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Abstract

With fewer than 10% of new drugs reaching the market, the drug development process is
notorious for its high attrition rate. However, we rarely observe the reason for a drug’s
discontinuation. It is known that pharmaceutical firms withdraw drugs after clinical fail-
ures, such as when trial results do not demonstrate adequate safety or efficacy according
to FDA standards. At the same time, surveys suggest that firms also withdraw drugs
for strategic reasons, such as when competition makes it unprofitable to continue devel-
opment. Disentangling these two sources of attrition is necessary in order to predict the
effects a government policy would have on the number of drugs that reach consumers. In
this paper, I propose an empirical framework to separately identify the two components
of attrition for each disease. To this end, I build a continuous-time dynamic model of
the drug development process. In the model, firms take competitors’ R&D choices into
account when they make exit decisions at different stages of the innovation process. To
estimate the model, I use rich data on the development histories of experimental drugs,
clinical trial outcomes, and disease-specific epidemiological characteristics. I find that, on
average, strategic terminations account for 8.4% of all attrition, and as much as 35% for
some diseases. Using these estimates in counterfactual simulations, I show that without
strategic withdrawals, the rate at which new drugs reach consumers would be on average
23% higher. Large subsidies for clinical trials help realize some of that gain, with better
results found for diseases that have a higher share of strategic attrition. However, the
overall effect of subsidies on the rate of new drug launches is small. Alternatively, the
same effect can be achieved through any minor regulatory adjustment that marginally
helps lower the probability of late-stage clinical failures.
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Chapter 1

Introduction and Literature Review

The pharmaceutical industry is known for being heavily innovation-intensive, with the av-

erage R&D cost per new drug launch recently estimated at 1.4 billion USD.1 Most of these

expenditures go toward drug development, which is the process of testing newly discovered

compounds in clinical trials.2 Despite the large amounts spent, few of these compounds go

on to become approved drugs: Overall, less than 10% of drug candidates make it all the way

to the market. For those drugs that do reach commercialization, it takes an average of 12

years from the time they enter the development process. This timeline and high attrition

characterize a complex drug development landscape, in which firms make risky long-term

investment decisions while learning whether their experimental drugs demonstrate the safety

and efficacy required to secure regulatory approval.

The goal of this paper is to estimate the two primary components of drug development

attrition, which I term scientific and strategic. The former refers to withdrawals due to

drug candidates’ failing clinical trials—i.e., not demonstrating sufficient safety or efficacy

after being tested on animals or human subjects. The latter describes withdrawals due to

commercial considerations, such as firms deciding that further investment in development

is no longer profitable. While scientific concerns constitute a major source of attrition,

1DiMasi et al. (2016). Estimates are in 2013 dollars.
2DiMasi at al. (2016) estimates that clinical trials account for about 70% of average R&D expenditures,

while discovery and preclinical testing account for the remaining 30%.



survey evidence suggests that strategic considerations might account for about one-third

of all terminations (Tufts CSDD Impact Reports 2013).3 Disentangling the two attrition

components is important for predicting the effects of government policies, since scientific and

strategic withdrawals are shaped by different forces: One stems from the purely medicinal

properties of drug candidates and the associated regulatory standards, while the other is

related to competition and other economic incentives. Therefore, any policy change will have

a disparate impact on the two components—and in order to adequately predict the results of

the change, it will be necessary to quantify their relative importance and analyze the policy

effect on each. However, no comprehensive estimates of the relative importance of the two

channels have yet been reported. This paper proposes an empirical framework to identify

both sources of attrition separately for each disease, and to conduct policy experiments to

account for the partition.

Competition and market size are the major factors that influence expected profits, and

therefore strategic attrition. Market size is affected by characteristics of the disease, such as

incidence and morbidity, and determines the maximum potential revenue for an approved

drug. Competition is based on the number of drugs that have already been launched or are in

development for the disease. In this study, I consider only novel drugs— i.e., medicines based

on new molecules that have not previously been used in approved treatments. I therefore

exclude drug candidates that represent incremental improvements in existing therapies due,

for example, to changes in dosage or delivery method.4 Consequently, I consider innovation

to be the process of introducing new product options to the market, as opposed to replacing

existing products with better alternatives, as is the case in much of the innovation literature

(recent examples include Goettler and Gordon (2011) and Igami, (2017)).5

3Tufts CSDD Impact Reports 2013 provides the split of attrition after each phase of clinical trials by
reason (e.g. commercial or due to safety/efficacy). Estimating the total number of drugs dropped due to
commercial considerations also requires knowing the total share of drugs terminated after each phase. For
this, I use the attrition shares estimated by DiMasi et al. (2016).

4More details on that are available in the data section.
5Studies of pharmaceutical demand (for example, Crawford and Shum (2005)) show that there is a large

degree of heterogeneity in patients’ responses to treatment options. This suggests that a love of variety
is a major property of pharmaceutical markets, as opposed to the much more homogeneous markets for

2



In this context, I examine how the rate of innovation, defined as the process of new drug

launches, is shaped by decisions of potential entrants—who, because industry regulations

make information on pharmaceutical development available to the public, are able to assess

other potential entrants, as well as drugs already on the market.6 Data on the development

histories of drug candidates show that at any point in time, multiple competing experimental

drugs are associated with most diseases. For example, in January 2010 there were 150

novel drugs in development for hepatitis C.7 If several of these drug candidates end up

entering the market, each would be likely to face lower profits.8 Because information on firms’

development processes is publicly available, competitors can track each others’ progress.

Indeed, Rao (2020) shows that firms are more likely to discontinue later-stage development

after their competitors receive FDA approval. My own interviews with industry participants

suggests that pharmaceutical firms closely track not only news about the latest approvals,

but also about other development events, and take these into account when deciding whether

to terminate their own projects.9

In this setting, in which some experimental drugs are discontinued for scientific reasons,

and others for strategic reasons, the relationship between competition and innovation is not

trivial. Increasing the number of drugs in development has two contrasting effects on the rate

of new launches. On the one hand, it implies a larger probability that at least one will pass

the safety and efficacy tests and enter the market. On the other hand, anticipating lower

microprocessors, as analyzed by Goettler and Gordon (2011) or for hard disc drives, as analyzed by Igami
(2017).

6In order to ensure transparency of clinical research, regulations require that information on the de-
velopment processes of pharmaceutical firms be made publicly available. For example, the Food and Drug
Administration Modernization Act of 1997 established that information about clinical trials should be posted
in a public registry within 21 days after the trial’s start.

7Source: Cortellis Competitive Intelligence. Table 2.2 documents the maximum number of competing
projects simultaneously in development for selected markets.

8For instance, when AbbVie’s Viekira Pak was approved for hepatitis C in 2014, it was documented to
have a negative effect on the market capitalization of Gilead and its prices of Sovaldi, the company’s drug
for the disease launched in 2013. For more details, see https://bit.ly/2OeTmVi and https://bit.ly/3oWL6ev

9For example, during a phone interview, a clinical trial manager at the University of Virginia discussed
the case of a client firm that decided not to proceed with development and cited competitor’s progress as
the reason. During another phone interview, a manager in a pharmaceutical company confirmed that when
making development decisions, they analyze and account for the competitive landscape.

3



expected reward, each competitor may be more likely to terminate development part way

through, therefore reducing the total pool of drug candidates and, in turn, the probability

that at least on will succeed. This study accounts for these trade-offs and analyzes the effect

of competition on the rate at which new medicines reach consumers.

In order to study this phenomenon, I use data on drug development histories from a rich

database that contains information on approximately 70,000 drug candidates that under-

went development anywhere in the world since the beginning of the 1990s.10 For each drug

candidate, I observe not only the disease for which it was being developed, but also the dates

of all important development milestones associated with that disease. This information in-

cludes: (i) the date the drug entered development and the dates of each transition across

development stages (for example, from early to late clinical trials); (ii) whether—and, if do,

when—it was discontinued; (iii) the dates on which successful drugs were submitted to the

regulatory authority for the review necessary to obtain marketing approval; (iv) whether

medicines submitted for regulatory review were approved; and (v) the dates on which the

regulator announced its approval (or non-approval) decisions. I merge the data on develop-

ment histories with the disease-level epidemiological information I use to construct a measure

for market size.11 Further, I use data on clinical trial results to parameterize probabilities

of clinical success—that is, probabilities that a drug in development for a particular disease

will pass safety and efficacy tests. Within the framework of this study, these probabilities

are assumed to be a function of the disease-level “scientific” variables I construct from that

data.12

I use the resulting dataset to estimate a continuous-time dynamic model adapted from

Arcidiacono et al. (2016). In the model, firms arrive at the start of development endowed

with a new experimental drug intended for a specific market; this represents the arrival

10Some records date back even earlier—to the beginning of the 1980s—–but the number of such records
is small. Moreover, the coverage improves after the mid-1990s.

11Specifically, I use a measure of disability-adjusted life years (DALYs), which estimates the total number
of years lost to a particular disease. Following the medical literature, I assign monetary value to DALYs
using the value of statistical life year (VSLY). More details on DALY and VSLY in the data section.

12Specifically, I assume that the probability of clinical success is a logistic function of the variables.
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of new discoveries associated with a particular disease. Each drug must be further tested

in two sets of clinical trials: small-scale (first stage) and large-scale (second stage). Each

stage takes time and money, which is accounted for, respectively, by the duration and cost

parameters I estimate. At the end of each stage, the firm receives a signal about the medicinal

qualities of the drug (e.g., toxicity or efficacy). If the signal is bad, the firm must discontinue

development. The probability of such clinical failure is both stage- and disease-specific.

This reflects the differences in objectives across the two stages: Early-stage trials are mainly

conducted to ensure safety, while late-stage trials are primarily conducted to detect efficacy.

This also reflects differences in the biological characteristics across ailments.

After completing each stage of development, and conditional on receiving good clinical

trial results, the firm must decide whether it is profitable to advance the drug to the next

stage of the process. The firm makes the decision after weighing the development costs

against the expected profit. Importantly, at each point in time, the firm knows the exact

number of competitors at each stage of development, as well as the number of drugs currently

under review by the regulator and already on the market. The company uses this knowledge

to make predictions about the potential competition it will face if its drug is approved. Once

the drugs have passed all stages of development—and have been positively assessed by the

regulator—they enters the market, at which point firms receive the profit that is a function

of the market size and the number of competing drugs available to consumers.

I solve the model using the concept of Markov perfect equilibrium, which has been stan-

dard in the dynamic games literature since Ericson and Pakes (1995). I show that the model

is identified from the variation in factors that affect strategic but not scientific terminations—

i.e., the market size and level of competition. Intuitively, diseases with a large market size

help identify scientific attrition parameters, since these markets are so lucrative that with-

drawals are predominantly due to clinical trial concerns.13 More specifically, consider highly

profitable diseases, for which differences in attrition are therefore mainly driven by differences

13In the limit, diseases associated with infinitely large market size will not have any strategic attrition at
all.
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in science. The co-variation in attrition and scientific variables then contains information

about how these variables affect the probabilities of clinical failures. Meanwhile, variation

in competition and attrition within markets over time helps identify strategic parameters. I

estimated the model using the two-step pseudo maximum likelihood procedure, as in Aguir-

regabiria and Mira (2007) and Arcidiacono et al. (2016) .

The results indicate that strategic terminations account for 8.4% of attrition on average,

reaching as high as 35% for some diseases. Strategic considerations are more prevalent at

the early stage of clinical trials, accounting for 9.3% of discontinuations on average versus

1.2% after late-stage trials. If strategic considerations were not present, the rate of new drug

launches would be 23% higher on average. I further analyze how the two sources of attrition

interact in determining the rate of innovation by increasing the probability of clinical success

in early- versus late-stage clinical trials. I find that in the latter case the change would lead

to 50% higher response in new drug launches, with discrepancy partially explained by the

differential reactions of strategic withdrawals. Finally, I find that clinical trial subsidies

lead to more frequent introduction of new drugs, especially for diseases for which strategic

attrition is more important. However, the overall effect is relatively small even for a subsidy

that covers 90% of the late-stage cost. At the same time, a marginal one-percentage-point

change in the probability of late-stage clinical success produces comparable results.

This paper is primarily related to firms’ entry behavior in the pharmaceutical industry.

The literature on the topic includes nonstructural studies of entry determinants for novel

therapeutics—e.g., Kyle (2006), as well as Acemoglu and Linn (2004) and Dubios et al.

(2015), who focus specifically on the relationship between entry and market size. Second, re-

lated literature incorporates a number of studies on generic entry—e.g., the classic study by

Scott Morton (1999) and the dynamic structural models of Ching (2010) and Gallant et al.

(2018). Most studies focus on explaining the observed patterns of entry, with the important

exception of Rao (2020), who builds a dynamic model to examine how firm behavior before

6



launch is affected by competitors’ actions and estimates this using R&D pipeline data.14

However, Rao includes only late-stage development in the model, focusing exclusively on

decisions regarding whether to apply for regulatory approval. In contrast, I also incorporate

early-stage trials and the associated decisions regarding whether to transition between the

two development stages. An important implication of having a more expansive model is

that I am able to answer a larger variety of policy questions. For example, I can conduct

experiments that apply not only to the regulatory stage but also to clinical stages—e.g.,

subsidizing the cost of late-stage trials or decreasing the time it takes to complete them.15

Further, in contrast to Rao (2020), I explicitly model and estimate the process of scientific at-

trition, which allows me to separate the two sources of firm exit. Since scientific terminations

impose constraints on how much an economic policy can affect the rate of innovation—for

example, if they are prevalent, even large subsidies might not have a substantial effect—it

is important to consider them when conducting counterfactual experiments in the industry.

Without taking scientific withdrawals into account, the results of such policy experiments

might be biased.16

This paper also contributes to the literature that analyzes sources of development at-

trition in the pharmaceutical industry. This literature includes studies that document the

reasons behind termination cases, which are usually based on the limited number of obser-

vations obtained either directly from pharmaceutical companies or through the analysis of

clinical trial outcomes (for example, Waring et al. (2015) or Hwang et al. (2016)). Re-

cent studies also contribute to our understanding of economic contributors to the observed

attrition—for example, Hermosilla (2020) shows how rushed licensing leads to future discon-

tinuations, and Cunningham (2020) provides evidence that some acquisitions of experimental

14R&D pipeline data is data that on drug development histories. Another recent paper that uses pipeline
data to study pharmaceutical R&D is Krieger (2020) who analyses how a particular development failure
affects other firms’ R&D actions.

15Another implication of including both stages of development into the model is that it allows me to
account for dynamic interactions that arise throughout the development process with some firms getting
ahead, and some firms falling behind.

16Another benefit of modeling and estimating scientific attrition is that I am able to study how changes
in sources of that attrition affect the rate of innovation.

7



drugs are performed for the purpose of terminating them in order to reduce future compe-

tition.17 I contribute to the literature by studying aggregate sources of attrition within a

tractable and scalable structural model, which allows me to analyse how they would be

affected by policy changes and identify the resulting innovation outcomes.

More broadly, this research adds to the large literature on how competition affects the

incentives to innovate (Cohen (2010) and Gilbert (2006) survey the literature; Shapiro (2011)

discusses the topic from the policy perspective). Within this broad literature, this paper

is associated with two distinct strands: empirical studies of new product development in

innovative industries and theoretical studies on R&D races.

Within the first strand, Goettler and Gordon (2011) studies incentives for product up-

grading within a dynamic duopoly market for microprocessors. Igami (2017) focuses on

decisions to introduce higher quality products by incumbents versus new entrants using the

setup of the hard drive industry18. Kim (2014) studies innovation incentives in a dynamic

duopoly in the presence of a large used goods market in the context of the aircraft manufac-

turing industry. Hashmi and Van Biesebroeck (2016) analyzes dynamic quality upgrading in

the automobile industry. This research contributes to the literature by studying R&D deci-

sions of pharmaceutical companies that face a variety of different market structures (where

each disease is a distinct market)—as opposed to most of the other settings where the mar-

ket structure is fixed. This allows me to analyze how the R&D decisions change with levels

of competition—taking into account not only competitors that have already launched their

products, but also those not yet on the market.

Because this study focuses on the pre-market behavior of firms and their reactions to the

17This project does not directly account for deals in the industry. Instead, I aggregate all the develop-
ment activity associated with the same drug—which can be either parallel due to collaborative licensing
arrangements or sequential due to full licensing or M&As—into one program (more detail on that in the
data section). As long as killer acquisitions and discontinuations due to rushed licensing are terminations of
programs (e.g. drugs), this paper will account for them. Moreover, as long as they are correlated less with
scientific characteristics of diseases (e.g. clinical trial outcomes) and more with competition (for example,
the acquiring firm has other drugs on the same market), they will be contributing to strategic withdrawals
within the setting of this study.

18Notice that in such homogeneous industries new product introduction is effectively equivalent to quality
upgrading.

8



observed R&D progress of their competitors, it is also close to the predominantly theoretical

literature on multistage R&D races. Fudenberg et al. (1983) analyzes a model of a two-stage

patent race where a firm can induce the other firm to drop out by advancing to the next

stage of the R&D process (which happens stochastically). Grossman and Shapiro (1987)

allows firms to vary their R&D efforts in order to affect the rate at which they are able to

advance across stages, and Harris and Vickers (1987) extends it to allow for an arbitrary

number of stages in the race. Judd (2003) introduces firms that may have multiple develop-

ment projects, and Kocourek (2021) allows firms to decide whether to withhold information

about progressing to the more advanced stage. This study contributes to the literature by

estimating a discrete-choice version of a two-stage R&D race with many competitors: in

this version firms do not continuously control the rate at which they finish trials and receive

results, but they can react to changes in competition across different stages of the process

by terminating their projects19. Two other important differences between my model and a

standard model of an R&D race are that first, my model does not assume a winner-takes-it-

all scenario (since multiple different drugs can be launched against the same disease); and

second, in my model terminations can happen for both strategic and scientific reasons.

19Being able to instantly increase or decrease the intensity of R&D efforts—as in Grossman and Shapiro
(1987)—does not directly apply to the context of pharmaceutical drug development, as it is not possible to
speed up the progression of a clinical trial once it has begun. Even before the trial starts, companies have a
limited number of tools to speed up the process, as patients have to be observed for a certain (disease-specific)
amount of time to determine how the drug affected them.
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Chapter 2

Industry Background and Data

2.1 Industry Background

The process of developing a new drug is tightly regulated. Before being released into the US

market, a drug must first be approved by the Food and Drug Administration (FDA)—the

government agency that oversees the industry. But before approval, the FDA requires proof

of the drug’s efficacy and safety. This makes trials conducted to investigate whether the

drug has appropriate medicinal qualities crucial to drug development.

The drug development process tends to follow a certain path that consists of sequence

of distinct phases. After discovery of the new compound, it is first tested on animals in so-

called pre-clinical trials. If the firm wants to proceed and study the drug candidate in human

participants, an Investigational New Drug (IND) application has to be filed with the FDA. If

the application is approved, the firm can begin clinical research with the drug, which usually

includes three phases. In Phase I, the drug is tested on a small group of healthy individuals

to study toxicity of the drug and establish the safe dosage. In Phase II, the drug is tested

on a small group of patients that have the targeted disease, with the primary purpose of

studying efficacy of the drug. Finally, Phase III is conducted in order to confirm efficacy

on a large population of patients. In what follows, I will group the phases of development



into two stages by their primary goal: stage 2 (or late-stage trials) will include phase II and

phase III trials that focus more on efficacy, and stage 1 (or early-stage trials) will include

earlier trials that focus more on safety.1

Pharmaceutical firms are not completely autonomous in deciding whether on not to pro-

mote their experimental drugs to next stages of development: throughout the whole process

they are required to stay in close contact with the FDA, which retains the right to put clinical

studies on hold or terminate them if it deems the information unsatisfactory.2 Regulations in

the industry also ensure that information about major development milestones is public: the

Food and Drug Administration Modernization Act of 1997 established ClinicalTrials.gov

and mandated that late-stage clinical trials should be registered there within 21 days after

the trial start.3 Information required for registration includes the phase of the trial as well as

the disease for which the trial is conducted. Therefore, at each point in time pharmaceutical

firms can determine how many competitors are developing drugs for the same disease, how

many of them are ahead, and how many–behind.

The number of competing experimental drugs in development for the same indication

can be large, reaching hundreds for some diseases (see Table 2.2). Moreover, frequently

FDA approves multiple new treatments for the same disease within a relatively small time

window (see Table 9.1 in Appendix 9.1 for several examples of close approvals). Therefore,

1There are two main reasons why I group the phases into larger categories. First reason is data limitations.
FDA regulations related to early trials are not as tight as for late-stage trials—for example, firms are not
required to register phase 1 trials in the public repository. Therefore, there is a concern that transition from
preclinical to phase 1 is not always observed. Although observability is not a concern with respect to phases
2 and 3, sometimes firms run the two phases together (so-called phases 2/3), and in some cases (for some
diseases) firms might be allowed to apply to the FDA after finishing phase 2 trials. I model this by joining
the first two phases and the second two phases together. The second reason is computational—the grouping
allows me to create a tractable and computationally feasible model of drug development.

2See the guidelines at https://bit.ly/2PNFX9C and the regulations at https://bit.ly/2HjhPtM,
https://bit.ly/2HpsJOj, https://bit.ly/2ThlkTF and https://bit.ly/3oi1N40. Regulations require
that firms submit periodic updates. Moreover, firms are also encouraged to schedule meetings with FDA
representatives after finishing each phase of clinical development to discuss the adequacy of the data to
support the future application for the marketing approval of the drug (https://bit.ly/31vVorY).

3Details and interpretation of FDAMA can be found here: https://www.ncbi.nlm.nih.gov/books/

NBK338089/. The scope of the regulation and enforcement was increased in Food and Drug Administration
Amendments Act of 2007 (FDAAA). Moreover, since 2005, the International Committee of Medical Journal
Editors (ICMJE) started requiring trial registration as a condition of publication.
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drug development process differs from the standard concept of R&D race, according to which

as soon as one firm enters the market, probability of approval of other firms drops to zero

(and the winning firm holds the monopoly position). In case of drug development, multiple

firms can enter the market, which alters the structure of the expected profit of firms that

are still in development.

Altogether, the development process requires an average of about 10 years, with about 2

additional years for the FDA approval.4. At the same time, there is considerable variation

in terms of the duration of each stage of the development process across diseases. For

example, the average length of stage 2 is more than 7 years for Multiple Sclerosis, while it

is only slightly more than 4 and a half years for Psoriasis. Moreover, drug candidates in

development for the same disease can take significantly different amount of time to progress

across stages (see Table 9.12 in Appendix 9.15 for estimates of stage durations for a selection

of diseases).

The drug development is not only lengthy, but also expensive. Surveys of pharmaceutical

firms suggest that the cost of 3 phases of clinical development can be averaging to about

$340 million (DiMasi et al., 2016). Given the high cost, firms have incentives to terminate

development projects with comparatively low expected profit. At the same time, termination

decisions might be a result of inadequate clinical trials results that would not be able to lay

the ground for the FDA approval or even trigger the FDA to shut down development. Overall,

the attrition rate of potential drugs throughout the development process is high. Table 2.1

contains estimated probabilities of a compound being terminated at a particular stage of

the development.5 One can see that the churn rate, especially at the early stages, is very

significant. Overall, the probability that a compound is eventually released into the market

is only about 6%.6

4The author’s own estimates based on the pipeline data that includes only novel experimental drugs
in development by commercial companies in the U.S. Estimates of the length of clinical development are
comparable to those obtained by DiMasi et al. (2016).

5You can find the break-down of attrition by phases of development (instead of stages) in Appendix 9.2
6The estimate of the overall probability of success is smaller than reported by DiMasi et al. (2016) or

by Wong et al. (2019). The reason is likely to be in differences in the samples. For example, my sample
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Table 2.1: Distribution of Attrition Across Development Stages

Total Attrition Conditional Attrition

Early-stage trials 73.9% 73.9%
Late-stage trials 19.6% 75.3%
Regulatory submission 0.64% 9.97%

Notes: This table shows shares of development projects terminated at
different stages of the R&D process. Overall are the shares as a percent
of the total. Conditional are the shares as a percent of the drug candi-
dates that made it to a particular stage. Source: Cortellis Competitive
Intelligence database.

Attrition varies considerably across diseases, as Table 9.3 shows. Overall, some diseases

have a larger proportion of drugs that make it all the way to the FDA. Moreover, for some

indications new compounds are less likely to pass early stages of development designed to

make sure that the drug has all the necessary characteristics and is not associated with

serious toxicity. For other indications drugs seem to be more likely to move past stage one,

with later getting discontinued in stage two designed predominantly to prove efficacy. This

observed variation in the scope and distribution of attrition across stages of development

can result from both variation in the intensity of competition as well as characteristics of

the underlying science. For some diseases drug candidates are more likely to pass toxicity

tests—for example, drugs for many types of cancer tend to have significant side effects but

are still allowed by the FDA to continue development due to the severity of the disease

itself. At the same time, for these same diseases it can be challenging to develop a drug that

actually has an effect on the progression of the disease (and in this case again cancers are

notorious for having relatively low rate of efficacious treatment). For other diseases, toxicity

can be a larger problem.

Finally, although the pharmaceutical industry is essentially international, US market is by

far the most important source of sales for novel drugs. Data from IMS Health suggests that

this market alone makes up approximately 65% of total sales of newly lunched drugs (Figure

includes pre-clinical phase and excludes all the drugs that are not based on novel molecules (e.g. all the
reformulations due to, for example, change in dosage or delivery method).
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9.1 in Appendix 9.3). Therefore, focusing on the drug development process associated with

the US market should be a good approximation to the innovation process in the overall

industry.

2.2 Data and Preliminary Evidence

The main dataset used in this project was obtained from a proprietary database called

Cortellis. This database includes detailed information on more than 70,000 drug candidates

that have ever been in development anywhere in the world since the beginning of 1990s.7

In this project I use data for the period 1998-2019 for 28 disease indications.8 The list

and description of the diseases is provided in Appendix 9.10. The database aggregates

information from a wide variety of sources including clinical trial registries, journal articles,

patents, press releases, financial filings, presentations, conferences and FDA submissions.9

The consistency and accuracy of the data is maintained by professional analysts.

For each drug candidate, I observe: (i) the disease for which it was being developed;

(ii) the date when it entered development as well as dates of each transition across devel-

opment stages; (iv) dates when it was discontinued or taken to the regulatory authorities

for marketing approval; (v) whether and when medicines at the regulatory stage were ap-

proved and entered the market; (vi) if and when the drug was withdrawn from the market

(usually happens due to safety concerns). Table 9.5 presents a snapshot of the data associ-

ated with development histories of several drug candidates. As the table suggests, in some

cases, a firms can test the same drug candidate against multiple diseases. The data allows

to track development associated with these different diseases separately. For simplicity, I

7Some records date back even earlier—to the beginning of 1980s—but the number of such records is small.
Moreover, the coverage improves after mid-1990s.

8I start the panel from the year after the U.S. clinical trials registry was established. The panel ends in
the third quarter of 2019 when the data was downloaded.

9Other than clinical trial registration rules, another set of regulations that improves reporting of develop-
ment actions in the industry is associated with the The Regulation Fair Disclosure, established by the U.S.
Securities and Exchange Commission in 2000. The law ensures that publicly traded firms disclose all the
material information in the timely fashion.
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assume that R&D decisions for different indications are independent, and use observations

on the drug-disease level. Moreover, if a drug-disease was developed by several firms, either

simultaneously due to collaborative licensing agreements or consequently due to mergers and

acquisitions, I consider it a part of the same development project, which is my final unit of

analysis.10 Finally, I keep only projects associated with drugs based on novel molecules, and

drop drugs that are based on molecules that have already been approved by the FDA. In

the latter case a drug would still have to go through clinical trials if it is based on a new

dosage or delivery method (for example, oral instead of injection). Appendix 9.12 provides

more detail on the procedure that I implement to identify and drop these reformulations. I

use data on development projects to construct competition variables—e.g. the number of

other projects in early trials, late trials, at the FDA and on the market. Table 2.2 includes

the corresponding summary statistics.

In order to access the market size, I use an epidemiological measure of disease burden—

disability-adjusted life years (DALYs). DALYs are calculated by adding up the measure

of years of life lost to disease (affected by prevalence and mortality) and the measure of

years of life lost due to disability (which is affected by incidence and duration of disability

associated with the disease). Therefore, the measure takes into account not only the size of

the population suffering from a disease, but also the severity of the disease. I get the data on

DALYs from the Global Burden of Disease, a comprehensive epidemiological study conducted

by the Institute for Health Metrics and Evaluation in collaboration with the WHO and the

Harvard School of Public Health.11 The study provides measures of prevalence, incidence,

mortality and DALYs across diseases and geographic areas (countries and regions). The

study began in 1990 and was conducted most of the years since. I use the measure of DALYs

for the US averaged across all the years for which the data is available to capture variation

10I consider the development project to have transitioned to the next stage as soon as at least one firm
promotes that drug to the next stage. I deem a project as discontinued when it is discontinued by all the
firms that have been participating in its development.

11For more details see www.thelancet.com/gbd, www.healthdata.org/gbd, www.who.int/healthinfo/
global_burden_disease/about/en/ and www.hsph.harvard.edu/news/multimedia-article/

global-burden-of-disease/
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in prevalence and severity across diseases.12 Since these disease-level characteristics should

shift both private and public demand for treatments associated with the disease, I use the

measure as a proxy for the market size.

In order to be able to provide estimates of the structural coefficients in dollars, I monetize

DALY using the value of statistical life-year (VSLY). It is derived from the value of statistical

life (VSL), which in turn is evaluated based on either survey data or on studies that estimate

wage differentials that workers receive for on-the-job fatality risks (Kniesner and Viscusi

(2019) provide an overview of different methodologies, and also show how to derive VSLY

from VSL). Following health literature that commonly uses VSLY to monetize (e.g. provide

dollar value for) epidemiological measures like DALY, I multiply the disability-adjusted life

years for each disease by the common VSLY value of $369000 most recently used by the

FDA.13 The resulting measure provides dollar valuation for the burden of each disease.

Since VSLY is estimated using individuals’ private valuations of reducing the risk of fatality,

the resulting monetised DALY measure is associated with the total private willingness to

pay for alleviating the disease, rather than the corresponding public value.

I use data on clinical trial outcomes to inform probabilities of clinical success for different

diseases. The source of the data is again Cortellis database that organizes and analyzes

information from the clinical trial registry (clinicaltrials.com). For the trials that report

results in the registry, Cortellis shows the trial’s endpoint (e.g. broadly speaking whether

the trial was primarily designed to study safety or efficacy), and whether in the end it was

reached (e.g. whether measures of safety or efficacy were attained).14 The reporting of trial

results in the public registry within one year of completion is required by the 2007 Food and

Drug Administration Amendments Act.15 I aggregate the data on disease level by taking

12The Global Burden of Disease Study began in 1990 and was conducted most of the years since. There
is a large gap spanning 1995-2011 for most of the diseases.

13Published by the FDA in 2016: https://bit.ly/3dToyGA. The measure itself, however, is in 2013
dollars. That value of VSLY is also mentioned in Kniesner and Viscusi (2019).

14Example of an efficacy endpoint would be: statistically significant difference in survival. An example of
a safety endpoint would be: no statistically significant difference in the rate of serious adverse events

15However, studies suggest that due to scarce enforcement there is sill under-reporting (Chen et al. 2016,
Saito and Gill, 2014 and Piller, 2020), and in the data, only 39% of trials have results (moreover, only for
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the share of clinical trials that have reached the safety or efficacy endpoints for a particular

disease.16 The measure provides information about how likely an early-stage (safety) trial

or a late-stage (efficacy) trial to succeed—e.g., reach its stated goal—for each indication.17

Finally, I append the clinical trial outcome variables with data on disease toxicity. I

include this information because severity of the disease might affect criteria that the FDA

applies to the level of toxicity that a drug can have and still continued development (e.g.,

drugs for more severe diseases can be allowed to have higher toxicity levels). Disease toxicity

would therefore affect the probability of clinical success in early trials.18 To construct this

variable, I use data from disease-level meta-analysis of clinical trials provided by Advera

Health’s Evidex, a database that collects and analyzes clinical trial results.19 As a measure of

disease toxicity I use the proportion of participants in control arms of trials associated with a

particular disease that experienced serious adverse events (that is, life-threatening, requiring

hospitalization or immediate medical intervention). For example, on average about 44% of

patients in control arms of trials for myelodysplastic syndrome experience serious adverse

events, while this number is only 0.92% for migraine. Table 2.2 provides the summary

statistics for all the variables in the final dataset.

Tables 9.6 and 9.7 in the Appendix 9.13 provide evidence that market-level variables

(DALY, clinical trial results and disease toxicity) are associated with transition outcomes.

14% of all the trials reported results would allow to judge whether or not the endpoints were reached).
16Specifically, I use share out of all the trials for the disease that have have enough results to judge the

success of a trial. For the efficacy measure, I use results for phase II and phase III trials, e.g. the phases
that correspond to stage 2 in this project. However, reporting of results for phase I trials is very low, and I
cannot base the safety measure on that data. I therefore use all the trials (including phase II and phase III
for which safety is usually not a primary endpoint, but the safety data would still be collected and analyzed).

17Although alternatively I could match the trial information on the drug level, that becomes impossible
because of the many missing results. With data aggregated on disease level, there is still a concern that
under-reporting might be associated with a bias towards successful trials (e.g., they would more likely be
reported). However, as long as the bias is the same across disease, the measure would still capture the
meaningful variation.

18Recall that early trials are mainly designed to analyse drugs’ safety profiles. Moreover, notice that
whether or not a clinical trial for a drug has reached the safety endpoint (information for which I am already
including) does not automatically translate into whether or not the drug can transition to the next stage.
When making that decision, FDA may account for other factors like disease toxicity, as well as how close
the trial was to meeting the endpoint.

19The source of clinical trials information for this database is again clinicaltrials.gov.
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Table 2.2: Descriptive statistics.

VARIABLES # obs. mean s.d. min max
Competition variables
# competitors in early stage 9,370 82.55 52.92 0 273
# competitors in late stage 9,370 34.96 23.84 0 152
# competitors at the FDA 9,370 0.945 1.132 0 7
# competitors on the market 9,370 9.505 6.406 0 30
Market size
DALYs (in thousands of years) 9,370 1,039 882.3 1.940 3,384
Scientific variables
Disease toxicity 9,370 0.143 0.088 0.009 0.465
CT efficacy 9,370 0.678 0.171 0.280 0.933
CT safety 9,370 0.666 0.139 0.259 0.890
Transitioned
From early stage 6,676 0.217 0.412 0 1
From late stage 2,694 0.113 0.317 0 1

Notes: The numbers are based on the data for the 28 diseases, 1998-2019.

The probability of transitioning from early- to late-stage trials is higher for more severe dis-

eases; it is also higher for diseases associated with higher proportion of trials that reach their

safety endpoints. Probability of transitioning from late-stage trials to the FDA is higher

for diseases that have higher proportion of trials that reach their efficacy endpoints. This

suggests that disease toxicity, safety and efficacy variables are indeed associated with prob-

abilities of clinical success. At the same time, market size is also associated with higher

transition probabilities—due to strategic incentives. Table 9.8 provides reduced-form evi-

dence of the relationship between competition and transition probabilities: the number of

competitors on the market negatively affects the probability of transition both from the

early and the late stages of development. Although the coefficients in front of the number of

competitors in other stages are indistinguishable from zero, given that the transition proba-

bilities from these stages are low, the effect of adding one more competitor can be small and

difficult to capture. Structural assumptions about firm behavior, and what a negative effect

of stage 4 competition implies for competition in other stages, will help in discerning it.20

20Another explanation is that firms do not react to their competitors in development and respond only to
market entries (as if not paying attention to the pre-market information). That however would contradict
anecdotal evidence from the interviews with industry participants (a clinical manager at UVA and an exec-
utive manager at a pharmaceutical company) who suggest that firms track and react to their competitors’
R&D actions.
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Chapter 3

Model

In this section I describe my model of the pharmaceutical R&D process. Methodologically

the model is adapted and modified from Arcidiacono et al. (2016). The main factors that

affect firms’ decisions within the model are: the number of competing projects at each stage

of development and on the market; the size of the market; the rate of arrival of new firms and

the duration of the development process associated with the disease; the cost of conducting

clinical trials; and finally the scientific factors, that is how likely a drug candidate is to pass

the FDA requirements associated with each stage of development.

3.1 Setup

Consider an infinite horizon game in continuous time indexed by t ∈ [0,∞). There are

multiple markets (diseases) indexed by m = 1, ...,M . New firms enter the development

process associated with each market m at random times which occur according to a Poisson

process with market-specific rate λem1. The unit time period is normalized to be a year,

implying that all the duration parameters are measured in years and fractions of year. The

process of arrival of new firms represents exogenous arrival of discoveries associated with a

particular disease. At arrival, each firm is assigned a unique index i.

In order to be able to commercialize its discovery and sell it on the market, the firm has



to go through three stages: 1 (preclinical and small scale clinical trials), 2 (large-scale or

pivotal clinical trials) and 3 (FDA application). When a firm arrives, it automatically enters

stage 1.

Each new discovery can be one of four types: toxic and not effective, not toxic and

effective, not toxic and not effective and toxic and effective. I assume that toxicity and

efficacy of drug candidates are independent characteristics. I will call drug candidates that

are not toxic and effective, good. New entrants do not know the type of their discovery, but

they know that a new drug candidate for disease m is likely to be not toxic with probability

pm1 and it is likely to be effective with probability pm2 (therefore, due to the independence

assumption, a drug is likely to be good with probability pm1 × pm2). pm1 and pm2 are in

turn functions of stage-specific scientific variables Om1 and Om2: Om1 includes the share of

clinical trials associated with disease m that reach the safety endpoint and the measure of

disease m’s toxicity; Om2 includes the share of clinical trials for disease m that reach the

efficacy endpoint. I assume that the probabilities of clinical success are logistic functions of

the associated variables:

pmx =
eαxOmx+γm̃x

1 + eαxOmx+γm̃x
, x = 1, 2, (3.1)

where γm̃x is a constant term associated with stage x and therapy area m̃ to which disease

m belongs. (see the break-down of markets by therapy areas in Table 9.4 in Appendix 9.10).

It takes time and money to finish each stage of the process. While in stage 1, the firm

has to pay the flow cost c1. Moreover, the time it takes to perform stage 1 experiments is an

exponential random variable with disease-specific rate λm1—therefore, it takes on average

1
λm1

for a firm to finish that stage. Based on the results of stage 1 both the firm and the

FDA discover whether the drug candidate is toxic or not.1 I assume FDA does not allow

1Notice that this assumption does not necessarily imply that FDA has to wait until the trials are finished.
Think about λm1 characterising average duration until arrival of the crucial information associated with the
drug candidate’s performance that allows to judge whether the compound is toxic or not. If the drug shows
strong signs of toxicity early on, than that information would arrive before the clinical trial was initially
scheduled to finish.
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trials to be performed with toxic drugs. Therefore, a firm that received bad stage 1 results

has to drop out from development.

If the drug candidate is not toxic, the firm has to decide whether to transition to the next

stage of development or not. It makes the decision taking into account the current realizations

of the state variable—which, as I describe later in more detail, is just the current number of

competitors at each stage of development (and on the market)—as well the realizations of

the two choice-specific shocks. The first shock εi11 is a cost shock associated with initiating

the second stage trials. The second shock εi01 is associated with terminating development

(one can think about it as a scrap value shock). Both ε’s are private information follow the

type I extreme value distribution.

If the firm decides to proceed to stage 2, it has to pay the flow cost c2 associated with

performing stage 2 experiments. The duration of stage 2 is also an exponential random

variable with disease-specific rate λm2. After finishing stage 2, the firm and the FDA uncover

whether the drug candidate is effective or not. I assume FDA approves drugs that are not

effective with probability zero; therefore, these drugs have to be terminated.2

If the firm’s drug candidate is effective, the firm can apply to the FDA for the marketing

approval. Its decision is again based on the realizations of the state variable and the two type

I extreme value shocks. If the firm decides to apply, it has to pay a flow cost c3 associated

with communicating with the FDA, providing additional information at request and so on.

The amount of time it takes FDA to make a decision is common across markets and follows

exponential distribution with arrival rate λm3 (that is, on average it takes 1
λm3

before the

new application is approved or rejected).3 Conditional on the drug candidate getting all the

way to the FDA I assume that approval is random, and the probability of approval p3 is

2Notice that sometimes firms look for signs of efficacy at the early-stage clinical trials and continue
checking for toxicity at the late-stage trials. In that case one can think about the probability pm1 (pm2)
as a probability that results of stage 1 (2) provide evidence that are adequate to support the future FDA
application.

3There is evidence that the FDA’s review times are inconsistent across diseases, which might be related
to differences in the difficulty of the review process, or differences in productivity of FDA divisions (see, for
example, U.S. Office of the Inspector General. 2003. FDA’s Review Process for New Drug Applications.
http://oig.hhs.gov/oei/reports/oei-01-01-00590.pdf or Chorniy et al. (2020))
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common across markets.

If the drug is approved, the firm automatically enters the market and receives the flow

payoff πm(st4) = θ0 + θrRm + θsln(1 + st4), where Rm is the size of the market, and st4 is the

number of other firms on the market at time t. The firm receives πm for on average 1/λg4 time

periods, after which generic entry takes place, which reduces the firm’s per-period payoff to

zero (the time till the generic entry is distributed exponentially with rate λg4).4 Finally,

drugs get withdrawn from the market at rate λ4, which usually happen because new safety

concerns arise (although these events are comparatively rare). Throughout the process, firms

discount future payoffs at the continuous discount rate ρ = 0.078, which corresponds to a

yearly discount factor of 0.925.5

Finally, at low rates λemj for j = 2, 3, 4 new outside firms enter into later stages of

development. One can think of those firms initiating development in the US after performing

some part of it in Europe. I assume that US firms take those arrivals as exogenous, and only

start paying attention to a competitor after it has initiated development in the US (thus

indicating that it is intending to apply for approval to enter the US market).

States and decisions

Firms in development or on the market only differ by the stage in which they currently are.

In other words, firm heterogeneity is reflected in the firm state xit ∈ {1, 2, 3, 4}, where xit = 4

represents the stage after the launch.6 I assume that in all other ways firms are identical.

The industry state is the vector st that lists for each stage x ∈ {1, 2, 3, 4} the number

of firms at that stage in period t. Therefore, st ∈ S = {s ∈ N4
∣∣∑4

x=1 s(x) < ∞}. I

assume that there is a hard cutoff in terms of the maximum number of firms in each stage.

4Notice that I implicitly assume that generics affect the demand only for the branded drug to which they
are equivalent, and not for other branded drugs.

5Discount factor and the continuous time discount rate are related by the formula β = eρT , where T is
the period of time associated with the discount factor, in our case a year (e.g. T = 1). See Doraszelski and
Judd (2012) for more detail.

6Moreover, since the duration of each stage follows exponential distribution, the amount of time a firm
has already spent in the stage is not included in the state variables due to the memoryless property of the
distribution.
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That is, there exist some finite numbers N1, N2, N3, N4 such that st(1) ≤ N1, st(2) ≤ N2,

st(3) ≤ N3, st(4) ≤ N4 for all t. One can think about that as due to the limit on the number

of facilities in which firms can conduct clinical trials and the limit on the capacity of FDA

to process applications.7 Due to that assumption, S is finite and with cardinality K, where

K = N1 ×N2 ×N3 ×N4.

Whenever a firm reaches the end of a stage, it takes an action j ∈ {0, 1}. Action j = 0

corresponds to the firm dropping out, and action j = 1 corresponds to the firm transitioning

to the next stage. Notice that in some cases a firm has to take a certain action—for example

due to safety or efficacy considerations at the end of stage 1 and 2; due to FDA approving

or not approving the drug at the end of the review process; or due to the drug being recalled

from the market. I assume that all terminations are final: once a development project has

bee discontinued, it does not restart.

A firm’s single-period profit/cost in each state (xi, s) is given by the following equations:

π(1, s) = 0; π(2, s) = c2; π(3, s) = c3; π(4, s) = θ0 + θrRm + θsln(1 + s4). The structural

parameters are: the costs of clinical trials c2 and c3; the profit parameters θr and θs; the ”sci-

entific” parameters pm1 and pm2;the duration rates λm’s. Figure 9.2 presents the schematic

description of the model.

3.2 Equilibrium

Markov strategies. As is standard in the dynamic discrete choice literature, I focus on

Markov perfect equilibrium in pure strategies. I further assume that the equilibrium is

symmetric, that is all firms follow the same strategy (given the firm’s state). In this model,

a Markov strategy for firm i is a function δ that assigns an action from {0, 1} to each state

(x, s, εix), where x is the current stage of firm i, s is the industry state and εix is the vector

7I operationalize this by assuming that the arrival rate, λ0 drops to zero whenever s(1) ≥ N1; that the
probability of receiving a bad signal (for both good and bad drug) after stage 1 or 2 becomes 1 whenever
s(2) ≥ N2 or s(3) ≥ N3, respectively; and the the probability of FDA approval p3 drops to zero whenever
s(4) ≥ N4.

23



of private shocks received by firm i. Given the distribution of εix and a strategy δ(x, s, εix),

we can define the probability that a firm will choose to transition to the next stage as

σx,x+1,s = Pr
(
δ(x, s, εix) = 1|x, s

)
∀ x ∈ {1, 2}, s ∈ S. Same way, the probability that a firm

drops out is σx,0,s = Pr
(
δ(x, s, εix) = 0|x, s

)
∀ x ∈ {1, 2}, s ∈ S.

Let s′(x, y, s) to be a continuation state that arises after player in stage x transitions

to y in state s (x = 0 implies new entry into stage y, y = 0 implies exit from stage x).

Further, suppose all competitors of firm i follow the same strategy δ′. Given that the cost

shocks εj1x and the scrap value shocks εj0x are private information for all j, the behavior of

competitors can be characterized by the set of conditional choice probabilities σ′. Then a

Markov strategy is a best response for firm i if:

δ(x, s, εix;σ
′) = 1⇐⇒ εi1x + Vx+1,s′(x,x+1,s)(σ

′) ≥ εi0x ∀ x ∈ {1, 2}, s ∈ S, (3.2)

where Vx+1,s′(x,x+1,s)(σ
′) is the expected present value of firm i being in state (x+ 1, s′) and

behaving optimally in all points in the future given that its competitors behave according

to σ′. In what follows define the these value functions formally.

Value Functions. Let σ̃′ be the conditional transition probability that takes into account

the scientific probabilities of termination. That is, σ̃′12s = p1σ
′
12s and σ̃′10s = p1σ

′
i10s+(1−p1);

and similarly for stage 2. Finally, for convenience denote p4
3 = p3 and p0

3 = 1− p3. Following

Blevins (2014), for the small time increments h I can express the present discounted value
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of being in stage 2 (and behaving optimally in the future) as following:

V2,s(σ
′) =

1

1 + ρh

[
c2 +

1︷ ︸︸ ︷
4∑

x=1

λexhV2,s′(0,x,s)(σ
′) +

2︷ ︸︸ ︷
s(1)λ1h

∑
y∈{0,2}

σ̃′1ysV2,s′(1,y,s)(σ
′) +

+

3︷ ︸︸ ︷(
s(2)− 1

)
λ2h

∑
y∈{0,3}

σ̃′2ysV2,s′(2,y,s)(σ
′) +

4︷ ︸︸ ︷
s(3)λ3h

∑
y∈{0,4}

py3V2,s′(3,y,s)(σ
′) +

+

5︷ ︸︸ ︷
s(4)λ4hV2,s′(4,0,s)(σ

′) +

6︷ ︸︸ ︷
λ2hp2Emaxj{εi02, εi12 + V3,s′(2,3,s)(σ

′)}+

+

7︷ ︸︸ ︷
λ2h(1− p2)E(εi02) +

8︷ ︸︸ ︷(
1−

4∑
x=1

λexh−
4∑

x=1

s(x)λxh
)
V2,s(σ

′) +o(h)

]
,

(3.3)

where s(x)λxh can be interpreted as the probability that one of the firms that is currently in stage

x will get an opportunity to move to the next stage (or drop out) at the next time increment h.

The following will explain the intuition behind each of the 8 parts of the equation:

1. Expected value for the case if a new firm arrives at stage x (according to an exogenous arrival

rate λex).

2. Expected value for the case if one of the competing firms in stage 1 will get a chance to move

forward (or drop out).

3. Expected value for the case if one of the competing firms in stage 2 will get a chance to move

forward (or drop out). Notice that I subtract 1 because firm i is also in stage 2, and s(2) is

the total number of firms in stage 2.

4. Expected value for the case if one of the competing firms at the regulatory stage will get/will

be declined a market approval.

5. Expected value for the case if one of the competing firms on the market will exit.

6. Expected value for the case if firm i will get a chance to move forward/drop out.
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7. Expected value for the case if the results of firm i’s clinical trials are unsatisfactory.

8. Expected value for the case if no changes happen in the next instance of time.

Rearranging and letting h→ 0, we can obtain the following expression:

V2,s(σ
′) =

1∑4
x=1 λ

e
x +

∑4
x=1 s(x)λx + ρ

[
4∑

x=1

λexV2,s′(0,x,s)(σ
′)+

+s(1)λ1

∑
y∈{0,2}

σ̃′1ysV2,s′(1,y,s)(σ
′) +

(
s(2)− 1

)
λ2

∑
y∈{0,3}

σ̃′2ysV2,s′(2,y,s)(σ
′)+

+s(3)λ3

∑
y∈{0,4}

py3V2,s′(3,y,s)(σ
′) + s(4)λ4V2,s′(4,0,s)(σ

′)+

+λ2p2Emaxj{εi02, εi12 + V2,s′(1,2,s)(σ
′)}+ λ2(1− p2)E(εi02)

]
(3.4)

In the same way we can derive the value functions for the three other stages, see Appendix 9.5 for

details.

Linear representation of the value functions. For the further analysis, it will be useful to

express the Bellman equations in the matrix form, as a a linear function of transition probabilities.

To simplify the notation, I will use V
′
x instead of Vx(σ′). In Appendix 9.6 I show that the value

functions associated with each stage x can be represented in the following way:

V
′

4 = Ω
′
4
−1
[
θ0 + θrR+ θsln(1 + S4)

]
(3.5)

V
′

3 = Ω
′
3
−1
[
C3 + λ3p

0
3γ + λ3p

4
3L3,4V

′
4

]
, (3.6)

V
′

2 = Ω
′
2
−1
[
C2 + λ2γ + λ2p2L2,3E

(
p2, σ̃2,3

)]
, (3.7)

V
′

1 = Ω
′
1
−1
[
λ1γ + λ1p1L1,2E

(
p1, σ̃1,2

)]
, (3.8)

where Ω
′
x is a K × K matrix that collects the rates of exogenous state transitions (entry of new

firms, FDA approval and exit from stage 4) and state transitions due to actions of competitors
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that behave according to σ′. S4 is the K × 1 vector that denotes the number of firms in stage 4

associated with each state s. Cx is a K × 1 vector of flow cost associated with the stage x. Lx,x+1

is a K ×K matrix that denotes industry states that follow after a firm transitions from stage x to

stage x+ 1; and γ is a K × 1 vector of Euler’s constants. That is, each element (l, l′) of the matrix

indexes the states (s, s′) such that s′ arises if a firm transitions from stage x to stage x + 1, and

the original state was s. σ̃x,x+1 is a K × 1 vector of probabilities σ̃x,x+1,s that a firm transitions

from stage x to stage x+ 1 (that includes the probability of being terminated endogenously by the

FDA) when the industry state is s associated with the firm’s strategy σ. Finally, E
(
px, σ̃x,x+1

)
is

a K × 1 vector, where each element is a function ln
(

px
px−σ̃x,x+1,s

)
.

Definition. A stationary policy policy rule δ is a Markov perfect equilibrium if:

1. δ(x, s, εix) is a best response for all i, x ∈ 1, 2, s and εix

2. For all firms, the conditional choice probabilities σ are consistent with the best response

probabilities implied by δ(x, s, εix) for all x ∈ {1, 2} and s.

Equilibrium Existence. Define a mapping Ψ: [0, 1]K×2 −→ [0, 1]K×2 by expressing the best

response probabilities using the linear representation of the value functions from above and the

best response mapping (3.2):

Ψx,s(σ) =

∫
{Vx+1,s′(x,x+1,s)(σ) ≥ εi0x − εi1x}f(εix)dεix

Notice that since εix are distributed i.i.d. across all firms, the mapping Ψ is the same for all

i. Further, notice that after plugging (3.5) into (3.6), we can express both V3 and V2 as a K-

dimensional function of only structural parameters and conditional choice probabilities. That

implies that the mapping Ψ is a continuous mapping from a compact set onto itself. By the

Brouwer’s fixed point theorem, it has a fixed point. The fixed point probabilities imply Markov

strategies that constitute a Markov perfect equilibrium.8

8Notice that the mapping may have more that one fixed point, which implies that there may be more
than one equilibrium.
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Chapter 4

Identification

The model is characterized by two sets of model primitives. First set of model primitives is

related to the per-period flow payoffs and the coefficients associated with disease-level proba-

bilities of getting good clinical trial results (“scientific” probabilities) or being approved by the

FDA: (c2, c3, θ0, θr, θs, αm1, αm2, γm̃1, γm̃2, p3). The second set of model primitives is related to

the market-level arrival rates of new firms and average duration of each stage of development:

(λem1, ..., λ
e
m4, λ

g
4, λm1, λm2, λm3, λ4). In what follows I prove that given that the market size (Rm),

arrival and transition times as well as all the drop out and transition events are observed, all the

underlying structural parameters of the model are identified.

Identification of arrival rates. Assuming that we observe the exact times of arrival of new

firms into each stage of the development process, and given the assumption that these arrivals are

characterized by the exogenous Poisson process, we can identify the arrival rates λemj for each stage

j and market m. The rates can be identified either as the average number of arrivals into each stage

that happen within a given interval of time, or as the average duration between the two subsequent

arrivals.

In the same way, assuming that we observe exact timing of arrival of generic competitors, we can

identify the rate λg4. Given that the timing of entry of generic analogs depends on many factors—for

example, for how long the company is able to extend the patent life of the original approved drug, or

alternatively the policies in place that are intended to improve generic penetration—approximating



generic arrival by a random Poisson process seems appropriate. At the moment, however, I am not

using the data on generic entry, and instead assume that novel therapeutics get on average 20 years

on the market (the standard patent protection duration) before generic entry, that is λg4 = 1/20.1

Identification of stage durations. Recall that the model assumes that as soon as the firm

finishes a particular stage of development, it can either transition to the next stage or drop out.2

Given that we observe all the transitions and drop-outs, the average duration of a particular stage

j associated with a particular market m (λmj) can be identified by the average time between when

a firm enters the stage and when it transitions or drops out of the stage.

Identification of the approval probability. Given that conditional on the drug reaching

the FDA stage, the regulatory decision is random with constant exogenous probability of approval

p3, that probability can be identified simply as a share of firms that transition from the FDA stage

to the market.

Identification of the remaining parameters. I will prove identification of the remaining

parameters in multiple steps. First, following most of the literature on dynamic discrete choice

models (e.g. Bajari et al. (2007), Aguirregabiria and Mira (2007), Aguirregabiria and Mira (2010)

and Arcidiacono et al. (2016)), I assume that a single Markov perfect equilibrium is played in each

market m, in each state s, and that all the firms expect the same equilibrium to be played at all

times.3 Given this assumption, the observed shares of firms that transition to the next stage in each

state s, market m identify the conditional transition probabilities associated with that particular

equilibrium.4

1While patents are usually obtained sometime before firms start clinical trials and therefore can expire
earlier that 20 years after the drug enters the market, the expiration does not automatically imply generic
entry, which in many cases happen much later. For example, dementia medication Namenda did not face
any generic competition for 24 years since its approval (Feldman (2018)).

2If the firm is in stage 4, it can only droop out.
3This assumption is required because although I proved the existence of a Market prefect equilibrium in

the model, I did not prove its uniqueness.
4Implicitly I assume that it is possible to identify CTPs for all the states. Alternatively, one can assume

that it would be possible to identify the CTPs only for the subset of states that are included in the recurrent
class associated with the equilibrium behavior on a particular market (see Erickson and Pakes (1995) for
more information on the concept of a recurrent class). The further identification proof would proceed in the
same way under both assumptions.
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Second, after plugging the linear representation of V4 (equation 3.5) into V3 (equation 3.6), I

can express the probability of transition from stage 2 to stage 3 for a particular state s in the

following way:

σ̃m23s = pm2
eVm,3,s′(2,3,s)

1 + eVm,3,s′(2,3,s)
= pm2

ewm,3,sc3+xm,3,sθ0+ym,3,sθr+zm,3,sθs+um,3,s

1 + ewm,3,sc3+xm,3,sθr+ym,3,sθs+zm,3,sθs+um,3,s
, (4.1)

where the particular logistic form is due to the assumption on the distribution of the scrap value

shocks and the cost shocks. Here (c3, θ0, θr, θs) are unknown structural parameters, pm2 is a known

function of unknown parameters α2, γm̃2 and known scientific variables; (wm,3,s, xm,3,s, ym,3,s, zm,3,s,

um,3,s) are known real numbers that depend on the market sizeRm, the number of firms in each stage

in state s as well as the states in some sense adjacent to it, equilibrium transition probabilities,

arrival rates, stage durations, and the approval probability of the FDA (notice that all those

quantities are either observed directly or already identified).5

Denote Wms = (wm,3,s, xm,3,s, ym,3,s, zm,3,s, um,3,s), Wm = (wm,3, xm,3, ym,3, zm,3, um,3) for a

given market m and W = (w3, x3, y3, z3, u3) for all the markets. Denote β0 the vector of true values

of parameters (c3, θ0, θr, θs). Define Fms(β) in the following way:

Fms(β) = F (Wmsβ) =
ewm,3,sc3+xm,3,sθ0+ym,3,sθr+zm,3,sθs+um,3,s

1 + ewm,3,sc3+xm,3,sθ0+ym,3,sθr+zm,3,sθs+um,3,s
(4.2)

Denote Fm(β) the vector of Fms(β) associated with all states related to a particular market m.

Denote F (β) the vector of Fm(β) associated with all the markets.

Assume |W (β − β0)| > 0 for all β 6= β0 (notice that the assumption implies that W has at

least 4 linear independent rows). Since F (.) is strictly monotone, this implies that F (β) 6= F (β0)

for all β 6= β0. If scientific terminations did not happen this assumption would directly imply

identification of (c3, θ0, θr, θs). Identification in the model with scientific terminations still requires

the assumption to hold (below I provide intuition for why it does in this setting), but additional

requirements have to be satisfied to separately identify parameters inside pm2. In order to separate

pm2, I propose two approaches. The first approach relies on the functional form of the probability

5These dependencies are hidden within the matrices Ω−14 and Ω−13 . For more details about how these
matrices are constructed, see Appendix 9.6.
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of receiving a good stage 2 signal: I assume that it is a logistic function of the linear index of

scientific variables a therapy area-specific constant terms (see Equation 3.1). The second approach

relies on the functional form of strategic transitions (also a logistic function as equation 4.1 shows).

I present both of these identification approaches below.

Separating science, approach 1. For the first approach, notice that the probability of transi-

tioning to the next stage after having received a good signal increases in the market size: intuitively,

firms are more likely to invest in further development if the associated disease is very profitable.6

Then as long as Rm (market size) is not strongly correlated with Om2 (scientific variables associated

with stage 2), scientific parameters α2 and γm̃2 can be identified from overall transition probabilities

σ̃ associated with large markets (Rm → +∞) within a particular therapy area. For these markets,

the probability of strategic transitions becomes equal to one, and the observed transition shares

identify pm2, e.g. pm2 = σ̃m23, or:

α2Om2 + γm̃2 = ln
( σ̃m23

1− σ̃m23

)
(4.3)

Provided that there are at least dim(Om2) + 1 of these markets (with different values of Om2,

the number of clinical trials reaching efficacy endpoint) for at least one therapy area, parameters

α2 are identified (as they are constant across therapy areas). Then at least one additional large

market is required for each therapy area to identify constants γm̃2.

Separating science, approach 2. Within this approach I show that given the functional

form of F (.), for any β such that Fm(β) 6= Fm(β0) there is no pm2,β such that pm2,βFm(β) =

pm2,β0Fm(β0), where pm2,β0 is the true value of the parameter pm2. To prove that statement,

suppose without loss of generality that Fms(β) > Fms(β0) for some state s. Pick pm2,β such

that pm2,βFms(β) = pm2,β0Fms(β0). There is only one such value of pm2,β, moreover, pm2,β <

pm2,β0 . Pick the state s′ such that Fms(β)− Fms′(β) < Fms(β0)− Fms′(β0). Then pm2,βFms(β)−

pm2,βFms′(β) < pm2,β0Fms(β0)−pm2,β0Fms′(β0). Given that pm2,βFms(β) = pm2,β0Fms(β0), we get:

−pm2,βFms′(β) < −pm2,β0Fms′(β0), or pm2,βFms′(β) > pm2,β0Fms′(β0). Therefore, as long as for

6To see that, notice that each row of V4 positively depends on Rm, and each row of V3 positively depends
on V4 (see Appendix 9.6).
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each guess β there exists such state s′, parameters (c3, θ0, θr, θs) as well as pm2 are identified (within

this approach the probability of scientific success is identified nonparametrically).7 In Appendix

9.7 I show that if W has at least four linear independent rows, it is possible to limit the number

of guesses for pm2,β to three. Then one can proceed with the logic provided in the proof above to

eliminate the two guesses that do not coincide with pm2,β0 .

Identification of stage 1 parameters. Finally, notice that after plugging in the linear

representation of V3 (Equation 3.6) into V2 (Equation 3.7), we can express the probability of

transition from stage 2 to stage 3 given state s in the following way (again omitting subscript m):

σ̃m12s = pm1
eVm,2,s′(1,2,s)

1 + eVm,2,s′(1,2,s)
= pm1

exm,2,sc2+ym,2,sg(pm,2)+zm,2,s

1 + exm,2,sc2+ym,2,sg(pm,2)+zm,2,s
, (4.4)

where g(pm2) = pm2ln
(

pm2

pm2−σ̃m,23s′

)
(see Appendix 9.6 for details). Given that pm2 is already

identified, the only remaining unknown structural parameters are c2 and parameters inside pm1:

(α1, γm̃1). These parameters can be identified using the same logic as presented above. Finally, I

normalize the cost of early-stage trials c1 to zero.8

Discussion. Once arrival rates, stage durations and the approval probability are identified,

the only difference between the standard dynamic discrete choice model and this model are the

“scientific” probabilities p1 and p2. Because development projects can be terminated due to poor

clinical trial results, and because that event is independent from the current state s, the observed

probability that a firm transitions from, for example, stage 2 to stage 3 given s is not just equal

to the conditional choice probability (CCP) like in the standard model. Instead, it equals to the

CCP times the probability of exogenous termination. If exogenous termination did not happen,

and CCPs were observed directly, the standard assumption |W (β − β0)| > 0 would suffice for

identification. In this setting, the intuition for identification of the cost and profit parameters

are the same. The coefficient θs is identified due to variation in competition across states s; the

coefficient θr is identified separately from c3 due to variation in the market size across markets; the

7Notice in the data I observe hundreds of states for most markets.
8I do not estimate c1, and the normalization does not play a role in estimation of other structural

parameters. The normalization only makes a difference for the values of the value function at stage 1.

32



coefficient θ0 is identified separately from c3 due to variation in the FDA review duration across

markets; c2 is identified separately from c3 due to the restrictions that model puts on how firms

react to changes in the cost of clinical trials for different stage across different levels of competition.9

Parameters p1 and p2 are identified due to: (i) variation in market size across diseases that only

affects strategic but not scientific attrition (ii) the nonlinearity of the distribution function F (.) and

variation in competition within the same market that also only affects strategic but not scientific

attrition. With respect to the second approach, the importance of the non-linearity assumption

has been discussed in the previous literature that has provided identification for similar models,

although not in the context of a dynamic discrete choice setting. Particularly, Hausman et al.

(1998) provides identification for an analog of Equation 4.1, assuming continuous support for the

observed covariates in W . The paper shows that theoretically particular functional form of the

distribution F (.) is not required for identification, as long as F (.) is nonlinear, strictly monotone

and known.

9Intuitively, when the firm decides whether or not to enter stage 2, the expected value associated with
later entering/not entering stage 3 changes in a known way depending on the current state s, which puts
restrictions on possible values for c2.

33



34

Chapter 5

Estimation

The estimation of the model proceeds in two steps. In the first step I estimate: (i) exogenous

discovery rate for each market; (ii) average duration of each stage of development for each market;

(iii) probability of the FDA approval conditional on applying for the regulatory review; (iv) condi-

tional transition probabilities (CTPs) as a function of observed states. In the second step I use the

methods developed in Arcidiacono et al. (2016) to estimate the cost, the profit and the scientific

parameters of the model. I discuss both steps of the estimation procedure in detail in the following

subsections.

5.1 Step 1. Estimation of λ-s and transition probabil-

ities

I estimate the entry rates (λe-s) from the average amount of time between two subsequent entries

into a particular stage for a particular market. I estimate the stage duration rates (λ-s) from

the average amount of time between the start of the stage and the time when the drug either

transitions to the next stage or is terminated. In both cases I adjust for censoring of the data - the

details on that are in Appendix 9.8. I estimate the FDA approval probability as the share of drugs

that reached the market out of all the drugs that were submitted for the FDA review. Appendix

9.15 provides results for the entry and duration parameters. Most of the diseases that I study are



characterized by frequent entry of new discoveries (on average, a new discovery enters early clinical

trials every 1.2 months). Drugs need to spend on average 6 years in early stage trials and 7 years

in late stage trials before reaching the FDA, and there is sizeable variation in stage duration across

diseases.

I estimate the conditional transition probability (CTP) of a drug transitioning to the next

stage of development as a function of the total number of development projects at each stage,

conditional on the drug’s own stage and the disease for which it is being developed. It would be

ideal to estimate the CTPs as the shares of drugs that transitioned at each state (where a particular

state is characterised by the disease m, the stage of development x and the level of competition

s). However, it is impossible given the size of the state space and the number of data points

that I observe. Instead, I estimate the transition probabilities as a flexible parametric function

of the level of competition s and market-level variables. I use the following specification for the

probability that at the end of stage x = 1, 2 the drug transitions to the next stage y = 2, 3 given

s =
(
s(1), s(2), s(3), s(4)

)
, the number of firms in each stage of development, for market m:

σ̃xysm =
ef(s,βxm)+γm

1 + ef(s,βxm)+γm
, (5.1)

where f(s, βxm) is a second order polynomial in the number of firms in each stage and disease

characteristics (e.g. market size and scientific variables). To improve prediction, I also include

market-level fixed effects γm.1 Results of the estimation are presented in Appendix 9.16.

5.2 Step 2. Estimation of structural parameters

In what follows I omit the market subscript m to simplify the notation. Using equations 4.4 and

4.1, we can express the value of being in the next stage y = 2, 3 of development as a function of

the probability of transition from the earlier stage x = 1, 2 at state s:

Vy,s′(x,y,s) = ln
( σ̃xys
px − σ̃xys

)
(5.2)

1It is known that fixed effects introduce bias into the estimates of the coefficients. However, that is not
a concern in this case, since I am only interested in predicting the transition probabilities.
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Similarly, we can derive the value as a function of the CTP for every state adjacent to s, that is a

state that is connected to state s by one or more state changes (transitions, entries or terminations).

One example of the adjacent state is the state s′(0, 1, s), e.g. the state that is reached when a new

firm enters stage 1 in state s. The value of being in stage 2 at state s′(0, 1, s) can be expressed as

following:

V2,s′(0,1,s) = ln
( σ̃12s′′(2,1,s′)

px − σ̃12s′′(2,1,s′)

)
(5.3)

Here the CTP is associated with the state s′′ that has one less drug in stage 2 and one more

drug in stage 1 comparative to s′. Although the state s′′ cannot be reached from the state s′

(the transition from stage 2 to stage 1 is impossible), the reverse is possible: state s′ can be

reached from the state s′′. Moreover, the probability of this transition will be the function of

V2,s′′′(1,2,s′′) = V2,s′′′(1,2,s′′(2,1,s′)) = V2,s′ . Inverting that function, we can express V2,s′ as a function

of σ̃12s′′(2,1,s′) as in (5.3).

Following the same procedure for all the states adjacent to state s, we can replace all the values

of the value function on the right-hand side of (3.4) with the corresponding functions of the CTPs.

V2,s(θ, σ̃, λ) =
1∑3

x=1 λ
e
x +

∑3
x=1 s(x)λx + ρ

[
c2 + λ2γ +

1. new firm︷ ︸︸ ︷
3∑
y=1

λey

[
ln
( σ̃12s′′(2,1,s′(0,y,s))

p1 − σ̃12s′′(2,1,s′(0,y,s))

)]
+

+

2. firm in 1 moves︷ ︸︸ ︷
s(1)λ1

∑
y∈{0,2}

σ̃1ys′

[
ln
( σ̃12s′′(2,1,s′(1,y,s))

p1 − σ̃12s′′(2,1,s′(1,y,s))

)]
+

3. firm in 2 moves︷ ︸︸ ︷(
s(2)− 1

)
λ2

∑
y∈{0,3}

σ̃2ys′

[
ln
( σ̃12s′′(2,1,s′(2,y,s))

p1 − σ̃12s′′(2,1,s′(2,y,s))

)]

+

firm in 3 moves︷ ︸︸ ︷
s(3)λ3

∑
y∈{0,4}

py3

[
ln
( σ̃12s′′(2,1,s′(3,y,s))

p1 − σ̃12s′′(2,1,s′(3,y,s))

)]
+

4. firm in 4 drops out︷ ︸︸ ︷
s(4)λ4

[
ln
( σ̃12s′′(2,1,s′(4,0,s))

p1 − σ̃12s′′(2,1,s′(4,0,s))

)]
+

5. firm i gets good signal︷ ︸︸ ︷
λ2p2ln

(
p2

p2 − σ̃23s

) ]
(5.4)

Similarly we can do the same for the expression of V3,s, details on that are in Appendix 9.17.

Equation (5.4) allows us to express the value of V2 at any state s as a function of transition

probabilities σ̃, entry and duration rates λ and structural parameters θ. We then can plug the
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resulting value of V2 into the structural probability of a drug transitioning to stage 2 and into state

s is:

σ̃12s0(θ, σ̃, λ) = p1
eV2,s′(1,2,s0)(θ,σ̃,λ)

1 + eV2,s′(1,2,s0)(θ,σ̃,λ)
, (5.5)

where s0 is the state associated with the firm transitioning/terminating development at the end of

stage 1 in the data. Omitting the subscript for the stage into which the drug is transitioning (since

it can only be stage 2), the corresponding likelihood is given by:

l1s0(θ, σ̃, λ) =
1{d12s0 = 0}+ 1{d12s0 = 1} × p1e

V2,s′(1,2,s0)
(θ,σ̃,λ)

1 + eV2,s′(1,2,s0)(θ,σ̃,λ)
, (5.6)

Since the cost shocks ε11 and outside value shocks ε01 are i.i.d., then conditional on the observed

state the transition decisions are independent, which implies that we can aggregate the likelihood

across all the states associated with stage 1 decisions observed in the data in the following way:

l1(θ, σ̃, λ) =
∏
s0∈S1

l1s0(θ, σ̃, λ), (5.7)

where S1 is the set of all the states observed in the data that are associated with stage 1 decisions.

Similarly, we can express transition probabilities and likelihoods for the observed states associated

with decisions at the end of stage 2. Plugging in the estimates of the transition probabilities ˆ̃σ and

duration and entry rates λ̂ from step 1, we can formulate the pseudo log-likelihood function:

L(θ, ˆ̃σ, λ̂) =
∑
s0∈S1

ln(l1s0(θ, ˆ̃σ, λ̂)) +
∑
s0∈S2

ln(l2s0(θ, ˆ̃σ, λ̂)), (5.8)

which we maximize to obtain the pseudo maximum likelihood estimator of the structural parame-

ters:

θ̂ = arg max
θ∈Θ

L(θ, ˆ̃σ, λ̂) (5.9)

The parameter estimates are consistent if T → ∞, where T is the length of the panel, or

Mm̃ →∞ ∀ m̃, where Mm̃ is the number of markets within therapy area m̃, or both. Arcidiacono
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et al. (2016) shows consistency under M → ∞, where M is the total number of markets. In this

case, however, this requirement has to hold for markets within each therapy area. The latter is

necessary in order to resolve the incidental parameters problem associated with the therapy area

fixed effects inside the p1 and p2 functions (see Neyman and Scott (1948) and Heckman (1981)). The

problem should also not be prominent in the sample, since even the smallest number of observations

per therapy area is still more than a hundred (see Table 9.9 in Appendix 9.14).
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Chapter 6

Results

The structural parameter estimates are presented in Table 6.1. The estimate of the stage 2 clinical

trials cost c2 suggests that a year of late stage clinical trials costs almost $50 million.1 Taking into

account stage 2 duration averaged across diseases, the overall average cost of stage 2 trials is close

to $266 million.2 These estimates are comparable to the estimates obtained through surveys of

pharmaceutical firms.3 The average total cost of stage 3 (e.g. regulatory review stage) is approxi-

mately $95 million (although c3 is not precisely estimated).4 Since within the model framework I

cannot separate the cost of the FDA and the expected cost associated with the drug launch, the

estimate implicitly includes both. The average yearly monopoly profit is approximately $4.3 billion

per year, ranging from $1.9 billion for Hepatitis C to $10 billion for Chronic obstructive pulmonary

disease (COPD) (see Figure 9.4 in Appendix 9.18). The coefficient estimate for the competition

1Notice that the interpretation of the cost and profit parameters in dollars is conditional on assuming the
unit scale parameter of the distribution of the ε-s. In order to aggregate the estimates of flow costs to costs
per year (and given that the unit of time in the model is set to be a year) we need to integrate over a unit

time period taking the discount factor into account:
∫ 1

0
c2e
−ρtdt = c2

1
ρ

(
1− e−ρ

)
.

2The average duration of stage 2 trials across all the indications that I use is 6.9 years. Aggregating the

flow cost across this time period gives
∫ 6.9

0
c2e
−ρtdt = c2

1
ρ

(
1− e−ρ×6.9

)
≈ 0.266

3DiMasi et al. (2016) provides estimates of the cost of clinical trials using information provided by
pharmaceutical firm. Based on these estimates, the costs that the firms expect to pay when entering the
late-stage trials is around $206 million. Although the two estimates are not directly comparable: estimates
in DiMasi et al. (2016) are based on a selected sample of pharmaceutical firms, and estimates provided in
this paper are based on a selected sample of diseases - the fact that they have the same order of magnitude
is reassuring.

4Increasing the number of diseases included in the sample should help in improving the precision of the
estimate of c3 .



effect θs implies that the entry of the first competitor decreases the profit by $250 million per year.

After accounting for the number of drugs that were launched on the market, the estimates of the

average yearly profits are provided in Figure 9.4: they range from $7.7 hundred million for Hepatitis

B to about $9.4 billion for COPD, with the average of $3.5 billion.5

The estimates of the parameters associated with the scientific variables (e.g. disease toxicity,

and the proportion of clinical trials that reached the safety/efficacy endpoints) have the expected

sign. The associated disease-level estimates of the clinical trial success probabilities p1 and p2 are

provided in Table 9.14 along with Figure 6.1. Notice that all of the p1 and p2 are significantly

below one.Moreover, the figure shows heterogeneity across diseases: for example, the probability of

succeeding in early stage clinical trials is higher for cancer drugs in the sample, likely because the

associated diseases are relatively more severe.

Figure 6.1: Estimates of the probabilities of clinical trials success by indications for 28 diseases.

As a validation check, I solve the model at the parameter estimates and then use the it to

5These numbers are large, but within the range of the observed pharmaceutical sales data. Yearly sales
of blockbuster drugs (usually defined as drugs that generate annual sales of at least $1 billion) can go as
high as $20 billion. Since my dataset includes only novel therapeutics (and not reformulations, biosimilars
of generics), these drugs are more likely to reach the blockbuster status.
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Table 6.1: Estimates of structural parameters.

Parameter Coeff. S.E.

Cost stage 2 (c2) -0.050*** 0.016
Cost stage 3 (c3) -0.055 0.051
Profit, constant (θ0) 2.401*** 0.188
Profit, market size (θr) 0.007*** 0.002
Profit, competition (θs) -0.635*** 0.152
p1 parameters:
Cancer f.e. stage 1 0.000 0.000
Other f.e. stage 1 -1.770*** 0.285
Dermatologic f.e. stage 1 -1.027*** 0.263
Endocrine f.e. stage 1 -2.383*** 0.226
Immune f.e. stage 1 -1.923*** 0.277
Infection f.e. stage 1 -2.175*** 0.248
Neurology f.e. stage 1 -1.933*** 0.236
Respiratory f.e. stage 1 -2.388*** 0.257
Disease toxicity stage 1 1.100* 0.568
CT safety stage 1 1.679** 0.656
Constant stage 1 -0.540** 0.267
p2 parameters:
Cancer f.e. stage 2 0.000 0.000
Other f.e. stage 2 0.540 0.478
Dermatologic f.e. stage 2 -1.198*** 0.288
Endocrine f.e. stage 2 -1.151*** 0.269
Immune f.e. stage 2 -0.189 0.373
Infection f.e. stage 2 0.373 0.453
Neurology f.e. stage 2 0.751* 0.432
Respiratory f.e. stage 2 -0.827*** 0.292
CT efficacy stage 2 6.730*** 0.421
Constant stage 2 -5.822*** 0.237

Notes: Estimates of cost and profit parameters are
in billions of dollars. Standard errors are computed
using 200 bootstrap samples.
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forward simulate 1000 paths for 14 diseases in my dataset.6 For every particular disease, I start

each path from the state s that was first observed in the data at the beginning of the panel.

The results of the simulations that compare the attrition shares predicted by the model and those

observed in the data are presented in Figure 6.2. Although the model tends to overestimate the

share of terminations for early stage trials and underestimate them for the late stage trials, overall

it seems to replicate the data reasonably well. The worse fit for the second stage can be due to

two reasons: the estimates of c3 are too low (recall that this estimate is very imprecise); the value

for the parameter λeg is too high (recall that I assume that on average novel therapeutics get 20

years on the market before generic entry). Including more diseases in the sample and appending

the data on actual generic entry should remedy both issues and improve the fit.

Figure 6.2: Model fit based on 1000 simulated paths for 14 diseases.

The model allows me to separate overall attrition into scientific and strategic, as within the

simulations I know the reason for each particular termination. Table 6.2 reports the corresponding

shares. Overall, strategic attrition is responsible for about 8.4% of all terminations.7 However,

6I solve the model using the value function iteration method. Since there is heterogeneity in disease-level
parameters, I solve the model disease-by-disease. Because this process is computationally costly, at the
moment I use only 14 diseases.

7The number is obtained not by averaging the shares provided in the table across diseases, but rather
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there is large heterogeneity in the importance of strategy: it is responsible for only 5.5% of all

terminations for the COPD, but for almost 35% for myelodyplastic syndrome. Moreover, the

probability of strategic terminations is much higher after the early stage trials: 9.3% versus 1.2%.8

The average shares again hide considerable variation across diseases: for stage 1, the share of

strategic attrition goes from 6.1 for COPD to 49.9 for myelodyplastic syndrome; for stage 2, it goes

from almost 0 for Stroke to 8.4 for Epilepsy. Significant strategic attrition is more likely for disease

that have higher probability of clinical trials success. One reason for that is purely mechanical - a

drug is less likely to fail clinical trials and be dropped for scientific reasons. At the same time, for

those diseases the overall probability of being dropped as well as the probability of being dropped

conditional on clinical trials success (especially for stage 2) tends to be higher, which suggests

substitutability between the two sources of attrition. Indeed, for a drug that has passed stage 2

clinical trials, it is better to have done that for a disease for which it is difficult to do—as these

barriers to entry will protect the drug from follow-on competition. I explore this in more detail in

my first counterfactual.

In order to analyze how strategic attrition contributes to the rate of new drug launches, I

run the simulations after shutting down the strategic channel—that is, I set the probability that

a drug is terminated after stage 1 (stage 2) to be always exactly p1 (p2). I conceptualize this

exercise as trying to analyze what would be the rate of new drug launches, if the government was

purchasing all the discoveries from private companies and then committing to develop them into

drugs (unless their medicinal properties were bad). I simulate 1000 paths both with and without

strategic attrition starting in this case from the zero state (e.g. state where the number of firms in

each stage is zero). I simulate each path 30 years forward, but only use the last 20 years—in order

to allow the process to get away from the low-probability state with small number of competitors

in development stages. I calculate the average time between subsequent launches for each of the

regimes (e.g. original, clinical success in late increased by 10 p.p., and clinical success in early

increased by 10 p.p.) and plot it on the graph presented in Figure 6.3. On average, the duration

by taking the overall (without separation by disease) attrition shares and averaging them across the 1000
simulations.

8In this case the numbers are also obtained not by averaging the shares provided in the table across
diseases, but rather by taking the overall (without separation by disease) attrition shares and averaging
them across the 1000 simulations.
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Table 6.2: Average share of strategic attrition, in percent

Both Stage 1 Stage 2
Strategy/ Strategy/ Strategy/ Strategy/ Strategy/ Strategy/ Strategy/

Indication Dropped Dropped Finished Passed CT Dropped Finished Passed CT

Atherosclerosis 5.58 6.12 5.51 35.65 0.01 0.01 0.04
COPD 5.45 6.12 5.32 28.76 0.12 0.09 0.41
Depression 6.78 7.17 6.18 30.85 3.16 2.16 6.32
Dermatitis 16.99 21.53 14.59 31.12 0.02 0.02 0.07
Diabetes I 7.24 7.87 6.96 37.53 0.01 0.01 0.04
Epilepsy 8.63 8.65 6.91 25.55 8.39 3.88 6.70
Hepatitis B 6.59 6.88 5.73 25.50 3.81 2.04 4.15
Macular Degen. 8.12 8.98 7.07 24.95 0.52 0.31 0.79
Migraine 6.28 6.96 5.74 24.57 1.41 0.84 2.07
Myelodysplastic 34.82 49.94 26.03 35.20 0.05 0.04 0.14
Osteoarthritis 6.56 7.44 5.80 20.88 0.50 0.30 0.74
Parkinsons 8.06 8.77 7.46 33.29 0.60 0.45 1.72
Schizophrenia 6.43 6.88 5.76 26.09 1.74 1.05 2.53
Stroke 7.03 7.86 7.02 39.73 0.00 0.00 0.00

between subsequent drug launches would be 18.73% lower if strategic terminations were not present

(that corresponds to 23% increase in the launch rate). Table 9.15 in Appendix 9.20 presents the

change for each disease.
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Figure 6.3: Average duration between subsequent launches (in years) with and without strategic
attrition.

Notes: Results are based on 1000 simulated paths for 14 diseases.
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Chapter 7

Counterfactual Experiments

7.1 Effect of an increase in the probability of clinical

success

My first counterfactual explores how the scientific and strategic attrition interact in determining

the rate of new drug introduction in a comparative static exercise. In order to do that, I increase

the probability of clinical trial success in stage 1 or stage 2 (e.g. p1 or p2) by 10 percentage points

uniformly across diseases, and analyze how strategic withdrawals and the rate of new launches

changes in simulations.1 Notice that from the point of view of an individual firm the change has

two effects: first, it improves its chances of success and therefore increases the expected profit;

second, it improves the chances of success of its competitors and therefore decreases the expected

profit. Moreover, for a firm that has already passed all the clinical trials and is making a strategic

decision of whether or not to apply for the regulatory approval, only the second (negative) effect

will remain: for this firm higher scientific probabilities mean that it should expect higher follow-on

competition. The model allows me to quantify all these effects, and the resulting changes in the

rate of new drug launches.

For this exercise, I simulate 1000 paths for both the original values of parameters and the values

1Here I use a relatively large change in the scientific probabilities in order to ensure that the effects are
pronounced and easy to compare.



after the policy change, in each case starting from the zero state (e.g. state where the number of

firms in each stage is zero). I simulate each path 30 years forward, but use only the last 20 years—

in order to allow the process to get away from the low-probability states with small number of

competitors in development stages. I calculate the average time between subsequent launches for

each of the regimes (e.g. original, clinical success in late increased by 10 p.p., and clinical success

in early increased by 10 p.p.) and plot it on the graph presented in Figure 7.1.

Figure 7.1: Average duration between subsequent drug launches as a result or 10 percentage
points change in p1 or p2.

On average, increase in the probability of early stage clinical success by 10 percentage points

decreases the time between subsequent drug launched by 17% (corresponding to approximately

20% increase in the rate of new drug introduction, which is the inverse of average duration). The

same increase in the probability of late stage clinical success decreases the duration by 23% (30%

increase in the launch rate). Part of this discrepancy is simply mechanical—for some diseases, like

atherosclerosis and stroke, p2 is much lower than p1, and increasing the former would results in a

larger number of transitions even if science was the only source of attrition.2 Indeed, if I repeated

the same exercise, but completely shut down the strategic channel (both at the original values of

2Without the strategic interactions, the average share of drugs that reach the market is, roughly speaking,
p1p2p3. Increasing p1 by 0.1 results in the new share being p1p2p3+0.1p2p3, while increasing p2 by 0.1 results
in the new share of p1p2p3 + 0.1p1p3. If p1 is larger than p2, then the increase would be larger in the latter
case.
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parameters and after implementing changes to p1 or p2), then the duration between launches would

decrease on average by 22% and 25% respectively (corresponds to 28% and 33% increase in the

launch rate).3 When strategy is accounted for, the size of the effect in both cases is smaller, but

the gap between the results of the two policies is twice as large.

In order to see how strategic behavior contributes to the outcome, I repeat the exercises (e.g.

increase p1 or p2 by 10 p.p.) without allowing firms to adjust their behavior. That is, I keep the

probabilities of strategic terminations at the equilibrium level established before the change. The

results are presented in Appendix 9.22. The graph shows that without strategic adjustments of

transition probabilities increasing p1 would have resulted in slightly higher rate of innovation, while

the opposite would be the case when p2 is increased (for many of the diseases the difference is not

detectable). The intuition behind this dynamic is that increasing p1 increases strategic attrition

both after stage 1 and stage 2 (as for those firms higher p1 means lower barriers to entry and

thus potentially higher follow on competition). On the other hand, increasing p2 only increases

strategic attrition after stage 2, while encouraging more firms to initiate late-stage clinical trials (as

for them the positive effect of having a higher probability to pass that stage in the end outweighs

the negative effect of higher potential competition).

The other way to see that pattern is to analyze the change in strategic attrition before and

after the policy change presented in Appendix 9.24. As a results of increase in p1, the average

proportion of strategic terminations conditional on clinical success increases on average by 1.7

percentage points for stage 1, and by 1.2 percentage points for stage 2. At the same time, a 10

percentage points increase in p2 leads to 1.1 percentage points increase in strategic terminations

after stage 2, and 3 percentage points decrease—after stage 1. In the latter case the effect of the

policy is strongest for Stroke that had the lowest p2 before the change, and the weakest for epilepsy

that had the largest p2. Part of that gap is explained by the difference in response of strategic

attrition after the fist stage (largest for stroke and smallest for epilepsy), and the difference in the

increase in strategic terminations after the second stage (small for stroke, large for epilepsy). After

the p1 change the pattern of the effect is different—it is the smallest for diseases that have low p2

like atherosclerosis, stroke and diabetes. The effect is large for diseases that have relatively small

3See the corresponding graph in Appendix 9.21.
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p1 and relatively large p2, although there is also a stronger dampening effect due to increase in

strategic withdrawals.

Notice that the change in CCPs averaged across the states along the paths simulated after the

change is smaller than change in average shares of strategic terminations. The reason for that is

because the proportion of strategic attrition is due to on average more launches happening after

the changes, which discourages development by firms that have not reached the market yet.

7.2 Effect of a clinical trial subsidy

My first policy counterfactual studies how a decrease in the cost of clinical trials affect the rate

of new drug launches. One example of such policy is direct clinical trial subsidies from the

government—for example, recently the U.S. government has provided more than $10 billion in

direct subsidies to multiple companies working on COVID vaccines4. Notice that subsidizing late-

stage development can only affect the strategic incentives of firms, but it does not affect the prob-

abilities of clinical success directly. Therefore, from the perspective of increasing the rate of new

drug introduction, the only leverage that this policy change has is to decrease strategic attrition

after the first stage by providing incentives for more firms to attempt the late stage development,

as it is now cheaper to do. The goal of this counterfactual is to access how effective such policy

would be in increasing the rate at which new drugs reach consumers.

In order to study the effect of clinical trials subsidies, I decrease the yearly cost of late stage

clinical development by 30%, 60% and 90% (which corresponds to approximately $15, $30 and $45

million per year)—e.g. I study the effect of a small, medium and large clinical subsidy that is applied

to the cost of late clinical development of all firms that enter stage two trials. For each change, I

simulate 5000 paths starting from the zero state (e.g. state where the number of firms in each stage

is zero).5 Like for the first policy experiment, I simulate each path 30 years forward, but discard the

first 10 years. Figure 7.2 and Table 9.19 in the Appendix 9.25 presents the results in terms of the

4Several of the COVID-related subsidy deals include commitments by firms to provide a certain number
of doses to the government if their vaccines are approved. This kind of market commitments are not part of
the counterfactual experiment, but can potentially be explored in the future.

5Notice that for this counterfactual I simulate more paths than for the previous policy experiment, because
the size of the effect is much smaller.
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average time between subsequent drug launches. As the table shows, even large subsidies that cover

90% of yearly clinical trial cost decrease the duration between subsequent launches by on average

only 2.8% (corresponds to 2.9% increase in the rate of new launches). The largest decrease of 6.3%

(6.7% increase in the launch rate) is associated with myelodysplastic syndrome, for which strategic

attrition after stage 1 was much more prominent than for other diseases (see Table 6.2). Overall,

because strategic attrition is relatively less important than scientific, the effect of the subsidy that

can only move the latter is small. While Table 9.20 in the Appendix 9.26 shows that the proportion

of strategic withdrawals after stage 1 success drops on average by 3.6 percentage points (which is

comparable to the change after large increase in p2 by 10 percentage points), these additional drugs

are still likely to fail stage 2 clinical trials (plus a small increase in strategic probability due to

follow-on competition).

Figure 7.2: Average duration between subsequent drug launches after 30%, 60% and 90%
decrease in c2.
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7.3 Change in the FDA regulations

My second policy counterfactual studies how a small adjustment in regulations related to late-stage

clinical trials would affect the rate of new drug introductions. Notice that the probability of clinical

success after stage 2 is determined not only by science, but also by the FDA’s view on whether the

amount and the type of evidence obtained as well as the strength of this evidence are enough to

demonstrate adequate efficacy of new drugs.6 In order to study the effect of a change in FDA’s

regulations, I marginally increase the probability of late stage success by 1 percentage point. This

small change can plausibly be interpreted as a result of regulatory adjustments that would not lead

to a significant change in quality of drugs that arrive on the market (e.g. in the model all the

parameters of the profit function and the probability of drug withdrawal from the market remain

the same). Moreover, the change is applied to success in efficacy trials as opposed to early stage

safety trials, which would be less likely as the main goal of the FDA is to prevent unsafe drugs

from reaching consumers. Besides, leveraging the knowledge obtained from the comparative static

exercise, I expect an increase in p2 to have a larger effect on the rate of new drug launches. Overall,

I am agnostic about a particular policy that would lead to the analyzed change in p2, as the main

goal of this counterfactual is to study the sensitivity of pharmaceutical innovation to the FDA

regulations in a general way. However, in practice such policy could be related to, for example,

decrease in regulatory uncertainty or larger unification between the FDA’s efficacy standards and

those of its European counterpart.7

Figure 7.3 and Table present the results: the average drop in duration between launches across

all the diseases is 2.5% (corresponds to 2.6% increase in the rate of new drug introductions). The

effect is comparable to the 2.8% change that would be induced by a large clinical trial subsidy that

would cover 90% of the late stage cost. Therefore, one can conclude that overall an effort directed

towards decreasing regulatory barriers at the end of stage 2 might be more suitable in terms of

6For example, Sacks et al. (2014) shows that FDA frequently responds negatively to applications for new
drug approvals not because it deems the results of trials inadequate, but because it regards the type and
amount of information submitted unsatisfactory.

7For example, Kashoki et al. (2020) shows that FDA tends to be more stringent than the European
Medicines Agency (EMA) in both its initial and final approval response to new drug applications, primarily
due to differences in conclusions about efficacy. Isakov et al. (2019) show that for some severe disease FDA’s
decision thresholds might be too conservative.
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increasing the rate at which new drugs reach consumers than policies directed towards reducing the

clinical trial cost. At the same time, the pattern of change across diseases is different depending

on disease characteristics, and clinical cost subsidies are more effective for diseases like diabetes,

dermatitis and schizophrenia, while the opposite is true for diseases like atherosclerosis, stroke and

COPD.

Figure 7.3: Average duration between subsequent drug launches after 1 p.p. change in p2.
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Chapter 8

Conclusion

High development attrition is perhaps one of the most prominent characteristics of the pharmaceu-

tical industry. It affects the rate at which new drugs reach consumers, and is the major contributor

to the overall cost of R&D. This together with the fact that R&D cost is often quoted as a justifi-

cation for high drug prices in the U.S. makes development attrition an important topic of interest.

That being said, the sources of attrition are yet to be comprehensively accessed. It is known that

firms withdraw drug candidates primarily due to either clinical failures or commercial considera-

tions. However, since generally we do not observe reasons behind firms’ discontinuation decision,

to determine the relative importance of the two attrition channels we need to rely on a model.

This paper proposes a framework that allows us to identify the importance of each attrition

component separately for each disease. For that, I build a structural dynamic discrete choice

model of pharmaceutical firms’ R&D behavior and estimate it using a rich dataset on development

histories of the population of experimental drugs. My estimates suggest that on average commercial

terminations account for 8.4% of all attrition, but there is considerable heterogeneity across diseases,

with the share of commercial terminations getting as high as 35% for some of them. Separately

quantifying the two sources of attrition is crucial to predict the effects of government policies.

Specifically, I demonstrate that the effect of clinical trial subsidies is heterogeneous across diseases,

partially due to differences in the relative importance of the two attrition channels. Moreover, as

a result of separating scientific and strategic attrition, this paper is able to study new forms of

regulatory interventions. Particularly, I analyze how a marginal decrease in the probability of late



stage clinical failures affects the rate of innovation, and how that effect compares to the effect of a

policy that decreases the cost of clinical trials.

There are at least two possible avenues for future research. One is to endogenize the rates of

discovery. Currently, while I do allow for heterogeneity in the rates of entry into development across

diseases, they are assumed to be exogenous, and therefore do not respond to changes introduced

in counterfactual experiments. Adding this channel of adjustment will allow me to access the

full effects of government policies. Implementing this modification is challenging as it requires

setting up a model for drug discovery and determining potential entrants into R&D for a particular

disease. One possibility is to consider large firms deciding in which diseases to invest. However, in

that case, their choices across diseases will be interlinked. Since these firms usually simultaneously

develop several drugs against different conditions, they in fact manage portfolios of experimental

treatments, implying that their operations with assets in the portfolio are not independent. In fact,

the problem that each firm faces is similar to a multi-arm bandit problem, with payoffs depending

on competitors’ decisions. Allowing for these interactions poses multiple challenges, including the

need to incorporate the model of portfolio management, solve it given the large state space and

estimate it allowing for the appropriate correlation structure.

Another avenue of research is to incorporate learning and technological spillovers in the inno-

vation process. Recent research suggests that firms learn about the feasibility of the mechanism of

action behind their experimental treatments from successes/failures of other drugs that rely on the

same scientific process (Krieger (2020)). Modeling inter-firm learning is challenging, but solving and

estimating the model poses additional computational obstacles. For one, it requires keeping track

of every firms’ updating process, which implies the need to handle potentially a very large state

space. This is exacerbated by the fact that drug development is characterised by many alternative

technologies with constant churning of the ineffective ones and introduction of new ones.
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Chapter 9

Appendices

9.1 Examples of Close Approvals

Therapeutic Use Year Trade Name Company

Hypertension 2002 Inspra (eplerenone) Pharmacia Corp.
(now Pfizer Inc.)

Hypertension 2002 Benicar (olmesartan medoxomil) Sankyo Co Ltd
(now Daiichi Sankyo Co Ltd)

Rheumathoid Arthritis 2009 Cimzia (certolizumab pegol) UCB SA

Rheumathoid Arthritis 2009 Simponi (golimumab) Janssen Biotech Inc
(subsidiary of Johnson & Johnson)

HIV 1996 Crixivan (indinavir) Merck & Co Inc

HIV 1996 Norvir (ritonavir) Abbott Laboratories

Hepatitis C 2014 Exvira (dasabuvir)/Viekira Pak AbbVie Inc

Hepatitis C 2013 Sovaldi (sofosbuvir) Gilead Sciences Inc

Table 9.1: Selected examples of drugs approved by FDA for the same indication in the same year
or two consecutive years. Source: Cortellis Competitive Intellignece database.



9.2 Transition Matrix by Phase

Total Attrition Conditional Attrition

Preclinical 62.9% 62.9%
Phase I 11.0% 29.7%
Phase II 16.0% 61.7%
Phase III 3.5% 35.4%
Regulatory submission 0.64% 9.97%

Table 9.2: Share of development project terminated at a particular stage of the R&D process.Overall
are the shares as a percent of the total. Conditional are the shares as a percent of the drug
candidates that made it to a particular stage. Source: Cortellis Competitive Intelligence database.
In cases when the earlier phase is ot recorded, but later I observe the drug entering a later phase,
I assume that the earlier phase was successfully completed (mostly applies to phase 1).

9.3 Sales by Country

Figure 9.1: Sales of novel medicines by country, IMS Healt.
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9.4 The Model

Firm i,

market m

c1 = 0

1
λ1m

toxic
w.p. 1−

p
1m

Outside Value

ε i11

ε
i01

Outside Value

c2

1
λ2m

not effective

w.p. 1−
p
2m

Outside Value

ε i12

ε
i02

Outside Value

c3

1
λ3

not approved
w.p. 1−

p
3

Outside Value

π(Rm, s4t)

1
λ4+λg4

Figure 9.2: Schematic description of the model. Decision points are marked bold.

9.5 Value Functions

Value associated with being in stage 2:

V1,s(σ
′) =

1∑4
x=1 λ

e
x +

∑4
x=1 s(x)λx + ρ

[
4∑

x=1

λexV1,s′(0,x,s)(σ
′)+

+
(
s(1)− 1

)
λ1

∑
y∈{0,2}

σ̃′1ysV1,s′(1,y,s)(σ
′) + s(2)λ2

∑
y∈{0,3}

σ̃′2ysV1,s′(2,y,s)(σ
′)+

+s(3)λ3

∑
y∈{0,4}

py3V1,s′(3,y,s)(σ
′) + s(4)λ4V1,s′(4,0,s)(σ

′)+

+λ1p1Emaxj{εi01, εi11 + V2,s′(1,2,s)(σ
′)}+ λ1(1− p1)E(εi01)

]
(9.1)
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Value associated with being in stage 3:

V3,s(σ
′) =

1∑4
x=1 λ

e
x +

∑4
x=1 s(x)λx + ρ

[
c3 +

4∑
x=1

λexV3,s′(0,x,s)(σ
′)+

+s(1)λ1

∑
y∈{0,2}

σ̃′1ysV3,s′(1,y,s)(σ
′) + s(2)λ2

∑
y∈{0,3}

σ̃′2ysV3,s′(2,y,s)(σ
′)+

+
(
s(3)− 1)λ3

∑
y∈{0,4}

py3V3,s′(3,y,s)(σ
′) + s(4)λ4V3,s′(4,0,s)(σ

′)+

+λ3p
4
3V4,s′(3,4,s)(σ

′) + λ1p
0
3E(εi03)

]
(9.2)

Value associated with being in stage 4:

V4,s(σ
′) =

1∑4
x=1 λ

e
x +

∑4
x=1 s(x)λx + λg4 + ρ

[
θ0 + θrR+ θsln

(
1 + s(4)

)
+

4∑
x=1

λexV4,s′(0,x,s)(σ
′) + s(1)λ1

∑
y∈{0,2}

σ̃′1ysV4,s′(1,y,s)(σ
′)+

+s(2)λ2

∑
y∈{0,3}

σ̃′2ysV4,s′(2,y,s)(σ
′) + s(3)λ3

∑
y∈{0,4}

py3V4,s′(3,y,s)(σ
′)+

(
s(4)− 1

)
λ4V4,s′(4,0,s)(σ

′)

]
(9.3)

Notice that at rate λ4 + λg4 the firm at stage 4 receives the payoff of zero.

9.6 Linear Representation

Let V
′

4 be a K × 1 vector of that contains the value of the value function for a firm at stage 4

for each industry state vector s given that other firms follow the strategy σ′ (it will be zero for

industry states in which there are a total of zero firms in stage 4). Further, let S be a K×4 matrix

that collects all the industry states: the (k, x) element of the matrix is the total number of firms

at stage x ∈ 1, 2, 3, 4 in state k. Let Sx be the x-th column of that matrix, and e be a K × 1

column vector of ones, and let 14 be equal to 1 if the stage equals to 4, and zero otherwise. Let

Dx = e(
∑4

x=1 λ
e
x + 14λ

g
4) +

∑4
x=1 λxSx and D̃x = diag(Dx).

Let Σ
′
x be a K × K transition matrix that collects the probabilities of transition of firms at
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stage x: element (k, k′) of the matrix is the probability of that a firm at stage x ∈ 1, 2 given the

industry state k will induce transition to the industry state k′.1 Finally, let Q4 be the K × K

exogenous state transition matrix: the (k, k′) element of the matrix denotes the rates of exogenous

state transition from state k to state k′ (that is, transition due to exogenous entry of new firms,

exogenous regulatory approval decisions or exogenous exit of firms from the market).2

Then based on equation (9.3) we can write down the following matrix-form representation for

the value function of the firm at stage 4:

D̃4V
′

4 = θ0 + θrR+ θsln(1 + S4) +
[
Q4 +

2∑
x=1

diag(λxSx)Σ
′
x

]
V

′
4 ,

which represents a system of linear equation. Given that the matrix
[
D̃4−Q4−

∑2
x=1 diag(λxSx)Σ

′
x

]
is inevitable, we can solve for V

′
4 :

V
′

4 =
[
D̃4 −Q4 −

2∑
x=1

diag(λxSx)Σ
′
x

]−1[
θrln(R) + θsln(1 + S4)

]
(9.4)

By denoting D̃4 −Q4 −
∑2

x=1 diag(λxSx)Σ
′
x = Ω

′
4, we will get our final expression:

V
′

4 = Ω
′
4
−1
[
θrln(R) + θsln(1 + S4)

]
1One can construct the matrix in the following way. Let Lx,x+1 be a K×K location matrix that denotes

the industry state that will result in firm at stage x ∈ 1, 2 deciding to transition to the next stage—the
element (k, k′) is the industry state induced by a firms at stage x transitioning to the next stage given that
the industry state is k. Let Σ

′

x,x+1 = diag(σ̃
′

x,x+1,1, ..., σ̃
′

x,x+1,K) be the diagonal matrix containing the
probabilities that the firm at stage x ∈ 1, 2 given the industry state k transitions to the next stage (notice
that it includes the probability of being exogenously terminated by the FDA). Same way construct Lx,0 and

Σ
′

x,0—similar matrices associated with firms dropping out. Then Σ
′

x = Σ
′

x,x+1Lx,x+1 + Σ
′

x,0Lx,0
2One can construct the matrix in the following way. Let L0,x be a K×K location matrix that denotes the

industry state that will be induced if a new firm entered stage x given that the industry state is k. Let L3,4 be
a K×K location matrix that denotes the industry state that will be induced if a firm at stage 3 has gotten a
regulatory approval given that the industry state is k (same way, L3,0 will be the matrix that will denote the
state if the firm in 3 was not approved). Further, let L4,0 be a K×K location matrix that denotes the industry
state that will be induced if a firm on the market exits given that the industry state is k. Let diag(v) denote a
diagonal matrix with the elements of vector v on the main diagonal. Let e4 be a K×1 vector where the k-th
element is equal to 1 if the number of firms in stage 4 in the k-th state is greater than zero; otherwise, the k-th
element of e4 is zero. Then Q4 =

∑4
x=1 λ

e
xL0,x+diag(λ3p

4
3S3)L3,4+diag(λ3p

0
3S3)L3,0+diag(λ4(S4−e4))L4,0.
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In the same way we can write down the matrix representation for V
′

3 :

V
′

3 =
[
D̃3 −Q3 −

2∑
x=1

diag(λxSx)Σ
′
x

]−1[
C3 + λ3p

0
3γ + λ3p

4
3L3,4V

′
4

]
, (9.5)

where γ is the vector of the unconditional expectations of the scrap value shocks. Since the scrap

value shock is distributed according to the Type I extreme value distribution, its expected value in

every state equals to the Euler’s constant.3 By denoting D̃3 −Q3 −
∑2

x=1 diag(λxSx)Σ
′
x = Ω

′
3, we

will get our final expression:

V
′

3 = Ω
′
3
−1
[
C3 + λ3p

0
3γ + λ3p

4
3L3,4V

′
4

]
,

Following the same strategy, we can write down the value function associated with the stage 2:

V
′

2 =
[
D̃2 −Q2 −

2∑
x=1

diag(λxS̃x)Σ
′
x

]−1[
C2 + λ2(1− p2)γ + λ2p2L2,3Emax(V

′
3 )
]
, (9.6)

where S̃x = Sx if x = 1, 3 and 4, but S̃2 = S2− e2.4 Emax(V
′

3 ) is a K× 1 vector, for which the k-th

element equals to Emax{εi02, εi12 + V3,s′(2,3,s)(σ
′)}, where s is the k-th state. The assumption that

both εi02 and εi12 are distributed i.i.d according to the Type I extreme value distribution, allows

us to write this expectation in the following form:

Emax{εi02, εi12 + V
′

3,s′(2,3,s)} = ln
(

1 + e
V

′
3,s′(2,3,s)

)
+ γ (9.7)

We further can use the idea originating in Hotz and Miller (1993) that the conditional transition

probabilities (CTPs) can be inverted, which allows to express the expectation above in terms of

these CTPs. Notice that if given that a firm behaves optimally, its decisions correspond to the best

response strategy described in (3.2). Then the probability that a firm transitions from stage 2 to

3Q3 =
∑4
x=1 λ

e
xL0,x + diag(λ3p

4
3(S3 − e))L3,4 + diag(λ3p

0
3(S3 − e3))L3,0 + diag(λ4)L4,0. e3 is a K × 1

vector where the k-th element is equal to 1 if the number of firms in stage 3 in the k-th state is greater than
zero; otherwise, the k-th element of e3 is zero.

4Recall that e2 is a K × 1 vector where the k-th element is equal to 1 if the number of firms in stage 2
in the k-th state is greater than zero; otherwise, the k-th element of e2 is zero.
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stage 3 (conditional on the state s) is determined by:

σ̃23s = p2Pr(εi12 + V
′

3,s′(2,3,s) ≥ εi02) (9.8)

Since both εi12 and εi02 are i.i.d., and follow Type I extreme value distribution, (9.8) can be

re-written in the following way:

σ̃23s = p2
e
V

′
3,s′(2,3,s)

1 + e
V

′
3,s′(2,3,s)

(9.9)

Inverting the function in (9.9), we get:

V
′

3,s′(2,3,s) = ln
( σ̃23s

p2 − σ̃23s

)
(9.10)

Plugging (9.10) into (9.7), we get:

Emax{εi02, εi12 + V
′

3,s′(2,3,s)} = ln

(
p2

p2 − σ̃23s

)
+ γ (9.11)

Stacking the expressions derived according to (9.11) for each state to form E
(
p2, σ̃2,3

)
+ γ and

plugging it into (9.6), we get the final expression:

V
′

2 = Ω
′
2
−1
[
C2 + λ2γ + λ2p2L2,3E

(
p2, σ̃2,3

)]
,

Similarly we can get an expression for the value function associated with stage 1.

9.7 Identification

To simplify the notation, in what follows I will suppress the stage-related indices. Notice that for

some state s1 I can rewrite (4.1) in the following way:

ws1c3 + xs1θ0 + ys1θr + zs1θs + us1 + log(p− σs1) = log(σs1) (9.12)

It might not be possible to separate c3,θ0 and θr using only variation in levels of competition
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within one market (that is, without using variation in market size Rm and FDA duration λ3m across

markets). That implies, however, that I can solve for a linear combination of those parameters

c3 +
xs1
ws1

θ0 +
ys1
ws1

θr, which I will denote θ̃r.

I use one more equation associated with the same market m and other state s2 to solve for θs

and θ̃r.

θ̃r
θs

 =

ws1 zs1

ws2 zs2


−1log(σs1)− log(p− σs1)− us1

log(σs2)− log(p− σs2)− us2

 (9.13)

Using (9.13) and the third equation I get:

A1 +B1log(p− σs1) + C1log(p− σs2) + log(p− σs3) = 0, (9.14)

where (A1, B1, C1) are real numbers. Notice that Equation (9.14) has at most 3 roots. To prove

that, notice that we can write the first derivative of the the function on the left-hand side of the

Equation (9.14) with respect to p in the following way:

B1

p− σs1
+

C1

p− σs2
+

1

p− σs3
, (9.15)

which can be re-written as:

B1(p− σs2)(p− σs3) + C1(p− σs1)(p− σs3) + (p− σs1)(p− σs2)

(p− σs1)(p− σs2)(p− σs3)
,

Notice that it has to be that p > σs1 , p > σs2 , p > σs3 , p > σs4 , therefore the denominator is

positive. The numerator is a quadratic equation in p, and thus has at most 2 roots. Therefore, the

original function changes from increasing to decreasing (or vice versa) at most two times. At each

interval where the its increasing/decreasing it can intersect the zero at most once. This implies that

Equation (9.14) has at most 3 roots. Denote them {p1, p2, p3}. Using (9.13), derive the associated

{(θ̃lr, θls), l = 1, ..., 3}. Exclude the ones that do not coincide with the true p, θ̃r, θs using the method

described in the main text. Notice that once the true θ̃r is identified for multiple markets, one can

use variation in Rm and λm3 across markets to separately identify θ0, θr and c3.
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9.8 Estimation of duration parameters

To estimate the duration parameters I construct a maximum likelihood function under the assump-

tion that observed duration draws are independently and identically distributed according to an

exponential distribution with the rate λ > 0 that I estimate. The density function for the exponen-

tial distribution is f(x;λ) = λexp(λx) and the tail function (e.g. the probability that the duration

is longer than x) G(x;λ) = 1 − F (x;λ) = exp(λx). Suppose I observe duration draws x1, . . . , xn,

and the first k observations are fully observed, while the rest of the observation are censored, e.g.

we only know that xj > tj for some known positive constants tj . Using the density function and

the tail function, we can construct the likelihood function L(λ) =
∏k
i=1 f(xi;λ)

∏n
i=k+1G(tj ;λ).

Then the log-likelihood function is l(λ) = klogλ − λ(x1 + ... + xr + tk+1 + ... + tn) = klogλ − λT ,

where T = x1 + ...+ xk + tk+1 + ...+ tn (sum of observations and censoring times). The maximum

likelihood estimator of λ is λ̂ = k/T , and the asymptotic variance is k/T 2. The average duration

can be obtained as the mean of the exponential, which equals to 1/λ, and the variance of the mean

duration k/T 2 × (−1/λ̂)2 can be obtained using the delta method.
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9.9 Attrition by disease

Table 9.3: Termination shares by disease

Conditional attrition
Indication stage 1 stage 2

Macular Degen 0.72 0.87
Alzheimers 0.85 0.98
Asthma 0.86 0.95
Atherosclerosis 0.91 0.94
Dermatitis 0.61 0.83
Breast tumor 0.76 0.92
COPD 0.81 0.82
Colorectal tumor 0.67 0.92
Depression 0.76 0.87
Epilepsy 0.82 0.47
Glioblastoma 0.55 0.95
HIV 0.86 0.85
Hepatitis B 0.80 0.71
Hepatitis C 0.80 0.88
Diabetes I 0.82 0.88
Migraine 0.68 0.74
MS 0.85 0.77
Myelodysplastic 0.42 0.93
Diabetes II 0.79 0.87
Lung cancer 0.39 0.88
Osteoarthritis 0.77 0.82
Ovary tumor 0.71 0.96
Parkinsons 0.85 0.90
Prostate tumor 0.76 0.94
Psoriasis 0.69 0.83
RA 0.79 0.88
Schizophrenia 0.81 0.80
Stroke 0.91 0.98

9.10 Diseases by Therapy Area

The diseases in the sample are indications characterised by a large amount of development activity

and are widespread or severe enough to have the disease-specific epidemiological information on
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Table 9.4: Break Down of Diseases by Therapy Area

Therapy area Indication

Other Macular Degen.
Neurology/Psychiatric Alzheimers
Respiratory Asthma
Other Atherosclerosis
Dermatologic Dermatitis
Cancer Breast Tumor
Respiratory COPD
Cancer Colorectal Tumor
Neurology/Psychiatric Depression
Neurology/Psychiatric Epilepsy
Cancer Glioblastoma
Infection HIV
Infection Hepatitis B
Infection Hepatitis C
Endocrine/Metabolic Diabetes I
Neurology/Psychiatric Migraine
Immune MS
Cancer Myelodysplastic
Endocrine/Metabolic Diabetes II
Cancer Lung Cancer
Other Osteoarthritis
Cancer Ovary Tumor
Neurology/Psychiatric Parkinsons
Cancer Prostate Tumor
Dermatologic Psoriasis
Immune RA
Neurology/Psychiatric Schizophrenia
Neurology/Psychiatric Stroke
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prevalence, incidence and DALY collected within the Global Burden of Disease project (alterna-

tively, the information is collected at a more aggregate level).

9.11 Data Snapshot

Table 9.5: Snapshot of the Cortellis pipeline data.

Entry
Drug Market Small scale Large scale FDA Approval Exit

AC-0025 Rheumatoid 10/29 - - - 09/24
arthritis 2013 2015

Ivacaftor Cystic fibrosis 7/31 4/30 19/11 1/31 -
2003 2007 2011 2012

albinterferon Hepatitis C 10/19 10/28 11/25 - 10/5
alfa-2b 2000 2003 2009 2010

9.12 Dropping Reformulations

For large molecules (biologics), Cortellis provides information on whether the drug is a biosimilar

or not; I use that information to drop all the biosimilars. Cortellis does not provide information

on whether the small molecule drug is novel or not. In order to detemine that, I use the Chemical

Abstracts Service (CAS) numbers that Cortellis provides for the drugs in its database. CAS number

is a unique identifier assigned to every chemical substance described in the scientific literature. If

a drug in development has the same CAS number as a drug that has been approved, it means that

it’s based on exactly the same small chemical substance. I use the following criterion to identify

reformulations: a drug is a reformulation if it started development or was in development after a

drug with the same CAS had been launched in the US. Finally, I also drop all the diagnostic agents

(since they are not treatments, but are intended to diagnose the disease) and combination therapies

(since they are likely to include a drug that has already been approved).
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9.13 Preliminary Evidence

Table 9.6: Linear probability model of transition from early and late-stage clinical trials. All the
independent variables are standardized.

(1) (2)
VARIABLES Transition from early Transition from late

DALYs 0.03648*** 0.01878***
(0.00629) (0.00709)

Disease toxicity 0.03749***
(0.00790)

CT safety 0.07963***
(0.00886)

CT efficacy 0.07134***
(0.01152)

Constant 0.33243*** 0.12228***
(0.01303) (0.01175)

Observations 6,676 2,694
R-squared 0.03499 0.02672
Therapy Area FE YES YES

*** p<0.01, ** p<0.05, * p<0.1.
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Table 9.7: Linear model of disease-level shares of drugs transitioned from early and late-stage
clinical trials. All the independent variables are standardized.

(1) (2)
VARIABLES Share transitioned early Share transitioned late

DALYs 0.03958* 0.00381
(0.01990) (0.02087)

Disease toxicity 0.05488**
(0.02542)

CT safety 0.07424***
(0.02355)

CT efficacy 0.08171***
(0.02487)

Constant 0.38078*** 0.13915***
(0.04282) (0.03801)

Observations 28 28
R-squared 0.72684 0.52030
Therapy Area FE YES YES

*** p<0.01, ** p<0.05, * p<0.1.

Figure 9.3: Scatter plot based on the linear models in Table 9.7.
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Table 9.8: Linear probability model of transition from early and late-stage clinical trials. All the
independent variables are standardized.

(1) (2)
VARIABLES Transition from early Transition from late

# competitors in 4 -0.04748*** -0.03477***
(0.01106) (0.01290)

# competitors in 3 -0.00352 0.00142
(0.00567) (0.00693)

# competitors in 2 0.01649 -0.00963
(0.01426) (0.01659)

# competitors in 1 0.01592 0.01555
(0.01328) (0.01568)

Constant 0.24824*** 0.09253*
(0.03270) (0.04848)

Observations 6,676 2,694
R-squared 0.05428 0.05464
Indication FE YES YES

*** p<0.01, ** p<0.05, * p<0.1.
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9.14 Number of observations per therapy area

Table 9.9: Number of observations per therapy area in the sample.

Stage of clinical trials
Therapy area Early Late Total

No. No. No.
Cancer 1,571 1,191 2,762
Dermatologic 259 140 399
Endocrine/Metabolic 575 195 770
Immune 631 210 841
Infection 1,040 255 1,295
Neurology/Psychiatric 1,677 430 2,107
Other 435 115 550
Respiratory 488 158 646
Total 6,676 2,694 9,370
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9.15 Estimates of duration parameters

Table 9.10: Average duration of a stage, years.

stage 1 val. stage 1 st.err. stage 2 val. stage 2 st.err. stage 3 val. stage 3 st.err.

Macular degen. 6.73 .53 7.31 1.11 1.6 .65
Alzheimers 7.12 .34 6.15 .63 1.32 .93
Asthma 5.56 .32 5.4 .57 1.57 .64
Atherosclerosis 5.73 .51 5.81 1.14 .93 .65
Atopic dermatitis 5.04 .66 6.79 1.39 2 1.15
Breast tumor 7.35 .45 8.22 .62 .81 .2
COPD 5.41 .52 5.75 .81 1.46 .46
Colorectal tumor 6.01 .44 7.41 .5 .96 .23
Depression 4.79 .33 5.06 .56 2.78 .84
Epilepsy 6.4 .63 6.65 1.28 1.72 .43
Glioblastoma 7.21 .83 12.42 1.99 3.55 2.51
HIV 7.16 .33 7.48 .77 1.25 .29
Hepatitis B 7.25 .74 6.08 1.17 3.85 1.07
Hepatitis C 5.67 .34 6.39 .72 1.04 .33
Diabetes I 6.45 .62 8.05 1.45 2.95 1.32
Migraine 4.35 .53 5.85 .99 2.54 .9
MS 6.48 .46 7.83 1.19 1.77 .56
Myelodysplastic 5.14 .69 9.52 1.44 1.13 .65
Diabetes II 5.34 .26 5.4 .44 1.59 .33
Lung cancer 5.17 .44 7.97 .58 1.16 .25
Osteoarthritis 4.92 .55 5.28 .87 2.67 .94
Ovary 6.56 .57 9.49 .9 3.27 1.63
tumor 8.23 .59 7.81 1.32 2.31 .94
Parkinsons 6.34 .28 7.65 .44 1.92 .41
Prostate tumor 4.33 .34 5.05 .5 1.54 .4
Psoriasis 5.16 .29 4.62 .39 2.42 .56
RA 5.06 .39 6.24 .91 1.68 .56
Schizophrenia 6.52 .48 5.53 .81 .16 .16
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Table 9.11: Average duration between subsequent entries into a stage, years.

stage 1 val. stage 1 st.err. stage 2 val. stage 2 st.err.

Macular degen. .08 .00008 .56 .006577
Alzheimers .03 7.000e-06 .33 .001817
Asthma .06 .000034 .32 .001963
Atherosclerosis .13 .00026 1.25 .05261
Atopic dermatitis .21 .001109 .53 .008533
Breast tumor .04 .000013 .1 .000089
COPD .14 .00036 .43 .004594
Colorectal tumor .05 .000035 .07 .000048
Depression .08 .000097 .36 .002808
Epilepsy .13 .000263 .96 .026613
Glioblastoma .12 .000219 .27 .000918
HIV .03 8.000e-06 .41 .002279
Hepatitis B .14 .000263 1.19 .044824
Hepatitis C .06 .000043 .51 .004682
Diabetes I .13 .000249 .72 .011629
Migraine .25 .001731 .79 .017895
MS .07 .000058 .65 .00811
Myelodysplastic .18 .000861 .37 .002223
Diabetes II .04 .000014 .22 .000704
Lung cancer .07 .000088 .08 .000057
Osteoarthritis .19 .000829 .63 .012328
Ovary .08 .000083 .12 .000136
tumor .06 .000033 .8 .013908
Parkinsons .03 5.000e-06 .07 .000033
Prostate tumor .1 .000199 .26 .001348
Psoriasis .05 .000029 .25 .001154
RA .1 .000151 .62 .008979
Schizophrenia .09 .000091 .61 .010001

Table 9.12: Durations that are common across diseases, years.

stage 4 duration val. stage 4 duration st.err. stage 3 entry val. stage 3 entry st.err.

170.64 41.39 9.09 1.69
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9.16 Step 1 estimation results

(1) (2)

transitioned transitioned

b se b se

transitioned

# in 1 -.0135266 .0195806 .0289245 .0517635

# in 2 -.0497407 .0418682 -.060113 .094272

# in 3 -.6759824 .3096467 -1.281774 .680325

# in 4 .1664209 .1134451 .2683254 .2394859

# in 1 squared -4.66e-06 .0000246 .0000527 .0000633

# in 2 squared .0001123 .0001378 .0007081 .0002951

# in 3 squared -.0335227 .0222432 -.0017909 .0443353

# in 4 squared .0014837 .0020676 .0161457 .0043634

# in 1 times # in 2 .0003078 .0000814 .0001397 .0001838

# in 1 times # in 3 -.0005903 .00099 -.0000589 .002061

# in 1 times # in 4 -.000628 .0003942 -.0030907 .000891

# in 1 times # DALYs -.000016 7.70e-06 .0000127 .0000174

# in 1 times disease toxicity .0302755 .034801 .1134999 .0848348

# in 1 times CT safety .0049875 .0653335 -.4615849 .1859599

# in 1 times CT efficacy .0086823 .0511242 .4106534 .1432965

# in 2 times # in 3 .0021523 .0019809 .0006519 .0039901

# in 2 times # in 4 -.001067 .0007818 -.0016616 .0015459

# in 2 times # DALYs 2.41e-06 .000013 .0000123 .0000226

# in 2 times disease toxicity .0164847 .0620319 -.2876043 .1344391

# in 2 times CT safety .1828428 .1882764 -.1444338 .4467133

# in 2 times CT efficacy -.1607859 .1546569 .1975903 .3692551

# in 3 times # in 4 -.0083972 .0087999 -.0019744 .0183148

# in 3 times # DALYs 5.42e-06 .0001107 .0002184 .0002306
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# in 3 times disease toxicity .4507876 .5669547 -.818985 1.071307

# in 3 times CT safety 2.195068 1.320009 4.299093 3.003434

# in 3 times CT efficacy -1.038481 1.054376 -2.494952 2.407861

# in 4 times # DALYs .0000655 .0000452 -.0000453 .0000875

# in 4 times disease toxicity -.0162831 .1751784 -.7018014 .3497491

# in 4 times CT safety .3859959 .5380888 -1.908936 .9944184

# in 4 times CT efficacy -.5603939 .4668638 1.380859 .8598656

Constant -.8156047 .3097113 .1630745 .6913054

Age related macular degeneration 0 . 0 .

Alzheimers disease .1425951 .5095761 -.3495824 1.601786

Asthma .1229551 .413693 -2.550238 .9846327

Atherosclerosis -.7637034 .8707146 -8.10329 2.675057

Atopic dermatitis .5442701 .3713189 -1.30639 .8222398

Breast tumor .4408959 .4544955 -1.209357 1.058154

Chronic obstructive pulmonary disease -.0412426 .6391441 -2.20496 1.234607

Colorectal tumor .4652879 .5199804 1.709055 .9985189

Depression .3315723 .6548146 -2.253712 1.33696

Epilepsy -.7777682 .467583 1.366972 .8925013

Glioblastoma .1796452 .5970878 1.114652 1.221115

HIV infection 1.624081 .6374788 -2.612305 1.631735

Hepatitis B virus infection -1.257588 .604919 1.618863 .9518246

Hepatitis C virus infection -.2053222 .3261889 -1.018661 .7765121

Insulin dependent diabetes -.2444464 .3636123 -1.635641 .8313732

Migraine .3273657 .5266158 -1.457881 1.003353

Multiple sclerosis -.4304991 .3700931 -.4019021 .822225

Myelodysplastic syndrome 1.186395 .54673 .604178 1.092901

Non-insulin dependent diabetes 1.193515 .6668938 -1.596397 1.41992

Non-small-cell lung cancer 1.44799 .9147711 .5382848 1.173245
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Osteoarthritis -.5607265 .3724558 -.4758024 .767978

Ovary tumor .3292287 .4330092 -2.007496 1.088063

Parkinsons disease -.6998769 .3408036 1.044623 .7960683

Prostate tumor .2431731 .5224994 -.5553975 1.232649

Psoriasis .8416113 .3581025 -1.513773 .7844319

Rheumatoid arthritis .5006133 .4313698 -1.691164 .9845043

Schizophrenia -.1165093 .3821931 -.8999356 .8263373

Stroke -.2567891 .547066 1.394826 1.588259

Observations 6676 2694
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9.17 Step 2 Estimation

In Equation 9.17 (see Appendix 9.5), I can replace all the V3-s on the right-hand side of the equation

by the functions of transition probabilities into stage 3 from the appropriate adjacent states and

p2-s. However, that is not possible to do directly for V4, since firms do not make decisions whether

or not to enter the market after being approved by the FDA. Instead I use the Bellman equation

for V4,s′(4,0,s):

V4,s′ =
1∑4

x=1 λ
e
x +

∑4
x=1 s

′(x)λx + λg4 + ρ

[
θ0 + θrR+ θsln

(
1 + s′(4)

)
+

4∑
x=1

λexV4,s′′(0,x,s′) + s′(1)λ1

∑
y∈{0,2}

σ̃′1ys′V4,s′′(1,y,s′)+

+s′(2)λ2

∑
y∈{0,3}

σ̃′2ys′V4,s′′(2,y,s′) + s′(3)λ3

∑
y∈{0,4}

py3V4,s′′(3,y,s′)+

(
s(4)− 1

)
λ4V4,s′′(4,0,s′)

]
(9.16)

Then I can use the Bellman equations for V3-s associated with appropriate states to express all

the V4-s on the right-hand side of equation 9.16. For example, to express V4,s′′(0,x,s′), I can use the

Bellman equation for the state s′′′ = s′′′(4, 3, s′′):

V3,s′′′ =
1∑4

x=1 λ
e
x +

∑4
x=1 s

′′′(x)λx + ρ

[
c3 +

4∑
x=1

λexV3,s′′′′(0,x,s′′′)+

+s′′′(1)λ1

∑
y∈{0,2}

σ̃′1ys′′′V3,s′′′′(1,y,s′′′) + s′′′(2)λ2

∑
y∈{0,3}

σ̃′2ys′′′V3,s′′′′(2,y,s′′′)+

+
(
s′′′(3)− 1)λ3

∑
y∈{0,4}

py3V3,s′′′′(3,y,s′′′) + s(4)λ4V3,s′′′′(4,0,s′′′)+

+λ3p
4
3V4,s′′ + λ1p

0
3E(εi03)

]
,

(9.17)

where all the V3-s both on the left- and the right-hand side can be expressed as functions of

appropriate transition probabilities and p2-s. That allows me to express the only V4 in the equation

through them.
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9.18 Profits

Figure 9.4: Monopoly yearly profit and average yearly profit by disease.
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9.19 Scientific Probabilities

Table 9.14: Estimates of the probabilities of clinical trial success

Indication p1 S.E. p1 p2 S.E. p2

Macular Degen 0.28 0.13 0.36 0.11
Alzheimers 0.19 0.08 0.09 0.03
Asthma 0.16 0.09 0.14 0.05
Atherosclerosis 0.16 0.06 0.07 0.03
Dermatitis 0.47 0.17 0.15 0.07
Breast Cancer 0.65 0.11 0.15 0.04
COPD 0.19 0.10 0.19 0.07
Colorectal Cancer 0.67 0.11 0.08 0.02
Depression 0.20 0.09 0.33 0.10
Epilepsy 0.27 0.14 0.57 0.15
Glioblastoma 0.70 0.11 0.08 0.02
HIV 0.19 0.10 0.27 0.08
Hepatitis B 0.22 0.12 0.47 0.12
Hepatitis C 0.25 0.13 0.62 0.13
Diabetes I 0.19 0.10 0.11 0.04
Migraine 0.23 0.12 0.38 0.12
MS 0.24 0.12 0.18 0.08
Myelodysplastic 0.74 0.11 0.18 0.05
Diabetes II 0.22 0.12 0.24 0.08
Lung Cancer 0.65 0.11 0.10 0.03
Osteoarthritis 0.28 0.13 0.35 0.11
Ovary Cancer 0.65 0.11 0.14 0.04
Parkinsons 0.22 0.11 0.24 0.08
Prostate Cancer 0.65 0.11 0.09 0.02
Psoriasis 0.48 0.18 0.21 0.09
RA 0.26 0.13 0.19 0.08
Schizophrenia 0.22 0.11 0.39 0.12
Stroke 0.18 0.08 0.04 0.01
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9.20 Duration between launches with and without the

strategic component

Table 9.15: Difference in average duration between subsequent drug launches with and without
strategic attrition

Change in Change in % change
Indication duration, years duration, std. in duration

Macular Degen -0.35 0.02 -24.47
Atherosclerosis -0.43 0.14 -8.72
Dermatitis -0.74 0.07 -23.87
COPD -0.48 0.09 -13.66
Depression -0.34 0.02 -22.36
Epilepsy -0.25 0.01 -21.16
Hepatitis B -0.33 0.03 -17.75
Diabetes I -0.39 0.13 -8.52
Migraine -0.36 0.05 -15.25
Myelodysplastic -0.62 0.03 -31.50
Osteoarthritis -0.35 0.03 -16.61
Parkinsons -0.51 0.03 -24.47
Schizophrenia -0.33 0.02 -21.76
Stroke -0.60 0.14 -12.09
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9.21 With and without the strategic attrition
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9.22 With and without strategic probability ad-

justment
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9.23 Change in average duration due to change in p-s

Table 9.16: Difference in average duration between subsequent drug launches after change in p1 or
p2

Stage 1 Stage 2
Change in Change in Change in Change in
duration, duration, % change duration, duration, % change

Indication years std. in duration years std. in duration

Macular Degen -0.30 0.02 -21.03 -0.28 0.02 -19.80
Atherosclerosis -0.31 0.14 -6.21 -1.18 0.13 -23.92
Dermatitis -0.35 0.07 -11.40 -1.00 0.06 -32.38
COPD -0.75 0.08 -21.43 -0.80 0.08 -22.69
Depression -0.37 0.02 -24.34 -0.29 0.02 -19.35
Epilepsy -0.24 0.01 -19.96 -0.16 0.01 -13.08
Hepatitis B -0.44 0.03 -23.61 -0.34 0.03 -17.93
Diabetes I -0.38 0.12 -8.32 -0.88 0.11 -19.50
Migraine -0.50 0.05 -21.11 -0.40 0.05 -16.95
Myelodysplastic -0.20 0.03 -9.91 -0.66 0.03 -33.40
Osteoarthritis -0.43 0.03 -20.63 -0.42 0.03 -20.01
Parkinsons -0.50 0.03 -24.19 -0.53 0.03 -25.52
Schizophrenia -0.36 0.02 -23.63 -0.29 0.02 -19.11
Stroke -0.37 0.14 -7.50 -1.81 0.12 -36.30
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9.24 Change in p-s, strategic adjustments

Table 9.17: Adjustments after change in p1. The second (fifth) column provides the difference (in
percentage points) in average strategic attrition conditional on clinical trial success after stage 1
(stage 2). The third (seventh) column provides the different (in percentage points) in the equi-
librium conditional choice probabilities (σ-s) averaged across all the states that appear along the
simulation paths after the policy change.

Stage 1 Stage 2
strategy/ strategy/ CCPs CCPs strategy/ strategy/ CCPs CCPs
success success change change success success change change

Indication std. std. std. std.

Macular Degen 2.62 0.22 0.45 0.21 2.07 0.21 0.16 0.06
Atherosclerosis 0.50 0.34 0.14 0.03 0.04 0.04 0.00 0.00
Dermatitis 0.37 0.27 0.15 0.04 0.09 0.12 0.02 0.01
COPD 0.89 0.32 0.36 0.07 0.11 0.09 0.03 0.03
Depression 2.33 0.23 0.53 0.17 3.40 0.25 0.45 0.18
Epilepsy 3.28 0.25 0.76 0.22 3.25 0.24 0.47 0.21
Hepatitis B 3.22 0.29 0.69 0.17 2.19 0.24 0.35 0.16
Diabetes I 0.83 0.35 0.16 0.03 0.16 0.11 0.01 0.01
Migraine 2.68 0.31 0.49 0.11 0.50 0.18 0.12 0.07
Myelodysplastic 0.47 0.20 0.11 0.04 0.08 0.15 0.03 0.02
Osteoarthritis 1.55 0.29 0.42 0.12 0.88 0.19 0.12 0.05
Parkinsons 1.98 0.22 0.47 0.17 1.17 0.17 0.15 0.07
Schizophrenia 2.56 0.25 0.61 0.22 2.41 0.21 0.29 0.12
Stroke 0.06 0.26 0.07 0.01 0.00 0.00 0.00 0.00
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Table 9.18: Adjustments after change in p2. The second (fifth) column provides the difference (in
percentage points) in average strategic attrition conditional on clinical trial success after stage 1
(stage 2). The third (seventh) column provides the different (in percentage points) in the equi-
librium conditional choice probabilities (σ-s) averaged across all the states that appear along the
simulation paths after the policy change.

Stage 1 Stage 2
strategy/ strategy/ CCPs CCPs strategy/ strategy/ CCPs CCPs
success success change change success success change change

Indication std. std. std. std.

Macular Degen -0.87 0.24 -2.51 0.31 2.10 0.21 0.49 0.18
Atherosclerosis -8.73 0.38 -8.94 0.98 0.09 0.05 0.04 0.04
Dermatitis -3.72 0.27 -4.87 0.65 0.81 0.13 0.28 0.17
COPD -4.49 0.34 -5.00 0.46 0.27 0.11 0.16 0.12
Depression -0.95 0.24 -2.21 0.30 2.58 0.25 1.04 0.45
Epilepsy -0.28 0.26 -1.61 0.19 1.53 0.24 0.70 0.35
Hepatitis B -0.61 0.30 -2.22 0.22 1.58 0.24 0.53 0.27
Diabetes I -5.69 0.37 -6.51 0.77 0.15 0.10 0.10 0.08
Migraine -1.40 0.34 -2.94 0.18 0.56 0.19 0.29 0.17
Myelodysplastic -1.69 0.20 -3.13 0.58 1.70 0.17 0.59 0.29
Osteoarthritis -2.17 0.30 -3.10 0.20 0.75 0.19 0.36 0.17
Parkinsons -1.83 0.24 -3.30 0.50 1.53 0.18 0.47 0.24
Schizophrenia -1.24 0.26 -2.40 0.23 1.50 0.20 0.59 0.29
Stroke -9.04 0.29 -9.40 1.25 0.26 0.08 0.08 0.08
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9.25 Change in average duration after clinical trial

subsidies

Table 9.19: Change in average duration between subsequent drug launches after clinical trial sub-
sidies.

30% change in c2 60% change in c2 90% change in c2

abs. abs. abs. abs. abs. abs.
Indication dif. dif. std. % dif. dif. dif. std. % dif. dif. dif. std. % dif.

Macular Degen -0.02 0.01 -1.07 -0.04 0.01 -2.69 -0.05 0.01 -3.61
Atherosclerosis -0.02 0.06 -0.43 -0.02 0.06 -0.45 0.00 0.06 0.04
Dermatitis -0.05 0.03 -1.65 -0.07 0.03 -2.43 -0.10 0.03 -3.17
COPD 0.00 0.04 0.14 -0.02 0.04 -0.58 -0.03 0.04 -0.88
Depression 0.00 0.01 0.16 -0.03 0.01 -1.81 -0.05 0.01 -3.16
Epilepsy -0.02 0.01 -1.49 -0.02 0.01 -1.84 -0.02 0.01 -2.07
Hepatitis B -0.03 0.01 -1.53 -0.05 0.01 -2.92 -0.06 0.01 -3.34
Diabetes I 0.06 0.06 1.36 -0.05 0.06 -1.08 -0.11 0.06 -2.45
Migraine -0.03 0.02 -1.34 -0.03 0.02 -1.37 -0.08 0.02 -3.54
Myelodysplastic -0.03 0.02 -1.79 -0.06 0.02 -3.19 -0.12 0.02 -6.34
Osteoarthritis -0.03 0.02 -1.46 -0.02 0.02 -1.19 -0.05 0.02 -2.36
Parkinsons -0.02 0.02 -1.06 -0.06 0.02 -2.77 -0.07 0.02 -3.56
Schizophrenia -0.02 0.01 -1.05 -0.04 0.01 -2.36 -0.05 0.01 -3.29
Stroke 0.03 0.07 0.69 -0.03 0.06 -0.66 -0.07 0.06 -1.35
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9.26 Strategic adjustments after clinical trial subsidies

Table 9.20: Change in strategic attrition for the 90% subsidy. The second (fifth) column provides
the difference (in percentage points) in average strategic attrition conditional on clinical trial success
after stage 1 (stage 2). The third (seventh) column provides the different (in percentage points)
in the equilibrium conditional choice probabilities (σ-s) averaged across all the states that appear
along the simulation paths after the policy change.

Stage 1 Stage 2
strategy/ strategy/ CCPs CCPs strategy/ strategy/ CCPs CCPs
success success change change success success change change

Indication std. std. std. std.

Macular Degen -3.68 0.11 -4.04 0.38 0.25 0.09 0.03 0.01
Atherosclerosis -3.87 0.17 -3.98 0.07 0.04 0.03 0.00 0.00
Dermatitis -4.17 0.12 -4.23 0.15 -0.04 0.06 0.01 0.00
COPD -3.35 0.15 -3.38 0.19 0.04 0.05 0.00 0.00
Depression -2.93 0.11 -3.12 0.25 0.22 0.11 0.04 0.02
Epilepsy -2.92 0.12 -3.24 0.54 0.44 0.10 0.06 0.04
Hepatitis B -2.72 0.13 -3.04 0.42 0.30 0.10 0.03 0.02
Diabetes I -5.05 0.16 -4.99 0.09 0.10 0.05 0.00 0.00
Migraine -2.71 0.15 -2.84 0.36 -0.13 0.08 0.01 0.01
Myelodysplastic -5.15 0.09 -5.51 0.18 0.20 0.06 0.02 0.01
Osteoarthritis -2.81 0.13 -2.81 0.31 0.20 0.08 0.01 0.01
Parkinsons -4.31 0.11 -4.49 0.25 0.11 0.07 0.02 0.01
Schizophrenia -3.14 0.12 -3.37 0.38 0.10 0.09 0.03 0.02
Stroke -4.08 0.13 -4.04 0.03 0.00 0.02 0.00 0.00
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9.27 Average rate change after the FDA regulation

change

Table 9.21: Change in average duration between subsequent drug launches after change in p2

Change in Change in % change
Indication duration, years duration, std. in duration

Macular Degen -0.04 0.01 -2.69
Atherosclerosis -0.10 0.06 -2.03
Dermatitis -0.05 0.03 -1.56
COPD -0.09 0.04 -2.72
Depression -0.03 0.01 -2.15
Epilepsy -0.02 0.01 -2.03
Hepatitis B -0.04 0.01 -2.19
Diabetes I -0.04 0.06 -0.90
Migraine -0.06 0.02 -2.48
Myelodysplastic -0.08 0.02 -4.23
Osteoarthritis -0.06 0.02 -3.02
Parkinsons -0.06 0.02 -2.92
Schizophrenia -0.03 0.01 -1.70
Stroke -0.23 0.06 -4.58
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