unexpected shock, and we want to check the

performance of the data under normal circumstances, then by looking at the plots,

we can see that the true average influence of Xt to Yt in ’normal’ range is close

to the QR estimate around τ = 0.4. However, this value lies outside of the OLS

interval estimation for all of the three cases. So in the non-standard set up, quantile

regression, as a more robust alternative of OLS, captures more properties hidden in

the data.

We also checked the normality of the estimates. Again, we present here the his-

tograms and qq-plots of the 1000 estimations given c = −500 and δ1 = 0.2. The

other parameter combinations provide similar results.

Figure 4.8: QQ Plots of Slope Estimation for Skewed Noise
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Figure 4.9: Histograms of Slope Estimation for Skewed Noise

Figure 4.10: QQ Plots of Intercept Estimation for Skewed Noise
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Figure 4.11: Histograms of Intercept Estimation for Skewed Noise

The above plots show that in the irregular case, the QR estimates asymptotic

distributions are still close to normal. We also compare the confidence intervals

constructed by different ways and obtained the following plot which is similar to

Plot 5 above.

Figure 4.12: Comparison of Confidence Intervals for Skewed Noise
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The plot shows that the ”empirical” confidence interval is close to the one ob-

tained by (4.12) for all of the quantiles. Therefore, in practice, we can use a normal

approximation to perform inference to our model.

In this chapter, we further examine our model by simulation results. We show

that under linear dependency between the error term and the influence factor Xt,

quantile regression generates consistent estimates. Compared with OLS, quantile

regression is more robust and captures more structure of the data. Also, normal

distribution gives a satisfactory approximation of the asymptotic distribution of the

estimates. These conclusions still hold when we deviate from the standard normal

error term set up.
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Chapter 5

Empirical Results

We use two sets of data to explore the application of our methodology in different

areas.

5.1 Equity Risk Premium Forecast

5.1.1 Data Description

In this analysis, we use quarterly data from Welch and Goyal (2008), who provide

a detailed description of the data sources. The reason that we choose this data

set is due to the fact that it is widely employed by the literature, such as Rapach,

Strauss, and Zhou (2010) and Meligkotsidou et al. (2012). In the analysis below,

we compare our method with Meligkotsidou’s, therefore we apply the same data set

so that the results are more convincing. What is more, based on the literature, this

set of variables have financial theoretical basis, which is also the reason why it is so

widely employed.

The equity risk premium, which is the forecasted variable, is measured as the differ-

ence between the continuously compounded S&P500 returns, including dividends,
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and the Treasury Bill rate, which is served as risk-free rate. The following15 selected

predictors are consistent with Zhou et al. (2010) and Meligkotsidou et al. (2012).

• Earningspriceratio(log), E/P : Difference between the log of earnings on the

S&P 500 index and the log of stock prices, where earnings are measured using

a one-year moving sum.

• Dividendpayoutratio(log), D/E: Difference between the log of dividends and

the log of earnings.

• Stockvariance, SV AR: Sum of squared daily returns on the S&P 500 index.

• Book − to−marketratio, B/M : Ratio of book value to market value for the

Dow Jones Industrial Average.

• Netequityexpansion,NTIS: Ratio of twelve-month moving sums of net issues

by NYSE-listed stocks to total end-of-year market capitalization of NYSE

stocks.

• Treasurybillrate, TBL: Interest rate on a three-month Treasury bill (sec-

ondary market).

• Long − termyield, LTY : Long-term government bond yield.

• Long − termreturn, LTR: Return on long-term government bonds.

• Termspread, TMS: Difference between the long-term yield and the Treasury

bill rate.

• Defaultyieldspread,DFY : Difference between BAA- and AAA-rated corpo-

rate bond yields.
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• Defaultreturnspread,DFR: Difference between long-term corporate bond

and long-term government bond returns.

• Inflation, INFL: Calculated from the CPI (all urban consumers); following

Welch and Goyal (2008), since inflation rate data are released in the following

month, we use xi,t1 in Equation (1) for inflation.

• Investment−to−capitalratio, I/K: Ratio of aggregate (private nonresidential

fixed) investment to aggregate capital for the entire economy (Cochrane 1991).

The quarterly data span from 1947:1 to 2011:4. We divide this sample period into

in-sample and out-of-sample sub-periods, and use an expanding window to do the

forecast, which will be illustrated in the following subsections.

5.1.2 Predictive Model

We aim to compare the performances of three models here. OLS, fixed weight QR

model proposed by Meligkotsidou et al. (2012), and our new specification.

For each of the predictor xi whose predictive power is of interest, we assume it has

a linear relationship with the equity risk premium. The OLS model is given by

rt+1 = β0 + β1xt,i + εt+1,i, (5.1)

where εt+1,i is the error term when variable xi is selected as the predictor. The

prediction of OLS is given by:

r̂t+1,OLS = β̂0 + β̂1xt,i. (5.2)
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The fixed weight quantile regression model also applies quantile regression method.

The method proceeds as follows. Given a set of quantiles, {τ1, τ2, ...τL}, for each

individual predictor xi, we first estimate the quantile regression parameters with

each τl, i.e.

Qrt+1|Xt,i(τl) = β0,l + β1,lxt,i + εt+1,τl , (5.3)

where Qrt+1|Xt,i(τl) is the τ ’s quantile of the risk premium at time t + 1, and εt+1,τl

is the error term whose τlth quantile is 0. The predicted τl’s quantile of r at time

t+ 1 is

Q̂rt+1|Xt,i(τl) = β̂0,l + β̂1,lxt,i.

According to the fixed weight quantile regression method, the forecasted return

based on the information of xi at time t+ 1 is calculated as a weighted summation

of these L predicted quantiles. Let {w1, w2, ...wL} be a set of weights satisfying∑L
l=1wl = 1, the forecasted return will be calculated as

r̂t+1,fwQR =
L∑
i=1

wlQ̂rt+1|Xt,i(τl). (5.4)

There are different ways to assign weights. They are classified into two categories,

fixed weights and time varying weights. Fixed weights are preassigned values and do

not change with time. Time varying weights change over time, and are usually based

on the performance of the model. Here we compare our model with fixed weight

method. To keep consistent with our model, we choose L = 3, and {w1, w2, w3} =

{τ1, τ3 − τ1, 1− τ3}.

Our specification assumes the same relationship between individual predictor xi and

equity risk premium as in the fixed weight quantile regression settings. However, we
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introduce Markov chain to model the market evolution as described in chapter 2.

For each quantile, τl, we use the same process to give the estimate of Qrt+1|Xt,i(τl).

The estimation of equity risk premium based on xi is given by:

r̂t+1,MCQR = P̂1St ĉ1Q̂rt+1|Xt,i(τ1) + P̂2St ĉ2Q̂rt+1|Xt,i(τ2) + P̂3St ĉ3Q̂rt+1|Xt,i(τ3), (5.5)

where P̂ij and ĉi are defined and estimated as described in chapter 2.

We use an expending estimation window to generate the out-of-sample predictions.

More specifically, we divide the total sample of T observations into the in-sample

period and out-of-sample period. Denote the length of in-sample and out-of-sample

as m and k, respectively. The forecast of the initial out-of-sample period m + 1

based on xi is given by:

r̂m+1,i = f(θ̂m, xm,i),

where f(·, ·) is one of the three models we compare, OLS, fixed weight QR and

our new specification. θ̂m is the estimated parameters based on the observations

{rt+1, xt,i}m−1
t=1 . Particularly, in our specification, θ includes the coefficients for quan-

tile regression, market state variables, transition probabilities and the constants that

relate the quantiles with the expectations of the return at each state. In our forecast

procedure, we update the estimation of all the parameters for different time periods.

Moving forward, the next forecast is given by

r̂m+2,i = f(θ̂m+1, xm+1,i), (5.6)

where θ̂m+1 is estimated by {rt+1, xt,i}mt=1. Proceeding in this manner all the way to

the end of the out-of-sample period, we obtain k out-of-sample forecasts of r. The

reason why we employ this expanding window to forecast equity risk premium is
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because it simulates the behavior of investors in real world. Investors observe and

accumulate information over time.

Following Campbell and Thompson (2008) and Welch and Goyal(2008), the bench-

mark we choose as the baseline of the comparison is the historical average. We also

use an expanding window for the benchmark, i.e., r̄t+1 = 1
t

∑t
j=1 rj, for t > m.

In the empirical study, we choose to divide the sample period into 1947:1-1964:4 and

1965:1-2011:4 to be consistent with Meligkotsidou et al(2012). We generate the out-

of-sample analysis based on each of the 15 predictors from Welch and Goyal(2008).

We employ the combination approach proposed by Rapach, Strauss and Zhou (2009)

to give the ultimate forecasts. The combination method utilizes the information of

all the single-factor models. The intuition behind this method is that, the prediction

from a single factor can be structural unstable and contains a considerable number

of ”false signals”, however, by averaging these forecasts, the simplest type of com-

bination, the results should be more reliable. As Rapach, Strauss and Zhou show in

their 2009 paper, the combination method not only generates consistent significant

out-of-sample gains, but the idea is also linked to real economy.

The method works in the following way. Suppose we have N individual predictors,

{x1, x2, ...xN}. We estimate the individual model by each of them. Therefore, at

time t, there are N forecasts of the equity risk premium of time t + 1, denoted as

{r̂t+1,1, r̂t+1,2, ...r̂t+1,N}. The forecast of the combination method is given by

r̂t+1,c =
N∑
i=1

ωt,ir̂t+1,i, (5.7)

where {ω}Ni=1 are the weights of individual factors at time t. The combination meth-

ods can also be categorized into two classes based on the assigned weight values:

fixed weights and time varying weights.
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The fixed weight method assigns weights that does not change over time. It includes

the simplest combinations: mean, median and trimmed mean. The mean combi-

nation is given by setting ωt,i = 1
N

for i = 1, 2, ...N , the median combination by

setting ωt,i = 1 for the median and 0 otherwise. For the trimmed mean combination

method, we set ωt,i = 0 for the n smallest and n largest values, and ωt,i = 1
N−2n

for

the rest.

The time varying weight method assigns weights by the historical forecasting per-

formance of the individual models. Therefore, in order to calculate these weights,

we need to leave out a holdout period. Suppose we use the first k0 observations

of the out-of-sample period, and we want to forecast the risk premium at time

t = m + k0 + 1. One of the possible weight assignments, discount mean square

prediction error (DMSPE), is proposed by Stock and Watson (2004), as

ωm+k0,i =
φ−1
m+k0,i∑N

j=1 φ
−1
m+k0,j

, (5.8)

where

φm+k0,j =

m+k0−1∑
s=m

θm+k0−1−s(rs+1 − r̂s+1,j)
2

and θ is a discount factor with preassigned values. From the definition of weights,

we can see that DMSPE assigns greater weights to models with better forecast

performance, measured by the squared prediction error. As we moving forward, the

holdout period becomes longer. For example, to predict risk premium at time t+ 1,

where t ≥ m + k0, the holdout period starts from time m + 1 to time t − 1. The

discount factor θ is usually chosen to be smaller than or equal to 1. When θ = 1,

there is no discounting; when θ < 1, we put more weights on the more recent time

periods.
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The results of fixed weight combination method is included in subsection 4.2.3, and

we will consider time varying weight combination approach in the future study.

5.1.3 Empirical Results

In this subsection, we compare the predictive power of our specification, fixed weight

QR, OLS and the benchmark: historical average. Therefore we use the out of sam-

ple criteria: out of sample R-square R2
os, ENC − T statistics, utility difference

∆U and wealth gain ∆W . For quantile regressions, the quantiles we choose are

{0.25, 0.5, 0.75}. The aim of this selection is to keep consistent with related re-

search. What is more, in this application, we are more interested in the forecast,

other than the relationship between variables. Therefore we do not need to examine

tail behaviors. Choosing less extreme values enables us to have moderate sample

size for all of the three states, so that the estimation is more reliable. We also try

different quantiles, the results show that the conclusion is robust with respected to

the selection of quantiles. Accordingly, the weights in the fixed weight QR meth-

ods are chosen as {0.25, 0.5, 0.25}. The statistics are calculated for both individual

models and the combination forecast. Each individual model is based on the infor-

mation of one of the fifteen predictors. We consider three ways to combine them:

mean, median, and trimmed mean. The trim parameter is chosen as 2/15, which

means we abandon the largest and smallest predicted values among the individual

predictions, therefore it is less sensitive to outliers.

Table 5.1 represents the results of R2
os for individual models. R2

os compares one

model with the benchmark - historical average. Positive values indicate that the

model outperforms the benchmark in the sense of mean squared prediction errors.

From the results we can see that most of the variables give negative R2
os values. This
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Table 5.1: Individual Model Results-Out of Sample R2

OLS fwQR MC QR OLS fwQR MC QR
D/P 0.007 0.020 0.000 TMS -0.030 -0.063 -0.145
D/Y 0.009 0.023 -0.009 NTIS -0.021 -0.038 -0.022
E/P -0.012 -0.013 -0.019 INFL -0.008 -0.003 0.000
D/E -0.015 0.001 -0.006 LTR -0.011 -0.042 -0.163
B/M -0.018 -0.028 -0.017 DFR 0.002 -0.006 -0.011
TBL -0.027 -0.025 -0.102 SVAR -0.111 -0.150 -0.263
DFY -0.028 -0.060 -0.024 I/K -0.028 -0.026 -0.088
LTY -0.027 -0.024 -0.079

pattern is consistent with the conclusion in Welch and Goyal (2008), the individual

predictor is unable to consistently deliver superior out-of-sample performance over

historical average.

Table 5.2 gives the values of ENC − T statistics. The test is to show whether

one model encompasses another. We conduct the test to compare our model with

historical mean, OLS and fixed weight QR, respectively. The left panel of the table

presents the results of comparing our model against other methods, significant re-

sults mean that the other method does not encompass our model, i.e., our model

contains useful information for forecast that is not represented in the other model.

The right panel of the table reports the results of comparing another model with

our methodology. The table also reports the significance level of the test.

From the results we can see that most of the tests, both ways, related to histor-

ical average are significant. This shows that although the results are negative in

the sense of squared prediction error, neither model encompasses the other; our

model still contains some useful information that historical average does not. This

means that although the prediction of individual model does not improve prediction

accuracy, the predictors still contain useful forecast information. However, the com-
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Table 5.2: Individual Model Results: ENC-T

ENC-T: MC QR against ENC-T: Other models against MC QR
hstr mean OLS fw QR hstr mean OLS fw QR

D/P 1.826** 0.599 0.427 1.751* 1.153 1.678*
D/Y 1.850** 0.101 0.095 2.030** 1.431* 1.965**
E/P 0.860 0.550 0.741 1.253 0.925 0.940
D/E 2.009** 1.845** 1.425* 2.295** 1.411* 1.744**
B/M 0.940 0.959 1.449* 2.008** 0.921 0.432
TBL 2.123** -0.206 -0.293 3.657** 1.313* 3.378***
DFY 1.513* 1.625* 2.440*** 2.260** 1.372* 0.365
LTY 2.000** 0.369 0.392 1.598* 3.125*** 1.611*
TMS 1.938** -1.448 -1.168 1.486* 2.284** 1.716*
NTIS 1.453* 1.360* 1.944** 2.676*** 1.433* 0.669
INFL 2.043** 1.643* 1.671** 1.752** 1.158 1.376*
LTR 1.270 -0.157 -0.651 1.520** 2.927** 2.694***
DFR 1.583* 0.760 1.130 1.965** 1.473* 1.328*
SVAR 1.915** -0.700 -0.418 1.114 1.112 0.976
I/K 2.194** 0.219 0.166 2.823*** 2.271*** 2.283***

parison with OLS and fixed weighted QR show that for individual predictors, our

model contains similar information with OLS and fixed weighted QR. This result is

consistent with Rapach, Strauss and Zhou (2009), where they show the information

in individual models is limited.

Table 5.3 presents the results of the combination methods. First, from the table

we can see that combination methods improve the forecast power of all the models.

All of the three models give negative R2
os values in the individual predictor case.

However, when we apply combination methods the values turn positive. The upper

panel of the results shows that compared with historical return, OLS reduces about

two to three percent of the mean squared prediction error, which is consistent with

the figures in Rapach, Strauss and Zhou (2009). The fixed weighted QR performs

similarly. This is because to keep consistent with our model, we only choose three

quantiles. The performance gets better when we increase the number of quantiles in
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Table 5.3: Combination Model Results

mean median trimmed mean

out of sample R2

OLS 0.029** 0.022** 0.027**
fw QR 0.029** 0.023** 0.026**

MC QR 0.060*** 0.053*** 0.060***

ENC-T: MC QR against
hstr mean 3.129*** 3.228*** 3.204***

OLS 2.473*** 2.520*** 2.613***
fw QR 2.423*** 2.580*** 2.595***

ENC-T: other models
against MC QR

hstr mean -0.419 -0.606 -0.554
OLS -0.308 -0.288 -0.372

fw QR -0.109 -0.010 -0.175

Utility Difference
hstr mean 4.984 4.028 4.779

OLS 2.633 3.166 2.988
fw QR 2.900 3.256 3.263

Wealth Difference
hstr mean 78.803 51.786 71.793

OLS 62.635 46.318 60.613
fw QR 43.795 31.784 46.575

the model until some threshold. However, the improvement is limited, and the value

of R2
os is never greater than four percent. The third row shows that our specification

reduces around six percent of the mean squared prediction error. These doubled R2
os

values show that our method has greater predictive power than the other models.

The ENC − T statistic also gives us encouraging results. From the table we can

see that the tests that compare our model against other methods are all significant.

This means that none of the other models encompasses our model. Also, the third

panel shows that the results of ENC−T tests which compare other models against

our method are all negative. Thus we cannot reject the null hypothesis that our

model encompasses the other models. Putting the results together, we can draw the

conclusion that our model contains ”more useful information” than other models.

Compared with historical average, our model contains the information of the pre-

dictors, so do OLS and fixed weight QR methods. However, the specific information
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that our model includes are conditional distribution of equity risk premium, which

is not included in OLS, and market evolution dynamics, which is not in the fixed

weight QR set up. The results of both way of ENC − T tests show that all of the

above information are valuable in equity risk premium forecast.

The last two panels of the table show that the utility differences and the wealth gains

are all positive. This shows that a risk-averse investor, who uses mean-variance

framework to construct her portfolio, is expected to obtain higher utility if she

applies our model to predict equity risk premium. The values are represented in

percentage. On average, the utility of an investor increases by about four to five

percent if she uses our model instead of simply calculating the historical mean. The

investor can also enjoy a two to four percent utility gains if she turns from OLS

or fixed weight QR to our model. This result gives our model practical values. It

shows that better prediction leads to higher utility. In the market where an investor

aims to maximize her utility, she tends to choose our model.

The wealth change of our model is also encouraging. Starting with one unit of

wealth, by applying our model for 47 years, the investor can expect to earn 50-80

more dollars compared with historical average. She also earns 40-60 dollars more

when she chooses our model over OLS. The wealth gain is still around forty dol-

lars compared with fixed weight quantile regression model. Therefore selecting our

model induces higher profit for investors.

The empirical results are consistent with the relative work in this area, and also show

that our model outperforms OLS and fixed weight QR method when we choose the

same quantile set. We also changed the parameters we use above to check the

robustness of our model.
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5.1.4 Robustness Check

We first try different quantile selections and different sample periods. We choose

other two sets of quantiles {0.3, 0.5, 0.7} and {0.2, 0.5, 0.8}. The two different out-

of-sample periods are consistent with Rapach, Strauss, and Zhou(2010). Table 5.4

and Table 5.5 show the results.

Table 5.4: Robustness Check: Different Quantiles

τ = 0.3, 0.5, 0.7 τ = 0.2, 0.5, 0.8
combination
method

mean median trimmed
mean

mean median trimmed
mean

out of sample
R2

OLS 0.029** 0.022** 0.027** 0.029** 0.022** 0.027**
fw QR 0.029** 0.022** 0.025** 0.028** 0.017** 0.024**
MC QR 0.062*** 0.070*** 0.062*** 0.053*** 0.049*** 0.051***

ENC-T: MC
QR against

hstr mean 2.535*** 3.241*** 2.899*** 3.083*** 3.365*** 2.632***
OLS 1.962*** 2.660*** 2.479*** 2.399*** 2.559*** 2.413***
fw QR 1.922*** 2.796*** 2.615*** 2.319*** 2.823*** 2.684***

ENCT: Other
models against
MC QR

hstr mean 1.008 -0.391 0.191 -0.614 -0.888 -0.674
OLS 0.996 -0.347 0.249 -0.327 -0.371 -0.270
fw QR 0.013 -0.099 0.416 -0.135 -0.338 -0.132

Utility
Difference

hstr mean 4.674 3.726 4.439 4.509 3.353 4.129
OLS 2.323 2.864 2.647 2.158 2.491 2.337
fw QR 2.549 3.040 2.880 2.535 3.005 2.784

Wealth
Difference

hstr mean 76.160 48.405 60.891 58.850 36.220 48.170
OLS 59.992 42.937 49.711 42.682 30.752 36.990
fw QR 39.619 28.815 34.795 24.086 21.315 24.708

From the tables we can see that our model performs robustly better than the other

models. That the better performance of our model against other benchmarks is not

confined to a certain selection of quantiles is quite encouraging and meaningful in

real use. This shows that our model does not depend on how the states are defined,

which may be considered differently. On the other hand, the robustness for different

out sample periods shows that our model is not constrained to the length of the
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Table 5.5: Robustness Check: Different Sample Periods

OS: 1976:1-2011:4 OS:2000:1-2011:4
combination
method

mean median trimmed
mean

mean median trimmed
mean

out of sample
R2

OLS 0.006 0.005 0.004 0.002 -0.011 -0.002
fw QR 0.005 0.004 0.003 -0.015 -0.022 -0.017
MC QR 0.022** 0.012* 0.021** 0.023** 0.003* 0.023**

ENC-T: MC
QR against

hstr mean 2.071*** 2.134*** 1.818** 1.256 0.791** 1.723**
OLS 2.007*** 1.944** 1.960*** 1.376* 1.116 1.589*
fw QR 1.828** 1.995*** 1.729** 1.624** 1.309* 1.214

ENCT: Other
models against
MC QR

hstr mean 0.506 0.820 0.431 -0.043 0.580 -0.093
OLS 0.397 0.869 0.333 -0.208 0.128 -0.381
fw QR 0.417 0.886 0.395 -0.562 -0.188 -0.678

Utility
Difference

hstr mean 1.732 0.879 1.581 3.535 1.757 3.327
OLS 1.544 0.970 1.653 3.523 3.399 3.986
fw QR 1.701 0.926 1.703 5.535 4.653 5.536

Wealth
Difference

hstr mean 12.331 4.240 10.609 0.439 0.257 0.463
OLS 13.100 4.854 12.917 0.468 0.408 0.539
fw QR 0.053 2.513 0.742 0.502 0.372 0.528

prediction.

The next change we make to the tests is to leave the 2008 financial crisis period out

of the calculation. For example, when we calculate R2
os, we exclude the time period

after 2008:4, in the summation, i.e.

R2
os = 1−

∑2008:3
s=1 (ym+s − ŷm+s,A)2∑2008:3
s=1 (ym+s − ȳm+s)2

.

Notice that the data after 2008:4 are still used for the parameter estimations. The

reason we want to check this is to see if the model still performs well for both the

routine days and the bad days. Table 5.6 shows the results of this comparison.

The left panel of the table repeats the results in Table 5.3, while the right panel

represents the results with periods 2008:4-end left out. From the table we can see
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Table 5.6: Robustness Check: Financial Crisis

Original Model Results Out of sample results
with 2008:4-end left out

combination
method

mean median trimmed
mean

mean median trimmed
mean

out of sample
R2

OLS 0.029** 0.022** 0.027** 0.035** 0.027** 0.031**
fw QR 0.029** 0.023** 0.026** 0.032** 0.025** 0.028**
MC QR 0.060*** 0.053*** 0.060*** 0.061*** 0.054*** 0.059***

ENC-T: MC
QR against

hstr mean 3.129*** 3.228*** 3.204*** 3.008*** 3.119*** 2.653***
OLS 2.473*** 2.520*** 2.613*** 2.165*** 2.259*** 2.253***
fw QR 2.423*** 2.580*** 2.595*** 2.240*** 2.467*** 2.571***

ENCT: Other
models against
MC QR

hstr mean -0.419 -0.606 -0.554 -0.366 -0.559 -0.430
OLS -0.308 -0.288 -0.372 -0.075 -0.088 -0.086
fw QR -0.109 -0.010 -0.175 0.035 0.077 0.027

Utility
Difference

hstr mean 4.984 4.028 4.779 5.197 4.150 4.836
OLS 2.633 3.166 2.988 2.523 3.075 2.786
fw QR 2.900 3.256 3.263 2.923 3.303 3.199

Wealth
Difference

hstr mean 78.803 51.786 71.793 51.199 32.590 43.040
OLS 62.635 46.318 60.613 37.625 27.403 33.668
fw QR 43.795 31.784 46.575 27.177 19.500 26.305

that most of the values of the statistics are comparable, except the wealth difference.

This is expected since we calculate the accumulated wealth difference, and there are

11 less time period for the robustness calculations. Notice that the closeness of the

two sets of the results shows that our model performs consistently well on both

normal and bad days, since leaving out the crisis period does little influence to the

results.

To further working on the performance of our model on different market states,

we also test the out-of-sample forecast for different periods based on an economical

variable. We choose real GDP growth to classify the market state. The procedure

consists of two steps:
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• Classify the whole sample period into three types of sub-sample periods: good,

normal, and bad according to the value of real GDP growth, i.e., the economy

is good if a value of real GDP growth for time t (quarter) is at the top 30% of

all the values, bad if the value is in the bottom of 30%, and normal otherwise.

• Calculate goodness-of-fit for out-of-sample forecast for each of the three peri-

ods, i.e., R-square value as well as the test statistic.

The out of sample R2 for different market states along with the whole sample period

results are shown in the following Table 5.7.

Table 5.7: Robustness Check: GDP Indicator

GDP State=1 (bad times) GDP State=2 (mundane
times)

combination
method

mean median trimmed
mean

mean median trimmed
mean

R2
os

OLS 0.020 0.014 0.019 0.041** 0.026* 0.031**
fw QR 0.024* 0.016 0.020 0.035** 0.023* 0.029*
MC QR 0.067** 0.072** 0.072** 0.066*** 0.033** 0.050**

GDP State=3 (good times) whole sample results
combination
method

mean median trimmed
mean

mean median trimmed
mean

R2
os

OLS 0.035* 0.035** 0.038** 0.029** 0.022 0.027***
fw QR 0.033* 0.038* 0.034* 0.029** 0.023 0.026***
MC QR 0.039** 0.036*** 0.046*** 0.060*** 0.053*** 0.060***

The results are quite encouraging. The fact that the best performance appears in

bad period is consistent with the findings of Rapach, Strauss, Zhou 2010, and fur-

thermore our combination forecast is significantly better than the historical average

for all the three periods. This is better than the combination forecast results be-

cause their forecast is not significantly better for normal period, see Table 5 in their

paper.
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This section we apply our model to Welch and Goyal’s 15 factor data to forecast

the equity risk premium. Different model selection criteria show that our model

outperforms historical average, OLS and fixed weight QR model. What is more,

results show that this conclusion is robust against the selection of quantile selection,

the splitting of sample period and the status of the economy.

5.2 Fama-French Three Factor Model

5.2.1 Data Description

In the second application, we use monthly return data of thirty industry portfolios.

With this data set, we apply Fama-French three factor model. We aim to examine

the in sample relationship between the portfolio returns and Fama-French three fac-

tors. Therefore we concentrate on the in-sample relationship within this study. We

also do some prediction analysis for the use of future research concerning portfolio

construction.

The data is obtained from Kenneth R. French website. The sample period spans

from 1927/07 to 2011/07. Each NYSE, AMEX and NASDAQ stock is assigned

to an industry portfolio based on its four-digit SIC code. The portfolios are con-

structed at the end of June of each year. The returns are calculated in two ways:

value-weighted and equal-weighted. Accordingly, we have the data of Fama French

three factors for the same time period.

5.2.2 Fama-French Three Factor Model

The Fama-French three factor model is designed by Eugene Fama and Kenneth

French as a generalization of the traditional asset pricing model, the Capital Asset
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Pricing Model, CAPM. In CAPM, there is only one variable, beta, to predict the

returns. However, the Fama-French model uses three factors as follow:

r = Rf + β3(Km −Rf ) + bs · SMB + bv ·HML+ α + ε, (5.9)

or

r −Rf = β3(Km −Rf ) + bs · SMB + bv ·HML+ α + ε. (5.10)

Where Rf is the risk-free return rate, Km is the whole stock market return, SMB

stands for ’small minus big’, which measures the historic excess returns of small mar-

ket capitalization over big ones, HML stands for ’high minus low’, which measures

the historic excess return difference between value stocks and growth stocks, and ε

is the error term. Due to the inclusion of the latter two factors, the coefficient β3 is

analogous but not equal to the classical β in CAPM. Fama-French model is based

on the observation that the small caps or high book-to-market ratio stocks tend to

perform better, thus it includes the two factors, SMB and HML, to measure the

historic excess returns of small caps over big caps and of value stocks over growth

stocks.

Fama-French three factor model is widely used in forecasting stock returns. It ex-

plains over 90% of the diversified portfolio returns, while CAPM only explains about

70%. In this study, we also apply Fama French model for return forecast. However,

to estimate the parameters, other than OLS which is generally used, we will try to

combine it with the idea of quantile regression. We split the total sample into in

sample period and out of sample period, and their lengths are denoted as m and

k, respectively. We use the in sample data to examine the relationship between the

three factors and the excess return, and out of sample data to check the predictive
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power of both models.

In the OLS setting, it is assumed that there is a linear relationship between each

factor and the excess return. The above error term ε is assumed to be normally

distributed with mean 0 and a constant standard deviation, which leads to the nor-

mal assumption of the excess return. For the sake of brevity, denote excess return

of portfolio i at time t as Rt,i, the Fama-French three factors as F1, F2, and F3,

respectively. The in sample fitted values given by OLS method is

R̂t,i = β̂3F1,t + b̂sF2,t + b̂vF3,t + α̂, 1 ≤ t ≤ m, (5.11)

where the estimation of the coefficients are obtained by minimizing the squared de-

viations. The coefficients are interpreted as the partial contribution of each factor

to the expected value of the excess return.

Quantile regression, on the other hand, examines the relationship between the pre-

dicted factors and the quantiles of the excess return. Therefore we assume:

QRt,i|F (τl) = β3,τlF1,t + bs,τlF2,t + bv,τlF3,t + ατl + ετl , 1 ≤ t ≤ m, (5.12)

where QRt,i|F (τl) denotes the τlth quantile of the conditional distribution of portfolio

excess return given the values of the three factors. ετl is the error term whose τlth

quantile is assumed to be 0. We assume three states for the market, therefore

l ∈ {1, 2, 3} and the state of each time period St is identified. We consider two ways
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of calculating the fitted values:

R̂t,i,QR =


Q̂Rt,i|F (τ1), when St = 1

Q̂Rt,i|F (τ2), when St = 2

Q̂Rt,i|F (τ3), when St = 3

, (5.13)

R̂t,i,QR =


ĉ1Q̂Rt,i|F (τ1), when St = 1

ĉ2Q̂Rt,i|F (τ2), when St = 2

ĉ3Q̂Rt,i|F (τ3), when St = 3

. (5.14)

The second way includes the conditional distribution specification at the three states.

We try to see whether this specification induce significant fitness progress. As the

empirical results show, these two ways give similar results.

For the consideration of future study, which may include portfolio construction,

we also examine the predictive power of both models. To resemble the real world

situation, we apply the 1-time period lag Fama-French model for both of OLS and

our specification. The models are given by

Rt+1,i = β3F1,t + bsF2,t + bvF3,t + α + εt, (5.15)

for OLS, and

QRt+1,i|F (τl) = β3,τlF1,t + bs,τlF2,t + bv,τlF3,t + ατl + ετl , (5.16)
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for QR case.

The forecasted value of OLS is given by

R̂t+1,i,OLS = β̂3F1,t + b̂sF2,t + b̂vF3,t + α̂, (5.17)

and the forecasted value of our specification is given by

R̂t+1,i,QR = ĉ1P̂1Ŝt
Q̂Rt,i|F (τ1) + ĉ2P̂2Ŝt

Q̂Rt,i|F (τ2) + ĉ3P̂3Ŝt
Q̂Rt,i|F (τ3), (5.18)

where Ŝt is the estimation of market state at time t, and

Q̂Rt,i|F (τl) = α̂τl + β̂3,τlF1,t + b̂s,τlF2,t + b̂v,τlF3,t.

The other parameters are estimated as described in chapter 2.

To test the robustness of the models, the prediction is performed in a fixed window

format, this means that the parameters are estimated all based on the observations

{Yt, Ft}mt=1. The reason that we do not update the estimations of the parameters is

that, the main purpose of the out-of-sample analysis is to examine whether the QR

model based on the in-sample works better than the OLS. After fitting the in-sample

data to the model, we obtain three regressions based on three different quantiles

together with the transition matrix, which we use to characterize three possible

scenarios for security returns as well as the dynamics of changes in these scenarios

over time. Now the question is whether the model works well in practice. Therefore,

we consider an out-of-sample and treat it as a random sample generated by the

in-sample model. If the in-sample model fits the out-of-sample well, it provides

evidence that the model works because it can reasonably reproduce the out-of-
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sample; otherwise the model does not work well.

5.2.3 Difference Between Two models

The aim of this project is to examine the relationship between the three Fama

French factors and portfolio excess returns. The main difference in the relationship

assumption between the two set ups is that OLS assumes that the three factors only

influence the mean of excess return distribution, which means that they only have

a location shift contribution. While in quantile regression set up, we assume that

the factors can influence each quantile of the conditional distribution differently,

therefore, in addition to the location, the factors are also allowed to impact the

shape of the distributions.

We first need to see whether the three factors in our model contribute significantly

differently to different quantiles of stock returns. To check the necessity of quantile

regression method, we regress excess returns on the three Fama French factors,

obtain the partial influences of each factor to different quantiles of returns, and

compare those influences to the OLS estimates. For each portfolio, we run the

quantile regression for nine different quantiles: {0.1, 0.2, ..., 0.9}, along with OLS

estimates.

To give the readers a clearer view, we present the results in the forms of plots instead

of tables here. Following is the plots of the results of the model for portfolio 20,

utility.
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Figure 5.1: Comparison between OLS and Quantile Regression Estimates

In the plot, the upper and lower black lines indicate the interval estimations of

coefficients for different quantiles, along with the point estimators denoted by the

middle black line. The red lines are estimates obtained by OLS.

We can see from the plots that, OLS estimates are roughly the average of the quan-

tile regression estimates. This shows that OLS coefficient estimates summarize the

overall influence of each factor to the excess return. It is a more powerful estimation

only when the location shift influence assumption is supported by the data. How-

ever, the patterns in the above plots lead to the opposite conclusion.

The intercept increases significantly according to quantiles as expected. The coeffi-

cient of market return minus risk free return, β3, behaves differently in the middle
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quantiles. For both the upper and lower tails, the contribution is similar to the

mean contribution, however, the influence to the middle part around median is sig-

nificantly lower than the other parts. The coefficient of SMB increases by quantiles.

An important feature of this plot is that the estimation changes its sign at around

30th quantile. This means that SMB is negatively related with lower level of ex-

cess return, while positively related with higher levels. OLS can not capture this

relationship. HML coefficient exhibits similar pattern. The increase with quantiles

shows that as the excess return increase, so does the contribution of SMB to the

return.The results for other portfolios deliver similar patterns. Therefore, such re-

sults give us evidence and motivation to use quantile regression to predict portfolio

returns.

5.2.4 In Sample Fitness

We remove the first 400 observations in order to be consistent with other studies in

this area. The observations start from 1920s, and by removing the first 400 observa-

tions, the sample period starts from late 1960s. Therefore we still have observations

for the last 50 years, which is long enough for our study. Furthermore, we also

change the sample period for robustness check, and different sample periods give us

similar results.

We split the remaining time period into two parts: sample period and prediction

period. The former is for the in-sample analysis and the latter is for out-of-sample

tests. We make the prediction period to be 2 years, which means that there are 598

observations left for in-sample analysis, and that is nearly 50 years, spanning from

October 1959 till July 2009.

For the in-sample analysis, we fit the data to the model in such a way that the
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value of the dependent variable is the portfolio return at time t, and the values of

the independent variables are also the values of the factors at time t. There is no

lag in time between the dependent and independent variables. This is because for

the capital asset pricing model (CAPM) or Fama-French factor models, it specifies

a contemporaneous relation between returns on a sector portfolio and factors.

For in-sample analysis, we use the observed values for the three factors at time t as

the values of the independent variables, and the observed value on the return of one

sector portfolio at time t as the value of the dependent variable.

We try symmetric quantiles τ = {0.1, 0.5, 0.9} first, but since the probability ma-

trix is also roughly symmetric, therefore when we predict the future returns, the

lower and upper quantiles cancel out, giving results similar with median. Median

predictions are not significantly better than OLS, in which we use mean predictions.

Therefore we end up with a set of asymmetric quantiles τ = {0.05, 0.5, 0.9}.

The objective of the in-sample analysis is to estimate the model parameters, i.e.,

30 sets of the regression parameters for the OLS, one for each portfolio, and 3× 30

sets of the regression parameters plus a 3 × 3 transition probability matrix. With

the parameter estimates, we can calculate the fitted returns for both the OLS and

the QR methods, and compare them with the actual returns.

We do not present the parameter estimations here due to space limitations. How-

ever, we can get similar conclusions as from the previous plots, so we will not iterate

them here. One thing that needs to be noticed is that for most of the cases, the

coefficients estimates are significantly different for different quantiles.

We use the two in sample criteria: mean squared error and mean absolute devia-

tion to compare the fitness of the two models. The results are summarized in the

following plot.
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Figure 5.2: In Sample Analysis for French-Fama Model

The plots present the fitness of two models for 30 portfolios. The black lines and

green lines are the residuals of the two quantile regression methods in (5.13) and

(5.14), respectively, and the red lines are those of OLS. From the plots we can see

clearly that QR fits the data better than OLS. Specifically, both the mean square

error and the mean absolute deviation are less in the quantile regression model, and

this is true for all of the 30 different portfolios. Also, the two quantile regression

methods give really close results. However, examining in a finer scale, we can see

that the specification with distribution assumption gives slightly better results than

the one without distribution assumption.

5.2.5 One time period lag model

Portfolio construction is based on the prediction of future returns. Therefore, to

check the predictive power of our specification, we need to resemble the real world

situation. Here, we use 1 period lag model, i.e., we rely on the value of three factors

today to predict portfolio returns for tomorrow.

We first analyze the in-sample performance for this model. The fitted values are
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calculated as described in Section 5.2.2.

One time period lag model is aimed to check the predictive power of the Markov

chain quantile regression specification, therefore we need to employ our Markov chain

framework into this analysis. As is indicated before, besides the parameters, we also

estimate the states for each time period. If the return falls below 5th percentile,

we assign state 1 to that time period. Returns above 90th percentile indicate state

3, and otherwise is state 2. We assume that {St} follows a three-state first-order

Markov chain. Therefore our first job of prediction is to estimate the transition

probability matrix.

We assume that all industry markets evolutions are controlled by the same proba-

bility matrix. Altogether we have 598 observations for each sector of portfolios, and

we have 30 sectors in total. Therefore we obtain 598 × 30 observations of states,

thus 597×30 observations of transitions. We assume that all of the 30 sectors follow

the same mechanism; therefore they share the same transition probability matrix.

The estimates of transition probabilities are as follows:

Table 5.8: Estimation of Transition Probabilities

Probability Estimates Standard Errors
state to state state to state

bad median good bad median good
bad 0.0783 0.8297 0.0929 median 0.0020 0.0028 0.0022

median 0.0463 0.8589 0.0948 median 0.0016 0.0026 0.0022
good 0.0605 0.7842 0.1553 good 0.0018 0.0031 0.0027

From the above table we can see that all of the probabilities are significant. What is

more, if we add each column and standardize, the marginal probabilities are roughly

0.05, 0.85, 0.1, which is exactly what we assume.

The following plots show the result about fitness.
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Figure 5.3: In Sample Analysis for French-Fama Mode: Case 2

From the plots we can see that quantile regression still outperforms OLS for

in sample case. For each of the 30 sector of portfolios, quantile regression model

fits the data better, giving both a less mean square error and a less mean absolute

deviation.

In out-of-sample analysis, we use the parameter estimates obtained from in-sample

analysis.

To predict the out-of-sample values, although we do not update parameter estimates

throughout the procedure, we do assume we know previous day’s information. For

example, when we predict returns in month 660, we assume that we know all the

information in month 659, including the three factors and the market state, even

though we do not include it in the regression.

We compare mean squared/absolute prediction error and ENC − T statistics for

out of sample period.
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Figure 5.4: Out Sample Analysis for French-Fama Mode

From the plot we can see that overall, quantile regression has a stronger predictive

power. However, for some of the sectors, such as sector 8 health, sector 22 service,

OLS is still better than quantile regression.

The ENC − T statistics are represented in the following table 5.9.
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Table 5.9: ENC-T test statistic that compares MC QR with OLS

Industry W/ Dist. W/O Dist. Industry W/ Dist. W/O Dist. Industry W/ Dist. W/O Dist.
Food 1.258* 1.006 Clths 1.294* 1.290* FabPr 0.887 1.601*
Beer 1.071 1.196 Hlth 1.740** 1.400* ElcEq 1.590* 1.032

Smoke 2.755*** 2.306*** Chems 0.659 0.544 Autos 1.444* 1.501*
Games 1.863** 1.224* Txtls 1.325* 1.150 Carry 1.640* 1.569*
Books 1.575* 0.022 Cnstr 1.706* 1.747** Mines -0.087 -0.119
Hshld 1.502* 0.930 Steel 1.915** 1.396* Coal 1.691** 1.706**

Oil 0.891 0.867 Trans 1.868** 1.275* BusEq 2.133*** 1.521*
Util 2.425*** 1.4805* Whlsl 1.517* 1.978** Paper 0.947 0.860

Telcm 1.336* 0.055 Rtail 1.340* 1.288* Fin 1.221* 0.994
Servs 0.578 0.509 Meals 2.018** 1.671** Other 0.815 0.022

From the above table we can see that most of the ENC−T test statistics are sig-

nificant, this means that our model contains useful information that is not captured

by OLS settings. We can also see that MC QR model with distribution assump-

tions performs slightly better than the one without distribution assumptions. This

could indicate that although they perform indistinguishably for in sample analysis,

the distribution assumption might be useful in predictions. However, this argument

needs to be further tested.

We can see that the Markov chain quantile regression setting outperforms, both in

sample and out sample, OLS method. However, how to turn this advantage into

construction of higher expected return portfolio still needs to be further studied.
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Chapter 6

Conclusions and Possible Future

Directions

In this study we explore the application of quantile regression in different areas.

Quantile regression is a distribution free method, so it is applicable in the case

where the distribution of the response variable exhibits some particular character-

istics. The distributions of quite a few economic variables are proved to be non-

normal. Quantile regression also gives us a more complete picture of the conditional

distribution of the response variable, therefore enables us to examine the relation-

ship between factors and different parts of the distribution of the variable of interest,

such as tail behaviors. Therefore we try to apply quantile regression into finance

study.

We develop a model that combines the market evolution dynamics with the

conditional distribution of the forecasted variable. We use a three state Markov

chain to model the market movement, and select different quantiles to identify the

states. The distributions given different states are also modeled, and we use Baye’s

rule to give the mean of the marginal distribution. The prediction is based on
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consistent estimates of the regression and distribution parameters. Our model is a

generalization of previous work by L. Ma and L. Pohlman (2008). The new idea in

our model is that we introduce the Markov chain to model the dependence of the

data, while in previous work, this dynamic is assumed to be either totally dependent

or independent.

We also study the theoretical properties of our model. We use AR model to

capture the autocorrelation structure of time series data, and the assumption of the

error terms is weakened to martingale difference sequence. With the tool of central

limit theory for time series data, we show the consistency of the quantile regression

parameter estimations. Furthermore, we also deduce the asymptotic properties of

the estimation of Markov chain parameters. Particularly, we prove the consistency

and asymptotic normality of the transition probability estimates.

Before we conduct empirical study, we also perform simulations with our model.

One concern before the simulation is that we do not have a regular asymptotic

distribution of the quantile regression estimates. This may cause issues when we

perform statistical inference about the estimations. The simulation study aims

to obtain a clearer idea of this asymptotic distribution. The results show that

under some mild conditions, it is close to a normal distribution. Therefore, in

application, the confidence interval estimation based on asymptotic normality gives

us a satisfactory approximation.

We further apply our specification in two empirical studies. The first one applies

the method in the forecast of equity risk premium. The results of individual models

confirm the previous conclusion that individual predictor is unable to deliver consis-

tent superior out of sample performance. While applying the combination methods

improves the results significantly. The analysis show that our model reduces mean

squared prediction error around twice as much as other competing models. The new
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information included in our model is valuable in prediction and the economic evalua-

tions also show that our model is practical. The other study examines Fama-French

three factor model for both in sample relationship and out of sample prediction. The

empirical results show that our model fits the data better and has greater predictive

power.

Our work extends previous study on the application of quantile regression in

finance by proposing a methodology that utilizes the information of market evolution

process. We believe that there exist more potential applications and generalizations

of our method. Many interesting questions remain open and various application are

still remained to develop in this area.

One possible extension can be more sophisticated model of market evolution

dynamics. Instead of three state Markov chain in our present work, we can generalize

it into higher degree of dependence. Our tentative model of Markov chain has shown

that introducing the market evolution provides useful information for understanding

the relationship among economics variables. Therefore it is expected that the better

modeling of the market evolving process may increase the degree of model fitness

and prediction accuracy. Markov chain is one of the simplest forms of modeling

dependence. In the current set up, the market states are only allowed to be related

with consecutive time periods. However, we know that the evolution of the market

is really complicated and there may exist higher degree of dependency. Therefore,

we may try higher order Markov chain or apply a separate time series regression to

model the market evolution process.

Once we introduce more complicated models for market evolution, other parts of

our model specification may also be changed accordingly. For the model specification

part, we need to change the form of probability matrix, for example, if we apply

a second order Markov chain, the probability matrix will become a 9 by 9 matrix,
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or come up with a combined model for the prediction, for example, if we apply a

separate time series model. For the prediction part, we may apply multi-steps ahead

forecast. Since we assume the degree of dependency is increased, it is reasonable

to expect the information in current time period economic variables is related with

future values after several time periods. For the model evaluation part, the model

comparison criteria will be adjusted to higher order case.

The other direction of our future study is the quantile selection. In our present

work, we select extreme quantiles for Fama French model to better study the tail

behaviors and less extreme quantiles for equity risk premium forecast to keep con-

sistent with other studies and to keep the size of sub-samples relatively moderate.

Although we try different quantiles to test the robustness of the model, we do not

have an algorithm to come up with an optimal set of quantiles. Usually we can use

economic knowledge to define the percentage of bad and good days of the market,

however, the optimization within certain range is also desirable.

Furthermore, we can also generalize our model into multi-state case. The more

quantiles we estimate, the more complete picture of the distribution we obtain,

however, at the cost of estimating extra parameters. At the relatively low range, the

fixed weight quantile regression method performs better as the number of quantiles

included in the model increases. We expect our model exhibit the same property.

However, one problem we need to solve for the generalization is how to the define

conditional distribution and its first and second order moments when there are more

than three states. We may try some truncated distributions for example.

Finally, the Fama French project provides basis of future research in portfolio

construction. We know the aim of better prediction of portfolio excess return is to

adjust the portfolio locations accordingly and expect a higher return in the future.

Therefore, how to turn better return prediction accuracy into higher future return
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is of great importance. The widely used way of calculating the weight of each

security in a portfolio involves second order estimation of the expected return. Now

in our set up, we specify different distributions of excess return for different states,

therefore, for different market conditions, the variance of return is assumed to be

different. For each portfolio sector, we estimate the variance by dividing the whole

sample into three sub-samples, each corresponding to a state. The estimation of the

covariance among securities is more complicated under our model specification. We

know that under bad market condition, such as financial crisis period, the covariance

among different types of securities are extremely highly positive. Therefore, it is

reasonable to assume different covariance matrix for different states. However, the

states are estimated by comparing the excess return of the each portfolio sector with

the estimated quantiles. Therefore the estimation of the market state for different

portfolio might be inconsistent. How to divide the sample to estimate the covariance

at different states becomes an interesting question. This is the main obstacle on our

way to continue our work in the field of portfolio construction.
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