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Abstract 

To reduce the impacts of climate change, the US must shift to a carbon-free electrical grid, requiring 

increasing renewable energy generation. The implementation of a carbon-free electrical grid is investigated 

from multiple different aspects within this work, including wind turbine modeling, energy storage 

modeling, and techno-economic analysis of renewable energy and energy storage systems.  

To meet increasing wind energy generation goals, wind turbines may shift to downwind turbines, 

where the wind first hits the tower and then the rotor plane. The downwind turbine “tower shadow” effect, 

whereby blades experience a change in loading when they pass behind the tower, has not previously been 

studied with experimental field test data. Herein, a method was developed for simulating turbulent wind 

field conditions and used to compare wind turbine simulations to field test data. The tower shadow effect 

was simulated using the conventional Powles model and a new Eames model (developed herein). 

With increasing generation of variable renewable energy, the ability to provide energy when 

demanded by the grid is critical. The standard design metric for renewable energy systems, Levelized Cost 

of Energy, does not consider the value of energy when it is produced. Herein, a new metric is proposed, the 

Cost of Valued Energy (COVE), to better account for the time-varying value of energy generation. Energy 

storage can also be used to meet electrical demand, but further analysis is needed on how to pair energy 

storage with renewable energy. A techno-economic analysis of Liquid Metal Battery storage located with 

an offshore wind turbine was completed and found that adding storage can increase the relative value of 

the combined system.  

A low-cost, long-duration energy storage option, such as compressed air energy storage (CAES), 

is needed to provide sufficient energy stability for a fully renewable electrical grid. Increasing heat transfer 

during the compression and expansion processes through a method like droplet spray injection can increase 

the overall system efficiency of CAES. The key nondimensional parameters which control isothermal 

efficiency of CAES with spray injection are characterized herein, and paired compression and expansion 

1-D numerical simulations are used to investigate roundtrip efficiency. A theory-based equation for 

polytropic index was derived using a new nondimensional number, the Crowe number. High-efficiency 

direct spray injection designs were identified, and pre-mixed cases were also considered with 1-D and 2-D 

simulations. Future work is suggested to further improve spray injection CAES modeling and test high-

efficiency cases with experiments.  
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Chapter 

1. Introduction 

1.1. Motivation and background 

It is critical that the US and the world shift to a carbon-free electrical grid to reduce the impacts of 

climate change. The US is working towards that goal, and the US Energy Information Administration’s 

Annual Energy Outlook predicting rising renewable energy generation in the future energy mix. 

 

Figure 1-1. US electricity generation by source (in billion kWh) with future projections, from EIA [1]. 

Continuing to increase renewable generation at the necessary rate shown will require new, 

innovative renewable generation technology, with a focus herein on wind energy. Globally, wind energy 

already provides more than a quarter of the electricity consumption in three countries [2] and has already 

been deployed in many of the best wind resource areas. Potential areas for improvement of wind turbines 

to access new resource areas include increasing the size of the wind turbines, to increase the energy 

generation while taking advantage of economies of scale, and tapping into the offshore wind energy 

resource. 

One solution to increasing the size and reducing the cost of wind turbines may be to shift to 

downwind turbines, where the wind first hits the tower and then the rotor plane (illustrated in Figure 1-2); 

a number of downwind turbines have been designed recently [3–9]. However, downwind turbines must 

contend with the “tower shadow” effect, whereby blades experience a change in loading when they pass 

through the velocity deficit behind the tower. The current tower shadow model in use today has not been 
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evaluated with experimental field test data, and thus uncertainty remains about the impact of the tower 

shadow effect on downwind turbines.  

 

Figure 1-2. Downwind turbine schematic with wind direction shown for the SUMR-D rotor on CART-2 at the 

NREL Flatirons Campus outside Boulder, Co. (base webcam photo courtesy of Lee Jay Fingersh, NREL). 

 

With increasing generation of variable renewable energy, the ability to provide energy when 

demanded by the grid is critical. Constant power sources, or those that can provide power on demand, 

therefore are more valuable. Yet it is still standard to design renewable energy systems based on the 

Levelized Cost of the Energy (LCOE) of the system [10–17], which is the ratio of the annualized total costs 

of the system and the expected annual energy production. This approach does not take into account the 

value of the energy produced. To quantify the effect of spot market price variations and the increasing value 

of meeting grid demand, new metrics have been introduced in the literature, but none have become standard 

for energy system design. Choosing a metric that can capture both the cost and value of a system is critical 

to designing an optimal renewable generation system.  

While valuing renewable energy sources that better align with grid demand is important, energy 

storage will also be a vital part of meeting electrical demand as the US transitions to a carbon-free electrical 

grid. The hourly US electrical generation in different references cases are shown in Figure 1-3 from the US 

EIA [1]. Both future reference cases utilize battery and pumped hydro storage for load shifting during the 

day.  
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Figure 1-3. Hourly US electricity generation and grid load by fuel source (in billion kWh), from EIA [1]. 

 

Analysis will be needed on how to pair energy storage technologies with renewable energy 

generation to meet grid demand in an economical way. Renewable energy does not always align well with 

times of electricity demand, and overproduction of renewable energy may even reduce spot market prices. 

For example, the relative value of wind energy has been found to decrease when it becomes a larger fraction 

of the grid generation [18,19]. To combat this reduced value, long-duration energy storage can be used to 

shift generation to times when demand is high [20], but this will require a low-cost energy storage solution 

which can provide storage for hours or even days. In this future, renewable energy could increase its value 

significantly by pairing with storage systems, allowing it to participate in capacity markets, energy 

arbitrage, and auxiliary services.  

There are limited options for energy storage, however, and most energy storage options are only 

able to handle peak loads or inter-day load shifting, as illustrated in Figure 1-3. A sample of energy storage 

options are shown in Figure 1-4, where it can be seen that battery storage and pumped hydro storage are 

able to handle short durations at low cost, but compressed air energy storage (CAES) is one of the few 

energy storage options available for low-cost, long-duration energy storage.  
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Figure 1-4. Energy storage system (ESS) cost and discharge duration, adapted from [21]. 

 

CAES generally suffers from low efficiency relative to batteries and other forms of storage [21], 

so additional research is needed to increase the efficiency of CAES systems. Increasing the heat transfer 

during the compression and expansion processes through a method like spray injection can approach 

isothermal CAES and increase the overall system efficiency without requiring fossil fuels or thermal storage 

systems. No studies have as of yet considered a fundamental characterization of the key nondimensional 

parameters which control isothermal efficiency with droplet spray injection. Additionally, the impact of 

spray work and paired compression and expansion systems for roundtrip efficiency are critical for high-

efficiency CAES designs.  

1.2. Objectives 

The objectives of this dissertation can be broken down into three main thrusts:  

1. Downwind turbine modeling (Ch. 2-3) 

2. Techno-economic analysis of wind energy and storage (Ch. 4-5) 

3. Spray injection for isothermal CAES (Ch. 6-9) 

Cumulatively, this dissertation attempts to move the literature one step closer to a carbon-free 

electrical grid, both in terms of generation technologies (by way of wind turbine modeling) and in terms of 

energy storage deployment (by way of CAES modeling and techno-economic analysis). The major aims of 

the research chapters are as follows: 
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 Chapters 2-3: develop a method for modeling field test conditions and quantifying the tower 

shadow effect, and then compare a newly proposed tower shadow model to the traditional model, 

 Chapter 4: examine the importance of time-dependent generation value and propose a new metric, 

COVE, for renewable system design, 

 Chapter 5: complete a techno-economic analysis of a wind turbine combined with a new form of 

energy storage, Liquid Metal Batteries, 

 Chapters 6-8: investigate spray injection for high-efficiency CAES by way of nondimensional 

compression analysis, roundtrip efficiency, spray work, and direct injection vs. pre-mixed 

compression. 

The main body chapters are written as self-contained research articles, and each contains a brief literature 

review relevant to that chapter’s topic. Finally, Chapter 9 includes a summary, conclusions, and key 

contributions of this dissertation, as well as recommendations for future work.  
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Chapter 

2. Simulating field test conditions of a downwind turbine for 

tower shadow analysis 

 

Abstract 

Downwind wind turbines may be the future direction of large wind turbines, given their ability to have 

flexible, lightweight blades with much lower risk of tower strike. However, downwind turbines must deal 

with the “tower shadow” effect, whereby blades experience a velocity deficit as they pass through the tower 

wake, resulting in additional bending moments. The tower shadow effect is studied herein using field test 

data from a novel demonstrator turbine as well as simulations in OpenFAST using the Powles wake model. 

A method for simulating the turbulent wind field conditions using meteorological tower data is developed 

and applied to the turbine in operational conditions. The results show that the tower shadow effect is 

reasonably captured by OpenFAST, and that the strongest tower shadow effects on flapwise operational 

loads generally occur at wind speeds above the turbine rated wind speed. 
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Nomenclature 

𝛽 = crosswind angle  

𝜙 = pitch angle 

τ = shaft tilt 

𝜃𝑇 = twist angle 

𝐶𝐷 = drag coefficient 

d = distance (m) 

It = turbulence intensity  

M = bending moment (kN-m) 

r = tower radius (m) 

uwake = nondimensional wind speed deficit 

u = nondimensional wind speed, x-direction 

U = wind speed, x-direction (m/s) 

V = wind speed, y-direction (m/s) 

W = wind speed, z-direction (m/s) 

x = nondimensional distance, x-direction 

X = distance, x-direction (m) 

y = nondimensional distance, y-direction 

Y = distance, y-direction (m) 

(   )̅̅ ̅̅̅ = average 

Subscripts 

∞ = undisturbed flow 

B = blade 

EW = edgewise 

FAST = OpenFAST 

FW = flapwise 

L = local airfoil 

local = local wind 

IP = in plane 

met = meteorological tower 

OoP = out of plane 

X = X-direction 

Y = Y-direction 

 

2.1. Introduction 

Wind energy produced 8.3% of U.S. electrical energy in 2020, and the average wind turbine 

capacity, rotor diameter, and hub height all continue to grow each year [22]. While larger wind turbines are 

often economically attractive, as they tend to have a reduced levelized cost of energy, they also have a 

greater risk of tower strike, where high loads force the blades to bend backwards until they strike the tower. 

The structural requirements to prevent these deflections lead to an increase in blade mass and cost, an issue 

that is exacerbated as turbines get larger and blades get more flexible. One solution to reduce blade mass 

(which reduces overall turbine cost) is to employ downwind turbines, where the wind first hits the tower 
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and then the rotor plane, deflecting the blades away from the tower and reducing tower strike risk. While 

not currently commercially produced, a number of downwind turbines have been designed recently, with 

increasingly large rotors [3–9]. Because of their potential benefits, especially as turbine sizes get larger, 

downwind turbines may be more commonplace in the future due to their ability to produce lighter rotors 

and thus less costly designs [23–25]. A new generation of large downwind turbine designs would likely 

include highly flexible blades [26]. When designing these flexible wind turbine rotors, it is important to 

include a high-temporal- and high-spatial-resolution 3-D turbulent wind field with shear since the field has 

a significant effect on the turbine response and loads [27]. 

However, a key question regarding downwind turbines is the influence of the “tower shadow” effect 

on transient blade loads. The effect occurs when the blades pass through the wake of the tower and 

experience a velocity deficit leading to a sudden change (typically a drop) in lift and therefore flapwise 

loads, shown in Figure 2-1. If this load unsteadiness is severe, it can cause increased blade fatigue. The 

degree of influence of tower shadow on blade loads is a strong function of blade flexibility [28]. Therefore, 

it is important to understand this effect for flexible blades on large turbines so that they can be optimally 

designed. To decrease the effect of tower shadow, previous studies have investigated the use of tower 

fairings as compared to a standard cylindrical tower, but only at lab scale [29]. Models for tower shadow 

effect have been developed, but these are generally based on a steady-state wind velocity deficit for the 

tower wake, so it is difficult to determine their fidelity for field operation. To date, there have been no 

published experimental field test data results for downwind flexible blades that evaluate the performance 

of tower shadow models and demonstrate the tower shadow effect. Previous work studying the tower 

shadow effect has focused on wind tunnel data from the Unsteady Aerodynamics Experiment (UAE) Phase 

VI downwind turbine with stiff blades [30], which did not include field testing, flexible blades, or a large 

cone angle. 
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Figure 2-1. General effect of tower shadow (TS) on wind turbine blade root bending moment in steady wind, 

plotted versus azimuth angle. The tower shadow effect tends to significantly reduce root bending moments 

after passing the tower at 180° and then results in residual ringing in the blade. 

The objectives of this study are threefold: 1) post-process field test measurements of a downwind 

turbine with flexible blades consistent with that of large turbines [31,32], 2) develop a method for 

replicating the field test conditions for computational simulation comparison, and 3) compare field test data 

to simulation predictions of blade bending moments. To the author’s knowledge, this is the first reported 

turbine field test with a downwind rotor that has flexible blades consistent with large-scale turbines (e.g., a 

rated power greater than 10 MW) to consider the impact of tower shadow on blade root bending moments. 

It is also the first to establish a numerical approach that converts the measured inflow wind field into an 

unsteady 3-D numerical field for simulated aeroelastic response. The field test data, the wind field 

simulation method, and the resulting tower shadow model assessment can all be important in helping design 

future generations of extreme-scale downwind turbines. 

2.2. Experimental Methods 

A novel two-bladed downwind rotor concept was developed known as the Segmented Ultralight 

Morphing Rotor (SUMR-13) with a 13 MW rated power design [3,7,33]. The SUMR-13 concept has two 

lightweight, flexible blades in a coned downwind configuration. A demonstrator rotor at one-fifth scale 

designated as the SUMR-Demonstrator turbine (SUMR-D) was designed and built with gravo-aeroelastic 

scaling methods [5,32,34,35] to replicate the full-scale 13 MW SUMR blade aeroelastic effects, with details 

in Table 2-1. In particular, the SUMR-D blade was specifically designed to have nondimensional blade 

flexibility, nondimensional flapwise deflections, and nondimensional dynamics (tip speed ratio, ratio of 

flapwise frequency to rated rotational frequency, etc.) that are consistent with the SUMR-13 design 
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[31,32,36]. The SUMR-D rotor was installed on the Controls Advanced Research Turbine (CART2) at the 

National Renewable Energy Laboratory’s (NREL) Flatirons Campus near Boulder, Colorado. The blade 

design and fabrication was required to account for the NREL wind turbine testing guidelines and site 

conditions (where wind can reach up to 45 m/s). The high wind conditions were accommodated by 

increasing the blade stiffness while ensuring the mean and root mean square (rms) of the nondimensional 

blade deflection (normalized by blade length) were generally maintained for winds between 50% and 200% 

of the rated wind speed. The design and test setup of the SUMR-D turbine are detailed in [35].  

Table 2-1 SUMR-D Parameters 

Metric Value 

Blades 2 

Rotor radius 22.25 m 

Tower diameter 2.2 m 

Hub height 36.6 m 

Blade mass 990 kg 

Flapwise frequency 1.13 Hz 

Tip speed ratio 9.5 

Coning angle 12.5° 

Tilt angle 3.77° 

Cut-in wind speed 3 m/s 

Rated wind speed 5 m/s 

Cut-out wind speed 11 m/s 

 

The NREL Flatirons Campus wind conditions wind rose is shown in Figure 2-2, sampled from 

2014 to 2017 at the CART2 meteorological (met) tower. The strong prevailing wind direction at 292° (based 

on wind flow through a nearby canyon) allowed for an upwind met tower (along the same direction) to 

capture incoming wind characteristics.  
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Figure 2-2. Wind rose with 1-minute average wind speed (m/s) and direction at 50 m from 2013 to 2017 for 

December to June at National Renewable Energy Laboratory Flatirons Campus [37]  

 

NREL engineers collected turbine field test data during fall 2019 and spring 2020. Wind speed and 

direction are most consistent during these seasons and therefore allow for full test matrix capture. The 

CART2 data collection system outputs continuous 5-minute data files, sampling data at 400 Hz, which 

includes but is not limited to rotor speed, rotor azimuth angle, nacelle yaw, and blade pitch. The SUMR-D 

rotor, mounted on the CART2, was outfitted with strain gauges in both the flap and edge directions near 

the root (at 48 cm outboard of the root) and approximately mid-span (at 13.2 m outboard of the root). The 

hub height of the CART2 is 36.6 m. A meteorological tower is located 86 m upwind of the turbine and 

recorded key inflow conditions. Cup anemometers at multiple heights (15 m, 36 m, 58 m) on the tower 

measure wind speed for wind shear estimates and a sonic anemometer at hub height measures wind velocity 

in three directions. The ability to accurately model vertical wind shear in simulations is important since 

wind shear is known to have multiple effects on turbines, including increasing bending moments of upwind 

turbines [27] and decreasing the tower shadow effect on blade loads of downwind turbines [38]. Using the 

inflow wind direction, the nacelle yaw error (turbine direction relative to that of the incoming wind) was 

also recorded at the CART2 turbine. The horizontal turbulence intensity (𝐼𝑡) of the horizontal wind speed 

time-series (𝑈ℎ𝑜𝑟𝑖𝑧) at the CART2 test site was calculated based on the following equations, using x-

direction (𝑈𝑚𝑒𝑡) and y-direction (𝑉𝑚𝑒𝑡) data from a three-directional sonic anemometer.  
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𝑈ℎ𝑜𝑟𝑖𝑧 = √𝑈𝑚𝑒𝑡
2 + 𝑉𝑚𝑒𝑡

2   (2-1a) 

𝜎𝑈,ℎ𝑜𝑟𝑖𝑧 = √
1

𝑁
∑ (𝑈ℎ𝑜𝑟𝑖𝑧,𝑖 − 𝑈ℎ𝑜𝑟𝑖𝑧

̅̅ ̅̅ ̅̅ ̅̅ )
2𝑁

𝑖=1
 (2-1b) 

𝐼𝑡 =
𝜎𝑈,ℎ𝑜𝑟𝑖𝑧

𝑈ℎ𝑜𝑟𝑖𝑧
̅̅ ̅̅ ̅̅ ̅̅

 (2-1c) 

The turbulence intensity is calculated as the ratio of the standard deviation about the mean of 

instantaneous horizontal wind speed (𝜎𝑈,ℎ𝑜𝑟𝑖𝑧) to the mean horizontal wind speed (𝑈ℎ𝑜𝑟𝑖𝑧
̅̅ ̅̅ ̅̅ ̅̅ ). The turbulence 

intensity for the wind input files seen by the demonstrator turbine is representative of common field 

turbulence, as seen in Fig. 2-3 with representative lines for International Electrotechnical Commission 

(IEC) Class A, B, and C wind fields.  

 

 

Fig. 2-3 Turbulence intensity of each 5-minute field test data set versus mean wind speed. IEC wind 

turbulence classes provided for reference [39]. Adapted from Simpson et al. [40]. 
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2.3. Computational Methods 

A. Tower Shadow Models 

One of the most prevalent tower shadow models used for wind turbines is the Powles velocity 

deficit model, which was developed based on wind tunnel tests for an isolated tower [38]. The Powles 

model is the primary option used in OpenFAST, a commonly employed simulation tool developed by 

NREL for the modeling and design of wind turbines [41]. The original Powles model allowed shadow width 

and depth to be independent variables in order to predict the wake characteristics. In the current 

aerodynamic module of OpenFAST, AeroDyn15 [42], the shadow width and depth are determined in 

combination based on an input tower drag coefficient (𝐶𝐷) prescribed by the user [43]. The relationship for 

the local wind velocity behind the tower (𝑈local) is reduced by a nondimensional fraction (𝑢wake) relative 

to the undisturbed velocity at the tower plane that excludes the tower disturbance (𝑈∞). The nondimensional 

wake deficit is related to the dimensionless wake distance (d), which is measured from a location in the 

wake to the tower center and is defined using the dimensionless x and y positions. These x and y positions 

are based on the dimensional streamwise and spanwise directions (X and Y) referenced to the tower center 

and normalized by tower radius (r) as   

𝑈𝑙𝑜𝑐𝑎𝑙 = (1 − 𝑢𝑤𝑎𝑘𝑒) 𝑈∞ (2-2a) 

𝑢𝑤𝑎𝑘𝑒 =
𝐶𝐷

√𝑑 
cos2 (

𝜋

2

𝑦

√𝑑 
) (2-1b) 

𝑑 = √(𝑥2 + 𝑦2) (2-1c) 

𝑥 = 𝑋/𝑟 (2-1d) 

𝑦 = 𝑌/𝑟 (2-1e) 

In these expressions, the X coordinate is downwind (in the direction of the local undisturbed velocity (𝑈∞) 

and the Y coordinate is perpendicular in the cross-sectional plane as shown in Figure 2-4. The wake 

unsteadiness effects due to turbulent shedding are not included in this model. 
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Figure 2-4.Diagram of tower shadow parameters from AeroDyn theory manual [43] 

 

B. OpenFAST Model for SUMR-D 

Simulations of the SUMR-D wind turbine were completed in the current version of OpenFAST 

[41]. A “Digital Twin” model of the SUMR-D rotor was used in the simulations and is further documented 

in Chetan et al. [44]. The SUMR-D model uses the as-designed airfoils, which likely results in some small 

deviations from the as-built airfoils flown on the CART2 during the experiment. Aerodynamics simulations 

in OpenFAST were completed using the AeroDyn15 module with the tower shadow velocity deficit using 

the Powles model (Eq. 2-2) turned on. The tower drag coefficient was set to 0.7 at all stations along the 

tower length based on supercritical cylinder drag [45]. To compare OpenFAST simulations to the root 

bending moment data available from the CART2, OpenFAST blade bending moments were output at a 

node located at approximately 48 cm, the location of the strain gauges on the experimental setup. 

C. Generating Turbulent Wind Field Files  

TurbSim v2 was developed by NREL [46] and used herein to simulate 3-D turbulent wind field 

files to represent the field testing conditions as closely as possible. TurbSim v2 allows for time-series wind 

speed input in three directions, along with other wind field parameters. For each field test turbine data file, 

the wind field conditions were used to build a comparable TurbSim file for use in OpenFAST simulations. 

The three-directional sonic anemometer data from the met tower at 36 m was used as the time-series wind 

speed input to build the wind field files. 

The time series of the horizontal wind components measured by the sonic anemometer are defined 

as Umet and Vmet wind speeds, which are in the Xmet and Ymet directions, where Xmet is the coordinate that is 

along the direction of the met tower toward the turbine (seen in Figure 2-5). For consistent simulations over 

a range of inflow angles, it is important to rotate these velocities into a coordinate system that is aligned 

with the mean flow. Therefore, the horizontal wind components were rotated so that the computational 

inflow direction for OpenFAST aligned with observed mean wind flow direction (eliminating mean 
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crosswind in the wind field file). The OpenFAST input wind field has a mean inflow angle that aligns with 

U-direction flow, and crosswinds are accounted for by setting a yaw error that corresponds to the field test 

inflow conditions. To accomplish this, the mean crossflow angle relative to the met tower direction () was 

obtained and used to define rotated time-series wind speeds (U and V) in the OpenFAST coordinate system 

(X and Y). Figure 5 shows the original and rotated coordinate systems.  

𝛽 = mean [tan−1 (
𝑉𝑚𝑒𝑡

𝑈𝑚𝑒𝑡
)]  

 
(2-3) 

𝑈 = cos(−𝛽) 𝑈𝑚𝑒𝑡 − sin(−𝛽) 𝑉𝑚𝑒𝑡  (2-4a) 

𝑉 = sin(−𝛽) 𝑈𝑚𝑒𝑡 + cos(−𝛽) 𝑉𝑚𝑒𝑡  (2-4b) 

𝑊 = 𝑊𝑚𝑒𝑡  (2-4c) 

 

 

Figure 2-5. Wind field coordinate systems for a hub-height horizontal plane at the wind site showing the 

velocity components at the sonic anemometer and those used for OpenFAST, which are rotated to be 

consistent with the mean wind speed, while the yaw error is based on the difference between the 

instantaneous wind velocity direction and the turbine hub axis. 

 

The nacelle yaw error (𝜓error) is based on the difference between the instantaneous wind direction 

and the hub axis of the turbine. Since the turbine yaw angle was often influenced by the wind field 

conditions before the start of each data set, and only data sets with less than 10° of yaw range were 

simulated, the simulated turbine yaw was fixed at the average measured nacelle yaw error of the CART2 

turbine for a given simulation to ensure similar variations for the unsteady inflow wind angles. The rotated 
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3-D wind speed time series was also down-sampled from 400 Hz to 20 Hz to reduce computational time 

and memory. 

An example 100 s of wind speed data are plotted in Figure 2-6, showing the meteorological tower 

velocity components (Umet and Vmet) and those used in the OpenFAST simulation (UFAST and VFAST). While 

the combined wind speed is held constant, the U and V wind directions for the OpenFAST simulations were 

both rotated such that VFAST has an average speed of zero and UFAST is the mean wind direction. As such, 

the rotated OpenFAST wind field captures both the mean wind speed and time-dependent variations of the 

CART2 wind field data.  

 

 

Figure 2-6. Wind speed time series from CART2 met tower (black) and used for OpenFAST (blue) where U 

and V directions are rotated so there is zero mean crosswind (VFAST averages to zero). 

 

Each time series data set from the CART2 was 300 s long. However, it is common to remove the 

first 100 s or so of an aeroelastic simulation to eliminate the influence of initial conditions and numerical 

transients. Therefore, an additional 100 s of “dummy” wind speed data were added to the beginning of the 

300 s of true time series data. These dummy data are used to initialize the simulation and then are removed 

before data analysis. To ensure that these additional data have similar turbulence characteristics and do not 

have any discontinuities at the interface with the true 300 s data, the dummy data are reflected in time 

relative to the interface time (at to=100 s). For example, the U component used for OpenFAST as a function 

of time is given as 
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 𝑈𝐹𝐴𝑆𝑇(𝑡) = 𝑈(𝑡)   for 100 s  t  400 s  (true data) (2-5a) 

 𝑈𝐹𝐴𝑆𝑇(𝑡) = 𝑈(2𝑡0 − 𝑡)   for  s  t  100 s  (dummy initial data) (2-5b) 

Similar time reversals were used for the V and W data sets.  The FAST cases were then run starting at t=0 

s but only the data for 100 s  t  400 s was used to evaluate the tower shadow effect. 

The mean wind shear was found by fitting a power law curve to the mean wind speeds from the 15 

m, 36 m, and 58 m cup anemometers on the upstream met tower, which provides the gradient in the mean 

wind velocity as given in Figure 2-7a. The rotated wind time series, wind shear, average wind speed, and a 

random seed for each run were input to TurbSim v2 to provide the unsteady wind field files for each wind 

speed component as shown by Figure 2-7b.  

 

 

Figure 2-7. TurbSim generated wind field files derived from CART-2 sonic anemometer wind data from 

upstream met tower, where a) shows the mean wind speed (�̅�) at the rotor plane indicating vertical shear, 

and b) shows the U, V, and W components of wind speeds at the hub height as a function of time and lateral 

distance. The first 100 s of “dummy” data are used to initialize the simulation where there is reflected 

symmetry of the input data about 100 s, but the simulated data is otherwise random. 
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D. Blade Coordinate Transformations 

The bending moment data from the experimental CART2 turbine and from OpenFAST simulations 

use different coordinate systems and must be transformed into a consistent coordinate system for 

comparison.s Further documentation on the coordinate systems used herein can be found in the OpenFAST 

User Guide [47]. The CART2 blade strain gauges are oriented with the blade coordinate system, as in Figure 

2-8a. Since the root of the blade is nearly circular in cross section, the root coordinate system is defined 

based on an outboard airfoil with zero twist. The output OpenFAST bending moment data at nodes along 

the blade (like at 48 cm) are based on the local airfoil coordinate system, which includes significant twist 

near the root of the blade, as in Figure 2-8b. In particular, the experimental and computational bending 

moments were both converted into in-plane and out-of-plane moments (MIP and MOoP), which are defined 

relative to the rotational plane defined by the rotor (perpendicular to the rotor hub axis). For the CART2 

data, the root flapwise and edgewise bending moments of the blade coordinate system (MFW and MEW) are 

converted to MIP and MOoP via the blade pitch (𝜙, of Figure 2-8a) as  

 𝑀𝑂𝑜𝑃 = 𝑀𝐹𝑊 cos(𝜙) − 𝑀𝐸𝑊 sin(𝜙) (2-6a) 

 𝑀𝐼𝑃 = 𝑀𝐸𝑊 cos(𝜙) +𝑀𝐹𝑊 sin(𝜙) (2-6b) 

When considering the moments at an outboard airfoil station, one must consider the local airfoil 

coordinates (XL and YL) where YL is defined to be along the blade chord length which rotates with local twist 

(𝜃𝑇) as shown in Figure 2-8b.  The local bending moments defined with these coordinates (MX,L and MY,L) 

can be transformed to In Plane (IP) and Out of Plane (OoP) moments based on the pitch and the local twist 

as  

 𝑀𝑂𝑜𝑃 = 𝑀𝑌,𝐿 cos(𝜃𝑇 + 𝜙) − 𝑀𝑋,𝐿 sin(𝜃𝑇 + 𝜙) (2-7a) 

 𝑀𝐼𝑃 = 𝑀𝑌,𝐿 sin(𝜃𝑇 + 𝜙) + 𝑀𝑋,𝐿 cos(𝜃𝑇 + 𝜙) (2-7b) 

The local twist at 48 cm outboard on the blade is 34.3°. 
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Figure 2-8.  Diagram of different coordinate systems and axes for bending moments referenced a) at the root 

with the rotor blade coordinate system (XB and YB) which depends on blade pitch (𝝓), and b) for an outboard 

airfoil along the span with local airfoil coordinate system (XL and YL) which further varies due to local twist 

(𝜽𝑻).  

 

2.4. Results and Discussion 

Typical results comparing SUMR-D field test data from the CART2 to OpenFAST simulations are 

displayed in Figure 2-9 for a range of mean wind speeds. Since the rated wind speed for this scaled turbine 

is approximately 5 m/s (based on gravo-aeroelastic scaling), Figure 2-9a-b are below rated conditions 

(Region 2 operation) while Figure 2-9c-d are above rated conditions (Region 3 operation). Time-series 

bending moment data from the unsteady field test and simulation are plotted versus blade azimuth angle 

for each 5-minute interval. In addition, azimuthal averages (whereby all data at a given azimuthal angle are 
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averaged together) for the same interval are shown by the black solid line for CART2 data and by the blue 

dashed line for OpenFAST predictions.  

Considering first the experimental data, the tower shadow effect is more apparent in Region 3 

(Figure 2-9c-d) than in Region 2, as evidenced by the larger relative dip occurring at an azimuthal angle of 

180°. This indicates that the design impact of tower shadow may need to focus on Region 3 conditions.   

 

Figure 2-9. Blade 1 out-of-plane (OoP) bending moment data and azimuth-averaged mean for SUMR-D from 

experimental field test (blue, dashed) and OpenFAST simulations with comparable wind field (gray, solid). 

Each graph contains 5 minutes of data, with (a,b) below rated wind speed and (c,d) above rated wind speed. 

The location of the tower at 180° azimuth angle is denoted with a dotted vertical line.  

The OpenFAST simulations generally capture the mean out-of-plane bending moments of the field 

test data in terms of the azimuthal averages as well as the general degree of variations about these azimuthal 

averages. In most cases, the mean bending moments are similar between simulations and experiments, 

indicating that the OpenFAST model for SUMR-D is a good representation of the real rotor. However, there 

are some significant differences between OpenFAST simulations and the experiments, in terms of both the 
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azimuthally averaged moments (e.g., the large offset in Figure 2-9b) and the fluctuations about those 

averages for instantaneous dynamics.  

In Region 2, OpenFAST overpredicts the azimuthally averaged tower shadow dip compared to the 

experimental CART2 data. Limited wind field data, particularly in this turbulent setting, may be resulting 

in inaccurate wind field simulations. In addition, Simpson et al. [40] noted that OpenFAST tower shadow 

predictions should consider uncertainty associated with tower drag coefficients since the Reynolds numbers 

place this flow in the critical drag regime, which may be another cause for an overprediction of tower 

shadow dip in Region 2. 

In Region 3, the magnitude of the azimuthally averaged tower shadow dip after passing the tower 

is reasonably captured by the OpenFAST simulations, but there are differences in the “ringing” of the blade 

(the oscillations of the black solid and black dashed lines in Figure 2-9c-d). In particular, the experimental 

data has a less-sharp moment return after the original dip, but continues to have significant oscillations to 

360°, whereas the OpenFAST predicted oscillations are largely damped by 300°. Furthermore, the 

experimental ringing continues after passing 0° and is generally enhanced at that point (which is attributed 

to the time the opposite blade passes behind the tower). This indicates that the SUMR-D rotor may be less 

damped and more strongly coupled than predicted by OpenFAST. The differences indicate that the actual 

overall structural dynamics of the rotor are more complex and more coupled than modeled.  

In terms of the fluctuations about the azimuthally averaged moments, the OpenFAST simulations 

generally predict similar data spreads as seen in the experiments. However, the predictions could be further 

improved by providing time-series wind speed data at more points in the wind field to better train the 3-D 

TurbSim wind field to match the test conditions.  

2.5. Conclusions 

Data from a field turbine test with a rotor that has flexible blades and a cone angle consistent with 

large-scale (>10 MW) downwind turbines were obtained to investigate the impact of tower shadow on blade 

root bending moments. In addition, a numerical method was developed herein to represent the turbulent 

wind conditions for field test operation within the OpenFAST framework as an unsteady 3-D numerical 

field for simulated aeroelastic response. This procedure could be used to create high-fidelity turbulent wind 

field files for other field test comparisons, though it is recommended that wind speed time series data are 

gathered at multiple locations to improve the fidelity of the wind field file. The tower shadow effect was 

assessed on a downwind demonstrator turbine by comparing OpenFAST simulations, using the Powles 

tower shadow model, to field test data in terms of out-of-plane bending moments. Though the effect of 

tower shadow can be difficult to see among inflow turbulence for the instantaneous data set, the model 
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appears to qualitatively capture the tower shadow effect in Regions 2 and 3 for the azimuthally averaged 

profile. These results indicate that the OpenFAST model can generally predict the effects of tower shadow, 

though further improvements to the wind field modeling and the structural model of the rotor (including 

blade and tower coupling) may increase the fidelity of the results. 
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Chapter 

3. Influence of tower shadow on downwind flexible rotors: 

field tests and simulations 

Abstract  

As wind turbine rotors become larger, the blades become more flexible, requiring extra stiffness and cost 

to avoid the risk of tower strike. Wind turbines in a downwind configuration have a reduced risk of tower 

strike because the rotor thrust acts away from the tower. However, downwind blades pass through the wake 

of the tower and the resulting load variation may contribute to blade fatigue. To date, there have been no 

field tests to quantify this tower shadow effect on unsteady blade moments. The present study reports on 

the first field testing of a flexible, downwind, coned rotor and compares the experimental data against 

simulations run in OpenFAST.  The tower shadow effect is simulated using the conventional Powles model 

and a new Eames model (developed herein), which includes the influence of upstream turbulence. Both 

models reasonably predict the blade root out-of-plane bending moment data and the tower shadow dip 

magnitude when compared to field test data in Region 3. Tower shadow was found to increase the short-

term Damage Equivalent Loads (DEL) by less than 10% compared to other effects (gravity, shear, and 

turbulence), and the predictions were consistent with experiments. These results indicate that the tower 

shadow effect can be reasonably modeled with simpler Powles model and that the tower shadow effect can 

be small compared to the effect of turbulence.  However, long-term fatigue due to tower shadow should be 

included in detailed structural analysis and design of the rotor and the tower.    
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Nomenclature 

𝜎 = standard deviation 

𝜇 = overall mean wind speed 

𝐶𝐷 = drag coefficient 

d = distance 

𝐼𝑡 = turbulence intensity 

r = tower radius 

𝑅𝑒 = Reynolds number 

uwake = wind speed deficit, non-dimensionalized by 𝑈∞ 

u = x-direction wind speed, non-dimensionalized by 𝑈∞ 

U = wind speed, x-direction 

V = wind speed, y-direction 

W = wind speed, z-direction 

x = x-direction distance, non-dimensionalized by 𝑟 

X = distance, x-direction 

y = y-direction distance, non-dimensionalized by 𝑟 

Y = distance, y-direction 

 

(   )̅̅ ̅̅̅ = average 

( )̂  = predicted value 

( )∞ = undisturbed wind flow (far upstream of the turbine) 
( )𝑙𝑜𝑐𝑎𝑙  = local wind speed 

( )𝑢𝑝 = wind speed just upwind of the tower 

 

 

3.1. Introduction  

Offshore wind turbines are becoming more common with global offshore wind installations 

growing each year [48]. While there are currently only 42 MW of commercial wind energy operating 

offshore in the US, the cumulative installed offshore wind capacity in the US is expected to be 11 GW or 

higher by 2030[48]. In general, offshore turbines are being designed with high turbine power (≥10 MW), 

such as the General Electric Haliade-X turbine which ranges from 12 MW to 14 MW rated power.  These 

larger wind turbines are able to reduce the cost of energy by taking advantage of economies of scale. 

However, these large blades are inherently more flexible and thus upwind rotors run an increased risk of 

tower strike, where the blades may bend backwards during operation (due to aerodynamic thrust forces) 

and contact the tower. Downwind turbines can reduce the risk of tower strike because the thrust forces drive 

the blades away from the tower, and thus downwind turbines may provide an opportunity for increasing 

rotor diameter with lightweight blades [49–51].  

While downwind turbines are advantageous to increasing the rotor diameter, there is an 

aerodynamic disadvantage which must be considered. As the blades pass behind the tower, they experience 

the tower shadow effect in the tower wake, as shown in Figure 3-1. The blades undergo a velocity deficit 

in the tower wake compared to the undisturbed incoming air velocity, and the resulting unsteady 
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aerodynamics can lead to blade fatigue and noise. Downwind turbine designers should generally consider 

three critical issues: 

1) Aerodynamic performance and rotor mass: Downwind turbines (compared to upwind turbines) tend 

to have lower rotor masses due to flapwise load alignment but can have a reduction in annual energy 

production due to a decreased swept area caused by downwind aeroelastic deflections [52,53].  

2) Low-frequency noise: Downwind turbines have been known to emit a low-frequency “thumping” 

noise that is louder than upwind turbines[54]; this can be an important issue for onshore wind farms 

(but may be less of an issue for offshore wind farms). 

3) Fatigue: Increased structural fatigue for downwind turbines due to tower shadow has been 

identified as a potential issue that should be considered in structural design[52], but it is unclear if 

the current wake deficit models for tower shadow can capture the unsteady blade load impact for 

field conditions. 

 

 

Figure 3-1. Downwind turbine tower shadow diagram, where freestream wind (𝑼∞) is reduced at the tower 

plane to (𝑼𝒖𝒑) and then the rotor plane sees 𝑼𝒍𝒐𝒄𝒂𝒍 with a velocity deficit behind the tower and a complex 

wind field. 

There has been little experimental data to analyze the tower shadow effect on downwind turbines. 

Previously, the only publicly available dataset from a downwind turbine field test was from the Unsteady 

Aerodynamics Experiment (UAE) turbine developed and tested by the National Renewable Energy 

Laboratory (NREL). The UAE turbine Phase VI was a downwind turbine with stiff blades, tested at the 

NASA Ames Research Center wind tunnel [30]. Hitachi tested the SUBARU 80/2.0 2 MW downwind 

turbine [55,56], but have not published in full the field test data. Wind tunnel tests by Wang et al. visualized 
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the flow field behind a downwind turbine, but did not capture blade bending moment data [57]. No field 

test data exists for flexible downwind rotors, a current design direction of large wind turbines, which are 

expected to react differently to the tower shadow effect than stiff rotors. Without experimental data, tower 

shadow models are difficult to validate.  

Since there have been no previous field experiments for flexible rotors, the influence of tower 

shadow for large downwind systems has been based on wind tunnel tests and simulations. In such 

simulations, tower shadow only appears to marginally increase blade fatigue[58], and the trends indicate 

that the effect is reduced for lighter and more flexible blades[59]. 

To provide experimental data to compare with numerical tower shadow models, a 1/5th-scale gravo-

aeroelastic model was developed based on the Segmented Ultralight Morphing Rotor 13-MW (SUMR-13) 

turbine and is denoted as the SUMR Demonstrator (SUMR-D) [60–62]. The SUMR-13 turbine was 

designed as a flexible, downwind, load-aligned rotor [49,50,53,63]. This design showed that the rotor mass 

and the swept area are both reduced as is common for downwind turbines, but that the combination can 

reduce LCOE. The SUMR-D demonstrator turbine allows for the first field test data of a downwind flexible 

rotor. In terms of low frequency noise, NREL turbine operators standing outside reported minimal audible 

noise and no “thumping” from the SUMR-D rotor during testing (L. J. Fingersh, personal communication, 

2019). As such, two of the three critical issues for downwind turbines (mentioned above) have been 

characterized but the effect of tower shadow has not been considered. 

One common software for modeling wind turbines is OpenFAST[64], developed by the National 

Renewable Energy Laboratory (NREL). For tower shadow, OpenFAST uses a variation of the Powles 

model, a steady-state velocity deficit model based on wind tunnel tests (with negligible upstream 

turbulence) for an isolated tower [65]. Tower shadow is applied in OpenFAST’s aerodynamic subroutine, 

AeroDyn15 [66]. This variation of the Powles tower shadow model includes the tower drag coefficient (𝐶𝐷) 

as the only input and gives a cos2-shaped velocity deficit behind the tower.  

Other tower shadow models and methods have been suggested over time, but none have gained as 

wide acceptance as the Powles model. Some studies suggest using computational fluid dynamic results to 

tune the parameters for the velocity deficit behind the tower[55,67], but this method requires time-

consuming simulations for each design. Recently, Yoshida proposed improvements to tower shadow 

models by adding lifting line theory[68] and a dynamic stall model[69], and these models are worth further 

investigation for their fidelity once field test results are available. Most models require a known drag 

coefficient of the tower but this in itself is an issue of research since the influence of surface roughness and 

inflow turbulence can impact this drag coefficient[70].   
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As noted above, there have been no field tests of tower shadow with flexible blades (as would be 

expected for the next generation of large wind turbines) nor is there a tower shadow model that has been 

validated for field-level turbulence. This is problematic for downwind turbine design since it is critical to 

have experimental data that includes the effects of unsteady blade moments for a flexible rotor in turbulent 

wind conditions. Furthermore, it is critical to develop and assess tower shadow models that consider inflow 

turbulence and cylinder drag characteristics.  

The present investigation is the first study to the author’s knowledge to investigate tower shadow 

by obtaining field test data from a downwind, flexible rotor and comparing it to simulations.  The present 

study also presents the first publicly available comparison to experimental results with a mid-scale 

prototype (more than 4x larger than the UAE rotor), and is the first to develop a tower shadow model that 

considers the influence of upstream turbulence. The corresponding objectives of this study are: 

 to quantify the effect of tower shadow on flexible downwind turbines with field data,  

 to propose a new tower shadow model that accounts for freestream turbulence intensity, 

 to consider the ability of tower shadow models to accurately capture blade moments, and  

 to consider the relative influence of tower shadow on blade Damage Equivalent Loads. 

To achieve the latter two goals, simulations using different tower shadow models will be compared to 

experimental results in terms of tower shadow dip magnitude, dip location, and damage equivalent loads.  

3.2. Experimental Methods 

The SUMR Demonstrator (SUMR-D) rotor was flown on the CART-2 test turbine over fall 2019 

and spring 2020 at the NREL Flatirons Campus. The rotor, shown in Figure 3-2, has two lightweight, 

flexible blades in a load-aligned (coned) downwind configuration. Specifications of the SUMR-D rotor are 

given in Table 3-1, and further details on the design and testing can be found in Yao et al. [60], Bay et al. 

[61], Kaminski et al. [62], and Simpson & Loth [71]. The blade chord and the blade clearance from the 

tower to the rotor are provided in Table 3-1 at 70% blade span.  
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Table 3-1. SUMR-D Parameters 

Blades 2 

Rotor radius 22.25 m 

Tower diameter 2.2 m 

Blade chord 

(at 70% span) 
0.74 m 

Clearance 

(at 70% span) 
7.3 m 

Blade mass 990 kg 

Flapwise frequency 1.13 Hz 

Edgewise frequency 2.17 Hz 

Rated rotor speed 21.5 RPM 

Optimal TSR 9.5 

Rated Power 54 kW 

Coning angle 12.5° 

Tilt angle 3.77° 

Cut-in wind speed 3 m/s 

Rated wind speed 5 m/s 

Cut-out wind speed 11 m/s 

 

 

Figure 3-2. SUMR-D rotor being installed on CART-2 at the NREL Flatirons Campus outside Boulder, Co. 

(photo courtesy of Lee Jay Fingersh, NREL). 
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Notably, the SUMR-D rotor is extremely lightweight and flexible compared to a traditional rotor 

(the blades are half the weight of those typically used on the CART-2). The reduced mass is possible 

because of SUMR-D’s downwind and coned configuration. Also, the SUMR-D rotor was designed to be 

gravo-aeroelastic scaled to replicate nondimensional blade flexibility, nondimensional flapwise deflections, 

and nondimensional dynamics consistent with the full-scale 13 MW SUMR design[60,62,72]. Because of 

this scaling, the rated wind speed of the SUMR-D is about 5 m/s. 

Data streams from both the CART-2 turbine and an upwind meteorological tower are saved as 5-

minute data files at 400 Hz. Strain gauges were placed near the root of the SUMR-D blades to read flap and 

edge bending moments. However, the Blade 2 root strain gauge was partially damaged during tested, so all 

data shown herein was gathered from Blade 1. Wind speed measurements were taken from the upwind 

meteorological tower with a sonic anemometer placed at CART-2 hub height, and wind shear was 

calculated from cup anemometers placed along the tower (further details available in Simpson & Loth [71]).  

To ensure that simulations could replicate the wind field conditions, a subset of these field test data 

files were selected for analysis based on the following criteria: 

 Normal operation (no parked, shutdown, startup, or cutout cases were included) 

 Operation in a single control region (the entire 5-minute file in either Region 2 or Region 3 

controller operation) 

 Mean crosswind angle is low (less than 30°) relative to the direction of the upwind met tower  

 Nacelle yaw error is low (less than 15°) relative to the direction of the incoming wind 

 Yaw variation is low (less than 10° range) throughout the 5-minute file 

The 5-minute files are used herein rather than standard 10-minute files to increase the number of files that 

meet the selection criteria. Based on these criteria, 40 files were identified for analysis, resulting in 200 

minutes of field test data. 

3.3. Computational Methods 

Simulations of the SUMR-D turbine were conducted using OpenFAST[64] with a “Digital Twin” 

model of the SUMR-D rotor created by Chetan et al. [44] The model uses the as-designed airfoils, which 

likely results in some deviations from the as-built airfoils due to some manufacturing surface imperfections. 

Turbulent wind field files were built in TurbSim v2 to match meteorological tower data at the CART-2 

field site [71]. Simulated wind field files include wind shear (calculated from cup anemometers on an 

upwind meteorological tower), 3-directional wind speed time series from a sonic anemometer upwind at 

hub height, and an extra 100 seconds of wind data inserted to initialize each simulation. Blade bending 
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moment data was gathered from simulations and converted to Out-of-Plane (OoP) bending moments (as 

documented by Simpson & Loth [71]) for comparison to experimental field test data. 

A. Tower shadow models 

A variation on the Powles tower shadow model is provided in OpenFAST as an option for modeling 

downwind turbines. The original Powles model allowed the shadow width and depth to be independently 

tuned to fit wake characteristics [65]. Note that the Powles model came from wind tunnel tests with low 

turbulence and used an octagonal-shaped tower. 

In AeroDyn15 [42] (the current aerodynamic module of OpenFAST), the shadow width and depth 

for OpenFAST are determined based on the tower drag coefficient (𝐶𝐷) prescribed by the user at stations 

along the tower height [43]. This is also known as the “Moriarty model” [69]. As defined by AeroDyn [43], 

the wind freestream velocity far upstream (𝑈∞) is used for determining the drag and to apply the tower 

shadow deficit, shown in Figure 3-1.   

The effect of the tower drag is to cause a momentum deficit downstream, and the associated “local” 

wind velocity behind the tower (𝑈𝑙𝑜𝑐𝑎𝑙) can be obtained in terms of a nondimensional deficit (𝑢𝑤𝑎𝑘𝑒) as in 

Eq. 3-1a. This nondimensional wake deficit is obtained via Eq. 3-1b, where it is a function of the drag 

coefficient, the nondimensional wake distance (𝑑) given in Eq. 3-1c, as well the nondimensional distances 

of x and y. These nondimensional distances are based on the dimensional X and Y directions (relative to the 

incoming velocity field as shown in Figure 3-1) normalized by tower radius (r), as noted in Eqs. 3-1d and 

3-1e.  

𝑈𝑙𝑜𝑐𝑎𝑙 = (1 − 𝑢𝑤𝑎𝑘𝑒) 𝑈∞ (3-1a) 

𝑢𝑤𝑎𝑘𝑒 =
𝐶𝐷

√𝑑 
cos2 (

𝜋

2

𝑦

√𝑑 
) (3-1b) 

𝑑 = √𝑥2 + 𝑦2 (3-1c) 

𝑥 = 𝑋/𝑟 (3-1d) 

𝑦 = 𝑌/𝑟 (3-1e) 

There are some limitations of this model.  Notably, the flow just upstream of the tower (𝑈𝑢𝑝) is 

slowed by the momentum extraction (due to axial induction) such that this approach velocity is lower than 

that of the far-field freestream velocity (depicted in Figure 3-1).  As such, a more accurate description 
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would employ 𝑈𝑢𝑝 instead of 𝑈∞ in Eq. 3-1a, as noted by Yoshida et al.[73].  Defining a as the axial 

induction at the rotor disk downstream of the tower, 𝑈∞ < 𝑈𝑢𝑝 < (1 − 𝑎) 𝑈∞. This velocity error in Eq. 

3-1a reduces as the tower distance from the rotor disk increases and as the induction factor reduces (as is 

the case for operation above the rated wind speed). Yoshida et al. also noted that there can be an additional 

effect on tower drag due to the axial pressure gradient; however, the pressure gradient effect is only 20% 

of the reported change in tower drag (reducing the drag coefficient by about 2%) and thus this effect is 

more reasonably ignored.   

Another limitation of the AeroDyn model is that the wake description in the above relations 

assumes a steady deficit (neglecting unsteady turbulent shedding events). The impact of using a steady 

wake model is more difficult to quantify but the implementation of an unsteady wake model would also be 

quite difficult and complex, and thus is not pursed herein. 

Two other model limitations (which are adressed herein) are wake shape and the impact of 

turbulence on the mean wake spread rate.  The Powles model for this mean flow deficit employs a cos2-

shaped deficit (Eq. 3-1b) to model the cylinder wake. However, the more common approach is to use a 

Gaussian-shaped velocity deficit[74], since this profile better matches detailed experimental data, though 

the differences between cos2-shaped and Gaussian-shaped velocity deficits are not large. Another issue with 

the Powles model is that it neglects freestream turbulence in terms of the wake spread, where such 

turbulence can hasten the diffusion of the tower wake velocity gradients.  

To potentially improve upon these limitations, a new tower shadow model is proposed herein based 

on the work of Eames et al.[75]. The “Eames” model adjusts the tower shadow wake to include the 

additional effect of inflow wind turbulence intensity. This addition can account for the significant 

turbulence typically seen in field tests and atmospheric boundary layers. However, the Eames model still 

assumes a mean deficit, i.e., the effects of upstream turbulence are only included in a time-averaged sense 

by adjusting the spread of the steady-state velocity deficit based on the average turbulence intensity. In 

particular, with the Eames model, the nondimensional wake half-width (𝑦𝑤𝑎𝑘𝑒) and wake deficit (𝑢𝑤𝑎𝑘𝑒) 

depend on turbulence intensity (𝐼𝑡) as follows 

 𝑦𝑤𝑎𝑘𝑒 = 𝐼𝑡𝑥 (3-2a) 

 𝑢𝑤𝑎𝑘𝑒 =
𝐶𝐷

𝑦𝑤𝑎𝑘𝑒√2𝜋
exp [−

𝑦2

2𝑦𝑤𝑎𝑘𝑒
2 ] (3-2b) 
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Notably, this model assumes that turbulence dominates the wake diffusion, which is appropriate for most 

atmospheric flows.  However, it is not appropriate for low turbulence conditions (e.g. wind tunnel flows 

with turbulence levels of only a few percent or less). 

To apply this model specifically to the SUMR-D, the average horizontal wind turbulence intensity 

from the 3-directional sonic anemometer wind speed data (U, V, W) was calculated for each data set as 

 𝑈ℎ𝑜𝑟𝑖𝑧 = √𝑈2 + 𝑉2  (3-3a) 

 𝜎𝑈,ℎ𝑜𝑟𝑖𝑧 = √
1

𝑁
∑ (𝑈ℎ𝑜𝑟𝑖𝑧,𝑖 − 𝑈ℎ𝑜𝑟𝑖𝑧

̅̅ ̅̅ ̅̅ ̅̅ )
2𝑁

𝑖=1
 (3-3b) 

 𝐼𝑡 =
𝜎𝑈,ℎ𝑜𝑟𝑖𝑧

𝑈ℎ𝑜𝑟𝑖𝑧
̅̅ ̅̅ ̅̅ ̅̅

 (3-3c) 

The turbulence intensity is based on the combined horizontal wind speed (𝑈ℎ𝑜𝑟𝑖𝑧) and is the ratio of the 

standard deviation (𝜎) to the mean (denoted with an overbar, e.g., �̅�). The 40 field test files used in this 

study have a turbulence intensity (𝐼𝑡) range of 9% to 21%, which is typical of the levels for most wind 

turbines, as shown in Figure 3-3.  

 

Figure 3-3. Experimental field test data turbulence intensity (It) for 5-minute data sets, plotted against mean 

wind speed. IEC wind turbulence classes provided for reference[39].  
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The wake deficits provided by the Powles and Eames models (using three different turbulence 

intensities for the Eames model) are compared in Figure 3-4, for one downwind location. Note that the 

wake shape will change based on downwind distance from the tower. In Figure 3-4, the deficit is shown for 

the CART-2 tower with a drag coefficient of 𝐶𝐷 = 0.7 at a nondimensional distance away from the tower 

of 𝑥 = 6.6 which corresponds to the approximate downwind distance from the tower at the 70% blade span 

on the SUMR-D rotor. For a turbulence intensity of 16% at this downwind distance, the Eames model and 

Powles model are nearly identical, but the Eames model provides a narrower and larger deficit for low 

turbulence and a wider and smaller deficit for high turbulence. This change based on turbulence matches 

the physical expectation that at high turbulence, the wake diffuses quicker so the velocity deficit behind the 

tower would be reduced and result in less impact on the blade loads. 

  

Figure 3-4. Comparison of Powles model and Eames model velocity deficit shapes for CART-2 tower with 

CD=0.7 at 𝒙 = 𝟔. 𝟔 (approximate downwind location of 70% blade span). Eames model plotted with three 

different turbulence intensities (10%, 16%, 20%). Velocity deficit wake peak and half-width denoted for 

Eames 𝑰𝒕 = 𝟏𝟎% model where the wake peak is 𝒖𝒘𝒂𝒌𝒆,𝒎𝒂𝒙 and the wake half-width is the nondimensional 

width at 𝒖𝒘𝒂𝒌𝒆,𝒎𝒂𝒙 × 𝒆−𝟏/𝟐.  
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Figure 3-5. Tower wake peak velocity deficit in terms of 𝒖𝒘𝒂𝒌𝒆 (a) and velocity deficit wake half-width (𝒚𝒘𝒂𝒌𝒆) 

(b) over nondimensional downstream distance (x). Shown for CD=0.7, with the downstream rotor distances 

for the SUMR-D and SUMR-13 rotors denoted.  

 

The wake deficit peak height (or 𝑢𝑤𝑎𝑘𝑒,𝑚𝑎𝑥) and wake half-width (𝑦𝑤𝑎𝑘𝑒, which is located at 

𝑢𝑤𝑎𝑘𝑒,𝑚𝑎𝑥 × 𝑒−1/2) are also denoted in Figure 3-4. To see how they change when moving downstream 

from the tower, the wake peak and wake half-width are plotted against nondimensional downstream 

distance (x) in Figure 3-5. The approximate downstream distance for the SUMR-D rotor is denoted with a 

vertical dashed line, as is the approximate downstream distance for the SUMR-13 rotor[53,63], which may 

be more representative of a large-scale downwind turbine. In Figure 3-5a, the peak wake deficit is bounded 

from 0 to 1 because those are the physical limits based on Eq. 3-1a. However, it should be noted that close 

to the tower at low turbulence intensity the Eames model predicts a wake deficit greater than 1. This implies 

backflow (or a negative wind velocity), which is outside the physical scope of the Eames model derivation 

(though this backflow may occur physically). Users should therefore be cautious in applying the Eames 

tower shadow model close to the tower.  

In terms of both wake peak and width, the Powles model is more moderate than the Eames, showing 

less change over downstream distance. For the Eames model, higher turbulence intensity relates to larger 

slopes and more change with downstream distance away from the tower. While it is anticipated that the 

Eames model is more accurate for flows with significant inflow turbulence, circular cross-sections, and 

when the blade is several diameters downstream of the tower, field test data at multiple downstream 

locations would be useful to assess the relative accuracy of the Powles vs Eames models for downstream 

wake shapes. 
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Through a collaboration with NREL, the Eames tower shadow model was added to OpenFAST 

(publicly available [64]) and used to run simulations of SUMR-D. All simulations also included the Bak 

tower influence model [43] which accounts for inviscid streamline deflections around the cylinder that can 

be important very near the tower. Simulations were run for all 40 wind field files three times: tower shadow 

off, the Powles model on, and the Eames model on.  

B. Tower drag for field test conditions 

The tower drag coefficient is critical to the proper modeling of the tower shadow effect in 

OpenFAST, and it can be approximated using the drag of a cylinder since the aspect ratios of wind turbine 

towers are much greater than unity. The cylindrical drag force is the product of the dynamic pressure, the 

frontal area, and the cylinder drag coefficient (𝐶𝐷). This coefficient is generally estimated with an empirical 

relationship to the cylinder Reynolds number (𝑅𝑒), which is based on the freestream velocity, cylinder 

diameter, and kinematic viscosity. This relationship of 𝐶𝐷 to 𝑅𝑒 depends significantly on whether the 

boundary layer that separates from the cylindrical surface is laminar (sub-critical regime) or is fully 

turbulent (super-critical regime). Between these two regimes (where the separating turbulent boundary layer 

is transitional), the drag coefficient can drop significantly, where this drop is often termed the “drag crisis”. 

The critical Reynolds number where this drop occurs can be influenced by the roughness of the cylinder 

surface and the inflow turbulence. In particular, turbulence intensity and integral length scales can influence 

drag, as reported by Bell [76]. In addition, cylinder aspect ratio and end conditions can also be influential, 

as described by Hoerner for sub-critical Reynolds numbers [70].  

In Figure 3-6a, a common empirical model for drag coefficient versus Reynolds number for steady 

upstream flow past a cylinder is given with a solid black line (herein, from AeroDyn 14 [77]). A selection 

of experimental results for steady inflow (negligible freestream turbulence) [78–81] are shown, which 

corroborate the common empirical model for drag coefficient. Such a drag model is useful for wind tunnel 

tests of tower shadow (where freestream turbulence is negligible).  

In Figure 3-6b, experimental results are shown for flows whose inflow turbulence and/or Reynolds 

numbers are high enough such that super-critical conditions are expected [78–80,82,83], i.e. the attached 

boundary layer becomes turbulent before the flow separates. Of particular interest is the data point (𝐶𝐷 =

0.67 at 𝑅𝑒 = 3.9𝑥106) from Dryden & Hill [83], taken from a power plant chimney in naturally turbulent 

field conditions. This is likely a good representation of the drag experienced by a large tall tower, e.g. for 

the tower of a full-scale wind turbine. Based on the data over a wide range of Reynolds numbers in Figure 

3-6, a shaded region is shown for which the 𝐶𝐷 may be expected for flows with high inflow turbulence, 

such as that experienced by a wind turbine in the field. It should be noted that there is no commonly 

available empirical relation between 𝑅𝑒 and 𝐶𝐷 for cylinder drag coefficient with inflow turbulence.   
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Figure 3-6. Drag coefficients (CD) past circular cylinders as a function of Reynolds number (Re): a) for 

laminar inflow showing experimental results [78–81] along with an empirical fit, and b) for turbulent inflow 

(super-critical) experimental results [78–80,82,83] along with a shaded envelope indicating the range that 

may occur, where the ranges of drag coefficients used in simulation of SUMR-D as well as the expected range 

for the SUMR-13 turbine are labeled in red. 

 

Fortunately, most large downwind turbine will have large Reynolds numbers in the super-critical 

range, as shown by that for the SUMR-13, so that 𝐶𝐷 = 0.7 is a good approximation. However, the CART-

2 tower diameter combined with the operational wind speeds for the SUMR-D rotor, places the cylinder 

Reynolds number in the critical drag region where the drag is more uncertain and the range of possible drag 

coefficients is quite large. With a rated wind speed of 5 m/s, the SUMR-D rotor has a rated Reynolds 

number of 620,000. The Reynolds number and simulated drag range for operation in Region 2 (< 5 m/s) 

and Region 3 (> 5 m/s) operation are denoted in Figure 3-6b. In particular, Region 2 simulations were run 

with 𝐶𝐷 = 0.7 and 𝐶𝐷 = 0.35, while Region 3 simulations were run only with 𝐶𝐷 = 0.7. 
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C. Defining Tower Shadow Dip Magnitude and Location  

Downwind turbine blades see a sudden reduction in load when they pass through the velocity deficit 

behind the tower. An example of azimuthally-averaged bending moment data from a 5-minute set of 

experiments and simulations are seen in Figure 3-7, which averages out the effects of turbulence to show 

the effect of tower shadow on the blade. To quantify this dip magnitude, a sine curve is fit to the 

azimuthally-averaged out-of-plane bending moment data for the azimuthal angle range of 0°-150° and 

270°-360° (which avoids the angles where the tower shadow effect is significant). The sine curve acts as 

an estimation of the bending moment without the tower shadow effect, for both the CART-2 field test data 

and the FAST simulations. Shown in Figure 3-7, the dip location is the azimuth angle where the lowest 

bending moment occurs for the field data or simulation, while the dip magnitude is the difference between 

the field test data or simulation and the fitted sine curve at the dip location. Note that while gravity loads 

are nearly sinusoidal during operation (a prominent load on a highly coned rotor), wind shear can cause 

non-sinusoidal blade loads due to unequal thrust loading across the rotor. To account for this, wind shear 

estimates from field test data are included in OpenFAST simulations.  

 

Figure 3-7. Sine-wave curves fitted to experimental field measurements and to FAST predictions of 

azimuthally-averaged Blade 1 Out-of-Plane (OoP) Bending Moments for a five-minute data set, along with 

measurements of tower shadow dip magnitude and dip location. FAST simulation uses the Powles tower 

shadow model. 

 

The ability of a tower shadow model coupled with a tower drag coefficient to accurately predict 

dip magnitude for each 5-minute data set is quantified using the predicted Root Mean Square Error (RMSE).  

 𝑅𝑀𝑆𝐸 = [
1

𝑁 
∑ (𝑀𝑖 − 𝑀�̂�)

2𝑁

𝑖=1
]

1
2
 (3-4) 
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Where 𝑁 is the number of data files, 𝑀 is the dip magnitude measured from a single field test data set (5 

minutes long), and �̂� is the predicted dip magnitude from the simulations for that same data set.  

D. Fatigue calculations 

Another important potential effect of tower shadow is its impact on blade fatigue life. MLife is a 

fatigue calculation software that uses a rainflow counting algorithm to find Damage Equivalent Loads 

(DELs) for an input signal [84]. MLife is used herein to calculate short-term zero-mean DELs from the root 

flap bending moment signal for both CART-2 field test data and FAST simulations. Flapwise bending 

moments are used here, rather than out-of-plane bending moments (where the two moments are related via 

a coordinate transformation), because dip locations do not need to align and since flapwise bending 

moments are more relevant for structural analysis. An inverse S-N slope of 𝑚 = 10 was used for the blades. 

The 5-minute input files are binned by mean inflow wind speed and DELs are aggregated over the files in 

each bin.   

Only short-term DELs are reported because of the limited data available for analyzing fatigue. As 

such, the results from the field test data may not be directly extrapolated to lifetime fatigue.  

3.4. Results and discussion 

A. Assessment of Out-of-Plane Bending Moments 

For each of the 40 field data sets, comparable FAST simulations were run and the resulting data 

analyzed. An example of how the different tower shadow models performed is shown in Figure 3-8 for an 

example low wind speed case (8a and 8b) and for an example high wind speed case (8c and 8d). The 

experimental field test data and simulation instantaneous out-of-plane bending moments for the Eames and 

Powles models are shown in Figure 3-8a and Figure 3-8c. For a clearer look at trends over blade azimuth 

angle, the azimuthally-averaged moments and standard deviations are shown in Figure 3-8b and Figure 

3-8d, with the experimental field test data shown in black. A vertical dashed line at 180° azimuth angle 

marks the location of the tower. 



45 

 

Figure 3-8. Blade 1 Out-of-Plane (OoP) bending moment data (a,c) and mean and standard deviation (b,d) 

for SUMR-D from experimental field test (grey/black) and FAST simulations using Eames (orange) and 

Powles (blue) models. Each graph contains an example of 5 minutes of data at a low wind speed (a,b) or high 

wind speed (c,d).  

 

In some cases, the mean bending moment does not exactly align between the experimental data and 

the FAST simulations, e.g. as in Figure 3-8b. It is hypothesized that these discrepancies between 

experimental data and simulations are due to differences in the structural and aerodyanmic properties 

between the designed and built blades. However, the simulations are generally able to capture the mean and 

variance of the bending moment data, as well as the qualitative tower shadow dip. The Eames model in the 

high wind speed example gives a narrower and stronger tower shadow dip than the Powles model. But 

generally, the Eames and Powles models give very similar results.  

The compiled results of the mean out-of-plane bending moments are plotted versus mean wind 

speed in Figure 3-9. This rotor uses load alignment such that the mean bending moment is nearly zero at 

rated wind speeds (of 5 m/s), and it produces positive moments (away from the tower) at low speeds and 
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negative moments at high wind speeds (towards the tower)[50]. Here the predictions capture this trend in 

the experimental data with nearly equivalent accuracy for the Powles and Eames models. This indicates 

that the mean aerodynamic and graviational loads for SUMR-D are resonably captured by FAST using the 

inflow wind conditions. 

 

Figure 3-9. Mean Out-of-Plane (OoP) blade bending moment over 5-minute data files for experimental field 

test data, Powles model simulations, and Eames model simulations. Powles and Eames models result in 

equivalent mean bending moments. 

 

B. Tower Shadow Dip Magnitude and Location 

The dip magnitude based on the fitted sine curve is plotted versus mean wind speed in Figure 3-10 

(using the process detailed in Figure 3-7). At higher wind speeds (in Region 3), simulations are able to 

capture the tower shadow dip magnitude on average with both the original (Powles) model and new (Eames) 

model. However, at lower wind speeds (in Region 2), simulations with 𝐶𝐷 = 0.7 (solid symbols) 

overpredict the dip magnitude compared to field test data results. A second set of simulations at low wind 

speeds with 𝐶𝐷 = 0.35 (hollow symbols) shows better correspondance with the experimental dip magnitude 

results. The reduced drag coefficient in Region 2 can be explained in part by the reduced wind velocity at 

the tower due to rotor axial induction (as discussed in Section 3.1), which is not captured in FAST. 

Additionally, the uncertainty of tower drag in this Reynolds number range, as discussed in Section 3.3, 

makes it difficult to know if the differences in dip magnitude are due to tower drag or another effect not 

captured by the model.  
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Figure 3-10. Azimuth-averaged out-of-plane bending moment dip magnitude (due to tower shadow, measured 

from fitted sine curve) for experimental field test data, Powles model simulations, and Eames model 

simulations. Each point represents 5-minute data file average. 

 

The dip magnitude has a positive trend with wind speed, as expected. Higher wind speeds see a 

larger velocity deficit and thus impart a larger impulse on the blade as it passes through the tower wake. As 

such, Region 3 conditions are expected to contribute more to unsteady blade loads (which can contribute 

to fatigue).  

Using the original tower drag coefficient (𝐶𝐷 = 0.7), the predicted Root Mean Square Error 

(RMSE) is 2.88 kN-m for the Powles model and 2.92 kN-m for the Eames model, compared to experimental 

results. Using the lower drag coefficient (𝐶𝐷 = 0.35) for low wind speeds and higher drag coefficient for 

high wind speeds, the predicted RMSE is 2.32 kN-m for the Powles model and 2.38 kN-m for the Eames 

model. Thus, there is a slight preference for the Powles model, but not a significant difference between the 

two models for predicting tower shadow dip magnitude, for the given inflow turbulence and field 

conditions. 

The azimuth angle location of the tower shadow dip (defined in Figure 3-7) is plotted in Figure 

3-11. The lower drag coefficient for Region 2 data points does not show a consistent change in the dip 

location. The experimental data shows the tower shadow dip occurring much later (approximately 6°-8°) 

than predicted by either the Powles or Eames models in the OpenFAST simulations. 
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Figure 3-11. Azimuth-averaged out-of-plane bending moment tower shadow dip azimuth angle location vs 

mean wind speed for experimental field test data, Powles model simulations, and Eames model simulations. 

Each point represents 5-minute data file average. 

 

It is proposed that the apparent delay in tower shadow dip may be caused by an aerodynamic or 

structural effect not captured by the model. One aerodynamic possibility is that the simulation code may 

not capture a delay in lift formation on the blade, which may result in a delay on the order of 1.8° based on 

the chord length at the 70% span. Other possible causes include a hysteresis effect or aeroelastic deflections 

not fully captured by OpenFAST.  

Structurally, the as-built blades may be more or less stiff than designed in different sections, which 

may affect the timing and magnitude of deflection, as discussed in Section 4.4. Additionally, the SURM-D 

rotor geometry was modified by the use of an adapter plate on the CART-2 turbine to provide the coning 

angle needed for the SUMR-D rotor field test (as documented by Bay et al.[61]). The adapter can cause up 

to 3.5° azimuth angle delay when the blades are pitched in Region 3; however, this effect is not included in 

the FAST rotor geometry. Yet, these quantifiable effects, even combined, are not enough to account for the 

lag seen in the data.  

Notably, such an azimuthal delay in the tower shadow dip has been seen in other studies. In 

particular, the flapwise bending moment dip for the UAE downwind rotor experiments occurred 16° later 

than predicted by FAST with the Powles model[85], while coefficient of lift data from a downwind turbine 

wind tunnel test indicated a tower shadow dip occurring between 186°-191° depending on wind speed[69], 

which is more in line with the present simulation results. 
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C. Tower Shadow Impact on Damage Equivalent Loads 

Finally, simulation and experimental damage equivalent loads are calculated using MLife with 

bending moment time series data as the input. The results are compared in terms of short term DELs for 

blade root flapwise bending moment in Figure 3-12 for different binned mean wind speeds. Only bins with 

more than 5 data sets were included. In all cases, adding one of the tower shadow models increases DELs. 

In Region 3 (greater than 5 m/s on average), simulations without tower shadow tended to under-predict 

DELs and simulations with tower shadow models predict DELs closer to the field test DELs. However, in 

Region 2 (below 5 m/s), all simulations over-predict DELs and both tower shadow models exacerbate this 

effect. With 𝐶𝐷 = 0.7, the Powles and Eames models increase DELs over simulations without tower 

shadow by about 8% on average.  

For Region 2 (4-5 m/s), simulations with 𝐶𝐷 = 0.35 result in smaller increases in DELs when tower 

shadow models are added, but the simulations still all over-predict DELs. As seen in Figure 3-10 both the 

Powles and Eames tower shadow models over-predict the tower shadow dip magnitude in Region 2, which 

is consistent with over-estimating fatigue.  The results indicate that the Eames and Powles models give 

nearly identical DEL results. However, this analysis does not consider enough data over a large enough 

range of wind speeds to conclude how the lifetime fatigue would be affected. 

 

Figure 3-12. Short-term zero mean DELs for flap bending moment, aggregated over data files in each binned 

mean wind speed (4-5 m/s: 6 files, 7-8 m/s: 7 files, 8-9 m/s: 17 files, 9-10 m/s: 6 files). Experimental field test 

data (grey column and dashed black line for comparison) compared to FAST simulations with no Tower 

Shadow (TS), Powles model, and Eames model. 
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D. Effect of flexible rotor 

One of the unique features of the SUMR-D rotor is the lightweight flexible blades. Simulations by 

Reiso & Muskulus showed that reducing the stiffness of a blade leads to a reduction in the blade root 

DEL[59]. Noyes et al. (2018) found the stiff blades of the UAE Phase VI resulted in a strong tower shadow 

effect, while Noyes et al. (2020) predicted that damping ratio of a blade may determine the magnitude of 

the tower shadow effect [58,85].  

It was hypothesized that the flexible blades of the SUMR-D rotor would reduce the tower shadow 

effect compared to stiff blades. To test this theory, FAST simulations were run with fully stiff blades, where 

the first flapwise blade mode, second flapwise blade mode, and first edgewise blade mode degrees of 

freedom (DOFs) were all turned off. One comparison of the original blades and the fully stiff blades is 

shown in Figure 3-13. The stiff blade has a much larger dip magnitude, which occurs at nearly 180° azimuth 

angle. The dip location supports the theory that the delayed dip location in the experimental results may be 

due to the blade flexibility. The flexible SUMR-D rotor sees a much smaller tower shadow effect on the 

blade root bending moment. 

 

Figure 3-13. Comparison of tower shadow response on azimuth-averaged mean out-of-plane blade root 

bending moments between experimental data and FAST simulations using the Powles model with a “stiff” 

blade and with the SUMR-D flexible rotor. The stiff blade is modeled with the blade bending DOFs off, and 

shows a much stronger tower shadow dip. 
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3.5. Conclusions 

The tower shadow effect on downwind turbines is investigated herein with field test data and 

simulations in OpenFAST. The field test data from the SUMR-D rotor is the first such data obtained and 

analyzed for a flexible downwind rotor. While the tower shadow effect can be clearly seen in the blade 

bending moment data, the effects are manageable compared to the effects of turbulence and cyclic gravity 

loads. 

A new tower shadow model, the Eames model, was proposed which uses both tower drag and 

inflow turbulence as inputs. The Eames model was compared to the old Powles tower shadow model 

through simulations in OpenFAST. Both models produced simulations which generally captured the tower 

shadow dip magnitude in Region 3. The tower drag coefficient is difficult to estimate since the SUMR-D 

operating Reynolds numbers fall within the critical drag regime. Using a high drag coefficient tended to 

over-predict dip magnitude in Region 2, while using a low drag coefficient was better able to predict dip 

magnitude compared to experimental results. Fortunately, the tower for large downwind turbines (e.g., rated 

power in excess of 10 MW), will have high cylinder Reynolds numbers such that 𝐶𝐷 = 0.7  is quite 

reasonable. Both models predicted the tower shadow dip to occur sooner than was seen in experimental 

data. Possible causes for that delay include aeroelastic deflections and hysteresis, but the exact cause is 

unknown. However, this delay does not significantly impact the bending moment mean values and peak 

deviations. 

Both tower shadow models increased the DEL relative to simulations without tower shadow by 

about 8% and were reasonably consistent with the experimental DELs.  Overall, the Eames model produced 

very similar results to the Powles model and both models appear to be good options for modeling tower 

shadow in field test conditions. The Eames model has the additional benefit of providing an opportunity to 

tune the inflow turbulence and see how that may affect the tower wake, but the simpler Powles model may 

be preferred as it does not require knowledge of the turbulence level.  

The above results indicate that downwind turbines may be viable since tower shadow effects can 

be small compared to the effect of turbulence for flexible, coned rotors, where the rotor examined herein 

had the advantage of load-alignment and did not exhibit significant audible thumping.  It is recommended 

that downwind turbine simulations include one of the present validated tower shadow models in order to 

quantify the net impact on DELs.  In particular, long-term fatigue due to tower shadow should be included 

in detailed structural analysis and design of the rotor and tower.   
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Chapter 

4. Cost of Valued Energy for design of renewable energy 

systems 

Abstract 

The design of renewable energy systems such as wind turbines or solar panels conventionally employs 

Levelized Cost of Energy (LCOE), but this metric fails to account for the time-varying value of energy. 

This is true both for a single turbine or an entire wind farm. To remedy this, two novel, relatively simple 

metrics are developed herein to value energy based on the time of generation and the grid demand: 

Levelized Avoided Cost of Energy simplified (LACEs) and Cost of Valued Energy (COVE). These two 

metrics can be obtained with: 1) a linear price-demand relationship, 2) an estimate of hourly demand, and 

3) an estimate of predicted hourly generation data. The results show that value trends for both wind and 

solar energy were reasonably predicted with these simplified models for the PJM region (a mid-Atlantic 

region in the USA) with less than 6% error on average, despite significant stochastic variations in actual 

price and demand throughout the year. A case study with wind turbine machine design showed that 

increasing Capacity Factor can significantly reduce COVE and thus increase Return on Investment. As 

such, COVE and LACEs can be valuable tools (compared to LCOE) when designing and optimizing 

renewable energy systems. 
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Nomenclature 

g Hourly power generation (MW) 

p Hourly spot price / time-averaged spot price 

D Hourly demand / time-averaged demand 

R Hourly residual demand / time-averaged demand 

W Hourly wind generation / time-averaged demand 

S Hourly solar generation / time-averaged demand 

Q Hourly variable renewable generation / time-averaged demand 

X 
Extrinsic factors influencing price such as the economy or  government 

regulations 

CF Capacity factor 

m Price-demand slope 

const. Arbitrary constant 

VRE Variable Renewable Energy (such as solar or wind) 

LCOE Levelized Cost of Energy 

LACE Levelized Avoided Cost of Energy 

sLCOE System Levelized Cost of Energy 

rsLCOE Revised System Levelized Cost of Energy 

VF Value Factor 

COVE Cost of Valued Energy 

ROI Return on Investment 

LACEs LACE simplified 

( )m Modeled value 

( )avg Time-averaged value over a year 

( )’ Temporal variation from the average, such that ( ) = ( )avg + ( )’ 

 

4.1. Introduction 

Renewable energy production is increasing significantly, e.g. it reached 17% of the US production 

in 2017 [86]. Wind energy alone now contributes over 10% of electricity production in 8 countries [2], 

while cumulative solar capacity is expected to double between 2019 and 2022 [87]. A key driver for the 
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growth in deployment of wind and solar energy systems has been their rapidly declining costs in per unit 

energy production [88–90].  

The common and current objective used when designing variable renewable energy (VRE) systems 

is the Levelized Cost of the Energy (LCOE) of the system [10–17]. The LCOE of a power generation system 

is the estimated cost per kilowatt-hour of produced electricity over the lifetime of the system based on the 

ratio between the annualized total costs of the system and the expected annual energy production. Herein, 

VRE system design is defined as the design of entire wind and solar power plants or design of individual 

units (wind turbines and photovoltaic panels). Designing by LCOE provides a straightforward metric that 

allows engineers and stakeholders to compare the cost of energy produced by different designs, while 

avoiding the complex relationship between renewable energy system performance and larger market 

dynamics. Historically, this LCOE-based design approach was reasonable as renewable power plants often 

received a fixed price for each kilowatt-hour produced and thus each kilowatt-hour of energy produced 

could be treated equally. In contrast, energy economists and system planners employ more sophisticated 

financial metrics (relative to LCOE) to accurately assess the value that different electricity generation assets 

will have within a particular system and market context.  

As the renewable share in the electric grids increases, they are increasingly expected to participate 

in electricity markets for services, energy, and capacity, similar to conventional energy generation assets 

[19,91], and VRE generation may be well suited for some services [92]. Therefore, the industry is preparing 

for a paradigm shift where the objective is not simply to produce the cheapest possible electrons, but instead 

to create the highest possible value from a renewable power plant over the course of its lifetime [19].  

As previously mentioned, LCOE does not take into account time-varying revenue streams for 

power plants. If power plants generate revenue from their ability to provide services and energy in markets 

with time-varying prices, then the overall profitability of the power plant depends on the correlation of the 

plant’s output with the value of those revenue streams over time. Depending on the market, the price of 

electricity can rise to ten times the average price when demand is high and, in the other extreme, can even 

go negative when there is too much energy in the system.  To quantify the effect of these price variations, 

other metrics have been introduced.  One metric introduced to quantify the effect of price variations is the 

Value Factor (VF), defined by Hirth as the ratio of a VRE spot market price to the total average spot market 

price [18]. However, other scholars define Value Factor more generally as the levelized value of energy 

divided by the levelized value of a continuous baseload generation technology [93]. As the share of wind 

and solar energy increases, the relative Value Factor of the electricity they produce falls [18,93–95], since 

the amount of energy produced by sources with near zero marginal costs (such as wind and solar which 

have no fuel costs) drives down the market clearing price of electricity [18,96].  
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Determining the revenue from VRE production is further complicated by the nonlinear relationship 

between energy production and value. This dependence of energy price with VRE production highlights 

one of many deficiencies inherent in the LCOE metric [11,18,97–101]. Joskow [97] examined economic 

values of dispatchable (i.e. conventional) and intermittent (i.e. variable) power generation technologies and 

noted that a grid system that chooses technologies based on LCOE, without regard for the time of energy 

production, will be sub-optimal or even fail. Instead, Joskow proposed that energy be valued based on the 

expected market value when the energy is produced.  Figure 4-1 illustrates the major components of LCOE 

as well as three of the most applicable current metrics that attempt to move beyond LCOE: Levelized 

Avoided Cost of Energy (LACE), System LCOE (sLCOE), and Revised System LCOE (rsLCOE).  

 

Figure 4-1. Factors influencing energy prices and current metrics used to quantify energy value including 

LCOE, LACE, sLCOE, and rsLCOE 

The Department of Energy’s Energy Information Administration (EIA) has proposed the use of 

LACE and Net Value (NV) to better compare the benefits of proposed power generation options 

[99,102,103], similar to Mills and Wiser’s “marginal economic value” [104]. LACE adds up the revenue 

that can be gained from a new power generation system and levelizes it based on the expected annual energy 

production. For example, the EIA uses an extensive version of LACE in conjunction with the National 

Energy Modeling System (NEMS) to model the electricity grid and potential avoided costs when adding a 

new project to the grid [102].The Net Value of a project is then simply the difference of LACE and LCOE. 

Using Net Value is a promising alternative as it takes both costs and revenues into account. However, 

calculating LACE usually requires complex, site-specific electricity price models, and thus Net Value is 

overly complex for use by power plant and machine designers.  
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Ueckerdt et al. propose a more complete cost metric than either LACE or LCOE defined as the 

System LCOE (sLCOE) [98]. As shown in Figure 4-1, sLCOE increases metric fidelity as it includes the 

many factors included in Integration Costs: additional costs felt by the electrical system when variable 

renewable energy generation is added. These integration costs are due to variability, uncertainty, and 

locational-constraints of the technologies [101,105], and are further detailed in [101]. Notably, the 

calculation of the sLCOE for a particular VRE system design would require extensive modeling and 

analysis and, furthermore, does not itself denote the economic viability of a project.  

The National Renewable Energy Laboratory recently reviewed the benefits and drawbacks of a 

number of energy competitiveness metrics based on the perspective of a centralized planner [93]. They 

concluded that none of the previous metrics were able to take into account a comprehensive view of system-

wide cost and value so as to determine economic viability with high fidelity. To address this, system 

profitability metrics were utilized to propose a Revised System LCOE (rsLCOE) based on the ratio of cost 

to value of the system and a benchmark price [93]. Using rsLCOE allows for a direct comparison to 

traditional LCOE values, while incorporating a system-level view of economic viability, but requires the 

choice of an accurate benchmark price.  

Due to the complexity of the above metrics, as well as their historical irrelevance in energy markets 

with fixed prices, VRE designers have overwhelmingly employed LCOE for design optimization, even 

though LCOE does not have a method for valuing energy price at the time of generation of energy or 

potential capacity payments for the plant. 

While valuable metrics to evaluate energy systems from the point of view of a centralized planner 

have been outlined above, there is a critical need for a practical metric that can be implemented by energy 

system designers.  This is important for both individual machine design – i.e. solar panels and wind plants 

– as well as for the design of full power plants – which may contain solar panels, wind turbines, storage, or 

combinations thereof (i.e. hybrid power plants).  

The purpose of this study is to develop a metric for VRE system design that values energy based 

on the time of generation, in a simple and easy-to-use manner. Two new metrics are proposed herein to 

accomplish this goal: LACE simplified (which is applied to calculate Net Value) and Cost of Valued Energy 

(COVE). As a case study for how this concept could be applied, the Return on Investment of a wind turbine 

is calculated for varying turbine parameters.  

The contents of this study will be as follows: Section 2 will explain the proposed linear price-

demand model, Section 3 will outline data sources and applying the linear model to calculate Value Factor, 

and Section 4 will include a case study applying COVE and Return on Investment. 
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4.2. Proposed Model for Price  

LCOE is the standard metric used today by energy system designers to compare alternative 

technologies and optimize their systems.    

 𝐿𝐶𝑂𝐸 (
$

𝑀𝑊ℎ
) =

𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑜𝑠𝑡𝑠 (𝐶𝑎𝑝𝑖𝑡𝑎𝑙 + 𝑂&𝑀 )

𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
=

Σ𝑐𝑜𝑠𝑡𝑠

∫ 𝑔 𝑑𝑡
 (4-1) 

In this expression, Capital Costs are the costs of designing, building, and installing the system while 

operating and maintenance costs (O&M) are the costs of operating and maintaining the system [99]. As 

shown, by the right-hand side of Eq. 4-1, LCOE is the sum of the costs over a period of time divided by the 

integral of hourly generation g over the same period of time. 

Alternatively, the calculation of LACE is defined by the EIA in [99] as: 

 𝐿𝐴𝐶𝐸 =
∑ (𝑝𝑚𝑎𝑟𝑔,𝑖 ∗ ℎ𝑜𝑢𝑟𝑠𝑖) + (𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑝𝑎𝑦𝑚𝑒𝑛𝑡)𝑌

𝑖=1

𝑎𝑛𝑛𝑢𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ℎ𝑜𝑢𝑟𝑠
 (4-2) 

 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 ∗ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑐𝑟𝑒𝑑𝑖𝑡  

Where 𝑝𝑚𝑎𝑟𝑔 is the marginal generation price of energy in time period i, hours are the generation hours in 

time period i, capacity payment is the annual revenue an energy system can earn based on its ability to 

offset dispatchable resources used to meet peak demand, capacity value is the annualized cost of a 

dispatchable resource used to meet a reserve requirement, and capacity credit is the percentage of installed 

capacity that can offset reserve requirements [99]. Capacity credit takes into account the “peak demand 

correlation” shown in Figure 4-1, the likelihood that generation occurs at times of critically high demand. 

The revenue in LACE takes into account revenue from time of production and capacity credit; thus, LACE 

assumes that the power plant participates in both energy and capacity markets over its lifetime. Once the 

LACE and LCOE for a system have been calculated, the Net Value (NV) of the system can be calculated 

as 

 𝑁𝑉 = 𝐿𝐴𝐶𝐸 − 𝐿𝐶𝑂𝐸 (4-3) 

Note that a positive NV indicates a net profit and a negative NV indicates a net loss.  
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One of the main obstacles to renewable energy system designers moving beyond LCOE when 

optimizing a system is the need to model energy price. To simplify that process, a linear relationship 

between price and residual demand is proposed and combined with a simple demand profile to model price.  

A key assumption in this method is that the revenue from direct electricity production for VRE sources is 

much more significant than the revenue from capacity and other grid services. As described in the 

Introduction, energy markets currently dominate and while VRE generators qualify for varying capacity 

values by region, technology, and current regulations, their typical capacity value is only a fraction of total 

installed VRE capacity [106]. While this neglects a potentially important source of revenue for VREs, this 

assumption allows a simpler and more direct model to calculate value.  

Residual demand (or residual load) is the demand that must be met by conventional energy sources 

once VRE production has been subtracted from the total energy demand.  

 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑 = 𝐷𝑒𝑚𝑎𝑛𝑑 − 𝑉𝑅𝐸𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (4-4) 

The proposed linear relationship between spot market prices and residual demand has already been 

demonstrated by von Roon [107].  The study found a strong linear correlation between spot market prices 

of electricity and residual demand in Germany between 2007 and 2009 (e.g. Figure 4-2), with coefficients 

of determination between 0.54 and 0.77 [107]. Using residual demand as a key variable in models that 

predict price has become a recent topic of many papers as well [108–111].   

 

Figure 4-2. Spot Market Price from European Energy Exchange (normalized here by natural gas price) 

versus Residual Load [107]  
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Herein, we express this residual demand relationship in a normalized fashion that will be adapted 

to develop our models for LACEs and COVE.  

 𝑝 = 𝑚𝑅 + 𝑐𝑜𝑛𝑠𝑡. +X′ (4-5) 

In this expression, m is the price-demand slope (a relationship which also depends on region and renewable 

energy shares), p is the hourly spot price divided by the time-averaged annual spot price, R is the hourly 

residual demand divided by the annual average demand, and X’ reflects the variations due to extrinsic 

factors (such as those found in in Figure 4-1) which average to zero.  As such, X’ can be thought of as 

random fluctuations (as in a Markov chain) relative to the residual demand information.  

Continuing with the model of Eq. 4-5, R can be replaced with D (hourly demand divided by the 

annual average demand) and Q (the hourly VRE generation divided by the annual average demand). 

Additionally, fluctuations in X’ will be ignored herein as stochastic noise in the data set, simplifying the 

analysis but also introducing potential bias in the linear fit if X’ is not normally distributed with a mean of 

zero.  

 𝑝 = 𝑚(𝐷 − 𝑄) + 𝑐𝑜𝑛𝑠𝑡. (4-6) 

Note that an increase in demand or a decrease in VRE generation causes a price increase, a well-known 

trend in energy economics [18,108,112]. The constant in Eq. 4-6 can be determined by taking the annual 

time-average of Eq. 4-6 and noting 𝐷𝑎𝑣𝑔 = 𝑝𝑎𝑣𝑔 = 1, yielding  

 1 = 𝑚(1 − 𝑄𝑎𝑣𝑔) + 𝑐𝑜𝑛𝑠𝑡. (4-7) 

If one separates VRE production into average and variable components as 𝑄 = 𝑄𝑎𝑣𝑔 + 𝑄′, then Eqs. 4-6 

and 7 can be combined and rearranged as  

 𝑝 = 𝑚𝐷 + (1 − 𝑚) − 𝑚𝑄′ (4-8) 

When price, demand, and VRE data are all available for a location over a one-year period, an m-value can 

be fit to the data to predict price given a model for future demand and VRE generation data. However, when 

VRE generation data is not available, a simpler but less accurate correlation can still be found by neglecting 

Q’, whose average is zero (as was the case for X’) given how it was defined. Modeling the price in this way 

yields  
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 𝑝 = 𝑚𝐷 + (1 − 𝑚) (4-9) 

Note that the additional uncertainty that comes from ignoring mQ’ in Eq. 4-9 is likely to increase with 

increasing VRE shares.  

As an alternative for LCOE (Eq. 4-1), we define an original metric, the Cost of Valued Energy 

(COVE), by weighting the energy produced with the normalized market value at the time of production. 

 𝐶𝑂𝑉𝐸 =
𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑜𝑠𝑡𝑠 (𝐶𝑎𝑝𝑖𝑡𝑎𝑙 + 𝑂&𝑀 )

∫ 𝑝 ∗ 𝑔 𝑑𝑡
=

Σcosts

∫ [𝑚𝐷 + (1 − 𝑚)] ∗ 𝑔 𝑑𝑡
 (4-10) 

The last form of COVE in Eq. 4-10 employs the linear price relationship of Eq. 4-9 (which assumes Q’ =0), 

but could instead employ Eq. 4-8 if Q’ is known. When 𝑚 = 0, 𝐿𝐶𝑂𝐸 = 𝐶𝑂𝑉𝐸 indicating that energy has 

the same effective value no matter when it is produced.  However, when 𝑚 > 0, hourly generation is scaled 

up or down based on the modeled hourly spot price. As such, COVE can better incorporate the value of 

energy production, as well as the cost of the investment and operation, all in one metric.  Thus, COVE 

improves upon LCOE to support a design process that better aligns with the expected profitability of the 

VRE asset. COVE is similar to rsLCOE when the benchmark price of rsLCOE is chosen to be the annual 

average spot price; however, COVE applies the linear price-demand assumption while rsLCOE has a 

broader definition of value and is thus more involved to calculate.  

As an alternative for LACE (Eq. 4-2), we similarly define herein a simplified LACE (LACEs) 

which ignores capacity payments and estimates price with Eq. 4-9.  

 𝐿𝐴𝐶𝐸𝑠 =
∫ [𝑚𝐷 + (1 − 𝑚)] ∗ 𝑔 𝑑𝑡

∫ 𝑔 𝑑𝑡
 (4-11) 

This metric only requires the annual average spot price, the price-demand slope m, the time variation of 

energy demand, and the time variation of energy generation.  It can be used in place of LACE to evaluate 

the relative potential economic performance of various engineering systems. 

The two new metrics defined above are mapped out with relevant components in Figure 4-3.  COVE 

starts with the components of LCOE then adds energy and demand data to estimate value.  Furthermore, 

LACEs takes into account revenue from the energy market but excludes Capacity Credit, unlike standard 

LACE. 
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Figure 4-3. Energy components of newly proposed (COVE and LACEs) and conventional metrics 

 

To aid in characterizing the economic performance for different VRE systems, the Value Factor 

(VF) is a useful measure that removes the relative costs of different technologies to focus on just energy 

value.  To evaluate how well the linear relationship to modeled demand can predict spot prices, VF is 

computed in three different ways (in order of decreasing accuracy) as follows using: actual prices 

(conventional approach), demand-estimated prices, and modeled demand- estimated prices: 

 𝑉𝐹 =
∫ 𝑝 ∗ 𝑔 𝑑𝑡

∫ 𝑔 𝑑𝑡
 (4-12) 

 𝑉𝐹 =
∫ [𝑚𝐷 + (1 − 𝑚)] ∗ 𝑔 𝑑𝑡

∫ 𝑔 𝑑𝑡
 (4-13) 

 𝑉𝐹 =
∫ [𝑚𝐷𝑚 + (1 − 𝑚)] ∗ 𝑔 𝑑𝑡

∫ 𝑔 𝑑𝑡
 (4-14) 

Note that VF is dimensionless since it takes out the effect of the average annual spot price (given p is hourly 

spot price normalized by annual average spot price) and is related to the herein proposed cost metrics via  

 𝑉𝐹 =
𝐿𝐴𝐶𝐸𝑠

𝑝𝑎𝑣𝑔
=

𝐿𝐶𝑂𝐸

𝐶𝑂𝑉𝐸
 (4-15) 
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As such, the fidelity of VF using direct demand (Eq. 4-13) or modeled demand (Eq. 4-14) will represent 

the relative fidelity for COVE and LACEs.  

4.3. Results  

In the following, the linear relationship between price and demand will be investigated, followed 

by a model for the seasonal variations in energy demand. Finally, wind and solar data will be employed to 

estimate VF and determine the accuracy of the linear price-demand relationship.  

A. Demand-Based Price Estimation   

To test the demand-based value relationship of Eq. 4-9 (used by Eqs. 4-10 and 11), the price as a 

function of demand is shown for a one year period in Figure 4-4 for three different regions where data is 

publicly available to perform the analysis: PJM (a regional transmission organization in the Mid-Atlantic 

region of the US) [a,b]; Queensland, Australia [c]; and Ontario, Canada [d]. A linear regression for each 

location is shown as a straight line on all three plots, indicating the price-demand slope (represented by the 

m-value). For the PJM region, m=1.5, while larger values are found for the other two regions.  Note that 

m>1 indicates that price will go negative as demand goes to zero, consistent with other recent studies 

[113,114].  As expected, the variation in actual price about this sloped line is large since it ignores factors 

associated with both extrinsic factors (X’) and VRE variation (Q’).  
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Figure 4-4. Hourly energy price (normalized by the average annual price) as a function of hourly demand 

(normalized by average annual demand) along with linear fit models for: a) PJM with 𝒎 = 𝟏. 𝟓, b) 

Queensland with 𝒎 = 𝟐. 𝟓𝟑, and c) Ontario with 𝒎 = 𝟒. 𝟏 

 

It is interesting to consider how the price-demand slope correlates with generation mix, including 

the share of renewable energy, for each region. Queensland generates most of its electricity from coal power 

with a growing share of solar energy [e]; Ontario generates most of its power from nuclear and a large 

portion from hydropower and wind [f]; PJM generates power from coal, nuclear, and natural gas, with a 
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small portion of renewables [g]. Note that hydropower and biofuels are not considered in the renewable 

energy share due to their lower variability compared to the high intra-diurnal variability of wind and solar.  

As shown in Figure 4-5, regions with higher VRE shares tend to have an increased price-demand 

slope. This is even true for PJM when comparing 2016 data to 2017 data – considering that the system 

generation mix is different from one year to the next. While the set of data is too small to draw a statistically 

relevant conclusion, one may infer from these cases that the share of VRE in the system is a key determinant 

of the price-demand slope. One exception is the von Roon data [107], which does not seem to follow this 

relationship. However, that data point was difficult to convert into the appropriate units using only the data 

provided in the paper, and thus may or may not be representative of the larger trend.  

Based on Figure 4-5, an approximate relationship between price-demand slope and VRE is given 

as 

 𝑚~1 + 0.34 𝑄𝑎𝑣𝑔 (4-16) 

This relationship is consistent with the expectation that m=1 for a system with no VRE and that m increases 

as VRE penetration increases.  However, this may only be reasonable for low VRE shares (under 10% in 

the cases studied), since the impact of variable generation for higher shares may become significantly non-

linear.  The calculation of m also does not address the variation in generation mix nor the impact of the 

interconnection and transmission connection on the relationship between energy prices and renewable 

shares.  
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Figure 4-5. Price-demand m-values compared to renewable energy shares of total generation (Qavg) for PJM 

(2016), PJM (2017), Queensland (2016), Ontario (2015), and estimated value from von Roon [107] for residual 

demand in Germany in 2008, as well as a linear fit given by 𝑸𝒂𝒗𝒈 = 𝟐. 𝟗𝟐𝒎 − 𝟐. 𝟗𝟐 

 

B. Proposed Model for Demand  

In the following, the region of PJM (which has a large and publicly available set of self-consistent 

data on demand, generation, and prices) is used to construct a demand model and to assess COVE and other 

metrics. While real-time data is the most accurate to use for demand (as was used in Figure 4-4), a “standard 

demand” weekly profile is used to simplify modeling. Herein, three weekly standard profiles are developed 

based on seasons (summer, winter and spring/fall) by averaging weeks of Mid-Atlantic region demand data 

from PJM for 2016-2018 [b].  These are compared in Figure 4-6 to a randomly selected week of real demand 

for each season.  

These standardized demand curves were used to create a “standard year” of modeled demand (Dm) 

by stringing together these seasonally-averaged weeks so that total demand is comparable to a year of actual 

demand data (Figure 4-7). For PJM, the season durations of winter, spring, summer, and fall were set as 16, 

11, 17, and 8 week periods, to best match the real demand data for a year.  While the length of each season 

may vary regionally, the general shape of the demand curves is typical of most regions in the USA [h]. This 

standard year of demand was created to smooth out single year irregularities which may occur due to 

weather, power plant or transmission downtime, regulation changes, etc. The differences between demand 

and modeled demand seen in Figure 4-7 are examples of these irregularities which will vary year to year.  
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Figure 4-6. Seasonal demand profiles normalized by the annual average demand for a sample PJM week and 

for season-averaged (modeled) PJM week 

 

 

Figure 4-7. Normalized 2016 PJM demand data compared to standard year of demand created using season-

averaged (modeled) PJM data 

To assess the accuracy of the standard year of demand, the Root Mean Square Error (RMSE, Eq. 

4-17) was used to evaluate how well real hourly demand was predicted. The modeled year of demand was 

compared to three years of real hourly demand; the three years of demand were also compared to each 

other. The results in Table 4-1 show that using the modeled year of demand results in differences on the 
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same order as real demand; in fact, the modeled demand predicted all three years of demand with lower 

RMS Errors than using real years of demand. Thus, in this case, the standard year of modeled demand is 

preferred over using a single year of demand data to predict other years of demand.  

 

 𝑅𝑀𝑆𝐸 = √∑
(𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 − 𝑥𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖)

2

𝑁

𝑁

𝑖=1
 (4-17) 

 

Table 4-1. Annual RMS Error comparing the difference between years of demand 

 Modeled Demand 2017 Demand 2018 Demand 

2016 Demand 0.0256 0.0393 0.0340 

2017 Demand 0.0319 - 0.0333 

2018 Demand 0.026 - - 

 

C. VRE Generation Data    

Hourly generation data is needed to evaluate COVE and LACEs (via Eqs. 4-10 and 11). While 

historical data is the most accurate to use (as was used in Figure 4-4), generation can also be estimated from 

wind resource data, solar radiation (insolation) data, and other plant output. To simulate future scenarios of 

solar and wind deployment in the region of Virginia (within the PJM region) hypothetical hourly generation 

distributions were obtained to represent generation from future installations of utility-scale VRE power 

plants. For solar energy generation, PV production data was gathered from a University of Virginia solar 

installation with a maximum output capacity of 126 kW for 2017-2018 [i]. Note that the size of the 

installation does not matter (for the assumption of small solar share) as it is nondimensional in the analysis 

below. For wind generation, offshore wind energy (expected to be a significant player in Virginia in the 

future) was employed by using one year of wind data at 90m from the DOE BUOY project off the Virginia 

coast [j] combined with the NREL 5 MW offshore wind turbine power curve [115] to calculate expected 

hourly wind power data. As with solar, the size of the wind turbine plant and the plant loss factor do not 

factor into this analysis. This simplification enables easier analysis of scaling the VRE generation up and 

down but does not account for the potential correlation (positive, neutral or negative) of VREs that are 

distributed geographically, which can mitigate against some of the impact to the price-demand relationship 

in a region [116–119]. 
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The above example wind and solar data from locations within the Mid-Atlantic PJM region was 

used to investigate the potential correlation between generation and hourly demand before applying the 

linear price-demand model. Standard summer and winter demand curves are shown in Figure 4-8, along 

with a representative week of solar energy production and wind energy production for each season with 

hypothetical shares of 10%.  In addition, the resulting residual demand for the summer only is shown in 

Figure 4-9for both solar and wind.  As can be seen in Figure 4-8a and Figure 4-8b, there is a general 

correlation of solar energy production with demand, but the evening rise in demand is not well correlated 

to solar energy, leading to a rise in residual demand during that portion of the day (seen in Figure 4-9a), a 

phenomena known as the “duck curve” [116,120].  In contrast, wind energy based on PJM offshore data as 

shown in Figure 4-8c and 8d is more stochastic with little correlation between production and demand and 

higher wind seen in the winter than summer.  As such, the residual demand for wind is relatively stochastic 

about the standardized demand curve.  

 

Figure 4-8. Electricity demand and generation for a hypothetical solar Savg=0.1 (a,b) and a hypothetical wind 

Wavg=0.1 (c,d) for an example week in the summer and winter  
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Figure 4-9. Residual Demand over summer week with hypothetical Savg=0.1 solar generation (a) and Wavg=0.1 

wind generation (b) 

D. Value Factor Validation  

Pulling together the price, demand, and generation data described above, VF was calculated by 

Eqs. 4-(12-14) for wind and solar. The results are shown in Table 4-2a, where Eq. 4-12 is applied to three 

years of real price data for PJM. The average and standard deviations of the error using the linear price 

model with demand and modeled demand (both relative to real-time price data) are given in Table 4-2b. 

While wind and solar VFs see similar errors when using the linear model with real-time demand, solar VF 

has a larger error than wind VF when using modeled demand.  However, the VF errors are generally small, 

especially given the simplifications and assumptions associated with the linear-price model and the 

standardized demand curves.  

Table 4-2a also gives important information about the relative values of wind and solar installations 

at low share of VRE penetration. Wind tends to have a VF close to 1 since its generation is largely stochastic 

and does not often correlate positively or negatively with demand. However, solar tends to have a higher 

VF that is above 1 since its generation often aligns with times of high demand, especially during the middle 

of the day.  
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Table 4-2. Value Factor for wind and solar examples: a) calculated with real price data (p) for PJM for 3 

consecutive years, a linear relationship with a real demand (D), and a linear relationship with the modeled 

demand (Dm); and b) Percent error of real price data for the demand and modeled demand VF models. 

a) 

VF Wind Solar 

using p (2016) 0.974 1.185 

using p (2017) 1.012 1.133 

using p (2018) 0.995 1.119 

using D 0.972 1.114 

using Dm 0.966 1.080 

 

b)  

 Wind Solar 

VF Avg. % Error Error St. Dev. Avg. % Error Error St. Dev. 

using D 2.20% 1.88% 2.68% 2.94% 

using Dm 2.77% 1.86% 5.65% 2.85% 

 

Figure 4-10 indicates the sensitivity of VF to price-demand slopes (associated with changes in VRE 

penetration per Figure 4-5) using the example wind and solar PJM data. The m-values for each of the three 

evaluated regions are denoted with vertical dashed lines, while the VF calculated with real spot prices (from 

Table 4-2a) are denoted with points. The spot price data (Eq. 4-12) falls close to the predicted trends for 

solar and wind (Eq. 4-14), but the modeled-demand values tend to under-predict VF. This may be attributed 

to over-smoothing of demand data, which reduces modeled price spikes and dips. It is recommended that 

further data should be collected from other regions with different VRE shares, generation mixes and 

demand profiles to better characterize the fidelity of modeled-demand VF.  

For a given region, Figure 4-10 shows that solar and wind will have significantly different VFs, 

even for a moderate price-demand slope of m=1.5. This illustrates the relative benefit of solar’s higher 

correlation of generation with demand, which only becomes more extreme with increasing m. For example, 

if PJM were to shift over time to m=4.1, solar would earn nearly a 50% higher VF than wind, using the 

linear price-demand relationship.  
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Figure 4-10. Value Factor as a function of changing m values based on actual price for 2016, 2017, and 2018 

(symbols) and modeled price (lines) 

 

4.4. Wind turbine design case study 

To illustrate the trade-offs in design that can affect LCOE and COVE, a simplified example of the 

preliminary design of an individual wind turbine is considered. While this example focuses on wind turbine 

design, the approach could be similarly used for photovoltaic panel design, or even the design of entire 

wind and solar power plants. Conventionally, a designer optimizes the turbine design to produce as much 

energy as possible (within design load specifications) at the lowest possible cost for a given wind class and 

machine rating. Designing in this way to minimize LCOE may not be economically optimal. As an example 

of the separate influence of COVE beyond LCOE, we consider the influence of rotor size on the system 

design and value.  From a pure LCOE perspective, “growing the rotor” for a fixed rating may have 

limitations, since the mass of the turbine can outpace the increase in power capture. However, increasing 

the rotor size relative to machine rating shifts the wind turbine power curve to allow for more energy capture 

at lower wind speeds and thus increases the Capacity Factor (CF) of the machine for a given site. With 

advances in technology, it may be possible for LCOE to not vary significantly with increasing rotor 

diameter [33,121]. 

The effect of CF variations is considered in an example case study using the offshore Virginia wind 

dataset.  In particular, a set of turbine designs are considered for a fixed generator rating (5 MW) but with 

a range of rotor diameters (from 90 m to 180 m) and corresponding power curves. The result of the variation 

in rotor diameter on COVE (for a fixed LCOE) is shown in Figure 4-11, using Eq. 4-10 with two different 
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m-values: one based on the current PJM region (𝑚 = 1.5), and one based on Ontario (𝑚 = 4.1), 

representative of a region with higher VRE shares.  Based on the results in Table 4-2, an estimated error of 

+/-2% is included in this plot as a shaded region to illustrate the potential uncertainty of the COVE trends. 

However, this uncertainty may be higher in regions with greater share of VRE, and there may be additional 

error from assuming that LCOE changes are negligible over the range of rotor sizes considered. 

 

Figure 4-11. Influence of Capacity Factor (CF) on Cost of Valued Energy (COVE) where PJM 𝒑𝒂𝒗𝒈 =

𝟐𝟕. 𝟒 $/𝑴𝑾𝒉 and 𝑳𝑪𝑶𝑬 = 𝟐𝟔. 𝟓 $/𝑴𝑾𝒉 (for future plausible design) with two different m-values applied. 

The baseline CF of 0.43 is denoted with a vertical dotted line. 

For this particular dataset, wind has a slight negative correlation with demand, and increasing 

Capacity Factor is shown to mitigate this effect, resulting in a favorable decrease in COVE (Figure 4-11). 

While the reduction in COVE is almost negligible for m =1.5, a significant range of $1.5/MWh in COVE 

is seen with m =4.1.  This indicates that a region with a higher share of VRE will generally have a greater 

benefit when increasing the CF of a wind turbine.  

The economic perspective that COVE provides for VRE system design can be shown more 

explicitly by considering the Return on Investment (ROI) for a particular wind turbine design.  ROI is a 

common profitability metric used by investors to compare business options and economic performance of 

a system.  

 𝑅𝑂𝐼 =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝐶𝑜𝑠𝑡𝑠

𝐶𝑜𝑠𝑡𝑠
=

𝑝𝑎𝑣𝑔 ∗ ∫ 𝑝𝑔 𝑑𝑡

Σ𝑐𝑜𝑠𝑡𝑠
− 1 (4-18) 

Maximizing ROI is a useful overall objective from a system design and investment perspective. ROI can 

be approximately related to the herein proposed cost metrics as 
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 𝑅𝑂𝐼 =
𝑁𝑉

𝐿𝐶𝑂𝐸
=

𝑝𝑎𝑣𝑔

𝐶𝑂𝑉𝐸
− 1 =

𝑝𝑎𝑣𝑔 ∗ 𝑉𝐹

𝐿𝐶𝑂𝐸
− 1 (4-19) 

However, the actual ROI depends on a variety of factors including the economic components in Figure 4-1. 

As such, the above is only a first-order approximation of ROI with respect to the influence of COVE (or 

VF or LACE).  For the sake of this analysis, the potential change in ROI as a function of the cost metrics 

is used:  

 ∆𝑅𝑂𝐼 = ∆ (
𝑝𝑎𝑣𝑔

𝐶𝑂𝑉𝐸
− 1) = ∆ (

𝑝𝑎𝑣𝑔 ∗ 𝑉𝐹

𝐿𝐶𝑂𝐸
− 1) (4-20) 

While many other factors outside of energy spot price influence ROI, Eq. 4-20 can be used to 

directly relate the influence of COVE on ROI. This relationship also shows that minimizing COVE (or 

equivalently maximizing VF while minimizing LCOE), may result in different design decisions than only 

minimizing LCOE, since LCOE does not take into account design trade-offs between producing higher 

value energy and producing energy for the least cost. In the present wind turbine case example, the result 

of the variation in capacity factor (through rotor diameter) on the change in ROI (for a fixed LCOE) is 

shown in Figure 4-12 using Eqs. 4-10 and 20 with two different m-values. While there are significant 

uncertainties that are not accounted for in this simple model, the results show that increases in CF (assuming 

a fixed LCOE) can lead to significant improvement in ROI.  

  

Figure 4-12. Influence of Capacity Factor (CF) on change in Return on Investment (Δ ROI) with two different 

m-values applied. The baseline CF of 0.43 is denoted with a vertical dotted line. 
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Limitations of this method include that COVE and ROI values calculated with Eq. 4-9 neglect 

variations in Residual Demand that will arise if VRE penetration increases. If Residual Demand data were 

available, Eq. 4-8 could be used to predict price, which does not neglect the variations described by Q’.  

Including this additional information is likely to increase the model accuracy, a hypothesis which is 

recommended for future investigation.  This information may also increase the sensitivity of COVE to CF 

when designing a wind turbine for use in a region with high wind shares; an increased capacity factor would 

reduce the negative impact of producing energy at times of low price (i.e. at low residual demand due to 

high wind production), creating an enhanced levelization advantage.   

4.5. Conclusions and Future Outlook 

To improve upon the conventional use of LCOE for design of wind turbines and solar panels, as 

well as full wind and solar power plants, two relatively simple metrics, COVE and LACEs, are developed 

herein to take into account the changes in energy value and the time of generation. Using the proposed 

linear price-demand relationship combined with the LCOE value, LACEs and COVE can be obtained using: 

1) season-based standardized weekly demand curves (Dm), 2) a price-demand slope (m) that is related to 

VRE penetration, and 3) predicted hourly VRE generation data. Both metrics are more straightforward to 

employ as compared to utility-based metrics, such as sLCOE or rsLCOE, which are more suited to grid-

level decisions. As such, these simplified models can be helpful to VRE system designers during the initial 

stages of the design process.  

The wind turbine design example showed that the ROI for a particular wind turbine design could 

be improved by increasing the CF through increasing the rotor diameter for the given machine rating 

(assuming LCOE remains unchanged). It also showed that for a region with low m (such as PJM), ROI is 

relatively insensitive to changes in rotor diameter, but a higher m region sees more significant effect on 

ROI with changes to rotor diameter. As a single, simple metric, COVE is able to directly relate to ROI for 

design decisions such as this one. 

Future recommendations include additional data surveys for this design metric using a range of 

price and demand datasets in different regions, with varying levels of VRE shares, profiles of the overall 

generation mix, levels of transmission build-out, and demand profiles. The potential future work may also 

investigate extending COVE or LACEs to include aspects related to the technology capacity value and 

capacity payments and also for VRE power plants that include storage technologies.  Finally, the impact of 

using COVE or LACEs on the design of renewable energy systems should be investigated to understand 

how the objectives influence the designs compared to traditional LCOE objectives.   
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Chapter 

5. Techno-economic analysis of Liquid Metal Battery storage 

in an offshore wind turbine 

Abstract  

As wind energy increases its global share of the electrical grid, the intermittency of wind becomes more 

problematic. To address the resulting mismatch between wind generation and grid demand, long-duration 

(day-long) low-cost energy storage is offered as a potential solution.  Lithium-ion (Li-ion) storage is an 

obvious, well-developed candidate, but it is currently too expensive for such long-duration applications.  

Liquid metal battery (LMB) storage offers large cost reductions and recent technology developments 

indicate it may be viable for MW-scale storage. Accordingly, we investigate co-locating and integrating 

LMB and Li-ion storage within the substructure of an offshore wind turbine.  Integration allows the 

substructure to cost-effectively double as a storage container and allows for costly electrical farm-to-shore 

connections to be reduced to near the average power size (by reducing peak power).  These benefits are 

compared to the costs for battery integration. Simulations show that line size can be reduced by 20% with 

4 hours of storage or by 40% with 12 hours of storage, with negligible capacity factor losses.  However, 

with 24 hours of average power storage using LMB, no line size reduction provided the best overall net 

value of the turbine-storage system due to the ability to capture all available wind energy and profit from 

energy arbitrage and full capacity credit.  In general, LMB integrated storage results in an increased relative 

value with current system costs.  Projected technology trends indicate that these benefits will significantly 

improve and that integrated Li-ion storage will also become cost-effective.   
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Nomenclature 

Symbols 

𝐶 Battery C rate [1/hrs] 

𝐺 Energy generated [MW] 

𝑘 Heat transfer coefficient [W/m-k] 

𝑃 Power [MW] 

𝑞 Heat rate [kW] 

𝑟 Radius [m] 

𝑡 Thickness [cm] 

𝑇 Temperature [°C] 

𝑉 Battery volume [m3] 

𝑊 Wind speed [m/s] 

𝜂 Charge or discharge efficiency [%] 

 

Subscripts 

𝑎𝑣𝑔 Average power 

𝑏 Battery 

ℎ𝑒𝑎𝑡𝑒𝑟 Heater 

𝑖 Insulation  

Joule Joule heating 

𝑙𝑜𝑠𝑠 Heat loss 

𝑟𝑎𝑡𝑒𝑑 Rated power 

𝑠𝑡𝑜𝑟𝑎𝑔𝑒 Storage system 

𝑡𝑜𝑡𝑎𝑙 Combined system 

𝑡𝑢𝑟𝑏𝑖𝑛𝑒 Wind turbine system 

𝑤 Water 

𝑤𝑎𝑙𝑙 Substructure wall 
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Abbreviations 

AEP Annual energy production [MWh/yr] 

BOS Balance of station 

CapEx Capital expenses [$] 

CC Capacity credit [%] 

CF Capacity factor [%] 

CP Capacity payment [$/yr] 

CV Capacity value [$/MW-day] 

FCR Fixed charge rate [1/yr] 

LACE Levelized avoided cost of energy [$/MWh] 

LCOE Levelized cost of energy [$/MWh] 

Li-Bi Li | LiCl-LiBr-LiI | Bi battery chemistry 

Li-ion Lithium-ion 

LMB Liquid metal battery 

MGP Marginal generation price [$/MWh] 

NV Net value [$/MWh] 

OpEx Operating expenses [$/yr] 

SCAPP Storage capacity at average plant power [hrs] 

SCRPP Storage capacity at rated plant power [hrs] 

VSD Variable speed drive 

 

5.1. Introduction 

Wind energy already provides more than a quarter of the electricity consumption in three countries 

around the world [2], and its share of the energy grid is expected to grow as offshore wind technology 

matures. The wind speeds on offshore projects are much steadier and faster than wind speeds on land, and 

offshore wind provides a location that is close to high demand coastal areas and avoids space constraints 

[122]. 

However, as grid penetration from variable (inconstant) renewable sources increases worldwide, 

their intermittency becomes more problematic [123].  As seen in Figure 5-1, wind generation does not align 

well with times of electricity demand. Furthermore, the relative value of wind energy decreases when it 
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becomes a larger fraction of the grid generation [18,19].  When in demand, renewable energy sources may 

have a high value compared to baseload generation, e.g., such as when solar produces power during the day 

at times of relatively high demand.  However, the value of these resources falls when a glut of renewable 

energy with no marginal cost enters the market and depresses prices or forces curtailment of renewable 

resources [18,96]. This issue is expected to intensify since the electrical market structure is moving away 

from a purely energy-based market and towards a structure with greater focus on capacity and grid services 

[91].  While some have suggested improving forecasting methods to better handle renewable energy on the 

grid [124], another potential way to deal with these issues is to install high-capacity energy storage that can 

shift the time of generation to times when demand is stronger [20]. This will require a low-cost energy 

storage solution that can provide storage for hours or even days. In this future, renewable energy could 

increase its value significantly by pairing with storage systems, allowing it to participate in capacity 

markets, energy arbitrage, and auxiliary services.   

 

 

Figure 5-1. Offshore wind energy generated at 15% penetration compared to electrical grid demand (both 

normalized by annual average) over a representative week for a) summer, and b) winter.   

Multiple strategies have been pursued to optimize the operation of battery storage with variable 

renewable energy. These include reducing the error between the forecasted wind power and the actual wind 

power [125,126], using a combination of energy storage and demand-side management [127], introducing 

incentives [128], and using large-scale transmission systems [129] to integrate high shares of wind energy. 

One potential advantage to storage with wind energy is the ability to employ time-shifting for 

energy arbitrage.  Previous work and modeling in energy arbitrage suggests that batteries are too expensive 

to breakeven in most arbitrage markets [130–133]. Salles [132] simulated energy storage systems in PJM 

(a mid-Atlantic electrical transmission organization) over 2008 to 2014 and found the best possible scenario 



80 

yielded enough revenue to breakeven with battery installed costs at $200/kWh; however, other locations, 

during other years, required installation costs of half that value to break even [132]. As such, the more likely 

potential advantages to storage with wind energy are to time-shift the energy generated, balance the grid, 

and provide additional peak reserves [20,123].   

Battery storage system capacity is typically quantified based on nameplate duration of discharge, 

or how many hours the battery can discharge at full rated battery power generation. Battery storage capacity 

is thus specified as, short-duration: less than 0.5 hours of rated capacity, medium-duration: 0.5-2 hours of 

rated capacity, or long-duration: more than 2 hours of rated capacity [134]. For grid applications, 4 hours 

of rated capacity may be more representative of “long-duration” storage [111,135].   This is an appropriate 

and critical quantification of the battery; however, for a storage system co-located and integrated with a 

plant, it is important to also consider the battery storage capacity relative to the plant power. 

Thus far, battery storage systems co-located with wind turbines are small relative to turbine power 

generation. GE installed a wind farm consisting of 13 turbines, with total rated generation of 37 MW for 

their Tullahennel project in north-western Ireland, where each turbine is accompanied by a Li-ion battery 

to provide a total of 897 kWh of storage [136]. Deepwater Wind recently won a bid from the state of Rhode 

Island to build a 144 MW wind farm co-located with a 10 MW/40 MWh Tesla battery, with a goal of 

shifting energy production to meet peak demand [137]. The largest battery storage system in the world is 

the Hornsdale Power Reserve installed in South Australia in 2017; the system consists of 315 MW of wind 

power combined with a 100 MW/129MWh battery used primarily for the purposes of grid stabilization 

[138].  

If one considers the battery capacity relative to the plant power (not the rated battery power limit), 

these installations would all store an hour or less of average wind power. While such energy storage capacity 

has not been commonly defined nor reported (to the author’s knowledge), this characterization can value 

the integrated performance of a system composed of an energy source and its associated energy storage.  

This is important as wind energy can have periods of little or no generation that exceed 12 hours as shown 

in Figure 5-1.  A power spectral density analysis in [139], found that using energy storage to help smooth 

out the most common frequencies of wind power oscillation (12-hour and 24-hour) will likely require long-

duration storage.  As such, substantial levelization and/or demand-shaping requires storage in the range of 

10-24 hours of average wind plant power [140].  Thus, if battery storage is going to be used to significantly 

levelize and control wind energy generation for day-to-day operation, then new storage options will be 

needed that are operable over much longer durations in the context of storage capacity relative to the plant 

average or rated power.  In particular, none of the current or planned wind energy storage projects are able 

to address the majority of wind energy generation intermittency.   
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Therefore, there is significant interest in the potential benefits for energy storage systems that have 

the capacity to store a fraction of a day up to a full day or more of average power [141].  The solution would 

seem to indicate that more storage capacity is needed for a given wind farm.  However, utility-scale energy 

storage for even day-long duration is currently prohibitively expensive with conventional battery 

technologies.  Limited options for low-cost, high-performance energy storage are even inspiring hybrid 

energy storage systems instead [142].   

As noted above, a key to employing long-duration energy storage for wind is to ensure that the 

capacity comes at low enough cost with respect to the benefits it can provide.  The cost for electrical energy 

storage is often driven by materials, packaging, and level of development. Currently, the most commonly 

installed and well-developed electrical energy storage option is Li-ion batteries. Li-ion battery costs have 

dropped 85% from 2010-2018 [143], and battery pack prices have been projected to reach between 

$62/kWh and $76/kWh by 2030 [144]. Despite the declining prices, Li-ion batteries come with certain 

disadvantages, especially at MW-scale. They have a tendency to overheat, sometimes leading to thermal 

runaway and combustion [145,146]. Li-ion batteries also operate within a narrow temperature region and 

have significantly reduced performance outside that temperature region necessitating active thermal 

management systems [146]. Li-ion batteries can have a lifetime of more than 3500 cycles or 10 years 

operation with a wind farm, over which their capacity declines (since cycle life is nominally defined by 

20% capacity loss) [147]. As such, integrated Li-ion batteries would need to be significantly oversized or 

replaced at least once during the 20-30 year life of a wind turbine to continue providing adequate storage 

capacity. 

An alternative electrical storage option that has been developed in recent years and may be 

approaching commercial production is the liquid metal battery (LMB) [148–153].  These batteries feature 

low raw-material cost, high thermal resilience, and long lifespan, and thus are judged to be a good fit for 

large-scale energy storage [151]. Additionally, their chemistries are neither volatile nor flammable. The 

liquid metal electrodes and molten salt electrolyte must be operated at elevated temperature so as not to 

solidify. With proper insulation, LMB can maintain operating temperature by generating adequate heat 

while cycling (charging and discharging) without the need for auxiliary heaters [153]. This feature favors 

LMB for large-scale storage applications (MWh) rather than small-scale storage applications (kWh). This 

paper will focus on the working composition “Li | LiCl-LiF | Bi” as specified in [149] and herein referred 

to as “Li-Bi”, where the anode is Lithium, the electrolyte is LiCl-LiF, and the cathode is Bismuth. This 

composition will be used because it has operational metrics reported in the literature. However, Ambri, a 

company working to commercialize the LMB technology, has recently announced a new Ca-Sb battery 
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composition which is expected to exceed the high performance of Li-Bi while reducing the cost of storage 

even further to well below the projected price of Li-ion [153].  

The significant benefits of long-duration storage for wind energy combined with recent 

developments in LMB technology suggest that this combination may have strong potential to address 

intermittency, especially offshore where storage can reduce farm-to-shore electrical connection costs. In 

order to investigate this hypothesis in a system-based cost-effective manner, the objectives of this work are: 

i) to develop a technical concept design for integrating LMB into a monopile offshore wind turbine to 

examine influence of storage capacity and electrical connection line size on overall capacity factor (Section 

2), and ii) to determine the expected cost and value of such a wind-integrated battery system and compare 

these to those of a wind turbine with no energy storage and one with Li-ion battery storage (Section 3). 

This is the first study, to the author’s knowledge, that investigates integration of wind turbines with 

LMB storage and the first to consider offshore energy storage capacity factors and economics for long-

duration storage.  This study is also the first to parameterize the battery capacity relative to the average 

plant power generation (not just the battery rated generation power).  This capacity parameter represents a 

change in perspective which characterizes the energy storage and the energy source as an integrated system. 

As the LMB concept combined with a wind turbine has not been explored before in terms of an engineering 

nor a cost basis, the present work is based on a first-order analysis to evaluate the leading factors that govern 

performance and cost.  

5.2. Concept Design 

A. Capacity at Average Plant Power 

As discussed above, energy storage capacity is typically measured based on the discharge time at 

rated power. This gives hours of storage capacity in terms of rated battery power, i.e. the time it takes to 

drain the battery at the maximum discharge rate. However, when thinking about integrating an energy 

storage system with a power plant (such as a wind farm), we can also measure the storage capacity in 

relation to the output power from the plant. This approach means that as the generation scales up or down, 

the associated storage hours can stay constant while the actual capacity (in MWh) varies. Quantifying the 

integrated storage capacity can either be defined relative to the rated (maximum) power of the plant or the 

average power produced by the plant, where the plant may be a solar farm, wind turbine, nuclear generator, 

etc.  For these definitions, the rated and average power are proposed to be defined as that without storage 

to ensure a consistent baseline reference.  In particular, for the rated version, we define storage capacity at 

rated plant power (SCRPP) in hours as the ratio of total storage capacity (MWh) to rated plant power (MW) 
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 𝑆𝐶𝑅𝑃𝑃 =
𝑇𝑜𝑡𝑎𝑙 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑀𝑊ℎ)

𝑃𝑟𝑎𝑡𝑒𝑑(𝑀𝑊)
 (5-1) 

However, since the typical goal of co-located storage is to smooth or level the output from a variable 

renewable power plant, the average power production is more germane. For this, we define the storage 

capacity at average plant power (SCAPP) as the ratio of total storage capacity (MWh) to the mean (or 

average) wind power (MW) in hours and relate this to the plant capacity factor (CF)   

 𝑆𝐶𝐴𝑃𝑃 =
𝑇𝑜𝑡𝑎𝑙 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑀𝑊ℎ)

𝑃𝑎𝑣𝑔(𝑀𝑊)
=

𝑇𝑜𝑡𝑎𝑙 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑀𝑊ℎ)

𝑃𝑟𝑎𝑡𝑒𝑑(𝑀𝑊) × 𝐶𝐹
 (5-2a) 

 𝐶𝐹 =
𝑃𝑎𝑣𝑔

𝑃𝑟𝑎𝑡𝑒𝑑
 (5-2b) 

The latter expression uses the conventional definition of plant capacity factor as the average power (𝑃𝑎𝑣𝑔) 

normalized by the rated plant power (𝑃𝑟𝑎𝑡𝑒𝑑).  A typical photovoltaic solar system will have a CF of about 

15% to 25% with predictable daily cycles while a typical wind turbine will have a CF of 30% to 50% with 

more irregular day-to-day, week-to-week and even season-to-season variations.  Thus, storing one or more 

days of energy at average power (e.g. SCAPP > 24 hours) is needed to achieve nearly levelized wind energy 

generation.  However, there are significant benefits for partial levelization and as such a range of SCAPP 

durations will be considered to provide the best net economic value for the integrated system.  

B. Overview of Turbine for Storage Integration 

We propose placing a battery storage system within the tower of an offshore wind turbine, as 

depicted in Figure 5-2a. The integrated battery storage would allow the wind turbine system to regulate 

when and how much power it is producing and control what power travels along the electrical lines to shore. 

The battery would interact with the variable speed drive (VSD) as depicted in Figure 5-2b, thereby 

removing the need for additional power electronics in the system [154,155]. Thus, DC power would travel 

along the turbine tower to and from the battery, while AC power would travel out of the VSD and through 

lines to shore.  
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Figure 5-2a. Battery storage integrated into offshore wind turbine tower. Tower and substructure heights are 

denoted on the left and are specified for the NREL 5 MW turbine in Table 5-1. 

 

  

Figure 5-2b. Battery connection to wind turbine electrical system via variable speed drive (VSD) [155] 

One benefit of the proposed system is the possibility of reducing the size of the electrical lines to 

shore and the corresponding infrastructure. An example of how this storage system would function with 

reduced electrical line size is shown in Figure 5-3 for a 5 MW turbine with a 2.5 MW line size and 6 hours 

of storage at average turbine power, i.e. 6 hours of SCAPP. When more wind power is generated than the 

maximum power that the transmission line can handle, the excess power charges the battery until it is full, 

and then the excess power is curtailed. When less wind power is produced than the line size, the battery 

discharges to provide additional power. This scheme attempts to provide power at a constant level as often 
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as possible, but other storage schemes could seek to maximize energy revenue or to smooth the hour-to-

hour output of wind energy, all of which will have different costs and values.   

 

Figure 5-3. Energy storage example for a 5 MW turbine over one week with a 2.5 MW electrical line size and 

6 hours of SCAPP, where times of charging, discharging, and curtailing are highlighted for a) power 

generated from the rotor and power sent to shore, as well as b) energy stored in the battery. 

Wind speed data were gathered from the DOE BUOY project during its deployment off the coast 

of Virginia at a height of 90 m [156]. A representative week of hourly wind speed data was pulled from the 

DOE BUOY data (a week with typical periods of high and low wind speeds and no missing data points) 

and was used throughout this paper. The probability distribution of the one week of data used herein and 

the entire year of data are shown in Figure 5-4, with a Weibull distribution fitted to the year of wind speed 

data described by 𝑆𝑐𝑎𝑙𝑒 = 9.5 and 𝑆ℎ𝑎𝑝𝑒 = 2.1. Using one week of data reduced computational time while 

still capturing the important time scales on which the proposed storage system would be operating.  
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Figure 5-4. Probability distribution of one week of wind speed data (a) and one year of wind speed data (b) 

off the coast of Virginia at 90 m above sea level from DOE BUOY project [156]. The week (a) has a mean 

wind speed of 8 m/s while the year (b) has a mean wind speed of 8.4 m/s. 

 

Table 5-1. NREL 5 MW monopile turbine specifications, with site specific information [12,115,157] 

Specification Value 

Rotor diameter 126 m 

Blade clearance 24.6 m 

Tower height 87.6 m 

Depth below water line, above mud 20 m 

Depth below mudline 36 m 

Diameter, thickness at and below 

waterline 
6 m, 0.027 m 

Diameter, thickness at top 3.87, 0.019 m 

Rated Power 5 MW 

Capacity Factor (site-specific) 0.427 

Average Power (site-specific) 2.135 MW 

 

The energy production of the wind turbine is based on values from the NREL 2017 Cost of Wind 

Energy Review [12] to allow for direct comparison with the LCOE breakdown provided in that report. The 

week of wind speed data was converted to wind power data using Eq. 5-3 by applying the NREL 5 MW 

reference turbine power coefficient curve [115] and scaling the wind speeds such that the average wind 

power yielded a capacity factor of 0.427 to be consistent with the 2017 Cost of Wind Energy Review [12]. 

For the baseline conventional 5 MW turbine (without storage and with the original electrical connection 

line size of 5 MW), resulting wind power generated (𝐺) as a function of wind speed (𝑊) is then given by 
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 𝑊 < 3 𝑚/𝑠 or 𝑊 > 25 𝑚/𝑠 𝐺 = 0 𝑀𝑊 (5-3a) 

 3 𝑚/𝑠 ≤ 𝑊 < 11.4 𝑚/𝑠 𝐺 = 0.00343 × 𝑊3 𝑀𝑊 (5-3b) 

 11.4 𝑚/𝑠 ≤ 𝑊 ≤ 25 𝑚/𝑠 𝐺 = 5 𝑀𝑊 (5-3c) 

For simplicity, wind farm wake losses and dynamic effects of turbulence are ignored when converting wind 

speed data into wind power results, as is typical in initial designs. 

For this conceptual design of integrated storage, the baseline wind turbine was the monopile 

offshore NREL 5 MW reference turbine [115], whose details are given in Table 5-1. The turbine tower and 

substructure heights are denoted in Figure 5-2a. The battery system can be integrated into the monopile 

substructure of the turbine, either above water or below water, to create an integrated wind-storage system. 

The batteries will be considered with long-duration options of 6, 12, and 24 hours of SCAPP, where the 

average turbine power is 2.135 MW based on the above capacity factor.  

C. Battery Storage Options 

Potential battery storage options within the wind turbine are compared in Table 5-2 for LMB, Li-

ion, and Lead-acid batteries. The values for the more conventional energy storage battery options of Li-ion 

and Lead-acid in Table 5-2 are from [158] and [159], and both technologies have been implemented in 

large-scale storage installations [138,158].  Comparing these two options, Lead-acid is less expensive, but 

Li-ion has superior performance characteristics, in particular, a much longer cycle life.  Space, mass, and 

life-cycle constraints tend to dominate for long-term installations, which is consistent with Li-ion being the 

dominant battery option in current large-scale energy storage installations, as of the time of this writing 

[134]. 

The LMB storage options include both a published Li-Bi system [149] and an announced Ca-Sb 

system [153].  The performance specifications for these two systems configured for a large-scale application 

are listed in Table 5-2 and discussed below. However, in the absence of a full-scale deployment, LMB 

performance metrics contain a high degree of uncertainty. The Li-Bi LMB system was tested at lab scale 

in cells as high as 200 Ah capacity. Note that the Li-Bi system reported in [149] was not optimized and 

would be less expensive in a large-scale format. For example, in a large cell the ratio of the thickness to 

volume of the electrolyte would be significantly reduced. Furthermore, for the large battery comprising 

hundreds of large-format cells, the metals of the electrodes and the salts of the electrolyte materials would 

be purchased at bulk market cost, with lower metallurgical-grade purity. In order to estimate cost for a 

large-scale system composed of Li-Bi LMB, an “optimized” version of the Li-Bi system is used in Table 

5-2 based on estimated manufactured pack cost (with more details on the assumptions in the Appendix).  
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For the projected Ca-Sb LMB, the cycle life is from [150] while the rest of the battery specifications are 

based on published Ambri estimates [153]. The Ca-Sb system has not yet been commercially installed, but 

the production cell size is reported to be 800 Ah, which will be aggregated into a 1000 kWh battery.  

A comparison of the conventional battery options to the LMB options shows that both Li-ion and 

Lead-acid have higher roundtrip efficiencies than either LMB option.  However, both LMB options have 

much lower cost than the traditional battery options as well as much higher cycle-life numbers.  For 

integration into a wind turbine that is slated to have 20+ years of operation, low cost and high cycle-life are 

the driving factors for performance.  Additionally, the high energy density of LMB is an advantage when 

integrating into a structure with finite available space. As such, LMB is a strong candidate for integrated 

wind energy storage though it requires additional technology development.  Details on the how the LMB 

concept could be integrated are given in the next section. 

 

Table 5-2. Current and predicted LMB performance compared to other battery types 

Battery 

type 

Specific 

Energy 

(Wh/kg) 

Energy 

Density 

(Wh/L) 

Cost 

($/kWh) 
Cycle Life 

Roundtrip 

Efficiency 

Operational 

Temperature  

(°C) 

Size Built/Tested 

Li-ion 150-180 300-350 
600-800 

(installed) 

1,500-

5,000 
90% 

Ambient  

(-20° – 50°) 

129 MWh, 

Hornsdale Power 

Reserve, Australia 

Lead-acid 35-40 80-90 
150-200 

(installed) 

500- 

1,200 
85% 

Ambient  

(-30° – 40°) 

40 MWh, Chino, 

California 

LMB Li-Bi  113 592 

89 

(predicted 

pack cost) 

~10,000 70% ~550° 

200 Ah (~79 Wh) 

Li-Bi battery, 

Cambridge, MA 

LMB Ca-Sb 

(Ambri 

projections) 

- - 
~21 

(projected) 

~10,000 

(projected)  

>80% 

(projected) 
~500° 

800 Ah (~760 

Wh) battery, 

Marlborough, MA  

 

D. Liquid Metal Battery Integration 

The proposed integration of LMB into the substructure is shown in Figure 5-5 along with a generic 

cross-sectional design of the LMB. The LMB system would comprise custom-made cells with form factor 

of either disk (hockey puck-shaped) or prismatic (cereal box-shaped) configuration. Some hundreds of these 

cells are stacked in the tower substructure so as in aggregate to provide the desired storage capacity, i.e., 

required voltage and current.  However, there is ample space available in the tower substructure since there 



89 

is approximately 550 m3 of volume between the waterline and the mudline (Table 5-1), which is a factor of 

five more than volume needed for the LMB (details on the battery sizing within the turbine structure are 

given in the Appendix).  

 

Figure 5-5. Liquid metal batteries: a) photo of prototype, b) integrated into offshore wind turbine tower, and 

c) schematic of active materials.  

Safe operation of the batteries will be critical to their integration into offshore turbine structures. 

Using properly designed packaging, the LMB system has been demonstrated by Ambri to maintain safe 

exterior temperature and to keep its core molten by cycling every two days [153]. Joule heating within the 

battery (the energy loss associated with reductions in round-trip efficiency in Table 5-2) combined with 

device insulation and packaging has been found to generate enough heat to maintain the requisite high 

internal working temperature while ensuring the external temperatures are low [153]. Additional insulation 

will be added between casing and tower to maintain lower external surface temperatures for the storage 

system.   

The battery stores energy during periods of excess wind power (generation exceeds demand or line 

size) and then discharges it during periods of low wind power.  In particular, a battery management system 

(BMS) will decide when to store and when to deliver power.  The BMS will need its own power electronics, 

which may be housed in the tower substructure.  The space and power requirements of the BMS are 

expected to very small (relative to that of the turbine) such that they can be neglected with respect to power 

generation results in the present first-order concept design. However, round-trip efficiency of energy 

storage and regeneration can be significant and should be considered.  
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The energy efficiency for a large-scale storage system can be sensitive to the rates of charge and 

discharge relative to the capacity of the storage system. Given the very large size of the battery relative to 

the maximum charge or discharge power, the resultant low charge and discharge rates should result in high 

electrochemical energy efficiency. For the LMB system considered herein, current experimental data 

suggests there is negligible change in capacity utilization or coulombic efficiency for C rates relevant to the 

grid LMB in this study, and that the voltage efficiency has a linear dependence on C rate over the same 

charge/discharge rates considered [149]. A linear model (Eq. 5-4) relating battery charge/discharge 

efficiency (𝜂) to the battery charge/discharge rate (𝐶) was calculated based on the LMB data provided in 

[149], as follows:  

 𝐶 =
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 
=

𝑃𝑜𝑤𝑒𝑟

𝐸𝑛𝑒𝑟𝑔𝑦 
 (5-4a) 

 𝜂 = 0.98 − 0.020(ℎ𝑟𝑠) × 𝐶(1/ℎ𝑟𝑠) (5-4b) 

In general, the grid-connected LMB system considered in this study will operate at a much lower C rate 

(<1C) than those previously experimentally evaluated, such that the linear regime is very reasonable 

approximation.  As such, this efficiency model is used for the present study. The energy lost to 

charge/discharge efficiency for a given power is assumed to all be in the form of Joule heating in the battery 

(𝑞𝐽𝑜𝑢𝑙𝑒). 

Heat transfer from the battery to the environment must also be considered.  Ideally, the heat transfer 

rates (based on thermal insulation) match the Joule heating rates so that the battery can remain at a nearly 

constant temperature and there is no additional loss of energy from the system. One may size the thermal 

insulation to balance this heat generation on average.  However, the charge rates (and thus the Joule heating) 

will vary depending on wind power availability so the heat transfer variations must be considered with 

respect to both the duty cycle and the operational temperature range associated with a particular LMB 

chemistry and design.  When the Joule heating is high or the battery temperature is close to the peak 

operating range, active cooling from the much cooler external water may be used.  When Joule heating is 

low or the battery temperature is close to the minimum operating range, heat addition (𝑞ℎ𝑒𝑎𝑡𝑒𝑟) can be 

employed to maintain the operational temperature of the system. Such heat addition is an additional energy 

loss to the system, so one may define the general energy loss via steady-state heat transfer at any given time 

as  

 

 
𝑞𝑙𝑜𝑠𝑠 = 𝑞𝐽𝑜𝑢𝑙𝑒 + 𝑞ℎ𝑒𝑎𝑡𝑒𝑟 (5-5) 
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For a 24-hour SCAPP system, the average Joule heating of the battery from efficiency losses is 53 kW.  

This can be used to make a first-order estimate of the thermal insulation system such that average heat loss 

matches the average Joule heating and minimizes time the heater is needed.   

 

  

Figure 5-6. Cross-sectional schematic of storage system components in thermal circuit 

To consider these thermal effects, the key components in the thermal system with a cross-sectional 

view of the battery within the turbine substructure is shown in Figure 5-6. Based on this axisymmetric 

geometry, the heat lost to the water can be approximated as 

 
𝑞𝑙𝑜𝑠𝑠 =

𝑇𝑏 − 𝑇𝑤

ln (
𝑟2
𝑟1

)

2𝜋𝐿𝑘𝑖
+

ln (
𝑟3
𝑟2

)

2𝜋𝐿𝑘𝑤𝑎𝑙𝑙

 
(5-6a) 

 𝐿 =
𝑉

𝜋𝑟1
2 (5-6b) 

 𝑡𝑖 = 𝑟2 − 𝑟1 (5-6c) 

where 𝑇𝑏 is the LMB operating temperature, 𝑇𝑤 is the water temperature, 𝑟3 is the outer substructure radius, 

𝑟2 is the inner substructure radius, 𝑟1 is the battery radius, 𝐿 is the vertical length of the battery within the 

underwater substructure, 𝑘𝑖 is the insulation thermal conductivity, 𝑡𝑖𝑛𝑠𝑢𝑙 is the insulation thickness, and 

𝑘𝑤𝑎𝑙𝑙 is the steel wall thermal conductivity. The battery length (𝐿) stems from the volume (𝑉) which is 

based on the total energy capacity and the LMB energy density.  The heat transfer was found to be relatively 

insensitive to the water free convection, so it was assumed that the outer temperature of the substructure is 

the same as the water temperature. This temperature was taken as the average water temperature off the 

coast of Virginia. The design specifications, thermal material characteristics, and system temperatures are 

given in Table 5-3 and indicate that an average thermal insulation of 7.6 cm is needed for this system. Given 
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these specifications and assumptions, 53 kW of heat loss is expected, which must be made up by either 

Joule heating or heat addition to maintain operating temperature of the battery. For a 24 hour SCAPP battery 

system discharging average turbine power (2.14 MW), there is sufficient Joule heating to keep the system 

warm, but discharging at 0.5 MW requires use of heaters and reduces the one-way efficiency of the battery 

from 97.6% to 89.4%.  

Table 5-3. Heat transfer analysis properties and dimensions for 24-hour SCAPP system 

Variable Value 

𝑇𝑏 550°C (based on Li-Bi, Table 5-2) 

𝑇𝑤 18°C [160]  

𝑉 86.6 m3
 (based on Li-Bi density, Table 5-2) 

𝐿 3.3 m  

𝑟1, 𝑟2, 𝑟3 2.897 m, 2.973 m, 3.000 m 

𝑡𝑖 7.6 cm 

𝑘𝑤𝑎𝑙𝑙 39.2 W/m-K [161] (Steel at 800 K) 

𝑘𝑖 0.125 W/m-K [161] (alumina-silica blanket at 750 K) 

 

E.  Levelization and Capacity Factor Results 

The levelization and capacity factor are next considered in terms of two independent variables: the 

maximum electrical connection line size and the storage capacity in terms of hours of average power 

(SCAPP).  Note that the resulting capacity factor is based on power produced to shore. The SCAPP is 

considered up to 24 hours which is enough to ensure significant smoothing and peak reduction.  The 

optimum storage capacity will vary based on turbine size, wind conditions in the chosen location, and the 

grid valuation of energy as a function of time.  Herein, we will employ the baseline 5 MW NREL offshore 

turbine described in Section 2.2 such that the maximum power delivered is 5 MW when the full 5 MW 

farm-to-shore electrical connection line is employed.   

For the simulations, the charge and discharge strategy is to levelize power production for a given 

line size. Alternative regeneration strategies could be used based on the system’s goal such as minimizing 

energy loss, reducing hour-to-hour variations in power output [162], or maximizing spot market profit 

[163]. For the levelization strategy chosen herein, the battery charges when power is produced above the 

line size limit (until the battery storage is full), and discharges when wind power is below the line size limit 

(until the battery storage is empty).  To reduce the influence of the starting storage level, simulations were 
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run iteratively with the final storage amount carrying over to the starting storage amount until an equilibrium 

point was reached.   

For each timestep in the simulation, any charging or discharging from the battery has an efficiency 

loss as calculated by Eq. 5-4. If there is not sufficient Joule heating (𝑞𝐽𝑜𝑢𝑙𝑒) from the efficiency loss to 

balance the mean thermal heat loss (𝑞𝑙𝑜𝑠𝑠), additional energy is used from the battery or reduced from the 

turbine generation until the necessary 53 kW is met.  

The impact of different amounts of battery storage and line sizes on levelization is illustrated in the 

two examples shown in Figure 5-7 for a sample of one week of wind data (sampled from the BUOY wind 

data as described in Section 2.2). In these figures, the generated wind power shown in grey is bounded by 

the maximum power output of the turbine of 5 MW, while the delivered power (black line) is bounded by 

the electrical connection line size. Both are quantified by the left-hand-side vertical axis.  In addition, these 

plots include the battery storage level in orange-dashed line which is quantified by the right-hand-side 

vertical axis (ranging from 0 to maximum storage).  Figure 5-7a based on a small reduction in line size (to 

4 MW) and 6 hours of average wind energy storage capacity.  It can be seen that the peak power production 

is shaved by 1 MW and that the energy storage is often emptied soon after the wind power drops below the 

rating of the line size. Figure 5-7b has a larger reduction in line size (to 2.5 MW) and a larger amount of 

storage (18 hours SCAPP) which results in more frequent storage utilization and a smoother output power 

profile.   

 

Figure 5-7. Two options of line sizes and storage capacities illustrated with zero curtailment for a week of real 

wind data: a) 4 MW line size and 6 hours SCAPP, b) 2.5 MW line size and 18 hours SCAPP 

 

The influence of storage on capacity factor (Eq. 5-3b) is considered in Figure 5-8 for a range of 

battery capacities that can provide 0 to 24 hours of SCAPP and for a range of line sized from 2 MW to 5 
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MW. The capacity factor reflects losses due to curtailment, storage inefficiency (using Eq. 5-4b), and 

heating (𝑞ℎ𝑒𝑎𝑡𝑒𝑟). It can be seen that for a fixed amount of storage, reducing the line size, which reduces 

farm-to-shore connection costs, results in an expected loss in capacity factor.  The black line in Figure 5-8 

denotes 98% of the original wind farm capacity factor, and thus shows how much the line size can be 

reduced for a given storage capacity without significantly reducing the capacity factor.  For example, 98% 

of the original capacity factor is maintained with a line size of 4 MW and 4 or more hours of storage, or a 

line size of 3 MW and 12 or more hours of storage.  Reducing line size further requires significantly more 

storage to retain this capacity factor; thus, one must consider whether the savings associated with reducing 

line connection outweigh the loss in capacity factor.  This compromise will be discussed in the next section. 

Using battery storage to reduce variations in the wind power output (“smoothing”) results in two additional 

benefits, not quantified here: reduction in penalties for balancing error when wind power output does not 

meet expected output, and ability to participate in day-ahead market auction [123,139,162].  

 

Figure 5-8. System capacity factor based on line size and storage time, accounting for losses due to 

curtailment, inefficiency, and heating. Black line represents 98% of original wind capacity factor. 

The average “production efficiency” for each simulated week was calculated as the total energy 

generated to the grid, divided by the total energy produced by the wind turbine. This is not the storage 

efficiency, as most energy does not go through the storage system. Instead, this efficiency reflects average 

losses due to curtailment, storage efficiency, and heating losses, as the system tries to levelized the output 

power generation. The production efficiency for the 24 hours SCAPP system is 96.7%, averaged across all 

line sizes considered herein, which will be used to simplify the simulations in the Section 5.3C case study. 
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5.3. Economic Analysis 

A. LCOE and Net Value of Energy 

The value of energy produced by a wind turbine can be considered in terms of costs and revenues, 

and these are generally normalized by the annual energy production in the wind turbine literature as 

levelized cost of energy (LCOE) and levelized avoided cost of energy (LACE) [99,103]. The baseline 

LCOE, divided into categories, is pulled from the 2017 Cost of Wind Energy Review for Fixed Bottom 

Offshore wind turbines [12]. This LCOE includes the annualized costs of a system divided by the annual 

energy production.  

 
𝐿𝐶𝑂𝐸 =

(𝐶𝑎𝑝𝐸𝑥 × 𝐹𝐶𝑅) + 𝑂𝑝𝐸𝑥

𝐴𝐸𝑃
 

(5-7) 

In this expression, CapEx is the total capital expenditures for the system lifetime, FCR is the fixed charge 

rate which annualizes the capital expenses based on financial considerations, OpEx is the annual operating 

expenditures, and AEP is the total annual energy production [12].    

To value the revenue, LACE annualizes the revenue sources divided by annual energy generation. 

 
𝐿𝐴𝐶𝐸 =

∑ (𝑀𝐺𝑃𝑖 × 𝐺𝑖) + 𝐶𝑃𝑌
𝑖=1

𝐴𝐸𝑃
 

(5-8) 

 
𝐶𝑃 = 𝐶𝑉 × 𝐶𝐶 × (

𝑑𝑎𝑦𝑠

𝑦𝑟
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒) 

 

In this expression, MGP is marginal generation price (price of energy) in time period i, G is the energy 

generated in time period i, CP is the capacity payment (the revenue an energy system can earn based on its 

ability to offset dispatchable resources used to meet peak demand), CV is the capacity value (the annualized 

cost of a dispatchable resource used to meet peak demand), and CC is the capacity credit (the percentage 

of installed capacity that can offset reserve requirements during peak demand) [99].  

Based on the cost and revenue, the resultant net value (NV) from the system is then the difference 

 𝑁𝑉 = 𝐿𝐴𝐶𝐸 − 𝐿𝐶𝑂𝐸 (5-9) 

A system can thus be designed to maximize net value.  While the addition of storage will generally increase 

LCOE, storage may increase LACE such that there is a net improvement in NV. 

Information from the 2017 NREL Cost of Wind Energy Review [12] and 2018 Energy Information 

Administration (EIA) Annual Energy Outlook [103] is used herein for the economic evaluation of turbines 

with and without storage. For offshore wind turbines in the US, the predicted LCOE is $124.6/MWh 
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($106.2/MWh with tax credits) and LACE is $47.6/MWh [103].  Even though these estimates result in a 

net loss (NV < 0), offshore wind farms continue to be built in Europe and are beginning to break ground in 

the US as well [164].  This can be attributed to additional financial aspects not directly related to engineering 

design—such as renewable energy credits, different financial assumptions, and government-based and 

corporate-based decisions to invest in renewable infrastructure.  While these factors are important and 

should be considered in future studies, herein these additional factors are ignored in favor of a focus on 

engineering design aspects, and only LCOE and LACE will be considered.   

Note that LCOE and LACE are used herein due to the current comparable data in the wind turbine 

literature, but other cost metrics such as COVE [165] and sLCOE [98] may be equally able to consider the 

potential costs and benefits of adding storage to wind energy.  

B. Cost and Value of Energy Storage 

Quantifying cost of storage depends on the technical specifics of the storage format.  The 

configurations of large-scale LMB and Li-ion storage systems would likely be different when integrated 

with a wind turbine.  Li-ion is typically manufactured in small cells that are then added together in a specific 

configuration to make modular battery packs [159], while the large-scale configuration of LMB storage is 

still unknown. Given the unknowns in these potential configurations, LMB and Li-ion storage systems are 

assumed to be comparable on a kWh basis and costs for both are estimated at the battery pack level.  

To determine net cost changes due to the addition of energy storage, BatPaC, a battery cost 

estimation tool from Argonne National Labs [166,167], was used to estimate the manufactured battery pack 

costs for a standard Li-ion composition (NMC/Graphite), as well as an LMB composition. The details of 

this cost analysis and the assumptions used are further specified in the Appendix.  The BatPaC results give 

an average cost of energy capacity for Li-ion NMC/Graphite manufactured battery packs to be 

$137/kWhstorage, where kWhstorage is the energy capacity of the battery. The lab-scale Li-Bi system in [149] 

was optimized herein for large-scale production and projected to have a manufactured battery pack capacity 

cost of $89/kWhstorage. These costs include estimates for materials, battery management system, and 

manufacturing cost. These price differences are primarily driven by differences in raw material input prices 

per kWhstorage.  

To convert battery costs (𝐶𝑎𝑝𝐸𝑥𝑏𝑎𝑡𝑡𝑒𝑟𝑦) into total storage costs (𝐶𝑎𝑝𝐸𝑥𝑠𝑡𝑜𝑟𝑎𝑔𝑒) into storage 

system LCOE (𝐿𝐶𝑂𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒) comparable to turbine LCOE, we use the following equations.  

 
𝐶𝑎𝑝𝐸𝑥𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ($) = 𝐶𝑎𝑝𝐸𝑥𝑏𝑎𝑡𝑡𝑒𝑟𝑦   (

$

𝑘𝑊ℎ𝑠𝑡𝑜𝑟𝑎𝑔𝑒
) ×  𝑆𝐶𝐴𝑃𝑃(ℎ𝑜𝑢𝑟𝑠) ×  𝑃𝑎𝑣𝑔 (𝑘𝑊)  

(5-10a) 
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𝐿𝐶𝑂𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒  (

$

𝑀𝑊ℎ𝑡𝑢𝑟𝑏𝑖𝑛𝑒
) = 𝐶𝑎𝑝𝐸𝑥𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ($) ×

𝐹𝐶𝑅 (1
𝑦𝑟⁄ )

𝐴𝐸𝑃 (𝑀𝑊ℎ𝑡𝑢𝑟𝑏𝑖𝑛𝑒/ 𝑦𝑟) 
 

(5-10b) 

where the AEP is 18,703 MWh/yr for the turbine, Pavg is the average plant power (2.135 MW if no storage), 

and FCR (real fixed charge rate) is 7% which annualizes the investment over 20 years. This FCR is taken 

from the 2017 Cost of Wind Energy Review [12] and assumes the storage system would be financed with 

the wind farm on the same timeframe. This likely underestimates Li-ion costs because of their shorter 

expected cycle life compared to the lifetime of a wind turbine. Applying Eq. 5-10 to the three storage 

capacities considered herein gives the transformed battery costs listed in Table 5-4. 

Table 5-4. LMB Li-Bi and Li-ion battery costs per annual turbine energy generation (LCOEstorage) for 6, 12, 

and 24 hours of SCAPP 

 Li-Bi ($88.9/kWhstorage) Li-ion ($137/kWhstorage) 

Battery size 

(hrs) 
𝑪𝒂𝒑𝑬𝒙𝒔𝒕𝒐𝒓𝒂𝒈𝒆  𝑳𝑪𝑶𝑬𝒔𝒕𝒐𝒓𝒂𝒈𝒆 𝑪𝒂𝒑𝑬𝒙𝒔𝒕𝒐𝒓𝒂𝒈𝒆 𝑳𝑪𝑶𝑬𝒔𝒕𝒐𝒓𝒂𝒈𝒆 

6 $1,140,000 $4.26 $1,750,000 $6.57 

12 $2,280,000 $8.52 $3,510,000 $13.10 

24 $4,560,000 $17.00 $7,020,000 $26.30 

 

In general, the batteries will not require additional grid connections or inverters since the battery 

storage system will be integrated into the wind turbine power generation system (as indicated in Figure 5-2) 

However, there will be other cost changes in the system’s total LCOE associated with the integration of 

storage.  Storage can be used to levelize power and reduce the electrical connection cost and size from farm-

to-shore as shown in Figure 5-7.  To evaluate the economic impacts of such changes, electrical connection 

costs are assumed to be proportional to maximum power plus a baseline cost for distance offshore (held 

fixed at 40 miles) [168], while installation costs are assumed to scale with the cost of the installed parts 

(turbine, battery storage, electrical, substructure).  As such, the battery system increases the turbine 

installation CapEx costs (due to incorporation of storage) but any associated transmission line reduction 

decreases the connection installation CapEx costs (due a reduction in connection power rating). Financial 

costs are assumed to scale with total CapEx (turbine, electrical connection, substructure, BOS, installation, 

battery storage, installation) and thus can have similar increases and decreases.  Herein, OpEx is assumed 

to remain constant for simplicity, but should be further investigated in later work.  The resulting total system 

LCOE is thus defined by Eq. 5-11.  

 𝐿𝐶𝑂𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐶𝑂𝐸𝑡𝑢𝑟𝑏𝑖𝑛𝑒 + 𝐿𝐶𝑂𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (5-11) 
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While the above identifies changes in costs due to battery storage, the following considers potential 

revenue increases due to battery storage.  In this economic analysis, the case of 24 hours of storage is 

examined in detail due to its ease of calculation for energy and capacity revenues. The change in value due 

to the addition of the battery storage is assumed to come primarily from energy arbitrage revenue and 

capacity credit; the sum of these revenue streams is analyzed via LACE.  The baseline energy revenue for 

the 5 MW wind turbine without storage is calculated by applying the week of wind power utilized in Figure 

5-7 to each week of 2018 PJM spot market prices (a Mid-Atlantic regional transmission organization) [169].  

Utilizing storage, a simple energy arbitrage scheme was implemented using hourly spot price data to 

estimate revenue. One day (24 hours) of SCAPP storage was used to shift average daily wind power output 

to the times with the highest energy spot market price, with maximum output constrained by line size, as 

illustrated in Figure 5-9.  Note that this uses a different storage strategy than that used in Figs. 6-7. 

Additionally, the system was not allowed to charge from the grid, only from generated wind power.  An 

average production efficiency of 96.7% (based on the 24-hour SCAPP simulations in Section 2.4) was used 

(rather than calculating losses due to curtailment, heater loss, and battery efficiency at each time step).  This 

arbitrage scheme was applied for varying line sizes between 2.5 MW and 5 MW to constrain the amount of 

power that could be produced at once during peak hours. For example, with a 2.5 MW line size, power is 

produced to the grid at maximum output (2.5 MW) for 19.5 hours each day, while a 4 MW line size 

produced 4 MW of power for 12.25 hours.  
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Figure 5-9. Energy arbitrage scheme with 24 hours of SCAPP and a 4 MW electrical line size depicting a) the 

wind power generated (grey area) and the electricity generated to shore (black line), b) stored energy over 

time, and c) spot market price sampled from PJM region. 

The next revenue source comes from the capacity payment that wind energy can receive based on 

its location and which electrical transmission system it feeds into.  For example, PJM onshore wind can 

receive a range of 14.7% -17.6% capacity credit [170], but offshore wind is likely to receive a much higher 

capacity credit. In this analysis, it is assumed that an offshore wind turbine would receive 33% capacity 

credit based on how the US EIA calculates LACE for offshore wind turbines [171]. This case study utilizes 

a capacity price from PJM for the 2021/2022 auction of $140/MW-day [172], which is consistent with past 

PJM capacity prices in the last 10 years [170]. Storage could be optimized to provide maximum capacity 

payment, limited by line size.  Based on results from [173], 10 hours of storage is predicted to earn a 

capacity credit of over 90%; thus as a first-order estimate, 24 hours of storage is assumed to provide 

sufficient capacity for full credit, limited by line size. A capacity credit of 100% is assumed for all 365 days 

of the year to determine capacity payment.  

In order to compute the changes in LACE with storage, a method is needed that is consistent with 

the baseline offshore turbine LACE (no storage).  If one only combines energy revenue and capacity 

payments for the baseline wind turbine using Eq. 5-8 with PJM values for energy and capacity payment, 

the result computed herein is $37.5/MWh, which is less than the EIA value of offshore LACE of 
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$47.6/MWh [103]. This difference can be attributed to additional factors (not included in Eq. 5-8) such as 

the expected increase in natural gas price (and therefore all energy prices) over time and location-dependent 

price variations. In order to employ current PJM energy and capacity credit prices in this study when 

evaluating various storage options while still matching LACE values from literature, these additional 

factors are accounted for by the addition of a PJM scaling factor (𝑓𝑠𝑖𝑡𝑒) for LACE as  

 
𝐿𝐴𝐶𝐸 =

𝑓𝑠𝑖𝑡𝑒 × (𝐸𝑛𝑒𝑟𝑔𝑦 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 + 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑃𝑎𝑦𝑚𝑒𝑛𝑡)

𝐴𝐸𝑃
 

(5-12) 

To match the EIA value for LACE, 𝑓𝑠𝑖𝑡𝑒 = 1.27 is used herein. The introduction of this site factor adds 

significant uncertainty into the analysis and thus the following results should be considered only as first-

order economic estimates to estimate potential economic impact of various design choices. Also, note that 

other revenue streams associated with storage may also be possible such as forecasted energy balancing, 

frequency regulation, and other auxiliary services.  Currently, such revenue is small and is therefore 

neglected herein. However, these revenue streams may become increasingly important as renewable energy 

penetration increases.  

C. Case Study Results of Economic Impact of Storage  

Based on the above assumptions and methods, the economic impact of storage is considered relative 

to a baseline offshore wind turbine.  This case study assumes a fixed amount of storage capacity of 24 hours 

of SCAPP (equivalent to 51,240 kWh for the 5 MW rated wind turbine) and varies the line size.  Lesser 

amounts of storage will have economic impacts between that of the baseline turbine (with no storage) and 

the turbine with 24 hours of energy storage. 

Figure 10 compares the total LCOE of the original system with a 5 MW electrical connection line 

to one with 24 hours of storage and a 2.5 MW electrical connection line size. While the battery storage does 

increase the overall system cost, it also allows for reductions in cost in some areas such that the net cost 

increase is less than the total cost of the batteries.  
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Figure 5-10. LCOE effect of switching from Original System with 5MW line size to Proposed LMB System 

with 2.5 MW line size and 24 hours of SCAPP 

 

Next, we consider the revenue aspects for a range of line sizes using PJM 2018 data.  As shown in 

Table 5-5, there is net savings in the electrical infrastructure associated with reducing the line size (which 

partially offsets the cost of the battery as noted in Figure 5-10).  The table also shows that the baseline wind 

turbine generates $32.88/MWh in energy revenue (using units as in Eq. 5-7), while applying energy 

arbitrage (with 24 hours of storage) resulted in a maximum annual increase in average spot price revenue 

of 31% over the baseline wind turbine profile. The baseline wind turbine without storage generates 

$4.51/MWh (using units as in Eq. 5-8) in capacity payment revenue. The breakeven cost is the maximum 

battery cost at which the economic benefits associated with storage (due to the combination of energy 

revenue and capacity payment revenue) outweigh the costs.  In Table 5-5, the breakeven manufactured 

battery pack cost in $/kWhstorage was found by iteratively seeking a battery cost such that the change in 

LACE and change in LCOE were equal. Thus any battery cost lower than the breakeven cost would reflect 

a net addition of value to the system, whereas battery costs higher than the breakeven indicate a net 

reduction of value for integration in this 5 MW offshore wind turbine.  
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Table 5-5. Changes with different potential line sizes for a turbine with 24 hours of SCAPP (irrespective of 

storage technology as battery costs are not included) 

Line Size 5 5 4.5 4 3.5 3 2.5 

SCAPP 

(hours) 
0 hrs 24 hrs 24 hrs 24 hrs 24 hrs 24 hrs 24 hrs 

Electrical Infrastructure 

Cost Reduction 
N/A 0% 9% 18% 27% 35% 44% 

Energy Revenue ($/MWh) $32.88 $43.18 $41.65 $40.56 $38.91 $36.8 $34.58 

Capacity Revenue 

($/MWh) 
$4.51 $13.70 $12.30 $10.90 $9.56 $8.20 $6.83 

Breakeven Cost 

($/kWhstorage) 
N/A $100.73 $96.57 $94.70 $89.96 $83.22 $75.11 

 

If one now considers a specific battery technology with identified cost per capacity, the likelihood 

of meeting the breakeven requirements of Table 5-5 can be determined. The change in net value was 

calculated (compared to a baseline no storage wind turbine) as shown in Figure 5-11 for Li-Bi storage and 

in Figure 5-12 for a variety of storage options. Recall that the integrated storage system is based on a fixed 

capacity of 24 hours of SCAPP.  In Figure 5-11, the change in LACE and LCOE for the current estimates 

of LMB storage start as a net loss for the smallest line size since the increase in revenue from storage does 

not outweigh the battery costs.  However, as the line size increases, the increased value becomes greater 

than the increased cost, resulting in a positive change in net value (the difference between the blue and 

yellow lines, which is also indicated by the orange line).  This indicates that adding 24 hours of battery 

storage, with a line size of 3.5 MW or greater, would result in increased profit for the system. Furthermore, 

it is found that the 5 MW line case gives the maximum increase in NV, indicating that the concept of net 

cost benefits associated with a reduced line size are never realized for this amount of storage and the given 

revenue assumptions.  
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Figure 5-11. Change in LACE, LCOE, and Net Value for wind turbine with 24 hours integrated Li-Bi storage 

compared to wind turbine system alone 

 

In Figure 5-12, the change in net value is plotted for current and future storage costs for both Li-

ion and LMB. Costs for storage capacity are based on current predicted LMB (Li-Bi), $89/kWhstorage; 

predicted LMB by 2030, $21/ kWhstorage; current Li-ion (NMC/Graphite), $137/kWhstorage; predicted Li-ion 

by 2030, $67/ kWhstorage  [144]. All storage types show the same trend of increased value with increased line 

size, again indicating that the concept of net cost benefits associated with a reduced line size are never 

realized for this amount of storage for the current case study.  In addition, it can be seen that the projected 

cost decreases in Li-ion and LMB will serve to make energy storage have positive net value in the 

considered grid application.  In particular, the falling cost of Li-ion technology may reach the breakeven 

cost in the next 10 years.  In contrast, the estimated cost of LMB technology is already at the break-even 

cost and is projected to drop even further in the future, but the LMB technology requires additional 

development before it will be ready for large-scale commercial applications. 
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Figure 5-12. Change in net value of a turbine with 24 hours of storage (compared to baseline wind turbine 

system with no storage) for current and future Li-ion and LMB predicted costs 

 

It should be again noted that the present case study results are specific to current PJM data whereas 

other locations and times would require different scaling factors (Eq. 5-12) and so the quantitative results 

provided herein are for specific conditions and cannot be broadly employed for other locations and future 

times.  However, one may expect that the net value will rise as renewable energy penetration rises since 

power fluctuations will be stronger and there will be increased value placed on smoothing power output. 

Additionally, markets with higher capacity prices or more variable energy spot pricing may see additional 

benefits than demonstrated herein. 

5.4. Summary 

To address the resulting mismatches between generation and grid demand and to increase the value 

of wind energy, long-duration low-cost energy storage is needed as renewables increase shares on the 

electrical grid. LMB has a potentially very low energy cost and good performance (high efficiency, high 

cycle life, etc.) and thus may be a good fit for use with wind energy. To investigate a co-located system, 

the battery capacity is quantified relative to the average plant power rather than the battery rated power.  

Such a change in perspective is important for an integrated system with energy storage and generation.   

A concept is proposed to place the battery within the substructure of offshore wind turbines. By co-

locating, simulations indicate that the line size can be reduced to 4 MW with about 4 hours of storage, and 

reduced to 3 MW with about 12 hours of storage. Smoothing the wind power output provides additional 
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benefits which could include increased participation in day-ahead market auctions (recommended for future 

study). 

As a case study, 24 hours of storage with variable electrical line sizes to shore was analyzed. 

Reductions in cost due to decreased line sizes, combined with synergistic benefits of co-locating storage 

and wind energy, results in the total LCOE for a turbine + storage system to be less than the sum of both 

individual system costs. However, while reducing the line size helps offset the cost of adding batteries, 

greater value is added to the system in the form of energy and capacity revenue from maintaining high line 

size, as seen in Figure 5-11. Applying energy arbitrage (with 24 hours of storage) resulted in a maximum 

increase in energy revenue of 31% over baseline wind generation. Adding Li-Bi batteries (one optimized 

form of LMB) to the offshore wind turbine system is predicted to result in a net increase in net value. 

Breakeven costs are high enough that current LMB technology (Li-Bi) is expected to be profitable and 

future Li-ion technology is expected to be profitable by 2030, if not sooner.   

The present engineering analysis is limited based on current knowledge of liquid metal batteries. 

The LMB technology is still being developed and changes to the cost and performance estimates are 

expected in the near future. This simple analysis did not model full battery operation (as in [133]), consider 

battery lifetime with a wind-based duty cycle, or investigate the potential increased maintenance for battery 

integration, and these are recommended for future investigation. 

There are also limitations with respect to the economic analysis. The potential cost savings from 

reducing electrical line size should be further investigated with a more complete electrical system model 

with a large-scale wind farm. Along these lines, integration and installation aspects for LMB storage with 

a floating wind turbine should be considered, since the weight of the battery may positively help offset cost 

of ballast weight and the line cost savings are expected to be even larger (as compared to the present fixed-

bottom turbine).  Furthermore, the economic analysis would also benefit from the application of a detailed 

energy arbitrage scheme with the policy and temporal constraints of practical energy markets.  In addition, 

the economic analysis is based on the current electrical market, but this market is expected to significantly 

change with increased renewable penetration in the near future.  Based on the above, LMB integration into 

a wind turbine is highly promising but more work, including an experimental prototype demonstration, is 

needed to assess its quantitative impact on its net value.  

Finally, the environmental impact of integrating a battery storage system into an offshore wind 

turbine is also of importance. While the footprint of the wind turbines are not expected to change, there 

may be an increased surface temperature from the LMB system or reduced electrical line sizes, which may 
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affect the local environment. Most importantly, the reduction in carbon emissions from integrating wind 

turbines with battery storage into the grid could also be quantified and valued.  

 

Appendix 

Specifications of the proposed LMB system based on the optimized Li-Bi chemistry are given in 

Table A.1. The storage time is based on hours of storage at average power, 2.135 MW. The dimensions are 

based on the expected interior diameter of the monopile tower substructure (using specifications given in 

Table 3) and demonstrate that the battery system would take up a small fraction of that space. The battery 

cost is based on the total manufactured battery pack cost estimated in Table A.2. 

Table A.1 LMB Specifications for use in monopile wind turbine, running at average power output, based on 

reported numbers from [149] (assuming optimized battery costs) and assumed space available in monopile.  

Storage 

Time 

(h) 

Energy 

Stored 

(MWhstorage) 

Mass 

(Mg) 

Volume 

(m3) 

Height 

(m) 

Battery 

Cost ($) 

6 12.81 113.4 21.64 0.82 $1,139,321 

12 25.62 226.7 43.28 1.64 $2,278,643 

24 51.24 453.5 86.55 3.28 $4,557,286 
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Table A.2 Battery costs ($/kWhstorage) based on Li-ion costs from BatPaC and corresponding costs for LMB 

from Ning et al. [149], optimized Li-Bi, and Ambri 

Battery Type Li-Ion LMB (Ning) LMB (opt) LMB (Ambri) 

Chemistry NMC/Graphite Li-Bi Li-Bi Ca-Sb 

Status Realized Realized Projected Projected 

Electrode $42.28 $154.00 $19.41 $17.00 

Carbon and Binders $2.27 $0.00 NA TBD 

Positive Current Collector $2.08 $2.08 $2.08 TBD 

Negative Current Collector $8.70 $4.35 $4.35 TBD 

Separators $13.56 $0.00 NA TBD 

Electrolyte $9.45 $66.00 $15.63 $4.00 

Cell Hardware $3.92 $3.92 $3.92 TBD 

Module Hardware $14.07 $14.07 $14.07 TBD 

Battery Jacket $9.87 $4.94 $4.94 TBD 

Battery Management System $11.33 $11.33 $11.33 TBD 

Thermal Management System $0.70 $1.00 $1.00 TBD 

Battery Pack Total $118.24 $261.69 $76.73 TBD 

Battery Pack Manufactured Total $137.06 $303.35 $88.94 TBD 

 

The battery modeling tool BatPaC, developed by Argonne National Lab [166,167], was used 

extensively to estimate battery costs in this work. The Cost Breakdown Analysis from this tool provided 

the Li-ion costs for nickel-manganese-cobalt (NMC)/Graphite type batteries in Table A.2 (column 1). Then 

manufactured battery pack cost for variations on LMB storage were then calculated based on known 

specifications for different systems, as well as assumptions based on the original BatPaC numbers. The 

LMB (Ning) column is based on battery specifications found in [149] for a lab-scale battery; thus, the 

material costs and quantities are not optimized for full-scale production. The LMB (opt) column attempts 

to optimize the values from [149] to reflect the costs of full-scale production by reducing the amount of 

electrolyte used and switching to market pricing for materials [174,175]. Finally, LMB (Ambri) is based 

on the material costs provided by LMB manufacturer, Ambri, and thus reflects the expected future costs of 

LMB. The assumptions used for each battery component are given in Table A.3 where many components 

are directly based on the Li-ion costs and the final manufactured cost is based on a scale factor of 1.16 up 

from the battery pack total (based on the same scaling with Li-ion).  

  



108 

Table A.3 Assumptions used for battery cost components costs for LMB from Ning et al. [149], optimized Li-

Bi, and Ambri based on Li-ion BatPaC reference  

Battery Type LMB (Ning) LMB (opt) 
LMB 

(Ambri) 

Electrode Given 
Market prices ($10.78/kg 

and $100/kg) 
Given 

Carbon and Binders N/a N/a  

Positive Current Collector = =  

Negative Current Collector 50% reduction 50% reduction  

Separators N/a N/a  

Electrolyte Given 25% reduction, $5/kg Given 

Cell Hardware = =  

Module Hardware = =  

Battery Jacket 50% reduction 50% reduction  

Battery Management System = =  

Thermal Management System $1/kWh $1/kWh  

Battery Pack Total (summation) (summation)  

Battery Pack Manufactured Total (Scale factor) (Scale factor)  
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Chapter 

6. Spray-cooled compression: theory and simulation 

 

Abstract 

Compressed air energy storage (CAES) is a low-cost, long-duration, and reliable storage option, but the 

conventional adiabatic approach leads to heat build-up that is lost during storage, rendering poor roundtrip 

efficiency. The efficiency of CAES can be significantly improved with isothermal compression; this can be 

accomplished with spray cooling during the compression process, where interphase heat transfer reduces 

the unwanted gas temperature rise. However, the theoretical limits and the key nondimensional parameters 

which control the spray-cooling efficiency have not been previously identified to guide the system design 

and optimization. These are addressed in the present study and favorably compared with results from a 

computational model validated against recently published experimental results for spray-cooled air 

compression. Using this computational model, a parametric analysis of the design space was performed 

using a new nondimensional number for droplet heat transfer speeds, the Crowe number, which was 

theoretically related to the effective polytropic index of the compression process. The results indicated that 

a high isothermal efficiency can be achieved with droplet mass loadings of 3 or more coupled with a Crowe 

number of 0.1 or less. Future work is recommended to consider multi-dimensional effects, expansion 

conditions, and losses due to spray work.  
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Nomenclature 

𝜌 density (
kg

m3) 

𝛾 ratio of specific heats of air 

𝜂 efficiency 

𝜇 dynamic viscosity (
kg

m−s
) 

𝜃 Temperature ratio constant 

𝜏 time constant (s) 

𝑐𝑝 air specific heat capacity at constant pressure (
J

kg−K
) 

𝑐𝑠 water specific heat capacity at constant pressure (
J

kg−K
) 

𝑐𝑣 air specific heat capacity at constant volume (
J

kg−K
) 

𝐶𝑑,term droplet terminal velocity drag coefficient 

Cr Crowe number 

d droplet diameter (m) 

D cylinder diameter (m) 

dt time step (s) 

g gravity (
m

s2) 

k air thermal conductivity (
W

m−K
) 

L vertical length from cylinder head (m) 

m mass (kg) 

ML mass loading 

𝑁d number of droplets 

n polytropic index 

Nu Nusselt number 

P pressure (Pa) 

ΔP overspray pressure (Pa) 

Pr Prandtl number 

PR pressure ratio 

Q heat transfer rate (W) 

𝑞spray spray flow rate (
𝐿

s
) 

R gas constant (
J

kg−K
) 
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Subscripts 

Re Reynolds number 

T temperature (K) 

t time 

𝑈piston piston speed (
m

s
) 

u air velocity (
m

s
) 

V volume (m3) 

v droplet velocity (
m

s
) 

W work (W) 

𝑤term droplet terminal relative velocity (
m

s
) 

z position (m) 

1 beginning of process 

2 end of process 

a air 

atm atmospheric 

avg average 

C compression 

CR critical 

cyl air cylinder total length 

d droplet 

D domain 

env environment 

eq equilibrium 

fall fall 

i time index 

init initial 

iso isothermal 

j droplet index 

m mixture 

P momentum 

th theoretical 

T thermal 
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6.1. Introduction  

A. Motivation and Compression Efficiency 

The need for long-duration, low-cost energy storage continues to grow as an increasing amount of 

electricity comes from variable renewable sources. Energy storage allows for variable generation sources 

to meet electrical demand and increases the stability and security of the electrical grid. To avoid 

overbuilding renewable energy to meet energy demand, a cheap and abundant energy storage technology 

is needed that is less costly than current battery prices [176] and can operate on the timescale of days, 

weeks, or even months [177]. 

Many storage options exist, but compressed air energy storage (CAES) provides a unique 

combination of low-cost and long-duration storage. CAES can be combined with renewable energy directly 

to provide more levelized power to the electrical grid or increase the value of the power sold to the grid 

[178,179]. However, it generally suffers from low efficiency relative to batteries and other forms of storage 

[21]. A key approach to improve its efficiency without requiring fossil fuels or thermal storage systems is 

Isothermal CAES (ICAES) [180], which relies on increased heat transfer during the compression process 

to reduce or eliminate the temperature rise of the compressed air.  

The advantage of isothermal compared to adiabatic CAES can be seen by considering the process 

thermodynamics, as shown in Figure 6-1. The adiabatic process (shown as 12341) causes some 

of the compression work to go into heating the gas. Generally, this heat is lost in storage, thereby reducing 

the round-trip efficiency of the process. For the isothermal process (shown as 12’341), the air is 

compressed at a constant temperature, so all of the work input goes into compression and no energy is lost 

to heat generation. As such, isothermal compression requires less work to compress to the same pressure 

ratio and push the air out into a storage tank than the adiabatic process. 

tot total  
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Figure 6-1. Isothermal compression requires less work than adiabatic compression to reach the same final 

pressure via (1-2) and push out the remaining volume via (2-3). 

In reality, it is challenging to achieve isothermal compression, so most processes are near-

isothermal and can be characterized by the polytropic index for the process. For an ideal gas, the polytropic 

index in the limit of an adiabatic process is the specific heat ratio (𝛾) and in the limit of an isothermal 

process is unity. Therefore, the index for a near-isothermal process will ideally tend to unity. The polytropic 

index of air and most diatomic gases is 𝛾 = 1.4, but other gases have higher or lower polytropic indices. 

Additionally, the isothermal efficiency of a compression process can be defined as the ratio of work for an 

isothermal process to the work for the given process, when working between the same overall pressure 

ratio. This definition is used throughout and is further defined in Section 2. 

B. Previous work 

Isothermal efficiency depends on many factors, including pressure ratio, speed of compression, and 

temperature abatement techniques, and the ranges found in the literature depend on many of these factors. 

Previous work on ICAES to help achieve a near-isothermal process has focused on three leading 

technologies (and their combinations): liquid piston, porous media, and spray injection.  

Liquid piston compression uses a column of water pumped into a cylinder that acts as a piston to 

compress air [181]. The water acts as a heat transfer medium and also allows for more variation in the 

compression topology and technique [182–185]. Multiple experiments have confirmed that slower 

compression with a liquid piston reduces temperature rise (and approaches isothermal compression) [184–

186]. There is an inherent trade-off between high efficiency and high power density for compression speed 

since faster compression reduces the time for heat transfer and reduces efficiency, but faster speeds provide 
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higher power per system mass [184]. Liquid piston compression alone (without porous media or sprays) 

has a reported isothermal efficiency of 63-94% from experiments [184] and 80-90% from simulations [181]. 

Liquid piston compression has also been investigated in combination with different forms of porous 

media, including metal foam and interrupted plate ABS structures [184,185]. Yan et al. found that adding 

inserts allows for higher efficiency or high power density and that surface area is the most critical factor 

for increasing efficiency and power density [185]. With the addition of inserts or porous media, liquid 

piston compression efficiency has been reported in the range of 80-95% from experimental results 

[184,185,187]. 

Spray-cooling can also increase efficiency by injecting small water droplets during the compression 

process to increase heat transfer. For a low compression ratio of two, experimental results show that spray 

cooling can increase compression efficiency into the range of 88-97% [188], while one-dimensional 

simulation results show that efficiencies as high as 70-98% can be achieved a compression ratio of 10 

[189,190]. Water droplets are an effective form of heat transfer due to the high heat capacity of water and 

the high surface area of a spray of droplets. Experimental work with spray cooling includes solid piston 

compression with water spray cooling [188], liquid piston compression with spray cooling [186], and liquid 

piston compression with spray cooling and porous media [191]. Previous simulations of spray cooling for 

a solid reciprocating piston moving in a sinusoidal motion, with or without a layer of liquid on the piston, 

have generally employed 1-D idealizations [190,192,193].  

The 1-D spray-cooled compression code developed by Qin & Loth [190] was validated against 

horizontal HVAC spray cooling experiments, since spray-cooled liquid piston experiments had not yet been 

published in the literature, but was compared favorably against 2-D computational fluid dynamics models 

in Ref. [189]. These results also showed that the polytropic index tended to reduce as the droplet size 

decreased and droplet mass loading increased but did not reach the lower-bound theoretical limit derived 

by Kersey et al. [194]. 

The Stokes number relates the droplet momentum response time (𝜏p) to the fluid domain time scale 

(𝜏D) and is helpful in determining whether a spray droplet has time to reach velocity equilibrium with a 

fluid [195]. However, a similar nondimensional number does not exist for the droplet thermal response 

time.  

While the above studies have considered many aspects and conditions of spray-based cooling, they 

lack a fundamental characterization of the key nondimensional parameters which control isothermal 

efficiency, which has prevented clear guidelines for optimization. There is also a lack of theoretical 
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understanding of the effect of droplet size (and thermal inertia) on the polytropic index. In addition, no 

numerical studies have been quantitatively validated with the spray-based compression.   

C. Objectives 

This study aims to characterize the theoretical behavior and the key nondimensional parameters 

that control the spray-cooling efficiency and to understand their parametric influence using a validated 

numerical model, with a focus on the heat transfer aspects. 

This is the first paper, to the author’s knowledge, to validate a spray-cooled compression model 

against comparable spray-cooled liquid piston experimental results. It is also the first to derive an equation 

for the polytropic index of a spray-cooled compression process which accounts for thermal response time.  

In Section 2, the methodology for the flow physics, proposed Crowe number, predictive polytropic 

index equation, and parametric sweeps are described. Section 3 contains the experimental validation, and 

Section 4 provides the results of the parametric analysis and theoretical polytropic index equation.  

6.2. Methodology 

A. Physics and geometry of the numerical model 

An idealized depiction of the spray-cooled compression process is shown in Figure 6-2, including 

cylinder length (L), piston speed (𝑈piston), droplet diameter (d), and spray volumetric flow rate (𝑞spray). 

While illustrated in 2-D, the present numerical model only accounts for 1-D droplet motion along the z-

axis, which starts at the top center of the cylinder. The simulations do not specify the piston material, which 

could either be water (liquid piston) or a solid piston. Air in the cylinder is assumed to have uniform 

pressure, temperature, and density, obeying the ideal gas law, which is a common assumption for modeling 

air compression [188,190]. Thus, the model is 0-D for air temperature and pressure, assuming it is spatially 

uniform. The maximum length of air in the cylinder (which equals the cylinder length if one neglects the 

piston length) is defined as 𝐿cyl. For each compression process, 𝐿1 = 𝐿cyl. 
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Figure 6-2. Idealized liquid piston compression with spray cooling.  

 

The droplet size would likely be polydisperse (e.g., following a Rosin-Rammler distribution as in 

Ref. [196]) with a mean size and spread that varies with nozzle pressure.  However, herein the spray is 

assumed to be monodisperse (constant size) for a given nozzle pressure using the Sauter mean diameter (as 

was done in Ref. [189]). The droplet Reynolds number, relative terminal velocity (𝑤term), and drag 

coefficient (𝐶𝐷,term) are found iteratively using Eqs. 6-1a-c, based on White’s drag coefficient for 

intermediate range Reynolds number [197].  

 𝑤term = (𝜌d − 𝜌a)𝑔√
4𝑑

3𝜌a𝑔𝐶𝑑,term|𝜌d − 𝜌a|
 (6-1a) 

 𝑅𝑒term =
ρa𝑤term𝑑

𝜇a
 (6-1b) 

 𝐶𝑑,term =
24

𝑅𝑒term
+

6

1 + √𝑅𝑒term 
+ 0.4 (6-1c) 

Where 𝜇 is the dynamic viscosity, calculated using Sutherland’s law. 

The droplet velocity (v) can be calculated by the sum of the relative velocity and the local air 

velocity (𝑢). For these 1-D simulations, droplets are only allowed to move in the z-direction (positive 

towards the piston). 
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 𝑢 = 𝑈piston ∗
𝑧d

𝐿
 (6-2a) 

 𝑣 = 𝑤term + 𝑢 (6-2b) 

 
𝑑𝑧d

𝑑𝑡
= 𝑣 (6-2c) 

Where 𝜌d is the density of the droplet, 𝜌a is the density of the air, 𝐿 is the instantaneous height of the air 

column in the chamber, and 𝑧d is the droplet position.  

The heat transfer rate between the air and each droplet (𝑄𝑗) and the change in droplet temperature 

(𝑇d,𝑗) are given by Eqs. 6-3a-b. The convective Nusselt number (𝑁𝑢) is calculated based on the Prandtl 

number (Pr) and Reynolds number (Re) from the Ranz-Marshall relation [198]. The heat transfer to all the 

droplets is summed, and any additional heat transfer to the environment (𝑄env) is added to calculate the 

total heat transfer (𝑄tot) to the air, and the change in air temperature is given by Eq. 6-3d. 

 𝑄𝑗 = 𝜋𝑑𝑘a𝑁𝑢(𝑇a − 𝑇d,𝑗) (6-3a) 

 
𝑑𝑇d,𝑗

𝑑𝑡
 =

𝑄𝑗

𝑚d𝑐𝑠
 (6-3b) 

 𝑄𝑡𝑜𝑡 = Σ𝑄𝑗 + 𝑄env (6-3c) 

 
𝑑𝑇a

𝑑𝑡
 = −

𝑄tot

𝑚a𝑐𝑣
 (6-3d) 

Where 𝑘𝑎 is the air thermal conductivity, 𝑚d is the mass of the droplets, 𝑚a is the mass of the air, 𝑐𝑠 is the 

droplet specific heat capacity, and 𝑐𝑣 is the air specific heat capacity at constant volume.  

The process of the numerical method is as follows, where the model tracks a single line of droplets 

in one-dimension falling along the centerline of the cylinder over time (i-index), modeling their position, 

velocity, and temperature. The numerical model uses a first-order, forward, explicit time-marching 

Lagrangian scheme.  

The droplet momentum response time (𝜏p) and thermal response time (𝜏T) are defined as  
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 𝜏p =
24𝜌d𝑑2

18𝜇a𝑅𝑒term𝐶𝑑,term
 (6-4) 

 𝜏T =
𝜌d𝑐𝑠𝑑2

6𝑘a𝑁𝑢
 (6-5) 

The response times quantify how responsive a droplet is to changes in the fluid temperature or velocity 

[197]. The droplet thermal response time and momentum response time are used to set the time step (dt) 

for the simulation. Simulations are run at either 1% or 0.1% of the smaller droplet response time (thermal 

or momentum), based on the stability needed to minimize the effect of the 2-step compression process and 

ensure that only small changes to the droplet temperature occur in each time step.  

The air is compressed in a two-step process, where first the air is compressed adiabatically, and 

then heat transfer is allowed between the air and the droplets. During adiabatic compression of the air, the 

temperature increases as a function of cylinder volume and the specific heat ratio of air. A temporary 

temperature is calculated (𝑇′).  

 𝑇a
′𝑖+1

= (
𝑉𝑖

𝑉𝑖+1
)

𝛾−1

𝑇a
𝑖 (6-6) 

Then air and water properties are recalculated: air density, air viscosity, droplet terminal velocity, Reynolds 

number, air thermal conductivity, and Nusselt number. The air velocity is assumed to be a linear distribution 

from the moving piston surface to the stationary top of the chamber. Next, new droplets are injected at the 

top of the chamber (except for floating droplet simulations). The number of droplets (𝑁𝑑) injected in each 

time step depends on the spray flow rate, droplet diameter, and number of time steps. The new droplet 

positions (z) are calculated based on the previous droplet location, droplet terminal velocity, local air 

velocity, and time step. Drops are removed from the simulations when they hit the piston surface. 

The heat transfer between the air and each droplet (j) is calculated, and the droplet temperatures 

are updated. Lastly, the final air temperature is calculated, based on the temporary air temperature and total 

heat transfer to droplets, and the air pressure is updated based on the ideal gas law, using the final air 

temperature. 

𝑇a
𝑖+1 = 𝑇a

′𝑖+1 −
𝑄tot𝑑𝑡

𝑚a𝑐𝑣
 (6-7) 
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𝑃𝑖+1 =
𝑚a𝑅𝑇a

𝑖+1

𝑉𝑖+1
 (6-8) 

The resulting heat transfer coefficient for heat transfer to the droplets can be calculated based on 

the temperature difference between the droplet temperature and air temperature, and the droplet surface 

area. Average heat transfer coefficients from the simulations ranged from 2,000 
𝑊

𝑚2−𝐾
 for 25 μm droplets 

to 60 
𝑊

𝑚2−𝐾
 for 400 μm droplets. Note that the heat transfer in a real system would be higher than predicted 

by the parametric sweeps because those simulations neglect heat transfer to the piston and walls. However, 

this effect would be small if the surface area of the wall and piston is a small fraction of that for the droplets 

(as is typically the case for conditions where the isothermal efficiency is high). 

 

B. Performance metrics for parametric studies 

The following nondimensional values and mean quantities are used to capture the important aspects 

of each simulation within a single quantity, for studying the parametric sweeps of simulations in aggregate. 

The compression work is divided into two periods, both of which are included for efficiency 

calculations: i) compression occurs from the initial atmospheric pressure (𝑃atm) and volume (𝑉1) and to the 

final pressure (𝑃CR) and volume (𝑉2), and then ii) the air is pushed out of the cylinder while maintaining 

the final pressure. For the parametric studies, the final pressure is set, and the final volume and final time 

are dependent on the compression process and correspond to when the final pressure is reached. The total 

work is thus calculated as  

 𝑊 = ∫ (𝑃 − 𝑃atm)𝑑𝑉
0

𝑉1

= ∫ (𝑃 − 𝑃atm)𝑑𝑉
𝑉2

𝑉1

− (𝑃CR − 𝑃atm)𝑉2 (6-9) 

The isothermal efficiency of the compression process is measured by the ratio of work for an 

isothermal process to the work for the given process, where the initial pressure, initial temperature, and 

final pressure are all fixed. The isothermal efficiency can thus be written as  

 𝜂iso =
[∫ (𝑃 − 𝑃atm)𝑑𝑉

𝑉2,iso

𝑉1
]

iso
− (𝑃𝐶𝑅 − 𝑃atm)𝑉2,iso

∫ (𝑃 − 𝑃atm)𝑑𝑉 − (𝑃𝐶𝑅 − 𝑃atm)𝑉2
𝑉2

𝑉1

 (6-10) 

For a fully isothermal process 𝜂iso = 1. Note that Eq. 6-10 only considers how efficient the compression 

process is in comparison to the isothermal process; it does not reflect other losses and round-trip efficiency. 
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For example, spray work is not included in the calculations herein because it is assumed to have a small 

effect for moderate mass loading, and because this study is focused on the heat transfer physics and 

dynamics. It is recommended that spray work be included in more applied design studies. 

Another parameter to quantify the entire compression process is to treat it as a polytropic process 

with a single equivalent polytropic index (𝑛). A polytropic process obeys the following relationship.  

 𝑃𝑉𝑛 = constant (6-11) 

For an adiabatic process on a dry ideal gas, the polytropic index is the ratio of specific heats (𝛾); for a 

process with heat transfer, 1 < 𝑛 < 𝛾. In this case, the overall polytropic index for a compression process 

can be computed by setting the total work (Eq. 6-9) equal to the equivalent average work (Eq. 6-12). 

 𝑊avg =
𝑛avg

𝑛avg − 1
𝑃atm𝑉1 (1 − 𝑃𝑅

𝑛avg−1

𝑛avg ) (6-12) 

The average polytropic index thus reflects a process that would require the same work to reach a given 

pressure ratio (PR), starting from the same initial volume and pressure. 

Many aspects of the spray-cooled compression process can be captured with nondimensional 

numbers. The amount of water sprayed into the chamber during compression is captured by the mass 

loading (ML). Specific definitions for mass loading include the average droplet mass aloft during 

compression time and the maximum mass of aloft droplets. For floating droplet simulations, the mass 

loading is fixed and prescribed for each simulation in lieu of spray flow rate; the initial droplets never fall 

out of the chamber, and no new droplets are sprayed in. Thus, the average, maximum, and injected mass 

loadings are all equivalent and the movement of droplets in and out of the domain does not complicate the 

compression model. Herein the total mass loading (𝑀𝐿tot) is used, defined as the ratio of total injected 

droplet mass to the compressed air mass. 

The mass loading that gave the most consistent efficiency results between the floating droplet 

(where mass loading is fixed) and the falling drop (where mass loading varies with time) simulations is the 

total mass loading.  

𝑀𝐿tot =
𝑚d

𝑚a
=

(𝑚d,1 + 𝑚d,1→2 )

𝑚a
 (6-13) 
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This includes both the droplets already in the chamber when the compression process starts (𝑚d,1), and 

those sprayed in during the compression process (𝑚d,1→2). 

C. Theoretical polytropic index equation and Crowe number 

The mixture of droplets and air makes it difficult to predict the polytropic index of the compression 

process without a simulation. A mixture ratio of specific heats can be written as the mass-average of the 

specific heats. For a mixture with infinitely small droplets, thermal equilibrium between the droplets and 

air would be reached, and the thermal equilibrium mixture polytropic index can be written as follows [194].  

𝑛m,eq =
𝑚a𝑐𝑝 + 𝑚d𝑐𝑠

𝑚a𝑐𝑣 + 𝑚d𝑐𝑠
=

𝑐𝑝 + 𝑐𝑠 𝑀𝐿tot

𝑐𝑣 + 𝑐𝑠 𝑀𝐿tot
 (6-14) 

Herein, Eq. 6-14 will be called the “thermal equilibrium limit” as it is the lowest polytropic index expected 

for a given mixture of droplets and air, without heat transfer to the environment. For conciseness, it is also 

referred to as the “Kersey limit” stemming the original derivation. If the air and droplets are not in thermal 

equilibrium, the mixture polytropic index can be written with the air and droplet temperatures as constants.  

𝑛m =
𝑚a𝑐𝑝𝑇a + 𝑚d𝑐𝑠𝑇d

𝑚a𝑐𝑣𝑇a + 𝑚d𝑐𝑠𝑇d
=

𝑐𝑝 + 𝑐𝑠 𝑀𝐿tot
𝑇d
𝑇a

𝑐𝑣 + 𝑐𝑠 𝑀𝐿tot
𝑇d
𝑇a

=
𝑐𝑝 + 𝑐𝑠 𝑀𝐿tot 𝜃

𝑐𝑣 + 𝑐𝑠 𝑀𝐿tot 𝜃
 (6-15) 

Where the ratio of droplet temperature to air temperature can be rewritten as a temperature ratio, 𝜃 =
𝑇d

𝑇a
. 

In the thermal equilibrium limit, 𝜃𝑒𝑞 = 1. 

The temperature ratio can be approximated with a theoretical value 𝜃th based on a time average of 

the droplet temperature over a characteristic droplet time (𝜏d) from 𝑡 = 0 to 𝑡 = 𝜏d, assuming the fluid 

temperature is constant during that time. The change in droplet temperature at time t, relative to a constant 

fluid temperature, can be calculated as defined in Ref. [197] and substituted into the temperature ratio 

approximation, assuming that 𝜏T and 𝑇a are constant.  

𝑇d(𝑡) = (𝑇d,0 − 𝑇a) exp (−
𝑡

𝜏T
) + 𝑇a (6-16a) 
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𝜃th =
∫

𝑇d(𝑡)
𝑇a

𝑑𝑡
𝜏d

0

𝜏d
=

1

𝑇a𝜏d
∫ [(𝑇d,0 − 𝑇a) exp (−

𝑡

𝜏T
) + 𝑇a] 𝑑𝑡

𝜏d

0

=
𝑇a − 𝑇d,0

𝑇a
(

𝜏T

𝜏d
) exp (−

𝜏d

𝜏T
) −

𝑇a − 𝑇d,0

𝑇a
(

𝜏T

𝜏d
) + 1 

(6-16b) 

 

Noting that (
𝜏T

𝜏d
) is a key parameter in the temperature ratio, we can define this as a new 

nondimensional number, called the Crowe number. The ratio of the droplet thermal response time (𝜏T) to 

the fluid domain time scale (𝜏D), once proposed by Crowe et al. [195], can be defined as the Crowe number 

(Cr) as follows. 

𝐶𝑟 =
thermal response time

domain time scale
=

𝜏T

𝜏D
 (6-17) 

Note that the characteristic droplet time (𝜏d) is thus approximated with the domain time scale (𝜏D). The 

Crowe number can thus be used to quantify responsiveness of a droplet (or other thermal mass) within the 

time of the fluid domain, accounting for finite droplet size and response time.  

The domain time scale of the Crowe number should estimate the amount of time each droplet 

spends aloft in the cylinder, i.e., the residence time. A combination of droplet fall time and isothermal 

compression time estimates that could be calculated a priori was developed, where the isothermal 

compression time (𝑡iso) is the time for an isothermal process to reach the given pressure ratio, while the fall 

time (𝑡fall) is based on the terminal velocity and average isothermal cylinder length. Herein, for all 

compression processes, 𝐿1 = 𝐿cyl, and for an isothermal process, 𝐿2,iso =
𝐿cyl

𝑃𝑅
. 

𝑡fall =

𝐿1 + 𝐿2,iso

2  

𝑤term
=

(1 +
1

𝑃𝑅) 𝐿cyl

2 × 𝑤term
 (6-18a) 

𝑡iso =
𝐿1 − 𝐿2,iso

𝑈piston
=

(1 −
1

𝑃𝑅)𝐿cyl

𝑈piston
 (6-18b) 

For a floating drop, there is no terminal velocity time, so 𝜏D = 𝑡iso. However, a falling drop will have a 

smaller time aloft than either of the idealized times (Eqs. 6-18a-b), which can be estimated in advance as  
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 𝜏D = (
1

𝑡fall
+

1

𝑡iso
)

−1

 (6-19) 

Combing Eq. 6-5 and 6-19 yields the Crowe number equation used herein. 

𝐶𝑟 =
𝜏T

𝜏D
=

𝜌d𝑑2𝑐𝑠

6𝑁𝑢𝑘a
(

1

𝑡fall
+

1

𝑡iso
)  (6-20) 

The theoretical temperature ratio (Eq. 6-16b) is thus simplified as 

𝜃th = 𝐶𝑟 × exp (−
1

𝐶𝑟
) − 𝐶𝑟 + 1 (6-21) 

where the temperature ratio is now assumed to be a constant during the process. As the Crowe number 

approaches zero, 𝜃th approaches 1, and as the Crowe number approaches infinity, 𝜃th approaches zero. The 

assumption of constant thermal response time in this derivation (used for Eq. 6-16) requires that Nusselt 

number hold constant, which occurs when a droplet enters the creeping flow regime and Reynolds number 

approaches zero. Thus, the assumptions used to derive Eqs. 6-16b and 6-21 are best applied when Crowe 

number is small. 

The theoretical temperature ratio approximation is applied to the polytropic index equation for a 

mixture to result in the proposed theoretical polytropic index equation as follows. 

𝑛m,th =
𝑐𝑝 + 𝑀𝐿𝑐𝑠(𝐶𝑟 × exp (−

1
𝐶𝑟) − 𝐶𝑟 + 1)

𝑐𝑣 + 𝑀𝐿𝑐𝑠(𝐶𝑟 × exp (−
1

𝐶𝑟
) − 𝐶𝑟 + 1)

 (6-22) 

To the author’s knowledge, Eq. 6-22 is the first theoretical derivation of the polytropic index that accounts 

for thermal response time. The influence of the newly proposed Crowe number and mass loading on the 

theoretical polytropic index equation will be investigated for parametric compression simulations.  

D. Parametric sweep simulation conditions 

Building off the numerical compression model detailed in Ref. [190], a process was developed for 

running a large number of compression simulations with spray cooling in a parametric sweep. For the 

parametric sweep simulations, the cylinder starts at a set volume and atmospheric pressure and then 

compresses until critical air pressure is reached, related to the pressure ratio as 
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 𝑃CR = 𝑃𝑅 ∗ 𝑃atm (6-23) 

This simplified description does not consider the aerodynamic losses associated with the valves that would 

move air in and out of the cylinder and their potential losses (since this study focuses on the compression 

efficiency aspects). Instead, the work to push the air out at constant pressure is determined using boundary 

work theory. In reality, the air may be pushed out into the next stage or a storage vessel.  

The piston speed profile can affect the temperature rise in the piston and the resulting efficiency. 

Sinusoidal and uniform piston motion were both considered for the parametric sweeps, but uniform speed 

was chosen to better align with previously reported experiments and reflect a liquid piston with a constant 

pump flow rate. The air velocity (u) is assumed to be a linear distribution from the moving piston surface 

to the stationary top of the chamber.   

Heat transfer from the air to the droplets is assumed to be the dominant form of heat transfer during 

compression, and thus the piston and walls are considered adiabatic. In the parametric sweeps of 

simulations, the droplet heat transfer area is significantly larger than the piston area, often by a factor of 10 

to 100 depending on mass loading, indicating the majority of heat transfer will occur to the droplets. 

Therefore, the heat transfer to the environment is set to zero, i.e., 𝑄env = 0. 

For the droplets, two primary conditions were considered: floating and falling. In the “floating” 

droplet simulations, droplets are given no relative velocity and thus float in the cylinder during the 

simulation, with no droplets added or lost during each simulation. The droplet terminal velocity is thus set 

to zero. The droplets are all initialized within the cylinder before the compression process starts. In the 

“falling” droplet simulations, the droplets fall at terminal velocity, which is a commonly used assumption 

[190,199] and is valid for droplets with small Stokes numbers [197]. The water spray is assumed to be 

injected with a constant flow rate, constant temperature, and constant droplet size from the top of the 

cylinder. For falling droplet simulations, the initial droplet positions are set by assuming droplets are 

injected and allowed to fall at terminal velocity during the intake air stroke time, which is assumed to take 

the same time as the compression stroke and have the same spray flow rate. Depending on the size of the 

droplets and the compression time, the droplets may or may not fill the cylinder (reach the piston location) 

during the expected intake time.  

Table 6-1 details the parameters that were varied for the floating and falling droplet simulations. 

The ranges attempt to capture the experimental validation parameters and a full range of application-based 

parameters. For example, droplet sizes much less than 100 μm are likely preferred in terms of surface area, 

but experiments have often used with droplet size distributions with diameters as large as 400 μm, so a 
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range is given. Other parameters were held constant, including piston diameter (𝐷 = 11 cm) and initial 

temperature (𝑇0 = 300 K).  

Table 6-1. Parametric sweep variables 

Floating: 

Parameter Units Values Count 

d μm 400, 325, 250, 175, 100, 25, 10 7 

Lcyl m 0.1, 0.2, 0.3 3 

Upiston m/s 0.03, 0.14, 0.25 3 

𝑴𝑳𝐭𝐨𝐭 - [0.1,61] log spacing 14 

PR - 2, 4, 6, 8, 10 5 

Total   4410 

 

Falling: 

Parameter Units Values Count 

d μm 400, 325, 250, 175, 100, 25 6 

Lcyl m 0.1, 0.2, 0.3 3 

Upiston m/s 0.03, 0.14, 0.25 3 

qspray L/s [5e-4, 5e-2] linear spacing 5 

PR - 2, 6, 10 3 

Total   810 

 

A simulation result was removed from the dataset if any of the following occurred: 

 Droplet momentum response time (𝜏p) was greater than 10% of the total stroke time (terminal 

velocity assumption may not be valid), 

 There were less than 100 steps in the simulation (potentially inadequate temporal discretization 

for accuracy), 

 More water droplet volume was added each time step than piston volume (piston would need to 

move backwards), 
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 Mean droplet temperature was warmer than air temperature more than 2% of the time (sign of 

thermal instability in code, does not obey 2nd law principles).  

 

E. Evaporation analysis 

One issue that can be important in the spray cooling process is droplet evaporation, particularly for 

small droplets and low mass loadings. Previous studies have neglected droplet mass transfer (condensation 

and evaporation) effects [189,199], with Ref. [189] stating that the large mass of injected water droplets 

will cause the air to quickly reach a saturated condition and cause negligible change to droplet diameters. 

To verify these claims, a set of simulations was run, including evaporation effects, as a matched set to the 

floating droplet simulations to compare and quantify the potential error.  

For the simulations that included evaporation, the following equations were added to the numerical 

method to account for mass transfer, heat transfer due to evaporation, and the resulting gas mixture.  

The specific humidity of the air or vapor mass fraction (𝜔) varies greatly with temperature and can 

be calculated for water vapor in air as [200].  

 𝜔 = 0.622
𝑝𝑣

𝑝 − 𝑝𝑣
 (6-24) 

The saturation pressure of water vapor (𝑝𝑣) at a given temperature is found using CoolProp [201], while 

the total pressure accounts for the air and vapor mixture (𝑝). In these simulations, the air was assumed to 

start at 50% relative humidity at room temperature (𝜔 = 0.01). The initial humidity affects both the 

compression polytropic index and the likelihood of the water droplets evaporating, and a range of relative 

humidities should be considered during the design process. The increasing water vapor during the 

simulation was calculated as 

 𝜔𝑖 = 𝜔𝑖−1 +
𝜌𝑑(𝑉𝑑,𝑖−1 − 𝑉𝑑,𝑖)

𝑚𝑎
= 𝜔𝑖−1 +

𝜌𝑑
𝜋
6 𝑁𝑑(𝑑𝑖−1

3 − 𝑑𝑖
3)

𝑚𝑎
 (6-25) 

The Spalding mass transfer number (B) compares the vapor mass fraction in the far-field (𝜔∞) to 

the vapor mass fraction at the surface (𝜔𝑠𝑢𝑟𝑓) [197].  

 𝐵 = −
𝜔∞ − 𝜔𝑠𝑢𝑟𝑓

1 − 𝜔𝑠𝑢𝑟𝑓
  (6-26) 
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Herein, we assume that the vapor mass fraction at the surface is equal to the saturated vapor mass fraction 

at the particle temperature (𝜔𝑠𝑢𝑟𝑓 = 𝜔𝑠𝑎𝑡,𝑇𝑝). 

The Schmidt number is defined as follows, where Θ is the diffusion coefficient [197]. 

 𝑆𝑐 =
momentum diffusivity

mass diffusivity
=

𝜇

𝜌Θ
 (6-27) 

The Nusselt number (𝑁𝑢) and Sherwood number (𝑆ℎ) are calculated using the Ranz-Marshall 

correlation [198].  

 𝑁𝑢 = [2 + 0.6𝑅𝑒𝑑

1
2 𝑃𝑟

1
3]

 ln(1 + 𝐵)

𝐵
 (6-28) 

 𝑆ℎ = [2 + 0.6𝑅𝑒𝑑
1/2

 𝑆𝑐
1
3 ]

 ln(1 + 𝐵)

𝐵
 (6-29) 

The diffusion coefficient of water vapor in air is Θ = 0.26 × 10−4 𝑚2

𝑠
 at 298K and 1 atm (Ref. [161] Table 

A.8). The diffusion coefficient is proportional to 𝑇
3

2 and inversely proportional to pressure [161]. Thus, the 

current diffusion coefficient for water vapor in air can be calculated as  

 Θ = 0.26 × 10−4  (
m2

s
) ∗ (

𝑃

101 kPa
)

−1

∗ (
𝑇

298 K
)

3/2

 (6-30) 

Droplet heat and mass transfer are calculated using the differential equations below, based on 

equations in [194,197], replacing equation A4b when evaporation is included in the simulation. 

 
d𝑑

d𝑡
= −

2𝜌𝑎Θ

𝜌𝑑𝑑
𝐵 Sh (6-31) 

 
d𝑇𝑑

d𝑡
=

3𝜆𝑣

𝑐𝑠𝑑

d𝑑

d𝑡
+

6𝑘𝑎𝑁𝑢

𝜌𝑑𝑐𝑠𝑑2
(𝑇𝑎 − 𝑇𝑑) (6-32) 

Where 𝜆𝑣 is the latent heat of vaporization for the droplets.  

The ratio of specific heats used for adiabatic compression can be calculated as follows for humid 

air (a mixture of air and water vapor) assuming air and water vapor are ideal gases. 
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 𝑛humid =
𝑐𝑝,𝑚

𝑐𝑣,𝑚
=

𝑚𝑎𝑐𝑝,𝑎 + 𝑚𝑣𝑐𝑝,𝑣

𝑚𝑎𝑐𝑣,𝑎 + 𝑚𝑣𝑐𝑣,𝑎
=

𝑐𝑝 + 𝜔𝑐𝑝,𝑣

𝑐𝑣 + 𝜔𝑐𝑣,𝑎
 (6-33) 

The air and water vapor mixture tends to have a slightly lower ratio of specific heats (and thus polytropic 

index of the compression process) than that of dry air alone because water vapor has a lower ratio of specific 

heats than dry air.  

 

6.3. Validation against experimental data 

Experiments reported in Patil et al. [186] combined a liquid piston compressor with spray cooling. 

These experiments provide the first public data that combined a fully-liquid piston with spray cooling and 

will be used for validation of the model defined in Section 2.1. 

The experiments involved a liquid piston system submerged in a water tank. The slow compression 

speed, along with the unique under-water setup, allowed for significant heat transfer to the environment in 

addition to heat transfer to the injected droplets. Unlike in the parametric sweeps, the walls are not 

considered adiabatic and the heat transfer to the environment was estimated based on the reported “No 

Spray” case. A model was fit based on an internal energy balance for the No Spray data to find an overall 

heat transfer coefficient (𝑈) dependent on chamber volume.  

The experimental chamber diameter and length are 11 cm and 12 cm, respectively, and the piston 

location over time is calculated based on volume-time plots. The liquid piston motion is nearly linear, with 

a piston velocity of approximately 0.03 m/s. Therefore, the validation simulations run from an initial to a 

final volume, rather than a final pressure limit.  

For validating our model, we focused on replicating the “fast” compression (3 s), 90° spray angle, 

10 psi and 70 psi spray cases.  As the spray pressure was varied, the droplet sizes and spray flow rates 

changed. The BETE spray nozzle used provided a polydisperse droplet distribution with a Sauter mean 

diameter of 487 μm for 10 psi and 117 μm for 70 psi. Note that the polydisperse droplet distribution creates 

increased uncertainty when using the Sauter mean diameter in the simulations to represent a wider range of 

droplet sizes.  

No spray, low spray (10 psi), and high spray (70 psi) simulations are compared to reported 

experimental data Figure 6-3. The simulations fall within the error bars for the 10 psi and 70 psi spray 

experimental cases, indicating that this model is able to capture the chamber pressure for a specified volume.  
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Figure 6-3. Pressure rise as a function of volume contraction for without spray cooling (“No Spray”) and with 

low and high spray injection (10 psi and 70 psi), comparing simulations with experimental data from Ref. 

[186]. 

Additionally, the average polytropic index was calculated based on Eq. 6-12 for the three cases 

based on experimental data and simulation results, as seen in Table 6-2. The calculated polytropic indices 

for the simulations are 5% or less away from the calculated polytropic indices for the experiments. 

 

Table 6-2. Calculated polytropic index compared for experimental and simulation results of No Spray, 10 psi 

spray, and 70 psi spray cases. Experimental data from [186]. 

 Exp. data Sim. results % error 

No Spray 1.27 1.26 -1% 

10 psi 1.18 1.18 0.4% 

70 psi 1.06 1.00 -5% 

 

6.4. Results 

A. Floating droplet simulations 

The first sweep of simulations used floating droplets with no relative velocity. The mass loading 

was calculated based on the initial mass loading, which stayed constant throughout the simulation, and the 

Crowe number was calculated based on Eq. 6-20 with infinite droplet fall time and 𝑁𝑢 = 2. The average 

polytropic indices are plotted in Figure 6-4, where each point represents one simulation result and the line 
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is the thermal equilibrium limit (Eq. 6-14). The thermal equilibrium limit approaches the isothermal limit 

of 𝑛 = 1 for high mass loading, as the large water mass is able to absorb the heat of compression, in theory, 

with infinitely small droplets. Simulations with small Crowe numbers (corresponding to small, finite droplet 

sizes and large compression times) are closest to the equilibrium limit, while simulations with large Crowe 

numbers approach the adiabatic limit (for air) of 𝑛 = 1.4. Thus, it can be seen in Figure 6-4 that the 

polytropic index depends on mass loading and Crowe number, as proposed earlier in Eq. 6-22. 

 

 

Figure 6-4. Parametric sweep of floating droplet simulations plotted by total droplet mass loading (MLtot), 

polytropic index (n), and Crowe number (Cr), where the thermal equilibrium limit polytropic index curve 

(𝒏𝐦,𝐞𝐪) is plotted in black.  

The theoretical polytropic index equation of Eq. 6-22 is plotted in Figure 6-5 for select Crowe 

numbers (log-spaced throughout the domain) and compared to simulation results. Overall, the equation is 

able to closely predict the simulation results, though the predictions are more accurate for low Crowe 

number simulations as expected from the theoretical assumptions.  
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Figure 6-5. Theoretical polytropic index equation using theoretical temperature ratio approximation based 

on total mass loading and Crowe number (Cr) plotted for five different Crowe numbers and compared to 

floating droplet simulation results.  

B. Falling droplet simulations 

The second sweep of simulations used falling droplets that fell at their terminal velocity (Figure 

6-6). For these simulations, the mass loading was calculated based on the total spray injected during the 

compression process (Eq. 6-13). Again, the simulations with small Crowe numbers approach the 

equilibrium limit, while simulations with large Crowe numbers approach the adiabatic limit, and increased 

mass loading results in lower polytropic index. The simulation polytropic index is within 2% of the 

equilibrium limit when 𝐶𝑟 < 0.1.  As compared to the floating droplet polytropic indices of Figure 6-4 

(where mass loading is held fixed throughout the compression cycle), the falling drop results on Figure 6-6 

are more scattered for a given mass loading and Crowe number, indicating the additional influence of the 

mass loading dynamics within the compression cycle.  In particular, the total mass injected depends on the 

spray flow rate and the compression time, which varies based on the speed of compression, pressure ratio, 

length of the piston travel, and heat transfer. Additionally, droplets that hit the piston at the bottom and 

leave the air are no longer effective in terms of heat transfer. Based on differences between injection rate 

at the top and loss rate at the bottom, the instantaneous mass loading during the compression process can 

vary significantly, increasing or decreasing. These variations in instantaneous mass loading are more likely 

to occur at higher pressure and longer compression times and result in changes to the polytropic index of 

compression, beyond those given by Crowe number and total mass loading. 
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Figure 6-6. Polytropic index for falling drops as a function of total droplet mass loading (MLtot), polytropic 

index (n), and Crowe number (Cr), for simulations compared against thermal equilibrium limit for infinitely 

small drops.   

 

The isothermal efficiency for the floating droplet simulations is plotted in Figure 6-7, separated by 

pressure ratio. Increasing pressure ratio results in an increasing dependence of efficiency on mass loading. 

Thus, at 𝑃𝑅 = 2, the efficiency does not change significantly with mass loading, and the simulations are 

all clustered in the high-efficiency region. However, at 𝑃𝑅 = 10, efficiency varies greatly with mass 

loading, and a much larger spread is seen based on Crowe number. The shaded grey regions denote the 

areas where the floating droplet simulation results lie, which overlaps nicely with the falling droplet results. 

Small Crowe numbers and large mass loading simulations approach the ideal isothermal limit.  

The relative increase in isothermal efficiency with increasing mass loading is small after a mass 

loading of 10; therefore, higher mass loadings may not be worth the additional cost of increasing the spray. 

Additionally, Crowe numbers less than 0.1 may be small enough to approach thermal equilibrium, while 

smaller Crowe numbers will only slightly increase isothermal efficiency.  
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Figure 6-7. Isothermal efficiency (𝜼𝐢𝐬𝐨) for falling droplets for pressure ratios of 2, 6, and 10 as a function of 

total droplet mass loading and Crowe number, where shaded grey regions show the comparative results for 

floating droplets. 

Using the same theoretical polytropic index equation (Eq. 6-22) as for the floating droplets, the 

polytropic index is predicted for each falling droplet simulation, and then the resulting isothermal efficiency 

is calculated. The difference (𝜂iso,diff) is thus calculated between the theoretical isothermal efficiency and 

the simulation isothermal efficiency. 

𝜂iso,diff (%) = 𝜂iso,th (%) − 𝜂iso,sim (%) (6-34) 

Using this definition, an over-prediction indicates that the theoretical process is more efficient than the 

simulated process. In Figure 6-8, isothermal efficiency difference is plotted in percentage points for all 

falling droplet simulations. The theoretical polytropic index equation predicts isothermal compression 

efficiency with less than 1.5% error for 𝐶𝑟 < 0.1 or 𝑃𝑅 = 2. In general, the difference is positive indicating 

that the theoretical compression efficiency is greater than the actual efficiency, i.e., non-linear effects 

incorporated in the simulations tend to reduce the efficiency of the process.  In particular, these differences 

are larger for large Crowe numbers (which can be qualitatively expected since Eq. 6-21 was derived for 

small Crowe numbers). In addition, higher pressure ratios push the results further from this equation, likely 

because these cases tend to be associated with larger variations in instantaneous mass loading and 
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temperature ratio between air and droplets, and thus the assumptions of constant mass loading and 

temperature ratio break down.  

 

Figure 6-8. Difference in terms of percentage points between theory and simulation of isothermal efficiency 

for all falling droplet simulations, colored by pressure ratio.   

 

C. Evaporation simulations 

The simulations to investigate the effects of evaporation used floating droplets with no relative 

velocity. The results of the parametric sweep including evaporation (using the same parameters as the 

floating droplet sweep) are shown in Figure 6-9. It can be seen that at low Crowe numbers and small mass 

loadings, the polytropic indices are reduced relative to the original floating droplet simulations. However, 

at higher Crowe numbers and mass loadings, the results are relatively unchanged. The compression 

processes with the highest efficiency (which are the most likely to be implemented) are not significantly 

affected by the inclusion or exclusion of evaporation in the compression process.  
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Figure 6-9. Parametric sweep of floating droplet simulations including evaporation effects plotted by total 

droplet mass loading (MLtot), polytropic index (n), and Crowe number (Cr).  

 

The average polytropic index of compression for the floating droplet simulations with and without 

evaporation are compared in Figure 6-10. The maximum error is near 14% for the smallest mass loading. 

However, the median polytropic index error from excluding evaporation effects is less than 1% when 

𝑀𝐿tot > 2, and the median error remains below 3% for smaller mass loadings.  

 

Figure 6-10. Polytropic index percent error comparing floating droplet simulations with and without 

evaporation effects. 
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Evaporation can be seen to be most significant for processes with small droplets and low mass 

loading. In these cases, evaporation is more likely to occur because of increased air and droplet temperature 

during the compression process. Moreover, that evaporation significantly increases the total heat transfer 

during the compression process. Thus, evaporation tends to lower the polytropic index for cases with small 

droplet diameters (herein found to be approximately 𝑑 < 50 μm) and small mass loadings, but has little 

effect on the polytropic index for larger droplet sizes and/or mass loadings. While evaporation was 

neglected from the results in Sections 6.4A-B due to significantly increased computational time and a 

relatively small effect on heat transfer for high efficiency cases, it is recommended for future study for 

cases with 𝑀𝐿tot < 2 and 𝑑 < 50 μm. 

6.5. Conclusions 

A novel theoretical polytropic index equation was derived using a newly proposed nondimensional 

parameter, the Crowe number (Cr). The Crowe number is the ratio of the droplet thermal response time to 

the domain time scale, and it was found to be an important predictor for polytropic index and compression 

efficiency.  This theoretical work for spray-cooled compression was complimented with 1-D numerical 

simulations that are the first (to the author’s knowledge) to be validated with liquid piston experiments. The 

numerical model was then used to complete a parametric analysis of spray-based simulations for floating 

and falling droplets and compared with the theoretical results.  For the polytropic index, the thermal 

equilibrium limit (which is consistent with infinitely small droplets with negligible thermal response) was 

found to approach the isothermal limit (𝑛 = 1) for high mass loading while forming a lower bound for 

moderate to small mass loadings. For both floating and falling simulations, small Crowe number 

simulations (corresponding to small, finite droplet sizes and long compression times) were found to 

approach the thermal equilibrium limit, while large Crowe number simulations approach the adiabatic limit. 

When 𝐶𝑟 < 0.1, for both floating and falling simulations, the simulation polytropic index is within 2% of 

the equilibrium limit indicating thermal inertia effects can be approximately neglected for these conditions. 

However, floating simulations show more consistent Crowe number trends than falling simulations.  This 

is attributed to the constant mass loading for the floating cases (which eliminates the complexity of droplets 

entering and leaving the simulation over time that give rise to time-varying mass loading). 

As expected from previous experimental results in the literature, isothermal efficiency was 

improved by increasing the spray mass and by decreasing drop size. The present results identify the 

nondimensional regime for high isothermal efficiency as a combination of mass loading above three and 

Crowe numbers below 0.1. As such, thermal response time relative to the compression time (in the form of 

the Crowe number) was found to be a critical parameter for predicting the polytropic index and thus 
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compression efficiency. Increasing pressure ratio reduced isothermal efficiency, for a given mass loading 

and Crowe number.  

In general, the new theoretical polytropic index equation was able to well predict the simulation 

polytropic indices, with better results at smaller Crowe numbers (for which it was derived). In particular, 

the falling droplets cases with 𝐶𝑟 < 0.1 typically had isothermal efficiency errors less than 1.5% while 

cases with 0.1 < 𝐶𝑟 < 50 had larger errors that approached a maximum of 8%. The larger errors were due 

to greater time variations in instantaneous mass loading and temperature ratio that tended to occur at higher 

pressure ratios. Based on this performance, the theoretical polytropic index model can be used in the future 

to predict the thermodynamics of a compression process without requiring simulation for small Crowe 

numbers (where efficiencies are highest). This can speed up the design modeling process when exploring 

new variables and configurations to be used for more detailed simulations and/or experiments.  

The effect of evaporation in the code was considered but excluded from most simulations as the 

effect is small except in cases of low mass loading and small Crowe number. One set of simulations run 

with evaporation effects showed that evaporation may need to be included in more detailed models and 

designs that use with 𝑀𝐿 < 2 and 𝑑 < 50 μm.  

A numerical method combining previously studied liquid piston heat transfer with the droplet heat 

transfer considered herein would give a more complete view of a near-isothermal piston. In addition, future 

work is recommended to consider multi-dimensional effects, expansion conditions, and losses due to spray 

work.  
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Chapter 

7. Direct spray injection for Compressed Air Energy Storage 

compression and expansion 

Abstract 

Compressed air energy storage (CAES) is a low-cost, long-duration storage option under development. 

Several studies indicate that near-isothermal compression may be achieved by injecting water droplets into 

the air during the process to increase the overall efficiency. However, little is known about the thermal-

fluid mechanisms and controlling nondimensional parameters of the expansion process.  Furthermore, the 

round-trip efficiency and the impact of spray-based CAES are even less understood.  This study uses a 

validated 1-D model for compression and expansion with spray injection to complete a parametric analysis 

to analyze the thermal-fluid physics and roundtrip isothermal efficiency of a CAES system. For both 

compression and expansion, polytropic index tends to decrease and approach isothermal as nondimensional 

mass loading increases and as nondimensional Crowe number decreases. As such, the highest efficiency 

designs are those with slow compression speeds and high spray flow rates to achieve high mass loading and 

those with small droplets to achieve low Crowe numbers.  Additionally, the work related to spray injection 

was modeled in a second set of compression and expansion simulations. When spray work is factored in 

for a pressure ratio of ten, roundtrip isothermal efficiency peaks around 95% at a mass loading of 15 and at 

Crowe numbers less than 0.1. The results indicate that high roundtrip efficiencies for CAES are possible 

with proper test conditions and that spray work should be included for significant mass loadings (e.g. greater 

than unity) due to the potential adverse effect on efficiency. In addition, further investigation is 

recommended to consider effects of multi-dimensionality, turbulence, wall-interactions, and droplet 

dynamics.  
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Nomenclature 

 

Subscripts 

𝜌 density (
kg

m3) 

𝛾 ratio of specific heats of air 

𝜂 efficiency 

𝜏 time constant (s) 

𝑐𝑝 air specific heat capacity at constant pressure (
J

kg−K
) 

𝑐𝑠 water specific heat capacity at constant pressure (
J

kg−K
) 

𝑐𝑣 air specific heat capacity at constant volume (
J

kg−K
) 

Cr Crowe number 

d droplet diameter (m) 

D cylinder diameter (m) 

k air thermal conductivity (
W

m−K
) 

L vertical length from cylinder head (m) 

m mass (kg) 

ML mass loading 

n polytropic index 

Nu Nusselt number 

P pressure (Pa) 

ΔP overspray pressure (Pa) 

PR pressure ratio 

𝑞spray spray flow rate (
L

s
) 

T temperature (K) 

t time (s) 

𝑈piston piston speed (
m

s
) 

V volume (m3) 

W work (W) 

𝑤term droplet terminal relative velocity (
m

s
) 

z position (m) 

1 beginning of process 
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2 end of process 

a air 

atm atmospheric 

avg average 

C compression 

CR critical 

cyl cylinder  

d droplet 

D domain 

E expansion 

fall fall 

init initial 

iso isothermal 

RT roundtrip 

spray spray 

T thermal 

tot total  
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7.1. Introduction 

A. Motivation 

Inexpensive, long-duration energy storage options are needed to meet electrical demand as an 

increasing share of electricity comes from renewable sources. Currently, dispatchable fossil fuel generation 

or overbuilding renewable generation are often more economical solutions than long-duration energy 

storage with Lithium-Ion batteries, so other energy storage options are needed [176]. Compressed air energy 

storage (CAES) has strong potential as a low-cost, long-duration storage option, but it has historically 

experienced low roundtrip efficiency [21].  

Isothermal compressed air energy storage (ICAES) utilizes increased heat transfer during the 

compression and expansion processes to reduce temperature change in the compressed air and increase the 

overall efficiency of the process. If air can be compressed at a constant temperature, then all of the work 

input goes into compression rather than heat generation, and thus there is a potential to retrieve all of the 

input work during the expansion process. One option for achieving near-isothermal air compression and 

expansion is by injecting water droplets during the process. The spray injection has a large thermal mass 

and can absorb heat from the air during compression and transfer heat to the air during expansion.  

For a CAES system, the physics of the thermal and fluid interaction as well as the overall roundtrip 

efficiency of the process are important to understand how much of the energy put into storage can be 

recovered for later use and to design a system for grid-scale energy storage.  

B. Previous work 

Both experimental and computational work has been previously completed to investigate near-

isothermal CAES, with the primary emphasis on compression portion (rather than on the expansion portion 

or on the entire roundtrip process). 

Experimental work by Wieberdink et al. [184] and Yan et al. [185] looked at liquid piston 

compression and expansion cases, both with and without porous media inserts. They found that piston speed 

had a large effect on efficiency, where slower piston speeds resulted in processes closer to isothermal for 

both compression and expansion. Notably, the temperature and pressure plots from these studies showed 

different trends for compression and expansion processes. While a fully-isothermal process would look the 

same for compression and expansion, the real processes showed more irregularities. Temperature and 

pressure plots for compression are relatively monotonic and follow a relatively constant curve. However, 

for expansion, the temperature plots are not monotonic and the pressure plots show a clear change in slope 

over time. As such, the expansion process was not as well understood. 
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Experiments on spray-cooled compression with a liquid piston were reported in Patil et al. [186] 

and the data was used to validate the present numerical method as discussed in Chapter 6. Previous work 

on modeling spray-cooled compression has included 1-D droplet heat transfer modeling by Qin & Loth 

[190] and Sapin et al. [202], both of which document an increase in compression efficiency with increasing 

spray mass loading.  

While there has not been any published experimental data on expansion with spray injection (which 

remains an area of interest), some researchers have modeled the process. Yu et al. [203] modeled a generally 

complete expansion system including orifices, nozzles, and the motion of the piston while injecting high-

temperature water mist during expansion. However, the model was only applied for one spray case. Zhang 

et al. [199] also simulated spray injection during expansion and varied the injected mass loading, finding 

that spray heat transfer increased the expansion work production by 16% over adiabatic expansion. 

Experiments by Patil et al. [186] reported both compression work and spray work, separately, and 

they found that spray work could approach the magnitude of compression work thus offsetting the heat 

transfer benefits. Furthermore, while initial increases in spray pressure resulted in large temperature 

abatement, larger increases in spray pressure provided only marginal temperature reductions due to spray 

heat transfer [186]. In simulation studies, increasing the spray pressure (and thus increasing flow rate and 

decreasing droplet size) also reduced temperature rise during compression, but the increased spray pressure 

must be balanced against the increased spray work which can negatively affect efficiency 

[186,188,191,192]. Thus, it is important to consider the impact of spray work when using spray cooling for 

both compression and expansion. 

CAES can use multiple types of compressors, but reciprocating compressors are common for 

isothermal CAES, either using a solid/mechanical piston or a liquid piston. One benefit of reciprocating 

compressors is the ability to use them both for compression and expansion, cutting the equipment costs in 

half. Roundtrip efficiency is critical to a CAES design, and if the same equipment is used for both 

compression and expansion, then it is important to consider roundtrip efficiency early in the design process. 

Liquid piston roundtrip efficiency varies and was found to be 78% for a pressure ratio of 39 by Hu et al. 

[204]. Some unique CAES designs that utilize spray cooling have found that adding water spray increased 

roundtrip efficiency [205,206].  

However, few studies have considered the performance of a paired compression and expansion 

system for a standard compression system, where the system parameters are the same for both, and no 

experimental results have been reported. Compression and expansion are not identical processes, for a non-

isothermal process, so the same system set up will have different efficiencies for compression and 



143 

expansion. Optimizing for a roundtrip system is critical when designing a near-isothermal CAES system 

for long-duration storage and may give different results than optimizing for either compression or expansion 

individually.  

C. Objectives 

The objective of this paper is to complete a parametric analysis of compression and expansion 

processes with spray injection using a validated 1-D model to analyze the thermal-fluid physics and 

roundtrip isothermal efficiency of a CAES system. This paper also seeks to identify high efficiency designs 

for spray-injection systems with different droplet sizes, both with and without spray work considerations.  

This is the first paper to the author’s knowledge to complete a parametric analysis of roundtrip 

performance by modeling matched pairs of compression and expansion cases. Additionally, it is the first to 

implement an equation for overspray pressure into simulations to account for varying spray work.  

7.2. Methodology 

A. Physics and geometry of numerical model 

The system considered herein involves first-stage air compression or expansion in a cylinder with 

direct water spray injection. The simulations do not specify the piston material since heat transfer is only 

considered between the air and the droplets. As such the results can reflect the spray-based effects for either 

water (liquid piston) or solid piston systems. The model considers 1-D droplet motion along the z-axis, 

which starts at the top center of the cylinder, as seen in Figure 7-1. The 1-D model for compression is 

described in detail in Chapter 6 and builds upon work by Qin & Loth [190]. The numerical model assumes 

inert droplets within laminar air flow with one-way coupling between the air and droplets and no multi-

dimensional or wall interactions. The 1-D model was expanded to simulate expansion processes herein. 
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Figure 7-1. Notional schematics of direct injection spray at the beginning of each piston motion (after air has 

entered the chamber with initial spray injection): a) compression and b) expansion 

The compression cylinders considered herein have a diameter of 10 cm and range from 10-50 cm 

in length. The diameter was chosen based on a reasonable diameter for one nozzle to fill with spray, and 

thus a system with a larger diameter may be approximated as a set of multiple 10 cm diameter cylinders 

each with one nozzle.  

For all simulations, the piston speed (𝑈piston), total cylinder length (Lcyl), water volumetric spray 

flow rate (𝑞spray), droplet diameter (𝑑), and maximum pressure ratio (𝑃𝑅) are prescribed. For simplicity, 

the piston speed is a constant within a given simulation, which is representative of a liquid piston 

compression process. Notably, this may give different results than sinusoidal piston speed profiles that are 

typical of solid, mechanical pistons.  

In a complete compressed air energy storage system, the air would enter and leave the cylinder 

through valves and incur frictional losses in piping and storage losses. However, for simplicity in this 

assessment, only the compression and expansion process are considered; major and minor losses from 

valves, fittings, and piping are not included, and a constant pressure storage system is assumed.  

For compression, the cylinder starting length (𝐿𝐶) is prescribed as the total cylinder length, 𝐿1 =

𝐿𝐶 = 𝐿cyl. Before the compression process, air at atmospheric pressure (𝑃atm) and room temperature is 

drawn into the cylinder during the “draw in” process. The cylinder starts at an initial volume and 

atmospheric pressure, and it compresses until the critical pressure is reached. The critical pressure (𝑃CR) 

can be defined as 
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 𝑃CR = 𝑃𝑅 ∗ 𝑃atm (7-1) 

The process to push the air out at constant pressure is not simulated and is instead determined using 

boundary work theory. In reality, the air may be pushed out into the next stage or a storage vessel.  

In expansion, the air starts at the critical pressure at cylinder length 𝐿𝐸 and is expanded until it 

reaches the final atmospheric pressure. The initial expansion cylinder length is defined based on an 

isothermal process, where the starting cylinder length (𝐿E) can be related to the total cylinder length (𝐿cyl) 

and the pressure ratio as follows, given that the volume of an isothermal, ideal gas is inversely related to 

the pressure.  

 𝐿1 = 𝐿E =
𝐿cyl

𝑃𝑅
 (7-2) 

Thus, 𝐿E is the length that the piston moves during the draw in process when high pressure air is drawn into 

the cylinder at constant temperature and pressure while droplets are sprayed into the cylinder, and 𝐿cyl is 

the maximum expected length of the cylinder at the end of the expansion process (as an isothermal process 

is the longest possible process).  

The water droplet spray would have a range of droplet sizes and would take time to disperse from 

the injection site and fill the chamber fully. Herein the droplets are modeled using a single size, the Sauter 

mean diameter, to simplify the simulations and focus on the fundamental effect of drop size on efficiency.  

In actual sprays, there would be a range of droplets (some smaller and some larger than the Sauter mean 

diameter) and a corresponding a range of terminal velocities and heat transfer rates. Only modeling the 

droplets in 1-D accounts for the time to disperse in the z-direction but does not account for radial dispersion 

of droplets within the chamber.  

The water droplets are sprayed in at a constant flow rate from the top of the chamber during the 

draw in process and during the compression/expansion process until the desired pressure is reached. The 

droplets are sprayed in at the same volumetric flow rate during the draw in process for both compression 

and expansion. Note that at constant piston speed, the draw in process takes longer for compression due to 

the longer starting cylinder length (𝐿C > 𝐿E), and thus more droplets are sprayed in initially for compression 

than expansion, as illustrated nominally in Figure 7-1 where the compression schematic has more droplets 

in the chamber at the beginning of the process than the expansion schematic.  

The droplet Reynolds number, relative terminal velocity, and drag coefficient are found iteratively, 

based on White’s drag coefficient, which is appropriate for particle Reynolds number up to 1,000 [197], as 
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described in Chapter 6. Droplet velocity is then the sum of the relative terminal velocity (𝑤term) of the 

droplet and the local air velocity. The air in the cylinder is assumed to have a linear velocity profile, from 

the moving piston surface to the stationary cylinder top.  

The air in the cylinder is assumed to have uniform pressure, temperature, and density and is 

assumed to obey the ideal gas law. The starting air temperature for all simulations is room temperature (300 

K), assuming there is sufficient time between cycles for the air to return to room temperature.  

Heat transfer from the air to the droplets is assumed to be the dominant form of heat transfer during 

compression, and thus the piston and walls are considered adiabatic and heat transfer is only allowed to the 

droplets. Heat transfer between each droplet and the air is calculated and then summed to find total heat 

transfer with the air. Droplet evaporation, boiling, and freezing were not included in the simulations as 

droplet temperatures are intended to stay between the freezing and boiling points of water. Processes with 

high isothermal efficiency, as sought by this study, would not experience extreme droplet temperatures, so 

those effects were excluded for simplicity. Additionally, an anti-freeze compound could be added to lower 

the droplet freezing temperature if needed. 

The numerical method employs a two-step process, where first the air is compressed or expanded 

adiabatically, and then heat transfer is allowed between the air and the droplets. Readers are referred to 

Chapter 6 and Chapter 6 Appendix for details on the numerical method.  

A simulation result was removed from the dataset if any of the following occurred: 

 Droplet momentum response time (𝜏p) was greater than 10% of the total stroke time (terminal 

velocity assumption may not be valid), 

 There were less than 100 steps in the simulation (potentially inadequate temporal discretization for 

accuracy), 

 Piston speed exceeded 
𝑈piston

𝑡iso
< 0.1𝑔 (ensuring that if this system was implemented with a real 

piston, the speed and acceleration would be physically realistic), 

 The added water droplet volume at a time step was more than 50% of the change in piston volume 

(the majority of the change in air volume should come from piston motion), or 

 More than 10% of the initial volume of initial volume was droplets (the initial draw in spray should 

not significantly change the cylinder volume). 

B. Outputs and nondimensional parameters 

The compression and expansion processes can each be quantitatively characterized in terms of their 

work, isothermal efficiency, and polytropic index. 
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The compression work is divided into two periods: i) compression occurs from initial atmospheric 

pressure (𝑃atm), cylinder length (𝐿C), and initial volume (𝑉1C) to the final critical pressure (𝑃CR) and final 

volume (𝑉2C), and then ii) the air is pushed out of the cylinder while maintaining the final pressure. Note 

that 𝑃1C = 𝑃atm and 𝑃2C = 𝑃CR for compression, but the pressure terms are used herein since they are fixed 

for each simulation for both compression and expansion, while the volume terms vary.  The final pressure 

is set as the critical pressure, and the final volume and final time are dependent on the compression process 

and correspond to when the critical pressure is reached. The total work is thus calculated as  

 𝑊𝐶 = ∫ (𝑃 − 𝑃atm)𝑑𝑉
0

𝑉1C

= ∫ (𝑃 − 𝑃atm)𝑑𝑉
𝑉2C

𝑉1C

− (𝑃CR − 𝑃atm)𝑉2C (7-3) 

Note that compression work is negative because work is put into the system.  

The efficiency of the compression process is measured by the ratio of work for an isothermal 

process to the work for the given process, where the initial (atmospheric) pressure, initial temperature, and 

critical pressure are all fixed. The isothermal efficiency can thus be written as  

 𝜂iso,C =
[∫ (𝑃 − 𝑃atm)𝑑𝑉

𝑉2C,iso

𝑉1C
]

iso
− (𝑃CR − 𝑃atm)𝑉2C,iso

∫ (𝑃 − 𝑃atm)𝑑𝑉
𝑉2C

𝑉1C
− (𝑃CR − 𝑃atm)𝑉2C

 (7-4) 

For a fully isothermal process 𝜂iso = 1.  To minimize work lost due to heat, it is desired that this isothermal 

efficiency be as close to unity as possible.   

If the compression process is treated as a polytropic process, it can be quantified with a uniform 

polytropic index (𝑛). A polytropic process obeys the following relationship.  

 𝑃𝑉𝑛 = constant (7-5) 

For an adiabatic process on an ideal gas, the polytropic index is the ratio of specific heats, i.e. 𝑛 = 𝛾.  For 

an isothermal process, 𝑛 =1.  For a process with finite heat transfer, 𝑛 may vary with time during the process 

due to variations in heat transfer, but the overall average polytropic index (𝑛avg) will lie between these 

bounds such that 1 < 𝑛avg < 𝛾. In this case, the average polytropic index for a compression process can be 

computed by setting the total compression work (Eq. 7-3) equal to the equivalent average compression 

work which assumes a constant polytropic index. 
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 𝑊avg,C =
𝑛avg

𝑛avg − 1
𝑃atm𝑉1𝐶 (1 − 𝑃𝑅

𝑛avg−1

𝑛avg ) (7-6) 

The average polytropic index thus reflects a process that would require the same work to reach a given 

pressure ratio (PR), starting from the same initial volume and pressure.  For high isothermal efficiency, it 

is desired that 𝑛 be as close to unity as possible.   

The expansion work occurs in two periods: i) air is drawn into cylinder at constant pressure, and 

then ii) air is expanded from the critical pressure (𝑃CR), initial cylinder length (𝐿E), and initial volume (𝑉1E) 

to the final pressure (𝑃atm) and volume (𝑉2E). The final volume and time are dependent on the expansion 

process. The total expansion work can be calculated as 

 𝑊𝐸 = ∫ (𝑃 − 𝑃atm)𝑑𝑉
𝑉2E

0

= ∫ (𝑃 − 𝑃atm)𝑑𝑉
𝑉2E

𝑉1E

+ (𝑃CR − 𝑃atm)𝑉1E (7-7) 

Note that expansion work is positive because work is moving out of the system.  

The efficiency of the expansion process is measured by the ratio of work for the given process to 

the work for an isothermal process, where the initial pressure, initial temperature, and final pressure are all 

fixed. The isothermal expansion efficiency can thus be written as  

 𝜂iso,E =
[∫ (𝑃 − 𝑃atm)𝑑𝑉

𝑉2E,iso

𝑉1E
]

iso
+ (𝑃CR − 𝑃atm)𝑉1E

∫ (𝑃 − 𝑃atm)𝑑𝑉
𝑉2E

𝑉1E
+ (𝑃CR − 𝑃atm)𝑉1E

 (7-8) 

The average polytropic index of the expansion process can be calculated by setting the total 

expansion work (Eq. 7-7) equal to the equivalent average expansion work (Eq. 7-9).  

 𝑊avg,E =
𝑛avg

𝑛avg − 1
𝑉1E𝑃CR

1
𝑛avg (𝑃CR

𝑛avg−1

𝑛avg − 𝑃atm

𝑛avg−1

𝑛avg ) (7-9) 

The average polytropic index can then be solved for.  

The isothermal roundtrip efficiency (𝜂RT) for a paired set of compression and expansion processes 

can be calculated as  
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 𝜂RT = −𝜂iso,C ∗ 𝜂iso,E = −
∫ (𝑃 − 𝑃atm)𝑑𝑉

𝑉2E

𝑉1E
+ (𝑃CR − 𝑃atm)𝑉1E

∫ (𝑃 − 𝑃atm)𝑑𝑉
𝑉2C

𝑉1C
− (𝑃CR − 𝑃atm)𝑉2C

 (7-10) 

This roundtrip efficiency only accounts for the losses in the compression and expansion processes and does 

not include valve losses, mechanical losses, or storage losses. It assumes constant pressure storage and the 

ability to keep the output pressure constant during the discharge process. Therefore, to get a full view of 

the overall roundtrip efficiency of a CAES system, this isothermal roundtrip efficiency should be combined 

with other roundtrip system losses. 

Mass loading (𝑀𝐿) is the ratio of droplet mass (𝑚d) currently aloft in the chamber to air mass (𝑚a) 

in the chamber at any given time.  

𝑀𝐿 =
𝑚d

𝑚a
 (7-11) 

Other forms of mass loading are useful to define since the instantaneous mass loading defined above will 

vary over the course of a process. The total mass loading (𝑀𝐿tot) is defined herein as the total mass of 

droplets in contact with air during the process, divided by the air mass. This includes both the droplets 

already in the chamber when the compression or expansion process starts (𝑚d,1) from the draw in process, 

and those injected during the compression or expansion process (𝑚d,12). 

𝑀𝐿tot =
(𝑚d,1 + 𝑚d,1→2)

𝑚a
 (7-12) 

When considering a combined compression and expansion process, the roundtrip mass loading (𝑀𝐿RT) is 

defined as the average of the two total mass loadings.  

𝑀𝐿RT =
𝑀𝐿tot,C + 𝑀𝐿tot,E

2
 (7-13) 

The Crowe number (Cr) was proposed in Chapter 6 to relate the droplet thermal response time (𝜏T) 

to the fluid domain time scale (𝜏D). It can be calculated before simulations as follows, where the isothermal 

process time is the same for either compression or expansion. For all compression processes, 𝐿1 = 𝐿𝐶 =

𝐿cyl, and for an isothermal process, 𝐿2,iso = 𝐿cyl 𝑃𝑅⁄ ; for all expansion processes, 𝐿1 = 𝐿𝐸 = 𝐿cyl 𝑃𝑅⁄ , and 

for an isothermal expansion process, 𝐿2,𝑖𝑠𝑜 = 𝐿cyl. 
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𝐶𝑟 =
thermal response time

domain time scale
=

𝜏T

𝜏D
 (7-14a) 

𝐶𝑟 =
𝜌d𝑑2𝑐𝑠

6𝑁𝑢𝑘a
(

1

𝑡fall
+

1

𝑡iso
)  (7-14b) 

𝑡fall =

𝐿1 + 𝐿2,iso

2  

𝑤term
=

(1 +
1

𝑃𝑅)𝐿cyl

2 × 𝑤term
 

(7-14c) 

𝑡iso =
|𝐿1 − 𝐿2,iso|

𝑈piston
=

(1 −
1

𝑃𝑅
)𝐿cyl

𝑈piston
 

(7-14d) 

When evaluating how well the droplets are able to improve the compression or expansion 

processes, the thermal equilibrium limit (defined in Chapter 6, based on Ref. [194]) can be used as a lower 

limit on polytropic indices.  

𝑛m,eq =
𝑚a𝑐𝑝 + 𝑚d𝑐𝑠

𝑚a𝑐𝑣 + 𝑚d𝑐𝑠
=

𝑐𝑝 + 𝑐𝑠 𝑀𝐿tot

𝑐𝑣 + 𝑐𝑠 𝑀𝐿tot
 (7-15) 

The thermal equilibrium limit is the polytropic index that would be reached if droplets and air were always 

in thermal equilibrium in the limit of infinitely fast heat transfer with infinitely small droplets. Therefore, 

this limit is the lowest polytropic index expected for a mixture of droplets and air without heat transfer to 

the environment. It is calculated herein using the total injected mass loading.  

C. Parametric analysis  

A sweep of compression simulations and a matching sweep of expansion simulations were run 

based on the parameters given in Table 7-1. The ranges of parameters attempt to capture a wide range of 

design options, while staying within the bounds of realistic processes and including the range of parameters 

used to validate the numerical method in Chapter 6. For example, 𝑈𝑝𝑖𝑠𝑡𝑜𝑛 = 0.03 m/s is the piston speed 

from the experiments used to validate the 1-D method, but it is likely too slow for an energy storage process. 

At the other extreme, 𝑈𝑝𝑖𝑠𝑡𝑜𝑛 = 0.6 m/s is estimated to the maximum speed for a partially or fully liquid 

piston. For cylinder lengths, the experiments used to validate to 1-D method used a length around 0.1 m, 

but longer pistons are predicted to increase the system efficiency, so the range was extended up to 𝐿cyl =

0.5 m.   
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Table 7-1. Parametric sweep parameters for compression and expansion sweeps with direct injection spray. 

Parameter Units Values Count 

d μm 200, 150, 100, 50, 25 5 

Lcyl m 0.1, 0.3, 0.5 3 

Upiston m/s [0.03, 0.6] linear spacing 4 

qspray L/s [5e-4, 2e-2] linear spacing 8 

PR - 2, 6, 10 3 

Total    1440 

 

D. Spray work validation  

In general, spray work depends on the overspray pressure (Δ𝑃) and the spray flow rate (𝑞spray) 

(based on Ref. [192]) as 

 𝑊spray = ∫ Δ𝑃 𝑞spray 𝑑𝑡
𝑡2

0

 (7-16) 

Spray is injected during the draw-in period and also during the compression or expansion process from time 

𝑡 = 0 to 𝑡 = 𝑡2. This spray work should be added to the compression work to find the total input work or 

subtracted from expansion work to find the net output work. 

Experimental data reported in Patil et al. [186] provides information on compression work and 

spray work for a spray-cooled liquid piston compressor. These experiments were previously used to validate 

the 1-D compression model in Chapter 6, within the margin of experimental error. Using the same method 

detailed in Chapter 6, Section 6.3, the 10 psi and 70 psi spray cases were simulated using the Sauter mean 

diameter of the spray distributions. The BETE spray nozzle used provided a polydisperse droplet 

distribution with a Sauter mean diameter of 487 μm for 10 psi and 117 μm for 70 psi. 

The compression work and spray work are compared between reported experimental results and 

calculated simulation results in Table 7-2. The overspray pressure was set based on the given spray 

pressures of 10 psi and 70 psi, respectively. The simulation results are able to predict experimental work 

with less than 8% error. Also note that the spray work only slightly increases the total work for the low 

spray case (10 psi), but the spray work nearly doubles the total work for the high spray case (70 psi).  
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Table 7-2. Comparison of compression and spray work reported from Patil et al. [186] with simulation 

results. 

10 psi Exp. data Sim. results % error 

Comp. work 42.6 J 44.4 J 4% 

Comp. + Spray work 43.7 J 45.6 J 4% 

70 psi Exp. data Sim. results % error 

Comp. work 35.7 J 37.3 J 4% 

Comp. + Spray work 63.9 J 68.5 J 7% 

 

E. Spray work parametric analysis 

A model was needed to incorporate spray work for water droplets into simulations where the droplet 

diameter is specified but the overspray pressure is not known. As such, a model for overspray pressure was 

developed based on experimental results from the literature to estimate the spray work in a sweep of 

simulations. The relationship between droplet size, flow rate, and overspray pressure is highly complex and 

depends on nozzle type, chamber pressure, etc. Many relationships can be found in the literature [207], but 

most either require specific nozzle information or use fluids other than water. Since pressure-swirl nozzles 

were found by Qin et al. [208] to provide high flow rates for small drop size (less than 100 𝜇m) while 

avoiding spray-work losses due to aeration, the present study focused on these same type of nozzles.   

Data published in Wang & Lefebvre [209] provides the good data for conditions relevant to these 

simulations (Figure 7-2). In that paper, water sprays were analyzed and the Sauter mean diameter, flow 

rate, and overspray pressure were all reported. Wang & Lefebvre proposed an equation to predict the Sauter 

mean diameter of a spray, but it uses many additional terms like the spray cone angle and film thickness. 

These terms allow consideration of multiple spray nozzles and conditions; however, the present study 

sought a simplified relationship for a single nozzle in terms of water spray Sauter mean diameter. A surface 

was fit to the data [209] based on the following relationship for diameter, which can be rewritten for 

overspray pressure as 

𝑑 = 𝐴 ∗ 𝑞spray
𝐵 ∗ 𝛥𝑃𝐶  

Δ𝑃 = (
𝑑

𝐴 ∗ 𝑞spray
𝐵 )

1
𝐶

 

(7-17a) 

 

(7-17b) 

The form of Eq. 7-17a is similar to those reported in Ref. [207]; where C is generally between -0.25 and     

-0.47. Based on the experimental data, the coefficient values were adjusted to minimize error resulting in 
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values of 𝐴 = 2.612 × 104, 𝐵 = 0.082, and 𝐶 = −0.383, with 𝑅2 = 0.97. The results with these fitted 

coefficients are compared to the experimental data in Figure 7-2 for six different overspray conditions. 

Increasing flow rate slightly increases droplet diameter but increasing overspray pressure has a much 

stronger effect on droplet diameter. 

 

Figure 7-2. Present fitted relation compared to Wang & Lefebvre [209] water spray data in terms of flow rate 

and droplet diameter for a set of overspray pressures. 

Using the spray pressure equation developed above, a sweep of simulations was run including spray 

work for conditions within or near the experimentally-based conditions of Figure 7-2. Thus, it is a more 

concentrated and physically realistic sweep (assuming use of pressure-swirl nozzles) than the first one 

outlined in Table 7-1. The parameters for the sweep with spray work are given in Table 7-3. Additionally, 

the length of the cylinder was extended, to seek higher roundtrip efficiencies, as discussed in Section 7.3C. 

Table 7-3. Parametric sweep including spray work parameters, for compression and expansion simulations. 

Parameter Units Values Count 

dp μm 80, 50, 30 3 

Lcyl m [0.1, 1] linear spacing 4 

Upiston m/s [0.05, 0.5] linear spacing 5 

qspray L/s [1e-3, 1.5e-2] linear spacing 4 

PR - 2, 6, 10 3 

Total    720 
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7.3. Results and discussion 

A. Time-series results 

The compression and expansion simulations are assessed as time-series results and their differences 

are discussed to investigate the fluid physics. Figure 7-3 and Figure 7-4 show one example set of matching 

compression and expansion simulations with the following parameters: 𝐷 = 0.1 𝑚, 𝐿cyl = 0.3 𝑚, 𝑃𝑅 =

10, 𝑈piston = 0.2 𝑚/𝑠, 𝑑 = 100 𝜇𝑚, 𝑞spray = 5 × 10−3 𝐿/𝑠, and 𝐶𝑟 = 0.23.  

In Figure 7-3, the log-log pressure-volume changes are shown for the spray-based simulation as 

well as for an isothermal and an adiabatic process for this pressure ratio. The shaded pink region denotes 

the time spent between 𝑃𝑅 = 5 and 𝑃𝑅 = 10. The work in or out of the process for the spray-based 

simulation is shaded in light blue. Ideally, the process would approach the isothermal curve for both the 

compression and expansion processes. Similar to results found in liquid piston experiments [184] and 

simulations [204], the compression simulation gives a relatively straight line (on a log-log plot) and is 

initially favorably close to isothermal limit, while the expansion simulation favorably curves towards the 

isothermal limit later in the simulation. These different phases that diverge from isothermal may be due to 

a combination of when the majority of the work is going into and coming out of the compression and 

expansion processes, respectively, and when the instantaneous mass loading is lowest.  

 

Figure 7-3(a-b). Pressure-volume curves for 1-D spray simulations of compression and expansion, compared 

to isothermal and adiabatic curves. The shaded blue region denotes the work in or out of the simulation 

process, while the shaded pink region denotes the first/last 50% of the expansion/compression process. 

To further investigate the differences, the instantaneous mass loading, droplet and air temperatures, 

and polytropic index are plotted over time for the same example compression and expansion processes in 

Figure 7-4. Again, the first/last 50% of the expansion/compression process is shaded pink. This region is a 
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small fraction of the process in time but accounts for a large fraction of the total work and results in large 

changes in air and droplet temperature. Note that the mass loading does not start at zero because spray is 

injected during the draw in process when air is brought into the cylinder. The draw in process takes longer 

before the compression process because the piston moves further, and thus the starting mass loading is 

higher for the compression process than the expansion process (as seen in Figure 7-1). 

 

Figure 7-4(a-f). Time series results from 1-D model for an example pair of compression and expansion 

simulations at 𝑷𝑹 =10, where the pink-shaded region denotes the last/first 50% of the compression/expansion 

process.  
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B. Compression, expansion, and roundtrip efficiency 

The results of the parametric analysis defined by Table 7-1 are presented below, for compression 

and expansion without accounting for spray work. The polytropic index (n) is plotted against total mass 

loading (MLtot) in Figure 7-5. In both cases, the polytropic index tends to decrease and approach the thermal 

equilibrium limit as mass loading increases and as the Crowe number decreases. As such, the spray-based 

performance cannot exceed the thermal equilibrium performance, which only tends to the isothermal limit 

for high mass loading (much greater than unity). Furthermore, both expansion and compression 

performance can only approach the equilibrium limit when the Crowe number is small (much less than 

unity).   

Figure 7-5: Polytropic index (n) versus total mass loading (MLtot) colored by Crowe number (Cr) where the 

thermal equilibrium limit is plotted in black (while n=1 is isothermal limit and n=1.4 is adiabatic limit) for: a) 

compression and b) expansion. 

In addition to the above commonalities, there are also differences between expansion and 

compression.  Notably, the expansion simulation polytropic indices do not approach as close to the thermal 

equilibrium limit as the compression cases. The increased polytropic index for expansion is particularly 

true for mass loadings less than unity and for high pressure ratios. For a fixed piston speed, high pressure 

ratios lead to longer compression and expansion times, and thus lower Crowe numbers for a given droplet 

size, which is favorable. However, for a fixed amount water injected, these longer times lead to lower initial 

mass loading at the critical start of the expansion process. Thus, the difference in instantaneous mass 

loadings between compression and expansion simulations during times of large temperature changes is 

likely the cause of the difference in polytropic indices, which is exaggerated at low total mass loading and 

high pressure as those are the least efficient cases. This aspect suggests that performance can be increased 

if the water flow rates are varied in time such that higher mass loadings would occur during the interval 

when most of the work interaction occurs.   
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To further investigate the compression and expansion differences, the mass loading and polytropic 

index can be seen in Figure 7-6, where each circle represents one pair of compression and expansion 

simulations at the same pressure ratio, spray parameters, and piston parameters. The compression total mass 

loading is equal to or higher than the expansion mass loading for each pair of simulations, and the 

compression polytropic index is equal to or lower than the expansion polytropic index. Thus, expansion 

tends to have a lower mass loading (and higher polytropic index) than compression for the same set up; in 

addition, for the same mass loading, expansion still has a worse polytropic index than compression (as seen 

in Figure 7-5).  Therefore, a change to the design would be needed to reach an equivalent polytropic index 

for both the compression and expansion processes, such as increasing the spray flow rate during the 

expansion draw in process. 

 

Figure 7-6: Comparing compression and expansion matched simulations a) total mass loading and b) 

polytropic index. Each circle represents a matched pair of compression and expansion simulations. 

 

While the polytropic index tells us about the thermodynamics of the process, the isothermal 

efficiency is most useful to a CAES system designer. For conciseness, only the expansion isothermal 

efficiency results are plotted in Figure 7-7 as a function of total mass loading, divided by pressure ratio; a 

similar parametric sweep of compression simulation isothermal efficiencies is reported in Chapter 6. 

Expansion simulations approach isothermal compression with increased mass loading and reduced Crowe 

number. The effect of Crowe number becomes more pronounced at large pressure ratios. Again, it can be 

seen that the spray-based expansions at higher pressure ratios are not able to reach the thermal equilibrium 

limit, even with small Crowe numbers, and this is particularly true for the mass loadings around unity.  
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Figure 7-7. Expansion simulations isothermal efficiency vs mass loading, separated by pressure ratio and 

colored by Crowe number. Thermal equilibrium limit as black line upper limit. 

 

The results from the compression and expansion simulations are combined to calculate isothermal 

roundtrip efficiencies, plotted in Figure 7-8. Every point in Figure 7-8 represents a pair of compression and 

expansion simulations with matching pressure ratio, droplet size, and piston parameters, with the isothermal 

roundtrip efficiency calculated with Eq. 7-12 and the roundtrip mass loading calculated with Eq. 7-11. For 

a pressure ratio of 2, the change in efficiency with mass loading and Crowe number is small. The 

efficiencies are all generally high, whereby isothermal roundtrip efficiency greater than 95% can be reached 

with 𝑀𝐿RT > 1 for 𝐶𝑟 < 0.06, or with 𝑀𝐿RT > 10 for 𝐶𝑟 < 4. For a pressure ratio of 10, the changes in 

efficiency with mass loading and Crowe number are more significant, consistent with Figure 7-7. To reach 

a roundtrip efficiency greater than 95%, the spray-based system must employ 𝑀𝐿RT > 6 for 𝐶𝑟 < 0.02, or 

𝑀𝐿RT > 20 for 𝐶𝑟 < 0.77.  



159 

 

Figure 7-8. Isothermal roundtrip efficiency for matched compression and expansion direct injection 

simulations plotted against the roundtrip mass loading, colored by Crowe number (Cr) and with the ideal 

equilibrium limit for roundtrip efficiency plotted in black. 

 

In future compressed air energy storage systems, it is expected that high pressure ratios will be used 

to increase the power to weight ratio of the system. To investigate, the highest isothermal roundtrip 

efficiency cases at a pressure ratio of 10 for each droplet diameter are given in Table 7-4. When spray work 

is not factored into the efficiency calculation, the highest efficiency cases are the highest mass loading 

cases, with slow compression speed and high spray flow rates. In addition, isothermal roundtrip efficiencies 

of more than 99% are readily obtained with droplet sizes below 100 𝜇m, if spray-work is neglected.  
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Table 7-4. Highest isothermal roundtrip efficiency cases for pressure ratio of 10 for each droplet size without 

spray work. 

d (𝝁𝐦) qspray  (L/s) Lcyl (m) Upiston (m/s) Cr MLRT 𝜼𝐑𝐓 

25 1.44 × 10−2 0.3 0.03 0.002 75.5 99.5% 

50 2 × 10−2 0.3 0.03 0.016 82.3 99.4% 

100 2 × 10−2 0.5 0.03 0.093 70.1 99.3% 

150 2 × 10−2 0.5 0.03 0.327 67.7 98.9% 

200 2 × 10−2 0.5 0.03 0.769 66.7 98.2% 

 

C. Spray work 

The second set of compression and expansion simulations includes spray work for the parameters 

given in Table 7-3. The resulting isothermal efficiencies for the compression and expansion simulations are 

shown in Figure 7-9, where pressure ratios are shown with colors and droplet diameters are shown with 

shapes. Unlike the efficiencies in Figure 7-7 and Figure 7-8, these curves have a parabola-like trend where 

the efficiency first increases with mass loading and then decreases at high mass loadings, with a peak at 

intermediate mass loadings. For a given droplet size and pressure ratio, the results indicate an optimal mass 

loading that creates the highest efficiency, though the optimal value varies based on pressure ratio and 

droplet size. Also note that at low mass loadings, the highest efficiency processes are those with a pressure 

ratio of 2 (blue symbols), while at high mass loadings, the highest efficiency processes have droplet 

diameters of 80 𝜇m (triangular symbols). 
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Figure 7-9(a-b). Isothermal efficiency for compression and expansion simulation sweeps including spray 

work. Pressure ratio (PR) shown in colors, droplet size shown in symbols.  

 

Finally, the spray work compression and expansion simulations were paired to find the roundtrip 

efficiencies, plotted in Figure 7-10 The previous Crowe number trend, where low Crowe numbers approach 

the thermal equilibrium limit, can be seen for low mass loadings. However, at higher mass loading the 

Crowe number relation reverses as the inclusion of spray work lowers the isothermal roundtrip efficiency. 

Thus, Crowe number becomes less important as a design parameter at higher mass loadings. As a result, 

roundtrip efficiencies tend to peak around a mass loading of 5 < 𝑀𝐿𝑅𝑇 < 15, and then decline as the 

additional spray work outweighs the additional temperature benefits of the spray.  This is particularly true 

at high mass loadings for the smaller drops, which give small Crowe numbers but require higher spray over-

pressures. Similar results are seen in the literature, where increasing spray pressure can decrease 

compression efficiency [186,188,192]. As such, spray work should be generally included in the evaluation 

of droplet heat transfer systems with significant mass loadings (greater than unity) due to the potential 

adverse effect on efficiency.   
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Figure 7-10. Isotheral roundtrip efficiency for combined direct injection compression and expansion 

simulations including spray work, plotted against the roundtrip mass loading. Simulation results divided by 

pressure ratio (PR) and colored by Crowe number (Cr), where black line shows ideal thermal equilibrium 

limit for roundtrip efficiency without spray work. 

The highest isothermal roundtrip efficiencies including spray work for a pressure ratio of 10 for a 

given droplet size are listed in Table 7-5 for the parametric sweep of Figure 7-10. Contrary to the results 

shown in Table 7-4, here the highest efficiency cases are those with moderate mass loadings. This is because 

the highest isothermal roundtrip efficiencies represent balances between spray work losses and temperature 

abatement improvements from the spray heat transfer. Additionally, the highest efficiencies expected with 

spray work are noticeably lower than those expected without accounting for spray work, where the 

differences are especially acute at small drop sizes. The highest efficiency cases resulted from the largest 

droplets of 80 𝜇m, due to their low injection work relative to the smaller droplets. For these droplets sizes, 

long cylinder lengths and medium-speed piston motion tend to result in the highest efficiency. This is 

attributed to conditions that allow a low Crowe number (which allows more time for heat transfer to occur) 

while avoiding large mass loading and small drops (which use too much spray work). The cylinder length 

was extended to see if an ideal length could be found, but the highest efficiency case continues to be the 

longest cylinder in the sweep. However, these longer lengths are likely to increase the influence of multi-
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dimensional flow features, turbulence, and wall interactions, which are not included in the present study 

but which are expected to reduce the overall roundtrip efficiency. 

Table 7-5. Highest isothermal roundtrip efficiency cases for pressure ratio of 10 for each droplet size, 

including spray work. 

d (𝝁𝐦) qspray  (L/s) Lcyl (m) Upiston (m/s) Cr MLRT 𝜼𝐑𝐓 

30 1 × 10−3 1 0.05 0.001 3.1 86.9% 

50 5.7 × 10−3 1 0.1625 0.010 5.4 91.3% 

80 1.5 × 10−2 1 0.1625 0.035 14.3 94.2% 

 

7.4. Conclusions 

Using a previously validated 1-D model for compression and expansion with spray injection, a 

parametric analysis of compression and expansion simulations was completed to better understand the 

thermal-fluid physics and roundtrip isothermal efficiency of a CAES system. Time-series results from 

simulations show that compression and expansion processes are not identical and have different polytropic 

index and temperature trends.  

For both compression and expansion, polytropic index of the process decreases and approaches 

isothermal with increasing mass loading and decreasing Crowe number. The expansion simulation 

polytropic indices do not approach as close to the thermal equilibrium limit as the compression cases, 

particularly for mass loadings less than unity and for high pressure ratios, which may be due in part to the 

timing of the mass loading. For the same process conditions, expansion cases have equal or lower total 

mass loading than compression cases, and equal or higher polytropic indices than compression cases. 

Combining results from matched compression and expansion simulations excluding spray work 

with the same pressure ratio, drop size, and piston parameters, the highest isothermal roundtrip efficiency 

cases are those with the highest mass loading cases, with slow compression speed and high spray flow rates. 

A spray-based system can reach a roundtrip efficiency greater than 95% with a pressure ratio of 10 with 

𝑀𝐿RT > 6 for 𝐶𝑟 < 0.02.  

A second smaller set of compression and expansion simulations were run including spray work, 

using a relationship fitted to experimental spray data. For validation, compression work and spray work 

from simulations were compared to experimental data, and predicted work with less than 8% error.  



164 

When accounting for spray work, the highest roundtrip efficiency cases are those with moderate 

mass loadings and piston speed and long cylinder length. Isothermal roundtrip efficiencies tend to peak 

around a mass loading of 5 < 𝑀𝐿𝑅𝑇 < 15, and then decline as the additional spray work outweighs the 

additional temperature benefits of the spray. The highest isothermal roundtrip efficiency for a pressure ratio 

of 10 is 94.2% with the largest droplets (80 𝜇m) and 𝑀𝐿𝑅𝑇 = 14. 

Some important design trade-offs for a high efficiency compression system can be informed from 

this study. For a given spray configuration, increasing process time via a longer cylinder and slower piston 

motion increases the efficiency. For a given piston and compression configuration, reduced droplet size and 

increased flow rate increases roundtrip efficiency when 𝑀𝐿 < 1, and reduced droplet size and increased 

flow rate must be balanced with increasing spray work to find the ideal roundtrip efficiency when 𝑀𝐿 > 1. 

For any given system, Crowe number is a driving factor for increasing efficiency for 𝑀𝐿 < 1, but Crowe 

number is no longer the sole factor at higher mass loadings and instead the Crowe number effect must be 

weighed against the impact of high spray work. 

Given the large effect of spray work on the optimal high-efficiency design, spray work should be 

included for significant mass loadings (e.g. greater than unity) due to the potential adverse effect on 

efficiency and future work is recommended to implement a universal spray work equation to capture the 

effect of spray work in a larger variety of conditions. Additionally, efficiency may be increased by 

considering pre-mixed injection of droplets for expansion to increase the mass loading at the beginning of 

the expansion process, when the most work is extracted. The work herein using relatively small cylinders 

may be expanded in the future to design high-power systems with larger cylinder lengths on the scale of 1-

5 m (for liquid pistons). Further investigation is recommended to consider effects of polydisperse droplet 

size distributions, multi-dimensionality, turbulence, wall-interactions, and droplet dynamics, and to 

investigate high-efficiency cases with experiments. 
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Chapter 

8. Pre-mixed droplet injection for efficient air compression 

and expansion: 1-D and 2-D simulations 

Abstract 

One option for increasing the efficiency of compressed air energy storage (CAES) is to use water sprays to 

increase heat transfer during the compression and expansion processes and direct injection is the typical 

spray format. However, numerical simulations indicate that expansion has generally lower energy 

efficiency than compression for the same amount of direct injection droplet mass and same droplet size. 

Without spray injection expansion experiments, there remains uncertainty about the best method to achieve 

isothermal expansion. Herein, pre-mixed droplet injection is considered as a potential alternative to direct 

injection to improve efficiency for a given injected spray mass loading, especially for expansion. A 

parametric analysis is completed for pre-mixed compression and expansion simulations in 1-D, and the 

results indicate that the polytropic index trends with total mass loading and Crowe number are similar to 

those for direct injection. In addition, the pre-mixed simulations achieved higher roundtrip isothermal 

efficiencies than comparable direct injection simulations, for cases with moderate total mass loading. 

Additionally, three of the 1-D cases were investigated with unsteady 2-D axisymmetric simulations using 

ANSYS Fluent. Large air and droplet temperature variations throughout the chamber were seen in the 2-D 

simulations, violating some of the 1-D model assumptions, and the 1-D simulations consistently predicted 

higher mass loadings throughout the processes than the 2-D simulations. Despite these differences, the 

percent differences between the fast 1-D model and the more time-consuming 2-D model were less than 

7% for pressure ratios of 10, indicating that the 1-D model may provide sufficient accuracy for identifying 

high-efficiency designs early in the design process. Future work is suggested to consider an extension to 3-

D effects and study the ideal timing of sprays as a combination of pre-mixed and direct injection to achieve 

isothermal CAES.  
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Nomenclature 

 

Subscripts 

𝜌 density (
kg

m3) 

𝛾 ratio of specific heats of air 

𝜂 efficiency 

𝜏 time constant (s) 

𝑐𝑠 water specific heat capacity at constant pressure (
J

kg−K
) 

Cr Crowe number 

d droplet diameter (m) 

D cylinder diameter (m) 

g Gravity (m2/s) 

k air thermal conductivity (
W

m−K
) 

L vertical length from cylinder head (m) 

m mass (kg) 

ML mass loading 

n polytropic index 

Nu Nusselt number 

P pressure (Pa) 

ΔP overspray pressure (Pa) 

PR pressure ratio 

𝑞spray spray flow rate (
L

s
) 

t time 

𝑈piston piston speed (
m

s
) 

V volume (m3) 

𝑤term droplet terminal relative velocity (
m

s
) 

z position (m) 

1 beginning of process 

2 end of process 

a air 

adi adiabatic 

atm atmospheric 
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avg average 

C compression 

CR critical 

cyl cylinder 

d droplet 

D domain 

E expansion 

fall fall 

init initial 

iso isothermal 

P momentum 

RT roundtrip 

spray spray 

T thermal 

tot total  
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8.1. Introduction 

A. Motivation 

As discussed in Chapters 6 and 7, compressed air energy storage (CAES) is a low-cost, long-

duration energy storage option which may be important for a fully renewable electrical grid. One option for 

increasing the efficiency of CAES is near-isothermal compression, where increased heat transfer allows the 

compressed air to maintain a near-constant temperature. Spray injection during the compression process 

was investigated in Chapters 6 and 7 and showed good improvements in efficiency at high mass loadings. 

However, spray nozzles in the compression chamber increase complexity, and since spray work has been 

found to contribute significantly to the total work, the timing and amount of spray should be critically 

considered.  

In Chapter 7, the efficiency of the expansion process with droplet spray injection was investigated. 

When comparing compression and expansion processes with the same set-up and design parameters, it was 

found that the expansion processes had lower efficiency, particularly in the mid-range mass loadings around 

unity. In that range of total mass loadings, expansion simulations were not able to approach the thermal 

equilibrium limit for small Crowe numbers (while compression simulations did achieve this limit).  This is 

attributed in part to a reduced mass of droplets injected at the beginning of the expansion for a direct 

injection process, when most of the useful work is extracted (as discussed in Chapter 7). Based on this 

result, it is hypothesized that the important parameter for high efficiency processes is not total mass loading, 

but rather the instantaneous mass loading during the highest work phase of the process.  

B. Previous work 

Previous researchers have explored spray injection during the compression or expansion process 

via numerical methods or physics-based approximations [188,190,192,202], generally with a focus on 

direct injection during the compression process. Qin & Loth [190] compared direct injection and pre-mixed 

injection cases and found that direct injection performed better for compression with sinusoidal piston 

motion, maintaining lower air temperature for the same mass loading, but did not consider expansion with 

spray injection. A recent study explored the timing of spray during the compression process, seeking to 

optimize the spray flow rate by balancing spray work against heat reduction, and found that the optimal 

system sprayed more droplets at the beginning of the process and less towards the end of the compression 

process, allowing those droplets to spend longer in the chamber and provide more heat exchange [210]. 

However, this work only considers small droplets (~30 𝜇m) and a low pressure ratio of 2.  

Some studies have investigated near-isothermal CAES using higher-dimensional computational 

fluid dynamics, with a focus on the compression process. Qin & Loth [189] used 2-D modeling in ANSYS 
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Fluent to investigated spray-cooled compression for the first two stages of CAES and found that the 2-D 

model was able to give similar results to the 1-D simulations. Gouda et al. [211] modeled a slow moving 

liquid piston for isothermal compression and found that moving to faster speeds (𝑈𝑝𝑖𝑠𝑡𝑜𝑛 > 0.1 m/s) would 

require heat removal measures (such as spray injection) to maintain a near-constant temperature. However, 

no CFD studies have been published investigating the expansion process for near-isothermal CAES.  

Some experimental results are available for spray-cooled compression, such as those reported by 

Patil et al. [186], but no similar results have been published for expansion. The near-isothermal expansion 

process has been shown to have different fluid dynamics and heat transfer trends than the compression 

process (Chapter 7, Refs. [184,212]), but without experiments on spray injection expansion there remains 

uncertainty about the best method to achieve isothermal expansion.  

Based on the work in Chapter 7, it is hypothesized that pre-mixed injection may be one way to 

simplify the system design (avoiding more complex in-cylinder spray systems) while also increasing the 

mass loading at the beginning of the expansion process when the extracted work is highest. Note, that spray 

work for pre-mixed injection will still be proportional to the total droplet mass injected, but that spray work 

may be better utilized.  

C. Objectives 

The purpose of this study is to investigate pre-mixed injection for near-isothermal compression and 

expansion via a parametric analysis with a 1-D numerical method and then investigate a few of these case 

with a 2-D method. The 2-D simulations can provide a comparison to 1-D simulations to see how different 

assumptions between 1-D and 2-D give different results. This is the first study to the author’s knowledge 

to investigate the thermodynamics of both compression and expansion with pre-mixed sprays, the first to 

determine the roundtrip efficiency of the combined compression/expansion process, and the first to 

investigate droplet spray and airflow properties for near-isothermal expansion in 2-D.  

8.2. Methodology 

A. 1-D numerical model 

First, pre-mixed compression and expansion processes were modeled using the 1-D numerical 

model validated in Chapter 6 and used for the parametric analysis in Chapters 6 and 7. The 1-D model for 

compression is described in detail in Chapters 6 and 7 and builds upon work by Qin & Loth [190]. First-

stage compression was simulated in a piston with an adiabatic boundary condition. The air in the cylinder 

is assumed to have uniform pressure, temperature, and density, obeying the ideal gas law. The starting air 

temperature and droplet temperature for all simulations is room temperature (300 K).  The model assumes 
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1-D air flow along the z-axis, with a velocity varying linearly from the top center of the cylinder to that at 

the piston face (which moves at a constant speed). 

A notional schematic of the compression and expansion processes is shown in Figure 8-1. For all 

simulations, the piston speed (𝑈piston), total cylinder length (𝐿cyl), total mass loading (𝑀𝐿tot), droplet 

diameter (𝑑), and maximum pressure ratio (𝑃𝑅) are set. Note that total mass loading is also equal to the 

initial mass loading for pre-mixed case since there is no spray injection after compression or expansion 

starts. 

 

Figure 8-1: Pre-mixed spray notional schematic at the beginning of the process for a) compression, and b) 

expansion. 

 

For compression, the cylinder is compressed from starting length (𝐿1 = 𝐿𝐶 = 𝐿cyl) and 

atmospheric pressure (𝑃atm) until the critical pressure (𝑃CR) is reached. For expansion, the cylinder is 

expanded from starting length (𝐿1 = 𝐿𝐸 = 𝐿cyl/𝑃𝑅) and critical pressure (𝑃CR) until atmospheric pressure 

(𝑃atm) is reached. The compression and expansion processes are further described in Chapter 7. 

For pre-mixed droplet injection, the water droplets are mixed with the air before being drawn into 

the chamber for compression or expansion. Thus, the water droplets are evenly distributed throughout the 

chamber at the start of each process, and no additional droplets are added during the process. Once the 

process starts, the droplets move based on a linear combination of their terminal velocity and the local air 

velocity, and thus the droplet velocities are one-dimensional. Note that while spray work will still be 

required to inject the droplets into the inlet air and pre-mix the air stream, spray work is not included in the 

calculations herein. Heat transfer from the air to the droplets is assumed to be the dominant form of heat 

transfer during compression, and thus the piston and walls are considered adiabatic and heat transfer is only 

allowed to the droplets. 
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The numerical method employs a two-step process, where first the air is compressed or expanded 

adiabatically, and then heat transfer is allowed between the air and the droplets. Readers are referred to 

Chapter 6 and Chapter 6 Appendix for details on the numerical method.  

A simulation result was removed from the dataset if any of the following occurred: 

 Droplet momentum response time (𝜏p) was greater than 10% of the total stroke time (terminal 

velocity assumption may not be valid), 

 There were less than 100 steps in the simulation (potentially inadequate temporal discretization), 

 Piston speed exceeded 
𝑈piston

𝑡iso
< 0.1𝑔 (ensuring that if this system was implemented with a real 

piston, the speed and acceleration would be physically realistic), or 

 More than 10% of the initial cylinder volume was droplets (the pre-mixed spray significantly 

changed the cylinder volume). 

B. 2-D model 

The first-stage compression and expansion processes were also modeled in 2-D using ANSYS 

Fluent software with pre-mixed droplet injection. A notional schematic of the 2-D set-up is shown in Figure 

8-2.  
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Figure 8-2. 2-D pre-mixed compression schematic at the beginning of compression, where each dot is a parcel, 

representing many droplets.  
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The 2-D computational multiphase fluid dynamics simulations employed the following settings: 

• Axisymmetric about the cylinder centerline 

• Transient with timestep given by 𝑑𝑡 = 1 × 10−5 s  

• Adiabatic boundary conditions 

• Continuous phase fluid 

• Air as ideal gas 

• k-omega SST turbulence model 

• Discrete phase model for droplets 

• Inert particles, spherical liquid water 

• Discrete random walk for turbulent diffusion 

• Unsteady Lagrangian particle tracking 

• Two-way momentum, thermal energy and turbulence coupling 

• Droplets escape (are removed from simulation) via impact with walls and piston surface 

Like the 1-D simulations described in Section 8.2A, the 2-D simulations start with air mixed with 

droplets at 300 K with no initial velocity and compress or expand with constant piston motion until the final 

pressure is reached. The droplets are considered to be inert, meaning they do not evaporate, freeze, coalesce, 

or breakup. The droplet parcels, droplet number, and initial conditions are all set before the simulation starts 

using an injection input file.  

The major assumptions for each method are summarized and compared in Table 8-1. 
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Table 8-1. Assumptions for 1-D numerical method and 2-D Fluent model 

1-D 2-D 

Air as ideal gas and two-way coupling with 

drops for thermal energy (temperature)   
SAME 

Chamber walls and piston are adiabatic SAME 

Droplets evenly dispersed in chamber at start 

of process 
SAME 

Droplets as inert particles (do not evaporate,  

freeze, break-up, or coalesce) 
SAME 

Droplets move in 1-D along z-axis Droplets move in 2-D 

Droplets fall based on combination of 

terminal velocity and air velocity 

Droplets have finite inertia and dynamics so 

that relative velocity can vary 

Air velocity varies linearly in 1-D (wall 

boundary condition’s allow slip velocity) 

Air velocity based on turbulent flow (k-ω 

SST) and no-slip wall boundary conditions 

Droplet velocity varies linearly in 1-D 
Discrete random walk for droplet diffusion 

due to turbulence 

One-way coupling for air flow   
Two-way coupling for air momentum and 

turbulence based on drops 

 

C. Outputs and nondimensional parameters 

Mass loading (𝑀𝐿) is the ratio of droplet mass (𝑚d) currently aloft in the chamber to air mass (𝑚a) 

in the chamber at any given time, written as  

𝑀𝐿 =
𝑚d

𝑚a
 (8-1) 

Other forms of mass loading are useful to define since the instantaneous mass loading defined above can 

vary over the course of a process. The average mass loading (𝑀𝐿avg) is the time-averaged instantaneous 

mass loading over the compression or expansion process (from 𝑡 = 0 to 𝑡 = 𝑡2).  

𝑀𝐿avg =
∫ 𝑀𝐿

𝑡2

0
𝑑𝑡

𝑡2
 (8-2) 

The total mass loading (𝑀𝐿tot) is defined herein as the total mass of droplets in contact with air 

during the process, divided by the air mass, defined as  

𝑀𝐿tot =
𝑚d,1

𝑚a
 (8-3) 
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where for a pre-mixed process only the droplets in the chamber before the start of the process (𝑚d,1) are 

considered. The initial droplet mass is pre-mixed with the air and the drops are evenly dispersed throughout 

the chamber. The total mass loading proportional to the total spray work, for a fixed air mass.  

When considering a combined compression and expansion process, the roundtrip mass loading 

(𝑀𝐿RT) is defined as  

𝑀𝐿RT =
𝑀𝐿tot,C + 𝑀𝐿tot,E

2
 (8-4) 

which is the average of the compression total mass loading and the expansion total mass loading. 

The Crowe number (Cr) was defined in Chapter 6 as the ratio of the droplet thermal response time 

(𝜏T) to the fluid domain time scale (𝜏D) and can be calculated before simulations as follows, where the 

isothermal process time (𝑡iso) is calculated the same for either compression or expansion. For pre-mixed 

processes, droplet fall time (𝑡fall) is estimated as half the maximum cylinder length. Thus, the droplet fall 

time estimate for pre-mixed injection (Eq. 8-5c) gives a shorter fall time than the direct injection estimate 

(Eq. 6-13a), since direct injection droplets are all injected at the top of the cylinder while pre-mixed droplets 

are evenly dispersed.  

𝐶𝑟 =
thermal response time

domain time scale
=

𝜏T

𝜏D
 (8-5a) 

𝐶𝑟 =
𝜌d𝑑2𝑐𝑠

6𝑁𝑢𝑘a
(

1

𝑡fall
+

1

𝑡iso
)  (8-5b) 

𝑡fall =

𝐿cyl

2  

𝑤term
 

(8-5c) 

𝑡iso =
|𝐿1 − 𝐿2,iso|

𝑈piston
=

(1 −
1

𝑃𝑅)𝐿cyl

𝑈piston
 (8-5d) 

For all compression processes, 𝐿1 = 𝐿𝐶 = 𝐿cyl, and for an isothermal process, 𝐿2,iso =
𝐿cyl

𝑃𝑅
; for all 

expansion processes, 𝐿1 = 𝐿𝐸 =
𝐿cyl

𝑃𝑅
, and for an isothermal expansion process, 𝐿2,𝑖𝑠𝑜 = 𝐿cyl. Thus 

|𝐿1 − 𝐿2,iso| is the stroke length for an isothermal process. 
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As outlined in Chapter 7, the compression and expansion processes each have specific equations 

for calculating their work, isothermal efficiency, and polytropic index. These are used to assess how close 

each process is to isothermal and how much energy is recoverable. When evaluating how well the droplets 

are able to improve the compression or expansion processes, the thermal equilibrium limit (defined in 

Chapter 5, based on Ref. [194]) can be used as a lower limit on polytropic indices for a given mass loading.  

8.3. Parametric analysis with 1-D model 

A. Test conditions 

A matching set of compression and expansion simulations was run based on the parameters given 

in Table 8-2. The range of parameters was chosen to match the input parameters and output total mass 

loading from the direct injection simulations without spray work in Chapter 7. The cylinder diameter was 

fixed at 𝐷 = 0.1. 

Table 8-2. Parametric sweep parameters for compression and expansion with pre-mixed spray injection. 

Parameter Units Values Count 

d μm 200, 150, 100, 50, 25 5 

Lcyl m 0.1, 0.3, 0.5 3 

Upiston m/s [0.03, 0.6] linear spacing 4 

MLtot - [0.04, 27] log spacing 6 

PR - 2, 6, 10 3 

Total    1080 

 

B. Results  

The results of the pre-mixed 1-D simulations are shown in the figures below. The average 

polytropic indices of compression are shown in Figure 8-3 for compression and expansion parametric 

sweeps. Each point represents the average polytropic index of one simulation. When plotted against total 

mass loading, Figure 8-3(a-b) shows the simulation polytropic indices decreasing with increasing mass 

loading and approaching the isothermal limit of 𝑛 = 1. The simulations are colored by Crowe number in 

Figure 8-3, and small Crowe numbers can be seen to approach the thermal equilibrium limit (defined as 

infinitely fast heat transfer with infinitely small droplets) in Figure 8-3a.  
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Figure 8-3(a-c): Pre-mixed spray simulation polytropic index (n) as a function of mass loading (ML), colored 

by Crowe number with thermal equilibrium limit shown with black line: a) compression with total mass 

loading, b) expansion with total mass loading, c) expansion with average aloft droplet mass loading. 
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In Figure 8-3b, there is not a clear pattern observed in the Crowe numbers. The total mass loading 

may not reflect the instantaneous mass loading in the chamber for the highest work times in the process (as 

discussed further in Chapter 7). Additionally, the relative magnitude of the droplet terminal velocity and 

the piston velocity has a large effect on the amount of time the droplets stay aloft. Changes in droplet mass 

loading and time aloft can thus affect the air temperature during the process and the resultant process time, 

which can lead to a lack of Crowe number trend, inconsistent with previous theory. The Crowe number 

relation is slightly inconsistent for both the compression and expansion cases, but the effect is much more 

noticeable in the expansion cases.  

For comparison, Figure 8-3c plots the expansion cases against the average mass loading for each 

simulation. The average mass loading is better able to capture how much mass is available to transfer heat 

with the air and affect the polytropic index. The Crowe number trends are more consistent and clear in 

Figure 8-3c with smaller Crowe numbers tending to correlate with reduced polytropic index for a given 

average mass loading. However, plotting polytropic index by the average mass loading may result in 

simulations that appear to fall below the thermal equilibrium limit because the average mass loading does 

not represent the total mass of droplets which undergoes heat transfer within the chamber.  

The matched compression and expansion simulations are combined to find the roundtrip isothermal 

efficiency and roundtrip total mass loading, plotted in Figure 8-4 by pressure ratio. Again, the Crowe 

number relations are less clear, but the efficiency does increase with increasing mass loading and some 

simulations are able to approach the thermal equilibrium limit. The range of simulation roundtrip 

efficiencies for a pressure ratio of 10 are marked with bars in Figure 8-4, which are then transferred to 

Figure 8-5 for further comparison.  
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Figure 8-4. Pre-mixed spray combined compression and expansion simulations to find roundtrip efficiency as 

a function of roundtrip mass loading, divided by pressure ratio, with bars showing the efficiency ranges for 

PR=10. 

 

In Figure 8-5, roundtrip isothermal efficiency is plotted against roundtrip total mass loading for a 

pressure ratio of 10 for direct injection (from Chapter 7 results) and pre-mixed injection simulations. The 

direct injection simulations were not able to reach high efficiencies in the moderate mass loading range of 

0.1 < 𝑀𝐿 < 10, even at low Crowe numbers. By comparison, the range of pre-mixed results indicated by 

the bars show that pre-mixed compression is able to achieve high roundtrip efficiency, up to the thermal 

equilibrium limit in that range.  
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Figure 8-5. Roundtrip efficiency as a function of roundtrip mass loading between compression and expansion 

simulations, comparing direct injection (DI) simulations to the ranges found with pre-mixed (PM) simulations 

for a pressure ratio of 10.  

 

Based on Figure 8-5, it can be seen that in some cases pre-mixed compression and expansion may 

be advantageous for achieving high efficiency compressed air energy storage with moderate mass loadings. 

However, at very high mass loadings (e.g. greater than 20), either option is able to achieve high efficiency 

with small Crowe numbers. The defining aspect for when pre-mixed droplet injection is preferable may the 

ratio of droplet terminal velocity to piston speed, thus capturing the likelihood of droplets to remain aloft 

throughout the process. The distinction of when direct injection vs pre-mixed injection is preferred should 

be further studied.  

8.4. 1-D vs 2-D simulation comparisons 

A. Test conditions 

A small number of cases were simulated in 2-D to assess the 1-D assumptions for the expansion 

model and to understand 2-D and turbulent flow effects, with the details listed in Table 8-3. As discussed 

in the Methodology, both methods used pre-mixed droplets that were evenly distributed throughout the 

chamber before the compression or expansion process started. The following parameters were held constant 

for all three cases: 𝐿cyl = 0.5 m, 𝐷 = 0.1 m, 𝑃𝑅 = 10, and 𝑈piston = 0.6 m/s.   



181 

Table 8-3. Parameters for comparison cases between 1-D and 2-D 

 d (μm) MLtot 

Case 1 75 0.5 

Case 2 50 0.15 

Case 3 50 0.15 

 

The case parameters were initially chosen to seek high-efficiency cases based on results from 

Chapters 6 and 7 with a realistic design that also prioritizes high power density (fast compression, large 

pressure ratio). With a droplet diameter of 50 μm, the Crowe number for this set up is 0.05, while a droplet 

diameter of 75 μm gives a Crowe number of 0.13. The numerical method used herein was suitable for mass 

loadings as high as 0.5 based on droplet volume limits.  

B. Results 

In the following, instantaneous visualizations of the 2-D results are shown at two times in the 

expansion process. These are followed by a more general analysis of each case in terms of pressure-volume 

relations and mass loading dynamics, concluding with overall thermodynamics and efficiencies of these 

cases compared to 1-D results.  

The 2-D simulation temperature results are shown at 𝑡 = 0.2 s (40% of expansion process) in 

Figure 8-6 and at 𝑡 = 0.5 s (100% of expansion process) in Figure 8-7. Note that the simulations are 

axisymmetric, so only one side of the chamber is simulated and the results are mirrored over the center axis. 

Each dot is a parcel representing a cloud of many droplets (~3,000 droplets/parcel for Case 1).  

The first snapshot at 𝑡 = 0.2 s already shows variation in temperatures in the axial and radial 

direction which are not captured by the 1-D model. The air temperature varies significantly throughout the 

domain, with the coldest temperatures at the top of the chamber where there are no droplets and thus no 

opportunities for heat transfer to keep the air from cooling down during expansion. The particle 

temperatures also vary radially through the cylinder, which is not captured by the 1-D model as it only 

allows for axial temperature variation. The warmer air and droplet temperatures along the centerline of the 

piston is attributed to a higher concentration of droplets near the center of the piston (as investigated with 

particle density plots). The lower droplet concentration towards the sidewalls is due to sidewall impacts 

which remove these drops from the simulation, which provides fewer droplets to exchange heat with the 

air in those areas.  
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Figure 8-6. Case 1 pre-mixed expansion example 2-D simulation results at 𝒕 = 𝟎. 𝟐 s (40% of expansion) for  

a) air temperature and b) particle temperature. 

 

Figure 8-7 shows the temperatures in the chamber at the end of the expansion process at 𝑡 = 0.5 s. 

Again, the air and particle temperatures both vary significantly spatially. Most of the particle temperatures 

are below freezing, indicating that the droplets would need to be composed of a compound with a lower 

freezing point than water or else the droplets would freeze. Notably, a significant portion of the chamber 

has no droplets, as the droplets have shifted down over time due to gravity and the moving piston.  
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Figure 8-7. Case 1 pre-mixed expansion example 2-D simulation results at end of expansion process (𝒕 =
𝟎. 𝟓 s) for a) air temperature and b) particle temperature. 

 

The 2-D simulation for Case 1 (shown in Figure 8-6 and Figure 8-7) is then compared to a 1-D 

numerical method simulation for the same case in Figure 8-8. The 1-D and 2-D simulations start with 

similar curves on the pressure-volume plot but diverge towards the end of the simulation. Figure 8-8b shows 

the instantaneous mass loading over time for both simulations, which diverge significantly and end at 

different times based on the time at which the atmospheric pressure is reached. The 1-D simulation 

maintains a higher mass loading than the 2-D simulation and lies closer to the isothermal curve, resulting 

in a longer compression time.  
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Figure 8-8. Case 1 expansion results for 75 𝝁𝒎 droplets and 𝑴𝑳𝒕𝒐𝒕 = 𝟎. 𝟓 comparing between 1-D and 2-D 

simulations: a) pressure-volume, and b) instantaneous mass loading.  

 

Cases 2 and 3 represent a matched pair of compression and expansion cases for the same droplet 

size and pre-mixed mass loading. The expansion case is plotted in Figure 8-9 with 1-D and 2-D simulations. 

Again, the 1-D simulation predicts higher mass loading throughout the expansion process than the 2-D 

simulation, and the 1-D simulation is consistently closer to the isothermal process.  

 

 

Figure 8-9. Case 2 expansion results for 50 𝝁𝒎 droplets and 𝑴𝑳𝒕𝒐𝒕 = 𝟎. 𝟏𝟒𝟕 comparing between 1-D and 2-D 

simulations: a) pressure-volume, and b) instantaneous mass loading. 
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Case 3 is plotted in Figure 8-10 with 1-D and 2-D simulation results. As with expansion, the 1-D 

simulation predicts better performance than the 2-D simulation. However, in this compression case the mass 

loading of the 2-D simulation drops off significantly and does not level out as was seen in Cases 1 and 2.  

 

Figure 8-10. Case 3 compression results for 50 𝝁𝒎 droplets and 𝑴𝑳𝒕𝒐𝒕 = 𝟎. 𝟏𝟒𝟕 comparing between 1-D and 

2-D simulations: a) pressure-volume, and b) instantaneous mass loading. 

 

The results from Cases 1-3 are summarized in Table 8-4, including the pre-defined parameters of 

droplet diameter and initial total mass loading. The average and final mass loadings are given in terms of 

percent of the initial (total) mass loading. All of the 1-D simulations herein have longer process times than 

their 2-D counterparts because the 1-D simulations predict the processes are more nearly isothermal than 

the 2-D simulations. The 1-D simulations consistently have lower polytropic indices (closer to isothermal) 

than the 2-D simulations. For the matched cases, Case 2 (expansion) has similar polytropic indices to Case 

3 (compression), for the 1-D and 2-D simulations, respectively. The difference between the 1-D and 2-D 

polytropic indices is small for expansion cases, but the difference is larger for the compression case, likely 

caused by the larger difference in mass loading during the compression process.  

The 1-D simulations only account for droplet loss through contact with the piston surface, while 

the 2-D simulations allow for droplets to exit the simulation via the piston or sidewalls (including the top 

of the chamber). In the 2-D cases examined herein, droplet loss via the sidewalls accounts for 15% and 43% 

of the total droplet mass loss for Case 1 and Case 2, respectively, which explains some of the discrepancy 

between the final mass loading in the 1-D and 2-D simulations. The droplet loss locations could not be 

recovered for Case 3. 
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Table 8-4. Comparing 1-D and 2-D simulations for 3 example cases. Droplet size and initial mass loading 

were set, while average and final mass loading, final air temperature, time to compression/expansion, and 

polytropic index depended on the process. 

  Case 1 (Expan) Case 2 (Expan) Case 3 (Comp) 

  1-D 2-D 1-D 2-D 1-D 2-D 

d (μm) 75 75 50 50 50 50 

ML
tot

 0.50 0.50 0.15 0.15 0.15 0.15 

ML
avg

 % 70% 53% 86% 58% 93% 55% 

ML
final

 % 52% 31% 76% 41% 82% 19% 

Final air temp (K)  230 208 195 182 466 522 

Process Time (s) 0.56 0.50 0.46 0.42 0.70 0.69 

Polytropic index 1.14 1.19 1.24 1.28 1.23 1.31 

 

The isothermal efficiencies for each case are compared in Table 8-5 for the 1-D and 2-D simulation 

results. The highest efficiency is achieved by Case 1, which has the highest total mass loading. The 1-D 

simulation consistently predicts a higher isothermal efficiency for each case than the 2-D simulation. The 

percent differences between the fast 1-D model and the more time-consuming 2-D model are less than 7%, 

indicating that the 1-D model may provide sufficient accuracy for identifying high-efficiency designs early 

in the design process. 

Table 8-5. Comparing isothermal efficiencies for 1-D and 2-D simulations for 3 example cases. 

  𝜼𝐢𝐬𝐨 for 1-D 𝜼𝐢𝐬𝐨 for 2-D % Difference 

Case 1 (Expan) 86.8% 84.0% 3% 

Case 2 (Expan) 80.6% 78.7% 2% 

Case 3 (Comp) 79.8% 75.4% 6% 

 

8.5. Conclusions 

A parametric analysis of the pre-mixed compression and expansion design space was completed 

using a 1-D numerical method to investigate roundtrip efficiency (excluding spray work effects). The 

polytropic indices for the pre-mixed 1-D simulations decrease with increasing mass loading and approach 

the isothermal limit. The expansion cases do not show a clear Crowe number trend when plotted against 

total mass loading, contrary to previous theory; however, when plotted against average mass loading, the 

expansion cases showed expected trends where smaller Crowe numbers tended to correlate with reduced 
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polytropic index for a given mass loading. When the compression and expansion results were combined for 

cases with the same spray design, pressure ratio, and piston design, the roundtrip isothermal efficiency was 

found to increase with increasing mass loading and approach the thermal equilibrium limit. The pre-mixed 

roundtrip simulations were able to achieve higher roundtrip efficiency than the direct injection simulations 

previously studied, using the same input parameters, in some scenarios in the moderate mass loading range 

of 0.1 < 𝑀𝐿 < 10. 

Three pre-mixed example cases were investigated in depth by comparing the 1-D numerical method 

to unsteady 2-D axisymmetric simulations. When looking at instantaneous results from the 2-D simulations, 

the air temperature and particle temperature are seen to vary significantly throughout the cylinder. 

Comparing the two simulation results on the pressure-volume plot, the 1-D and 2-D simulations start with 

similar curves but diverge towards the end of each simulation. The 1-D simulations consistently maintain 

a higher mass loading, lower polytropic index, and higher isothermal efficiency than the 2-D simulations, 

for all cases. The final temperatures at the end of the compression and expansion cases, for both 1-D and 

2-D simulations, show that the droplets did not provide sufficient heat transfer to maintain a relatively 

constant air temperature during the processes.  

The comparison of 1-D and 2-D simulation results illustrates that there are many effects captured 

in the 2-D simulations and neglected in the 1-D simulations which have a significant effect on the 

thermodynamic process. The assumption of uniform air temperature and radially uniform droplet 

temperature does not show good agreement with the instantaneous 2-D simulation results. Additionally, the 

1-D simulations consistently over-predicted the mass loading over time compared to the 2-D simulations, 

in part due to neglecting any droplet interactions with the walls and the lack of turbulence under-predicting 

droplet loss at the piston surface. This may lead to the 1-D model preferring a long cylinder length because 

it does not consider the potential for droplet impacts on the sidewalls. Finally, the turbulence in the 2-D 

simulation causes more general variation in the particle velocities and locations that is not captured in the 

1-D simulation.  

However, despite these assumptions in the 1-D model, the 1-D and 2-D simulation isothermal 

efficiencies were less than 7% different for all 3 cases studied. Thus, the 1-D model may still be useful for 

rapidly identifying an upper-level of efficiency for a wide range of spray-based CAES designs.  

Future work is suggested to extend the model into 3-D and consider the impact of effects such as 

injection swirl and nozzle configurations. Additionally, the ideal timing of sprays should be studied further, 

as the ideal system may be a combination of pre-mixed and direct injection sprays to achieve ICAES.  
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Chapter 

9. Conclusions 

9.1. Key results 

The tower shadow effect on downwind turbine rotors was investigated in Chapters 2-3. A method 

for simulating the turbulent wind field conditions using meteorological tower data was developed and 

applied to the turbine in operational conditions. The tower shadow effect was simulated using the 

conventional Powles model and a new Eames model (developed herein), which includes the influence of 

upstream turbulence. Based on field test results, the more complex Eames model may not be necessary as 

the tower shadow effect can be reasonably modeled with the conventional Powles model. The tower shadow 

effect was found to increase the short-term Damage Equivalent Loads (DEL) by less than 10%, and the 

effect was small compared to the effect of turbulence.  

When designing wind turbines or other renewable energy systems, a new design metric was 

proposed in Chapter 4, the Cost of Valued Energy (COVE), to better account for the time-varying value of 

energy generation. A simplified model for price based on a linear relationship with energy demand data 

was able to predict solar and wind energy value factor with less than 3% error. A case study showed the 

importance of COVE for renewable system design by relating it to Return on Investment and Value Factor.  

Combining wind energy with an energy storage system in Chapter 5, a techno-economic analysis 

of Liquid Metal Battery storage located within the substructure of an offshore wind turbine indicated that 

adding storage can increase the relative value of the combined system. Dispatch simulations varying 

electrical line size and storage capacity found that line size can be reduced by 20% with 4 hours of storage 

or by 40% with 12 hours of storage, with negligible capacity factor losses. As storage prices continue to 

fall, the benefits found herein for LMB are predicted to improve and integrated Li-ion storage is predicted 

to become cost-effective as well.  

Focusing on compressed air energy storage as a low-cost, long-duration energy storage options, 

compressed air energy storage was modeled in Chapters 6-8 using spray injection to reach near-isothermal 

compression and expansion processes. In Chapter 6, a theory-based equation for polytropic index was 

derived using the Crowe number. A 1-D numerical method for simulating spray-cooled compression was 

validated against published experimental results. A parametric analysis of the compression design space 

with the 1-D numerical method found that a high isothermal compression efficiency can be achieved with 
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droplet mass loadings of three or more coupled with a Crowe number of 0.1 or less. In Chapter 7, roundtrip 

efficiency was investigated via a parametric analysis of matched compression and expansion simulations. 

Additionally, spray work was found to have a significant effect on roundtrip efficiency for mass loadings 

greater than unity. 

Pre-mixed droplet injection was investigated for compression and expansion in Chapter 8 via the 

1-D numerical method and 2-D ANSYS Fluent simulations. The pre-mixed simulations were able to 

achieve higher roundtrip isothermal efficiencies than direct injection simulations, for some cases with 

moderate mass loading. Comparing the 1-D and 2-D simulation results, some of the 1-D assumptions were 

not validated by the 2-D results, but the percent differences between the 1-D and 2-D simulations were less 

than 7%.  

9.2. Contributions to the field 

This dissertation contributed to the fields of wind turbine modeling, techno-economic analysis of 

hybrid systems, and compression modeling with spray injection.  

A new method was developed for replicating the field test conditions for computational simulation 

comparison and applied to the first field test data with a downwind flexible rotor. Additionally, a new tower 

shadow model was developed that considers the influence of wind field turbulence.  

COVE was proposed as a new metric for renewable system design that values energy based on the 

time of generation, in a simple and easy-to-use manner. A techno-economic analysis of Liquid Metal 

Battery storage co-located within a wind turbine investigated energy storage capacity factors and economics 

for integrated long-duration storage for the first time and showed the benefits of long-duration storage for 

wind energy integration.  

The theoretical behavior and the key nondimensional parameters of spray injection compression 

and expansion were characterized using theory and a 1-D numerical method. A new nondimensional 

number, the Crowe number, was proposed for the ratio of the droplet thermal response time to the domain 

time scale. Parametric analysis identified high efficiency designs for compression, roundtrip without spray 

work, roundtrip with spray work, and pre-mixed roundtrip without spray work. Additionally, near-

isothermal expansion using spray droplets was investigated in 2-D for the first time and compared to 1-D 

model assumptions.  

 

 



190 

9.3. Future studies and recommendations 

The Cost of Valued Energy (COVE) metric is still being refined and applied in new ways. It is 

suggested that this metric be used as the optimization object for designing a renewable energy system with 

energy storage and compared against other metric options to see which gives a preferred design.  

The 1-D numerical method used in Chapters 6-8 was expanded and improved upon in this 

dissertation. Other researchers have modeled liquid piston heat transfer, which could be added to the 1-D 

model to allow for additional heat transfer in excess of that to the droplet spray. The 2-D Fluent simulations 

highlighted that some of the assumptions in the 1-D model may not be accurate, but additions to the 1-D 

code to remedy these differences may not be able to improve the accuracy significantly, since the 1-D and 

2-D simulation results already predict similar isothermal efficiencies. Instead, simulations in 3-D could be 

implemented to study additional effects such as swirl and nozzle placement.  

Super-rated operation of a wind turbine with energy storage was investigated and submitted as a 

patent but not included herein [213]. It proposed an alternative method for wind turbine control based on 

utilizing a mechanical energy storage system and decoupling the wind turbine rotor from the electrical 

generator. While systems-level simulations have been completed, further simulations on a component-level 

are suggested to further study this idea.  
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