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Abstract

Ordinal data is ubiquitous in psychological research, but it presents unique challenges in

longitudinal analysis. Presently available longitudinal item response models (IRMs) can

be computationally prohibitive for large, multiwave datasets, while lower computational

alternatives may not produce useful estimates. Longitudinal anchoring is a possible

solution to these issues. By anchoring separate IRMs together, person and item

estimates can be obtained without limiting the number of timepoints that can be

analyzed. A simulation study examining the performance of longitudinal anchoring was

conducted. Six anchoring methods were evaluated: Floated, All Times, Time One,

Mean, Random, and Cross-sectional. The results suggest that the Mean and the

Cross-sectional anchoring methods performed the best. While the Time One, Random,

and Floated methods produced similar item and person estimates, model fit was poor.

The All Times method should be avoided as it cannot produce reliable change

estimates. Longitudinal anchoring is an easily implemented solution when analyzing

large, complex longitudinal datasets and shows promise as a low-computation method

of producing latent trait estimates.
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Evaluating Anchoring Methods to Analyze Longitudinal Data with Item Response

Models

It is nearly impossible to find a substantial longitudinal dataset the does not use scales

or questionnaires. The use of scales and questionnaires is ubiquitous in psychological

research, yet proper analysis and interpretation the data that produced is not always

conducted. In many contexts, item response modeling is the method of choice for

ordinal data. Sum-scored questionnaire data can produce biased model parameters or

facetious results, especially when working with longitudinal data (Bereiter, 1963;

Embretson, 1991, 1992; Glas, Geerlings, van de Laar, & Taal, 2009; Gorter, Fox, &

Twisk, 2015; Pastor & Beretvas, 2006). For example, ordinal data can produce spurious

interaction terms when analyzed using ANOVA techniques (Davison & Sharma, 1990;

Embretson, 1996). In addition, change score reliability calculations are fraught with

problems such as reliability coefficients with negative signs (see Bereiter, 1963, for a

discussion).

The currently available methods for analyzing longitudinal scale data are more

limited and less feasible than their single timepoint counterparts when considering

issues such as parameter estimation, flexibility, and computational ease. With respect

to item response models (IRMs), there are even fewer available longitudinal IRMs

appropriate for large, complex analyses. This issue becomes more poignant as new,

immensely large longitudinal research studies come to fruition. In the present project, I

use simulation to examine several methods of analyzing longitudinal data by anchoring

separate item response models together. Longitudinal anchoring shows promise as a

low-computation method of producing latent trait estimates from longitudinal data.

The Use of Questionnaires in Longitudinal Studies

The use of surveys and questionnaires is widespread in longitudinal research.

Abstract traits such as anxiety, personality, and social functioning are not easily

assessed without self-report or rating scales. A researcher can count the number of

alcoholic drinks a participant consumes each week, but they cannot use a ruler to



LONGITUDINAL ANCHORING 6

measure psychological dependence on alcohol. The lack of specific, objective

measurement such as with thermometers, spectrometers, or rulers creates statistical and

measurement quandaries not found in other fields. The use of surveys and

questionnaires in longitudinal studies is therefore a reflection of the nature of

psychological research. Below, some examples of large longitudinal studies and their use

of questionnaires are detailed.

The Minnesota Twin Family Study (MTFS) is a longitudinal study focusing on

the etiology of substance abuse disorders within twin pairs and their parents (Iacono,

Carlson, Taylor, Elkins, & McGue, 1999; Iacono & McGue, 2002). Beginning in 1991,

the study now includes over 2,700 twin pairs. Various scales on academic achievement,

psychopathology, personality, and social functioning are used, as well as genetic and

physiological information. While the original focus of the study was substance use,

there are numerous publications based on the MTFS that examine other facets such as

religiosity, personality, and psychopathology development (e.g., Blonigen, Hicks,

Krueger, Patrick, & Iacono, 2005; Ehringer, Rhee, Young, Corley, & Hewitt, 2006;

Hopwood et al., 2011; Koenig, McGue, & Iacono, 2008; Waldron, Malone, McGue, &

Iacono, 2018).

The Longitudinal Studies of Child Abuse and Neglect (LONGSCAN) is

consortium of studies concerned with the causes and effects of childhood mistreatment

(Runyan et al., 1998). Low and high risk children and their guardians were recruited at

multiple sites across the United States. Running from 1991 to 2011, approximately 1,400

families were included. The study included scales of cognitive ability, social functioning,

psychopathology and distress, family dysfunction, and externalizing behavior. The

LONGSCAN data has been used in various publications focusing on effects of childhood

abuse on physical health, substance abuse, aggression, psychopathology, and suicidality

(e.g., Flaherty et al., 2006; R. M. Johnson et al., 2002; Kotch et al., 2008; Lewis et al.,

2019; Litrownik, Newton, Hunter, English, & Everson, 2003; Thompson et al., 2005).

The Fragile Families and Child Wellbeing Study (FFCWS) focuses on the

trajectories of children of unwed parents (Reichman, Teitler, Garfinkel, & McLanahan,
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2001; Waldfogel, Craigie, & Brooks-Gunn, 2010). Nearly 5,000 families have

participated in the FFCWS since 1998 starting at the birth of their first child. The

study is still ongoing today. The FFCWS includes many scales measuring children’s

cognitive ability, language skills, and social behaviors, as well as parental disciplinary

strategies. Research using the FFCWS has focused on various aspects of fragile families

and child development, including the effects of corporal punishment and parental

incarceration on child well-being and factors that encourage stable parental

relationships (e.g., Carlson, McLanahan, & England, 2004; MacKenzie, Nicklas,

Brooks-Gunn, & Waldfogel, 2011; Schneider, MacKenzie, Waldfogel, & Brooks-Gunn,

2015; Turney & Wildeman, 2015; Wildeman, 2010).

The Notre Dame Study of Health & Well-being (NDHWB) is a presently running

longitudinal study funded by the National Institutes of Health (Bergeman & Deboeck,

2014). The purpose of the NDHWB is to understand the pathways that lead to healthy

aging with a focus on stress and resilience. The NDHWB administers scales on topics

such as stress, physical and mental health, sleep quality, cognitive functioning, and

mood. Uniquely, the NDHWB has a multiple-time scale design, where data is collected

at yearly intervals and for bursts of 10 and 56 consecutive days. In particular, the 56

day bursts of data allow researchers to examine cycles that would otherwise be

impossible to uncover at yearly or monthly intervals. Yet, 56 timepoints is far past the

limit that many longitudinal models can realistically handle. One 56 day dataset from

the NDHWB and the study by Erbacher, Schmidt, Boker, and Bergeman (2012) that

utilized it is the impetus of the present study.

Scale data forms the foundation of most major longitudinal studies in psychology,

and use of ordinal data in psychology and related fields is extensive (Cliff, 1989; Harwell

& Gatti, 2001). Yet, not all data is created equal nor can it be treated equally. In

particular, scales and questionnaires often produce ordinal data, which possesses unique

qualities separate from standard interval data. These peculiarities can cause issues in

data analysis; many of the common traditional statistical techniques rely on

assumptions that are often only satisfied by interval data.
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Less
Depression

More
Depression

"Most days I don't 
get out of bed"

"Sometimes
I feel sad"

"I cry 
occasionally"

Figure 1 . Relative amounts of "depression" required to endorse each item. Note the

similar amounts of depression necessary to endorse the items "I cry..." and

"Sometimes...", as compared to "Most days..."

Analysis of Ordinal Data

Ordinal data possesses rank but lacks equal intervals (Stevens, 1946). While the

categories of ordinal data can be ordered, the intervals between the categories do not

possess equal intervals. Ordinal data is commonly used to measure an underlying latent

trait. Latent traits can be defined as dimensions or qualities that are not directly

observable but are believed to influence observable actions or behaviors. For example,

math ability can be considered as a latent trait that can measured through a math

aptitude test. The math aptitude test produces ordinal data using the math questions

on the test. A student’s answers to the test are ordinal data that are believed to be

associated with the latent trait of math ability.

Likert-style questions, educational assessments, and many dichotomous "yes-no"

items typically produce ordinal data to measure latent traits. While ordinal data is

often represented with numbers, ordinal data does not possess the same properties as

natural numbers. Of most importance, ordinal data does not possess equal intervals.

Suppose the scenario as depicted by Figure 1, is as follows. A researcher uses

dichotomous item scale with three questions that measures the latent trait of

depression: "I cry occasionally," "Sometimes I feel sad," and "Most days I don’t get out

of bed." The minimum score on this assessment is 0, and the maximum score is 3. The

difference in actual "depression that may be needed to move from a score of 1 to 2 may



LONGITUDINAL ANCHORING 9

be much smaller than the amount needed to move from a score of 2 to 3 (see Figure 1).

That is, it is relatively "easy" for a given participant to endorse "I cry occasionally" and

"Sometimes I feel sad." Much more "depression" is needed to endorse "Most days I don’t

get out of bed." This discrepancy is not reflected if the total scores on the questionnaire

are analyzed as if they are natural numbers with equal intervals between them. For

natural numbers, there is not more space between the numbers 1 and 2 as there is 2 and

3. Thus, this scale, and many like it, possesses rank ordered scores, but not equal

interval measurement of the underlying latent trait.

Despite these unique characteristics, ordinal data is often treated as interval or

ratio data. Whether it is due to lack of knowledge about ordinal data or its disregard,

this can cause issues in the results of many common statistical tests. Since the

magnitude between levels of ordinal data can be unequal, linearity is not guaranteed.

As a result, while ordinal data can be used to measure a latent trait, the population

mean and variances produced by ordinal data are not guaranteed to be equivalent to

mean and variances of the underlying latent trait (Davison & Sharma, 1988). Further,

in most circumstances ordinal data cannot be truly normally distributed because

normal distributions require continuous, interval scales (Harwell & Gatti, 2001; Lord &

Novick, 1968). Ordinal data may approximate a normal distribution, but only if the

scale possesses a sufficient number of categories.

Comparing means derived from ordinal data, such as in t-tests and in the main

effects tests in ANOVA, is generally not an issue when standard assumptions hold or

are approximated (Davison & Sharma, 1988, 1990). However, if a test is too hard or too

easy for the respondents, the true difference in means between two groups or two

timepoints can be masked (Embretson, 1994). The detection of interactions and

multiplicative relationships (e.g., quadratic trends) can be impacted when ordinal data

is used, as well. In a factorial ANOVA, ordinal data can falsely produce significant

interaction effects when none are actually present (Davison & Sharma, 1990;

Embretson, 1996). Multiple regression suffers from the same issue: non-linear variables

can produce spurious interactions, and quadratic trends can appear as interactions
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between variables (Busemeyer & Jones, 1983; Kang & Waller, 2005; Morse, Johanson, &

Griffeth, 2012). Similarly for latent growth curve models, using ordinal data without

modeling the underlying factors can produce biased estimates of slope (Yang, Olsen,

Coyne, & Yu, 2017). The use of ordinal data as compared to continuous interval data is

also associated with a loss of statistical power (Russell, Pinto, & Bobko, 1991).

It should be noted that ordinal data is not a prescription for statistical failure, nor

is the division between ordinal and interval data always obvious (Harwell & Gatti, 2001;

Velleman & Wilkinson, 1993). While a variable such as "years of education," may seem

to possess interval scaling due to the even passage of time, four years in high school,

four years of college, or four years of graduate school do not necessarily represent the

equal increases in education or knowledge. Depending on the statistical question being

asked, the same variable may be appropriately considered interval or ordinal.

Item Response Models

Scaling Ordinal Data to Interval

One method of overcoming unequal intervals is by transforming the ordinal data

into interval data on a log odds unit (logit) scale through item response models (IRMs).

When IRMs fit the data properly, they produce person and item parameters on the

same interval-level scale (G. H. Fischer, 1995; Perline, Wright, & Wainer, 1979).

Because many of the issues with ordinal data occur due to the lack of an interval scale,

IRM derived trait estimates can mitigate some of the common issues described above.

In general, to allow comparison between measurements two things must be

established: the standard that a score is compared to and the numerical basis of that

comparison (Embretson & Reise, 2000). In Classical Test Theory (CTT), the standard

is often the norm group, and the basis of comparison is order. That is, what is

considered a high or low score is based on responses from a standardizing sample of

participants. Even if the scores are normalized, interval data is not truly achieved;

scores are only relatively higher or lower than each other, but the intervals between the

data do not have meaning. Two participants may have math ability scores of 5 and 10,
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but it is unknown how much more capable the higher scorer is than the lower scorer.

In Item Response Theory, persons and items are placed on a common scale to give

meaning to the trait level. The standard is the latent trait scale and the numerical basis

of comparison is interval (Embretson & Reise, 2000). As both persons and items receive

placement on the latent trait scale, there can be meaning and predictive power in

knowing their respective abilities and difficulties. For example, in the Rasch model

when a person and an item have equal location of the item’s threshold and the person’s

trait score, there is a 50% chance that the item will be endorsed. If the participant

ability and item difficulties are known, the odds of a participant endorsing each item

can be predicted.

IRMs possess two broad categories of parameters: those for persons and those for

items. Person abilities, or trait levels, refer to where a respondent is on the latent trait

scale. Higher values indicate higher levels of latent trait and are associated with

increased likelihood of passing or endorsing an item. Item difficulty similarly refers to

the location of the item on the latent trait scale. In Rasch models, dichotomous items

are represented using logistic curves. The item difficulty is equal to the inflection point

of the curve. This is where the probability of passing the item is 50% for a person with

a trait level equal to the item difficulty. The term threshold refers to locations where

the likelihood of picking one option over another changes. In the dichotomous Rasch

model, the thresholds are at the inflection point. Before the threshold, a respondent is

most likely to fail the item. After the threshold, a respondent is most likely to pass the

item. Polytomous IRM models have multiple thresholds within each item. These

thresholds represent where the highest likelihood of responding moves from one

category to the next.

The approximation of a interval scale in IRMs is based upon the theory of

conjoint measurement (Luce & Tukey, 1964). In the theory of conjoint measurement,

interval-scale measurement can be obtained if the outcome variable is an additive

function of two other variables. All three variables must also possess order by

magnitude. The additive function between the variables can be inherently present, or
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created through the use of a monotonic function. In the Rasch model, the additive

combination of trait level and item difficulty can be established as

log(Item Odds) = log(Trait Level)− log(Item Difficulty)

where Item Odds is likelihood of endorsing or passing an item (Embretson & Reise,

2000; Rasch, 1960). Performance on a questionnaire can be measured through the log

odds of passing the item based on the additive relationship between the logs of the trait

level and item difficulty.

According to Luce and Tukey (1964), three conditions must be met to support

additivity. The first two, solvability and the Archmidean condition, establish that the

unit of comparison is bounded by the laws of the natural number system (Embretson &

Reise, 2000). The third, double cancellation, is the condition that is most relevant to

establishing additivity in IRMs. Double cancellation refers to the consistent ordering of

the three additive variables. For IRMs, these are the likelihood of passing an item (item

performance), respondent trait level, and item difficulty. First, single cancellation

establishes ordering within the variables. It must be true that the probability of passing

a specific item always increases as participant ability increases. It must also be true

that the probability of passing for a specific person always decreases as item difficulty

increases. Double cancellation is the combination of these two facts. It must be true

that as trait level increases and item difficulty decreases, the probability of passing an

item always increase. There cannot be items where a decrease in difficulty does not

correspond with an increased rate of passing. Models that allow for this, like the Three

Parameter model, do not achieve conjoint measurement. As item difficulty, trait level,

and performance can all be ordered via magnitude and are additive through their logs,

the Rasch model fulfills the requirements of conjoint measurement (G. H. Fischer, 1995;

Perline et al., 1979; Rasch, 1960).

The use of IRM scaled scores instead of raw scores has been shown to mitigate the

issues of unequal interval measurement. In factorial ANOVA and multiple regression,

the false detection of interaction effects is reduced when IRM scaled scores are used

instead of raw sum scores (Embretson, 1996; Kang & Waller, 2005; Morse et al., 2012).
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Morse et al. (2012) found that the likelihood of a Type 1 error was 8 times greater when

using sum scores in multiple regression as compared to IRM derived scores. Spurious

interactions in ANOVA and multiple regression can be caused by tests that are poorly

matched in difficulty to the target sample or by tests that measure only a limited range

of trait levels accurately (Embretson, 1996; Morse et al., 2012). The difficulty and

reliability of a test can be evaluated using IRMs, which allows interactions under these

conditions to be scrutinized.

Rescaling ordinal data into interval data is not without risks. Not all ordinal data

can be scaled into interval data. If the ordinal data is not representative of an

underlying interval latent trait then no amount of rescaling will produce accurate

interval data (Michell, 2009; Salzberger, 2010). Just because a scale attempts to

measure a latent trait, doesn’t mean that the latent trait exists or the items are related

to it. In a best case scenario, the IRM model would show poor fit; however, IRM fit

statistics do not always perform as expected (Karabatsos, 2000). Further, it has not

been firmly established that IRM models outside of the Rasch family produce true

interval data (Harwell & Gatti, 2001; Salzberger, 2010). Finally, sampling error present

in the original data is subsumed into the rescaled data (Harwell & Gatti, 2001). When

the assumptions of the IRM are not met, scaled scores may be no more reliable than

sum scores.

The Rasch Model

The Rasch model is a psychometric model where the probability of endorsing an

item is determined by the difference between the person’s ability score and the item’s

difficulty. This relationship between the differences of the person and item parameters

is modeled using a logistic function. Both persons and items are place on the same

continuous latent θ-scale. The basic form of the Rasch model for dichotomous items, as

adapted from Rasch (1960), is:

P(Xij = 1|θi, βj) = exp(θi − βj)
1 + exp(θi − βj)



LONGITUDINAL ANCHORING 14

where θ represents the ability (or trait level) of person i and β represents the difficulty

(or location) of item j. In the Rasch model, when a person and an item have the same

ability and difficulty, the person has a 50% chance of passing or endorsing the item.

When there is no prior knowledge of item parameters, the mean of either the item

or person parameters is commonly set to 0 for identification and interpretation. Should

the item parameter mean be set to zero, the high and low values of person ability are

given in respect to the average location of the items, and vice versa. In the Rasch

model, the only parameter estimated for each item is the difficulty. Item discrimination

is fixed at 1.0. As a result, all items are assumed to be equally discriminating with the

same strength of association with the underlying factor. The lower and upper

asymptotes of the item response functions are fixed to 0 and 1. In practice, this

assumes that as a respondent’s latent trait approaches negative infinity, the probability

of endorsing any item approaches 0. Similarly, as a respondent’s latent trait approaches

positive infinity, the probability of endorsing any item approaches 1. Because of the

assumptions and parameter restrictions of the Rasch model, the unweighted raw scores

are sufficient statistics for the person and item parameters (Lord & Novick, 1968). In

the unidimensional Rasch model, each raw total score is associated with one latent

ability estimate, regardless of which items are endorsed.

Other IRMs allow for the estimation of different parameters, such as item

discrimination and asymptotes. The Two Parameter Logistic Model (2PL) is a common

relaxation of the Rasch model (Birnbaum, 1968). In the 2PL, item discrimination is

allowed to vary between items so they may associate with the latent trait more or less

strongly. Other models, such as the Three and the Four Parameter Logistic Models, free

the lower and/or upper asymptotes of the response functions to vary between items

(Barton & Lord, 1981). The lower asymptote is generally considered to be the

"pseudo-guessing" parameter. It can be used, for example, to model responses to

multiple choice tests where a respondent has a fixed chance to correctly pick the right

answer regardless of their trait level. Similarly, the upper asymptote can be relaxed in

situations where high trait levels are not associated with probability asymptotes of 1. In
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all of these models, the total score is not a sufficient statistic. That is, the same raw

total score can be associated with multiple latent ability estimations depending on

which items were successfully endorsed and which were not. All the above models,

including the Rasch model, can be expanded to accept the use of polytomous data.

Additional assumptions of the Rasch model include unidimensionality and local

independence. To achieve local independence, responses to separate items must be

correlated only through the underlying latent trait that is specified in the model. High

local dependence can bias model parameters and inflate test reliability (W. Chen &

Thissen, 1997; W. Wang & Wilson, 2005). Local dependence can be caused by a variety

of issues related to test content and respondent characteristics. The standard example

occurs in reading comprehension tests: if one set of items all ask about the same

reading passage, these items will be more related to each other than the other items.

Local dependence can also be caused by repeated measurement of the same person,

tests where speed is important, by items that are too closely related beyond the latent

trait, or by multidimensionality not specified by the model.

Anchoring

Anchoring, or equating, is a common practice in item response models for both

cross-sectional and longitudinal research (e.g., De Ayala, 2009; Embretson & Reise,

2000; Von Davier, Xu, & Carstensen, 2011). Anchoring is an important procedure in

setting the scale of measurement of IRMs. In the same way that a ruler is not useful if

it can stretch or compress, the scale of Rasch models must be stable to enable

comparison of person abilities or item difficulties. The scale of a Rasch model can be

defined as the meaning of its units, specifically the interval between units and the

placement of the center point (i.e., the location of zero). Because the means of either

the persons or items must be fixed (typically, to zero) prior to the estimation of a Rasch

model, there is no guarantee that any two models attempting to measure the same

latent trait are estimated onto the same scale. While the underlying relationship

between persons and items may be the same for two different models, the location of
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zero and the standard deviation of the latent trait may not match. For example, if one

Rasch model centers the scale on persons (i.e., the mean of the person abilities is fixed

to be zero) and another Rasch model centers the scale on items, then the relationship

between items and persons would be identical between the models but the estimated

latent traits and item difficulties would be different. This also implies that the same

score from two unconnected models is not necessarily reflective of the same magnitude

of latent trait. Thus, the lack of a predetermined scale prevents parameters generated

by two models from being reliably compared to each other.

Equating is the general practice of connecting two or more separate IRMs to share

the same latent trait scale. There are many methods of equating. Some methods

involve the mathematical adjustment of the model parameters, while others involve

administering similar items on different test forms (Cook & Eignor, 1991). Not all item

parameters need to be known to place two tests together on the same trait scale.

Large-scale tests frequently use sets of similar items that are common across multiple

test forms. If two different tests have enough overlapping items, then two tests can be

equated (Angoff, 1984). This means that the abilities of participants can be compared

even if the participants did not respond to all of the same items. Because of this,

equating is useful in a variety of measurement contexts. Anchoring is a method of

equating that is typically accomplished by using the same item parameters in each

model. Anchoring is the subject of interest in the present study.

Uses of the Rasch Model

The Rasch model was originally designed to measure intelligence and achievement

among school children (Rasch, 1960). Since then, the Rasch family models are

commonly used to create and evaluate academic and achievement tests. For example,

the Programme for International Student Assessment (PISA), a worldwide study of

academic achievement, was built using conditional Rasch models (OECD, 2006) After

the original calibration, data from subsequent years are placed on the same scale using

tradition IRM equating techniques (OECD, 2006). The PISA has been administered
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nearly 2 million times in over 90 countries between 2000 and 2012, and is still on-going

today. Other tests that use Rasch measurement include the Wide Range Achievement

Test 4, the Kaufman Assessment Battery for Children, and the Woodcock-Johnson

Psycho-Educational Battery (Kaufman, 2004; Wilkinson & Robertson, 2006; Woodcock,

Johnson, & Mather, 1990). In addition, the Lexile Measures is an example of a large

scale reading comprehension test based on the Rasch model (Stenner, 1996).

The Rasch model has been extensively used to create and validate scales in the

fields of psychology, education, and health. The "person measure" of the Rasch model

can easily stand in for latent dimensions such as psychological traits and disease

severity. In psychology, the Rasch model has been used to measure thoughts and

behaviors related to mental health (Chiang, Green, & Cox, 2009; Kendel et al., 2010),

personal well-being (Misajon, Pallant, & Bliuc, 2016; Tomyn, Stokes, Cummins, & Dias,

2019), and working memory, among many other latent traits (Bowles & Salthouse,

2003; Vock & Holling, 2008). In education, the Rasch model has been used to measure a

variety of in-classroom phenomenon such as teacher effectiveness (Jones & Bergin,

2019), the learning of quantum mechanics (Testa et al., 2018), and student maladaptive

behaviors (Garcia, Lambert, Epstein, & Cullinan, 2018). In health care, the Rasch

model is commonly used to measure patient quality of life and symptom severity in a

variety of fields (Janssen, Phillipson, O’Connor, & Johns, 2017; Pasternak et al., 2016;

Pillas, Selai, & Schrag, 2017; Prieto et al., 2003). The Rasch model is also a popular

tool to measure symptom change over time (Glas et al., 2009; Norquist, Fitzpatrick,

Dawson, & Jenkinson, 2004).

Fundamentally, the Rasch model calculates the likelihood of a set of responses

that are associated with an entity. Thus, the person and item measures do not have to

be from traditional "persons" or "items". This flexibility allows the Rasch model to be

used in a variety of fields outside of psychology and education. For example, the Rasch

model has been successfully used to model gene expression, business centralization, and

the epidemiological distribution of diseases (Chao, Tsay, Lin, Shau, & Chao, 2001; H. Li

& Hong, 2001; Martin, McKelvie, & Lumpkin, 2016).
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Software and Estimation

Item response models, including the Rasch model, can be estimated with a wide

range of software. Popular IRM specific software includes WINSTEPS, PARSCALE,

IRTPRO, BILOG, and ConQuest. (Adams, Wu, & Wilson, 2015; Cai, Thissen, & du

Toit, 2019; du Toit, 2003; Linacre, 2019). IRMs can also be run in general purpose

statistical software such as R, Mplus, and STATA (Muthén & Muthén, 1998-2017; R

Core Team, 2013; StataCorp, 2017). Platform choice is largely driven by the models

and estimation methods that are available, as well as the number of participants and

items the software can handle. For example, the mirt package in R allows for flexible

estimation of a variety of item response models, including exploratory and confirmatory

models, multidimensional models, and latent class models (Chalmers et al., 2012).

A variety of estimation methods are available for IRMs. Common IRM estimation

methods include full information maximum likelihood, joint maximum likelihood,

marginal maximum likelihood, and conditional maximum likelihood (see M. S. Johnson

et al., 2007, for a discussion of common estimation methods). Other methods, such as

the Metropolis-Hastings Robbins-Monro (MHRM) algorithm and the

Expectation-Maximization algorithm are also available (Bock & Aitkin, 1981; Cai,

2010a). The choice of an estimation method is largely driven by model complexity;

models with many latent factors may be better served by MHRM than by marginal

maximum likelihood, for example (Cai, 2010a).

Change Over Time and IRMs

It is well known that basic change scores can be unreliable in estimating change

(Bereiter, 1963; Cronbach & Furby, 1970). Specific statistical models for longitudinal

data exist because longitudinal data possesses peculiar qualities that are distinct from

cross-sectional or single timepoint data. These qualities include changes over time,

auto-correlations between measures, and attrition. All these factors and more can bias

the results of statistical models when they are uncontrolled. Therefore, there is a great

need for item response models that are appropriate for longitudinal data. However,
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despite the benefits of IRMs in analyzing ordinal data, the use of longitudinal IRMs is

not common.

The dearth of longitudinal item response analyses in the literature is not solely

due to the non-existence of longitudinal IRMs. Longitudinal IRMs were of interest to

researchers soon after the conception of the original Rasch latent trait model (Andersen,

1985). Longitudinal IRMs include the multidimensional latent trait model for

measuring learning and change, bifactor models, and autoregressive models, among

others (Embretson, 1991; Gibbons & Hedeker, 1992; Jeon & Rabe-Hesketh, 2016; Liu &

Hedeker, 2006). Second-order longitudinal models are presently on the rise, an area that

shows much promise in expanding the flexibility and use of longitudinal IRMs (Cai,

2010b; Paek, Park, Cai, & Chi, 2014; C. Wang, Kohli, & Henn, 2016).

Longitudinal IRMs have several significant drawbacks, though. First, they are

generally computationally demanding, which creates barriers to their applications in

large, multiwave datasets. Second, IRMs in general require a significant amount of data

for proper estimation. The amount of data necessary increases as model complexity

increases; as a result, multidimensional longitudinal models require very large amounts

of data to fit. Finally, the maximum number of timepoints that can be examined is

heavily censured by the estimation method. The multiple integral in the marginal

maximum log-likelihood functions used in many IRMs caps the number of timepoints to

15, 10, or even 5 (Bacci, 2012; Wood et al., 2002). Rasch models can be structured as

multilevel models, which reduces the impact of timepoints on convergence. But, the

failure to converge rate for these models was found to range from 30% to 60% regardless

of the simulation condition (Bacci, 2012). That is, there may be a significant non-zero

baseline rate of failure that is separate from the model’s context. All together these

drawbacks present a sort of catch-22: the researcher must have enough data to estimate

a multidimensional model but not so much that estimation becomes intractable.

Low-computation longitudinal IRM alternatives are available but they may not

produce the information that the researcher desires. For example, while the linear

logistic model with relaxed assumptions (LLRA) can be used to detect change over
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time, neither the person or item parameters can be directly examined (G. H. Fischer,

1989; Rusch & Hatzinger, 2009). In the LLRA, person parameters are conditioned out

(i.e., not estimated) and time is expressed as changes in the item parameters

(G. H. Fischer, 1983). Thus, only overall or group differences can be examined.

Finally, many longitudinal IRMs are only appropriate in specific circumstances.

Some models require that the person or the item parameters are already known

(Andrade & Tavares, 2005; Tavares & Andrade, 2001). While obviously not ideal, the

barrier to utilizing longitudinal IRMs may be, or simply seem, unsurpassable to applied

users. It is not unusual to see researchers simply ignoring the variable of time and using

traditional, single timepoint IRMs for analyzing longitudinal data (Chang & Chan,

1995; Wright, 1996, 2003).

Similar issues arise when analyzing longitudinal ordinal data outside of IRMs. For

example, structural equation modeling (SEM) is the tool of choice for many

longitudinal analyses, but lengthy ordinal scales can cause significant problems. If every

item of a scale is included separately in the model, the number of estimated parameters

increases. Unlike interval data, additional parameters for dichotomous ordinal items

should be included to estimate the item thresholds. These parameters are in addition to

the factor loadings of the items, additional variances, and parameters to estimate

violations to unidimensionality, any of which may not be stable across different

timepoints. Thus, lengthy ordinal scales can greatly increase model complexity, the

necessary sample size, and estimation time required for a model, which can all lead to

intractable problems in estimation. Parceling (using one or more sums or averages of

two or more items) is a common method around this, but in many circumstances can

cause model mispecification, inflated model fit, and biased parameters (for reviews, see

Bandalos & Finney, 2001; Little, Rhemtulla, Gibson, & Schoemann, 2013; Yang, Nay, &

Hoyle, 2010). There is also limited evidence that parceling can falsely produce

significant estimates of linear growth when there is none (Yang et al., 2010).

The use of estimated factor scores from IRMs has been proposed as one method

around simultaneously estimating IRMs and growth parameters (McArdle, Grimm,
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Hamagami, Bowles, & Meredith, 2009; Yang et al., 2010). In this process, IRMs are

used to estimate factor scores and the factor scores are then used as input variables in

longitudinal models. This can allow the researcher to evaluate the function of a scale

over time and produce interval level data without increasing their target model’s

complexity. One method of producing longitudinal IRM factor scores is longitudinal

anchoring.

Virtual Persons and Items. The use of virtual persons and items is common

in IRMs and in longitudinal anchoring, specifically. The term virtual refers to items or

persons that exist only in a formal or mathematical sense, as in contrast to real items

on a test or the real participants who responded to it. Virtual items are established not

by their physical existence, but by the different conditions under which they occur. For

example, a single item responded to at two different timepoints may be considered as

two separate, unrelated "virtual" items (Embretson, 1991; G. H. Fischer, 1989; Verguts

& De Boeck, 2000). Virtual items are used in many circumstances outside of

longitudinal analysis. Real items may be separated into virtual items to model how a

previous correct or incorrect response influenced future responses (Hoskens & De Boeck,

2001). They can also be used to measure local item dependence or test fatigue

(Ackerman & Spray, 1986; Kubinger, 2008). As there are always more virtual items

than real items, the number of item parameters to estimate will increase when virtual

items are used. This can cause issues in estimation in certain situations.

Virtual persons are similar to virtual items. Virtual persons occur when the

responses of a real person are split as if they came from two or more virtual persons.

Generally, these splits are based on the different conditions that a person took the test

under. In longitudinal analysis, this is often the different occasions of measurement. For

example, the responses of one person at three timepoints may be considered as the

responses of three independent, virtual persons. This approach is used in the linear

logistic model to assess change over time (G. H. Fischer, 1989; Rusch & Hatzinger,

2009).

One concern with virtual persons and items is that the local dependencies among
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the real persons’ responses are not modeled. Most unidimensional IRMs are built on the

assumption that the specific latent dimension of interest is the sole influence on

responses to items (Lord & Novick, 1968). Once the influence of trait level is removed,

the responses of any two individuals or the relationship between any two items should

be relatively uncorrelated. This may be violated when virtual persons or items are used.

Sets of responses from one person are likely to be additionally correlated to each other

because they came from the same person. A specific person may have patterns of

responding that are not associated with the latent trait. Similarly, individual questions

may elicit specific patterns of response, creating relationships between repetitions of the

same item. If these local dependencies are unaccounted for they can bias trait

estimation (Marais, 2009; Olsbjerg & Christensen, 2015). Moreover, local dependencies

within persons can either inflate or mask the true change over time (Marais, 2009;

Olsbjerg & Christensen, 2015).

It should be noted that, in general, it is not feasible to include both virtual

persons and virtual items in the same standard Rasch model. If virtual persons and

items are defined by the timepoint that each occurred in, each virtual person would

only have response data for each set of virtual items (see Figure 2). That is, virtual

person A1 would only have responses for all virtual items at time 1, and virtual person

A2, would only have responses for for all virtual items at time 2. Because no data

overlaps between items or people, each timepoint would be estimated separately from

each other. In essence, this method produces the same outcome running each timepoint

in a separate model.

Longitudinal Anchoring

Linking separate IRMs together through a specific method of longitudinal

anchoring was proposed by Erbacher et al. (2012) as a low-computation alternative to

longitudinal Rasch models. Standard anchoring occurs when separate models are placed

on the same scale by possessing the same item parameter estimations. In longitudinal

anchoring, separate models are run for each timepoint with the models linked through a
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Items
Time 1 Time 2 Time 3

11 21 31 12 22 32 13 23 33

Persons

A1 1 1 1

B1 0 0 1

C1 0 1 0

A2 1 1 0

B2 1 0 0

C2 0 0 0

A3 1 1 1

B3 1 0 0

C3 0 0 1

Figure 2 . An example data matrix where the same three persons (A, B, C) responded

to the same three items at three timepoints. The use of both virtual persons and items

creates no overlap between timepoints.

common set of item parameters. Longitudinal anchoring is a two step procedure: first,

the item parameters are created, and then the single timepoint models are run. There

are several methods of estimating the shared item parameters that are unique to

longitudinal anchoring; these are described in detail in a later section. As longitudinal

anchoring does not involve simultaneous estimation of all timepoints, the computational

burden is low. If a single timepoint IRM can be run, then longitudinal anchoring can be

used.

To accurately compare multiple IRMs, item parameters must be anchored to the

same logit scale. This increases in importance when comparing the same scale over time,

as one important property of IRMs is measurement invariance. To achieve measurement

invariance, a scale must measure the same attribute(s) equivalently across different

situations and conditions (Horn & McArdle, 1992). Items within a scale must measure

the underlying trait exactly the same every time they are administered regardless of
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who is responding to the item (Embretson & Reise, 2000). As a result, item difficulties

must not change over time to be considered invariant. If the true difficulty of an item

changes across situations, then that item is not measuring the same attribute

equivalently in all situations. This requirement is also logical; an unaltered item should

not, itself, evolve. While an individual’s latent trait may increase or decrease, the true

difficulty of each item should remain constant. This may be increasingly relevant in

longitudinal contexts if item are poorly matched to participants during some years but

not others or from the beginning to the end of the study. Poorly estimated item

parameters can produce biased or inaccurate trait estimates (Svetina et al., 2013).

Nevertheless, item drift can occur. Item drift is broadly defined as systematic

changes in item parameters over time. Item drift has a variety of causes including

developmental changes in the participants, repeated exposure to items, and, for

academic tests, changes in curriculum (Goldstein, 1983). The size of the item drift

corresponds to the size of the resulting bias in person ability estimates (Wells,

Subkoviak, & Serlin, 2002). Although it is useful to examine how item difficulties

change over time, it is nevertheless difficult to compare change in latent trait scores

when the test is unstable. In many circumstances, there is no theoretical reason for why

a given item should elicit different responses over time. Changes in a participant’s true

latent trait should be the only cause of change in the estimated latent trait, otherwise

change would be improperly measured. Most methods of longitudinal anchoring assume

that item parameters do not change over time as the item parameters are fixed to be

equal across all timepoints. Models that allow for items to change over time may be

useful in evaluating item function, but they are likely less useful for producing accurate

latent trait estimates.

Longitudinal anchoring has added benefits for scale evaluation. The results from

Erbacher et al. (2012) suggest that longitudinal anchoring can be used to identify

misfitting persons and items. Many scales used in psychological research have not been

psychometrically evaluated over time due in part to the lack of longitudinal item

response models. Even if a researcher chooses not to use latent trait estimates from
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IRMs in their analyses, it would still be useful to ensure that all items are functioning

similarly throughout the duration of their study and to identify grossly misfitting

respondents. Validating this low-computational alternative may encourage psychometric

evaluation of longitudinal scales.

Longitudinal anchoring has not yet been thoroughly evaluated as a method of

linking more than two separate IRMs together. For larger numbers of models, it was

first proposed by Erbacher et al. (2012) to evaluate the performance of the PANAS

scale over 56 consecutive days. When there were two timepoints, another study found

that longitudinal anchoring via fixed parameters performed equivalently or better than

other anchoring procedures such as mean/mean linking and concurrent calibration

(L. Fischer, Gnambs, Rohm, & Carstensen, 2019). von Davier, Carstensen, and von

Davier (2006) suggested that longitudinal anchoring was not appropriate when

populations differed in ability, though this claim was not tested.

Because most longitudinal IRMs can easily handle two timepoints, it is critical to

evaluate the performance of longitudinal anchoring when there are many more

timepoints. There is a dearth of available IRM methods that allow for such kinds of

analyses. In addition, when there are more than two timepoints there are more methods

of creating the fixed item parameters. These different methods have not been staunchly

evaluated by simulation or otherwise.

In the present study, I examined several methods of longitudinal anchoring under

different change conditions. Four of these methods were drawn from Erbacher et al.

(2012). Two additional methods, the Random sampling method and the Cross-sectional

method, were also examined.

Anchoring Methods

Six different anchoring methods were examined: floated analyses (Floated

method), all timepoint anchored models (All Times method), time one anchored models

(Time One method), mean anchored models (Mean method), random sample anchored

models (Random method), and cross-sectional anchored models (Cross-sectional
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method). More information on the original use of the first four methods can be found in

Erbacher et al. (2012), though the titles of the methods have been adjusted for

generalizability.

Floated analyses. For the Floated method, each timepoint of data is used to

fit its own separate model. For each model, the mean of the items is fixed to 0. This is

because the Rasch model requires fixing the mean parameter of either the person or the

item distribution. Centering the scale on the persons would prevent any comparison of

latent trait scores between each timepoint as change would then be primarily expressed

in the item difficulties.

Because the trait scores are not locked onto the same scale, they are not

guaranteed to be comparable across years. Furthermore, this method allows item

difficulties to change over time, which violates measurement invariance. This method is

mainly used to create a baseline of comparison for the other anchoring methods both in

this study and in Erbacher et al. (2012). This method, though, is sometimes used to

compare data from two timepoints (e.g., Kahler, Hustad, Barnett, Strong, & Borsari,

2008).

All Times Anchored Models. In the All Times method, all participants and

items across all years are first run together in one, overarching "parent" model.

Repeated administrations of items are considered as separate virtual items. This

method has also been referred to as "racking" (see Figure ?? for an illustration; Wright,

1996, 2003). The parent "racked" model is fit, and the resulting item difficulties are

extracted. These difficulties are then used to run separate models, one for each

timepoint. For example, the item difficulties from the all the timepoints are estimated

in the overarching parent model. Then, the resulting first timepoint item estimates are

used to anchor a separate model that only contains the first timepoint responses. This

first timepoint model would then produce latent trait estimates for all participants with

data for that timepoint. This process is repeated for each and every timepoint. Thus

the item parameters are estimated using all available data, but the person parameters

are estimated using only item parameters from one year.
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Items
Time 1 Time 2 Time 3

11 21 31 12 22 32 13 23 33

Persons

A 1 1 1 1 1 0 1 1 1

B 0 0 1 1 0 0 1 0 0

C 0 1 1 0 0 0 0 0 1

Figure 3 . A "racked" data matrix used in the All Times method. Here, virtual items are

used. Each repetition of an item is considered to be a completely separate item in the

model. Persons appear once, but items appear multiple times.

Erbacher et al. (2012) claimed that this method, referred to therein as the "56-day

method", allows for direct comparison of latent trait estimates over time because the

item difficulties are all on the same logit scale. This method use virtual items, where

each presentation of an item at each timepoint is considered as a separate item. Item

difficulties of each item at each time are free to change which violates measurement

invariance. The All Times method may also violate local independence. Sets of virtual

items from the same real item are likely to be more correlated with each other above

and beyond their relationship to the latent trait. While the individual year models will

not violate local independence, the latent trait estimates may still be biased because of

the biased item estimates.

I hypothesize that the item parameters produced by this model will show extreme

bias when there is a non-zero mean change in trait scores over time. Because the parent

model holds person trait scores constant to produce item estimates, any true change in

the person latent trait will be reflected as a change in the item parameters. For

example, consider an item that is collected at four time points. A group of people with

positive growth across these four time points responds to this item. If the people are in

the data matrix once, but the items are represented as virtual items, then the positive

increase in the participant’s scores will be reflected in the items. Since people cannot

receive more than one growth parameter in a standard Rasch model, their growth must
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be expressed in the items, instead. Each successive presentation of the item will be

considered easier than the last, resulting in four different difficulty estimations for each

virtual presentation of the item. This purposely occurs in the linear logistic model with

relaxed assumptions (LLRA) (G. H. Fischer, 1973, 1989). It is one drawback of the

LLRA: because change is reflected in the items, person scores are uninterpretable.

Change in the item parameters can also be purposely examined in "racked" analyses

(Wright, 1996, 2003).

Thus, while the All Times method may perform adequately when there is no

average change in participant scores, the model is likely to produce biased estimates

when participant scores do change over time. This bias may be revealed by poor model

fit, bias in the recovered parameters, or high standard errors of the latent trait. In

essence, the separate, single timepoint models may not use the same centered logit

scale. Because there was not a significant change in participant scores from the

beginning to the end in Erbacher et al. (2012), the direct influence of change on

anchoring has not been examined.

Mean Anchored Models. In the Mean method, an overarching, racked parent

model is first run, identical to the All Times method. Then, the average of the virtual

item locations is calculated for each item. Each timepoint of data is then run as its own

separate model, using the mean item parameters. Because the mean of the item

parameters is taken, each model uses the same item difficulties. Erbacher et al. (2012)

used only small fraction of the timepoints for the mean (3 of 56), but we will use all

available, simulated timepoints (10 of 10).

Similar to the All Times method, as persons are held stable in the parent model,

change may occur in the items instead. Taking the mean of the virtual items may

ameliorate some of this bias, assuming that change is evenly influencing all items at all

times. Latent trait scores may be comparable across years, depending on the bias

present in the item difficulties. I hypothesize that the Mean method will perform better

than the All Times method, but that it will still show some biases in parameter

estimation.



LONGITUDINAL ANCHORING 29

Time One Anchored Models. The Time One method is most similar to

traditional anchoring procedures. First, a Rasch model is run on the first collection of

data. Then, the item difficulties from that single model are used to anchor all other

timepoints in their own separate models. Each model has the same item difficulties. As

each model will be on the same logit scale, person parameters are comparable across

years. Stable item difficulties allow for measurement invariance.

Presumably, any timepoint can be used to anchor the scale. The Time One

method may be more generally referred to as the Single Time method. Using a single

timepoint of data is a common anchoring practice in longitudinal studies (e.g., Boone &

Scantlebury, 2006; Deacon, Kieffer, & Laroche, 2014; C. Li et al., 2017; Watson, Kelly,

& Izard, 2006). The statement that any timepoint can be used as the scale anchor

implies that no timepoint is more appropriate than another. In applications of this

method, different timepoints may lead to more or less accurate item parameter

estimations. The first timepoint may be preferable if the sample at the first timepoint is

the most representative of the entire sample. In other circumstances, a timepoint near

the middle may be preferable if significant change between the first and last timepoint

is expected. Items that are poorly matched to participants may be poorly estimated.

When trait change is expected across a study, the most prudent timepoint to use for

anchoring will be the timepoint where persons and items are best matched in difficulty

and where the participant sample is most representative.

Random Anchoring. In the Random method, a model is run using a random

sample of the full dataset (as adapted from Mallinson (2011)). The random dataset

contains a single set of responses from each participant at a randomly chosen timepoint.

For example, the anchoring set could consist of data from participant 1 at time 3,

participant 2 at time 2, participant 3 at time 1, and so on (see Figure 4 for an

illustration). The anchoring model is fit using the randomly sampled data. The item

difficulties from this model are used to anchor the separate timepoint models. To the

author’s knowledge, this method has primarily been used when only a few timepoints

are considered (Curran et al., 2008; Mallinson, 2011; Wright, 2003).
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Figure 4 . An example of selecting data for the random method. A random time point

of data is chosen for each of the observed persons (P1 through P4). These random

selections are combined to create the anchoring data.

The purpose of the Random method is to include one "slice" of data from every

participant in order to avoid local dependence and equally represent each timepoint in

the item estimation. The item parameters resulting from this model are influenced by

data at all timepoints. The Random method upholds local independence and

measurement invariance because item difficulties do not change over time between the

models, and no virtual persons or items are used. Latent trait scores are comparable

across years.

The Random method may perform poorly when missingness is high or nonrandom.

Supplemental samples similarly may skew the random sample’s representation. If the

random sample includes every participant, each participant will contribute equally to

the anchoring method, regardless if the participants had 1 or 100 complete waves of

data. Thus, participants with less data, and timepoints with more participants, would

be over-represented and contribute more to the anchoring sample. If the missing data is

not at random then parameter estimation may be biased. If participant attrition is

caused by confounding variables, the random sample of participants may not be

representative sample of the true population. When there is little to no missing data, I

hypothesize that this method will perform similarly to the Time One method.

Cross-sectional Anchoring. In the Cross-sectional method, all repeated

measurements are considered as if they are from separate, virtual participants. This
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Items 1 2 3

Persons

Time 1

A1 1 1 1

B1 0 0 1

C1 0 1 1

Time 2

A2 1 1 0

B2 1 0 0

C2 0 0 0

Time 3

A3 1 1 1

B3 1 0 0

C3 0 0 1

Figure 5 . A "stacked" data matrix. This form of data uses virtual persons. Each person

appears multiple times and each item appears once.

method has also been referred to as "stacking" because the data is put into long format

(see Figure 5 for an illustration; Wright, 1996, 2003).

This stacked data set is used to fit the parent anchoring model. Item parameters

from the parent model are used to fit separate models for each timepoint. This method

was not examined in Erbacher et al. (2012), but has been used in other studies to create

fixed item parameters and analyze longitudinal data (e.g., Anselmi, Vidotto, Bettinardi,

& Bertolotti, 2015; Jodoin, Keller, & Swaminathan, 2003; C. Li et al., 2017; Sturrock et

al., 2015). In some of the previous studies, the Cross-sectional parent model itself was

analyzed. This anchoring method has the advantage of including data from every

participant in the anchoring estimates, but the possibility of bias exists due to the

repetition of persons and violations of local independence.
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General Comments on Anchoring Methods

While previous studies have used certain aspects of the anchoring methods

described above, the technique of using a parent model to calibrate item difficulties and

then using separate models at more than two timepoints to obtain person trait

estimations is unique to this study and Erbacher et al. (2012). Many of the techniques

used in the setup of the parent models (e.g., using virtual person or items, "racking" and

"stacking") have been used to analyze longitudinal data with IRMs (e.g., Chang &

Chan, 1995; Mallinson, 2011; Wright, 1996, 2003). The difference between the previous

studies and the present method is the use of single timepoint models to estimate trait

levels. The goal of the two-step procedure (parent model, then separate models) is to

provide a computationally feasible method of reducing the impact of local dependence

on the estimations of latent trait scores.

Anchoring method choice likely depends on the data the method is applied to. If

the study has high attrition rates, the Time One anchoring method may be preferable

to combat against non-missing at random attrition. Anchoring item difficulties to a

wave of data where participants and items are poorly matched may result in poorly

estimated parameters. It is presently unknown how the different anchoring methods

compare to each other as they each use different methods of creating the item

difficulties and possess different qualities (see Figure 6 for an overview of the methods).

Previously, Erbacher et al. (2012) recommended using the Time One ("day 1") and

Mean ("mean-3") methods, though the All Times ("56-day") method also produced

similar fit statistics. It should be noted that in Erbacher et al. (2012), it is not known if

there was significant average change from baseline across the study period. Only the

person and item fit was examined in Erbacher et al. (2012); change in factor scores was

not examined. As the study used self-reported daily mood over 56 consecutive days,

there may have not been a significant average change from day one to day fifty-six.

Previous research has found that individuals typically have stable variability in mood

over time (Eid & Diener, 1999; Penner, Shiffman, Paty, & Fritzsche, 1994). Thus, it is

unknown if the presence and degree of average change impacts the performance of the



LONGITUDINAL ANCHORING 33

Same Scale Stable Items Local Independence Pools Data

Floated

Time One

All Times ~

Mean ~

Random ~

Cross-sectional

Figure 6 . A summary of the qualities of each anchoring method. Quality present:

Quality partially upheld: ~

different anchoring methods.

Longitudinal anchoring is an efficient method to produce latent trait estimates,

examine changes in item and person fit across timepoints, and evaluate longitudinal

scale functioning. It should be noted that while anchoring separate IRMs produces

latent trait scores at each timepoint, it does not directly estimate relevant growth

parameters (e.g., intercept, slope, and their covariance). Latent trait scores from

anchored IRMs can be used as input in growth focused models (e.g., latent growth

curves, structural equation modeling) (Gorter et al., 2015; McArdle et al., 2009).

Because person trait scores are estimates with estimation error, more precisely

measured trait scores lead to less bias in secondary analyses (Glas et al., 2009; Mislevy,

Johnson, & Muraki, 1992). Thus, the person scores produced by longitudinal anchoring

are only as useful as they are accurate. Traditionally, this compound error is reduced by

simultaneously modeling the latent factors and the growth factors by using methods

such as longitudinal IRMs or structural equation modeling. While this may be ideal,

directly modeling factors for multiple scales at multiple time points can quickly increase

computation time and require too many parameters, as noted in the section Change

Over Time and IRMs. Longitudinal anchoring may be an acceptable solution, especially

when alternatives, such as treating ordinal data as continuous, can bias growth curve
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estimates (Yang et al., 2017).

Simulation

Conditions

The performances of the six anchoring methods were evaluated using simulation.

There were 100 simulations of each anchoring method under four different change

conditions. In each condition, 500 simulated participants responded to a set of 50 items

collected over ten timepoints.

Two parameters were manipulated: the population slope of the latent trait and

the variance of the slope. Change over time was evaluating using a standard latent

growth model. In latent growth models (LGM), change in a trait is calculated by

estimating latent variables for the intercept and slope (??). An LGM fits a regression

line per person, which for linear growth is,

yi = b1 + tib2 + e

where yi is the value of the Rasch-derived trait at time i, b1 is the intercept, b2 is

the slope, t is the time point, and e is the time-specific prediction error. The

distribution of the intercepts (b1) and slopes (b2) across participants are modeled as two

separate latent variables. The mean of the latent slope is an estimate of the average

change over time in the sample. The variance of the latent slope represents the

interindividual differences in the change over time.

Each participant’s rate of change was drawn from a distribution with a mean and

variance determined by the condition. The four conditions are as follows: mean slope of

0 with zero slope variance, mean slope of 0 with variance, mean slope of 0.10 with

variance, and mean slope of 0.20 with variance. For all conditions with slope variance,

the variance of the slope was equal to 0.0025, producing a standard deviation of 0.05

around the mean slope parameter.

Thus, for the 0.10 slope condition the simulated mean population latent trait

increased by approximately 1 from time one to ten. For the 0.20 slope condition, the
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population mean increased by 2 from time one to time ten. Under the zero slope with

variance condition, the mean change of the population trait level over the 10 timepoints

is approximately zero. Each simulated participant’s rate of change was drawn from a

distribution with mean zero and variance equal to 0.0025. Simulated participates

therefore had small stable positive or negative rates of change, but these individual

rates of change canceled out to produce negligible population mean change. There was

no change in participants latent trait in the Zero Slope, Zero Variance condition.

Process. The simulation was conducted using the mirt package (version 1.30) in

R 3.5.3 using full information maximum likelihood estimation (Chalmers et al., 2012; R

Core Team, 2013). In all models where the item locations were estimated, the sum of

the item locations was set to zero. The mean of the person abilities was always free to

vary. The general procedure of the simulation and the values of the fixed parameters

are detailed below.

Simulate persons and items. For each simulation under each condition, initial

abilities at time 1 for 500 persons were drawn from a normal distribution with mean of

zero and standard deviation of one. Rate of change (slope) for each person was drawn

from a normal distribution with mean and variance according to the respective

condition. Person abilities for rest of the 9 timepoints were generated according to each

person’s initial ability and individual slope.

The difficulties of fifty dichotomous items were drawn from a uniform distribution

from -2 to 2 for each simulation1. Item discrimination values were equal to one.

Responses were then generated for each participant at each timepoint using the Rasch

model. Even if a single participant had the same simulated trait level at all timepoints,

responses at each timepoint are not guaranteed to be identical under the Rasch model.

This process was repeated for 100 simulations for each change condition, for a total of

400 sets of persons and items. For each simulation under a given condition, the six

anchoring methods used that same set of responses.
1Pilot testing showed that normal distributions would occasionally produce item difficulties that were

be too extreme to be properly estimated. A uniform distribution prevented model non-convergence and

therefore spurious simulation failure.
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Fit the parent model. The simulated responses were used to fit the parent model

according to the anchoring method. In the Floated method, there was no parent model.

All parent models and the floated models were fit with the "itemtype = ’Rasch’"

argument to fix item discrimination parameters to 1 and freely estimate the population

variance. The mean of the item difficulties was set to 0 and the mean of the person

abilities was freely estimated.

Fit the individual models. Individual models for each of the ten timepoints were fit

using the fixed item parameters generated by the parent models. Person parameters

were estimated from the individual models.

Evaluation

As the Rasch model assumes a structure on the functioning of items and the

pattern of responses, anchoring methods were evaluated based on the models’ fit

parameters, the accuracy of the estimated item and person parameters, and the

standard errors (SE) of the estimate. The evaluated outcomes include the standard

error of the estimate, the RMSE of the item parameters, the recovery of slope and the

variance of the slope, the M2 statistic, RMSEA, SRMR, and AIC. Standard residual

infit and outfit measures were not evaluated due to the instability in the interpretation

of misfit cutoff scores (Karabatsos, 2000).

Accuracy of the Person Parameters. Latent trait scores were evaluated

through the standard error of the estimate and, by proxy, slope recovery. The standard

error of the estimate (SEE), also known as the standard error of measurement, is a

measure of the precision of the estimated person latent trait (Embretson & Reise,

2000). It can be defined as,

SE(θ) = 1√
TI(θ))

where TI is the test’s item information function. More accurate anchoring methods will

produce lower standard errors for the latent trait estimations.

Root Mean Square Error (RMSE) was not used to evaluate bias in person ability

estimates. Because the scales of the models were set on the items, high values of RMSE
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for person abilities could indicate poor person estimation or accurate person estimation

with a shifted scale. As both of these cases can be determined by combining item

RMSE and slope recovery, person RMSE was not evaluated.

Accuracy of the Item Parameters. The accuracy of the item difficulties was

evaluated using root mean square error (RMSE). RMSE is a measure of the distance

between the true (simulated) and observed (estimated) item locations and is calculated

by,

RMSE =
√∑(Si −Oi)2

n

where S represents the true simulated item location, O represents the estimated item

location, and n represents the number of items. Lower values of RMSE indicate that

the model estimated the item locations closer to their true values. RMSE is a common

method of model evaluation, but there is no universally defined threshold to determine

model fit. Rather, RMSE is helpful in comparing different models to each other.

It is important to note the impact of IRM scaling on RMSE. In this simulation,

the mean of the item parameters is fixed to zero. This serves to minimize differences in

scaling between all conditions. However, if the estimation accuracy of the items is

uneven then RMSE can be inflated. If, for example, 49 items are perfectly estimated

and one item is egregiously overestimated, the mean of the set will shift to compensate

and thus the locations of the accurate items will also shift. That is, the good items are

still perfectly estimated, but they are on a different scale than the parent model.

The impact of scaling can be seen in Figure 7. This graph shows a sample of

simulated item difficulties and their respective estimations from a Rasch model. While

the ordering of the items is similar between the two graphs, on average the estimated

items (red) have been knocked down about .5 to compensate for the handful of poorly

estimated items. Adding back in the average bias (black line) makes it clear which

items were poorly estimated.

Regardless, RMSE can be a useful measure of item estimation. Small values of

RMSE still indicate good item estimation. Larger values of RMSE indicate either poor

estimation of many items or significantly poor estimation of a single item.
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Slope and Variance of the Slope. Proper estimation of the slope, or the

average rate of change across time, is necessary for longitudinal anchoring to be an

effective method of data analysis. Poor estimation of the latent trait scores will create

bias in the average rate of change across the ten timepoints. If the unit measure of

latent trait scores is comparable across models within a single anchoring method, then

the rate of change over the ten timepoints should be comparable regardless of any

scaling differences. Thus, recovery of the population slope also serves as a proxy

measure of the accuracy of the latent trait scores. If the latent traits are estimated

properly, but on a different scale, the average rate of change should still be preserved.

To produce the slope and slope variance estimates, the estimated latent trait

scores from each timepoint are used to fit a growth curve model. Model estimation is

conducted using the lavaan package in R (version 0.6.4, Rosseel, 2012). The values of

the linear slope, intercept, and their respective variances are freely estimated. A lower

bound of zero was set for the slope variance to prevent the estimation of negative

Figure 7 . An example of how poorly estimated items throw off the estimation of all of

other items. Items are ordered from (simulated) least to greatest locations for ease of

interpretation.
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variance.

Model Fit. Overall model fit is evaluated using the M2, RMSEA, SRMR, and

AIC. The M2 statistic (Maydeu-Olivares & Joe, 2006) is a proxy for chi-squared

goodness of fit testing for IRMs. M2 evaluates fit based on marginal residuals and has

more accurate Type 1 errors than chi-squared distributions for IRMs, making it an

appropriate model fit index.

Root Mean Square Error of Approximation (RMSEA) was first introduced by

Steiger (1989) with contributions by Browne and Cudeck (1993). It evaluates how well

the model reproduces the observed covariance matrix. RMSEA can be defined as

RMSEA = sqrt
T− df
N − df

where T is an asymptotically chi-square distributed test statistic based on residual

covariances, df is the degrees of freedom, and N is the sample size (Maydeu-Olivares,

Cai, & Hernández, 2011). Reasonable model fit is generally defined as RMSEA values

less than 0.08, with very good model fit less than 0.05 (Browne & Cudeck, 1993).

Standardized Root Mean Square Residual (SRMR) is an absolute measure of

model fit. SRMR measures the standardized difference between the residuals of the

sample covariance matrix and the hypothesized model. As adapted from F. F. Chen

(2007), SRMR is defined as

SRMR =

√√√√2 ∑ ∑[(sij − σij)/(siisjj)2

p(p+ 1)

where sij is the observed covariance, σij is the model-implied covariance, sii and sjj are

the observed standard deviations, and p is the number of observed variables. An SRMR

value of zero indicates perfect fit. The general cutoff for desirable SRMR fit is 0.08 (Hu

& Bentler, 1999). Both RMSEA and SRMR can be impacted by sample sizes

(DiStefano, 2002).

Akaike’s Information Criteria (AIC) (Akaike, 1998) is a common

information-based measure of model fit. AIC is defined as

AIC = 2k− 2ln(L)
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where k is the model’s degrees of freedom and L is the value of the likelihood. As AIC

is a measure of the relative information that a model provides, there is no specific cutoff

or desirable value. Rather, AIC is used comparatively between models where lower

values indicate better fit. Anchoring methods that produce more accurate person and

item estimations should produce lower values of AIC.

Simulation Results

Person Ability Estimates

For all conditions and methods, the simulated trait level at time one was zero. All

methods estimated the mean trait level to be approximately zero at the first timepoint,

except the All Times method (Table 1). For the All Times method, the average

estimated mean trait level at time one was 0.43 for the 0.10 slope condition and 0.88 for

0.20 slope condition. For the 0.10 and 0.20 slope conditions, the mean population

change in trait level across ten timepoints was simulated to be 1 and 2, respectively.

The starting value for the All Times method under the two conditions was less than

half of the total change in trait level over the ten timepoints. Sample trajectory plots

from the Random anchoring method can be seen in Figures 8, 9, 10, and 11.

The standard deviation (SD) of the trait level was simulated to be 1 at the first

timepoint. Under all methods and conditions, the estimated SD was approximately

0.95. This is slightly lower than the true simulated SD. This is may be due to the

misestimation of extreme trait levels; trait levels can be truncated if they fall beyond

the range of the items.

Standard Error of the Estimate

The standard error of the estimate (SEE) was similar across all conditions (see

Figure 12). For the Zero Slope, No Variance condition, the mean SEE was

approximately 0.325 for all methods. This increased slightly to 0.328 for the Zero Slope,

with Variance condition. It was approximately 0.332 and 0.350 for the 0.10 and 0.20

slope conditions, respectively. Overall, the SEE increased slightly across conditions as
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Estimated Population Parameters at Time One

Zero Slope,

zero variance

Zero Slope,

w/ variance

0.10 Slope,

w/ variance

0.20 Slope,

w/ variance

Mean of the Trait (SE)

Floated 0.003 (0.017) -0.015 (0.016) -0.011 (0.018) -0.004 (0.015)

Racked 0.003 (0.017) -0.011 (0.018) 0.433 (0.016) 0.885 (0.015)

Time One 0.003 (0.017) -0.011 (0.018) -0.015 (0.016) -0.004 (0.015)

Mean 0.002 (0.017) -0.010 (0.018) -0.014 (0.016) -0.003 (0.015)

Random 0.002 (0.017) -0.010 (0.018) -0.014 (0.016) -0.003 (0.015)

Stacked 0.002 (0.017) -0.010 (0.018) -0.015 (0.016) -0.004 (0.015)

Standard Deviation of the Trait (SE)

Floated 0.953 (0.003) 0.947 (0.004) 0.950 (0.004) 0.949 (0.004)

Racked 0.953 (0.003) 0.950 (0.004) 0.952 (0.004) 0.951 (0.004)

Time One 0.953 (0.003) 0.947 (0.004) 0.950 (0.004) 0.949 (0.004)

Mean 0.952 (0.003) 0.944 (0.004) 0.946 (0.004) 0.945 (0.004)

Random 0.953 (0.003) 0.946 (0.004) 0.949 (0.004) 0.949 (0.004)

Stacked 0.951 (0.003) 0.945 (0.004) 0.947 (0.004) 0.946 (0.004)

Table 1

Average estimated population parameters of the latent trait at time one and the

associated standard error. For all conditions, the true mean of the latent trait was 0

with a standard deviation of 1. All methods estimated the mean to be approximately

zero, except for the Racked method (in bold).
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Figure 8 . Participant trajectory plot under the No Slope, No Variance condition, using

the Random anchoring method.

Figure 9 . Participant trajectory plot under the No Slope, with Variance condition,

using the Random anchoring method.
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Figure 10 . Participant trajectory plot under the 0.10 Slope, with Variance condition,

using the Random anchoring method.

Figure 11 . Participant trajectory plot under the 0.20 Slope, with Variance condition,

using the Random anchoring method.
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the trait levels became less well matched to the item range.

A similar pattern is seen for the minimum and maximum values of the SEE. The

minimum SEE across simulations and conditions was 0.295. This varied very little

across methods. The maximum SEE did vary by condition, but not by method. The

maximum SEE rose from about 0.58 to 0.60 to 0.63 to 0.68 across the four change

conditions. Within each condition, there was little variance between the anchoring

methods. The change in maximum SEE is more related more to the change conditionals

than the individual anchoring methods. There was little difference in SEE among the

anchoring methods.

Item Parameter Recovery

RMSE was calculated by comparing the simulated item locations to the estimated

item locations. Under the Time One, Mean, Random and Cross-sectional methods, item

difficulties were not permitted to change over time. Item difficulties could change over

time for the Floated and All Times methods. There is a consistent pattern of RMSE

between methods across the simulation conditions (see Figure 13). The Mean and

Cross-sectional methods consistently had the lowest median RMSE. The Random, Time

One, and Floated methods performed less well than the Mean and Cross-sectional

methods. The All Times method performed similarly to the Random, Time One, and

Floated methods when there was zero mean change over time. Under the 0.1 and 0.2

conditions, RMSE values for the All Times method increased drastically. The average

item RMSE was four times higher for the All Times method than the Mean method

under the 0.20 slope condition. There is substantial variation of the RMSE, though the

variation was generally consistent across conditions. The Mean and Cross-sectional

methods had the largest variance of RMSE.

An examination of the item trajectory plots shows that the change in the person

parameters was clearly expressed in the item parameters for the All Times method

(Figure 14). When change occurred under the All Times method, the estimated item

locations were far away from the simulated item locations. It is not the case that the
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Figure 12 . Distribution of the standard error of the estimates generated by condition

and anchoring method. SEE was more strongly impacted by condition than anchoring

method.
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Figure 13 . Shown here is the distribution of item location RMSE. The Mean and

Cross-sectional methods had the lowest RMSE across all conditions, while the All

Times method performed poorly when the population changed over time.
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scale of the estimated items were different than the simulated items, but rather that the

estimations were incorrect. Small variations in item difficulty can also be seen in the

Floated method; despite these variations, item difficulty RMSE for the Floated method

is comparable to the other anchoring methods.

Figure 14 . Sample item trajectories for the six anchoring methods under the 0.20

condition. While both the Floated and the All Times methods allow for variation in the

item difficulties over time, only the All Times method expresses participant change in

the item difficulties.
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Figure 15 . The trajectory of the same participant estimated by the Mean and All

Waves anchoring methods. The All Wave method removes the participant’s growth.

Slope and Slope Variance

A key concern in longitudinal data analysis is proper estimation of the average

change over time. All six anchoring methods performed identically in recovering the

mean slope when the simulated slope was zero (Table 2). When the mean slope was

simulated to be 0.10 or 0.20, the Racked method failed completely. In both conditions,

little to no overall change was detected using the Racked method.

Figure 15 shows the estimated latent trait of the same participant generated using

two different anchoring methods. These results show that the Racked method did not

truly estimate the slope to be zero during the Zero Slope conditions. Rather, no change

was possible to be estimated. This is further supported by the lack of variance in the

slope estimates; the variance of the estimate was approximately zero for all conditions.

The other five methods successfully recovered simulated slopes of 0.10 and 0.20. The

bias in slope recovery for the other methods was extremely small.

When the simulated slope variance was equal to zero, the estimated slope variance



LONGITUDINAL ANCHORING 49

was approximately zero under all anchoring methods. When the slope variance was

simulated to be 0.0025 in the other three conditions, the variance of the slope was

consistently underestimated regardless of anchoring method (Figure 16). The estimated

variance for the No Slope, with Variance and the 0.10 slope conditions was closer to

0.0021 than 0.0025. The 0.20 slope condition fared the worst, with the average slope

variance estimated to be less than 0.0020. Notably, there were larger differences between

change conditions than anchoring methods when considering slope variance. Overall the

anchoring methods themselves had little impact on the recovery of the slope variance.

Though the Racked method could not recover the true slope, the variance of the

slope was preserved. That is, average change over time was expressed in the items

rather than the persons, but variation around the average change was preserved. Some

participants still had small positive or negative trajectories, though there was no

estimated change over time at the population level.
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Figure 16 . Estimated slope variance by condition and anchoring method. The slope

variance was underestimated by all methods under all conditions. The No Slope, No

Variance condition is not shown; the slope was estimated to be zero under all methods.

Overall Model Fit

The percentage of models showing significant misfit (p<.05) based on the M2

statistic varied across the anchoring methods but was relatively stable across change

conditions (Table 3). For the Mean, Cross-sectional, and Floated methods, model misfit

was around or less than 6% for all conditions. The percentage of misfitting models for

the All Times method was less than 1% for all four change conditions. In contrast,

approximately one third of models misfit using the Random and Time One anchoring

methods. The proportion of misfitting models was similar over the ten timepoints for all

anchoring methods except for Time One (Figure 17). For the Time One method,

significant model misfit was found only in timepoints 2 through 10.

RMSEA was extremely low, less than 0.01, for all anchoring methods under all

conditions (Table 4). RMSEA was highest for the Time One and Random methods.
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Figure 17 . Model misfit measured by the M2 statistic over the ten timepoints.
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SRMR was approximately 0.04 for all anchoring methods under all conditions (Table 5).

There was little variation in RMSEA or SRMR across methods and all values were

below the appropriate cutoffs.

Across conditions, the overall pattern for AIC was generally consistent (Table 6).

From lowest to highest mean AIC, the methods were: All Times, Cross-Sectional &

Mean, Random & Time One, and Floated. The All Times method consistently had the

lowest mean AIC values, and the Floated method had the highest. The Cross-sectional

and Mean methods had similar mean values of AIC. The Time One and Random

methods were also similar to each other, but the Time One method had lower AIC

under the 0.20 slope condition.

For the no change conditions, AIC varied little over the ten timepoints. But, as

can be see in Figure 18, there was a large decrease in AIC across the ten timepoints for

the 0.10 and 0.20 conditions. This pattern can be understood in the specific context of

IRMs. The more closely that persons and items match in latent trait, the more

variability there is among person responses. Under the Rasch model, when a person has

the same trait level as an item, they have a 50% chance of passing or failing the item. If

a person’s trait level is much higher than the item, they will almost always pass the

item. The more that items and persons mismatch in skill level, the less variability there

is in responses. Thus, AIC for models where persons and items are greatly mismatched

will be lower than for models where the trait level of persons and items is very similar.

This mismatch grew as person abilities grew over the ten timepoints.
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Figure 18 . The distribution of AIC across the ten timepoints and conditions.



LONGITUDINAL ANCHORING 54

Bias in Slope Recovery

Zero Slope,

zero variance

Zero Slope,

w/ variance

0.10 Slope,

w/ variance

0.20 Slope,

w/ variance

Mean SD Mean SD Mean SD Mean SD

Floated -0.0002 0.002 -0.0001 0.003 0.0003 0.003 -0.0001 0.003

Racked -0.0001 0.000 -0.0001 0.000 -0.0989 0.000 -0.1975 0.000

Time One -0.0001 0.002 -0.0001 0.003 0.0003 0.003 -0.0003 0.003

Mean -0.0001 0.002 -0.0001 0.003 -0.0001 0.003 -0.0010 0.003

Random -0.0001 0.002 -0.0001 0.003 0.0002 0.003 -0.0004 0.003

Stacked -0.0001 0.002 -0.0001 0.003 -0.0000 0.003 -0.0008 0.003

Table 2

Bias in the slope was calculated as estimate slope - simulated slope. Most bias was

approximately zero, except for the Racked method (in bold). Negative values mean that

the estimated slope was lower than the simulated slope.
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M2 Model Misfit Across Conditions and Methods

Zero Slope,

zero variance

Zero Slope,

w/ variance

0.10 Slope,

w/ variance

0.20 Slope,

w/ variance

Floated 6.3% 4.8% 5.2% 6.6%

All Times 0.2% 0.5% 0.2% 0.6%

Time One 33.1% 30.0% 35.7% 32.6%

Mean 6.4% 3.1% 4.7% 5.4%

Random 29.6% 28.0% 33.1% 34.3%

Cross-sectional 6.1% 3.4% 5.3% 5.7%

Table 3

Model misfit, as measured by the M2 statistic. For each condition and method, there

were 10 timepoints for each of the 100 simulations; thus each reported percentages is out

of 1,000 models.

Mean RMSEA Across Conditions and Methods

Zero Slope,

zero variance

Zero Slope,

w/ variance

0.10 Slope,

w/ variance

0.20 Slope,

w/ variance

Floated 0.004 0.004 0.004 0.004

All Times 0.001 0.001 0.001 0.001

Time One 0.009 0.008 0.009 0.008

Mean 0.004 0.003 0.003 0.003

Random 0.008 0.008 0.008 0.009

Cross-sectional 0.003 0.003 0.003 0.003

Table 4

Mean RMSEA was very low for all methods and conditions. RMSEA was highest for the

Time One and Random methods. All standard errors of RMSEA across conditions and

methods were approximately 0.0001.
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Mean SRMR Across Condtions and Methods

Zero Slope,

zero variance

Zero Slope,

w/ variance

0.10 Slope,

w/ variance

0.20 Slope,

w/ variance

Floated 0.043 0.043 0.043 0.045

All Times 0.043 0.043 0.043 0.045

Time One 0.043 0.043 0.043 0.045

Mean 0.043 0.043 0.043 0.045

Random 0.043 0.043 0.044 0.045

Cross-sectional 0.043 0.043 0.043 0.045

Table 5

Mean SRMR was similar for all methods and conditions. All standard errors of SRMR

across conditions and methods were approximately 0.00001.

Mean AIC Across Conditions and Methods

Zero Slope,

zero variance

Zero Slope,

w/ variance

0.10 Slope,

w/ variance

0.20 Slope,

w/ variance

Floated 27097 26856 26381 24792

All Times 26997 26757 26282 24693

Time One 27086 26842 26370 24775

Mean 27041 26799 26326 24736

Random 27085 26845 26371 24780

Cross-sectional 27041 26799 26326 24736

Table 6

AIC varied between the anchoring methods. The All Times method always had the

lowest AIC, while the Floated method always had the highest.
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Discussion

Understanding how to properly anchor IRMs is critical when studying change over

time. While there are many methods of anchoring IRMs, the challenge lies finding one

that upholds important psychometric properties such as measurement invariance and

local independence, while producing accurate estimations. Because modern IRMs are

unable to handle more than 10 timepoints, new methods of producing person and item

estimates and evaluating test function are necessary.

Most of the anchoring methods performed more or less similarly, except for the All

Times method. For the other methods, there were only small differences in regards to

the standard error of the estimate and in recovering the slope and the variance of the

slope. All methods performed similarly when compared using RMSEA and SRMR.

Differences arose when looking at the estimation of the item parameters, overall model

fit based on the M2 statistic, and AIC. For all of these criteria, the Mean and the

Cross-sectional anchoring methods performed the best. Though the Random and the

Time One methods were successful at recovering the population slope, nearly one-third

of these models showed significant M2 misfit.

The commonality of the Mean and Cross-sectional methods is that they both pool

all the data to create the item difficulties. While this seems to be an obvious advantage

as it provides more data for the item difficulties to be based on, the parent models also

violate local independence. It remains to be seen if increasing levels of local

independence reduces the efficacy of either of these methods, or if one method is more

robust than the other.

The characteristics of certain anchoring methods may be better suited for different

situations. For example, in the Mean method, the parent model requires estimation of n

items x t time points, and p participants. In comparison, the Cross-sectional method

requires estimation of p participants x t time points, and n items. If the number of

participants is not much larger than the number of items, then the estimation of the

items in the Mean method may be poor.

Despite the lesser performance of the Time One and Random methods in regards
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to model fit and item estimation, these two methods were still able to recover the true

change in the population ability parameters. While accuracy may be important when

attempting to estimate "observed" variables for future growth curves, the Time One

method is the simplest and least computationally intensive method, aside from floating

all the models. If the Mean or Cross-sectional methods prove to be intractable to

estimate, the Time One method may be a suitable option.

The Floated method performed adequately in this simulation, despite allowing all

items to vary. Along with the Mean and Cross-sectional method, it had some of the

lowest rates of M2 misfit. This, though, speaks more to the performance of the Mean

and Cross-sectional methods. M2 misfit rates should be low for the Floated method as

each Rasch model was run separately and without interference of the other timepoints.

While this may over-specify the model to that subset of data, it should produce the

best fit indices. The Mean and Cross-sectional methods performed similarly despite

pooling data. In any case, the Floated method may only perform well when the data is

relatively free of noise and other nuisance variables. If items showed differential

functioning across timepoints, the resulting latent trait scores may not be comparable.

As hypothesized, the All Times method was an inappropriate choice when the

mean trait level changed over time. The All Times method failed to recover any change

in trait level in either the 0.10 or 0.20 condition. Change in the person abilities was

expressed in the item difficulties, producing misleading fit statistics. The All Times

method did not place the separate timepoint models all on the same scale, but rather

warped the scale of the items

As evidenced by the All Times method, several methods of assessing model fit are

not always reliable if a model has been accurately specified, especially for longitudinal

IRMs. Incorrectly specified models can produce spuriously good fit indexes but with

meaningless results. While the All Times method had comparatively good distributions

of AIC, M2 misfit, and standard error of the estimate, the All Times method produced

misleading person and item estimates. The true population change over time was

unable to be recovered from the person estimates, thus the All Times method should
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never be recommended for longitudinal data. Even if there is not change or the data is

not longitudinal, the All Times method would still be an inappropriate choice due to

the shifting of variance from the persons to the items. Even the Floated method

performed better than the All Times method at recovering slope, despite the low AIC

values of the Floated models. The surprising "accuracy" of the All Times method

among the fit indices may be specific to the one-parameter model. In the Rasch model,

there is no difference in how the persons and the items are treated; it is possible to flip

persons and items and receive the same outcome statistics. Thus, the All Times method

makes no distinction between participants growing over time, and the items getting

successively easier for the participants.

It is somewhat surprising that the Mean method performed so well when the All

Times method performed so poorly. The Mean method is identical to the All Times

method except that it involves the averaging of the item difficulties produced by the All

Times method. As it has been demonstrated that the All Times method does not

produce accurate item difficulties, the positive performance of the Mean method is

unusual. Perhaps because the average true change over time was linear and invariable,

averaging the item difficulties ameliorated the issues in estimation. It is possible that if

change does not occur in a consistent, linear fashion that the Mean method would not

perform well. It also cannot be determined at this time if any of the fit indices were

similarly inflated for the Mean method as they were for the All Times method.

Regardless, the Mean method did accurately recover the true population slope and item

difficulties under the parameters of the present study.

There was little interaction between the change conditions and the anchoring

methods. All methods performed similarly across the change conditions, except for the

All Waves method. In this simulation, the size of the change did not largely influence

the performance of the anchoring methods. It is unknown if different change patterns

would have large influences on the performance of the anchoring methods.

Under all conditions and methods, the variance of the slope was underestimated.

As this is true even for the zero mean slope condition, it is evidently not solely due to
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the mismatch between persons and items. There were two sources of variance impacting

the person parameters: variance from the slope and variance from the model. That is,

the estimated person parameters possess error variance based on the log-odds of passing

or failing items at a given ability level. This noise may have impacted the estimation of

the slope variance. Yet, simultaneous estimation of longitudinal models can produce

more accurate estimations of slope parameters. One drawback of longitudinal anchoring

may be the underestimation of the slope variance, though this cannot be certain

without directly comparing longitudinal anchoring to simultaneously estimated IRMs.

In any case, most simultaneously estimated IRMs could not fit models with 10, or more,

timepoints, making such a comparison difficult.

Future Directions

As with all simulation studies, there are many parameters that could be included

in future analyses. First, there are variations of the anchoring methods that have not

been evaluated. Currently, the Time One method anchors to the first timepoint of the

data. Depending on the relative match between persons and items, another timepoint

may be more or less suited to serve as the anchor. The Random method may benefit

greatly by the use of bootstrapping. Currently, only one random sample of the data is

used to estimate the item difficulties. A new conceptualization of the Random method

could involve bootstrapping the difficulties by running the Random method multiple

times and averaging the resulting item difficulties. One advantage of bootstrapping

would be the reduction of potential bias from inadvertently using non-representative

random samples.

In the inevitable presence of missing data, several of the anchoring methods may

function differently. The Time One method presumes that the first instance of data

collection has the most representative sample; this may not be true if the sample

significantly changes due to attrition and subsequent refreshment. Issues of

representation also arise for the Random method. If certain timepoints are

over-represented in the data, then researchers must choose between using observations
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from all participants and over-representing some timepoints, or representing all

timepoints equally while under-representing some participants. While more data always

sounds better, certain timepoints may be more or less reliable or representative. For

example, participants may be more careless at the end of a study, or refreshment

samples may not match the broader sample’s characteristics. These issues apply not

only to the Random and Time One method, but to all methods in general.

Future studies should examine parameters that are specific to longitudinal data,

such as local dependence among persons and items and different levels of between and

within person variance. The present study represents a relatively "clean" simulation

which tests the anchoring methods themselves, rather than the limits of their

performance under different circumstances. Local dependence is known to cause issues

in IRMs. While the 2-step anchoring method described here may alleviate some of the

issues caused by local dependence, it is unknown how large amounts of local dependence

would influence the estimation of the parent models.

Finally, it is unknown if the anchoring methods perform similarly for more

complex IRMs than the Rasch model. This applies both for the number of model

parameters and the number of latent factors. One benefit of longitudinal anchoring is

that if a multidimensional model can be run at one timepoint, longitudinal ability

estimates can be obtained. This can allow longitudinal analyses to use more complex

models. Overall, the present study is a validation of longitudinal anchoring for a specific

set of circumstances; future research is necessary to evaluate longitudinal anchoring in a

variety of situations.

Conclusions

Choosing the correct anchoring method for longitudinal IRMs is important in

obtaining accurate latent trait estimations. Due to the current limitations in

longitudinal IRMs, longitudinal anchoring may be a parsimonious solution for an

otherwise intractable problem. Based on the results of the present simulation study, the

Cross-sectional or Mean anchoring methods are recommended to be used. Further



LONGITUDINAL ANCHORING 62

research is necessary to determine under what circumstances either anchoring method is

better than the other.

There are many benefits of establishing longitudinal anchoring as a method of

longitudinal analysis. As large, multi-year longitudinal datasets come to fruition, new

methods are needed to analyze data in the item response modeling framework. It is not

currently feasible to run simultaneous, multi-timepoint longitudinal IRMs that contain

complex latent factor structures, but it is well established that many psychological

phenomenon cannot be captured through one dimensional modeling. In comparison,

there is no known limit on the number of timepoints that can be analyzed using

longitudinal anchoring. Should longitudinal anchoring prove itself as a reliable method

of establishing latent trait estimations, researchers may be able to obtain estimates of

complex multidimensional phenomena over time to further our understand of change.
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