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Abstract

Thermodynamic property prediction using molecular simulation is a computationally

expensive process and is the major bottleneck in large scale calculations where thermo-

dynamic properties have to be evaluated multiple times. Examples of processes requiring

multiple rounds of molecular simulation include molecular design, scanning of atomistic

force field parameter space, simulation parameter space, and process design.

We present a reweighting technique which can accelerate property estimation by three

orders of magnitude. We show the proof of this concept by doing a search in a combinato-

rially large simulation parameter space. The calculations in this exercise, if done without

reweighting, would have taken 60 CPU years. However, with reweighting we were able to

complete the search within one CPU month achieving an acceleration of 800 times. This

search process makes error quantification of the simulation parameter space possible. The

search also enabled us to choose a set of computationally inexpensive simulation param-

eters which gives statistically indistinguishable results compared to the most accurate but

computationally most expensive set of parameters.

Estimating free energies between states having no overlap in the configurational space

is very hard or sometimes impossible using standard free energy techniques. We have

developed a multistate reweighting with configuration mapping algorithm which makes

previously impossible problems trivially easy to solve. Free energy differences between

rigid water models and free energy corresponding to change in the equilibrium bond length

of a dipole is estimated using the newly developed algorithm. The calculations are not only

easier to perform but are also three to five orders of magnitude faster compared to standard

techniques.

Finally, we use a reweighting and configuration mapping algorithm to accelerate a mul-

tidimensional, multiobjective parameterization of rigid water model. The parameterization
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also involved the design of an objective function which is able to simultaneously reduce

error in all thermodynamic properties estimated using molecular simulations. The param-

eterization with standard techniques would have taken 1544 CPU years but with the ap-

plication of the newly developed techniques the computational time was reduced to eight

CPU weeks. The forcefield parameterization techniques based on pure fluid properties is

extended to forcefield parameterization based on mixture properties and proposed as the

next step in this research program.
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1 Introduction

1.1 Why do we need efficient ways to estimate thermodynamic prop-

erties from molecular simulations?

The field of molecular simulations has come a long way from simulating a few hundred

Lennard Jones particles [1] for few picoseconds to simulating an entire viral capsid (1.2

million particles) for microseconds [2]. The gradual advancements in the field have en-

abled molecular simulations to be used as a potential design tool by reproducing processes

occurring at the molecular scale and to help guide experiments. Statistical mechanical

tools can be used to quantify the extent of molecular transformations in terms of change in

thermodynamic observables to compare simulated results with experiments. Hardware im-

provements along with improved algorithms have made previously impossible simulation

sizes and time scales achievable.

However, complex and lengthy simulations are helpful only if they can reproduce the

underlying physics of the system to an acceptable error tolerance. The parameters used to

model the potential and kinetic energies of the system under investigation have a significant

effect on the thermodynamic and transport properties estimated from simulation. The sta-

tistical mechanical approach used to calculate observables from the sampled energies can

also contribute to a bias in the predicted observables.

We require a systematic error quantification of the different approaches used for prop-

erty estimation using molecular simulations. Proper characterization of different choices

of model, method and parameters requires very large scale scans over parameter space

or force field space which is computationally prohibitive. Even the molecular design and

the subsequent process design involves multiple iterations involving property estimation at
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each step. With the current molecular simulation methods property estimation becomes the

rate limiting step for the entire process. In the following sections we further investigate

the problems associated with error quantification and property estimation using molecular

simulation.

1.1.1 Challenges in improving reliability and reproducibility in property estimation

using molecular simulations

Verification, validation and error quantification of model, method and parameters involved

in thermodynamic as well as transport property estimation using molecular simulations will

enhance the reliability and the reproducibility of the results generated in silico. As part of

the Shirts research group efforts my research focuses on improving the utility and reliabil-

ity of thermodynamic property prediction using molecular simulations. I have performed

several important studies that help achieve these goals.

1.1.2 Design of molecular benchmark test set and statistical checks

In my M.S. research, I introduced a molecular benchmark set and a series of statistical

checks to systematically characterize equilibrium free energy estimators. We used this

molecular benchmark test set to directly compare 10 different equilibrium free energy es-

timators based on the bias and precision in both the estimated free energy as well as esti-

mated uncertainty [3]. In this work, we quantitatively showed MBAR (Multistate Bennett

Acceptance Ratio) [4] was the most efficient as well as accurate and precise thermodynamic

property estimator for a given choice of force field, thermostat and barostat.

In the past two years, our lab has created tools to check the thermodynamic ensem-

ble consistency for barostats and thermostats, i.e., whether they sample from the desired

ensemble [5]; and studied the effect of parameter choices in the thermostats on transport
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properties [6]. My present Ph.D. research focuses on creating tools to quantify and then

minimize error in thermodynamic property estimation associated with the choice of the

force field and simulation run parameters in molecular simulation. The choice of the atom-

istic force field parameters is very important in any molecular design problem as the pa-

rameters along with the potential model determine the accuracy in reproducing the correct

strength and direction of interactions experienced by particles constituting the system un-

der given external conditions of pressure and temperature. The improved accuracy in the

atomistic representation of molecular systems will strengthen the confidence in its use as a

design tool.

1.1.3 Challenges in molecular design

We can classify molecular design problems into two types. The first type is the forward

problem in which for a given molecular system we have to estimate a thermophysical

property. For example, if one wants to design a model to study the effect of pollutants

on environment one has to know the solvation free energies of the pollutants in different

environments i.e. water and air in order to quantify the partitioning of the pollutants in dif-

ferent media. There could be some pollutant species for which the experimental data is not

available and thus we cannot parameterize the activity coefficient models to make thermo-

dynamic property predictions. This is where molecular modeling can help, as we can find

the solvation free energy in silico using molecular simulations. For a given accuracy of the

atomistic model parameters, transferability of the force field and proper implementation of

barostat and thermostat, we can reduce the bias in the observables due to number of sam-

ples and number of intermediate states used for property estimation by choosing MBAR to

perform our calculations.

The second type of molecular design problem is the inverse problem in which we wish
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to design a molecule which exhibits desired thermophysical property. Examples include

drug design, design of new surfactants, new chromatographic surfaces, new solvents, study-

ing phase equilibrium etc. All such designs require scanning over a large, multidimensional

but discrete/discontinuous chemical space. There are discrete points in the chemical space

represented by different chemical elements. The discrete chemical search space is a sub-

set of continuous, multidimensional and vast atomistic force field parameter space. These

different dimensions include nonbonded parameters like charge, Lennard-Jones σLJ and

εLJ , and geometrical parameters like bond length, bond angle, dihedral angle. One could

map different molecules from the chemical search space to force field parameters in the

parameter space. However, we cannot map all the points from the force field parameter

space to a physically possible molecules in chemical space. We are often interested in only

a very small portion of this vast, continuous multidimensional force field parameter space,

the region corresponding to atomistic models consistent with the desired thermophysical

properties. For example, when parameterizing force fields, we scan the model parameter

space to find a parameter set which reproduces experimental thermodynamic observables

like binding affinity, density, heat of vaporization etc.

The thermodynamic observables are typically estimated using a statistical mechanical

approach which almost always requires generation of samples using molecular dynamics

or Monte Carlo simulation. To run any molecular simulation, we need to pick a set of

simulation parameters, for instance, the nonbonded cutoffs. The choice of these simu-

lation parameters controls the accuracy of Coulomb and Lennard-Jones potential energy

calculations. Initially, we don’t know which combination of simulation parameters is com-

putationally inexpensive for calculating the thermodynamic property of interest accurately.

The only way to determine this is by estimating thermodynamic observables for a large

simulation parameter space to select a set of simulation parameters which are fastest for a
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given accuracy. However using the current methods the task of exploring the vast combi-

natorial parameter space was simply impossible. If we assume that we know the correct

simulation parameters and force field parameters, we could potentially estimate accurate

estimates of the thermodynamic properties using molecular simulations.

1.1.4 Accelerating the force field space scans and simulation parameter space scans

Force field parameter scan and simulation parameter scan require high throughput esti-

mation of thermodynamic observables. However, it can be computationally challenging

to evaluate free energies and expectation values of thermodynamic observables over the

large, multidimensional space of possible simulation or force field parameters. The sam-

ple generation cost for such a high throughput estimation of thermodynamic observables is

prohibitively large. Take the case of a rigid 4 site water model. The parameter space com-

prises of charge qO, Lennard-Jones σLJ,O, εLJ,O of oxygen, O-H bond length, H-O-H bond

angle and distance of the virtual site carrying negative charge from oxygen atom. Even if

we choose only 10 values for each parameter to scan the water model parameter space, we

will be required to evaluate 106 parameter sets. Each parameter set corresponds to an al-

chemical thermodynamic state. If simulation for a single state takes 20 CPU hrs to generate

sufficient samples, simulation for 106 states will take 2283 CPU years to complete.
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Figure 1.1: The current procedure of estimating properties requires simulation or sampling
at every thermodynamic state, which results in impractical computational costs. The total
run time is sum over all the simulation time shown vertically above it.

Figure 1.1 shows how combinatorial parameter scans are typically done today. We can

reduce the computational cost of the parameter scan if we can reduce the amount of time

spent in sampling. We can reduce sampling if we can sample just a few states and predict

the observables for the majority of unsampled states. We can thus improve the efficiency

of the property estimation process, if we can get the same amount of statistical efficiency

while collecting fewer samples.
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Figure 1.2: We have developed a way in which we simulate at very few states and use
only rerun potential energies along with sampled energies to substantially accelerate the
property estimation process. The reweighting along with configurational mapping reduces
the per state number of samples requirement, thus instead of 20 CPU hrs we need to collect
samples for only 1 CPU hr. The rerun does not involve force calculation or integration of
molecular dynamics and hence is significantly faster. Rerunning consists in only the last
two steps in Figure 2.1.

Multistate reweighting methods such as the multistate Bennett acceptance ratio (MBAR) [4]

can help solve this problem by predicting free energies and expectation values of observ-

ables at insufficiently sampled or unsampled states using simulations performed at only

a few sampled states, together with single point energy reevaluations over the unsampled

states.

Figure 1.2 shows the new, faster algorithmic approach we have introduced to bring

down the computational costs without loosing out on accuracy. In chapter two, we first

go through the process of property estimation using molecular simulation and describe
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in brief the various choices of model, method and parameters involved at each step. We

also explain what multistate reweighting is. We go through the derivation of free energy

estimating algorithms in which 1) reweighting with one states is involved (Exponential

Averaging) [7] 2) reweighting with two states is involved (Bennett Acceptance Ratio) [8] 3)

reweighting with multiple states is involved (Multistate Bennett Acceptance Ratio) [4]. We

show through the working equations how accuracy of the free energy estimate is increased

by involving information from more and more states.

In chapter three, we demonstrate the power of the multistate reweighting formalism to

predict observables for a very large number of unsampled states using information from

just a few sampled states. We explore a large combinatorial space of molecular simulation

parameters like nonbonded cutoffs, Ewald sum parameters and potential switch distance,

using data collected at a single choice of these parameters. Using multistate reweight-

ing, we can quickly identify the computationally least expensive simulation parameters

required to obtain a specified accuracy in observables compared to the answer obtained

at the most expensive parameters. We specifically examine free energy estimates of three

molecular transformations in a benchmark set and the enthalpy of vaporization of TIP3P

water. The results not only demonstrate the power of this multistate reweighting approach,

but also help identify simulation parameters which can affect free energy calculations and

provide guidance to determine the simulation parameters which are both appropriate and

computationally efficient for many types of simulation. A simulation parameter space scan

described in this chapter would have taken 60 CPU years using conventional methods but

reweighting formalism reduced the computational cost to a CPU month.

Standard free energy methods can estimate free energies for alchemical transformations

involving only interaction parameters, charge, Lennard-Jones repulsive and attractive terms

C12 = 4εσ12, C6 = 4εσ6, respectively. However, molecular transformations and parameteri-
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zation of force fields require perturbations in molecular geometry as well. It is impossible

to calculate free energies using reweighting techniques like free energy perturbation if con-

figurations in a simulation of a state are never seen in simulations of other states. Other

techniques for estimating free energies corresponding to changes in molecular geometry

are cumbersome and hard to adopt for large scale problems. Thus, estimating free energy

of transformations involving a change in molecular geometries is still a big challenge.

In chapter four, we present a new algorithm to calculate free energy differences between

geometrically different molecules which have very little or no overlap in the configuration

space. The algorithm is built upon the principles of multistate Bennett acceptance ratio

(MBAR) and warp bridge sampling. The algorithm is a multistate, minimum variance

free energy estimator in which reweighting involves mapping geometries from one state to

every other intermediate state in order to facilitate calculation of free energies for trans-

formations involving geometry change. This algorithm is independent of the choice of a

reference state. We show its application by calculating 1) free energy differences between

non-overlapping, truncated harmonic oscillators, 2) pairwise free energy of transformation

for three water models, TIP3P [9], SPC/E [10] and TIP4P [9]. The configuration mapping

theory is exact for overlapping truncated harmonic oscillators. The new algorithm, MBAR

with mapping, shows a speed up of three orders of magnitude compared to MBAR with-

out mapping. We can thus further reduce the number of samples required for free energy

estimation if we use this mapping technique.

Equipped with multistate reweighting and configuration mapping algorithms, we can

now build tools required to do force field parameterization or even alchemical molecular

design. We show the proof of this concept in chapter five. We not only demonstrate the use

of the newly developed computational techniques to explore the rigid water model param-

eter space but also come up with radically new parameterization schemes. Previous water
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models have fit parameters by minimizing error in a single property (density) by sequen-

tially fitting one parameter at a time to a single property (density) at a single temperature

and pressure (SPC, SPC/E, TIP3P) or multiple temperatures but single pressure (TIP4P-

EW [11], TIP4P/2005) [12]. During the parameterization, geometry parameters, OH bond

length rOH , OM bond length rOM where M is the virtual site carrying oxygen’s negative

charge, HOH bond angle 6 HOH , are kept fixed and only interaction parameters (σO,LJ ,

εO,LJ and qO) are perturbed one by one. We simultaneously perturb all 6 parameters while

fitting to multiple properties at multiple temperature and pressure combinations.

Current force field parameterization protocols involve computationally costly molecular

dynamics (MD) simulations at each iteration to estimate the thermodynamic observables

of interest. As a result, we are often forced to use the parameters which come from a force

field parameterized for entirely different system and external conditions. The force fields

are not updated and extended frequently to include new atom types for the same reason.

The parameterization is also dependent on the choice of properties to which parameters are

fit, the relative weights we put on different properties and the choice of preference function

itself.

In chapter five, we also present a parameterization scheme which helps solve the prob-

lem of choosing the weights and preference function for different thermodynamic observ-

ables. A closer inspection of all the properties reveals that all of them are response functions

of Gibbs free energy (G) with respect to changes in temperature and pressure. For example,

we can calculate the molar volume or density if we know the change in Gibbs free energy

for a small change in pressure at constant temperature (V =
(
∂G
∂P

)
T

; ρ = 1/V ). Similarly,

if we know the change in Gibbs free energy for a small change in temperature at constant

pressure we can estimate enthalpy (H = −T 2
(
∂G/T
∂T

)
P

). So, instead of fitting to different

property surfaces ρ(T, P ), H(T, P ), CP (T, P ) etc., we fit to a single G(T, P ) surface as
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all the property surfaces can be derived from the G(T, P ) surface.

Figure 1.3: Free energy and other thermophysical properties evaluated using the IAPWS95
free energy function for water are shown in this figure. If we can estimate the free energy
as a function of temperature and pressure G(T, P ), we can estimate any thermophysical
property which can be expressed as some function of the first or second derivative of free
energy with respect to pressure and/or temperature. All thermophysical property surfaces
viz. density ρ(T, P ), entropy S(T, P ), compressibility κ(T, P ), heat capacity CP (T, P )
and the thermal expansion coefficient α(T, P ) are embedded in the free energy surface
G(T, P ) and can be easily extracted from it.

Ideally if we could fit our parameters to experimental G(T, P ) surface to a very small

tolerance, all model property surfaces will automatically fit to experimental property sur-

faces. This cleaner and more robust parameterization scheme is accelerated as MD is par-

tially replaced with the reweighting and configuration mapping techniques developed in

chapter three and four respectively. Even with the acceleration achieved using reweighting

and mapping techniques the computational cost for exploring the vast multidimensional
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parameter space remains prohibitive. We use an statistical association fluid theory based

directly solvable equation of state to guide the more expensive atomistic forcefield opti-

mization for pure fluid.

In chapter six, concepts for force field parameterization based on pure fluid proper-

ties developed in chapter five are extended to force field parameterization based on mix-

ture properties. We use parameters derived from force fields parameterized for pure fluid

properties to model complex chemically heterogeneous environments such as inside a cell

or inside and around a membrane, where there are multiple interfaces. In many cases,

the simulations fail to describe the correct physical behavior in a these environments or

at interfaces where surface effects start dominating. Parameterization of pure fluids has

been well studied but parameterization to get the mixture properties right has not been

probed adequately [13]. There are force fields which are parameterized based on solvation

free energies[14]. However, solvation free energies correspond to infinite dilution limit

whereas chemical engineering applications involve fluids mixtures at finite concentrations.

We should be able to estimate mixture properties at various compositions to parameterize

force fields based on fluid mixture properties.

Estimating fluid mixture properties, especially excess Gibbs free energy, GE , at fi-

nite concentrations using all-atom molecular dynamics simulation is a difficult problem.

Interaction strengths as well as molecular geometries change for multiple molecules in

simulations at different compositions. Thus the configurations pertaining to a composi-

tion are never visited in the simulations of other compositions which prohibits reweighting

and subsequent free energy analysis. Excess enthalpy and volume have been estimated

using data from simulation at a single composition but excess free energy using reweight-

ing across different compositions has never been reported previously. Methods based on

Gibbs ensemble Monte Carlo can estimate excess chemical potential but do not facilitate
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reweighting of configurations and hence are not suitable for high throughput estimation of

observables.

We propose a protocol to estimate excess thermodynamic properties, GE , HE , V E and

SE , with the help of reweighting and configuration mapping techniques using an atomistic

model of a binary mixture of water and methanol and sampling from an isothermal isobaric

ensemble. Different number of water molecules will be mapped to methanol and vice

versa as we reweight configurations for different compositions. This exercise lays out the

foundation for the parameterization based on thermodynamic properties of binary mixtures

at various mole fractions. We will have to fit force field parameters to reproduce not only

the pure fluid properties but also the mixture properties at all the compositions correctly.

Mapping between mutually inaccessible configurations and speedup achieved by using

reweighting and mapping techniques are critical in accomplishing the studies presented in

chapters three, four and five. These studies involve involve very high throughput estima-

tion of thermodynamic observables. Applying reweighting to exploring parameter space

will help us better understand the sensitivity of thermodynamic observables with respect to

simulation as well as force field parameters. The mapping technique can be applied to not

only force field parameterization but to any problem which involves estimation of thermo-

dynamic observables over two or more states having poor or no overlap in configurational

space. For example, we could study the phase transition in metals as a function of temper-

atures. We could study the change in 3D structure in the crystal phase of a drug molecule,

which renders it unusable. If we can reliably and efficiently predict the changes in complex

molecular structure and the corresponding change in thermophysical properties, we could

possibly tailor the molecular makeup to stabilize the structure and/or improve desirable

properties. Thus the combination of two techniques should enable accelerated screening of

large parameter or chemical design spaces and aid in molecular design.
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A chemical product design starts with a molecular design phase in which a macroscopic

property of the product is tailored by adjusting the molecular make-up. If successful, the

product design is followed by tests in a pilot plant. If the pilot plant tests show promise,

a production facility is designed to mass produce the product under environmental and

economic constraints. The set-up of a pilot plant as well as the final production unit requires

process design. We need accurate and precise process design tools to get reliable estimates

of the performance of a certain design under actual process conditions.

1.1.5 Challenges in multiscale process design

At present, chemical engineers design and simulate processes occurring over a wide range

of length and time scales. Advances in nanoscale material characterization and the capacity

to simulate and tailor properties at the atomistic level have enabled designers to think about

process design starting from the building blocks of materials i.e., atoms and molecules. A

substantial amount of process engineering research effort is focused on efficient multiscale

modeling using a bottom-up design approach as shown in Figure 1.4. This approach in-

volves the design of a molecule having desirable thermophysical properties. Once we have

a promising molecular candidate we require a process design for mass producing the prod-

uct. The process design determines the techno-economic feasibility of the entire project.

Reliable designs help making confident decisions and thus accuracy of the design estimates

is very important for viability of a project.

The accuracy of a process design heavily depends on the quality of the thermodynamic

package being used. Commercially available thermodynamic packages offer thermody-

namic information for a limited number of chemical compounds. The parameters regressed

for the classical or empirical equations of state like Peng-Robinson (PR) [15], Soave-

Redlich-Kwong (SRK)[16] available in these packages are only valid for a specific range
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of temperature and pressure and for a specific composition. In some instances, thermody-

namic properties are measured with respect to a certain choice of reference state which can-

not be reproduced under laboratory conditions (temperature, pressure, toxicity constraints)

for the newly developed product [17].

Figure 1.4: Design of a product at the atomistic scale affects the process design and design
of process equipments. Design of reaction and separation networks, heat exchange net-
works, effluent treatment networks, to satisfy environmental constraints, all depend on the
product’s thermophysical and toxicity properties. Finally, the product and process design
both affect the business/enterprise model by determining economic feasibility.

The classical equations of state and activity coefficient models cannot explicitly ac-

count for changes in size, shape, interaction of the molecule due to change in temperature,

pressure and composition. UNIFAC [18] and UNIQUAC [19] use some information from

the atomistic description of molecules but they fail to capture the entropy generated by fluc-

tuations in the configurations of long chain molecules. Statistical association fluid theory
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(SAFT) [20] based equations of state use atomistic description as well as configurational

information in the form of pair correlation functions, derived from molecular simulations

to analytically solve for the properties. However the dependence on the knowledge of

pair correlation functions limits the transferability to new unstudied/unsimulated systems.

Only an equation of state coming directly from the molecular simulations would capture

the characteristics of a complex systems for a wide range of temperatures pressures and

compositions. The standard or reference state could also be easily set to a state which is

physically realizable and relevant to the problem.

However, the classical equations of state and activity coefficient models are still pre-

ferred over molecular simulations because of a huge difference in computational speed. A

process design requires hundreds and thousands of iterations of an equation of state. A

classical equation of state could do a single iteration in less than a second. The analytical

equation of state based on SAFT theory like PC-SAFT [21] takes seconds to estimate a

property. On the other hand, molecular simulations would take hours to compute the same

property. The primary reason for the slow speed is that for each new temperature, pressure

and composition combination a fresh simulation has to be run and properties have to be

evaluated using fluctuation formulas. The computational cost for sample generation makes

the exercise prohibitive. In this study we, develop tools for accelerating thermodynamic

property prediction using molecular simulations and carry out proof of concept studies by

exploring large simulation and force field parameter spaces. These techniques in the future

should assist as tools for accelerated property predictions required in molecular design and

the subsequent process design.
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1.1.6 Accelerating multiscale process design

In chapters five and six we show the use of the reweighting technique to tremendously

reduce the amount of computational time for property calculation using molecular simu-

lations. We simulate for only a few temperature and pressure combinations and predict

properties for a large combination of temperature and pressures. We do not use fluctuation

formulas for calculating the thermodynamic properties, but directly derive the properties

from the simulated free energy surface G(T, P ). In this way, we can not only derive first

derivative properties but also second derivative properties fairly easily. The uncertainty

propagation in this process is also clear and unambiguous compared to fluctuation formu-

las.

The multistate reweighting technique enabled estimation of properties at multiple tem-

peratures and pressures by facilitating efficient estimation of the free energy for various

combinations of small perturbations in temperature (±δT ) and pressure (±δP ) around a

given T , P in order to numerically calculate the first, second and mixed derivatives of free

energy with respect to T and P . We have used 110 temperature and pressure combinations

in our water parameterization exercise. For each T and P combination, we had to estimate

free energies at the 4 closest points (T ± δT at constant P) and (P ± δP at constant T )

to calculate density, enthalpy, heat capacity and isothermal compressibility. Free energy

estimates on four more points along the cross diagonal were required to calculate iso-

baric thermal expansion coefficient. Thus, for estimating properties at 110(T, P ) points we

needed free energy estimates corresponding to 110× 9 temperature and pressure combina-

tions. If a single state simulation for 1.5 ns takes 3 CPU hrs to simulate then the simulation

of 990 T and P points would have taken 2970 CPU hrs (123 CPU days) to compute the

free energies without the reweighting method. The water model parameterization exercise
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done with reweighting required at least 4100 iterations to convergence. The exercise with-

out reweighting would have cost 1544 CPU years. Using reweighting and configuration

mapping techniques, the entire parameterization exercise was done in less than eight CPU

weeks.

We can estimate properties like density, enthalpy, entropy, heat capacity, and so forth

from molecular simulations for a range of temperatures and pressures for once and then we

can generate the estimate of any thermodynamic property at any T and P using known in-

terpolation techniques, for example, bi-variate cubic splines as shown in Figure 1.5. Thus,

after the initial effort and computational cost of a few hours the computational cost of

property estimation from the property surface will be similar to any thermodynamic pack-

age as the interpolation or the metamodel execution speeds will be equal to or even greater

compared to the solution of classical equations. We could also estimate the transport prop-

erties (diffusivity, viscosity etc.) from molecular simulations as well using the reweighting

scheme. However, the theory for reweighting transport properties is still not fully devel-

oped [22]. An alternate way to predict transport properties at any T and P combination is

to estimate the transport properties at several temperature and pressure combinations using

molecular simulations and build a surrogate model from the data. The surrogate models

are less accurate in prediction compared to thermodynamic reweighting. However, their

predictions improve with increasing inputs from the molecular simulations. Thus, we can

do process design using the thermodynamic as well as transport property information esti-

mated from the molecular simulations.
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Figure 1.5: A fast method to generate dimensionless residual Gibbs free energy surface for
TIP4P water model is shown in sub figures (a)-(c) along with the same property surface
generated using IAPWS-95 equation of state shown in sub figure (d). (a) We generate
samples at a few temperature and pressure combinations which takes less than an hour. (b)
Next we predict properties at intermediate temperatures and pressures using reweighting.
Reweighting calculations take less than a minute. (c) We could estimate the property at any
temperature and pressure combination using bivariate spline or metamodel generated using
the sampled and reweighted data. We used bivariate spline of order 5 in both temperature
and pressure direction. On a closer inspection, we see that the interpolation is less accurate
compared to reweighting. We could improve accuracy in interpolation by providing a much
finer reweighted property mesh.
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2 Overview of important theoretical concepts

2.1 Model, method and parameters involved in the process of prop-

erty prediction using molecular simulations

Figure 2.1 briefly summarizes different parameters and algorithms one has to choose from,

before the molecular simulation run to generate samples. These samples are then used to

estimate thermodynamic properties like Gibbs free energy, enthalpy etc. using statistical

mechanical approaches. To start a molecular simulation, we need an initial guess of co-

ordinates of individual atoms and their velocities. Initial co-ordinates for a biomolecular

system could be imported from the RCSB Protein Data Bank and solvated in a solvent

box of sufficient size to provide three to four solvation shells. For non-biological systems,

for example simulation of metals, initial co-ordinates can be generated by placing atoms

at regular intervals following a lattice geometry. The initial guess velocities are generated

according to the Boltzmann distribution at that temperature. We use an atomistic force field

to estimate the forces on each and every atom. A force field is essentially a potential energy

model to describe the nonbonded and bonded interactions between individual atoms as a

function of inter-atomic distance. The nonbonded potential models the atomistic repul-

sion/dispersion and electrostatic forces between atoms. The bonded potential model forces

experienced by atoms which share a chemical bond with one or more neighboring atoms.

The atomistic repulsion and dispersion interactions are usually described by the Lennard-

Jones 12-6 potential and the electrostatic interactions are modeled using the Coulomb’s

law. The bonded interactions are described by harmonic bonds, harmonic angles and di-

hedral angle potentials. A force field of an atomistic model thus requires specification of

parameters like Lennard-Jones σ, ε, Coulomb charge q, equilibrium bond length xo, equi-
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librium bond angle θo, the corresponding force constants Kb, Kθ etc. These models and

model parameters to large extent determine the accuracy with which we can reproduce the

correct physics of the system.

Figure 2.1: Properties estimated using molecular simulation, for example free energy
change ∆Gij , involves multiple steps. We have to make a choice of model methods and pa-
rameters at each step. All these choices effect the accuracy of the potential energies which
eventually affect the accuracy of the estimated property. Frequently, little or no quantitative
information is available to know how much each choice of parameter affects the results.

We estimate the forces acting on all atoms to calculate the acceleration. We use these

accelerations to obtain new positions for all atoms by integrating Newton’s equation of

motion for a finite time step ∆t, the choice of which depends on the fastest atomistic

motion occurring in the system. A very small ∆t will make the computation prohibitive

whereas a large ∆t will lead to energy shifts i.e. unstable system. An optimum ∆t would

allow fast yet stable evolution of the molecular system with time. The integration could
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be done using either the Verlet [23] scheme or leap frog algorithm. If we wish to use

Langevin Dynamics instead of the usual Newton’s equation of motion, we need to specify

the friction coefficient γ which models the viscous effects of the solvent. The choice of

γ should not make the solvent unrealistically thin or viscous. We also need to specify

the frequency of center of mass motion removal, nstcomm. A higher frequency increases

computational cost. However, if center of mass motion removed less frequently, it could

result into what is called the flying ice cube effect. The flying ice cube effect is an artifact

of numerical integration in which the energy is incorrectly partitioned from high energy

degrees of freedom to low energy degrees of freedom or zero energy degrees of freedom,

such as translation and rotation of the system.

Most of the chemical and biochemical processes happen at constant temperature and

pressure. To reproduce these processes using constant temperature and pressure simula-

tions, we require thermostat and barostat schemes. The thermostat perturbs the velocities

to maintain system temperature Tsys and the barostat perturbs positions of the atoms and

the volume of the system to maintain system pressure Psys, using one of the many available

algorithms. The parameters τT and τP determine the strength of the coupling of the system

to the temperature and pressure bath. A strong coupling or weak coupling could result in

unrealistic temperature and volume fluctuations. The way we define temperature coupling

for different molecular groups affects the way the energy is partitioned from high energetic

domains to the low energetic domains affecting the temperature as well as sampling of the

system. The choice of thermostat and barostat algorithm and the way we define coupling

for different molecular groups also determines whether the samples actually belong to the

simulated ensemble.

To accelerate the molecular simulations, we freeze some of the degrees of freedom that

do not affect the behavior of the system when observed over long time and length scales.
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For example, the bond lengths of bonded hydrogens are constrained using holonomic con-

straint schemes like SHAKE or LINCS to enable using a larger time step ∆t for faster

evolution of the system. If not applied appropriately, the application of constraints could

lead to unstable systems.

As the system evolves in time we gather snapshots of molecular configurations at reg-

ular intervals. These snapshots from the trajectory are used to calculate the potential en-

ergy at the sampled state j, Uj(xj). The potential energy definitions of other states Ui,i 6=j

could also be used to calculate Ui(xj). Thus we can estimate Uij(xj) = Uj(xj) - Ui(xj)

the pairwise potential energy differences between the sampled state and other thermody-

namic states required for free energy estimation. The free energy estimation algorithms

like thermodynamic integration, exponential averaging, Bennett acceptance ration, use po-

tential energy differences from sampled and unsampled states using different schemes as

explained in the next chapter.

Calculating potential energy, Uj(xj), is very expensive if done by estimating potential

energy contribution due to each atom pair. Thus, Uj(xj) is estimated as a sum of a long

range and short range sums. This scheme of potential energy calculation also involves sev-

eral parameters like the nonbonded cutoff rc which separate the long range and short range

sums. A larger cutoff gives more accuracy but bumps up the computational cost. A smaller

cutoff results in inaccurate potential energies but faster calculations. The potential energy

difference Uij(xj) are used to estimate the thermodynamic observables using a variety of

estimators. Each estimator uses different amounts of information from the simulations and

thus give results with different accuracy. The choice of the free energy method, number

of intermediate states Nint and number of samples Nsamp all effect the free energy esti-

mate. Thus, to accurately estimate thermodynamic properties using molecular simulation,

we need to make careful choices of model method and parameters pre- as well as post-
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simulation. If we cannot quantitatively predict the variation in simulated properties with

change in model, method and parameters, our simulation results will remain questionable

and unreliable. Using the multistate reweighting technique we will show that from a com-

binatorially very large space, we can choose a model, method and parameter based on the

estimate of bias and computational cost comparison.

2.2 What is multistate reweighting?

2.2.1 Introduction

There are various equilibrium statistical mechanical estimators which can be used to esti-

mate free energy differences between thermodynamic states with some phase space over-

lap. Each estimator uses different amounts of information from the sampled states and

scheme to estimate the observables. We will see in this section that the simplest form

of free energy estimator, exponential averaging algorithm, uses information from just one

sampled state to estimate the free energy difference between two states. The Bennett Ac-

ceptance Ratio (BAR) improves the accuracy in free energy estimation by including the

information from two sampled states. Free energy of an arbitrary transformation can be

estimated from initial state to final state (∆G01) using samples from the initial state. Simi-

larly free energy of the same transformation can be estimated in the reverse direction, from

final state to initial state (∆G10) using samples from the final state. Since we have similar

information from two states, we need a way to weigh the information from the two sources

to get a single estimate of free energy difference. One way is to take a simple arithmetic

average which puts a weight of 0.5 on the free energies estimated in opposite directions.

However, Bennett’s algorithm picks a weight which minimizes the error in the final free

energy estimate.
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What if we had information from more than two states? When there is poor overlap be-

tween two end states, we introduce multiple intermediate states to bridge the phase space

overlap. We could use pairwise BAR which would calculate accurate free energy differ-

ences using information from only two states at a time. However, we will not be using

information from the non-neighboring intermediate states not included in the free energy

calculation. Multistate Bennett acceptance ratio solves this problem by weighing infor-

mation from multiple states simultaneously to use all the available information from all

the sampled states. We have presented in this section a comprehensive derivation of three

reweighting algorithms, which is hard to find in the literature. The concept of reweighting

multiple states will become clearer as we study the equations that constitute this algorithm.

Let us start by defining the relationship between the molecular partition function and

free energy of a system. For the sake of simplicity we choose to work in the canonical

ensemble in which the microstate is defined by the positions (x) and the momenta (p).

The macrostate is defined by the number of particles N , volume of the system V and

temperature of the system T . The total internal energy E is a sum of potential energy U(x)

and kinetic energy K(p). The partition function Q relates to the Helmholtz free energy A

of the system described by the following equation:

A =− kBT ln(Q) (2.1)
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The partition function Q can be estimated by the following integral:

Q =
1

N !hN

∫ ∞
−∞

∫ ∞
−∞

exp(−βE(x,p))dxdp

=
1

N !hN

∫ ∞
−∞

exp(−βK(p))dp
∫ ∞
−∞

exp(−βU(x))dx

=
1

N !Λ3N

∫ ∞
−∞

exp(−βU(x))dx

=QtrQconf

Qtr =
1

N !Λ3N

Qconf =

∫ ∞
−∞

exp(−βU(x))dx

(2.2)

The partition function Q can be written as a product of the translational partition func-

tion Qtr, where Λ if the thermal de Broglie wavelength and the configurational partition

function Qconf . We can analytically calculate Qtr; however, we need simulations to evalu-

ate Qconf . We will therefore refer to Qconf as Q hereafter for the sake of brevity.

We wish to calculate the Helmholtz free energy difference between two thermodynam-

ics states with potentials U0 and U1. In order to avoid confusion in this derivation, both

states are maintained at an identical temperature, T .

A01 = A1 − A0 =− kBT ln

(
Q1

Q0

)
(2.3)

The above equation shows that we can calculate the free energy difference A01 by es-

timating the ratio of the partition functions Q1

Q0
. There are different approaches to calculate

this ratio. Let us first discuss the simplest one which is called exponential averaging and

involves reweighting with one sampled state.
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2.2.2 Reweighting Algorithms

2.2.2.1 Reweighting with one sampled state: Exponential Averaging We start by

writing the canonical definition of the ratio.

Q1

Q0

=

∫
exp(−βU1(x))dx∫
exp(−βU0(x))dx

(2.4)

We then multiply the numerator by exp(−βU0(x)) exp(βU0(x)) =1.

Q1

Q0

=

∫
exp(−β(U1(x)− U0(x)) exp(−βU0(x))dx∫

exp(−βU0(x))dx

=〈exp(−β(U1(x)− U0(x))〉0

(2.5)

The expression above is the working equation of the exponential averaging algorithm.

We can calculate the ratio Q1

Q0
by simulating a single state, say the starting state, 0. For each

sampled configuration x we evaluate the difference U1(x) − U0(x). The expectation value

of the difference taken over the entire trajectory equals the ratio of the partition function

from which we can get the free energy difference.

A01 =− kBT ln (〈exp(−β(U1(x)− U0(x))〉0)

=− kBT ln (〈exp(−β(U01(x)〉0) (2.6)

We see that exponential averaging uses samples from only one state and potential en-

ergy differences in one direction (0→1) to estimate the free energy difference between two

states. Often times we need intermediate states between the two end states to increase
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phase space overlap in order estimate the free energy difference. If there are N intermedi-

ate states then we would have to simulate N -1 states and carry out free energy calculation

from 0 to 1 , 1 to 2 ... N -1 to N . We would have to calculate the expectation values

〈exp(−β(U01〉0, ..., 〈exp(−β(UN−1,N〉N−1, all in the forward direction of transformation

to get the total free energy difference ∆G0N = ∆G01 + ... + ∆GN−1,N . In every pairwise

free energy calculation we have samples from the neighboring state. Thus, we can also

calculate 〈exp(−β(U10〉1, ..., 〈exp(−β(UN,N−1〉N , all in the reverse direction of the trans-

formation. These expectation values when used in Eq. 2.6 predict free energy difference in

the reverse direction ∆GN0 = ∆G10 + ... + ∆GN,N−1. We could have used the potential

energy differences in the two directions to improve the accuracy in the free energy estimate

but the nature of exponential averaging algorithm doesn’t allow correction based on the

free energy differences (for the same transformation), measured in the opposite directions.

2.2.2.2 Reweighting with two states: Bennett Acceptance Ratio Let us now exam-

ine the Bennett Acceptance Ratio (BAR), a more complex and more accurate algorithm

compared to exponential averaging. We start the derivation with the following identity:

Q0

Q1

=
Q0

Q1

∫
w(x) exp(−β(U0(x) + U1(x)))dx∫
w(x) exp(−β(U0(x) + U1(x)))dx (2.7)

The above identity is true for any choice of w. We can re-write the above equation in
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the following form:

Q0

Q1

=

∫
w(x) exp(−β(U0(x) + U1(x)))dx

Q1∫
w(x) exp(−β(U0(x) + U1(x)))dx

Q0

=

∫
w(x) exp(−β(U0(x))) exp(−β(U1(x)))dx

Q1∫
w(x) exp(−β(U1(x))) exp(−β(U0(x)))dx

Q0

=
〈w exp(−βU0)〉1
〈w exp(−βU1)〉0

(2.8)

We could get the free energy difference using the following relation:

βA01 = ln(〈w exp(−βU0)〉1)− ln(〈w exp(−βU1)〉0) (2.9)

We see that in the above equation the free energy difference includes potential energy

information from both the sampled states. We choose a w which will minimize error in

βA01. For the sake of brevity, if we refer to 〈w exp(−βU0)〉1 as x1, 〈w exp(−βU1)〉0 as x0

and βA01 as F , then the error σ2
βA01

can be written as:

σ2
βA01

=
1

n1

∣∣∣∣ δFδx1

∣∣∣∣σ2
x1

+
1

n0

∣∣∣∣ δFδx0

∣∣∣∣σ2
x0

(2.10)

Here n0 and n1 are the number of samples from simulations of states 0 and 1 respec-
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tively. We can solve the partial derivatives in Eq.2.10 and replace σ2
x0

and σ2
x1

with the

variance equation var (X) = 〈X2〉 − 〈X〉2 to get:

σ2
βA01

=
〈x2

1〉 − 〈x1〉2

n1〈x1〉2
+
〈x2

0〉 − 〈x0〉2

n0〈x0〉2

=
〈x2

1〉
n1〈x1〉2

+
〈x2

0〉
n0〈x0〉2

− 1

n1

− 1

n0

(2.11)

Expanding x0 and x1 to their original forms we get:

σ2
βA01

=
〈(w exp(−βU0))2〉1
n1〈w exp(−βU0)〉21

+
〈(w exp(−βU1))2〉0
n0〈w exp(−βU1)〉20

− 1

n1

− 1

n0

=
〈w2 exp(−2βU0)〉1
n1〈w exp(−βU0)〉21

+
〈w2 exp(−2βU1)〉0
n0〈w exp(−βU1)〉20

− 1

n1

− 1

n0

(2.12)

We now replace the brackets, 〈〉, with their corresponding integral forms.

σ2
βA01

=

∫
w2 exp(−2βU0) exp(−βU1)dx

n1Q1∫
w exp(−βU0) exp(−βU1)dx

Q2
1

+

∫
w2 exp(−2βU1) exp(−βU0)dx

n0Q0∫
w exp(−βU1) exp(−βU0)dx

Q2
0

− 1

n1

− 1

n0

=

∫ (
Q1

n1

exp(−βU0) +
Q0

n0

exp(−βU1)

)
w2 exp(−β(U0 + U1))dx(∫

w exp(−β(U0 + U1))dx
)2 − 1

n1

− 1

n0

(2.13)

We notice that the above equation will remain unchanged even if we multiply w with a
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constant. Thus we can safely assume the following normalization constant for w:

∫
w exp(−β(U0 + U1))dx =constant

(2.14)

We minimize the numerator in Eq. 2.13 using the Lagrange multiplier method with the

constraint given in Eq. 2.14

Minimize χ(w) =

∫ (
Q1

n1

exp(−βU0) +
Q0

n0

exp(−βU1)

)
w2 exp(−β(U0 + U1))dx

(2.15)

Constraint c(w) =

∫
w exp(−β(U0 + U1))dx− constant (2.16)

At the minima the gradient of χ(w)− λc(w) with respect to w should be zero.i.e.

δχ(w)− λc(w)

δw
= 0 (2.17)

Substituting χ(w) and c(w) in the above differential equation we get:

(
Q1

n1

exp(−βU0) +
Q0

n0

exp(−βU1)

)
2w exp(−β(U0 + U1)))− λ exp(−β(U0 + U1)) = 0

(2.18)

Solving for w in the above equation we get:

w =
C1

Q1

n1

exp(−βU0) +
Q0

n0

exp(−βU1)
(2.19)

Here C1 = λ/2 is a constant.
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Substituting the above expression for w in Eq: 2.8 we get:

Q0

Q1

=

〈
C1 exp(−βU0)

Q1

n1

exp(−βU0) +
Q0

n0

exp(−βU1)

〉
1〈

C1 exp(−βU1)
Q1

n1

exp(−βU0) +
Q0

n0

exp(−βU1)

〉
0

=
n1Q0

Q1n0



〈
1

1 +
Q0n1

n0Q1

exp(−β(U1 − U0))

〉
1〈

1
Q1n0

n1Q0

exp(−β(U0 − U1)) + 1

〉
0



(2.20)

Using n1Q0

Q1n0
= exp(βC) in the above equation we get:

Q0

Q1

= exp(βC)


〈

1

1 + exp(−β(U1 − U0 − C))

〉
1〈

1

exp(−β(U0 − U1 + C)) + 1

〉
0


= exp(βC)

〈f(U0 − U1 + C)〉1
〈f(U1 − U0 − C)〉0

(2.21)

In the above equation, f is the Fermi function f(x) = 1
1 + exp(βx)

. We can get the

expectation values of the two Fermi functions in terms of C from the simulations done at
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states 0 and 1.

〈f(U0 − U1 + C)〉1 =
1

n1

n1∑
m=0

fm(U0 − U1 + C)

〈f(U1 − U0 − C)〉0 =
1

n0

n0∑
m′=0

fm′(U1 − U0 − C) (2.22)

Inserting Eq. 2.22 in Eq. 2.21 and taking log both sides we get

ln

(
Q0

Q1

)
= ln


n0

n1∑
m=0

fm(U0 − U1 + C)

n1

n0∑
m′=0

fm′(U1 − U0 − C)

+ ln(exp(βC))

βA01 = ln


n1∑
m=0

fm(U0 − U1 + C)

n0∑
m′=0

fm′(U1 − U0 − C)

+ βC − ln

(
n1

n0

) (2.23)

We also know that

exp(βC) =
Q0n1

Q1n0

ln(exp(βC)) = ln

(
Q0

Q1

)
+ ln

(
n1

n0

)
βC = βA01 + ln

(
n1

n0

)
βA01 = βC − ln

(
n1

n0

) (2.24)
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Eq. 2.23 and Eq. 2.24 can be simultaneously true only if

n1∑
m=0

fm(U0 − U1 + C) =

n0∑
m′=0

fm′(U1 − U0 − C) (2.25)

So, we sample from both states and calculate the potential energy difference U01 in

both directions to solve for C using the above equation. The value of C which satisfies the

above equation weighs the forward and backward differences to minimize error in the free

energy difference. The free energy difference is calculated by inserting C in Eq.2.24. Thus,

BAR utilizes information from simulations of states 0 and 1 and reduces bias in the free

energy estimate by optimally weighing the potentially energy differences taken in forward

and reverse directions to estimate the free energy difference between the two states.

If we had multiple intermediate states, with BAR, we would have used the potential

energy differences in the forward and reverse directions only for the two neighboring states.

The non-neighboring states corresponding to a sampled state contain useful thermodynamic

information which could have been used to improve the accuracy of the free energy estimate

but remains unused in BAR. Similar to potential energy differences that can be estimated

in forward and reverse directions for a pair of neighboring states we could also calculate

the potential energy differences in the forward and reverse directions from a sampled state

to a non-neighboring state.

Let us now try to understand how information from a non-neighboring state could im-

prove accuracy in free energy estimates. Say we do simulations at 298 K (state A), 300 K

(state B), and 302 K (state C) keeping everything else, potential energy function, constraints

etc., unperturbed. Simulations for state A will sample many configurations which would

be common to samples generated in simulations of states B and C. Thus samples generated

using simulations for state A contain thermodynamic information for both states B and C,
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proportionate to the phase space overlap. Similarly simulations done at state B will have

thermodynamic information corresponding to states A and C, and simulations done at state

C will have thermodynamic information corresponding to states A and B, proportionate to

the phase space overlap. We could estimate the free energy difference between states A

and B by

1. Estimating ∆GAB with samples from state A, i.e., using UAB(XA).

2. Estimating ∆GAB = -∆GBA with samples from state B, i.e., using UBA(XB).

3. Estimating ∆GAB = ∆GCB - ∆GCA with samples from state C, i.e., using UCA(XC)

and UCB(XC).

4. Estimating ∆GAB = ∆GAC - ∆GBC with samples from states A and B, i.e., using

UAC(XA) and UBC(XB).

All four methods estimate the free energy difference of the same transformation, A→B,

using thermodynamic information from different simulations so there should be a way to

optimally incorporate information from all four methods to minimize error in free energy

estimate ∆GAB. BAR can only reweight UAB(XA) and UBA(XB) optimally to estimate a

free energy difference. However, pairwise potential energy differences from nonneighbor-

ing state C, UCA(XC),UAC(XA),UBC(XB) and UCB(XC) could have been used to improve

the accuracy of ∆GAB but are left unused by BAR.

2.2.2.3 Reweighting with multiple states: Multistate Bennett Acceptance Ratio Mul-

tistate Bennett Acceptance ratio (MBAR) improves over BAR by incorporating all pairwise

potential energy differences to estimate the free energy differences between states. We used

a weighing function w in BAR to bridge the information from two states, similarly, we re-

quire a multistate bridging function to optimally weight information from multiple states.
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Let us first define our thermodynamic variables for a pair of thermodynamic states i,

and j. The ratio of partition functions/normalization constants Qi and Qj between any two

unnormalized probability distributions qi and qj defined on the same phase space can be

related to the following identity:

r =
Qi

Qj

=


∫
qidx∫
qjdx

 =



1∫
qjdx

1∫
qidx

 =



∫
qiαijqjdx∫
qjdx∫

qjαijqidx∫
qidx


=
Ej[qiαij]

Ei[qjαij]
(2.26)

For physical problems of thermodynamic interest, qi = exp(−βUi(xi)) = exp(−ui(x))

will be the Boltzmann weight, where ui(x) = βUi(x). Ei is the statistical expectation

value of a system sampled using qi and αij is any strictly positive function defined for that

same phase space. Identity in Eq. 2.26 is identical to the one used in Eq. 2.7. The only

difference is that of the bridging function. In BAR w is the bridging function which op-

timally weighs(bridges) thermodynamic information between a pair of neighboring states,

in MBAR, αij optimally weighs thermodynamic information between pairs of neighboring

as well as nonneighboring states.

We can relate the ratio r directly to the free energy and partition functions of the system.

∆Aij = −kBT ln r = −kBT ln

(
Qi

Qj

)
(2.27)

Although we use the canonical ensemble here, corresponding relationships holds true for

other ensembles as well. If we substitute the empirical estimator N−1
i

Nj∑
n=1

g(xin) for the

expectations Ei[g(xin] in Eq. 2.26, we can calculate the free energy differences from sim-
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ulations.

Qi

Qj

=

1

Nj

Nj∑
n=1

qi(xjn)αij(xjn)

1

Ni

Ni∑
n=1

qj(xin)αij(xin)

(2.28)

Cross multiplying and summing both sides from j = 1 to K in Eq. 2.28.

K∑
j=1

Qi

Ni

Ni∑
n=1

qj(xin)αij(xin) =
K∑
j=1

Qj

Nj

Nj∑
n=1

qi(xjn)αij(xjn) (2.29)

The multistate bridging function αij which minimizes the variance in the free energy

estimate has the following form:

αij(x) =
NjQ

−1
j

K∑
j=1

NkQ
−1
k qk(x)

(2.30)

We can take ci/Ni out of the summation and then switch the order of summation on the

left hand side of Eq. 2.29, and then use the formula for αij .

Qi

Ni

Ni∑
n=1

K∑
j=1

qj(xin)NjQ
−1
j

K∑
k=1

NkQ
−1
k qk(xin)

=
K∑
j=1

Qj

Nj

Nj∑
n=1

qi(xjn)NjQ
−1
j

K∑
k=1

NkQ
−1
k qk(xjn)

(2.31)

Eq. 2.31 can now be written as:

Qi

Ni

Ni∑
n=1

K∑
j=1

NjQ
−1
j qj(xin)

K∑
k=1

NkQ
−1
k qk(xin)

=
K∑
j=1

QjN
−1
j

Nj∑
n=1

NjQ
−1
j qi(xjn)

K∑
k=1

NkQ
−1
k qk(xjn)

(2.32)
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which reduces to:

Qi =
K∑
j=1

Nj∑
n=1

qi(xjn)
K∑
k=1

NkQ
−1
k qk(xjn)

(2.33)

Taking negative log on both sides:

fi = − ln(ci) = − ln


K∑
j=1

Nj∑
n=1

qi(xjn)
K∑
k=1

NkQ
−1
k qk(xjn)

 (2.34)

where fi is the dimensionless free energy, βiAi. If q(x) = exp(−u(x)) is the Boltzmann

weight, we have:

fi = − ln


K∑
j=1

Nj∑
n=1

e−ui(xjn)

K∑
k=1

Nke
fk−uk(xjn)

 (2.35)

OR

fi = − ln


K∑
j=1

Nj∑
n=1

1
K∑
k=1

Nke
fk−(uk(xjn)−ui(xjn))

 (2.36)

The above equation when written for all states gives a set of K nonlinear implicit equa-

tions in fi (where i ∈ [1...K]) which can be solved for all fi, using self consistent iteration

or Newton-Raphson root finding method.

So, we see that in MBAR the free energy estimate of a state i includes pairwise potential

energy differences from state i to all other states k measured for samples from each of the

sampled states j. It has been shown in the paper by Shirts [4] that MBAR for two states
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reduces to BAR.

The figure below summarizes the difference between one state reweighting, reweighting

with two states and multi-state reweighting.

Figure 2.2: Free energy estimates are most accurate when information from multiple states
is used with optimal reweighting. (a) Exponential averaging uses potential energy differ-
ences measured from only one state reweights using information from only one state. (b)
BAR uses potential energy differences measured from two states and optimally reweights
to estimate the free energy. (c) MBAR uses pairwise potential energy differences calculated
from a state to every other state for multiple states and then optimally reweights to estimate
the free energy.
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3 Using multistate reweighting to rapidly explore molec-

ular simulation parameters space for nonbonded inter-

actions

3.1 Introduction

In order to understand and predict molecular processes, we frequently need to estimate

thermodynamic properties such as free energies, enthalpies, entropies, and ensemble aver-

ages of structural quantities. In some cases, we can use statistical mechanical techniques to

construct analytic expressions for thermodynamic variables with various levels of approx-

imation. However, for properties that require more molecular detail, we require molecular

simulation techniques. Molecular dynamics (MD) simulations and Monte Carlo (MC) sim-

ulations are now used for in silico molecular design tasks such as engineering molecular

recognition [24] and drug design [25, 26, 27, 28]. For such problems, we need methods to

directly estimate the true thermodynamic properties of a given model molecular system, as

efficiently as possible, with no assumptions beyond those of the model itself.

Tasks such as computing the properties of many similar systems or refining force fields

using very large and diverse molecular sets require high throughput calculations which are

both accurate and precise [29, 30, 31, 32]. Free energy estimators, for example, typically

require collecting samples from every state for which the thermodynamic observables are

to be estimated, and potentially non-physical intermediate states as well. As the number of

states run into thousands, generating sufficient number of samples for all states becomes

impractical.

However, the sampled states contain information about nearby states in parameter space,

as they sample the same set of configurations with similar probability as would occur dur-
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ing direct simulations of these other choices of similar parameters. Such states are typically

referred to as having high phase space overlap. The differences between the probability of

any given configuration can be computed exactly using the ratio of the Boltzmann distri-

butions resulting from the choices of parameter set. Standard single reference reweighting

techniques can be used to compute free energies and expectation values between thermo-

dynamic states with high phase space overlap [33]. A number of useful methods have

been developed around reweighting from a single reference state, [34, 35, 36] though they

have clear limitations when used to calculate the properties of states with little phase space

overlap from the reference state [3, 30]. However, it is possible to generate significantly

improved estimates of thermodynamic observables if reweighting is performed from mul-

tiple sampled reference states [37, 4]. For example, the multistate Bennett acceptance ratio

(MBAR) [4] is a statistically optimal estimator which reweights samples from all sampled

states and predict thermodynamic properties at any of these, or any other unsampled states.

In this study, we demonstrate the power of this multistate reweighting approach by scan-

ning over the space of simulation parameters controlling nonbonded interactions without

actually simulating these many alternate states. We scan this space to identify computa-

tionally efficient parameter choices which give statistically indistinguishable free energy

differences and thermodynamic expectations from those obtained with the most rigorous,

computationally expensive parameters. This reweighting is performed using a free energy

calculation carried out at a single reference set of parameters. However, it is still multistate

reweighting, rather than single state reweighting, since the free energy calculation itself

involves simulations at a series of alchemical states interpolating between the two physical

end states.

This approach is appropriate for use in other such sensitivity analysis of many param-

eters simultaneously. For example, this approach is appropriate for computing changes in
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free energies with respect to model parameters, as noted in a study of changes in geometry

parameters for water [38], although in that case only small numbers of parameters were

examined rather than the large-scale scan presented here.

The choice of statistical estimator used to calculate equilibrium expectation values of

thermodynamic observables and free energy differences affects both the accuracy and pre-

cision of these estimates. [39, 40, 41, 42, 43, 44, 45, 30, 46, 47, 3] The differences in bias

and uncertainty in the observables are primarily due to the way each estimator operates

on the sampled energies as well as the assumptions made in the algorithm. MBAR es-

timates of thermodynamic observables generally have lowest bias and provably have the

lowest statistical error among all general analysis methods for typical molecular transfor-

mations [4, 3]. MBAR is particularly useful for the present study because of its correct

treatment of statistical uncertainty, especially when examining differences between quanti-

ties that are computed with the same set of sampled data and thus are highly correlated. In

this study, we will focus only on issues of sample analysis, rather than sample generation,

and so standard molecular dynamics is used to generate the samples.

The accuracy of any thermodynamic property estimator is limited by the quality of po-

tential energy calculations of the samples, as these energies are inputs to the estimator. If

the potential energies are not accurately calculated for the model, statistical errors may be

swamped by biases due to approximations in the potential. There are of course always

approximations in a given model, but there are also approximations in the simulation meth-

ods used to generate samples of the model, usually to improve simulation speed, and we

must make sure that we avoid errors due to such approximations. Otherwise, simulations

of putatively the same model performed with different simulation codes will give different

results.

One important caveat is that for our multistate reweighting method (or any reweight-
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ing method for that matter) to work, we are limited to varying nonbonded parameters that

still result in well defined, usually Boltzmann distributions. For molecular dynamics, this

means that the approximated forces must still be the gradient of the approximated potential.

Approximations such as the convergence tolerance of a self-consistent integrator or a large

number of time steps between neighbor-list updates result in a distribution that is not Boltz-

mann, and thus cannot be treated via reweighting, at least not with Boltzmann distribution

statistics. This also means methods such as Berendsen thermostats and barostats, which

give incorrect potential energy and volume distributions, [5] are also inappropriate to use

when generating samples for single or multistate reweighting applications.

By far the most common type of force field in biomolecular or materials simulations,

due to both the computational efficiency and ease of implementation, is a pairwise additive

force field. Most commonly, nonbonded energy terms in these force fields consist of fixed

partial charges and Lennard-Jones nonbonded interactions. Short-range, bonded terms of

a large variety are used to approximate local quantum mechanical behavior. The bonded

terms are usually calculated without additional approximations as the cost is negligible.

However, to accelerate the calculations, nonbonded interaction potentials are usually eval-

uated as sums of short range and long range contributions, frequently requiring a number

of assumptions, approximations, and tunable parameters to accelerate the long range con-

tribution with acceptable losses of accuracy. What ’acceptable’ means in this context must

generally be determined by the user and the application of interest.

Considerable research has been done to increase the efficiency and accuracy of Coulomb

and Lennard-Jones long range calculations. Efficient algorithms such as particle mesh

Ewald (PME) [48, 49], reaction-field [50], and particle-particle-particle-mesh (P3M) [51]

accelerate the calculation of Coulomb contributions using different assumptions and ap-

proximations. All of these methods have been a matter of significant study. Smith and
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Pettitt [52] suggest that for solvents with high relative permittivity, like water, Ewald arti-

facts are negligible but are more significant for solvents with low permittivity. Mark and

Nilson [53] found the PME was more reliable than group based cutoff methods for quanti-

ties such as the diffusion co-efficient, radial distribution function, distance-dependent Kirk-

wood G factor and average potential energy. Henrik[54] found that PME is more computa-

tionally efficient at the same level of accuracy than the original Ewald method and the fast

multipole methods. However, Hünenberger and McCammon found that Ewald methods

can introduce finite-size artifacts by imposing artificial periodicity on systems which are

inherently nonperiodic [55]. Overall, despite some potential drawbacks, Ewald methods,

especially implementations of PME, seem to be the most robust method to handle long

range electrostatics in molecular simulations and have become the most common electro-

statics method in molecular simulation.

The long range component of Lennard-Jones dispersion, usually treated using an r−6

functional form, is most typically calculated using an analytical correction which assumes

the radial distribution function g(r) = 1 at long range. A proper treatment of long range

dispersion energy is required to get proper enthalpies, densities, and free energies from

a simulation. [56] A homogeneous analytical correction is sufficient to properly capture

thermodynamic properties for pure fluids and small molecule solvation [56, 47]. However,

nonistropic systems require additional nonistropic corrections, either as inclusion of very

long range interactions at infrequent intervals [47, 57] or Ewald summation in the disper-

sion term [47, 58].

Less work has gone into the specific choice of the tunable parameters associated with

techniques for long range treatment of electrostatic and Lennard-Jones energies. The choice

of these parameters can significantly effect the speed and accuracy of the nonbonded poten-

tial calculations. Abraham [59] and Wang [60] have proposed strategies for selecting PME
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parameters, tuning them by minimizing the computational cost for a given tolerance in

force calculations. In both studies, a trajectory is generated with a certain set of nonbonded

parameters. The same trajectory is then rerun with different parameters, scanning the en-

tire parameter space until a desired tolerance in the average force calculations is reached.

Wang et al. calculate the error estimates using both the analytical and ik-differentiation

(differentiation in Fourier space) schemes to obtain an optimized set of PME parameters.

They observed that the optimization scheme based on force calculation can be unreliable

when used for nonhomogeneous systems such as proteins in water or lipid bilayers.

Even fewer papers have looked at the tuning of Lennard-Jones cutoffs. Shirts et al. [47]

found that analytical dispersion corrections were very accurate for small molecule solvation

or small molecule liquids for cutoffs as low as 0.8 nm, but failed badly for protein-ligand

binding calculations for cutoffs as long as 1.5 nm. In’t Veld et al. [58] found serious is-

sues in computation of surface tension when using analytical corrections for Lennard-Jones

cutoffs at most cutoff lengths.

The effect of these parameters on free energy calculations, which involve simulations

at multiple states, has received very little attention in the literature. Errors in potential

energy that are dependent on the coupling parameter λ in free energy calculations could

have significant effects that may not show up when computing properties at a single end

state. Measuring the effects of changing simulation parameters for quantities like ensemble

averages and especially free energies can be challenging because the statistical error must

be reduced to a low enough level to observe any change between two independent simula-

tions. This can require extremely long simulations to accurately detect small effects. For

free energies, these calculations require converging a series of intermediate simulations,

rather than just a single simulation. It is therefore unclear exactly how the parameters con-

trolling the long range terms must be treated in order to accurately predict thermodynamic
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observables like enthalpy and free energy differences. Given the statistical error in any such

computation of observables, are there levels of approximation that give negligible effect on

the statistical accuracy but still significantly increase simulation throughput?

To show the power of this multistate reweighting method, we identify the most com-

putationally efficient nonbonded parameters that are statistically indistinguishable from re-

sults converged to the effectively infinite cutoff limit, examining both free energies of solva-

tion and enthalpies of vaporization. We calculate these quantities with very high precision

by rapidly estimating the difference between the observable estimated using a particular

combination of nonbonded simulation parameters and the converged, expensive estimate

of the observable over a large multidimensional grid of parameters. Importantly, we find

that because of the high overlap in phase space between changes in nonbonded interac-

tions, this calculation can be carried out with samples collected from a single relatively

inexpensive set of nonbonded parameters. The information obtained in this process pro-

vides quantitative guidance for the choice of Lennard-Jones and PME cutoff parameters.

Varying all the nonbonded simulation parameters independently generates a combina-

torially large number of possible settings. We can simplify the process by noting that the

optimized Lennard-Jones and Coulomb simulation parameters must both be independently

be converged. It may be possible to make choices of the two sets of the parameters with

offsetting errors. However, any such offset is likely to be system dependent, involving a

balance of the dispersion, repulsion and dipolar density; we should therefore minimize the

error for each of the two interaction types independently.

We assume that we can perform the two optimizations serially, first optimizing the

electrostatic parameters while keeping Lennard-Jones parameters set at the initial reference

choice, and then optimizing the Lennard-Jones parameters. In theory, this process would

need to be self-consistently iterated to guarantee statistical convergence. In the end, we
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find that a single pass of this two step process converges to an optimized parameter set

that is statistically indistinguishable from essentially infinite cutoff parameters, with final

refinement that marginally improves performance.

We specifically evaluate free energies for the three molecular transformations proposed

in our benchmark set [3] as test systems, as they represent difficult versions of standard

problems occurring in small molecule free energy calculations. The three benchmark sys-

tems are a) united atom methane solvation in TIP3P water b) the dipole inversion null

transformation (switching from +1/-1 to -1/+1 charges in a diatomic molecule with UA

ethane parameters) in TIP3P water and c) united atom anthracene solvation in TIP3P wa-

ter. The observables we choose to evaluate for this study are (a) the free energy estimate of

the molecular transformations in the benchmark molecular set, (b) the enthalpy change dur-

ing molecular transformations, which for methane and anthracene solvation is simply the

enthalpy of solvation and (c) the molar heat of vaporization of TIP3P water. Force field pa-

rameters are given in the previous chapter. [3] Because of previous mentioned ambiguities

and artifacts in treatment of PME when the total charge changes during the transformation,

we do not test parameters for ion solvation because for lack of the correct reference. We

validate our predictions by comparing the predictions using only the samples from bench-

mark states with results generated using samples from simulations run at the expensive and

the proposed optimized parameter sets directly.

3.2 Methods

3.2.1 Parameters in short and long range nonbonded interaction calculation

We first describe the details of the different nonbonded interaction parameters involved

in the calculation of long range contributions in GROMACS [61, 62]. These details are
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generally but not always completely representative of the methods used in other simulation

codes; dealing with all possible methods of computing long range interactions is beyond

the scope of this study.

Lennard-Jones interactions: Lennard-Jones (LJ) interactions are calculated pairwise

for the short range out to rc,LJ , the LJ cutoff (in GROMACS, rvdw). The long range

contribution from rc,LJ to r =∞ is estimated using an analytical correction integrating the

pair potential out to infinity by assuming the radial distribution function g(r) = 1 beyond

the LJ cutoff.

ULJ =Ur<rc,LJ
+ Ur≥rc,LJ

=ULJ,short +
N

2
ρ

∫ ∞
rc,LJ

U(r)g(r)4πr2dr

=ULJ,short + 2πNρ

∫ ∞
rc,LJ

4ε

[(σ
r

)12

−
(σ
r

)6
]
dr

=ULJ,short + 8πNρεσ3

[
1

9

(
σ

rc,LJ

)9

− 1

3

(
σ

rc,LJ

)3
]

(3.1)

This correction is typically known as the dispersion correction as the r−12 repulsion contri-

bution to the integral almost completely disappears at typical cutoff distances of 3σ, where

σ is the Lennard-Jones radius. The free energy correction is equal to the energy correction

for fixed density, as all configurations have the exact same energy correction term. This ap-

proximation is easily generalized to systems with multiple LJ sites on the solute or different

compositions of solvent. [47]

The dispersion correction must be averaged over all configurations in the case of con-

stant pressure simulations, as each configuration has a different density, and a correspond-

ing correction to the virial must also be added for constant pressure MD algorithms. [56,

47]. For solvation in homogeneous liquids, this analytical correction will generally be suf-
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ficient using cutoffs around 3-5σ of the largest particles. [47] For heterogeneous systems

such as membrane simulations or very large solute molecules, extremely long cutoffs or a

more sophisticated long range treatment is required [47, 58], and the optimized parameters

derived in this study will not necessarily be applicable in those situations.

Coulomb interactions: Individual Coulombic interactions are proportional to 1/r and

thus converge slowly with distance. They must be summed over multiple periodic copies

of the system because of this slow convergence in order to approximate bulk behavior.

This calculation can be accelerated by taking the infinite sum over all periodic copies,

and splitting it into a pairwise real space short range contribution and a Fourier space long-

range contribution. In the particle mesh Ewald (PME) [48] technique and its smooth variant

SPME, [49] the “smeared” long-range charge distribution is interpolated onto a grid where

a fast Fourier transform (FFT) can be performed, and the self-interaction portion of the

“smearing” is analytically removed.

UCoulomb =Ureal + UFourier + Uself

UCoulomb =
f

2

∑
nx

∑
ny

∑
nz

N∑
i

N∑
j

qiqj
rij,n

Ureal =
f

2

N∑
i,j

∑
nx

∑
ny

∑
nz

qiqj
erfc(βrij,n)

rij,n

UFourier =
f

2πV

N∑
i,j

qiqj
∑
mx

∑
my

∑
mz

exp(−(πm/β)2 + 2πim · (ri − rj))
m2

Uself =− fβ√
π

N∑
i

q2
i

(3.2)

The primary contribution to the Fourier space sum are the first Mc wave vectors in each

of the mx my and mz directions [63], corresponding to the longest wavelengths. For PME
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calculations, we must specify an order of interpolation of the charge distribution onto a grid

(in GROMACS, pme_order), typically using a B-spline interpolation function which is

smoother and allows higher accuracy with increasing order of interpolation[49]. B-spline

interpolation also allows the force expressions to be evaluated analytically by differentiat-

ing the real and reciprocal energy equations, rather than using finite difference techniques.

While calculating Coulomb potential using the Ewald sums, we assume that the real space

sum becomes negligible before the Coulomb cutoff, rc,coul (in GROMACS, rcoul). The

Ewald tolerance, etol (ewald_rtol in GROMACS), is the relative value of the real space

potential at the Coulomb cutoff compared to the total electrostatic energy at that distance.

The Ewald tolerance parameter used in GROMACS is related to the Gaussian β parameter

in Eq. 3.2 used in some other simulation programs by:

etol = erfc(βrc,coul) (3.3)

A lower tolerance will give a more accurate direct sum but the number of included wave

vectors for the reciprocal sum must be increased to compensate. The Fourier spacing is the

maximum grid spacing for the fast Fourier transform grid used in PME. In GROMACS,

this grid spacing is used to specify the number of grid points in each of the x, y, and z

directions.

An additional parameter that must be set in GROMACS is rlist, the neighbor list

distance. The neighbor list must be larger than the distance between atoms in the same

charge group, or errors in energy can appear between neighbor list updates, but has negli-

gible effect on the energy as long as it is longer than this distance. For the systems in this

study, a neighbor list 0.2 nm larger than the maximum of the Coulombic and Lennard-Jones

cutoffs is sufficient, and does not significantly increase the computation time. This largest
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cutoff + 0.2 nm rule for rlist is used for all simulations in this study.

Switching functions: In both the Lennard-Jones and Coulomb cases as described above,

there is a discontinuity in the short range potential and the force at the cutoff. This abrupt

cutoff can lead to errors in the numerical integration, as the force is discontinuous for a

particle crossing the cutoff. A switching function in the potential can be introduced at the

cutoff for both the Lennard-Jones and Coulomb potentials. A spline of at least third order

in the potential is required so that the force is differentiable. In GROMACS, this switching

function is quintic:

Unonbonded =S(r)U(r)

S(r) = 1 r < rsw

= 1− 10
(r − rsw)3

(rc − rsw)3
+ 15

(r − rsw)4

(rc − rsw)4
− 6

(r − rsw)5

(rc − rsw)5
rsw < r ≤ rc

= 0 r > rc

(3.4)

In GROMACS, the switch begins at rsw and ends at rc, and is specified by rvdw_switch

and rcoul_switch depending on the potential type. We will occasionally refer to a

switching distance rdsw = rc − rsw, a switching range.

In the case of Lennard-Jones particles, a complementary switch function can be added

to the dispersion correction, meaning no nonbonded energy is lost from the full interaction

as long as the radial distribution function is constant outside the start of the switch. In the

case of the Coulomb interaction, a short range real space potential switch cannot be di-

rectly matched by a compensating switch in the Fourier space potential, so non-negligible

switching distances will distort the true 1/r potential in the cutoff region. Because etol is

usually quite low near the cutoff, this energy loss should be fairly small, but has not been
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quantified before. A smaller switch width will minimize this distortion of the potential.

However, small switch widths also cause moderate spiking in the force at the cutoff, which

can potentially affect the kinetics of the system and potentially the stability of the integra-

tion. To achieve a balance between the loss in energy without introducing a substantial

force spike we must tune the switching distance both for LJ and Coulomb potentials.

It is also possible to eliminate cutoffs using a shifting function, where the potential

surface is shifted down to zero at the cutoff, or a combination of the shifts and switches [64,

65]. In this study, we only examine the switching function. A shift affects the entire

potential energy surface, and thus causes large effects on ensemble averages such as the

enthalpy or the free energy examined in this chapter. On the other hand, properly balanced

shift functions eliminate the force spike, and where conformational properties are of most

interest, rather than free energies, they may be more appropriate. Additionally, group-

based shifts for electrostatics, which are the most common type, have no effect since the

shift components cancel for net-neutral groups. In any case, we will find that properly

tuned switch functions do not significantly affect free energies or ensemble averages, and

at least in this study we will not explore any other the tradeoffs between switching and

shifting functions.

The space of all the possible nonbonded simulation parameters is clearly multidimen-

sional. Specifically, we have the order of B-spline interpolation (order), tolerance in

the real space cutoff (etol), the Fourier spacing (FS), Coulomb cutoff(rc,coul), Coulomb

switching range (rsw,coul), Lennard-Jones cutoff (rc,LJ ), and Lennard-Jones switching range

(rsw,LJ ). Many of the parameters cannot be set independently for high-quality simulation

results, and the PME parameters in particular are interdependent; a good Fourier spacing

for one choice of etol may not be good for another. Each choice of a set of nonbonded

simulation parameter affects the computational cost and accuracy of the thermodynamic

52



sampling differently. Certain choices of parameters, such as such as large cutoffs or very

fine Fourier spacing significantly increase the simulation time. But beyond a certain point,

the increased cost gives limited returns in accuracy, and we seek to identify the speed re-

quired for a specified level of accuracy.

The “expensive” reference parameter set we examine includes an Ewald tolerance (etol)

of 10−10 (smaller is more accurate), Fourier grid spacing (FS) of 0.04 nm (smaller is more

accurate), and a B-spline order of 6 (higher is more accurate). The expensive Coulomb

real-space cutoff (rc,coul) and Lennard-Jones real-space cutoff (rc,LJ ) varied with the sys-

tem, and were both 1.3 nm for methane solvation, 1.5 nm for dipole inversion and 1.4 nm

for anthracene solvation, chosen to be the longest possible cutoffs for the respective simu-

lation boxes. Switch distances for the converged PME parameters were chosen to be zero

for Coulomb and 0.001 nm for Lennard-Jones; switches only improve the stability of the

numerical integration, not the energies themselves. The Lennard-Jones switch distance for

comparison was chosen as 0.001 nm, effectively zero, because of implementation-specific

constraints on parameter choices in GROMACS.

The order of interpolation range tested was between 3 (the minimum value in GRO-

MACS) and 6, beyond which the potential energy change was negligible for systems of

this size for any choice of Coulomb parameters examined. The Fourier spacing range was

between 0.04 nm (any smaller became computationally untenable because of expense, but

only negligibly changed the energy) to 0.20 nm, which is longer scale than many molecular

details. etol ranged between 10−10 and 10−2, equivalent to a β between approximately 5

and 2 nm−1, thus extending beyond the range of typical values for β. The largest cutoffs

possible were limited by the box size for the benchmark molecular set. The lowest cutoff

of 0.6 nm for all systems was set to be smaller than for all standard MD simulations.

In the first phase of Coulomb parameter optimization, LJ parameters fixed to those
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used in our previous benchmark study [3], which had been selected based on anecdotal

experience from previous large scale studies [30, 31, 66]. The selected values used to

search through the multidimensional parameter space are given in Table 3.1.

Parameter Parameter value

Order of interpolation (order) 3, 4, 5, 6

Ewald tolerance (etol) 10−2, 10−4, 10−6, 10−8, 10−10

Fourier spacing (FS) (nm) 0.04, 0.06, 0.08, 0.10, 0.12,

0.14, 0.16, 0.18, 0.20

Coulomb Cutoff (rc,coul) (nm) 0.6, 0.7, 0.8, 0.9, 1.0,

1.1, 1.2, 1.3, 1.4, 1.5

Coulomb Switch width (nm) 0.2, 0.18, 0.16, 0.14, 0.12, 0.10,

rc,Coul − rsw,coul 0.08, 0.06, 0.04, 0.02, 0.01, 0.001

LJ Cutoff (rc,LJ ) (nm) 0.6, 0.7, 0.8, 0.9, 1.0,

1.1, 1.2, 1.3, 1.4, 1.5

LJ Switch width (nm) 0.2, 0.18, 0.16, 0.14, 0.12, 0.10,

rc,LJ − rsw,LJ 0.08, 0.06, 0.04, 0.02, 0.01, 0.001

Table 3.1: Nonbonded interaction parameter values examined in the optimization process.

3.2.2 Phase one: Optimization of PME parameters

We first perform the search through Coulomb parameter space, specifically examining the

values of the order of B-spline interpolation, the Ewald tolerance, the Fourier spacing, and

the Coulomb cutoff. The first portion of search was performed over 180 parameters per

rc,coul distance, giving 1440 combinations for methane solvation, 1800 combinations for
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dipole inversion and 1620 combinations for anthracene solvation, since each molecule had

different box size and therefore a different maximum allowable cutoff.

3.2.2.1 Difference in free energy estimates due to approximations introduced by

simulation parameters Samples from equilibrium isobaric-isothermal simulations cor-

responding to just one parameter set are used to reevaluate energies for different parameter

sets. MBAR reweights the sampled energies using the reevaluated energies to estimate the

observables at the unsampled parameter set. The variance-minimizing free energy estimat-

ing equation for MBAR is:

fi = − ln
K∑
k=1

NK∑
n=1

exp[−ui(xkn)]
K∑
k′=1

Nk′ exp[fk′ − uk′ (xkn)]

(3.5)

where K is the total number of states and Nk is the total number of uncorrelated samples

available from an equilibrium simulation at state k. Each free energy is thus a weighted sum

of all samples from all k states. fi = βGi, whereGi is the Gibbs free energy associated with

state i. ui(xkn) is the reduced potential energy of the nth sample belonging to equilibrium

simulation of state k but evaluated at state i. For the NPT simulations carried out here, the

reduced potential ui(xkn) = β(Ui(xkn) + PVkn), where P is the applied pressure and Vkn

is the simulation volume of sample kn.

Equilibrium samples ~xB were obtained from benchmark simulations from our previous

study, with nonbonded simulation parameters PB listed in Table 3.6. Samples from other

simulation parameter sets i are denoted as ~xi. Samples at the benchmark parameters were

obtained from 100 5 ns uncorrelated simulation runs for free energy calculations for the

systems in our benchmark study [3], with simulation parameters noted there. The samples

were stored as full precision coordinate sets 50 ps apart, which is longer than the maximum
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autocorrelation time of 30 ps for the potential energies found in our previous study of the

same system. The samples can thus be considered effectively independent. The first 10%

(0.5 ns) of data from each run was discarded, leaving at total of 9000 samples at each of

the intermediate states from the free energy calculation.

We recalculate potential energies using these samples at a range of parameters sets

Pi, with PE being the most expensive nonbonded simulation parameters discussed above,

with expensive “gold standard” reference parameters. Energies were calculated with GRO-

MACS 4.5.3 with bug fixes later incorporated into the 4.5.7 and 4.6 versions. [62] Ui(xB)

is therefore the set of potential energies calculated using parameter set Pi with the samples

~xB, with UE(xB) denoting energies evaluated with the expensive parameter set on sam-

ples from the simulations done with benchmark parameter set. Benchmark energies were

recalculated along with all other energies to maximize consistency of the energies.

To calculate free energy differences and the uncertainties in these free energy differ-

ences between PE and a given choice of Pi using MBAR, we first construct a 3-dimensional

matrix U of size (3K, 3K,Nk), where K is the number of states in the free energy sim-

ulation performed in the benchmark state. When we re-evaluate energies for expensive

and ith trial parameter sets we introduce 2K new thermodynamic states, K states for fully

converged, “expensive” parameters, and K states for ith trial parameter set. Thus we have

a total of 3K thermodynamic states defined. In the optimization procedure, only the first

K intermediate states simulated using the original benchmark parameters have samples,

though more generally for multistate reweighting, all states might include samples. There

are K = 8 states spanning the initial and final states for methane solvation, 11 for dipole

inversion, and 15 for anthracene solvation, with the choice of K for each system discussed

in the previous study [3].
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We write U as the 3D matrix:

U(3K × 3K ×Nk) =


U0(x0,1···N0) · · · U3K−1(x0,1···N0)

... . . . ...

U0(x3K−1,1···N3K−1
) · · · U3K−1(x3K−1,1···N3K−1

)



=


UB(xB) UE(xB) Ui(xB)

UB(xE) UE(xE) Ui(xE)

UB(xi) UE(xi) Ui(xi)


(3.6)

Each element of the above matrix is a K ×K ×Nk matrix as it extends out to Nk samples

in the third dimension. In these sub-matrices, the subscript to U indicates the parameter

set used for energy evaluation. The subscript to X indicates the parameter set with which

the sample configurations were generated. The vector N in Eq. 3.7 contains the number of

uncorrelated equilibrium samples collected at each state k.

N = [N0, . . . , N3K−1] (3.7)

The different submatrices of the matrix U in Eq. 3.6 are:
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UB(XB)(K ×K ×Nk) =


U0(x0,1···N0) · · · UK−1(x0,1···N0)

... . . . ...

U0(xK−1,1···NK−1
) · · · UK−1(xK−1,1···NK−1

)



UE(XB)(K ×K ×Nk) =


UK(x0,1···N0) · · · U2K−1(x0,1···N0)

... . . . ...

UK(xK−1,1···NK−1
) · · · U2K−1(xK−1,1···NK−1

)



Ui(XB)(K ×K ×Nk) =


U2K(x0,1···N0) · · · U3K−1(x0,1···N0)

... . . . ...

U2K(xK−1,1···NK−1
) · · · U3K−1(xK−1,1···NK−1

)



(3.8)

Energies computed using these three different simulation input sets, UB(XB), UE(XB),

Ui(XB) each having K states, is the input for MBAR Eq. 3.5.

These three sets represent a new set of 3K thermodynamic states. U0(x0,n) eval-

uated using P1[TB, EB] is different compared to U0(x0,n) evaluated using P1[TB, EE].

U0(x0,n) evaluated using P1[TB, EE] is therefore present in the U matrix as a different

thermodynamic state UK(x0,n). U0(x0,n) evaluated using P1[TB, Ei] is present as yet

another thermodynamic state in the U matrix, U2K(x0,n). Similarly UK−1(x0,n) evalu-

ated using P1[TB, EB] is different compared to UK−1(x0,n) evaluated at P1[TB, EE] and

P [TB, Ei], which in the U matrix appears as different thermodynamic states as U2K−1(x0,n)

and U3K−1(x0,n) respectively. The same holds true for other intermediate states as well and

hence we have now a total of 3K thermodynamic states.
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UB(XE)(K ×K ×Nk) =


U0(xK,1···NK

) · · · UK−1(xK,1···NK
)

... . . . ...

U0(x2K−1,1···N2K−1
) · · · UK−1(x2K−1,1···N2K−1

)



UE(XE)(K ×K ×Nk) =


UK(xK,1···NK

) · · · U2K−1(xK,1···NK
)

... . . . ...

UK(x2K−1,1···N2K−1
) · · · U2K−1(x2K−1,1···N2K−1

)



Ui(XE)(K ×K ×Nk) =


U2K(xK,1···NK

) · · · U3K−1(xK,1···NK
)

... . . . ...

U2K(x2K−1,1···N2K−1
) · · · U3K−1(x2K−1,1···N2K−1

)



UB(Xi)(K ×K ×Nk) =


U0(x2K,1···N2K

) · · · UK−1(x2K,1···N3K−1
)

... . . . ...

U0(x3K−1,1···N3K−1
) · · · UK−1(x3K−1,1···N3K−1

)



UE(Xi)(K ×K ×Nk) =


UK(x2K,1···N2K

) · · · U2K−1(x2K,1···N3K−1
)

... . . . ...

UK(x3K−1,1···N3K−1
) · · · U2K−1(x3K−1,1···N3K−1

)



Ui(Xi)(K ×K ×Nk) =


U2K(x2K,1···N2K

) · · · U3K−1(x2K,1···N3K−1
)

... . . . ...

U2K(x3K−1,1···N3K−1
) · · · U3K−1(x3K−1,1···NK−1

)


(3.9)

For the optimization procedure, Nk = 0 for the 2K total states of the free energy

calculations carried out with parameter sets PE and Pi. This means that Ui(xE) and Ui(xi)

for any choice of state i are both undefined and unused in the initial phases of this study.
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More generally, we could use this formalism to compute free energies using samples from

multiple states simultaneously. In this chapter, we initially restrict ourselves to the case of

sampling from a single set of parameters, which we will find will be sufficient to predict

thermodynamic properties over the range of simulation parameters of interest. We can then

validate the final results with data collected from multiple states.

We also note that there is no specific reason to restrict the property prediction to han-

dling three states (reference, converged and trial) at a time; the multistate reweighting for-

malism is general enough to perform computations between any number of sampled and

unsampled states simultaneously. For example, we could predict the properties of all of

the unsampled states simultaneously instead of one at a time. However, the memory re-

quirement for the entire matrix of all states becomes prohibitive, and it provides no extra

statistical efficiency; the results only change when we change the sampled data, not the

order in which the properties at unsampled parameter sets are computed.

Instead we focus on the most flexible and straightforward approach, using the thermo-

dynamic states with energies sampled (in this case, the K benchmark states), the states

being used as a reference (in this case, the K expensive parameter states), and the set of

states at one other trial parameter set of interest. The process can be made even more

efficient if the free energies and weights are saved from the first round of self-consistent

iteration, as generating weights for new states with no samples does not require any addi-

tional iterations, but for this study, such optimization was not used.
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For this optimization process, we can rewrite the matrix as:

U(3K × 3K ×Nk) =



U0(x0,1···N0) · · · U3K−1(x0,1···N0)

... . . . ...

U0(xK−1,1···NK−1
) · · · U3K−1(xK−1,1···NK−1

)

0 · · · 0

... . . . ...

0 · · · 0



=


UB(XB) UE(XB) Ui(XB)

0 0 0

0 0 0



(3.10)

N = [N0, . . . , NK−1, 0, 0, . . . , 0, 0] (3.11)

The U matrix and the N vector in Eqns. 3.10 and 3.11 are the inputs to MBAR (Eqn. 3.5)

which is solved using standard optimization techniques [4] for Gi for all 3K states. The

result is a matrix ∆G with all pairwise free energy difference estimates

∆G(3K × 3K) =


G0 −G0 = 0 · · · G3K−1 −G0

... . . . ...

G0 −G3K−1 · · · G3K−1 −G3K−1 = 0

 (3.12)

and also a matrix of an estimate of the statistical error δ(∆G) for each of these free energy

differences. The uncertainties in the pairwise difference estimates ∆G are estimated using
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Eq. 12 in Shirts and Chodera [4].

δ(∆G)(3K × 3K) =


0 · · · δ(G3K−1 −G0)

... . . . ...

δ(G0 −G3K−1) · · · 0

 (3.13)

where the diagonal is identically zero as there is no uncertainty in the value of zero for

the free energy between a state and itself. For standard molecular transformation calcu-

lations, these error estimates are extremely reliable estimates of the true sample standard

deviation [3]. The free energy of molecular transformation in the benchmark molecular set,

solvation or dipole inversion, is equal to the difference in free energies of the end states, in

this case ∆GB = GK−1 −G0, ∆GE = G2K−1 −GK , and ∆Gi = G3K−1 −G2K .

However, we are most interested in the free energy difference ∆∆GEi = ∆Gi −∆GE

rather than any of the free energies individually. At first, it may seem that we cannot esti-

mate this difference with any significant degree of precision, because of the uncertainties

in the individual free energy estimations. However, the variance estimate of ∆∆GEi =

var (∆∆GEi) is not simply the sum of the variances var (∆GE) and var (∆Gi), because

the two free energy estimates are computed from the same samples and are thus are highly

correlated. We must instead derive the variance estimate for ∆∆GEi using the properties

of the covariance:

var (∆∆GEi) =var ((G2K−1 −GK)− (G3K−1 −G2K))

=cov (G2K−1 −GK , G2K−1 −GK)

+ cov (G3K−1 −G2K , G3K−1 −G2K)

− 2cov (G2K−1 −GK , G3K−1 −G2K)

(3.14)
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Where cov (x, y) is the covariance of the two variables x and y. With repeated application,

the above equation yields the following:

var (∆∆GEi) =var (G2K−1) + var (GK) + var (G3K−1) + var (G2K)

− 2 [cov (G2K−1, GK) + cov (G3K−1, G2K)

+ cov (G2K−1, G3K−1)− cov (G2K−1, GK)

− cov (GK , G3K−1) + cov (GK , G2K)]

(3.15)

Each term in the above equation can be straightforwardly extracted from the asymptotic

covariance matrix, Θij , estimated using Eq. 8 of Shirts and Chodera [4].

We emphasize that this equation, and the resulting ability to calculate the covariances

between two observables calculated from the data, is the absolute core of the success of

this reweighting approach to estimate changes in simulation as well as thermodynamic

parameters(temperature and pressure). With it, we can drastically reduce the variance in

differences of thermodynamic variables differences. Once we have all the ∆∆GEi, pro-

vided the statistical uncertainties δ(∆∆GEi) = (var (∆∆GEi))
1/2 are low enough, we can

find the parameter set for which ∆∆GEi is less than the desired level of bias in free energy

estimate, and then choose the parameter set that are most computationally efficient for that

level of bias.

3.2.2.2 Difference in enthalpy of transformation We also calculate the enthalpy of

molecular transformation, the difference between the initial and the final state enthalpies

(〈H〉λ=1−〈H〉λ=0)±δ(〈H〉λ=1−〈H〉λ=0). For methane solvation and anthracene solvation,

the enthalpy of molecular transformation is the solvation enthalpy.

The expectation value of H = Uint + PV is the enthalpy of the simulated state. Each
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energy term in the U matrix, Eq. 3.10, is equal to total internal energy Uint plus the pres-

sure times volume term PV . We can therefore use this expression U as the input matrix of

observables to Eqs. 15 and 16 of Shirts and Chodera for expectations of observables. [4]

Solving these equations (which requires the weights generated solving for the free ener-

gies) yields the equilibrium expectation values of enthalpies at all states and corresponding

uncertainties in the expectation values.

〈H〉 =


〈H〉0

...

〈H〉3K−1

 , δ(〈H〉) =


δ(〈H〉0)

...

δ(〈H〉3K−1)

 (3.16)

Where these two vectors are size (3K × 1), We can also obtain the pairwise difference

in expectation values between two states, and associated uncertainties in these differences,

which are size (3K × 3K) arrays.

∆〈H〉 =


〈H〉0 − 〈H〉0 = 0 · · · 〈H〉3K−1 − 〈H〉0

... . . . ...

〈H〉0 − 〈H〉3K−1 · · · 〈H〉3K−1 − 〈H〉3K−1 = 0

 (3.17)

δ(∆〈H〉) =


0 · · · δ(〈H〉3K−1 − 〈H〉0)

... . . . ...

δ(〈H〉0 − 〈H〉3K−1) · · · 0

 (3.18)

We obtain ∆∆H from Eq. 3.17.

∆∆HEi = (〈H〉2K−1 − 〈H〉K)− (〈H〉3K−1 − 〈H〉2K) (3.19)
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We derive the error estimate δ(∆∆HEi) using the covariance formula, similar to the

one used for the error estimate of ∆∆GEi.

var (∆∆HEi) =cov(H2K−1 −HK)− (H3K−1 −H2K),

(H2K−1 −HK)− (H3K−1 −H2K))

=var (H2K−1 −HK) + var (H3K−1 −H2K)

− 2[cov (H2K−1, H3K−1)− cov (H2K−1, H2K)

− cov (HK , H3K−1) + cov (HK , H2K)]

(3.20)

The first two variance terms in Eq. 3.20 can be directly read from the matrix in Eq.3.18.

Unlike in the case of δ(∆∆GEi), the covariance terms cannot be read directly from the

covariance matrix Θ corresponding to the expectation values. The estimator of the uncer-

tainty for equilibrium expectation values is given by Eq. 16 in Shirts and Chodera [4]:

δ2Â ≡ cov (ĉA/ĉa, ĉA/ĉa) = Â2(Θ̂AA + Θ̂aa − 2Θ̂Aa) (3.21)

Using Eq. 10 of Shirts and Chodera [4] we can derive an expression for the covariance

terms of the form cov (ĉA/ĉa, ĉB/ĉb):

cov (ĉA/ĉa, ĉB/ĉb) = ÂB̂(Θ̂AB − Θ̂Ab − Θ̂aB + Θ̂ab) (3.22)

The four covariance terms in Eq. 3.20 can be calculated using Eq. 3.22. This allows us

to compute ∆∆HEi ± δ(∆∆HEi) between the expensive parameters and any other set of

simulation parameters taking into account the correlation between the two measurements.

For notational clarity, we will sometimes use ∆∆G and ∆∆H to refer to ∆∆GEi and

∆∆HEi in the rest of the chapter.
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3.2.2.3 Difference in enthalpy of vaporization of water We calculate the enthalpy

of vaporization of water using the estimate of enthalpy of the last alchemical state of

methane solvation, which includes water with only a single noninteracting dummy united

atom methane molecule. We assume that the enthalpy difference in vapor is negligible be-

tween parameter sets, which is exact in the ideal gas limit. The enthalpy of the simulation

box after subtracting the kinetic energy of the dummy methane molecule is the enthalpy of

liquid TIP3P water. The difference in the enthalpies of vaporization of water evaluated at

two different simulation parameter sets, PE and Pi, will be equal to the difference in the

enthalpies of the last state of methane solvation of the two sets, as the PV terms and kinetic

energies of the dummy methane molecule cancel out. Thus the difference in the enthalpy

of vaporization of water ∆Hvap can also be read directly from Eq. 3.17. Similarly, the

uncertainty in ∆Hvap can be directly read from Eq. 3.18.

∆Hvap =Hvap,E −Hvap,i

≈
〈
Hliq,i)

〉
−
〈
Hliq,E)

〉
= 〈H〉3K−1 − 〈H〉2K−1

δ(∆Hvap) =δ(〈H〉3K−1 − 〈H〉2K−1)

(3.23)

3.2.3 Phase two: Optimization of the Coulomb switch

Once we have the optimized Coulomb parameters from the first phase of our search, we

can investigate how much of a difference Coulomb switch parameters make in the ther-

modynamic estimates ∆∆G, ∆∆H and ∆Hvap. Although the switching parameters could

have been optimized simultaneously with the other electrostatic parameters, the Coulomb

switch was optimized independently to make it easier to identify the effect of this switch on

the thermodynamic properties, which is an open question. We construct the input matrix U
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in a similar way as described in previous section. The search proceeds identically, except

now varying only the rsw,coul. Because the optimized Coulomb cutoff is chosen as 0.9 nm

(see the Results section for selection criteria) we calculate ∆∆G, ∆∆H and ∆Hvap for

Coulomb switches starting at 0.7, 0.72, 0.74, 0.76, 0.78, 0.8, 0.82, 0.84, 0.86, 0.88, 0.89

and 0.899 nm, terminating at 0.9 nm.

3.2.4 Phase three: Optimization of the Lennard-Jones parameters

After understanding the behavior of the Coulomb switch, we optimize the Lennard-Jones

cutoff rc,LJ and Lennard-Jones switching distance rsw,LJ with fixed Coulomb parameters.

Here, we simultaneously optimize both the LJ cutoff and the LJ switching distances. The

treatment of the Lennard-Jones switch is somewhat different than in the Coulomb switch

case, as in the Lennard-Jones the missing potential energy can be properly treated in the

dispersion correction by analytically including the switch function in a way that it cannot

be treated in the Fourier space portion of the Coulomb calculation. The maximum cutoffs,

set by the box sizes of 1.3 nm for methane solvation, 1.5 nm for dipole inversion and

1.4 nm for anthracene solvation along with optimized PME parameters are chosen as the

‘expensive’ LJ parameter reference. Switch width varies from 0.001 nm to 0.2 nm as shown

in Table 3.1.

An important factor in our search is the choice of criteria to by which we decide whether

optimized parameters are sufficiently close to the more expensive parameters for general

use. We consider two possible choices:

1. A set of parameters is sufficiently close to the converged parameters if ∆∆GEi ≤

δ(∆GE); in words, the difference in free energies between the two parameter sets is

smaller than the uncertainty in a standard calculation, in our case the 10 ns (with 1
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ns used for equilibration) calculation used for validation.

2. A set of parameters is sufficiently close to the converged parameters if ∆∆GEi ≤

δ(∆∆GEi); in words, the difference in free energies is smaller than the uncertainty

in the calculation of this difference.

If calculations are being used for a large scale simulation testing, then likely the first criteria

is sufficient; it says that any errors due to the parameters will be statistically indistinguish-

able from statistical errors. However, to be fully converged, and for the highest precision

calculations, then the second criteria would be required. The second criteria is much more

stringent, because using reweighting we are able to calculate differences of differences of

free energies with extremely high precision.

For the first and second phase of the search, over the Coulomb parameters, we choose

the first criteria. For the third, van der Waals phase, we find that all choices already match

the first criteria, and then turn to the second criteria, in some cases requiring us to return

and perform additional refinement of the Coulombic calculations in order to reach this more

stringent second criteria.

Once we have determined which sets of parameters are sufficiently accurate, we iden-

tify the parameters that are the most computationally efficient. In all cases, computational

expense for a given set of parameters is reported in ns/hr, estimated using 1000 steps of

simulation at a single intermediate state run in parallel on 8 cores on the same node. Exper-

imentation showed that 1000 steps of MD is sufficient to eliminate error due to time used

in initializing and finalizing simulation runs. Running on different cores may change the

tradeoff of expense slightly, but examining all possible combinations of hardware configu-

rations for timings is beyond the scope of this study.
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3.3 Results

3.3.1 Optimized PME parameters

The difference in thermodynamic quantities between simulations run with converged PME

parameters and the 1440 other parameters examined for methane solvation over the entire

multidimensional space is plotted in Figures 3.1–3.3. The ∆∆G for dipole inversion and

anthracene solvation, which are qualitatively the same, are shown in Figures 3.5 and 3.7

respectively. Figure 3.1 shows ∆∆G plotted as a function of four PME parameters for

methane solvation. The order of interpolation of B-spline varies by columns from 3 on left

to 6 on right. The Ewald tolerance varies by rows from 10−2 on the top row to 10−10 at the

bottom row. At a fixed order of interpolation and Ewald tolerance, ∆∆G is plotted in each

subplot as a function of Fourier spacing and Coulomb cutoff.

From Figure 3.1, ∆∆G indeed approaches zero for converged PME parameters such

as high Coulomb cutoff and small Fourier spacing, providing a sanity check on the pro-

cedure. Similar plots for the difference in enthalpy of molecular transformation ∆∆H ,

Figure 3.2, the difference in enthalpy of vaporization of water ∆Hvap, Figure 3.3, show

expected convergence for expensive parameters.
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Figure 3.1: ∆∆GEi for methane solvation between reference expensive PME parameters
and a choice of the four PME parameters: Coulomb cutoff (x-axis of each graph), Fourier
spacing (color), PME order (graphs arranged left to right), and Ewald tolerance (graphs
arranged top to bottom). The difference in free energy differences goes to zero as the
reference parameters are approached.
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Figure 3.2: Change in enthalpy of methane solvation (〈H〉λ=1−〈H〉λ=0) between expensive
reference PME parameters and a choice of the four PME parameters: Coulomb cutoff (x-
axis of each graph), Fourier spacing (color), PME order (graphs arranged left to right), and
Ewald tolerance (graphs arranged top to bottom). Although we can see the differences go
to zero in the limit of the expensive reference parameters, because of the statistical noise in
the enthalpy of solvation calculation, the level of bias for any given choice of parameters is
difficult to identify.
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Figure 3.3: Change in enthalpy of vaporization ∆Hvap for TIP3P water between expensive
reference PME parameters and a choice of the four PME parameters: Coulomb cutoff (x-
axis of each graph), Fourier spacing (color), PME order (graphs arranged left to right),
and Ewald tolerance (graphs arranged top to bottom) for methane solvation, showing clear
convergence to zero for more expensive parameters.
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Figure 3.4: Simulation speed for methane solvation as a function of different PME param-
eters, Coulomb cutoff (x-axis of each graph), Fourier spacing (color), PME order (graphs
arranged left to right), and Ewald tolerance (graphs arranged top to bottom) . Simulation
speed is unaffected by the change in the order of interpolation and Ewald tolerance for high
Fourier spacings but it increases with decreasing Fourier spacing and increasing Coulomb
cut-off.

Of the three quantities, ∆∆G, ∆∆H and ∆Hvap, we use only ∆∆G and ∆Hvap in our

parameter search. The errors δ(∆∆H) are larger than the errors δ(∆∆G) and δ(∆Hvap)

by more than two orders of magnitude, and thus are not nearly as useful in detecting small

changes due to parameterizations. We note that the predictions of ∆HE −∆HO are statis-

tically indistinguishable from the validated direct calculations for even the starting bench-

mark parameters, as can be seen in Tables S1–S3 in the appendix.But since the uncertainties

in ∆H are of the order 1-100 kJ/mol, and the uncertainties δ(∆∆H) themselves are of the

order 1-70 kJ/mol, it is impossible to optimize the fine details of the simulation parame-

ters when including this value in the criteria. This difference in the amount of uncertainty
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for these observables is a consequence of enthalpies and entropies being statistically much

harder to compute than free energies of the same processes.

The computational speed in ns/hours is plotted as a function of the four PME param-

eters in Figures 3.4, 3.6 and 3.8 for methane solvation, dipole inversion and anthracene

solvation respectively. Several patterns in the computational time required as a function of

parameters can be noted. First, the computation time required is essentially independent

of etol. The computational time increases with increasing order of interpolation for large

Fourier spacings 0.12–0.2 nm, but smaller Fourier spacings show no change in computa-

tional expense with respect to change in order of interpolation. However, with decreasing

Fourier spacing and increasing Coulomb cutoff the computational expense increases sig-

nificantly. Speed of simulation was essentially identical for all three molecules, as it is

determined primarily by the system size in number of atoms, which was roughly equal.

Since we can easily determine the difference in thermodynamic properties from the con-

verged estimates as well as computational speed as a function of the four PME parameters,

we can easily find which set of parameters reach yield a given error ∆∆G, ∆∆H and

∆Hvap in the least amount of computational time.

Although the proper choice of parameters depends on the degree of accuracy desired

for an application, we propose optimized parameters for which deviations in equilibrium

observables satisfy the criteria described in the methods section in minimum time. Using

the first criteria, a parameter set i is statistically indistinguishable from the expensive pa-

rameter set if ∆∆GEi ≤ δ(∆GE). δ(∆GE) is 0.07 kJ/mol for methane solvation, 0.16

kJ/mol for dipole inversion, and 0.13 kJ/mol for anthracene solvation. δ(Hvap,E) is 0.002

kJ/mol. Over the collection of all parameter sets i which have ∆∆GEi less than corre-

sponding δ(∆GE), the fastest results can be achieved with order of interpolation 4, relative

Ewald tolerance 10−4, Fourier spacing 0.12 nm, and Coulomb cutoff 0.9 nm for all three
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benchmark systems.

Coulomb cutoffs larger than 0.9 nm or Fourier spacings smaller than 0.12 nm give sta-

tistically indistinguishable results from for standard free energy calculations, i.e., within

0.05 kJ/mol for methane solvation and within 0.1 kJ/mol for dipole inversion and an-

thracene solvation. There are no significant gains in accuracy if we increase Coulomb

cutoff or decrease Fourier spacing beyond this point. However, the predicted ∆∆GEi in-

creases by an order of magnitude when rcoul is decreased to 0.8 nm, or for any Fourier

spacing larger than 0.12 nm, so we cannot improve the efficiency of the simulation using

those parameters without drastically worsening the results.

Figure 3.5: ∆∆GEi for dipole inversion between converged PME parameters and a choice
of the four PME parameters Coulomb cutoff (x-axis of each graph), Fourier spacing (color),
PME order (graphs arranged left to right), and Ewald tolerance (graphs arranged top to
bottom).
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Figure 3.6: Simulation speed for dipole inversion as a function of different PME param-
eters, Coulomb cutoff (x-axis of each graph), Fourier spacing (color), PME order (graphs
arranged left to right), and Ewald tolerance (graphs arranged top to bottom).
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Figure 3.7: ∆∆GEi for anthracene solvation between converged PME parameters and a
choice of the four PME parameters Coulomb cutoff (x-axis of each graph), Fourier spacing
(color), PME order (graphs arranged left to right), and Ewald tolerance (graphs arranged
top to bottom).
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Figure 3.8: Simulation speed for anthracene solvation as a function of different PME
parameters, Coulomb cutoff (x-axis of each graph), Fourier spacing (color), PME order
(graphs arranged left to right), and Ewald tolerance (graphs arranged top to bottom).

3.3.2 Optimized Coulomb switch

In Figure 3.9 we plot ∆∆GEi for methane solvation and ∆Hvap for TIP3P water for differ-

ent Coulomb switching distances. Figure 3.12 shows ∆∆GEi for dipole inversion and an-

thracene solvation for different Coulomb switching distances. ∆Hvap for switching starting

points beyond 0.85 nm (for a Coulomb cutoff of 0.9 nm) converge to the switchless values

and are within one or two standard deviations of each other. The difference ∆∆G is also

within one or two standard deviations for switching distances less than 0.1 nm. ∆∆G for

methane solvation and dipole inversion are lower than the first error criteria δ(∆GE) for all

three molecules. ∆Hvap is also less than or equal to 0.002 kJ/mol for all Coulomb switches

starting at any further than 0.84 nm.
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Figure 3.9: ∆∆GEi for methane solvation and ∆Hvap for TIP3P water between refer-
ence expensive PME parameters and the value of Coulomb switch width for a optimized
Coulomb cutoff of 0.9 nm. Coulomb switch widths of less than 0.1 nm at this cutoff dis-
tance and optimized PME parameters are statistically indistinguishable from the reference
PME potential. Error bars are one standard deviation.

We should also consider the effect of a switch on the force near the cutoff due to short

switching regions. Figure 3.10 shows how the short range nonbonded potentials go to

zero at cutoff of 0.9 nm with different choice of switches. A very short switch between

0.899 and 0.9 nm clearly will cause the least distortion of the potential energy. However,

the force spiking becomes larger, as seen in Figure 3.11a. We need a rational criterion

to decide how large a force spike from a single nonbonded interaction is acceptable. For

example, the force for passing through the shift region should not be greater than the force

experienced due to a thermal collision. The force F experienced by an atom, with three
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degrees of freedom, during a collision can be estimated by dividing the energy imparted

during a collision at temperature T , which equals 3
2
kBT , where kB is Boltzmann constant,

by a characteristic length, which we choose as the Lennard-Jones radius of oxygen σO.

F =
3kBT

2σO
≈ 12 kJ/mol/nm (3.24)

We note that the force spiking calculated here is due to a single nonbonded interaction pair,

and that particles will experience forces in all directions. If the solvent is homogeneous,

then these radial forces will cancel out on average, so this 12 kJ/mol/nm value might be an

overestimate, but serves as a useful baseline motivated by physical criteria.
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(a) Short range P.E. (b) Coulomb short range P.E. at cutoff

(c) LJ short range P.E. at cutoff (d) Total (Coulomb + LJ) short range

P.E. at cutoff

Figure 3.10: Short range potential energies at Coulomb and LJ cutoff of 0.9 nm using
different switching distances and an Ewald tolerance of 10−4.
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(a) Force spikes at cutoff due to Coulomb potential switch

(b) Force spikes at cutoff due to LJ potential switch

Figure 3.11: Force spikes at Coulomb and LJ cutoff of 0.9nm using different switching
distances and an Ewald Tolerance of 10−4.

We see in Figure 3.11a that the force spike for all examined Coulomb switches are

below 12 kJ/mol/nm; indeed, for any switch width larger than 0.01 nm, the magnitude of

any force spike is an order of magnitude below this level. The ∆∆G versus Coulomb
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switch plots for dipole inversion and anthracene solvation (Figure 3.12) also show that the

∆∆G for switches between 0.8 and 0.89 are within one to two standard deviations of each

other. We therefore choose our optimized Coulomb switch as 0.85 nm, midway between

0.8 and 0.89 nm to balance the effect of force spikes and loss of electrostatic energy, though

any switch in that range is statistically identical in thermodynamic properties to free energy

calculations carried out without a switch.

Figure 3.12: ∆∆Gsolv for dipole inversion (left) and anthracene solvation (right) as a func-
tion of different switching distances for a cutoff of 0.9 nm. Note the large y-axis energy
scale for anthracene (approximately 6× the dipole scale).

3.3.3 Optimized LJ cutoff and switch

In the last phase of the search, we examine the effect of varying LJ cutoff and LJ switch

using our optimized Coulomb parameters to calculate ∆∆G for all three transformations

in the benchmark set and ∆Hvap for TIP3P water. As noted above, the initial benchmark

parameter choices already satisfy the first criteria. We thus see if we can now obtain the

second more stringent criteria, pushing the difference due to deviations in the parameters

from converged results below the uncertainty in this calculation of ∆∆GEi itself, which

is 0.01 kJ/mol for methane solvation, 0.02 kJ/mol for dipole inversion, 0.015 kJ/mol for
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anthracene solvation, and 0.001 kJ/mol for the enthalpy of vaporization (from Tables 3.2

to 3.5). Figure 3.13 shows ∆∆G for methane solvation, dipole inversion and anthracene

solvation as a function of different LJ cutoffs and LJ switches. Figure 3.14 shows ∆Hvap

for TIP3P water as a function of different LJ cutoffs and LJ switches.
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Figure 3.13: ∆∆Gsolv for methane solvation (left), dipole inversion (center) and anthracene
solvation (right) as a function of different Lennard-Jones switching distances for Lennard-
Jones cutoffs in increments of 0.1 nm from 0.6 to the maximum allowed by the box. Each
color represents a different cutoff distance, each and line within the color represents the
value at a different switching distance, including statistical uncertainty. Note differences
in y-axis energy scale, with the dipole inversion scale being approximately 10× smaller
than the other two. The inset for methane solvation demonstrates how ∆∆G converges to
essentially zero at the largest Lennard-Jones cutoff of 1.3 nm, and below 0.007 kJ/mol for
cutoffs of 0.9 nm or greater for any switch width.
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Figure 3.14: ∆Hvap for TIP3P water as a function of different Lennard-Jones switching
distances for Lennard-Jones cutoffs 0.6–1.3 nm. ∆Hvap at and beyond 0.9 nm Lennard-
Jones cutoff is less than 0.005 kJ/mol for any switch distance
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Prediction Validation using

One parameter set Two parameter sets simultaneously

sampled at→ B B or E or O B and E B and O E and O

∆G (kJ/mol) for methane solvation

Benchmark (B) 8.619±0.069 8.619±0.069 8.701±0.049 8.668±0.049 N/A

Expensive (E) 8.687±0.071 8.868±0.069 8.811±0.049 N/A 8.851±0.049

Optimized (O) 8.675±0.072 8.863±0.069 N/A 8.764±0.049 8.857±0.049

∆∆G (kJ/mol) for methane solvation

∆GB −∆GE -0.068±0.019 -0.249±0.098 -0.109±0.012 N/A N/A

∆GB −∆GO -0.057±0.022 -0.244±0.098 N/A -0.096±0.013 N/A

∆GE −∆GO 0.011±0.011 0.005±0.098 N/A N/A -0.006±0.006

Table 3.2: Predictions and validation ∆∆GEO results for methane solvation match within
one and two standard deviations. In column two ∆G and ∆∆G are estimated using sam-
ples from benchmark parameter set and re-evaluations done at expensive and optimized
parameter sets. In column three we use samples from only one parameter set: either only
the benchmark parameter set (B) or only the expensive (E) or only the optimized (O) pa-
rameter set. For columns 4-6 we use samples from a pair of parameter sets. Re-evaluation
is not done for the remaining parameter sets, so we have no estimate for the unsampled
parameter set (labeled as N/A).
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Prediction Validation using

One parameter set Two parameter sets simultaneously

sampled at→ B B or E or O B and E B and O E and O

Hvap kJ/mol for TIP3P water

Benchmark (B) 42.402±0.002 42.402±0.002 42.398±0.001 42.401±0.001 N/A

Expensive (E) 42.408±0.002 42.404±0.002 42.403±0.001 N/A 42.406±0.001

Optimized (O) 42.410±0.002 42.412±0.002 N/A 42.409±0.001 42.407±0.001

∆Hvap kJ/mol for TIP3P water

Hvap B −Hvap E -0.006±0.001 -0.002±0.003 -0.005±0.001 N/A N/A

Hvap B −Hvap O -0.008±0.001 -0.010±0.003 N/A -0.008±0.001 N/A

Hvap E −Hvap O -0.002±0.001 -0.008±0.003 N/A N/A -0.001±0.000

Table 3.3: Predictions and validation ∆Hvap results match for all the three parameter sets
within two standard deviations.
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Prediction Validation using

One parameter set Two parameter sets simultaneously

sampled at→ B B or E or O B and E B and O E and O

∆G (kJ/mol) for complete dipole inversion +e/-e to -e/+e

Benchmark (B) -0.079±0.157 -0.079±0.157 -0.019±0.111 0.003±0.112 N/A

Expensive (E) -0.120±0.160 -0.056±0.158 -0.021±0.112 N/A 0.030±0.111

Optimized (O) -0.092±0.162 0.088±0.157 N/A 0.008±0.112 0.021±0.111

∆∆G (kJ/mol) for complete dipole inversion +e/-e to -e/+e

∆GB −∆GE 0.040±0.035 -0.023±0.223 0.002±0.021 N/A N/A

∆GB −∆GO 0.013±0.041 -0.167±0.222 N/A -0.005±0.023 N/A

∆GE −∆GO -0.028±0.021 -0.144±0.223 N/A N/A 0.009±0.010

∆G (kJ/mol) for first half of dipole inversion transformation, discharging the dipole +e/-e to 0e/0e

Benchmark (B) 93.241±0.108 93.241±0.108 93.259±0.077 93.282±0.078 N/A

Expensive (E) 93.400±0.112 93.442±0.109 93.433±0.077 N/A 93.483±0.077

Optimized (O) 93.352±0.114 93.464±0.110 N/A 93.393±0.078 93.418±0.077

∆∆G (kJ/mol) for first half of dipole inversion transformation, discharging the dipole +e/-e to 0e/0e

∆GB −∆GE -0.159±0.030 -0.201±0.153 -0.175±0.018 N/A N/A

∆GB −∆GO -0.110±0.035 -0.223±0.154 N/A -0.112±0.020 N/A

∆GE −∆GO 0.048±0.018 -0.022±0.155 N/A N/A 0.066±0.009

∆G (kJ/mol) for second half of dipole inversion transformation, charging the dipole 0e/0e to -e/+e

Benchmark (B) -93.320±0.109 -93.320±0.109 -93.277±0.078 -93.278±0.077 N/A

Expensive (E) -93.520±0.113 -93.498±0.110 -93.454±0.078 N/A -93.453±0.077

Optimized (O) -93.444±0.114 -93.375±0.109 N/A -93.385±0.077 -93.397±0.077

∆∆G for second half of dipole inversion transformation, charging the dipole 0e/0e to -e/+e

∆GB −∆GE 0.199±0.031 0.178±0.155 0.177±0.018 N/A N/A

∆GB −∆GO 0.123±0.036 0.055±0.154 N/A 0.106±0.020 N/A

∆GE −∆GO -0.076±0.018 -0.123±0.155 N/A N/A -0.057±0.009

Table 3.4: Predictions and validation ∆∆GEO results for discharging, charging and com-
plete dipole inversion also match within one and two standard deviations.
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Prediction Validation using

One parameter set Two parameter sets simultaneously

sampled at→ B B or E or O B and E B and O E and O

∆G (kJ/mol) for anthracene solvation

Benchmark (B) -9.624±0.121 -9.624±0.121 -9.853±0.086 -9.823±0.086 N/A

Expensive (E) -9.023±0.125 -9.261±0.123 -9.267±0.087 N/A -9.267±0.086

Optimized (O) -8.996±0.125 -9.205±0.121 N/A -9.214±0.086 -9.237±0.086

∆∆G (kJ/mol) for anthracene solvation

∆GB −∆GE -0.602±0.029 -0.363±0.173 -0.585±0.017 N/A N/A

∆GB −∆GO -0.628±0.031 -0.419±0.171 N/A -0.609±0.018 N/A

∆GE −∆GO -0.027±0.014 -0.056±0.173 N/A N/A -0.030±0.007

Table 3.5: Predictions and validation results for anthracene solvation match within one and
two standard deviation for ∆∆GEO. The predictions that ∆G for expensive and optimized
parameter sets are greater than ∆G for benchmark parameter set is correct.

In all cases we see that ∆∆G and ∆Hvap approaches zero as the LJ cutoff is increased

from 0.8 nm. Methane solvation and dipole inversion approach the stricter condition of

indistinguishability of parameters at a LJ cutoff of 0.9 nm and switch starting from 0.84

nm, when ∆∆G is equal to or less than 0.01 kJ/mol. ∆∆G for anthracene solvation does

not quite reach this level of accuracy until reaching a LJ cutoff of 1.0 nm; at 0.9 nm cutoff

∆∆G anthracene solvation is closer to 0.03 kJ/mol. The predicted ∆∆G for methane

solvation and dipole inversion are nearly equal to the error and for anthracene solvation

∆∆G is within twice the error δ(∆∆GEi) if we use the optimized parameter set.

For most cases, an error of 0.03 kJ/mol in a few larger molecules and thus a 0.9 nm

cutoff might be sufficient. However, we can perform a limited search in the parameter

space around this initially optimized parameter set to see if even higher accuracies can be

achieved. We discuss this final optimization in the validation section.
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∆∆G and ∆Hvap for entire range of LJ switches are all within one and two standard

deviations of the unswitched values.

In Figure 3.10c we see that a long LJ switch, 0.7 to 0.8 nm, distorts the potential and a

relatively small switch like 0.899 nm will result in large force spikes at the cutoff. Unlike

the Coulomb switch, the force spike due to the LJ switch is greater than the 12 kJ/mol/nm

mark for switching regions narrower than 0.04 nm, as the magnitude of the potential is

larger in the switching region for the Lennard-Jones potential. We therefore select 0.05 nm

for the switching width. We note particularly that the free energy and enthalpy results are

essentially statistically independent for any value switch distance between 0.1 and 0.001

nm for appropriate cutoff values.

3.3.4 Validation of the optimization procedure

To validate our search process, we must actually perform the simulations at the new param-

eter values to see if the free energy and enthalpy differences between the optimized param-

eters and the fully converged reference parameters were correctly predicted. We therefore

compare results from our optimized parameter set with results from simulations performed

at expensive, converged Coulomb and LJ parameters. We directly validate all stages of

optimization in a single comparison, as we only need to validate the individual stages if the

final results are incorrect. Validation simulations were performed with GROMACS 4.6.1,

which gave identical energies to the bug-fixed GROMACS 4.5.3 but was better optimized.

Simulations were run using velocity Verlet with af time step of 2 fs and SETTLE con-

straints for water [67], with SHAKE/RATTLE [68] with relative tolerance 10−12 used to

constrain non-water molecules. Temperature and pressure control were obtained using the

algorithm of Martyna et al. [69], with τt = 5.0 ps at 300 K, and τp = 5.0 ps at 1 atm.

The optimized and reference parameters are summarized in the Table 3.6. We find that
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to perform the actual simulations at the expensive parameters, rather than just reevaluating

the energies of the configurations, we find we needed to make slight modifications. When

the LJ and Coulomb cutoffs used are very near to the twice the box length, the estimated

free energies are inconsistent, especially for anthracene solvation. This appears to be an

artifact of the improper potential energy contribution of periodic images at the box bound-

aries under box size fluctuations. We therefore chose the “expensive” nonbonded cutoffs to

be 0.1 nm less than the most expensive cutoffs, which was determined to have a negligible

effect on potential energies of representative configurations. Similarly, a Fourier spacing of

0.06 nm is used instead of 0.04 nm to accelerate the otherwise very slow reference parame-

ter set simulations. The predicted ∆∆G between expensive parameter set used in validation

simulations and most expensive parameter set use in reweighting is 4 × 10−5 ± 5 × 10−5

kJ/mol, and thus this approximation is acceptable to any reasonable limit.
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Set→ Benchmark Expensive Optimized

Parameter ↓ optimization validation

Order of interpolation 4 6 6 4

Ewald tolerance 10−8 10−10 10−10 10−4 or 10−5

Fourier spacing (nm) 0.12 0.04 0.06 0.12

Coulomb cutoff (nm) 0.9 1.3a 1.2a 0.9 or 1.0

1.5b 1.4b

1.4c 1.3c

Coulomb switch (nm) 0.88 1.299a 1.15a 0.85 or 0.95

1.499b 1.35b

1.399c 1.25c

LJ cutoff (nm) 0.9 1.3a 1.2a 0.9 or 1.0

1.5b 1.4b

1.4c 1.3c

LJ switch (nm) 0.8 1.299a 1.15a 0.85 or 0.95

1.499b 1.35b

1.399c 1.25c

Parameters marked with a, b, c are parameters for methane solvation, dipole inversion and

anthracene solvation respectively, otherwise the parameters are common to all three

molecular sets. rlist is always 0.2 nm greater than the largest of the two nonbonded

cutoff, which is a change from the benchmark. All validations are done for the first

optimized parameter set.

Table 3.6: Benchmark, expensive and optimized parameters.

There are two types of computations we can perform to validate these predictions. The
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simplest is to use the samples from a simulation corresponding to just one parameter set in

our calculations of differences in thermodynamic variables, and compute properties from

this simulation alone. In this case, we use sampled energies from simulations performed

using the optimized parameter set, a [K ×K ×Nk] matrix of energy differences UO(XO)

to obtain free energy estimates for the optimized parameter set ∆GO. Similarly, we can

use samples from simulation performed using the expensive parameter set, the [K ×K ×

Nk] energies UE(XE), to obtain free energy estimates for the expensive parameter set

∆GE , and then compute the difference ∆∆GEO = ∆GE − ∆GO. We can easily get

the differences in the free energy estimates ∆∆G for other pairs of parameter sets in the

same way. The error estimates of ∆∆G will be the square root of the sum of square of

errors in individual ∆G being compared, since the two ∆G belong to completely different

simulations whose data is uncorrelated. The third column of Tables 3.2-3.5 show ∆∆G

calculated using samples corresponding to just one parameter set.

However, it is clear that this standard process for calculating differences in average

quantities does not allow us to differentiate very well between the results generated with

similar sets of parameters, as the statistical noise is simply too high. We would generally

have to run tens of times longer to sufficiently converge our statistics. The much more

powerful and statistically efficient way to calculate ∆∆G is by using samples from both

parameter sets being compared to compute the differences in observables using multistate

reweighting.

To compare the expensive and optimized parameter sets, we consider the [2K × 2K ×

Nk] matrix of energy differences U = [UE(XE),UE(XO); UO(XE),UO(XO)], and use

multistate reweighting via MBAR. Now, using data generated using both parameter sets

UE(XE) and UO(XO), including reevaluation of samples from each parameter set at the

other parameter set,UE(XO) and UO(XE) we can compute (∆GE −∆GO) ± δ(∆GE −
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∆GO), and compare to the estimate of (∆GE − ∆GO) ± δ(∆GE − ∆GO) using data

from only the benchmark state obtained during the optimization process. The reevaluation

required for this process takes negligible simulation time, since we reprocess only uncorre-

lated samples. We repeat the same process for the other pairs of simulation data, and show

the results in Tables 3.2 to 3.5.

In the course of this study, we found that the simulations in the original benchmark

study [3] used a value of rlist that truncated the total potential, though did not affect the

findings of that study which examined variances. The benchmark free energy estimates for

methane solvation, dipole inversion and anthracene solvation differ from the results of our

previous study because in this study the benchmark parameter set has a different rlist.

To be consistent with high precision free energy calculations, we started our search process

by performing new calculations with the benchmark study parameters, except using an

rlist 0.2 nm longer than the longest cutoff. Because free energies are unaffected by

any rlist greater than this value, we did not include this parameter in our optimization

routine. Longer rlists have some effect on the total time in GROMACS, and the obvious

choice is thus the shortest value of rlist that leaves the potential energies and thus free

energies unchanged.

We also found that for anthracene, equipartitioning of kinetic energies between solvent

and ligand was broken at low coupling of the ligand to the bulk solvent if a global thermo-

stat was used, disrupting both the energy distribution and volume distribution as validated

by the checkensemble tool [5]. This deviation changed the free energy differences by ap-

proximately -3 kJ/mol. To obtain proper equipartitioning we used separate thermostats for

the solute and the solvent for anthracene solvation simulations only. No error appeared in

the methane solvation case, perhaps because of the much smaller size of the UA methane.

Such a problem did not occur in the case of the dipole because all states remain coupled to
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the solvent.

For the validation simulations, to match the amount of sampling in this original bench-

mark study, we performed 10 ns simulations (9 ns postequilibration) at each of the K

intermediate states for the expensive and the optimized parameter sets. Each simulation

yielded 9000 samples, taking samples every 1 ps. We further subsampled the data using

the calculated autocorrelation times of dH/dλ.

The comparisons to results using samples from two parameter sets at a time are shown

in columns 4 (benchmark, expensive), 5 (benchmark, optimized) and 6 (expensive, opti-

mized) in Tables 3.2 to 3.5. For methane solvation in Table 3.2, dipole inversion in Ta-

ble 3.4, and anthracene solvation in Table 3.5, the predicted ∆GE-∆GO in column two

agree within one to two standard deviations with the estimates calculating with samples

generated using expensive and optimized parameter sets in column 6. We can see that we

get remarkably high agreement between predictions of ∆GEO using samples only from the

benchmark parameter set and results from simulations actually run with optimized and ex-

pensive parameter sets. The statistical convergence is also good, as δ(∆GE-∆GO) is very

low i.e. approximately 0.01 kJ/mol, far closer than would ever be required for molecular

simulations, as experimental results for condensed phase data are not that accurate.

Interestingly, even though the sampling at the benchmark state is quite not good enough

to predict free energies at these particular alternate (i.e. expensive and optimized) states,

it is remarkably able enough to predict differences in free energies between these alternate

states with dramatically low bias and uncertainty. For methane solvation in Table 3.2 the

predicted ∆GE and ∆GO by reweighting samples from the benchmark parameter set are

8.687±0.071 kJ/mol and 8.675±0.072 kJ/mol respectively. ∆GE evaluated using samples

generated using the expensive parameter set alone is 8.868±0.069 kJ/mol and ∆GO eval-

uated using samples generated using the optimized parameter set alone is 8.863±0.069
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kJ/mol. The difference between the predicted and actual ∆GE is 0.181±0.099 kJ/mol and

the difference between the predicted and actual ∆GO is 0.188±0.099 kJ/mol, at the edge

of statistical error. However, the predicted ∆GE −∆GO, 0.011±0.011 kJ/mol, is within a

standard deviation of ∆GE −∆GO estimated using the direct difference of estimates from

the expensive and optimized sets, 0.005±0.098 kJ/mol, though the statistical error is much

larger. When ∆GE − ∆GO when samples from expensive and optimized sets are used

simultaneously, the difference is only -0.006±0.006 kJ/mol, within uncertainty of the pre-

dicted value 0.011±0.011 kJ/mol. Importantly, using data from both parameter sets allows

us to push the uncertainty in differences of ∆G’s down an order of magnitude.

Similarly for dipole inversion and anthracene solvation, the predicted ∆GB − ∆GE

and ∆GB − ∆GO in column 2, evaluated using only samples generated with the bench-

mark data, agree with the free energy differences evaluated with the data from the pairs of

simulation in column 4, 5, and 6 within error. The difference ∆GE −∆GO computed with

samples from both the expensive and the optimized simulations agree extremely accurately

with the predictions made with samples used from only the benchmark simulations.

We next turn to the agreement of the enthalpy of vaporization. We obtain highly accu-

rate estimates obtained for ∆Hvap between the expensive and optimized parameter values,

with agreement down to 0.0002 kJ/mol (Table 3.3). The fact that magnitude of ∆Hvap,EB

is one to two orders of magnitude smaller than ∆∆GEB indicates that small changes in

simulation parameters may influence small molecule free energies more than bulk proper-

ties, raising caution about the applicability of parameters optimized for bulk properties to

free energy calculations. Here again, reweighting is much more precise than calculating

direct differences.

Because the full dipole inversion process could lead to cancellation of errors, we also

examine the effect of simulation parameters on the free energy of charging and discharging
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separately. Therefore, for dipole inversion we have also reported ∆G and ∆∆G for both

halves of the transformation. We notice that ∆∆GEO for the first and the second half

of the transformation using data from both the expensive and optimized parameter sets,

0.066±0.009 kJ/mol and -0.057±0.009 kJ/mol, are not zero but the errors do cancel out

for the complete dipole inversion. Even in this case, ∆∆GEO for both the first and the

second halves satisfy the first criteria of indistinguishability i.e. ∆∆GEi ≤ δ(∆GE). The

∆∆GEO for the first and the second halves of the dipole inversion do not satisfy the second

criteria even at high cutoffs. This could be due to some small artifact of periodic boundary

conditions with a total permanent dipole of the system, as small but statistically meaningful

difference this does not taper off even when we go out almost to the presumably converged

cutoff.

The optimized parameter set also results in good convergence with respect to expensive

parameter set. ∆∆GEO for methane solvation and dipole inversion test systems are essen-

tially zero, showing that the optimal parameter set is statistically indistinguishable from the

expensive parameter set. For methane solvation ∆∆GEO =-0.006±0.006 kJ/mol and for

dipole inversion ∆∆GEO = 0.009±0.010 kJ/mol. However for anthracene solvation the

predicted value of ∆∆GEO = -0.027±0.014 kJ/mol. The validated value (in column 6 of

Table 3.5) of ∆∆GEO = -0.030±0.007 kJ/mol using the optimized LJ cutoff of 0.9 nm,

which is statistically significant. For most purposes, this small deviation will likely not be

relevant, but for complete consistency, slight improvements in these parameters might be

necessary.

In our search for optimized PME parameters we used relatively coarse grid spacings

for Ewald tolerance, Fourier spacing and the Coulomb cutoff, which already allowed us to

come very close to fully converged results. We found that the increasing Coulomb cutoff

and decreasing Fourier spacing gave better convergence at the cost of higher computational
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expense. However ∆∆GEi does not change monotonically with Ewald tolerance. For

a given Coulomb cutoff and Fourier spacing ∆∆GEi decreased as Ewald tolerance was

increased from 10−10 to 10−4 and then ∆∆GEi increased when Ewald tolerance was in-

creased to 10−2, without affecting computational expense. Thus there exists a possibility

that slightly improved results could be obtained with etol = 10−5 which was not explored

in the initial scan.

Perhaps not coincidentally, the GROMACS default parameters determined by the much

simpler approach of converging force calculations are Ewald tolerance = 10−5, Coulomb

cutoff = LJ cutoff = 1.0 nm, PME order = 4, Fourier spacing = 0.12 nm. These values

are close but not exactly the same as our optimized parameters of Ewald tolerance = 10−4,

Coulomb cutoff = LJ cutoff = 0.9 nm (with PME order and Fourier spacing the same).

We therefore searched the PME parameter space around the our first optimized parameter

set, including the GROMACS default parameters among others, to see if we could refine

the current optimized parameter set and push the error further down for the test systems.

We therefore also tested Ewald tolerance = [10−4,10−5] and LJ cutoff = Coulomb cutoff =

[0.9,1.0], with PME order = 4, Fourier spacing = 0.12 nm, and switches both of width 0.05

nm.

The results are summarized in the Table 3.8. We found that if we use an Ewald

tolerance of 10−5, rvdw = rcoul = 0.9 nm, rvdw-switch and rcoul-switch =

0.85, predicted ∆∆GEi for anthracene solvation is reduced from -0.027±0.014 kJ/mol to

0.009±0.007 kJ/mol, predicted ∆∆GEi for dipole inversion changes from -0.028±0.021

to -0.007±0.012 kJ/mol, ∆∆GEi for methane solvation changes from 0.011±0.011 to

0.027±0.006 kJ/mol. For all systems δ(∆∆GEi) improves by a factor of 2 indicating in-

creased phase space overlap. There was no statistically significant improvement in ∆∆GEi

for methane solvation, full dipole inversion, and anthracene solvation. However, ∆∆GEi
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increased with reduced etol of 10−5 for a cutoff of 0.9 nm, particularly the half-charging

calculations, which is surprising, since the electrostatic treatment is presumably getting

better. ∆∆GEi for methane solvation, dipole inversion and anthracene solvation are still

less than corresponding δ(∆GE) and hence follow the first criteria of indistinguishability.

The decrease in δ(∆∆GEi) seems to indicate that the parameter set with etol = 10−5 has a

better phase space overlap with the expensive parameter set, although the accuracy in the

overall energy may be a bit worse. If we also increased LJ and Coulombic cutoffs to 1.0

nm, with etol remaining at 10−5, then as seen in the bottom right corner of the Table 3.8,

we obtain even lower error and higher accuracy than the original optimized parameter set

for all test systems.

The initial optimized parameter set remains approximately the same speed as the bench-

mark parameter set (perhaps 3-10% slower) for cutoffs of 0.9 nm, but the accuracy is im-

proved for all molecules. For a slightly higher cost, 10-15% in computational speed de-

pending on the system, we can get slightly more accurate anthracene solvation free energy

estimate compared to using a benchmark parameter set.

Our reweighting method, using only samples from the initial free energy calculation,

allows us to determine optimized parameters that pass stringent validation tests for methane

solvation, dipole inversion and anthracene solvation and predicts the direction of the opti-

mized parameter set correctly for all three test cases. The difference in thermodynamic es-

timates between the converged and the optimized parameters is of the order of 0.01 kJ/mol

for methane solvation, dipole inversion and for anthracene solvation, primarily due to im-

proved choices of PME parameters.

For estimating thermodynamic observables with high accuracy we suggest the simula-

tions be run with B-spline interpolation order 4, Ewald tolerance of 10−4, Fourier spacing

of 0.12 nm, Coulomb and LJ cutoff of 0.9 nm, Coulomb and LJ switch between 0.85 nm.
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For even higher accuracies and precision with 10-15% reduced speed, Ewald tolerance of

10−5, Coulomb and LJ cutoff of 1.0 nm, Coulomb and LJ switch of 0.95 could be used.

We note that we get the same optimized parameter set for three very different test sys-

tems. The molecules were chosen to represent the extremes of small molecule free energy

calculations typically attempted, with a large (7 Debye) dipole change and 14 heavy atoms

being removed, and thus the results should be transferable across a wide range of free en-

ergy calculations. However, there are some limitations to the parameters proposed. We

did not examine charging calculations because of difficulties in identifying the proper long

range reference when the total charge of the system changes. However, the magnitude of

the dipole disappearance (90 kJ/mol) approaches that of a single ion disappearing (250

kJ/mol), suggesting that magnitude of such free energy changes are supported by these

parameters.

Additionally, for nonhomogeneous simulations, such as in the case of ligand binding or

membrane simulations, it is clear that short Lennard-Jones cutoffs are not sufficiently accu-

rate [47]. Binding free energies differ by 0.8–1.2 kcal/mol when evaluated with shorter (0.8

nm) vs. very long (2.5 nm) cutoffs. However, short cutoffs with some reweighted informa-

tion from longer cutoffs (only one configuration every 200 ps) can give cutoff-independent

results [47]. This suggests that at least for ligand binding, a twin range scheme that only

occasionally uses much longer cutoffs may be required. Ewald schemes for dispersion

interactions are also possible [58].

Larger box sizes would not result in loss of accuracy of the thermodynamic observables

with the parameters described. However, computational speed would drop because of the

increased number of interaction sites, which would perhaps require an increase of real space

cutoffs to balance an increasing Fourier space cost, requiring additional optimization. In

cases where researchers suspect these parameters are may not be transferable, then the
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detailed presentation of methods in this chapter for validating parameters should allow

those situations to be tested.

3.4 Conclusions

In this chapter we describe the use of multistate reweighting, using the MBAR formalism,

to estimate thermodynamic observables for a large range of unsampled states using the con-

figurations from only a few sampled states. We demonstrate the utility of this procedure

by performing a multidimensional search in the space of nonbonded interaction simula-

tion parameters to identify an optimized set of simulation parameters. These optimized

parameters are chosen to give statistically indistinguishable results to those generated with

fully converged nonbonded parameters, but with lower computation time. Careful order-

ing of the parameter search reduced the final number of parameter sets to be compared

to approximately 5200. For each of these parameter sets, we reevaluate the energies of

9000 uncorrelated samples from each simulation performed for the different alchemical

states in the original free energy calculations, a much faster procedure than performing full

simulations. Specifically, reevaluating every 500th step takes approximately 0.4% of the

simulation time of an equivalent MD simulation. Table 3.7 compares actual MD sample

generation rate versus the rate at which re-evaluations can be done. Since the GROMACS

version 4.5.3 did not support parallel rerun for re-evaluation for velocity Verlet this com-

parison was performed using a single processor for both molecular dynamics and trajectory

reruns.
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System Parameter MD Re-evaluation

set (hr/ns) (hr/ns)

Benchmark 3.620 0.013

Methane solvation Expensive 9.212 0.028

Optimized 3.721 0.013

Benchmark 6.935 0.026

Dipole inversion Expensive 22.292 0.073

Optimized 7.582 0.026

Benchmark 4.629 0.022

Anthracene solvation Expensive 13.268 0.055

Optimized 5.123 0.024

Table 3.7: Re-evaluation is more than two orders of magnitude faster than generating fresh
samples using MD. The initial optimized parameters are used.

Performing 10 ns of simulation for approximately 60,000 thermodynamic states (5200

parameter sets× the number of alchemical states) with 3 million observables estimated in

the optimization process would have taken over 60 years of CPU time. In this study, the

calculations took less than a month of CPU time, resulting in a time savings of almost three

orders of magnitude.

Estimates of ∆∆GEO calculated using only samples from the initial benchmark states

agree with the estimates calculated directly using samples from the optimized and expen-

sive parameter set within statistical error. Remarkably, this agreement is usually of the

order of 0.01 kJ/mol, with statistical error equally low both for predictions and valida-

tions. Both the level of agreement of predictions with the validation calculations and the

high precision of all results is quite surprising and demonstrates the power of this multi-
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state reweighting approach. The final computational cost of the optimized parameters is

approximately the same as was used in previous benchmarking studies, but with substan-

tial improvements in the accuracy of free energy calculations with respect to the previous

benchmark calculations for anthracene, and statistically significant accuracy improvements

for methane solvation and dipole inversion.

The fact that the optimal parameters for these thermodynamic calculations were similar

to the default parameter previously chosen to minimize errors in the force evaluation is en-

couraging, showing that very different simulation observables have similar dependence on

these cutoff parameters, and suggests general transferability of these parameters. The fact

that the benchmark set used in this study included fairly large changes (such as the disap-

pearance of a 7 Debye dipole or removal of 14 heavy atoms) suggest that the results should

be relatively transferable to other molecules, with the caveats for heterogeneous systems

analyzed above. Errors in free energies of solvation for suboptimal parameters were larger

than errors in the bulk enthalpy, suggesting the importance of examining multiple types of

observables when performing optimization of force field parameters.

Interestingly, even in the case of lower overlap between the sampled states and unsam-

pled thermodynamic states, we obtained highly accurate ∆∆G results between pairs of

unsampled states that did share overlap with each other. The key factor leading to these

accurate estimations of the statistical uncertainty in ∆∆G and ∆∆H values is the use of

MBAR to correctly propagate the correlated uncertainty in differences between two ∆G

values.

This reweighting process using MBAR could easily be further extended to any other

type of parameter sensitivity analysis, such as the evaluation of free energies at a different

temperatures or for different force field parameters for which samples are not available

because no new simulations are done at the new conditions. The only constraint is that the
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new unsampled thermodynamic states should not be particularly far away in phase space

from the sampled states. Determining exactly the tradeoff between distance in parameter

space and amount of error is a topic for further research. It is somewhat difficult to relate

the statistical uncertainty in calculated observables to the phase space overlap for even a

single state, [70, 71, 72, 73] and interpreting overlap in multistate reweighting is even more

complicated. However, the very low errors obtained in the present study indicate that the

effects of at least moderate changes in parameters on thermodynamic observables should

be easily measurable with at most moderate statistical errors.

104



Cutoff System ∆∆G (kJ/mol) δ(∆GE) (kJ/mol)

10−4 10−5

High accuracy

Methane solvation 0.011±0.011 0.027±0.006 0.071

Full dipole inversion -0.028±0.021 -0.007±0.012 0.160

0.9 Discharging 0.048±0.018 0.117±0.010 0.112

Charging -0.076±0.018 -0.124±0.010 0.113

Anthracene solvation -0.027±0.014 0.009±0.07 0.125

Hvap -0.002±0.001 0.004±0.000 0.002

Very high accuracy

Methane solvation 0.013±0.011 0.004±0.003 0.071

Full dipole inversion 0.005±0.020 -0.001±0.006 0.160

1.0 Discharging 0.060±0.018 0.069±0.006 0.112

Charging -0.054±0.018 -0.070±0.006 0.113

Anthracene solvation -0.009±0.014 -0.002±0.004 0.125

Hvap 0.002±0.001 0.002±0.000 0.002

Table 3.8: Predicted ∆∆GEi for GROMACS default parameters, in the bottom right cor-
ner, give marginally better convergence compared to the first optimized guess for a slight
(10-15%) performance cost. Both satisfy the first criteria of statistical indistinguishability
compared to ∆GE calculations (one standard deviation error shown in column 5).
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4 Free energy calculation for alchemical transformations

involving changes in molecular geometry using MBAR

and extended warp bridge sampling.

4.1 Introduction

Computer-aided molecular design problems like drug design, [28] solvent design [74] and

molecular recognition [24] require high throughput screening of a large library of chemical

compounds. Thermodynamic properties of interest such as solvation free energy or binding

free energy thus must be calculated over a large multidimensional chemical space which

may involve significant geometrical changes within molecules. Similarly, refining force

field parameters based on solvation free energies requires high throughput thermodynamic

calculations over a large multidimensional parameter space made of both interaction and

geometry parameters.

For a given accuracy of atomistic force fields, there are major challenges that stand in

the way of free energy calculations from becoming a mainstream tool for in silico molecu-

lar design. The current high computational costs associated with generating samples from

simulation makes free energy calculations impractical for screening large numbers of com-

pounds using molecular dynamics or Monte Carlo simulations. This is especially true for

structurally different compounds, for which methods to calculate free energy differences

exist but are not straightforward to implement in a high throughput manner.

In this study, we show that for problems involving changes of molecular geometry,

we can reduce the computational sample generation costs of calculating free energies and

other properties by up to five orders of magnitude by adapting the reweighting formalism of

multistate Bennett acceptance ratio (MBAR) [4] to include phase space mapping. MBAR
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can predict thermodynamic properties for poorly sampled or even unsampled states using

data from only a few sampled states. However, the present form of MBAR cannot be used

to estimate free energy and expectation value differences between geometrically different

molecules which have little or no overlap in configuration space because of these geometri-

cal differences. In this chapter, we demonstrate how to extend multistate reweighting such

as MBAR to perform free energy calculations for molecules of different geometries and

demonstrate the significant computational efficiencies that can be achieved.

Methods to compute free energies and expectations based on potential reweighting,

such as exponential averaging, [7] the Bennett acceptance ratio method, [8] and MBAR [4]

require that all samples from the ensemble of configurations generated from one thermo-

dynamic state should be observed with nonzero probability in the configurational ensemble

of the other thermodynamic states of interest for the calculations to converge to the correct

answer. When there is poor overlap, many samples are required to eliminate bias from the

calculation and the calculations will have large statistical uncertainty. When there is zero

overlap in configuration space, no amount of sampling results will give an unbiased free

energy difference. For example, if we wish to calculate the free energy difference between

a SPC/E [10] and a TIP3P [9] water molecule, we will never see a rigid TIP3P molecular

configuration in rigid SPC/E simulation. Thus, reweighting methods would fail and we will

get incorrect free energy differences and in most cases, large uncertainties as well.

One approach to overcome this problem of non-overlapping phase spaces is to perform

sampling with a potential that explicitly includes phase space overlap with both ends of

the free energy calculation. For example, Oostenbrink and van Gunsteren developed a

single step perturbation method allowing efficient calculation of free energy differences

between sufficiently similar molecules. [75] This method involves choosing a reference

structure, R, such that simulations of R share phase space with both end state structures A
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and B. The free energy difference ∆GAB can be calculated as difference between ∆GAR

and ∆GBR. However, the selection and design of reference states for large number of

compounds or reaction coordinates is a complicated problem with no clear comprehensive

solution. More general investigations of designing intermediates with phase space overlap

have been explored by Kofke and co-workers. [70, 71, 72, 73]

Straatsma, Zacharias and McCammon [76] proposed a potential of mean force approach

using thermodynamic integration (TI) and includes holonomic constraints. They calculated

the free energy along a chosen reaction coordinate using the constraint forces evaluated

from the SHAKE [77] coordinate correction. The method has been successfully used in

a number of free energy calculation applications. [78, 79, 80, 81, 82] Such TI-based free

energy calculations make use of analytical constraint derivatives with respect to one or two

reaction coordinates. [83]

Other methods to calculate free energy differences for geometrically diverse compounds,

both rigid and nonrigid, have been proposed based on constructing phase space mappings

between two end states. [76, 84] With this approach, a coordinate transformation is defined

between each point in the phase space of each molecular system. Since all free energies

and expectation values are calculated by integrals over the respective phase space, the co-

ordinate transformations result in Jacobian terms that can be integrated into the free energy

difference calculations.

Several other types of mathematical transformations between the phase spaces of two

molecular states have been proposed in order to improve the efficiency of calculations for

free energies and other ensemble observables. For example, Voter [85] introduced a trans-

lational shift in the integration variable to map between two energy distributions in order to

estimate free energies for states separated in configurational space. Voter’s method, how-

ever, only works for spatially translated distributions. Ytreberg and Zuckerman generalized
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Voter’s method to include translations of internal coordinates as well as incorporate them

idea into Bennett’s acceptance ratio [86].

To deal with more complex and general transformations, Jarzynski [84] proposed the

targeted free energy perturbation approach, using an invertible transformation of the phase

space A which maps to a new phase space A′ such that A′ has significant overlap with the

phase space of the target distribution B, and later extended this to time-dependent map-

pings. [87, 88] Jarzynski applied this method to calculate the free energy associated with

the expansion of cavity in a fluid. He envisioned his technique could be used for free en-

ergy estimation over different molecular geometries. However, a way to use this formalism

for molecular problems was not explicitly laid out. The general approach described by

Jarzynski is similar to that of Severance, Essex, and Jorgensen, [89] where a Jacobian fac-

tor was included to account for phase space contributions to the free energy of changing

bond lengths, but only for unidirectional perturbation formulas.

Tan, Schultz, and Kofke applied this formalism to a realistic molecular problem, [90]

studying the temperature dependence of solid phase free energies by combining Jarzyn-

ski’s targeted free energy method with the Bennett acceptance ratio. [8] Because the har-

monic portion of the potential is dominant, configurations observed at different tempera-

tures could therefore be mapped to each other with respect to deviation from a tempera-

ture dependent harmonic reference potential, and the much smaller differences from this

temperature-dependent harmonic reference potential could be calculated with lower uncer-

tainty.

Similar configuration mapping methods have been investigated by researchers in statis-

tics as well. MBAR itself can be seen as application of extended bridge sampling. [91, 4]

Meng and Shilling [92] developed a set of methods similar to Jarzynski’s mapping tech-

nique to estimate the ratio of normalizing constants, which they called “warp bridge sam-
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pling.” They proposed three types of warp-bridge mapping. Warp-I maps distributions

by shifting the integration variable. Voter’s method therefore belongs to Warp-I category.

Warp-II involves mapping the variance as well as the mean, which is equivalent to Tan et

al.’s use of harmonically targeted temperature perturbation to achieve phase space overlap.

Warp-III involves mapping mean, spread and skewness of the distributions.

We propose a general algorithm inspired by these previous mapping approaches, specif-

ically combining mapping of configurations via a change of variables with the multistate

Bennett acceptance ratio (MBAR), the minimum variance multistate reweighting method.

MBAR is provably the most efficient method to estimate free energies and expectation

values [4] (although if carefully handled, the drawbacks of other standard methods can be

minimized), and has been demonstrated to have lower bias than thermodynamic integration

in the limit of fewer alchemical intermediate states. [3]

Using MBAR with configuration mapping allows the use of data from every sampled

state to estimate free energy difference between any two given states, even when these states

differ in the geometry. The configurations at any sampled state are mapped to geometries

of the other states, creating phase space overlap in the configurational space. A Jacobian

factor due to the change of variables is required from the mapping, but can usually be

computed in a postprocessing step.

The advantage of MBAR with mapping is that it is easy to handle multiple geometries

once pairwise maps implementing the invertible transformations are known. Free energy

differences and other physical properties can then be efficiently estimated for a large num-

ber of thermodynamic states having different geometries without modifying anything in the

simulation code used for sample generation by postprocessing the simulation data.

We demonstrate this approach to free energy calculations by applying it to a toy model

(truncated harmonic oscillators) as well to realistic rigid water models, specifically trans-
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formations between SPC/E, [10] TIP3P [9] and TIP4P, [9] and to the change in equilibrium

bond length of a dipole formed by partial charges separated by a harmonic bond.

In the harmonic oscillator example, we vary two parameters, the force constant k and

the equilibrium position µ, between different states. Because these harmonic oscillators are

truncated, there is exactly zero phase space overlap between any two systems. However,

despite this lack of overlap, free energy differences and expectation values can be calcu-

lated to exact agreement with analytical results with any number of samples by explicitly

constructing a mapping between the oscillators.

Similarly, rigid water models sample from completely different configuration spaces,

as we will never see a TIP3P geometry while performing a simulation of TIP4P. However,

we can construct a one-to-one mapping between configurations of any three- or four-point

water model which preserves the center of mass of the molecule. Indeed, such a mapping

can be constructed between any rigid water model sharing the same symmetry, regardless

of how many interaction sites are included. Although the phase spaces sampled by the dif-

ferent water molecules do not have sufficiently large overlap to perform this transformation

in a single step, we can construct a series of intermediate states that have reversible maps

to each of the end states and each other, linearly interpolating all other parameters, and

then compute free energies and thermodynamic property differences using data from all

the intermediates simultaneously. We examine an increasing number of intermediates, and

find we can calculate unbiased results with very high precision with as few as one to three

intermediate states.

Finally, we calculate the free energy difference between two dipoles of equal charge but

different equilibrium bond length and show that even for flexible molecules these mapping

calculations can drastically increase the efficiency of such transformation calculations.

In all cases, we can construct thermodynamic cycles to check the results that show
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complete cancellation to within the calculated errors. Overall, we find that we can dras-

tically improve the estimates of differences in properties between the molecular models.

This improvement is so great that it becomes practically impossible to validate the errors

by running standard free energy simulations because of the N−1/2
samp dependence of the sta-

tistical error on the number of samples Nsamp collected. The alternate approach we present

is simply that much more efficient.

4.2 Methods

We define a reduced energy ui(q) = βi(Hi(q, p) + PiV −
∑

k µk,iNk), corresponding to

state i with Hamiltonian Hi, pressure Pi, chemical potentials of k species µk,i, multidimen-

sional coordinates and velocities q and p, volume V , and species numbers Nk. The ther-

modynamics state i is defined by the allowed microstate configurations x = {p, q, V,Nk}

defined over the phase space volume Γi with microstate probabilities determined by the

Boltzmann probability distribution Pi(x) ∝ exp(−ui(x)).

We define a mapping Tij which takes a configuration xi sampled from the phase space

Γi of thermodynamic state i to Tij(xi), a sample contained in the phase space Γj of thermo-

dynamic state j. To emphasize, the convention we use is that Tij carries from initial phase

space i to final phase space j. We assume that this map is completely invertible, such that

T−1
ij = Tji exists, and that it is bijective, i.e. it is one-to-one and onto between phase space

Γi and Γj . Tij is allowed to depend on xi (and likewise Tji on xj) though our examples

will use linear maps that do not depend on the coordinates xi or xj . The transformation Tij

will have an associated Jacobian matrix Jij(xi)kl =
∂(Tij(xi))k)

∂xil
, where (Tij(xi))k is the k

component of the transformation matrix, and xil is the lth component of the xi coordinate

space.
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This matrix may be a function of xi, the coordinates of the domain, and because the

transformation is invertible, we will have the relationship Jij(xi) = J−1
ji (xj).

Our central finding is that if we define a “warped reduced energy” term which includes

the Jacobian term:

uwij(xj) =ui(Tji(xj))− ln |Jji(xj)| (4.1)

all the multistate reweighting identities derived in previous chapters in the context of the

multistate Bennett acceptance ratio method will hold. We can then re-write the multistate

reweighting equation in terms of warped reduced energy terms,

fi = − ln


K∑
j=1

Nj∑
n=1

exp(−uwij(xjn))
K∑
k=1

Nk exp(fk − uwkj(xjn))

 , (4.2)

regaining the same form as the original multistate Bennett’s acceptance ratio as shown in

the derivation below.

4.2.1 Derivation of multistate mapping formalism

The ratio r of normalization constants ci and cj between any two unnormalized probability

distributions qi and qj defined on the same phase space can be related to the identity Eq. 4.3,

r =
ci
cj

=
Ej[qiαij]

Ei[qjαij]
(4.3)

Where Ei is the statistical expectation value of a system sampled using qi and αij is any

strictly positive function defined on that same phase space, as derived in previous work on

multistate reweighting techniques. [4]
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For physical problems of thermodynamic interest, then qi = exp(−ui(x)) will be the

Boltzmann weight, using the same definition of the reduced potential ui(x) as in [4] to

incorporate external parameters such as temperature, pressure, and chemical potentials.

We can relate this ratio directly to the free energy and partition functions of the system.

∆Aij = −kBT ln r = −kBT
Qi

Qj

(4.4)

Although we use the canonical ensemble here, corresponding relationships hold for other

ensembles. If we substitute the empirical estimator N−1
i

Nj∑
n=1

g(xin) for the expectations

Ei[g(xin] in 4.3, we can calculate these free energy differences from simulations.

r =

1

Nj

Nj∑
n=1

qi(xjn)αij(xjn)

1

Ni

Ni∑
n=1

qj(xin)αij(xin)

(4.5)

We now define a map Tij which maps a configuration xi sampled from the phase space Γi

of state i to Tij(xi), which is a sample contained in the phase space Γj of state j (again,

the convention is that Tij carries from phase space i to phase space j). Assume that this

map is completely invertible, such that T−1
ij = Tji exists and is one-to-one between phase

space Γi and Γj . Tij may depend on xi (and likewise Tji on xj though our examples will

not use this fact. The transformation will have an associated Jacobian factor Jij , which

also may be a function of xi, and because the transformation is invertible, we will have

Jij(xi) = J−1
ji (xj).

We can sample from the unnormalized probability distribution function for j by per-
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forming sampling from state i, since:

qj = e−uj(xj) = e−u(Tij(xi)) (4.6)

And the partition function will be

Qj =

∫
Γj

e−u(xj)dxj =

∫
Γi

e−u(Tij(xi))|Jij(xi)|dxi (4.7)

Based on similar arguments, Meng and Schilling derived the equation for ratio r under

the transformation for two states in the general statistical context. The equation from their

paper can be rewritten for any pair of states i and j as:

Qi

Qj

=

1

Nj

Nj∑
n=1

qi(Tji(xjn))|Jji(xjn)|αij(xjn)

1

Ni

Ni∑
n=1

qj(Tij)(xin)|Jij(xin)|αij(xin)

(4.8)

Here, the nth sample from the j state xjn is mapped into the ith phase space using the

map Tji, and visa versa. Cross multiplying and summing both sides for j = 1 to K in Eq.

4.8.

K∑
j=1

Qi

Ni

Ni∑
n=1

qj(Tij(xin))|Jij(xin)|αij(xin)

=
K∑
j=1

Qj

Nj

Nj∑
n=1

qi(Tji(xjn))|Jji(xjn)|αij(xjn)

(4.9)

Without the variable transformation, then the choice of αij that minimizes the variance if
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this estimate has the following form. [4]

αij(x) =
NjQ

−1
j

K∑
j=1

NkQ
−1
k qk(x)

(4.10)

Using the definition of the transformed probability function, we can re-write αij using the

transformations as

αij(xi) =
NjQ

−1
j

K∑
k=1

NkQ
−1
k qk(Tki(xi))|Jki(xi)|

(4.11)

Following, [4] we can take ci/Ni out of the summation and then switch the order of

summation on the left hand side of Eq. 4.9, and then use our formula for αij to include the

transformations.

Qi

Ni

Ni∑
n=1

K∑
j=1

qj(Tij(xin))|Jijxin)|NjQ
−1
j

K∑
k=1

NkQ
−1
k qk(Tik(xin))|Jik(xin)|

=
K∑
j=1

Qj

Nj

Nj∑
n=1

qi(Tji(xjn))|Jji(xjn))|NjQ
−1
j

K∑
k=1

NkQ
−1
k qk(Tjk(xjn))|Jjk(xjn)|

(4.12)
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Eq. 4.12 can now be written as:

Qi

Ni

Ni∑
n=1

K∑
j=1

NjQ
−1
j qj(Tij(xin))|Jij(xin)|

K∑
k=1

NkQ
−1
k qk(Tik(xin))|Jik(xin)|

=
K∑
j=1

QjN
−1
j

Nj∑
n=1

NjQ
−1
j qi(Tji(xjn))|Jji(xjn)|

K∑
k=1

NkQ
−1
k qk(Tjk(xjn))|Jjk(xjn)|

(4.13)

which reduces to:

Qi =
K∑
j=1

Nj∑
n=1

qi(Tji(xjn))|Jji(xjn)|
K∑
k=1

NkQ
−1
k qk(Tjk(xjn))|Jjk(xjn)|

(4.14)

Taking negative log on both sides:

fi = − ln(Qi) = − ln


K∑
j=1

Nj∑
n=1

qi(Tji(xjn))|Jji(xjn)|
K∑
k=1

NkQ
−1
k qk(Tjk(xjn)))|Jjk(xjn))|

 (4.15)

where fi is the dimensionless free energy. Assuming that q(x) = exp(−u(x)) is the Boltz-

mann weight, we have:

fi = − ln


K∑
j=1

Nj∑
n=1

e−ui(Tji(xjn))|Jji(xjn)|
K∑
k=1

Nke
fk−uk(Tkj(xjn))|Jkj(xjn)|

 (4.16)
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We can define a “warped potential energy” term which includes the Jacobian term:

uwij(xjn) =ui(Tji(xjn))− ln(|(Jji(xjn))|)
(4.17)

Note specifically that the reduced potential includes a factor of βi, while the Jacobian term

does not. Note also that we must transform the samples from the jth thermodynamic state

before evaluating the potential function in state i. We can then re-write the multistate

reweighting equation in terms of warped potential energy terms:

fi = − ln


K∑
j=1

Nj∑
n=1

exp(−uwij(xjn))
K∑
k=1

Nk exp(fk − uwkj(xjn))

 (4.18)

Regaining the same form for multistate Bennett’s acceptance ratio.

We next turn to expectation values of other observables computing using reweighting.

This translation is trivial, because all other results will follow directly the equations above.

We have previously shown [4] that expectations can be treated as probability distributions

with no samples, and that if there are no samples collected, the math does not require that

these quasi-probability distributions be nonnegative. The only caution that must be fol-

lowed is that observables must be computed using the transformed coordinates, A(Tij(xi)),

which may require non-negligible extra computation for each sampled configuration.

Once we define the mappings and have the K×K×Nk warped energies uwij(xj) we can

then solve Eq. 4.2 self-consistently to find all free energies using methods already intro-

duced. [4] Expectation values of arbitrary functions can be computed using the same for-

malism. Indeed, all multistate reweighting formulas developed by Shirts and Chodera re-
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main valid, [4]. This result is not totally unexpected; as we have discussed, similar single

state reweighting formulas written in terms of a “warped” potential as described in Eq. 4.1

have been developed for analyzing molecular simulations, and a similar multistate formu-

lation has been observed in statistics, as discussed in the introduction. However, this is

the first full generalization of this idea to calculations involving multiple thermodynamics

states, and we demonstrate for the first time that the combined multistate plus configu-

ration space mapping approach can make previous challenging problems of computing

differences in observables as a function of molecular transformation much easier.

4.2.2 Models

4.2.2.1 Truncated harmonic oscillators We first examine the problem of calculating

the free energy difference between a system of truncated (or censored) harmonic oscilla-

tors with spring constants ki, truncated at one standard deviation σi = k
−1/2
i from their

mean value µi, with the potential becoming infinite (and probability zero) with any larger

displacement, so that

Ui(x) =


1
2
ki(x− µi)2 |x− µi| < σi

∞ |x− µi| > σi

We assume that the spring constants ki are chosen sufficiently large and harmonic oscillator

potential centers µi are chosen sufficiently far apart that there is no phase space overlap

between any two oscillators. In this case, no amount of sampling will allow the calculation

of the free energy differences between these oscillators by any reweighting method.

We now approach this problem with the assistance of the mapping formalism. We first

must define our maps Tij . A general approach to construct pairwise maps is to construct

119



each map Tij implicitly by constructing maps Ti to a reference state, and composing maps

to obtain maps Tij(xi) = T−1
j Ti(xi). Although this problem is simple enough not to re-

quire this approach, we will use it for pedagogical purposes, as it becomes useful for more

complicated problems. For this toy problem, we use a reference state with zero mean and

unit variance for the underlying Gaussian that is then truncated, and we map by shifting

and rescaling:

Ti(xi) =
xi − µi
σi

Tij(xi) = T−1
j (Ti(xi)) =

(
xi − µi
σi

)
σj + µj

(4.19)

This transformation Tij(xi) translates the sample by−µi, rescales by σj/σi and then trans-

lates by +µj . The Jacobians Jij and Jji for this map are:

Jij =
∂Tij(xi)

∂xi
=
σj
σi

Jji =
∂Tji(xj)

∂xj
=
σi
σj

(4.20)

In this case the maps and the corresponding Jacobians are independent of the position

coordinate.

Calculation of ui(xjn) is not possible without the mapping since xjn is never seen in

the ith simulation. The warped reduced energy uwij(xjn) using the mapping and Jacobian
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terms is:

uij(xjn) =β
1

2
Ki(Tji(xjn)− µi)2 − ln

σi
σj

=β
1

2
Ki

(
σi(xjn − µj)

σj
+ µi − µi

)2

− ln
σi
σj

=β
1

2
Ki

(√
Kj

Ki

(xjn − µj)

)2

− ln
σi
σj

=uj(xjn)− ln
σi
σj

(4.21)

These energies can then be used in Eq. 4.2, including Jacobian term, and free energies

estimated and validated against the analytical estimates of free energies. The analytical es-

timate of the Helmholtz free energy of a truncated harmonic oscillator at constant temper-

ature depends only on the force constant with Ai,analytical = −kBT ln
(√

2πσierf(2−1/2)
)
.

In this particular case, the free energy differences between two harmonic oscillators is

simply Ai/Aj = −kBT lnσi/σj . We note that the potential energy will not change after

mapping from xj to Tji(xj), so the potential energy contribution to the free energy from all

sampled points will be zero, leaving simply the Jacobian contribution. We therefore require

exactly zero samples in order to correctly predict the free energy, since we have an exact

phase space mapping which takes each sample to a sample having equal Boltzmann weight

as before the mapping. This exact phase space mapping for our truncated harmonic oscilla-

tors is an example of the “Warp-II” strategy of Meng and Schilling, with a transformation

scaling both the coordinates and the variance of the distribution of energies.

Multistate reweighting using MBAR also makes it possible to evaluate not only free en-

ergies but expectations at state i, using the sampling performed at all of the K states, rather

than calculating expectation values at state i using only samples taken from state i. When

using multistate reweighting with mapping for this truncated harmonic oscillator problem,
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the statistical uncertainty of any given observable (such as average potential energy or RMS

fluctuation around the mean position) scales as (
∑

iNi)
−1/2, the total number of samples

collected among all states, rather than the number of samples Ni collected at each state,

because each sample, from any state, contributes equal information to ensemble averages

at all other states. This is because the phase space mapping is perfect; each point in phase

space, after mapping, has the same energy, and thus same Boltzmann weight. If the map-

ping is not perfect then, the error in the expectation values will have some intermediate

efficiency, scaling better than N−1/2 but not as good as (
∑

iNi)
−1/2.

In almost all cases of real physical relevance, such an exact mapping cannot be con-

structed. Although one-to-one mappings between spaces can be easily constructed in many

cases (as we will show), they very rarely map between points with equal Boltzmann weight.

However, this mapping technique can be used to create overlap where this overlap did not

exist before. For example, if the harmonic oscillators were truncated at an arbitrary dis-

tance Ck for all oscillators rather than at 1 standard derivation for all states, then a new map

Tij(x) =
(
xj−µj
Ci

)
Cj + µi with Jacobian Ci/Cj can be used. The potential energies will

change under such a transformation, but there will be a moderate amount of phase space

overlap as long as the force constants are not very different, allowing MBAR to be used to

calculate free energies and expectation values efficiently.

Alternatively, mappings can be used to increase overlap where less overlap initially

existed. For example, if we had standard harmonic oscillators, without any truncation, then

there will always exist some nonzero overlap between any two probability distributions,

as the normal distribution is nonzero (if small) everywhere. However, because of the poor

phase space overlap if the harmonic oscillators have high spring constants, or are separated

by a large distance, it can take a very large number of samples to calculate free energy

differences with a moderate degree of precision. In this case, if we happen to use the same
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Tij(x) defined in the case of truncated harmonic oscillators, we will again have an exact

mapping, meaning free energy differences require no collection of samples, and samples

collected at any state will be equally good for calculating expectation values for all states.

4.2.2.2 Water models We next demonstrate how multistate reweighting with mapping

can be used to drastically improve the efficiency of molecular transformation calculations.

We calculate the pairwise difference in the Gibbs free energy of hydration ∆∆Ghyd as well

as differences in enthalpy and entropy between three water models using both standard

multistate reweighting and multistate reweighting with mapping. The thermodynamic cycle

shown in Figure 4.1 relates these quantities. For concreteness, it is shown for TIP4P to

TIP3P, but same cycle can be constructed for any pair of rigid water models (such as TIP3P

to SPC/E or SPC/E to TIP4P).

Figure 4.1: The difference between analytically calculated free energy ∆Gij,g and free en-
ergy calculated using MBAR with mapping ∆Gij,` should be consistent with the difference
in the solvation free energies calculated using MBAR without mapping for thermodynamic
cycle (a) according to Eq. 4.22 for the three transformations. ∆Gij,`, ∆Gjk,` and ∆Gki,`

should add up to zero in thermodynamic cycle (b) according to Eq. 4.23.
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In this thermodynamic cycle ∆Gij,g is the Gibbs free energy of mutating N water

molecules of model i to N molecules of model j in the ideal gas state. Interaction be-

tween molecules in the ideal gas state is zero. Thus the reduced warped potential in Eq. 4.1

will simply be equal to the PV term minus the Jacobian term |Jji|.

∆Gi,hyd in the thermodynamic cycle (a) is the free energy of hydration of N molecules

of model i. The solvation free energy ofN molecules isN times the chemical potential µi,`

(the solvation free energy for a single molecule of model i in pure liquid), using the ideal

gas reference state. ∆Gij,` is the free energy of mutating N water molecules of model i

to N molecules of model j in the liquid state. ∆Gij,` is calculated using the MBAR with

mapping formalism. ∆Gij,`, ∆Gi,hyd, ∆Gj,hyd and ∆Gij,g follow a thermodynamic cycle

given by Eq. 4.22.

∆Gi,hyd −∆Gj,hyd = ∆Gij,` −∆Gij,g (4.22)

Dividing the entire Eq. 4.22 by N gives the difference in free energy changes for a single

molecule.

Finally, we note that we can validate the ∆∆Gij,` calculations by constructing the cycle

for transformations between three models TIP4P, TIP3P and SPC/E represented by i, j, k,

which must satisfy:

∆Gij,` + ∆Gjk,` + ∆Gki,` = 0 (4.23)

In our calculations, the free energy change ∆Gij,` is estimated along the path linearly

varying all interaction (oxygen charge q, Lennard-Jones parameters C6 and C12) and geom-

etry (bonds, bond angles angles and location of the virtual charge site) parameters between

models i and j.
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Water model→ SPC/E TIP3P TIP4P

Parameter ↓ units

C6 kJ/nm6/mol 2.616907×10−3 2.489480×10−3 2.55224×10−3

C12 kJ/nm12/mol 2.633237×10−6 2.435088×10−6 2.5104×10−6

q(O) e -0.8476 -0.834 -1.040

q(H) e 0.4238 0.4170 0.5200

6 HOH deg 109.47 104.52 104.52

rOH nm 0.1 0.09572 0.09572

rOM nm 0.000 0.000 0.015

rHH nm 0.16330 0.15139 0.15139

Table 4.1: Force field parameters for the water models used in this study.

All force field parameters for the water models used are given in Table 4.1. We define a

λ parameter which varies linearly from zero to one. A force field parameter set P for a state

intermediate to two end states i and j can be defined as P (j, i, λ) = Pi(1−λ) +Pj(λ). We

must then define mappings Tji between any two states with parameters P (j, i, λ) which we

describe in the case of specific transformations between water models as described below.

4.2.2.3 Maps between water models

4.2.2.3.1 Mapping for TIP4P to TIP3P transformation In this transformation the

6 HOH and d(OH) remain same throughout the transition. Only d(OM) changes, from 0.015

to 0.0 nm, as seen in Fig. 4.2a. For each λ dependent state, we use the TIP3P configuration

as the reference state. First, we map geometry of a state j to geometry of TIP3P model and

then from TIP3P model to state i’s geometry. The transformation matrix is defined below.
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Tji = T−1
i (Tj(Xjn)) =



1 0 0 0

0 1 0 0

0 0 1 0

1− aλi − bλi aλi bλi 0


×





1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0


×



Xjn(O)

Xjn(H1)

Xjn(H2)

Xjn(M)





T−1
i (Tj) =



1 0 0 0

0 1 0 0

0 0 1 0

1− aλi − bλi aλi bλi 0


aλi =

d(OM)i
2d(OH)i cos( 6 HOHi/2)

bλi =aλi

Jji(Xjn)) =det|T−1
i (Tj)|

(4.24)

Notice that Xjn(M) can be expressed in terms of Xjn(O), Xjn(H1) and Xjn(H2)

and hence is not an independent variable. Thus it does not appear in the partition function

integral. Since Xjn(O), Xjn(H1) and Xjn(H2) do not undergo any transformation the

Jacobian for this transformation is 1.

4.2.2.3.2 Mapping for SPC/E to TIP3P transformation The invertible mapping

between the various intermediate states between SPC/E and TIP3P is derived using three

conditions without going through a common intermediate state. The first condition is that

the center of mass of a water molecule should not change upon transformation of the co-

ordinates. In Fig. 4.2b, if X1j, X2j, X3j represent coordinates of oxygen and the two
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hydrogens and X1i, X2i, X3i represent transformed coordinates of oxygen and the two

hydrogen, then:

mO(X1i) +mH(X2i) +mH(X3i)

M
=
mO(X1j) +mH(X2j) +mH(X3j)

M

M = mO + 2mH

(4.25)

In the above equation, mO is the atomic mass of oxygen 15.9994 g/mol, mH is 1.008

g/mol, the atomic masses of hydrogens H1 and H2.

The second condition for mapping is that the unit vector joining the center of mass of

the two hydrogens to the oxygen does not change upon transformation

X1i − (X2i + X3i)/2

d(OH)i cos(θi)
=

X1j − (X2j + X3j)/2

d(OH)j cos(θj)

θi =
6 HOHi

2
;θj =

6 HOHj

2

Kij =
d(OH)i cos(θi)

d(OH)j cos(θj)

X1i −
(X2i + X3i)

2
=Kij

(
X1i −

(X2i + X3i)

2

) (4.26)

Third and final condition is that the old unit vector (X2j - X3j)/d(HH)j is equal to the

new unit vector (X2i, X3i)/d(HH)i after a certain translation. d(HH)i, d(HH)j are the

distances between the two hydrogens in model i and j respectively.
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Let us translate vector X2j - X3j such that it coincides with new vector X2i - X3i.

X′2j =X2j +

(
(X2i + X3i)

2
− (X2j + X3j)

2

)
X′3j =X3j +

(
(X2i + X3i)

2
− (X2j + X3j)

2

) (4.27)

X′2j and X′3j are the translated coordinates.

Equating the translated unit vector to the unit vector of the transformed geometry gives:

X2i −X3i

d(HH)i
=

X′2j −X′3j
d(HH)j

X2i −X3i =
d(HH)i
d(HH)j

(X2j −X3j)

(4.28)

We can write the three conditions in a matrix form

T−1
i (Tj(Xjn)) =


mO

M
mH

M
mH

M

1 −1
2

−1
2

0 1 −1


−1

×


mO

M
mH

M
mH

M

Kij
−Kij

2

−Kij

2

0
d(HH)i
d(HH)j

−d(HH)i
d(HH)j

×


Xjn(O)

Xjn(H1)

Xjn(H2)



T−1
i (Tj) =


mO

M
+ (1 + c)Kij

mH

M
− (1 + c)

Kij

2
mH

M
− (1 + c)

Kij

2

mO

M
+ (c)Kij

mH

M
− (c)

Kij

2
+

d(HH)i
2 d(HH)j

mH

M
− (c)

Kij

2
− d(HH)i

2 d(HH)j

mO

M
+ (c)Kij

mH

M
− (c)

Kij

2
− d(HH)i

2 d(HH)j

mH

M
− (c)

Kij

2
+

d(HH)i
2 d(HH)j


c =− mO

M

Ji(Tj(Xjn)) =det|T−1
i (Tj)|

(4.29)

4.2.2.3.3 Mapping TIP4P to SPC/E transformation The mapping for TIP4P to

SPC/E transformation can be derived by combining the mapping of the previous two trans-
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formations:

T−1
i (Tj) =



1 0 0 0

0 1 0 0

0 0 1 0

1− aλi − bλi aλi bλi 0


× ...

...



mO

M
+ (1.0 + c)Kij

mH

M
− (1 + c)

Kij

2.0
mH

M
− (1 + c)

Kij

2
0

mO

M
+ (c)Kij

mH

M
− (c)

Kij

2
+

d(HH)i
2d(HH)j

mH

M
− (c)

Kij

2
− d(HH)i

2d(HH)j
0

mO

M
+ (c)Kij

mH

M
− (c)

Kij

2
− d(HH)i

2d(HH)j

mH

M
− (c)

Kij

2
+

d(HH)i
2d(HH)j

0

0 0 0 0


(4.30)

Here again, because Xjn(M) is not an independent variable, the Jacobian is equal to

the determinant of a 3×3 submatrix corresponding to change in Xjn(O), Xjn(H1) and

Xjn(H2).
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(a) TIP4P→ TIP3P

(b) SPC/E→ TIP3P

Figure 4.2: (a) TIP4P to TIP3P transformation and (b) SPC/E to TIP3P transformation

For all simulations, we use Ewald order of interpolation of 4, Ewald tolerance of 10−4,

Fourier spacing of 0.09 nm, Coulomb and Lennard-Jones cutoffs of 0.9 nm with a switch

starting at 0.85 nm for both interactions as well as a short range neighbor list cutoff (rlist)

of 1.1 nm, and a Fourier spacing of 0.1 nm. A Nosé-Hoover [93] thermostat was used with

a time constant of 5 ps. Pressure was kept constant at 1.01325 bar (1 atm) using Martyna-

Tuckerman-Tobias-Klein [69] barostat with time constant of 5 ps and compressibility of

4.5×10−5 bar−1. The time step was 0.002 ps, and bonds constrained using the SETTLE

algorithm. [67]

A cubic box 2.5×2.5×2.5 nm3 containing 521 water molecules was used for each of the

three water transformations. We performed 10 ns of NPT simulations at each of K = 41

different equally spaced physical states for each transformation. Each of the K − 2 inter-

mediate states have force field parameters linearly interpolated between the two end state
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water models as described above. We record coordinates every 1 ps to create a trajectory of

10,000 coordinate samples, which are sufficiently far apart to have uncorrelated energies.

We then have K trajectories worth of samples, Xjn’s, j = 1 . . . K from these simula-

tions at all states. A Gromacs trajectory conversion template was used to build a tool in

C for operating directly on binary trajectory files to map the geometries of the simulated

states to the trajectory of K − 1 other states according to the transformation matrix defined

in the equations above.This creates a matrix of K×K trajectories consisting of samples

Tji(Xjn)). We then evaluate the energies of these trajectories using mdrun in rerun mode

at the mapped geometries Ui(Tji(Xjn)) to generate the U[K×K×Nk] matrix of potential

energies required for multistate reweighting calculations. The transformation Tji(Xjn))

and the subsequent rerun for a state i takes less than 5 minutes on a single processor, which

is negligibly small compared to computational cost to generate Xjn. From this process,

we obtain ∆Gij,` ± δ(∆Gij,`) for N molecules. The molar value for the Gibbs free energy

of transformation is ∆Gij,`/N , which means that the uncertainty will be δ(∆Gij,`)/N , i.e.

dividing by N and not by N1/2, since changes in the molar value of each molecule are not

independent.

For all water models, samples for estimating hydration free energies using standard al-

chemical methods by decoupling a single water molecule are generated for 21 intermediate

states to solvate a water molecule in corresponding bulk liquid. These simulations are run

for 20 ns to produce free energy of transfer estimates with useful uncertainties. Solute-

solvent Coulomb interactions are decoupled linearly and the Lennard-Jones interactions

are decoupled using a soft core interaction potential. [3]

4.2.2.4 Dipole transformation We used water models to test the mapping algorithm for

estimating free energy differences between dissimilar rigid molecular geometries. In that
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case, part of the efficiency gain in computing the differences in free energies of solvation

came from the fact that we were simulating pure liquid properties, and could divide by

the number of molecules. We now wish to test the MBAR plus configurational mapping

techniques for the free energy change for single molecule free energy differences. We also

investigate whether the approach would work for dissimilar but still flexible geometries.

We therefore also use this approach to compute the free energy difference between dipoles

with different equilibrium lengths, and thus different dipole moment. In this case, there is

some possibility of observing a dipole of a given equilibrium bond length in a simulation of

a different equilibrium bond length, but the frequency is likely to be low if the equilibrium

bond lengths are too different on the scale of the bond length fluctuations.

In this test, we calculate the free energy change for a change in the equilibrium bond

length of a dipole solvated in TIP3P water while keeping all nonbonded interactions and the

force constant of the harmonic bond unchanged. To model a dipolar solute, we consider

a flexible dimer of two Lennard-Jones spheres (OPLS-UA ethane parameters) connected

by a harmonic bond, where charges of +1 and -1 are localized on the Lennard-Jones sites.

This model is the same as the dipole model considered our previously developed molecular

benchmark set. [3]

Again, the results from the standard alchemical decoupling approach for the difference

in solvation free energy are compared to the results obtained by using MBAR with mapping

between configurational ensembles. The configurations of the dipole corresponding to an

equilibrium bond length are mapped to other equilibrium bond lengths according to a center

of mass preserving transformation described in the next section. fractional deviation from

the equilibrium length preserved.

The equilibrium bond length of dipole used in the initial state is 0.144 nm and in the

final state is 0.164 nm, with force constant fixed at 224262.4 kJ/mol/nm2. The estimated
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standard derivation in the distribution of bond lengths for this force constant is 0.0033 nm,

so the equilibrium bond length difference between end states is 61 standard deviations. We

simulate with nine equally spaced equilibrium dipole bond lengths intermediate to 0.144

and 0.164 to enable ample configurational space overlap so that free energy estimation

using standard MBAR without any configurational mapping is possible. Mapping and re-

evaluation of energies are done using the trajectories of the individual state simulations as

described in the water models section. Each state was simulated for 10 ns. Other simulation

parameters are the same as for the water models. In the case of the dipole exercise the

exact same simulations are performed for both standard and mapped calculations; only the

postprocessing analysis is different.

4.2.2.4.1 Mapping Dipole with different bond lengths We scale the coordinates of

the dipole by the ratio of equilibrium bond lengths, dj and di to map from state j geometry

to state i geometry as shown in Figure 4.3.

Figure 4.3: Transformation of equilibrium bond lengths in dipole

X1j =XCMj + (X1j −XCMj)
di
dj

X2j =XCMj + (X2j −XCMj)
di
dj

(4.31)
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We can write these conditions in the form of a matrix

T−1
i (Tj(Xjn)) =

 1
2
− di

2dj

1
2

+ di
2dj

1
2

+ di
2dj

1
2
− di

2dj

×
 Xjn(1)

Xjn(2)


T−1
i (Tj) =

 1
2
− di

2dj

1
2

+ di
2dj

1
2

+ di
2dj

1
2
− di

2dj


(4.32)

4.3 Results

4.3.1 Water models

4.3.1.1 Free energy differences We start with results for water model transformations,

as the harmonic oscillator results are exact and were presented in the section on the models.

In Table 4.4 the hydration free energy ∆Gi,hyd is calculated using MBAR without mapping

for a single water molecule, using the decoupling method, for all three water models. Un-

certainties in free energies are around 0.05 kJ/mol, and uncertainties in Hvap are around

0.002 kJ/mol, in both cases in both cases much smaller than experimental error. This high

precision partly due is due to the large amount of simulation data used, nearly 400 ns in

total for each water molecule free energy, a nontrivial amount even for a small water box

of about 500 molecules. The heat of vaporization endpoint calculations use only the fully

coupled simulation, thus only 20 ns of simulation. The uncertainty in the heat of vaporiza-

tion calculation using MBAR, utilizing the same data from the free energy calculations, is

about half that of the enthalpy of vaporization using simulations only of the coupled end-

point. This is because simulations with similar potentials will have many configurations

with nonnegligible Boltzmann weight in the ensemble we are calculating our statistics at.

Because error scales as N−1/2
samp with Nsamp the number of samples, it means that we are ef-
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fectively extracting 3× extra samples from the 21 intermediates that can be used to compute

expectation averages at the fully coupled endpoint.

In Table 4.2, we directly compare the results for the ∆∆Gi,hyd generated using the

standard single molecule decoupling cycle in Table 4.4 to the mapping cycle presented

in this study, contrasted in columns 4 and 5 respectively, via the thermodynamic cycle in

Eq. 4.22. Clearly the mapping cycle calculations are far more efficient, with uncertainties

at least two orders of magnitude lower. The differences between the two cycles for the

calculation are shown in the last column, and are all well within two standard deviations.

Since the statistical error is essentially entirely in the alchemical results, we need additional

ways of validating the high predicted precision of these mapping based calculations.
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We therefore examine the cyclic transformation between the three water models de-

scribed in thermodynamic cycle in Eq. 4.23 for the mapped results in column 4 of the last

row, and see that it is zero with extremely high statistical precision; within 3×10−4 kJ/mol,

demonstrating the extremely low estimated statistical errors, all near 10−4 kJ/mol, are in

fact accurate. The result of alchemical cycle in column 5 of the last row is constrained to

be identically zero numerically because it consists of quantities (i− j) + (j − k) + (k− i).

However, the result of the mapping cycle in column 4 of the last row is not constrained

to be identically zero numerically, as it consists of numbers generated from three indepen-

dent simulations; instead, it is in such close agreement with the thermodynamic cycle in

Eq. 4.23 because of the efficiency of the method.

Figures 4.5 shows the free energy differences as a function of distance along the cou-

pling term between states. Figure 4.4 shows convergence of free energy estimate using

different number of intermediate states, with a fixed amount (10 ns) of sampling. In both

cases, we see that the results converge to the correct value qualitatively with only one inter-

mediate state; even with no intermediate states, the free energies are quite close to the limit

with more states. More quantitatively, Figure 4.5 shows that the value is indistinguishable

to the final results with only five intermediate states.
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Figure 4.4: Free energy estimates converge with just five intermediate states for all the
transformations.
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Figure 4.5: Free energies differences along the transformation coordinate are plotted for
the three water transformations. Three intermediate states are sufficient to accurately esti-
mate the free energy difference, or a single intermediate state if less precision is required.
Uncertainties are the same size as or smaller than the symbols.

Clearly, in most cases there is no need to compute free energies to within 10−4 kJ/mol.

Instead, these more efficient methods can be used to calculate thermodynamics properties

with far less sampling, either reducing the number of intermediates or reducing the length

of simulations, drastically improving the throughput of calculations. In Figure 4.6a, we

compare both of the methods as a function of the number of samples used and the number
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of states along the path simulated for the SPC/E to TIP4P calculation.
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Figure 4.6: ∆∆Ghyd for SPC/E–TIP4P estimated using MBAR with mapping with differ-
ent number of states (2, 3, 5, 11, 21) and number of samples per state (10, 100, 1000, 10
000) has 2–3 orders lower uncertainty compared with ∆∆Ghyd for SPC/E–TIP4P estimated
using MBAR without mapping with 21 states and 20 000 samples per state.

We examine calculations with 2, 3, 5, 11 and 21 states and 10, 100, 1000 and 10 000

samples per state to calculate ∆∆Ghyd between SPC/E and TIP4P models using MBAR

with mapping. For all combinations of number of states and number of samples per state,

uncertainty in ∆∆Ghyd using MBAR with mapping is 2-3 orders of magnitude lower com-

pared to the lowest uncertainty when MBAR without mapping (magenta) is used as seen in

Figure 4.6a. This ∆∆Ghyd (from Table 4.2, column 5, row 3) is the highest precision de-

coupling result, using all the available data. In Figure 4.6b, we plot the log of the statistical

uncertainty of the calculations. If we consider 0.01 kJ/mol as a useful target uncertainty

amount, we can achieve this with only five states and 100 samples per state; if 0.05 kJ/mol

is sufficient, the level achieved by standard decoupling methods, then we only require only

ten samples using either one or no intermediates (though the bias becomes approximately

the same size as the uncertainty in the case of no intermediates).

We can quantity this improvement in efficiency by estimating the number of samples
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required of method A to achieve similar precision as method B, assuming that we are in the

large sample regime so that the statistical uncertainty scales as N−1/2. In this case, then

we can express an efficiency of method A compared to method B in terms of the number

of samples NA required to reach the same precision as method B which used NB samples,

via the equation:

NA

NB

=

(
δ(∆∆Ghyd)B)

δ(∆∆Ghyd)A)

)2

(4.33)

In Figure 4.7 we plot the log of the ratio, log10(N(decoupling)/N(mapping), as a func-

tion of number of states and number of samples per state. We clearly see that MBAR with

mapping is statistically more efficient compared to the standard decoupling calculations

without mapping by 2–5 orders of magnitude, and in most cases, closer to five orders of

magnitude.

0 5 10 15 20
2

2.5

3

3.5

4

4.5

5

5.5

Number of states

lo
g
1
0

(

N
(
d
e
c
o
u
p
li
n
g
)

N
(
m

a
p
p
in

g
)

)

 

 

10
100
1000
10000

Figure 4.7: Ratio of samples required for MBAR without remapping vs. with remapping
to achieve a target statistical uncertainty. Mapping and reweighting approaches requires
102–105 times fewer samples compared to MBAR without mapping to achieve the same
precision in ∆∆Ghyd.
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4.3.1.2 Enthalpy and entropy differences Estimation of equilibrium observables us-

ing information from all intermediate states, of very different geometries, is also possi-

ble using MBAR with mapping. In this study, we specifically calculate the difference in

enthalpy of vaporization and the difference in entropy of solvation for all three transfor-

mations. The difference in enthalpy of vaporization between two water models is equal

to enthalpy of transformation, ∆Hij,`, since our transformations only involve water at both

end states. We neglect analytical correction factors that can be used to increase the accuracy

of comparison to experiment, [11] as they do not affect the statistical uncertainty.

In Table 4.3 column 2, ∆Hvap = ∆Hij,` is evaluated using MBAR with mapping. In Ta-

ble 4.3 column 3, ∆Hvap is calculated by subtracting the heats of vaporization in Table 4.4

evaluated by MBAR. Interestingly, unlike the case of ∆∆Ghyd, we see that ∆Hvap using

the mapping and alchemical approaches agree within statistical error, with no improve-

ment in the uncertainties for the mapping transformation. Part of the reason the efficiency

of calculating ∆∆Ghyd was so high is that that the mapping techniques allowed us to use a

transformation where we can calculate molar values, and divide the result by N molecules,

which was not possible with standard decoupling techniques. However, for Hvap, we are

already taking advantage of this efficiency gain.
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Water ∆Ghyd Hvap (MBAR) Hvap (endpoint)

Model (kJ/mol) (kJ/mol) (kJ/mol)

TIP4P -25.375±0.047 43.7589±0.0021 43.7515±0.0042

TIP3P -25.354±0.043 42.4540±0.0017 42.4507±0.0035

SPC/E -29.302±0.046 49.1172±0.0018 49.1132±0.0042

Table 4.4: Solvation free energies, ∆Ghyd, and enthalpy of vaporization Hvap. Hvap es-
timated using MBAR without mapping (column 3) has half the error as Hvap using the
standard method of energy averages at the endpoint alone (column 4), as it uses informa-
tion from nearby intermediate states.

There are other reasons that expectation values cannot be improved as much by in-

creases in overlap as the free energies. As we see in the case of harmonic oscillators,

improvements in the efficiency of expectation averages (such as the enthalpy) were due to

the increase of effective numbers of samples at each state due to the nonnegligible Boltz-

mann weighted contributions to the average from samples at nearby states. With the perfect

mapping in the harmonic oscillator case, all samples contributed to expectation values at

all thermodynamics states. This is not the case with water, however, as the overlap between

intermediate states is much lower.

For endpoint reweighting methods, increasing the overlap between the two phase spaces

by a factor of 10 decreases the variance roughly by the same factor of 10. [8] If the Boltz-

mann weights are initially 1%, then the effective contribution of samples from one state to

the expectation values at neighboring states using reweighting is only 1% of the samples

at the state itself. Increasing the overlap, and thus the Boltzmann weights of neighboring

states 10% only increases the effective number of samples by 10%, for a total efficiency

gain of 1.10/1.01 = 1.09 in expectations rather than a factor of 10 improvement for free
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energies. Expectation values cannot therefore be improved by as much as free energies

can by increasing overlap between neighboring states. Because the exact quantification of

overlap integrals in multistate simulations is an ongoing topic of research, it is not possible

to make more quantitative comparisons, but the qualitative trend is clear.

Additionally, the neighboring states contributing to the endpoint averages are somewhat

different in the mapping case and in the decoupling case. In the decoupling case, interme-

diate states have N-1 identical water molecules, and one water molecule being turned off;

in the mapping case, intermediates have all of the molecules changing types slightly, with a

mapping to increase phase space overlap. In the limit of fewer intermediates, which clearly

is possible, then there will be reduced overlap between alchemical intermediate states. In

the case of mapping, when the number of intermediates drops to five, then the ∆Hvap re-

sults are statistically indistinguishable from using only the endpoints. Fortunately, these

endpoint results are already very accurate.

The entropy of transformation is calculated using the relationship ∆S = (∆H −

∆G)/T , with uncertainties in ∆H and ∆G propagated using MBAR. In Table 4.3 columns

4 and 5, the entropy of transformation ∆Sij,` estimated using MBAR with mapping agrees

within statistical error, with the entropy of transformation estimated using decoupling meth-

ods, for all three transformations. The uncertainty in entropy of transformation using map-

ping is an order of magnitude lower compared to the single molecule decoupling methods.

We only use the MBAR enthalpy differences, because only when using MBAR are we able

to accurately compute the correlations between the uncertainties in the free energies and

the uncertainties in the enthalpies to propagate into uncertainties in the entropy. Clearly,

these uncertainties are not independent, as they are calculated from the same data.

Although enthalpies have not changed significantly by adding mapping, the lower un-

certainty of free energies estimated using mapping helps significantly in lowering the un-
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certainty in entropy of transformation. In standard procedures for calculating the entropy,

obtaining low statistical error can be challenging because of the loss of statistical precision

that occurs when subtracting free energies from enthalpies, which may be of similar magni-

tude, in order to obtain entropies directly. Similar loss of precision occurs when performing

finite difference calculations of free energies carried out at two close temperatures, as these

free energies are certainly of the same magnitude. However, the case of our study, because

of the extremely high precision of both enthalpy and entropy differences, we are able to

extract entropy differences between water models with very low uncertainties, only 0.01

J/mol/K, with relatively little computational effort. The thermodynamic cycle in Eq. 4.23

is not only applicable for free energy of transformation but also for other state variables like

enthalpy and entropy of transformation. The last two rows in Table 4.3 demonstrate this

fact by applying Eq. 4.23 for enthalpy and entropy of transformation and simultaneously

validate these results.

We note that the hydration free energies using the decoupling methods do not involve

transformation of all the molecules, and the uncertainties are therefore not scaled by the

number of molecules. Part of the increase in efficiency using mapping is allowing us to use

information from all of the molecules transforming, i.e. changing which cycle we calculate,

and not solely using mapping to improve the convergence of a given cycle. Decoupling

all the molecules simultaneously to the ideal gas state would have resulted in crossing a

phase boundary during the transformation, which would lead to essentially zero overlap

and poor efficiency. So although only part of the efficiency gain results directly from the

mapping, the mapping between states also makes it possible to perform calculations not

otherwise possible. One alternate method that could also take advantage of all-molecule

transformation would have been a thermodynamic integration of all N molecules between

states. However, as thermodynamic integration is not generally as efficient as MBAR, [3]
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and also requires an additional calculation of the change of holonomic constraints, such an

approach was not pursued in this study.

4.3.2 Dipole transformation

We next examine the results of the free energy of dipole length change. Figure 4.8 and

Table 4.5 shows free energies between dipoles of different equilibrium bond lengths cal-

culated using MBAR without mapping (Fig. 4.8a) and MBAR with mapping (Fig. 4.8b).

In Fig. 4.8c we see that the MBAR with mapping shows significant improvement in the

accuracy as well as precision in the free energy estimates over standard approach for same

number of states and number of samples. The free energy differences are calculated using

different number of states (2, 3, 5, 11) and different numbers of samples per state (10, 100,

1000, 10 000).

state→ 2 11

samples ↓ (mapping) (no mapping) (mapping) (no mapping)

10,000 -18.337±0.027 -17.986±0.496 -18.316±0.015 -18.227±0.050

1000 -18.333±0.092 -18.351±1.197 -18.334±0.040 -18.224±0.189

100 -18.342±0.257 -18.450±3.512 -18.323±0.158 -18.264±0.469

10 -18.308±1.074 -18.107±7.158 -18.317±0.927 -18.244±1.323

Table 4.5: MBAR with mapping requires just 2 states and 1000 samples per state to estimate
converged and precise free energy difference between dipoles of very different equilibrium
lengths.
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Figure 4.8: The free energy differences between dipoles of different equilibrium lengths are
calculated using two approaches: (a) MBAR without mapping and (b) MBAR with map-
ping. Different number of states (2, 3, 5, 11) and number of samples in each state (10, 100,
1000, 10 000) are used to estimate the free energies. MBAR with mapping estimates con-
verged free energies with low uncertainty using only 2 states and 100 to 1000 samples per
state where as MBAR without mapping gives unconverged free energy estimate with high
uncertainty unless many intermediates are used. In subplot (c) we see that the uncertainty
in free energy using MBAR with mapping is an order lower compared to uncertainty in free
energy estimated using MBAR without mapping using the same amount of sampling.

We next compare the statistical efficiency of MBAR with mapping against MBAR

without mapping for each combination of number of states and samples per state in Fig-

ure 4.9, using Eq. 4.33. We plot the log of ratio of samples required for a given precision

log10(N(no mapping)/N(mapping)) as a function of number of states and number of sam-

ples per state.
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Figure 4.9: Log ratio of samples required for MBAR without remapping vs. with remap-
ping to achieve a target statistical uncertainty for the free energy difference between dipoles
of different lengths. Phase space remapping combined with MBAR requires 3–300 times
fewer samples compared to MBAR without mapping to achieve the same precision in esti-
mating free energies between dipoles of different length.

Depending on the precise choice of intermediates states, for this calculation MBAR

with mapping will require 3–300 times fewer samples compared to MBAR without map-

ping for the same precision in ∆G. In this case, we see statistical efficiency improvements

between 0.5 - 2.5 orders of magnitude, compared to 2–5 orders of magnitude in the case of

hydration free energies. In this case, the gain in efficiency is solely because of mapping;

the simulations are used for both calculations. For a 0.1 kJ/mol level of uncertainty, we

see that 1000 samples with only the two end states is sufficient using mapping; it would re-

quire more than 250 000 samples using standard techniques. For 0.25 kJ/mol, or about 0.06

kcal/mol uncertainty, which is frequently the level of experimental precision for accurate

solvation free energies, only 100 samples are required with just the two endpoint states.
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4.4 Discussion and Conclusions

In this study, we have extended the capacity of multistate reweighting to estimate thermo-

dynamic observables for alchemical transformations involving changes in geometry. The

multistate Bennett acceptance ratio method (MBAR) is coupled with configuration map-

ping to derive the new approach. The approach has been validated and tested using a toy

model of truncated harmonic oscillators, the interconversion of SPC/E, TIP3P and TIP4P

water models, and the free energy difference of change in equilibrium bond length of a

dipole. Mapping between mutually inaccessible configurations and speedup achieved by

using reweighting combined with mapping can enable very high-throughput thermody-

namic property prediction required for exploring large parameter and chemical spaces.

The mapping algorithm estimates the free energy between the truncated harmonic os-

cillators with zero error, independent of the number of samples. Estimates of free energy,

enthalpy and entropy of transformation of water molecules are verified by the thermody-

namic cycles within two to three standard deviations. Estimates of free energy of transfor-

mation of dipole equilibrium bond length also agree with results obtained from alchemical

approach within two to three standard deviations. In both the water model and dipole exam-

ples, we require very few samples and intermediate states if we use mapping with multistate

reweighting. The mapping algorithm improves the statistical efficiency of thermodynamic

property estimation by up to five orders of magnitude compared to standard decoupling

approaches, with the advantage most pronounced for free energies and entropies.

The mapping technique can potentially be applied to force field parameterization or to

any problem which involves estimation of thermodynamic observables over two or more

states having poor or no overlap in configurational space, as long as an appropriate mapping

can be constructed. For example, one could compute the free energy difference between

149



a coarse grained potential with the same number of degrees of freedom; for example, the

free energy difference between a rigid phenyl ring and a three or four site model with the

same symmetry. One could compute the free energies and enthalpies of transformation

between serine and cystine, or between chloro- and bromo- halogenates with very little

error, using mapping to account for bond length differences. It would be less useful for

transformations where the changes in the energy terms are large enough to dominate the

weightings of individual states even when the geometries are similar. For example, the

change from dipole to monopole would likely dominate the computation of free energy

differences when morphing a water molecule to a ion.

Deriving an appropriate invertible mapping is a limiting factor but simplicity in imple-

mentation, high efficiency of information usage and tremendous reduction in number of

samples required for analysis should encourage future applications of this approach. Gen-

erally, molecular mappings that maintain the center of mass will be more straightforward,

as the center of mass and intramolecular partition functions will be separable. Mappings

that minimize changes in excluded volume will also increase the overlap, so shifts of atoms

by only 10–20% of the Lennard-Jones radii will be more efficient than mappings that drasti-

cally change excluded volume potentials. Aligning atomic sites in the end states is therefore

recommended. We had outlined in detail the transformation process used to map between

water models and dipoles of different lengths as examples.

We emphasize that this analysis technique does not alter the collection of data at all,

only the analysis. The time required to sample each new uncorrelated samples when per-

forming simulations remains unchanged. If uncorrelated samples cannot be obtained at all,

this method will still have bias. The reduction of error is because the number of correlated

samples required to converge the physical quantity of interest is greatly decreased.

We also emphasize that this approach works well when the end state configuration en-
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sembles differ explicitly in the geometric parameters used to define the states, such as bond

lengths and angles. In the case of representing a complex many body system evolving on

a multidimensional landscape in a mean field way, the identification of a proper coordinate

transformation, if any, is generally an intractable problem. Most mean field approaches

use an approximate function that has a simplified energy function, but not necessarily dif-

ferent geometric configurations. Standard energy reweighting methods would be the most

appropriate in those cases.

A number of avenues are possible to explore further using this formalism. Improving

the estimation of observables between phase spaces with different discrete symmetries or

that have changing numbers of degrees of freedom are beyond the scope of this chapter,

but would be very interesting to address with this formalism. The extension to differences

in discrete symmetries would be likely be straightforward, through the inclusion of proper

symmetry factors, though the mapping between different degrees of freedom would not be

as simple.

In this study, we have also restricted ourselves to coordinate independent transforma-

tions that preserve the center of mass. However, we could use transformations that are

coordinate dependent, for example, a map between dihedral angle distributions of different

amino acid side chains. The only difference is that since these transformations are coordi-

nate dependent, the term must be directly added before performing multistate reweighting,

instead of being added on after the analysis. Another possibility would be transformations

of the locations of the molecular centers of mass, which would make it possible to con-

struct maps between molecular systems of different average densities, or between NVT

simulations performed at different volumes. Additional transformations beyond those dis-

cussed here are likely to yield even more interesting and effective approaches to estimating

differences in thermodynamic properties as a function of molecular transformation.
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5 Using the multistate reweighting and mapping algorithm

to identify and optimize models in water-like model pa-

rameter space

5.1 Introduction

Classical force field parameterization is computationally intensive [94]. Bonded param-

eters such as bond length, bond angle and dihedral angle, are estimated using quantum

chemical calculations and/or fit to spectroscopic data. However, the nonbonded parame-

ters, especially Lennard-Jones (LJ) parameters, are usually difficult to determine from first

principles calculation or from experiments [95, 96, 97, 98].

The nonbonded parameters, charge q and LJ σ, ε are generally fit to reproduce exper-

imental observables [96, 99]. The fitting procedure involves computationally expensive

molecular simulations to estimate observables at each iteration. The new set of parameters

is either guessed based on a trial and error approach [100] or is generated by simplex or

gradient based optimization [94]. The time spent in either case is dominated by evaluation

of the objective function which requires fresh generation of samples for a new guess of

parameter set. Hence, we can accelerate the force field parameterization process if we can

reduce the time spent in sampling at each iteration.

In this chapter we present an accelerated force field parameterization scheme. We

gain speed by skipping several steps of molecular simulation, replacing these runs us-

ing reweighting techniques to estimate the observables with well-bounded precision. The

reweighting formalism requires re-evaluation of the energies with the new set of parameters

using the configurations generated in simulations run with the initial guess set of param-

eters. The time required to estimate observables using re-evaluated energies is orders of
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magnitude less compared to a fresh simulation. Chaimovich and Shell [101] have recently

proposed an reweighting-based coarse-graining parameterization scheme. Their scheme,

however, does not use multistate reweighting or configuration mapping tools.

Re-weighting works well as long as there is sufficient phase space overlap between the

iterated and the sampled parameter sets [4, 30, 8]. Each parameter set represents a distinct

alchemical thermodynamic state. We need molecular simulations when or if phase space

overlap between two states decreases to a level that makes the uncertainties unacceptable.

The increase in uncertainty in the estimated thermodynamic quantities indicates decreasing

phase space overlap between two states. Large uncertainty makes the comparison between

the observables between two iterations difficult, requiring additional simulation data. To

verify the simulations, we must also perform fresh simulations whenever the error is min-

imized, to ensure that our predicted ensemble has not deviated too much from the true

ensemble that would be generated with those parameters.

We will have to use the configurational mapping algorithm introduced in Chapter 4 as

we iterate over geometry parameters in order to create phase space overlap between these

states. It has been shown in previous chapter that we require very few samples to calculate

accurate and precise expectation values and free energy estimates for parameter perturba-

tions in water models. By implementing a combination of reweighting and the mapping

techniques we should be able to get substantial reductions in computational costs involved

in parameterization based on free energy estimates and other thermodynamic observables.

In this chapter, we demonstrate the applicability of the parameterization scheme by

modeling liquid water. In the process, we also explore the multidimensional water model

parameter space to set bounds on each dimension. The different parameters in a water

model as shown in Figure 5.1 are: charge qO, LJ σ and ε of oxygen, OH bond length,

HOH bond angle, OM distance between the virtual site (carrying the negative charge) and
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oxygen atom. The charge on both the hydrogens is necessarily +qO/2. The LJ σ and ε of

both hydrogens are chosen in this family of models to be zero. We effectively then have

six parameters {qO, σO and εO rOH , 6 HOH, rOM} which are varied to identify regions in

parameter space for water-like models.

Figure 5.1: There are three nonbonded parameters, σO, εO, and qO and three geometry or
bonded parameters rOH , 6 HOH, and rOM in water model. σ and ε for hydrogen are zero
and once qO is fixed we also know the partial charge on the two hydrogens.

We model liquid water for a temperature range of 273–373 K and pressure range of 1–

120 atm. Although the parameterization can be done to span the entire phase equilibrium of

water, it is very hard to sample near phase boundaries because of density fluctuations and

sampling is especially hard in solid state [102] where the kinetics is slow. The large phase

space separation of liquid and vapor phase spaces prohibits reweighting between these

states and the subsequent calculation of observables using molecular dynamics simulations

of one phase to predict the other phase. shifts in the center of mass of the molecules in the

box. Configurational mapping over different phases is a subject for future study. In this

study, we apply configurational mapping in a single phase to parameterize the water model.

There are a large number of water models which were parameterized in different ways

with different optimization goals, and we discuss some of the most common models here.
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TIP, TIP3P and TIP4P models were parameterized to reproduce structural and energetic

results for water dimer and density of liquid water at a single temperature 298 K [103].

TIP4P-Ew was parameterized by fitting the parameters to experimental density and heat

of vaporization for a range of temperatures [11]. SPC-E [10] includes corrections due to

self-polarization and cannot give good results for protein based force field which does not

account for the polarization effects [104]. Because of this, the self-solvation free energy

for SPC-E is 4.8 kJ/mol greater than the other water models. This can cause errors in cal-

culation and interpretation of solvation free energy (excess chemical potential) of small

molecules which are parameterized with respect to TIP3P water model. The polarizable

water models [105, 106] also do not combine well with biomolecular force fields which

neglect polarization effects. Accounting for the polarization can significantly increase the

computational costs. Because of this, researchers prefer not to use polarization if possi-

ble. It is also hard to parameterize these models, since the most appropriate form of the

polarization contribution for a given problem isn’t properly understood. We thus do not

introduce polarization in modeling water in this study.

The flexible water models, MCYL [107], SPC-F1, SPC-F2 [108] satisfactorily repro-

duce energetics and dynamics of water but are computationally more costly and can even

introduce artifacts [104]. Glättli [104] et al. proposed the need for a better parameterized

rigid, non-polarizable water model. Glättli et al. used a trial and error approach to change

6 HOH, LJ sites, charge, bond length to the improve structural, dielectric thermodynamic

and transport properties.

A more holistic parametric search method was proposed by Horn [11] et al. which

they used to design TIP4P-Ew model. They searched through the parameter space by min-

imizing the square of the residual between simulated and experimental density at various

temperatures and at 1 atm pressure. But their algorithm perturbed only σO, εO and qO for
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a fixed same vapor phase geometry. Horn et al. adopted the asumptions made in TIP4P

model for geometrical parameters that the liquid phase molecular geometry of the water

molecule should not be very different form that of the experiemtally observed gas phase

geometry. However, the effect of this assumption was never examined. In fact, all the

TIPnP water models use the experimental gas phase OH bond length (rOH), and HOH

bond angle ( 6 HOH), and only parameterize oxygen’s LJ parameters σO, εO and charge qO

for 3 site models. In 4 site rigid water models, the distance between the virtual site which

carries negative charge of the oxygen atom, (rOH), in the plane of the water molecule, along

the angle bisector of 6 HOH is also optimized.

In this study, we instead perform a multidimensional optimization in all six dimensions

and fit to multiple properties for a range of temperatures and pressures by fitting the full

simulated residual free energy surface Gres,sim(T, P, x), x being the vector of parameters,

to the experimental residual free energy surface Gres,exp(T, P ). In the methods section, we

show the development of this powerful new forcefield parameterization scheme.

In this study, we also use an analytical model of water derived using Wertheim’s ther-

modynamic perturbation theory to guide the design of our objective function. These an-

alytically solvable models are popularly called statistical association fluid theory (SAFT)

models. A SAFT model includes atomistic energy and geometry parameters. The contribu-

tions due to the Lennard-Jones, coulombic and hydrogen bond interactions to the residual

Helmholtz energy are estimated with respect to an ideal gas reference state. The residual

Helmholtz free energy-based equation of state derived for a SAFT model is a much quicker

way to estimate a vector of thermodynamic properties F(x) as a function of atomisitic pa-

rameter set x, compared to running atomistic simulations, though the vector of molecular

parameters may behave differently in the two models.

This large scale parameterization of water models is made possible by the previous two
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studies which dramatically increase the efficiency of free energy calculations for a very

large number of thermodynamic states [3] with little or no configurational map [38]. Like

all other parameterizations our scheme also involves iterations to convergence. Marco [94]

et al. have proposed a gradient based parameterization work flow for the automated devel-

opment of molecular models. But Marco et al. use the standard computationally expensive

molecular simulation to estimate properties at each iteration. One could use direct meth-

ods like Nelder-Mead simplex [109] instead of gradient methods but such more robust

direct methods converge slowly. We cannot use simplex or gradient-based method because

the simplex algorithm does not support multiobjective optimization and in gradient based

methods the use of the gradient with very small step length, when optimal step length is not

known, makes the convergence very slow. Calculation of optimal step length or the use of

Hessian based method is computationally prohibitive. Instead, we use a mesh adaptive di-

rect search [110, 111] method which appears best suited for our problem type. We discuss

the efficacy of different optimization methods and compare them further in the methods

section. We replace the time-consuming MD step by a faster reweighting plus configura-

tion mapping step to estimate properties at each iteration. The configurational mapping

reduces the amount of samples, which have to be generated using the initial set of param-

eters and the reweighting reduces the need to generate new samples at new iterated sets of

parameters.

5.2 Methods

5.2.1 Property estimation

5.2.1.1 Water properties from experimentally fitted equation of state The Interna-

tional Association for the Properties of Water and Steam 1997 formulation, IAPWS97, [112]
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uses an empirically fitted Gibbs free energy based equation of state to derive thermody-

namic properties. We require the experimental residual Gibbs free energy contribution of

the total Gibbs free energy to parameterize our atomistic water model. However, the resid-

ual and ideal gas contributions are not reported separately for the liquid phase region in the

IAPWS97 formulation. So we use IAPWS95 [113] formulation which gives both the resid-

ual and the ideal gas Gibbs free energy contributions for liquid water regime. Similar to

IAPWS97, in IAPWS95 the Helmholtz free energy based equation of state is fitted to repro-

duce experimentally observed water properties. Additionally, IAPWS95 is more accurate

compared to IAPWS97 as IAPWS97 was primarily designed for faster calculations and sac-

rifices some accuracy. We have implemented and validated the IAPWS95 formulation in a

Python script to reduce heterogeneity in the computational pipeline set up for the project

and is available for future use as well. IAPWS95 is a pressure-explicit equation of state,

i.e. properties are expressed as a function of density and temperature. However, generating

the reweighted ensemble as a function of both temperature and pressure using molecular

dynamics is much easier if we have properties as a function of pressure and temperature.

We therefore back-calculated a density giving the desired pressure at a given temperature

and used this density and temperature to estimate properties from IAPWS95 equation of

state. Specifically, we find a density which would give Psimulation - PIAPWS95(ρ,T ) = 0 us-

ing 1000 kg/m3 as an initial guess density. The root is found using the fsolve scipy module

which is actually a wrapper around MINPACK’s hybrd and hybrj algorithms.

5.2.1.2 Water properties from SAFT based equation of state

5.2.1.2.1 SAFT water model description There exist various flavors of SAFT wa-

ter models in the literature [114, 115]. They differ primarily in the way the Lennard-Jones,
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electrostatic and hydrogen bond association interactions are modeled. Clark et al. [115]

give a nice overview of the history and development of the SAFT water models. In their

current state the SAFT water models use square well potential to model the LJ and elec-

trostatic interactions. However, in atomistic simulation we model Lennard-Jones as 12-6

potential and electrostatics by a Coulomb potential.

Muller and Gubbins’ [116] SAFT water model comes closest to our atomistic water

model. They model water as a Stockmayer fluid in which there is an attractive-repulsive

Lennard-Jones core along with the dipole for accounting electrostatic interactions. The

hydrogen bonding association interaction is estimated using Wertheim’s first order pertur-

bation theory and is modeled using square well potential.

The intermolecular SAFT potential can therefore be written as a sum of a medium range

Lennard-Jones interaction φLJ , a short range hydrogen bonding potential φHB and a long

range dipole potential, φDD.

φSAFT = φLJ + φDD + φHB (5.1)

5.2.1.2.2 Property estimation from SAFT model The power of SAFT models lies

in mapping molecular interaction parameters to an analytically solvable equation of state.

All the interactions contribute to the residual free energy. All the interactions are modeled

as a function of temperature and density so the natural choice of free energy function is

the Helmholtz free energy. The analytical estimation of the residual Helmholtz free energy

contributions are done with a system of reduced units commonly used in SAFT models.
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ρ∗ =ρσ3
LJ

T ∗ =
kBT

εLJ

P ∗ =
Pσ3

LJ

εLJ

µ∗2 =
µ2σ3

LJ

εLJ

U∗ =
U

NεLJ

A∗ =
A

NεLJ

(5.2)

In the above set of equations ρ is system density at temperature T . For a given ρ and

T the system exhibits a pressure P . The molecular dipole is µ, while σLJ and εLJ are the

Lennard-Jones parameters. U is the potential energy of the system and A is the Helmholtz

free energy of the system. The different contributions to the residual Helmholtz free energy

for reference fluid are:

Ares =ALJres + ADDres + AHBres (5.3)

ALJres is contribution due to LJ potential as described in Kolafa and Nezbeda’s paper [117].

ADDres is contribution due to dipole dipole interaction as explained by Gray and Gubbins [118].The
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sum of ALJres and ADDres is estimated using the Padé approximation for the free energy.

Apres =ALJres + ADDres

=ALJres + A2

[
1− A3

A2

]−1

(5.4)

In the above equation ALJres is the residual Helmholtz free energy for a pure Lennard-Jones

fluid. Polynomial equations exist to estimate ALJres. The first order perturbation term van-

ishes. A2 and A3 are the second and the third order perturbation terms. A2 and A3 are

estimated using the following equations.

A∗2 =− 2π

3

ρ∗µ∗4

T ∗
J

A∗3 =− 32π3

135

(
14π

5

)1/2
ρ∗2µ∗6

T ∗2
K (5.5)

J and K are the integrals over the two and three body correlation functions of Lennard-

Jones fluid. AHBres is contribution due to hydrogen bond interaction as modeled in Muller
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and Gubbins’s paper.

A∗HB = T ∗(lnX4
a − 2 ∗Xa + 2)

Xa =
−1 + (1 + 8ρ∆)1/2

4ρ∆

∆ = 4 ∗ πFHBKHBI

FHB = exp(εHB/kBT )− 1

I =
1

24b2σ3
LJ

∫ 2b+σHB

2b−σHB

g(r)(σHB + 2b− r)2(2σHB − 2b+ r)rdr

(5.6)

g(r) is the LJ pair correlation function. The integral I can be evaluated numerically for a

given σHB, the diameter of the square well association site, and the distance between the

center of the square well site and the LJ center, b. KHB is the association constant fit to

reproduce experimental properties. Xa is the fraction of molecules not bonded at site a.

From the Equations 5.4 - 5.6 we see that the SAFT water model consists of following six

parameters. σLJ , εLJ , µ, KHB, σHB, εHB.

For a given SAFT parameter set if we can estimate Ares as a function of ρ and T , we

essentially have an equation of state from which all thermodynamic properties can be esti-

mated. Using the SAFT model we can estimate residual Helmholtz free energy Ares, resid-

ual internal energy Ures = δ(A/T )
δ(1/T )

, pressure P = ρT + ρ2 δA
δρ

and residual chemical potential

µres = Ares + P
ρ
− T which are sufficient for doing any phase equilibrium calculation.

We modified an implementation provided by Prof. Eric Muller to use in our study. Prof.

Muller’s implementation was designed to calculate properties as a function of density and

temperature, whereas, we needed a SAFT implementation which estimated properties as

a function of pressure and temperature. We did this by first calculating the density which
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resulted in system pressure at a given temperature using the SAFT equation of state. How-

ever finding the correct density to reproduce the correct pressure was not trivial problem

as it was in IAPWS equation of state, as for a random set of SAFT parameters we don’t

know what is the corresponding approximate liquid density at a given temperature. For

example, if we pick random values for σLJ , εLJ , at a given temperature we cannot say how

different the SAFT compressed liquid density will be from experimental compressed liquid

density at NTP. Thus picking a suitable initial guess for compressed liquid density for a set

of SAFT parameters at a given temperature makes the problem challenging. However, we

know that the compressibility of water (both true water and SAFT-modeled) is very small,

there is a very little difference between the saturated liquid density and the compressed

liquid density for pressures greater than the saturation pressure at a given temperature. We

used this fact to arrive at the initial guess for the density in solving the problem. We first

did a two phase calculation for the given set of SAFT parameters xSAFT at a given temper-

ature to get the saturated liquid density. We used this saturated liquid density as the initial

guess to start a bisection root method with upper and lower bounds defined as ±10% of

the initial guess to find the correct density which would satisfy P - PSAFT (ρ,T , xSAFT ) =

0 The original SAFT model by Prof. Muller and the reconfigured SAFT model are Fortran

executables which can be called through Python scripts.

5.2.1.3 Water properties from an atomistic model

5.2.1.3.1 Atomistic model description There are many existing water models [9,

10, 11] with varying levels of complexity. Bertrand Guillot [119] gives a good review

of a lot of water models. The web resource http://www.lsbu.ac.uk/water/

models.html maintained by Martin Chaplin is also a useful guide to the efforts made
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historically to model water atomistically. The most popular water models are the ones

which are simple to implement and are computationally less expensive. So a vast array of

polarizable water models and flexible water models are not included in the design space.

We focus on rigid water models. The TIP4P water models, especially the TIP4P-Ew and

other more recent variations reproduce experimental densities better than other water mod-

els.

We therefore use a basic framework of four site TIP4P water model in which there is

single LJ site on the oxygen atom. There are positive partial charges on the two hydro-

gens and the negative partial charge of oxygen lies on the angle bisector of the HOH angle.

The partial charges sum to zero to make the molecule electrostatically neutral. The OH

bonds are symmetric in length and the entire molecule is rigid i.e. all vibrational degrees of

freedom are frozen. The total potential energy comprises of a Lennard-Jones potential and

electrostatic potential contributions as there are no bonded interactions. The short range

Lennard-Jones is modeled by a 12-6 potential and the long range dispersion is analytically

estimated only for the attractive part since the dispersion correction for the repulsive part

is negligibly small. The electrostatic potential is modeled using Coulomb potential. The

pairwise Coulomb contribution is estimated using a Particle Mesh Ewald sum. More de-

scription on the estimation of the Lennard-Jones and the Coulomb contributions can be

found in our previous chapter.

5.2.1.3.2 Property estimation from molecular simulations Density, isobaric and

isometric heat capacities, isothermal and adiabatic compressibilities, isobaric thermal ex-

pansion coefficient and thermal pressure coefficient are well-studied response functions for

fluids [120, 121]. Of these density, isobaric heat capacity, isothermal compressibility, and

isobaric thermal expansion coefficient, along with the heat of vaporization are most com-
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monly used to characterize water models [11, 122]. In this study, we examine the less

commonly used residual Gibbs free energy of water (which is also equal to hydration free

energy of a water molecule) in the list of properties used to parameterize a water model.

We can estimate the properties either using a) fluctuation formulas based on ensemble

averages or b) derivatives of Gibbs free energy with respect to temperature and pressure.

Almost all water model studies [121, 11, 122] use fluctuation formulas to calculate prop-

erties. However, we will use the derivatives of free energy using finite difference using

reweighting, as we can propagate the error more easily than can be done with the fluctu-

ation formulas. Derivatives of free energy with respect to pressure or temperature can be

computed numerically and the calculation is made trivially cheap by reweighting, since

reweighting at different temperatures and pressures requires no additional energy calcula-

tions.

Bulk density ρ

〈ρ〉 =
NwaterMwater

NA 〈V 〉
; δ(〈ρ〉) = 〈ρ〉 δ 〈V 〉

〈V 〉
(5.7)

Alternately we can find density by:

ρ =
NwaterMwater

NAV
=
NwaterMwater

NA

(
∂G
∂P

)
T,N

(5.8)

Nwater is the number of water molecules in the simulation box, NA is the Avogadro’s

number, Mwater is the molecular mass of water.
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Heat of vaporization Hvap At a given pressure and temperature

Hvap =Hgas −Hliq

≈(Ugas +Kgas + PVgas)− (Uliq +Kliq + PVliq) + C

(5.9)

For ideal gas, Ugas = 0 and molecular kinetic energies are identical in the gas and liquid.

Several water models apply corrections C to incorporate vibrational (Cvib), polarization

(Cpol), non ideal gas (Cni) and pressure effects (Cx) as explained by Horn et al. [11] in Eqs.

21–27 in their paper.

C(T, P ) = Cvib(T ) + Cpol + Cni(T, Pvap) + Cx(T, P ) (5.10)

The heat of vaporization expression finally has the following form:

Hvap ≈ −〈Uliq + PVliq〉+ kBT + C (5.11)

Here we have replaced PVgas with kBT , pushing deviations from ideality into C.

Isobaric heat capacity CP

There are three ways we can calculate enthalpy.

1. By the enthalpy fluctuation formula

CP =
〈H2〉 − 〈H〉2

NkBT 2
(5.12)

166



2. By the first derivative of enthalpy with respect to temperature

CP =

(
∂ 〈H〉
∂T

)
P,N

(5.13)

The derivative could be numerically calculated by reweighting configurations sampled

at temperature T for new temperatures T − δT and T + δT at constant pressure.

3. By second derivative of Gibbs free energy.

CP =− T
(
∂S

∂T

)
P,N

= −T
(
∂2G

∂T 2

)
P,N

(5.14)

The second derivative can also be calculated numerically by reweighting configurations

sampled at temperature T for new temperatures T − δT and T + δT at constant pressure.

We will use the third formula to estimate CP due to reasons described before.

Isothermal compressibility κT

The volume fluctuation formula to compute κT is:

κT =
〈V 2〉 − 〈V 〉2

kB 〈T 〉 〈V 〉
(5.15)

Alternately we can also find κT using the following formula:

κT =− 1

V

(
∂V

∂P

)
T,N

= −

(
∂2G
∂P 2

)
T,N(

∂G
∂P

)
T,N

(5.16)

We can get all the differences by reweighting the configurations sampled at pressure P

for new pressures P + δP and P − δP at constant temperature. We will use this formula

to compute κT .
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Isobaric thermal expansion coefficient αp The enthalpy volume fluctuation formula to

estimate αp is.

αp =
〈V H〉 − 〈V 〉 〈H〉
kB 〈T 〉2 〈V 〉

(5.17)

However, we calculate αp using the following formula:

αp =
1

V

(
∂V

∂T

)
P,N

= −

(
∂2G
∂P∂T

)
(
∂G
∂P

)
T,N

(5.18)

5.2.1.4 Relationship between simulated and IAPWS95 residual Gibbs free energies

From simulations we get Gibbs free energies corresponding to NPT ensemble, whereas

IAPWS95 gives Gibbs free energies corresponding to a NVT ensemble. The difference

lies in the ideal gas reference states since Gid(T, P ) in the NPT ensemble is not equal to

Gid(T ,ρ) in the NVT ensemble. This difference will become more clear as we go through

the statistical mechanical derivation of Gid(T, P ) and Gid(T ,ρ). Using explicit statistical

mechanical definitions of the latter two terms we will then derive the relationship between

the simulated and IAPWS95 residual Gibbs free energies.

Let us start with the NVT ensemble. Molar Helmholtz free energy, a, in a NVT en-

semble can be expressed as a sum of residual molar Helmholtz free energy, ares, and ideal

gas molar Helmholtz free energy, aid. This sum assumes ideal gas as the standard state in

which all the intermolecular interactions are zero. Any non-zero intermolecular interaction

contributes to ares.

a = ares + aid (5.19)

From statistical mechanics Helmholtz free energy can be written down in terms of the
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canonical partition function Q(N, V, T ).

a =
−kBT
N

ln(Q(N, V, T ))

Q(N, V, T ) =
1

N !h3N

∫ x=V 1/3/2

x=−V 1/3/2

∫ p=∞

p=−∞
exp(−β(U(x) +K(p)))dp3Ndx3N

=
1

N !h3N

∫ p=∞

p=−∞
exp(−βK(p))dp3N

∫ x=V 1/3/2

x=−V 1/3/2

exp(−βU(x))dx3N

=QtrQc

(5.20)

Thus we can estimate the translational and configurational contribution to canonical

partition function.

Qtr =
1

N !h3N

∫ p=∞

p=−∞
exp(−βK(p))dp3N

=
1

N !Λ3N

Qc =

∫ x=V 1/3/2

x=−V 1/3/2

exp(−βU(x))dx3N

(5.21)

Here Qtr is the translational partition function contribution. For brevity, we do not con-

sider rotational and vibrational partition function contributions. However, the absence of

rotational and vibrational partition function does not change our findings. Qc is the config-

urational partition function contribution.
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The ideal gas partition function can be calculated by putting U(x)=0.

aid =
−kBT
N

ln(Qid(N, V, T ))

Qid(N, V, T ) =
1

N !h3N

∫ p=∞

p=−∞
exp(−βK(p)dp3N

∫ x=V 1/3/2

x=−V 1/3/2

dx3N

=Qtr ∗ V N

Qc
id = V N

(5.22)

So the residual molar Helmholtz free energy ares can be found by the difference of a and

aid

ares =a− aid

=
−kBT
N

ln(Q(N, V, T )) +
−kBT
N

ln(Qid(N, V, T ))

=
−kBT
N

ln

(
Qc

Qc
id

) (5.23)

Similarly molar Gibbs free energy g for the NPT ensemble can be expressed as a sum of

residual molar Gibbs free energy gres and ideal gas molar Gibbs free energy gid. This sum

also assumes ideal gas as the standard state in which all the intermolecular interactions are

zero. Any non zero intermolecular interaction contributes to gres.

g = gres + gid (5.24)

From statistical mechanics the Gibbs free energy can be written in terms of isothermal

isobaric partition function Ξ(N,P, T ). V 1/3 is equal to the side L of a cubical box so we
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will use L in place of V 1/3.

g =
−kBT
N

ln(Ξ(N,P, T ))

Ξ(N,P, T ) =

∫ V=∞

V=0

(Q(N, V, T ) exp(−βPV )) dV

=

∫ V=∞

V=0

(
1

N !h3N

∫ x=L/2

x=−L/2

∫ p=∞

p=−∞
exp(−β(U(x) +K(p)))dx3Ndp3N

)
exp(−βPV )dV

=
1

N !h3N

∫ p=∞

p=−∞
exp(−βK(p))dp3N

∫ V=inf

V=0

∫ x=L/2

x=−L/2
exp(−βU(x))dx3N exp(−βPV )dV

=Ξtr.Ξc

(5.25)

Thus we can estimate the translational and configurational contribution to isothermal

isobaric partition function.

Ξtr =
1

N !h3N

∫ p=∞

p=−∞
exp(−βK(p))dp3N

=
1

N !Λ3N

Ξc =

∫ V=inf

V=0

(∫ x=L/2

x=−L/2
exp(−βU(x))dx3N

)
exp(−βPV )dV

(5.26)
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The ideal gas partition function can be calculated by setting U(x)=0.

gid =
−kBT
N

ln(Ξid(N,P, T ))

Ξid(N,P, T ) =
1

N !h3N

∫ p=∞

p=−∞
exp(−βK(p))dp

∫ V=inf

V=0

(∫ x=L/2

x=−L/2
dx3N

)
exp(−βPV )dV

=Ξtr

∫ V=∞

V=0

V N exp(−βPV )dV

Ξc
id =

∫ V=∞

V=0

V N exp(−βPV )dV

=
N !

(βP )N+1

(5.27)

So the residual molar Gibbs free energy gres can be found by the difference of g and gid

gres =g − gid

=
−kBT
N

ln(Ξ(N,P, T )) +
−kBT
N

ln(Ξid(N,P, T ))

=
−kBT
N

ln

(
Ξc

Ξc
id

) (5.28)

The difference in residual molar gibbs free energy between states i and j at temperature

and pressure Ti,Pi and Tj ,Pj can be expressed as:

gres,ij =gres,j − gres,i

=
−kBTj
N

ln

(
Ξc,j

Ξc,j
id

)
− −kBTi

N
ln

(
Ξc,i

Ξc,i
id

) (5.29)

Let us define a dimensionless Gibbs free energy fi = βi gi. We can rewrite the above
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equation in terms of dimensionless free energies.

gres,ij =gres,j − gres,i

=
1

βj
(fres,j)−

1

βi
(fres,i)

=
1

βj
(f cj − f cj,id)−

1

βi
(f ci − f ci,id)

(5.30)

We can get f cij from MBAR and estimate f cij,id analytically. The superscript c denotes

the configurational part of the partition function.

fres,ij =fres,j − fres,i

=(f cj − f cj,id)− (f ci − f ci,id)

=(f cj − f ci )− (f cj,id − f ci,id)

(5.31)

Only for states which have same temperatures, βi = βj and differ only in pressure

Pi 6= Pj , there exists a relation between gres,ij and fres,ij which is:

fres,ij =βigres,ij (5.32)

However fres,ij has a more complicated relationship with gres,ij for free energies at

different temperatures. However, they both contain the same thermodynamic information,

as both are uniquely defined by T and P alone, and either can be used for optimization.

The experimental dimensionless residual free energies fres,expfrom the IAPWS95 equation

of state are functions of V and T . However, the dimensionless residual free energies from

the molecular simulations have P and T as natural variables.
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The NVT ideal gas reference is different from the NPT ideal gas reference. To compare

fres,exp (N,V,T) with fres,sim (N,P,T) we need to estimate the difference in the NPT and

NVT ideal gas references, which we do as follows:

Gres,exp(N, V, T ) =G(N, V, T )−Gid(N, V, T )

Gres,sim(N,P, T ) =G(N,P, T )−Gid(N,P, T )

Gres,exp(N, V, T ) =Gres,sim(N,P, T ) +Gid(N,P, T )−Gid(N, V, T )

(5.33)

Multiplying throughout by β gives dimensionless free energies.

fres,exp(N, V, T ) = fres,sim(N,P, T ) + fid(N,P, T )− fid(N, V, T ) (5.34)

Molar ideal gas dimensionless free energies can be expressed in terms of their partition

functions.

fid(P, T )− fid(V, T ) =− 1

N
(ln(Ξid(NPT ))− ln(Qid(NV T )))

=
1

N
ln

(
Qid(NV T )

Ξid(NPT )

) (5.35)

We know that

Qid(NV T ) =
V N

N !Λ3N

Ξid(NPT ) =
1

Λ3N(βP )N+1

(5.36)
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So

fid(P, T )− fid(V, T ) =
1

N
ln

((
P

kBT

)N+1

V N/N !

)
(5.37)

For large number of molecules, N

fid(P, T )− fid(V, T ) = ln

(
PV

kBT

)
− ln(N) + 1

= ln (Z)− ln(N) + 1

(5.38)

Where Z is the compressibility factor = PV
kBT

. Eq. 5.38 is very similar to Eq.4.2.27

derived by O’Connell and Haile except for the term − ln(N) + 1 . This term however

vanishes once we consider difference in the free energies between two states i and j.

fid,ij(P, T )− fid,ij(V, T ) = ln (Zij) (5.39)

Thus the relationship between simulated and experimental dimensionless residual free

energies will be

fres,exp,ij(N, V, T ) = fres,sim,ij(N,P, T ) + ln (Zij) (5.40)

We will have to add ln (Zij) to the free energy differences estimated using NPT simula-

tions to be able to compare them with the free energy differences estimated using IAPWS95

equation of state. The residual enthalpy and internal energy don’t have to be corrected

as residual enthalpy and internal energy for ideal gas remains unchanged for NVT and

NPT ensembles. However the residual entropy estimated using NPT simulations have to

be corrected for the difference in NVT and NPT ideal gas entropies for comparison with
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IAPWS95 entropy differences. Using the expression S = kB(βH − f) we can calculate

the correction for entropy.

Sres,exp,ij(N, V, T ) = Sres,sim,ij(N,P, T )− ln (Zij) (5.41)

5.2.1.5 Estimating properties using free energies estimated using MBAR First re-

viewing definitions, of general terms:

β =
1

kBT

f =βG

u =β(U + PV )

=β(P.E.+K.E.+ PV )

=− kBβ2

(5.42)

We use u = β(P.E + PV ) to estimate the Boltzmann weight as we are interested in

estimating only the configurational part of the partition function. The configurational part

of the residual Gibbs free energy will be used to calculate the properties corresponding

to partial derivatives of Gibbs free energy with respect to pressure, for example density,

molar volume, compressibility. The residual Gibbs free energy can be easily extracted

by subtracting the ideal gas configurational free energy from the total configurational free

energy.

fres,ij = f cij − f cid,ij (5.43)
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Difference in residual free energies can be estimated as described in the previous section

using Eq. 5.30.

All thermodynamic properties of interest can be expressed as derivatives of configura-

tional or residual free energy with respect to pressure and β. This makes the computation

of the derivatives easy and clearer. The partial derivatives with respect to pressure and β are

estimated using finite difference formula requiring estimation of residual free energy dif-

ferences fres,ij or configurational free energy differences, f cij , both of which can estimated

using MBAR.

Molar Volume:

vi =
∂G

∂P

=
1

β

∂f

∂P

=
1

β

∂f c

∂P

(5.44)

Residual molar volume:

vres,i = vi − kBTi/Pi. (5.45)

Molar Density:

ρ =
1

v
(5.46)
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Enthalpy:

H =− T 2

(
∂G/T

∂T

)
P

=
∂f

∂β

(5.47)

For estimating residual enthalpy, Hres all we have to do is replace f by fres.

Potential Energy or residual internal energy:

Ures,ij = Hres,ij − PVres,ij (5.48)

Residual Entropy:

Sres,ij = kB(βjHres,j − βiHres,i − fres,ij) (5.49)

Heat of Vaporization:

Hvap =−Hres (5.50)

While estimating the heat of vaporization we do not add corrections. We assume ideal

state for vapor state and estimate the difference in enthalpy between liquid and enthalpy of

ideal gas. This difference is equal to the negative of residual enthalpy of the liquid.

Heat capacity:

Cp =
∂H

∂T

=

(
∂2f

∂β2

)(
−kBβ2

) (5.51)
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For estimating residual heat capacity CP,res we can replace f by fres.

Isothermal compressibility:

κ =−

∂2G

∂2P
∂G

∂P

= −

∂2f c

∂2P
∂f c

∂P

(5.52)

Isobaric thermal expansion coefficient:

α =

∂2G

∂T∂P
∂G

∂P

=− kB

β
2

(
∂2f
∂β∂P

)
− β

(
∂f
∂P

)
∂f

∂P


(5.53)

5.2.1.6 Uncertainty in the property estimates Uncertainty in the experimental IAPWS95

properties are negligibly small. The mean square relative error in enthalpy, entropy and

Gibbs free energy for IAPWS95 equation is less than ∼ 10−9. We assume that the un-

certainty in the ideal gas part of the property (derived analytically) does not contribute to

the total uncertainty. Thus the total uncertainty in experimental properties, however small,

comes from the residual part.

The uncertainty in the SAFT EOS derived properties is zero as the SAFT model is an

analytical model. The uncertainty calculation for the difference in the SAFT and IAPWS95

derived properties is omitted as the only contributions are from the IAPWS95 uncertainties

which are negligibly small.

The uncertainty in the properties estimated using atomistic simulations are estimated

by propagating the uncertainties for the free energy terms involved in the calculation of

179



the property. The method of propagation of the uncertainties using the covariance matrix

has been already described in the third chapter. Only the uncertainties of the properties

estimated from the simulations contribute to the uncertainty calculation for the difference

in the atomistic and IAPWS95 derived properties as the IAPWS95 uncertainties are very

small.

5.2.2 Defining the objective function

5.2.2.1 Objective function originally proposed We had proposed to find water model

parameters which minimized the normalized residual, Eq. 5.54, or error between the exper-

imental and simulated properties.

ξ =

NP∑
k=1

NT∑
j=1

Nf∑
i=1

(
Fsim,i(Tj, Pk,x)− Fexp,i(Tj, Pk)

Fexp,i(Tj, Pk)

)2

(5.54)

Here Fsim(T, P,x) is set of simulated properties for a set of model parameters x at

some temperature T and pressure P . Similarly, Fexp(T, P ) is the corresponding set of

experimental properties for the same temperature T and pressure P . Nf is the number of

experimental water properties we want model parameters to fit to. NT is the number of

temperatures at which we want parameters to fit. NP is the number of pressures at which

we want parameters to fit.

Fsim(T, P,x) = {ρ,Hvap,∆Gsolv, κ, αp}

x = {σO, εO, qO, rOH , 6 HOH, rOM}

Fexp(T, P ) = {ρ,Hvap,∆Gsolv, κ, αp}

(5.55)

In this objective function, we are equally weighting relative errors of all properties. It is
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not clear exactly what sorts of models will emerge from this equal weighting. We first tried

different weights for density and heat of vaporization, for example [wρ,wHvap] ∈ {[1,0],

[0.9,0.1], [0.5,0.5], [0.1,0.9], [0,1]}. The optimization for some choice of weights {[1,0],

[0.9,0.1], [0.5,0.5], [0.1,0.9]} was biased towards getting only the density right and for

[wρ,wHvap] = [0,1] only the error in heat of vaporization was minimized at the cost of

increased error in density. However, we were not able to find a set of weights which could

simultaneously minimize errors in both the properties in a single optimization run.

Because of this failure, we decided to first revise our objective function such that the pa-

rameterization would result in water model parameters which would simultaneously reduce

deviation between all simulated and experimental thermophysical properties of water.

5.2.2.2 Revised objective function Almost all water models studies have treated the

water parameterization exercise as a multiobjective optimization exercise. However, al-

most all of them place the entire weight on a single property, density (ρ), and at the end

adjust parameters to incorporate enthalpy of vaporization corrections. There are several

problems associated with the latter approach. The model parameters minimize a linear

weighted sum of water properties. The weighted sum approach is only a linear approxima-

tion of the preference function which aims to model liquid water. We don’t have a good

understanding as to what combination of weights and which form of preference function,

linear or non linear, would result in model parameters which will reproduce properties of

liquid water. Most of the water models parameterizations use equal weights for density

and heat of vaporization. Such a choice will make the optimization to spend most of the

time reducing the errors in density. If we use Pareto optimal weights, the optimization will

be unbiased with respect to any property but we will still be unsure if the combination of

Pareto weights will properly model liquid water.
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The heat of vaporization Hvap is the enthalpy difference between the liquid and the gas

phase. This implies thatHvap may not be the best choice of parameters for a model because

it is not a pure liquid phase property. For Hvap, the gas phase enthalpy is approximated by

first assuming an ideal gas state and later adding corrections to account for non-ideality.

The enthalpy change is then corrected for self-polarization when transferring to liquid wa-

ter. Horn et al. [11] also correct for the classical approximation of water molecule by

adding quantum corrections to both liquid phase property and properties involving phase

change. The overall effect of including heat of vaporization is that the parameterization is

not for pure liquid phase and the parameterization also becomes sensitive to the accuracy

of the corrections and assumptions involved in the both liquid and vapor phase property

calculations.

The previous rigid water model parameterizations were done by minimizing deviation

between simulated and experimental densities, which is equivalent to minimizing deviation

between simulated and experimental molar volume. However, it is cleaner to minimize the

MSE in molar volumes because the molar volume is the partial derivative of residual Gibbs

free energy with respect to pressure.

Vsim − Vexp =

(
∂Gsim(T, P )

∂P

)
T

−
(
∂Gexp(T, P )

∂P

)
T

(5.56)

The simulated free energy Gsim(T, P ) and can be written in terms of individual compo-

nents.

1. Gsim,conf (T, P ) (Configurational free energy as a function of pressure and tempera-

ture)

2. Gsim,trans(T ) (Translational free energy as a function of temperature)
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3. Gsim,rot(T ) (Rotational free energy as a function of temperature)

There is no vibrational contribution for the rigid water model.

Similarly experimental free energy Gexp(T, P ), Gexp(T, P ) and can be written in terms

of individual components.

1. Gexp,conf (T, P ) (Configurational free energy as a function of pressure and tempera-

ture

2. Gexp,trans(T ) (Translational free energy as a function of temperature)

3. Gexp,rot(T ) (Rotational free energy as a function of temperature)

4. Gexp,vib(T ) (Vibrational free energy as a function of temperature)

Vsim − Vexp =

(
∂(Gsim,conf (T, P ) +Gsim,trans(T ) +Gsim,rot(T ))

∂P

)
T

−
(
∂(Gexp,conf (T, P ) +Gexp,trans(T ) +Gsim,rot(T ) +Gsim,vib(T ))

∂P

)
T

(5.57)

At pressures we are parameterizing the water model 1–120atm vibrational energies do not

depend on pressure. This kind of separation is feasible for molecules as rotational KE

and PE are not related. Terms that depend on temperature alone, i.e., translational, rota-

tional, vibrational Gibbs free energies, do not contribute to the partial derivative of the total

Gibbs free energy with respect to pressure at constant temperature. Thus the difference

in simulated and experimental Gibbs free energy reduces to difference in corresponding

configurational Gibbs free energies.

Vsim − Vexp =

(
∂Gsim,conf (T, P )

∂P

)
T

−
(
∂Gexp,conf (T, P )

∂P

)
T

(5.58)
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The configurational Gibbs free energy can be written as a sum of ideal gas configurational

Gibbs free energy and the residual Gibbs free energy.

Vsim − Vexp =

(
∂(Gsim,res(T, P ) +Gid,conf (T, P ))

∂P

)
T

−
(
∂(Gexp,res(T, P ) +Gid,conf (T, P ))

∂P

)
T

(5.59)

Since the experimental and simulated ideal gas configurational Gibbs free energies are

the same they cancel out. In the end we find that the difference in the experimental and

simulated molar volumes is equal to the difference in the partial derivatives of the residual

Gibbs free energies with respect to pressure at constant temperature.

Vsim − Vexp =

(
∂Gsim,res(T, P )

∂P

)
T

−
(
∂Gexp,res(T, P )

∂P

)
T

=

(
∂fsim,res(T, P )

∂βP

)
T

−
(
∂fexp,res(T, P )

∂βP

)
T

(5.60)

Here fres is the dimensionless residual Gibbs free energy, with as usual β = (kBT )−1.

Similarly all the liquid phase properties density, residual enthalpy, residual heat capacity,

isothermal compressibility and thermal expansion coefficient can be expressed as some

function of partial derivatives of residual Gibbs free energy or configurational Gibbs free

energy with respect to temperature and pressure.

Previous parameterization efforts have already tried to fit to the experimental density

and heat vaporizations [103, 10, 11]. Deviations between experimental and simulated den-

sity can be expressed in terms of first derivative of Gibbs free energy with respect to pres-

sure. Deviations between experimental and simulated Hvap (which is approximately equiv-

alent toHres in magnitude if vapor state is assumed to be ideal) can be expressed in terms of

first derivative of Gibbs free energy with respect to temperature using the Gibbs-Helmholtz
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equation. If we try to include the properties estimated using the second derivatives, specif-

ically residual heat capacity, isothermal compressibility and thermal expansion coefficient

in order improve the liquid phase parameterization we will use information redundantly

as the information about the second derivatives is already contained in the change of the

first derivatives over temperature and pressure ranges. If the Gibbs free energy surface is

“rigid” i.e., parameter changes shift the entire free energy surface equally, then in princi-

ple we will not achieve significant improvements by including these properties, especially

since the first derivatives vary very smoothly and gradually with respect to temperature and

pressure. However, if the first derivatives fluctuated a significantly with temperature and

pressure then inclusion of the second derivative properties can make significant contribu-

tions.

All derivative properties are contained in the fundamental thermodynamic function of

Gibbs free energy G(T, P ). Thus if we wish to improve thermodynamic agreement be-

tween our model and real water it in theory should be sufficient match Gsim(T, P ) and

Gexp(T, P ) i.e. fit the water model parameters by minimizing the difference between the

experimental and simulated Gibbs free energy surfaces as a function of temperature and

pressure.

However, there is a problem if we try to fit the parameters of a rigid water model to

reproduce Gexp(T, P ). As we will show, what we wish to minimize is difference between

experimental and simulated residual Gibbs free energy, Gres(T, P ). To see this, let us

examine the partition function of the model water Qsimand the partition function for exper-

imental/real water Qexp.

exp(−βGsim) = Qsim =Qtr,simQrot,simQconf,sim

exp(−βGexp) = Qexp =Qtr,expQrot,expQvib,expQconf,exp

(5.61)
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Qtr,sim, Qrot,sim, Qconf,sim are the translational, rotational, and configurational partition

function respectively for the simulated rigid water model. Qtr,exp, Qrot,exp, Qvib,exp, Qconf,exp

are the translational, rotational, vibrational and configurational partition function of the real

water. The minimization of MSE
∑

T

∑
P (Gsim - Gexp)2 will lead to to an increase in

Qconf,sim to compensate or the missing vibrational partition function in Qsim.

We know that density can be estimated using the partial derivative of the configurational

Gibbs free energy with respect to pressure at constant temperature.

ρ =v−1 =

(
∂Gsim(T, P )

∂P

)−1

T

=

(
∂(Gsim,conf (T, P ) +Gsim,trans(T ) +Gsim,rot(T ))

∂P

)−1

T

=

(
∂Gsim,conf (T, P )

∂P

)−1

T

(5.62)

.

The parameterization done by fitting to total Gibbs free energy will have incorrect

Gsim,conf (T, P ). Therefore, we will never be able to reduce the error in density or even

interaction energies from a rigid water model parameterized to fit experimental total Gibbs

free energy. Instead if we try to minimize the error in residual Gibbs free energy
∑

T

∑
P

(Gres,sim - Gres,exp)2 the parameters will be fit to reproduce at least the correct intermolec-

ular interactions as residual Gibbs free energy arises purely from the intermolecular in-

teractions. The liquid water model thus parameterized will reproduce the intermolecular

interactions of the experimental liquid water.

We need a Gibbs free energy based equation of state (EOS) fitted using experimental

properties of liquid water. Fortunately there exists a high accuracy EOS from IAPWS95

which can be used to estimate Gibbs free energy of water for various ranges of temperatures

and pressures. The errors in the thermodynamic properties estimated using the IAPWS95
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equation of state are two to three orders smaller compared to statistical uncertainties in

the simulated properties and therefore are not taken into account while comparing the

simulated and experimental properties. But before comparing the experimentally derived

IAPWS95 free energies and simulated free energies we need to take care of three issues.

The first issue is that the ideal gas partition function contribution to the simulated free

energies and IAPWS95 free energies do not match. The difference occurs due to the dif-

ference in degrees of freedom. In the experimental ideal gas partition function there are

3 translational, 3 rotational, 3 vibrational degrees of freedom. However, the vibrational

degrees of freedom are absent in the classical rigid water model. Also the heat capacity

estimates from IAPWS95 ideal gas free energies show temperature dependence. This ef-

fect cannot be captured using a classical rigid model with no internal degrees of freedom,

since rigid models must have an ideal gas heat capacity that is independent of temperature.

The temperature dependence of the heat capacity thus makes any analytical correction in-

sufficient to makeup for the missing degrees of freedom in the simulated free energies to

compare with IAPWS95 free energies directly. Figure 5.2 compares the ideal gas heat ca-

pacity of a rigid water model with the ideal gas heat capacity of real water estimated using

IAPWS95 EOS.
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Figure 5.2: The isobaric specific heat capacity of rigid water model in ideal gas state (in
black) is constant compared to a temperature dependent ideal gas heat capacity for real
water (in red).

The second issue is that the IAPWS95 free energies are referenced with respect to

the saturated liquid phase internal energy and entropy at the triple point. In the IAPWS95

formulation, the ideal gas free energy part is scaled such that the internal energy and entropy

are zero at the reference state. It is impossible to set the triple point of water as a reference

state for the simulated Gibbs free energies, both because we specifically do not expect our

water model to be valid at the triple point, and because convergence times will be very long

at the triple point because of convergence problems between phases.

However, we notice that residual Gibbs free energy contribution in IAPWS95 formu-

lation is unaffected by the choice of the reference state. Thus, we don’t have to treat the

residual free energy estimated using IAPWS95 formulation for comparing with the simu-

lated residual Gibbs free energy. Once we have the mean square error of the simulated and
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experimental residual Gibbs free energy surfaces for a range of temperatures and pressures,

we can optimize water model parameters for a given objective function.

If we could match the experimental Gres,exp and simulated Gres,sim surfaces with very

small tolerance then the partial first derivatives of Gres with respect to T - and P -containing

properties, density andHres and the partial second derivative ofGres with respect to T - and

P -containing properties, compressibility and CP,res should also match. This hypothesis is

based on the assumption that theGres(T, P ) surface is such that a tilt or rotation at one point

rotates the entire function. However, we will find this assumption fails, becauseGres(T, P )

surface is found to be prone to local deformation according to the constraints and objective

function to which it is fit.

The third issue is that the residual free energies estimated using a pressure explicit

EOS (in IAPWS95 volume and temperature are variables), Gres,exp are functions of V

and T , whereas the residual free energies estimated using atomistic simulations (where

pressure and temperature are variables), Gres,sim are functions of P and T . This can be

overcome by explictly calculating the relationship between the residual Gibbs free energies,

Gres,exp(V, T ) and Gres,exp(P, T ), explained later in the chapter.

The dimensionless residual Gibbs free energy fres,ij is a different function compared to

molar residual Gibbs free energy gres,ij , but either can be used for parameterization, as both

contain the same information, as βg = f . We use fres,ij in our parameterization as MBAR

outputs fres,sim,ij , referenced such that the first state is set as the reference with fres,0 = 0.

fres,sim,i for parameterization. As a shorthand, we will sometimes refer to the individual

thermodynamic state variables fres,exp,i as fres,exp and fres,sim,i as fres,sim for defining the

objective functions.

We first started by minimizing just the MSE in fres,sim. All fres,sim and fres,exp are

calculated with same reference state, which could be user selected temperature Tr and
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pressure Pr.

minimize
x

ξ(x) =
1

NTP

i=NP∑
i=1

j=NT∑
j=1

(fres,sim(Pi, Tj,x)− fres,exp(Pi, Tj))2

subject to fres,sim(Pr, Tr,x) = fres,exp(Pr, Tr) = 0
(5.63)

We used already existing water models (SPC,SPC/E, TIP4P, TIP4P-EW,TIP4P-2005) as

our initial guesses for the optimization run with COBYLA [123] optimization routine. We

chose COBYLA as it is a derivative-free optimization algorithm and can handle constraints

in the objective function. To observe the effect of optimization on the first derivative prop-

erties of fres with respect to T and P we observed the changes in the errors in Hres =(

∂(fres)/∂(β)) and ρ (= 1/(∂(fconf )/∂(βP )) For the models which have large deviations in

Hres (absolute error ≈ 5 kJ/mol) but very good densities (absolute errror ≈ 1–3 Kg/m3),

such as TIP4P-EW, the optimization tends to drastically decrease the fit to the density

when improving the Hres correct in order to best match the simulated Gres surface to the

experimental Gres surface. Thus, although this procedure minimizes the distance between

experimental and simulated free energy surfaces, it does not give particularly good water

properties across all parameters of interest.

For the models which have moderate deviations in Hres (abs error ≈ 1 kJ/mol ) and

moderately good densities (abs err ≈ 5-21 Kg/m3), for example, TIP4P and SPC, the opti-

mization tends to improve densities at higher temperatures (where the deviations are large)

and worsen densities at lower temperatures (where deviations are small) and effect on Hres

is very small.

These observations suggest that the optimization process per se is working effectively.

However, we need to modify our objective function such that the difference in experimental
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and simulated fres surfaces is minimized without significantly reducing the accuracy in the

properties.

A possible solution is to minimize deviation in fres,sim surface by “pinning” the partial

derivatives of fres,sim with respect β and P or alternately pinning density and Hres at three

locations: high moderate and low temperatures at 1 atm. Since the surface is smooth,

continuous and assumed to be rigid, we anticipate the constraints will make sure that the

simulated fres,sim surface achieves minimum deviation from experimental surface without

deteriorating either of the two properties. This suggest the minimization function:

minimize
x

ξ(x) =
1

NTP

i=NP∑
i=1

j=NT∑
j=1

(fres,sim(Pi, Tj,x)− fres,exp(Pi, Tj))2

subject to |Hres,sim(x)−Hres,exp| − 0.01 < 0

at [T=274 K, P=1atm], [T=298 K, P=1atm], [T=372 K, P=1atm]

(5.64)

The deviations ± 1 kg/m3 in density and ± 0.01 kJ/mol in Hres,sim are arbitrary/ user

based. At the pinning points constraints were respected and every where else density was

sacrificed to get Hres,sim correct.

Then we pinned the fres,sim surface at low moderate and high temperature and at low

and high pressures by introducing density and Hres constraints. Again, at the constraints

the errors in density were minimum compared to else where. However, this time the opti-

mization completely ruined the density versus temperature behavior as the density rose and

fell multiple times with the increasing temperature around the pinning points. Importantly,

the fres,sim surface looked smooth as shown in Figure 5.3, meaning that these errors in first

derivative properties did not appear significant in the overall surface.
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(b) End of Optimization

Figure 5.3: We start the minimization with TIP4P-2005 water model parameters. Even
though we minimize error in residual free energy, the density versus temperature behavior
gets totally distorted. We see that at [T=274 K, P=1atm], [T=298 K, P=1atm], [T=372 K,
P=1atm] the constraints on density are followed however around the constraint points the
curve rises and falls multiple times.

At this point, we have found that the optimization of MSE in fres,sim alone does not pre-

serve either the first or the second derivative of fres,sim in T or P direction. We have also

observed that a relatively smooth surface of fres,sim exhibits anomalous first and second

derivatives behavior when constrained at individual temperature and pressure points. From

the experiments in which we introduced constraints it is clear that the constraints at indi-

vidual points results in anomalous behavior of first and second derivatives. Thus, we must
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set up our optimization such that the minimization of MSE in fres,sim improves MSE in

density and Hres,sim. This indicates the need of a surface-wide constraint on the properties

which come from first derivative of fres,sim with respect to T and P for the optimization.

minimize
x

ξ(x) =
1

NTP

i=NP∑
i=1

j=NT∑
j=1

(fres,sim(Pi, Tj,x)− fres,exp(Pi, Tj))2

subject to (1)
1

NTP

i=NP∑
i=1

j=NT∑
j=1

(ρsim(Pi, Tj,x)− ρexp(Pi, Tj))2 − 1 < 0

(2)
1

NTP

i=NP∑
i=1

j=NT∑
j=1

(Hres,sim(Pi, Tj,x)−Hres,exp(Pi, Tj))
2 − 0.01 < 0

(5.65)

Using SPC water model (which has the lowest MSE(fres,sim among water models) as

the starting guess, the best feasible solution using the objective function 5.65 results in

worsened MSE(fres,sim) without substantial improvements in either MSE in density or in

Hres,sim. For TIP4P-2005 as the starting point MSE(fres,sim) and MSE(Hres,sim) reduced

compared to the starting value but then the worsening MSE (ρsim) becomes greater than

100 kg/m3.

Interestingly, we observed that the paramterization generally minimizes error in fres,sim

by correcting Hres,sim without improving the accuracy in ρ. We thus next attempt to switch
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places of fres,sim with that of MSE (ρsim) as shown below.

minimize
x

ξ(x) =
1

NTP

i=NP∑
i=1

j=NT∑
j=1

(ρres,sim(Pi, Tj,x)/ρres,exp(Pi, Tj)− 1)2

subject to (1)
1

NTP

i=NP∑
i=1

j=NT∑
j=1

(fres,sim(Pi, Tj,x)/fres,exp(Pi, Tj)− 1)2 − 10−6 < 0

(2)
1

NTP

i=NP∑
i=1

j=NT∑
j=1

(Hres,sim(Pi, Tj,x)/Hres,exp(Pi, Tj)− 1)2 − 10−6 < 0

(5.66)

We wish the optimization to get the densities and the density versus temperature behavior

correct while keeping the errors in fres,sim andHres,sim within user specified bounds, which

we have set to 10−6. We realized that instead of mean square errors, mean square relative

errors will reduce any confusion in error comparison due to choice of units. So in objective

function in Eq. 5.66 we replaced the mean square errors (MSE) with mean square relative

errors (MSRE).

The best feasible solution (minimum violation to the constraints) using the objective

function defined in Eq. 5.66 could reduce the MSRE(ρsim(x) but could never fully satisfy

the constraints. In the process of approaching MSRE(fres,sim(x)) < - 10−6 the optimiza-

tion run tries to minimize error in density and Hres,sim. However the improvements in

MSRE(fres,sim(x)) hits a hard wall as the density does not improve beyond a certain point.

Hres,sim can be written as sum of potential energy U and PVres. So the improvement in

Hres,sim also hits a hard wall when the errors in Vres or density dominate.

This bottleneck in the objective function in Eq. 5.66 forced us to give a fresh look at the
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fundamental thermodynamic function of Gibbs free energy Gres.

Gres =Hres − TSres

=Ures + PVres − TSres

=Ures + P

(
∂Gres

∂P

)
T

+ T

(
∂Gres

∂T

)
P

(5.67)

In the above equation we see that for a given T and P the residual Gibbs free energy is

a combination of the following state functions: the residual internal energy Ures (which

is equal to the potential energy of the system for a rigid water model), the residual molar

volume Vres =
(
∂Gres

∂P

)
T

and the residual entropy Sres =
(
∂Gres

∂T

)
P

.

By this argument, we could have multiple combination of forcefield parameters which

give a correct Gres but have cancelling errors Ures, Vres and Sres. For a given fluid, there

exists a unique combination of Ures, Vres and Sres which gives specific residual Gibbs free

energy at given T and P . Initially, we were trying to fit to the experimental Gres, T , P

surface and observed that we were not able to obtain the correct fluid properties meaning

the corresponding simulated Ures,sim,Vres,sim and Sres,sim did not match with experimental

Ures,exp,Vres,exp and Sres,exp for water. The optimization was reducing the error in Gres,sim

but was not fixing to the unique Ures,sim,Vres,sim and Sres,sim of water. This could be the

numerical reason why our optimization runs with just the free energy alone were not work-

ing.

The above reasoning prompted us that we should fit to the experimental Gres surface

(or fres surface), making sure that the simulated Ures,sim,Vres,sim, and Sres,sim correspond

to that of the experimental water. We will be fitting to the residual free energy surface of

water but with a greater confidence, since the objective function will give free energy with

the correct combination of Ures,Vres and Sres i.e. corresponding to water. Thus, we have
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the following new objective function:

minimize
x

ξ(x) =
1

NTP

i=NP∑
i=1

j=NT∑
j=1

(vsim(Pi, Tj,x)/vexp(Pi, Tj)− 1)2

subject to (1)
1

NTP

i=NP∑
i=1

j=NT∑
j=1

(Ures,sim(Pi, Tj,x)/Ures,exp(Pi, Tj)− 1)2 < 10−6

(2)
1

NTP

i=NP∑
i=1

j=NT∑
j=1

(Sres,sim(Pi, Tj,x)/Sres,exp(Pi, Tj)− 1)2 < 10−6

(3)
1

NTP

i=NP∑
i=1

j=NT∑
j=1

(fres,sim(Pi, Tj,x)/fres,exp(Pi, Tj)− 1)2 < 10−6

(5.68)

Minimizing error in Ures,sim will make sure that the model results in a realistic water poten-

tial energy and that there is minimum shift between experimental and simulatedGres(T, P )

surfaces. Minimizing error in Vres and Sres will ensure that the gradients of simulated

Gres(T, P ) surfaces in the temperature and the pressure directions closely match with

those of the experimental Gres(T, P ) surface. Thus, we not only match the points on the

Gres(T, P ) surface but we also make sure that the shape of the surface around every T and

P point also matches with experimental counterpart. These conditions will ensure that the

combination of U , S and V that minimizes error in G which actually corresponds to that of

liquid water.

There could be multiple sets of force field parameters what could produce similar

Gres(T, P ) surfaces but with very different Ures(T, P ), Sres(T, P ) and Vres(T, P ) surfaces.

The constraints on Ures(T, P ), Sres(T, P ) and Vres(T, P ) surfaces will help reduce the false

Gres(T, P ) surfaces and drive the parameterization towards a better water model. Thus, the

parameterization with objective function defined in Eq. 5.68 should show better conver-
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gence compared to parameterization with objective function defined in Eq. 5.66. We can

test the convergence by doing multiple optimization runs with different initial guess set of

parameters using the two objective functions in Eq. 5.68 and Eq. 5.68 and compare. How-

ever, running multiple optimizations using reweighting is computationally very expensive.

Optimization even with reweighting does not reduce the computational cost (time as

well as memory) enough to allow hundreds of simultaneous optimization run to conver-

gence. This is where SAFT model can help. A SAFT water model has similarities to

the atomistic water model and yet computationally much cheaper to evaluate. Similar to

the water atomistic water model, the SAFT water model we chose has a 12-6 LJ poten-

tial which describes repulsive and dispersion interactions and the Coulomb contribution

are estimated using an analytical Pade approximation. SAFT models posit a configuration

integral that is used to estimate the association interactions which describe hydrogen bond

forces. Apart from the association parameters (Khb, σhb, εhb), SAFT model requires σO, εO

and molecular dipole µ which can be mapped to atomistic model parameters σO, εO, qO,

rOH , rOM and 6 HOH . Thus, the response of the property surface to the change in SAFT

model parameters will be qualitatively similar to the response of the property surface to

the change in atomistic model parameters. Thus, the objective function that works well for

parameterizing SAFT model should also work for atomistic model parameterization. We

could run hundreds of SAFT model parameter optimizations with random starting param-

eter sets and compare the convergence for objective functions in Eq. 5.68 and Eq. 5.68. To

make random initial guesses we need to set bounds on the SAFT model parameters such

that a random value is picked between the upper and lower bound, as shown in Table 5.1,

to create an initial guess set of parameters to start the optimization. The bounds are cho-

sen such that even the worst parameters (which give very large error in SAFT estimated

properties) are inclusive.
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Parameter (units) Range

[lower bound , upper bound]

σLJ (nm) [0.28,0.35]

εLJ (kJ/mol) [0.332,3.327]

mu (D) [1.9,3.1]

εhb (kJ/mol) [6.653 , 16.633]

Khb () [1 , 200]

σhb/σLJ () [0.02 , 0.4]

Table 5.1: The parameter bounds for exploring the SAFT water model parameter space.

COBYLA searches for a local minima only in the neighboring multidimensional func-

tion space. However, we wish to use an optimization routine that attempts to search through

the entire variable space defined by the parameter bounds to arrive at a minima. So, we

tested the convergence of objective functions in Eq. 5.66 and Eq. 5.68 using the SAFT

equation of state with mesh adaptive direct search (MADS) algorithm [110] with progres-

sive barriers [111] approach for handling constraints instead of COBYLA.

For Eq. 5.66 we ran 1000 SAFT optimizations with random initial starting guesses. In

Figure 5.4 we can observe that the parameters like σ, ε show zones which represent water

like models. However, there is no distinct minima. Some of the optimizations drift to the

parameter boundaries in search of the minima for example we found many optimizations

got stuck at the lower end of µ. The error in Hres did not go below 2.4 kJ/mol and the error

in Gres did not go below 0.2 kJ/mol. The error in density fluctuates between 40 kg/m3 to

400 kg/m3

For Eq. 5.68 we ran 500 SAFT optimizations with random initial starting guesses. In

Figure 5.5 we can see that for all runs the optimizations converged to a single distinct ε '

198



1 kJ/mol and to a single band of σ ' 3.2. The error in Ures and Gres can be reduced to 0.02

kJ/mol, the error in Sres goes down to 0.04 J/mol/K and the error in V or Vres is less than

4×10−6 m3/mol which corresponds to an error of 286 kg/m3 which is very large. From this

exercise we can learn that errors in Gibbs free energy and density cannot be simultaneously

reduced. There will be a point when error in density will start increasing sharply with

the decreasing error in residual Gibbs free energy. At this point we will have to make a

decision to lower the tolerance in the residual Gibbs free energy error to get acceptable

error in densities.
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Figure 5.4: Subplots on the left show the values of the parameters at the start of the opti-
mization; Subplots on the right show the values of the parameters at the end of optimiza-
tion from 1000 SAFT model optimization runs using the objective function definition in
Eq. 5.66. We see bands forming indicating possible location of a water like model however
there is no prominent minima.
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Figure 5.5: Subplots on the left show the values of the parameters at the start of the opti-
mization; Subplots on the right show the values of the parameters at the end of optimization
from 500 SAFT model optimization runs using the objective function definition in Eq. 5.68.
We see a distinct value for ε and a single band of allowed values for σ

201



We plotted the association parameters and σ, ε and µ together to see if there exist a

lower dimensional submanifold relating these parameters. In Figure 5.6, in the top left

subplot we see that the association parameters fall on a surface. In the top right sub plot we

see that σ, ε and µ also have specific regions where all constraints in Ures, Sres, and Gres

are satisfied.

The bottom sub plots in Figure 5.6 include only those parameter combinations for which

mean square error in molar volume is less than 0.01, and mean square error in internal en-

ergy, entropy and free energy is also less than 0.01. These parameters fall on a straight line.

The sieve excludes those combinations which have low MSE in internal energy, entropy

and free energy but high MSE in density. The sieved combinations of σ, ε and µ fall along

a line.

We plot σLJ against εLJ in Figure 5.7. The sieved σLJ against εLJ combinations fall

on a line which has slope almost equal to zero which suggests that there is a strong sharp

minima in σ for the SAFT model. εLJ can vary between 120.1 and 120.5 K indicating a

minima over a small range.
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Figure 5.6: There exist low dimensional submanifolds which relate the SAFT model pa-
rameters. The association parameters Khb, σhb, and εhb for which the mean square errors
in molar volume, residual internal energy, residual entropy and residual Gibbs free energy
is lower than 0.01 fall on a surface and the corresponding Lennard-Jones and coulomb
parameters σLJ , εLJ and µ fall on a line.
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We could have explored the results from the convergence tests a little more by studying

the correlation between parameters and property surfaces, checking for any parameter de-

generacies and if we could converge the parameters further by restarting the optimization

using the converged parameter sets from the previous run as the initial guess. However, we

had sufficient qualitative information from the convergence characteristics of the objective

function with SAFT water model using the MADS algorithm to initiate optimization of the

atomistic water model parameters. Optimization based on the MADS (Mesh adaptive direct

search) algorithm allows application of constraints as progressive barriers and shows better

convergence (lower minimum and adherence to constraints) compared to hard constraints

as implemented as COBYLA and also performs searches within set bounds on parameter

space. The progressive barrier approach of dealing with the constraints is better than the

extreme barrier approach in which the infeasible solutions are rejected straight away. Pro-

gressive barrier results in better and faster convergence even when a starting feasible point

is unknown, which is very beneficial for our problem. MADS facilitates both progressive

as well as extreme barriers. We thus use MADS for all our subsequent optimizations.

An iteration using MADS algorithm involves evaluation of the objective function Obj(x)

and constraint violation function h(x) defined over Nc constraint functions cj(x) < 0 (j ∈

[1 · · ·Nc] ) :

h(x) =∞ ifx /∈ Xb (5.69)

=

j=Nc∑
j=1

(max(cj(x)), 0)2 ifx ∈ Xb (5.70)

Xb is the set of the upper and lower bounds for all the variables in x.

The optimization starts from the initial supplied guess point. A mesh is created around

the initial point for the search step according to user specified mesh generation algorithm,
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a mesh size parameter within the user specified bounds of the parameter. A feasible point

is one which has Objk(x) < Objk−1(x) and hk(x) =0 i.e. all the constraints are satisfied. If

all the constraints are not satisfied (for an infeasible point) then the optimization will span

a mesh for the POLL step, according to a poll size parameter around the current point to

perform a more local exploration. If a better solution, having lower value of h(x), is found

using either SEARCH or POLL steps the optimization updates x with the new feasible

point and makes the mesh coarser. If a better solution is not found then the optimization

does not update x and refines the mesh. This process is carried out till all the constraints

are progressively satisfied. Once the optimization trajectory lands in the space of feasible

solutions, minimization of f(x) is again resumed.

We use a progressive barrier on the three constraints defined in Eq. 5.68. In addition,

we also have two extreme barrier constraints imposed on the dipole moment of the water

model. Studies have shown that the water model should have dipole moment between 2D

and 3D to reproduce the correct dielectric constant of water. We constrained the dipole of

the water model to be be between 1.9D and 3.1D such that the dipole moment of the model

is always greater than the gas phase dipole moment(1.85D) and is less than 3.1D which is

an arbitrarily set upper limit to include all existing water models.

5.2.2.3 Setting the water model parameter exploration space To search the water

model parameter space for a better water model using the MADS algorithm, we will have

to set parameter bounds. The bounds are set such that the probability of finding a water

model outside the space set by these bounds is negligible. We propose that the liquid

phase geometry should not be very different from the gas phase. Therefore, we start by

defining the parameter search space for molecular geometry by estimating geometry of

water molecule in the vapor phase using quantum mechanics. ab initio quantum mechanical
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(QM) methods can give the geometry and charges which minimize the potential energy for

a water molecule in gas phase 5.2.

Parameter (units) Experimental [124] QM optimized Single point calculation

using experimental geometry

rOH (nm) 0.09572 0.09474 0.09572

6 HOH (deg) 104.52 105.538 104.52

q(O) (e) - -0.8688 -0.8655

Table 5.2: The quantum mechanical calcautions predict geometry that is close to the exper-
imentally observed gas phase water monomer geometry. In a single point calculation we
use user specified molecular geometry to estimate the partial charges.

A potential energy scan for different OH bond lengths and HOH bond angles around

the QM minima showed that the gas phase water molecule potenital energy surface has a

definite minimum as shown in Figure 5.8. All quantum mechanical calculations were done

using Gaussian03 pacakage [125]. We chose restricted Hartree Fock method method using

6-31G(d) basis set.
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Figure 5.8: There exists a single, distinct minima both with respect to bond length and bond
angle in the potential energy surface of a water molecule in gas phase.

Also the dipole moment of liquid water is debated to be between 2.6–3.0 D [126, 119].

The QM minimized geometry and charges give dipole close to 2.6 D [127]. However, there

could be multiple geometry and charge combinations which could give dipole moment in

the range 2.6–3.0 D. We also browsed through the literature for different water models to

get the upper and lower bounds for each parameter. We define our parameter search space

such that these bounds include all popular water models and are around the QM minima.

These bounds are listed in the Table 5.3.
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Parameter (units) Range

[lower bound , upper bound]

ROH (nm) [0.08572 , 0.10572]

AHOH (rad) [1.685 , 1.964]

ROM (nm) [-0.025 , 0.025]

σ (nm) [0.26,0.35]

ε (kJ/mol) [0.332,2.495]

q(O) (e) [-1.3,-0.6]

Table 5.3: The parameter bounds for exploring the atomistic water model parameter space.

5.2.2.4 Work flow for the parameterization. Figure 5.9 shows the work flow for

the optimization routine. The initial guess parameter set is input to a re-evaluation and

estimation module. The re-evaluated energies along with the sampled energies are used to

predict the properties Fsim(T, P,xi). ξ is estimated using the simulated properties for the

input set. ξ is checked against a convergence criteria, if it passes the criteria the iteration is

stopped, if not then the parameter set xi is passed to a gradient based or direct optimization

routine to get a parameter set for the next iteration. Optimization involves multiple function

calls to the re-evaluation and the estimation module.
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Figure 5.9: The workflow for the optimization. The thermodynamic observables are esti-
mated using reweighting as opposed to running new molecular simulations. This should
speed up the iterations in the workflow.

5.3 Results

Table 5.4 contains the starting TIP4P parameters and the final optimized parameters. We

call the set of optimized parameters as Gibbs Optimized Parameters for Atomistic Liquid

simulation, GOPAL. As predicted the optimized geometry is very close to the experimen-

tally derived geometry also used by TIPnP models. This finding for the first time quantita-

tively proves the assumption to be true.
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Model rOH 6 HOH rOM qO σO εO

nm Rad nm e.s.u nm kJ/mol

1) TIP4P 0.0957 1.8242 0.0150 -1.0400 0.3154 0.6487

2) 0.0945 1.8337 0.0136 -1.0519 0.3158 0.6638

3) 0.0945 1.8283 0.0134 -1.0450 0.3139 0.7380

4) 0.0946 1.8371 0.0126 -1.0371 0.3138 0.7733

5) 0.0946 1.8395 0.0119 -1.0265 0.3125 0.8462

6) 0.0945 1.8465 0.0122 -1.0300 0.3110 0.9365

7) 0.0957 1.8639 0.0122 -1.0220 0.3126 0.8920

8) 0.0956 1.8613 0.0127 -1.0280 0.3128 0.8484

9) 0.0958 1.8567 0.0132 -1.0281 0.3131 0.8115

10) 0.0958 1.8568 0.0131 -1.0275 0.3130 0.8120

11) GOPAL 0.0958 1.8569 0.0131 -1.0276 0.3130 0.8122

Table 5.4: Optimization converged after 11 simulation iterations and 4100 iterations in-
volving reweighting.

In Table 5.5 we can see that the optimization starting with TIP4P parameters as inital

guess brings down the mean square relative error (MSRE) in molar volume V , potential

energy or residual internal energy, Ures, residual entropy, Sres, as well as residual Gibbs

free energy, fres. We started the optimization with TIP4P parameters and used reweighting

to estimate the objective function and constraint function at new iterations. After several

iterations parameters perturbations became very small and MSRE stopped improving. The

parameter set at which reached this intermediate convergence was reached, was used to

generate fresh samples and restart the optimization process. The optimization converged

to the final answer after 11 such fresh simulations starts, and a total of 4100 reweighting
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iterations. The ten parameter sets shown in Table 5.5 are the ones which we had to simulate.

We used 11 temperatures {1, 4, 10, 20, 30, 40, 50, 60, 70, 80, 98}oC and 2 pressures

[1.01325,121.01325] bar to generate the fresh samples. This gave 22 sampled pressure and

temperature states. We used 88 intermediate temperature and pressure combinations i.e., a

total of 110 temperature and pressure combinations to generate the property surfaces.

We used a tolerance of 10−6 in the constraint functions of Ures, Sres and fres for param-

eter sets 1-5 in Table 5.5 , however, from the 6th set we had to relax the tolerance to 10−4,

5−3 and 10−4 to prevent MSRE V from further deteriorating. The constraints are always

satisfied from this point onwards, the optimization stops minimizing MSRE in Ures, Sres

and fres (to satisfy the constraints) and focuses solely on minimizing MSRE V . We can

observe this change visually in Figure 5.10. After we relax the tolerance at the 6th set,

MSRE in V decreases at the cost of increasing MSRE in Ures, Sres and fres.
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Figure 5.10: MSRE in V , Ures, Sres and fres cannot simultaneously decrease indefinitely.
MSRE in Ures, Sres and fres has to be sacrificed to get reduction in MSRE in V

We found the observation from the SAFT runs that we cannot reduce the error in Gibbs

free energy and density simultaneously to be true in the atomistic simulations also. This

limitation could be due to the rigid geometry and fixed charge model of water. One way to
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improve the agreement is to vary the hardness and dispersion of the Lennard Jones model.

Instead of a 12-6 model we could make the repulsion and dispersion exponents variables in

our optimization and estimate which powers better model water.

Model MSRE V MSRE Ures MSRE Sres MSRE fres

1) TIP4P 1.875×10−4 1.640×10−4 1.395×10−2 4.036×10−3

2) 2.908×10−4 6.031×10−5 1.143×10−2 1.157×10−3

3) 1.240×10−4 3.628×10−5 6.359×10−3 6.644×10−4

4) 1.499×10−4 2.866×10−5 4.262×10−3 5.908×10−4

5) 1.582×10−4 1.256×10−5 2.317×10−3 6.473×10−5

6) 3.649×10−4 7.261×10−6 1.134×10−3 2.554×10−5

7) 1.546×10−4 1.361×10−5 2.383×10−3 7.883×10−5

8) 1.360×10−4 1.822×10−5 3.253×10−3 9.380×10−5

9) 1.268×10−4 2.618×10−5 4.646×10−3 1.114×10−4

10) 1.286×10−4 2.442×10−5 4.474×10−3 9.532×10−5

11) GOPAL 1.283×10−4 2.436×10−5 4.484×10−3 9.997×10−5

Table 5.5: MSREs for optimized parameters compared as a function of iteration from the
optimization done using a grid of 110 temperature and pressure points.
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Figure 5.11: After we relax the tolerances in Ures, Sres and fres at the sixth sampled set we
see that all the parameters converge to a value for which MSRE in V is minimum.

We increased the number of gird points from 110 to 210 for the final comparison be-

tween TIP4P and GOPAL to capture any inconsistencies in the property surface with the

finer grid spacing. Figures 5.12 - 5.21 show property surfaces
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(a) estimated using experimental equation of state, IAPWS95,

(b) estimated using atomistic simulations with TIP4P parameters,

(c) estimates using atomistic simulations with GOPAL parameters,

and also the difference between experimental and simulated property surface

(d) difference between TIP4P and experimental property surface,

(e) difference between GOPAL and experimental property surface.

In all the plots triangles represent the sampled states and the dots represent the reweighted

states.

All simulated property surfaces except CP,res look similar to experimental property sur-

face in shape and form for both TIP4P and GOPAL parameter sets. It is only when we look

at the difference from the experimental property surface we find that the property estimates

using GOPAL parameter set have improved agreement with the experimental properties.

For example, we can see that TIP4P has small deviation from experimental fres at low tem-

peratures and large deviations in fres at higher temperatures. GOPAL has low deviations

in fres at both high and low temperatures. The Hvap surface, although shifted by almost

4.6 kJ/mol (since we do not include the self polarization correction) has lower deviation

at higher temperatures. Similarly, the experimental and simulated Ures and Sres, Hres esti-

mates using GOPAL parameter set have better agreement than TIP4P. TIP4P densities have

large errors, 27 kg/m3 at high temperatures and low error at lower temperatures 4 kg/m3.

GOPAL shows equal deviations at lower and higher temperatures of about 16 kg/m3. Al-

though the TIP4P and GOPAL CP,res surfaces do not match in form when compared to

experimental CP,res surface we can easily see that the deviations from experimental CP,res

surface is lower for GOPAL compared to TIP4P. This is due to lowering of error in the
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residual entropy surface with GOPAL parameters. The deviations in estimates of com-

pressibility and thermal expansion coefficients seem to show no improvement. However,

the magnitude of deviation and the uncertainty in the deviation are of the same magnitude

which makes any comparison difficult. This is not the case for Ures and Sres, Hres, fres for

which the uncertainty in deviation is one to two orders lower compared to magnitude of

deviation itself. Thus the differences are statistically significant.

In Table 5.6 we see that there is a statistically significant improvement in almost all ther-

modynamic properties if we use GOPAL parameter set. The largest percentage decrease in

MSRE is in Gres ∼ 99 %.
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Property TIP4P GOPAL Percent decrease

MSRE1±δ(MSRE1) MSRE2±δ(MSRE2) MRSE1−MRSE2
MRSE1

× 100

Ures 1.843×10−4 ±4.497×10−6 2.677×10−5 ±1.472×10−6 85

Sres 9.283×10−3 ±1.466×10−3 2.990×10−3 ±7.698×10−4 68

V 2.158×10−4 ±7.274×10−6 1.354×10−4 ±4.885×10−6 37

Gres 4.468×10−2 ±4.588×10−3 5.658×10−4 ±3.108×10−4 99

ρ 2.063×10−4 ±6.755×10−6 1.341×10−4 ±4.707×10−6 35

Hres 1.609×10−4 ±3.900×10−6 2.379×10−5 ±1.285×10−6 85

Hvap 1.204×10−2 ±2.892×10−5 1.007×10−2 ±2.477×10−5 16

CP,res 1.044×10−2 ±4.557×10−3 2.466×10−3 ±2.419×10−3 76

κT 8.116×10−2 ±2.097×10−1 3.697×10−2 ±1.408×10−1 54

αP 6.846×103 ±1.114×104 1.192×104 ±1.335×104 -74

Table 5.6: MSRE of all properties derived from first and second derivatives of Gibbs free
energy with respect to temperature and pressure decrease for GOPAL. MSRE inGres is sta-
tistically insignificant and close to zero for GOPAL. Near the melting temperature, relative
errors in αP are very high because the experimental αT are very close to zero ∼ 10−7 K−1

while the simulated αP are still ∼ 4× 10−4 K−1 causing the MSRE to jump three orders of
magnitude. At all other temperatures the relative errors in αP are less than 1. For the rest of
the properties there is a statistically significant improvement in the corresponding MSRE.
MSRE calculations in this table are done using properties estimated for 210 temperature
and pressure combinations.

GOPAL water model parameters have the lowest error in fres compared to any TIPnP

water models, SPC and SPC/E water models. Thus, GOPAL water model parameters do a

better job in modeling the intermolecular interactions of liquid water. However, the GOPAL

water model parameters are unable to reproduce the correct density maximum and the

compressibility minimum for water.
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Figure 5.12: MSRE in fres reduces by 99% after optimization. (a) Experimental fres sur-
face, (b) TIP4P fres surface, (c) GOPAL fres surface (d) difference between TIP4P and
experimental fres surfaces, (e) difference between GOPAL and experimental fres surface
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Figure 5.13: MSRE in Ures reduces by 85% after optimization. (a) Experimental Ures
surface, (b) TIP4P Ures surface, (c) GOPAL Ures surface (d) difference between TIP4P and
experimental Ures surfaces, (e) difference between GOPAL and experimental Ures surfaces
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Figure 5.14: MSRE in Sres reduces by 68% after optimization. (a) Experimental Sres
surface, (b) TIP4P Sres surface, (c) GOPAL Sres surface (d) difference between TIP4P and
experimental Sres surfaces, (e) difference between GOPAL and experimental Sres surfaces
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Figure 5.15: MSRE in V reduces by 37% after optimization. Error in V gets redistributed
evenly around T = 310 K after optimization. (a) Experimental V surface, (b) TIP4P V
surface, (c) GOPAL V surface (d) difference between TIP4P and experimental V surfaces,
(e) difference between GOPAL and experimental V surfaces
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Figure 5.16: MSRE in density reduces by 35% after optimization. Error in density also gets
redistributed evenly around T = 310 K after optimization. (a) Experimental density surface,
(b) TIP4P density surface, (c) GOPAL density surface (d) difference between TIP4P and
experimental density surfaces, (e) difference between GOPAL and experimental density
surfaces
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Figure 5.17: MSRE in Hres reduces by 85% after optimization. (a) Experimental Hres

surface, (b) TIP4P Hres surface, (c) GOPAL Hres surface (d) difference between TIP4P
and experimental Hres surfaces, (e) difference between GOPAL and experimental Hres

surfaces
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Figure 5.18: MSRE in Hvap reduces by 16% after optimization, however, there is shift
of ' 4.5 kJ/mol. (a) Experimental Hvap surface, (b) TIP4P Hvap surface, (c) GOPAL
Hvap surface (d) difference between TIP4P and experimental Hvap surfaces, (e) difference
between GOPAL and experimental Hvap surfaces
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Figure 5.19: MSRE in Cpres reduces by 76% after optimization. (a) Experimental Cpres
surface, (b) TIP4P Cpres surface, (c) GOPAL Cpres surface (d) difference between TIP4P
and experimental Cpres surfaces, (e) difference between GOPAL and experimental Cpres
surfaces
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Figure 5.20: MSRE in κ reduces by 54% after optimization. (a) Experimental κ surface,
(b) TIP4P κ surface, (c) GOPAL κ surface (d) difference between TIP4P and experimental
κ surfaces, (e) difference between GOPAL and experimental κ surfaces
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Figure 5.21: MSRE in α seems to increase by 74% after optimization. However, this
increase is strongly dominated by the large relative error ' 103 near the melting tempera-
ture. (a) Experimental α surface, (b) TIP4P α surface, (c) GOPAL α surface (d) difference
between TIP4P and experimental α surfaces, (e) difference between GOPAL and experi-
mental α surfaces
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5.4 Conclusions

In this work we have combined the multistate reweighting technique and configuration

mapping technique to accelerate the rate limiting property estimation process in the force

field parameterization exercise. We have shown the use of this approach by re-parameterizing

TIP4P water model. The reparameterized model, GOPAL, shows reduced error in all ther-

modynamic properties compared to TIP4P model. GOPAL has the lowest error in residual

Gibbs free energy surface compared to all other models. GOPAL has a 35% lower MSRE in

density and a 99% lower MSRE in Gres compared to TIP4P water model. Using an initial

trial and error approach and later thermodynamic arguments we have designed an objective

function which minimizes the deviation between the experimental and simulated residual

Gibbs free energy surface while preserving the first derivatives of the surface. The objec-

tive function is tested and further improved in design by parameterizing a SAFT equation

of state for water.

The design of the objective function eliminates the need for determining proper weights

to be assigned to the properties included in the objective function and seeks a solution

of force field parameters which could uniquely and accurately reproduce intermolecular

interactions experienced at the atomistic level. The use of explicit constraints on errors in

residual internal energy, residual entropy and residual Gibbs free energy while minimizing

error in molar volume has been shown to be an effective way to improve error in multiple

simulated water properties simultaneously. We also found that in the SAFT as well as

atomistic paramterizations, we cannot simultaneously reduce the errors in molar volume,

residual internal energy, residual entropy and residual Gibbs free energy. Accuracy in

molar volume has to be sacrificed to improve accuracy in residual internal energy, residual

entropy and residual Gibbs free energy. The use of mesh adaptive direct search optimization
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algorithm facilitates 1) full exploration of the parameter space, 2) tuning the strength of the

constraints to efficiently handle even an infeasible starting point. The final optimization

for the atomistic model involves 4100 iterations with 1100 free energies estimated at each

iteration. Fresh molecular simulations for such exercise would have taken 1544 CPU yrs

without reweighting. With reweighting it took less than eight CPU weeks to perform the

calculations.
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6 Future work: Protocol to determine excess thermody-

namic properties for methanol-water mixture using reweight-

ing and mapping techniques and use it to parameterize

water and methanol to reproduce both pure fluid prop-

erties as well as mixture properties at all compositions

6.1 Introduction

Calculation of excess thermodynamic properties is of great interest to almost all process en-

gineering problems exploring liquid-liquid, vapor-liquid, vapor-liquid-liquid equilibrium.

There are a number of activity coefficient models [128, 129, 130, 120] for estimating excess

free energy GE . Using the model for GE , HE and V E can be estimated using the Gibbs

Helmholtz equation. SE can be calculated using the Legendre transform on GE and HE .

Thus we can essentially get all interesting thermodynamic observables using a excess free

energy model for a given mixture.

A model is selected based on the type of mixture we want to model since each model

works well for certain mixtures and fail for others. The prime reason for the difference in

their applications is the amount of detail each includes about the mixture to model it. The

most straight forward models come from Wohl’s expansion for GE , expressed as a power

series of effective volume fractions of the two components. For example truncating the

Wohl’s expression after the first term gives van Laar equation [129]. Similarly Marguels

equation is also derived using Whol’s formalism [129]. These models are parameterized

using experimental observations. Thus the parameters do not explicitly have temperature,

pressure or binary interaction strength dependence.
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Then there are some models which cannot be derived by Wohl’s formulation. Wil-

son [131] model uses pure component molar volumes and characteristic energy differences

to model GE NRTL [132] uses the concept of local composition. UNIQUAC [19] uses a

combination of a combinatorial part and residual part. The combinatorial is determined

based on the composition, molecular shape and size. Using only the pure component prop-

erties it describes the entropic contribution to GE . The residual part depends on the in-

termolecular forces and determines the enthalpic contribution to GE . Finally, there are

models based on the statistical associated fluid theory [133] (SAFT) in which residual mo-

lar Helmholtz energy has contributions from formation of hard spheres (short range repul-

sions) and chains (chemically bonded aggregation), from dispersion (long range attraction)

and from association between different molecules and chains(hydrogen bonding).

UNIQUAC and SAFT come very close to describe contributions to the excess properties

in terms of molecular shape, distribution and interaction type. However these still use pure

component thermodynamic data, composition and molecular information inexplicitly in

the form of certain parameters which represent some combination of the latter three and

which are fit to experimental observation. Almost all activity coefficient models assume

that GE is only a function of temperature and composition. The activity coefficient models

do not have any term which includes pressure effects. The assumption holds true at low

and moderate pressures but not at elevated pressures [129].

We could use molecular simulations to get more accurate estimates of the enthalpic

(HE) and the entropic contributions (SE) to estimate GE . Molecular simulations are based

on explicit and full atomistic description, use mixing rules to correct interatomic forces at

intermediate composition, handle distribution of molecules more accurately and can incor-

porate temperature and pressure effects.

Activity coefficients derived using molecular simulations theoretically are more accu-
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rate than the ones predicted by activity coefficient models. However, using molecular sim-

ulations to calculate excess properties of a mixture is a tough problem because interactions

as well as geometry change for different number of molecules at different compositions.

As a result the configurations sampled while simulating certain composition are never seen

in the simulation of other compositions. Thus we cannot do reweighting, which makes free

energy analysis and estimation of other observables impossible. There are examples in the

literature where people have used data from simulation done at individual compositions to

estimate HE and V E [134, 135, 136] but GE using multistate reweighting has never been

presented.

Gibbs ensemble Monte Carlo (GEMC) [137, 138] coupled with configurational bias

Monte Carlo (CBMC) [139] or Continuous fractional component Monte Carlo (CFC MC)

are used to study phase equilibrium and estimate chemical potential, µEi which can be

directly used to estimate the activity coefficients γi. Chemical potential of a species in a

mixture is equal to the corresponding partial molar excess gibbs free energy ḠE
i .

(
∂GE

∂ni

)
= ḠE

i = µEi = RT ln γi (6.1)

Although GEMC based methods are more popular, there are a host of other methods that

have been proposed to study phase behaviour or pure as well as mixture of fluids. Some of

these methods are Gibbs-Duhem integration [140], Transition matrix Monte Carlo [141],

hydrid Monte Carlo Wang-Landau method [142].All these methods are not suitable for

large scale parameterization since none of the Monte Carlo methods use reweighting to

estimate the chemical potential. Each new parameter set requires a fresh simulation to esti-

mate excess chemical potential which makes high throuput estimation of objective function

very slow.

233



Very few people have looked into methods to evaluate excess free energy using molec-

ular dynamics simulations. Chialvo [143, 144] and Haile [145] proposed a single charging

scheme in which simulations are done at the two pure component states and any arbi-

trary composition to estimate the free energies at all other compositions. Single charging

scheme was applied for LJ fluids and later extended to molecules with full molecular de-

tail. Changes in interaction and geometry was done in a way which is difficult to adopt

for large scale problems, like parameterization of mixtures, since the implementation re-

quires changes in MD code. We propose the use of MBAR with linear mapping between

configurations to push all the effort to the analysis phase.

We demonstrate the use techniques developed in chapter one and two, multistate reweight-

ing with linear mapping, to estimate excess thermodynamic properties for a binary mixture

of methanol and water. The simulations will be done at different compositions and MBAR

with linear mapping will be used to estimate excess volume, excess enthalpy, excess Gibbs

free energy and excess entropy of mixing at various compositions. We will compare the

simulated excess thermodynamic properties against the experimentally calculated values.

The difference in the experimental and simulated properties could be attributed mostly due

to the force field which is not parameterized to reproduce the mixture properties.

Biomolecular force fields like AMBER [146] and CHARMM [95] are parameterized

by doing quantum mechanical calculations in condensed phase using continuum solvent

models and are biased to get the protein folding characteristics right. OPLS [147] force field

is parameterized to reproduce pure liquid density and heat of vaporization. TraPPE [98]

force field has been successful to model non-biological molecules and parameterizes by

fitting parameters to reproduce correct phase behavior for pure fluids. GROMOS [14] force

field is parameterized to fit hydration free energies which is like parameterizing at infinite

dilution limit. But most of the chemical engineering problems involve mixtures at finite
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concentrations so we need force fields which can accurately model systems with varying

amount of chemical heterogenity in the local environment. However, there are at present

no force fields which are parameterized to reproduce correct mixture properties. The prime

reason being the absence of a fast and efficient method to estimate excess thermodynamic

properties of a mixture.

The protocol to estimate excess thermodynamic properties of mixtures developed in this

chapter will be used to parameterize methanol and water force field parameters to simul-

taneously reproduce pure water properties, pure methanol properties and water-methanol

mixture properties at all compositions at normal temperature and pressure (NTP). Estima-

tion of pure fluid properties is already laid out in chapter three. The optimization workflow

developed in chapter three can be used as it is.

6.2 Methods

6.2.1 Calculation of excess Gibbs free energy, GE

Excess free energy, GE at a given temperature and pressure can be defined as the difference

between the non ideal free energy, G, and a standard state G◦.

GE = G−G◦ (6.2)

For a binary mixture, if we choose Lewis Randall standard state we can write excess

Gibbs free energy for the mixture as:

GE = xA(Gmix −GpureA) + xB(Gmix −GpureB) (6.3)

We know partition function for ideal gas instead of ideal solution so we can write GE

235



in terms residual properties to shift to ideal gas reference state.

GE
xA

= xA(Gres
mix −Gres

pureA) + xB(Gres
mix −Gres

pureB) (6.4)

Since xA+xB=1

GE
xA

=(Gres
mix −Gres

pureB)− xA(Gres
pureA −Gres

pureB) (6.5)

Here the residual properties are defined with respect to the ideal gas (IG) properties.

Gres
mix = Gmix −GIG,mix (6.6)

We can re-write Eq. 6.5 using the definition in Eq. 6.6.

GE
xA

=((Gmix −GpureB)− (GIG,mix −GIG,pureB))

− xA((GpureA −GpureB)− (GIG,pureA −GIG,pureB))

(6.7)

We can calculate the ideal gas components analytically so there differences are sepa-

rated from other free energies.

We define the two end states as pure water (A) and pure methanol (B). The intermediate

state i will be a binary mixture of NA,i water molecules and NB,i methanol molecules. The

total number of molecules will be kept constant at NT = NA,i + NB,i. Thus the mole fraction

xA,i = NA,i / NT . We can represent the starting state, pure water as 0 and the end state, pure

methanol as 1 and any intermediate state with 0<i<1.
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GE
xA,i

=(∆G1i −∆GIG,1i)− xA,i(∆G10 −∆GIG,10) (6.8)

Using MBAR we cannot calculate the absolute values ofGmix,i, G1, G0 but we can eas-

ily get differences ∆G1i, and ∆G10 using MBAR. ∆GIG,1i and ∆GIG,10 can be calculated

analytically by using the ratio of ideal gas partition functions.

The ideal gas partition function for N molecules of single type is:

Qid =
1

N !
Λ−3NV N (6.9)

Here Λ is the thermal de Broglie wavelength. Volume V is good for a spherical particle

but we have triangular rigid molecules. So we need volume correction to account for the

specific shape of the molecule. For a water molecule the correct volume is

V 8π2 rO,H1W rO,H2W rH1W,H2W where rO,H1W = rO,H2W is the OH bond length and

rH1W,H2W is the distance between two hydrogens. Similarly for a methanol molecule the

correct volume is V 8π2 rO,H1 rO,CH3 rH1,CH3 , where rO,H1 is the OH bond length, rO,CH3

is the bond length of united atom methyl sphere and oxygen atom and rH1,CH3 is the dis-

tance between hydrogen and the UA methyl sphere. For the sake of simplicity let us call

V 8π2 rO,H1W rO,H2W rH1W,H2W as φw and V 8π2 rO,H1 rO,CH3 rH1,CH3 as φm

The ideal gas partition function for a mixture of NA molecules of water(A) and NB

molecules of methanol(B) can be written as the product of the individual Qid.

237



Qid,mix =Qid,water ×Qid,Methanol

=
1

NA!
Λ−3NA
A (V 8π2φw)NA

× 1

NB!
Λ−3NB
B (V 8π2φm)NB

=
1

NA!NB!
Λ−3NA
A Λ−3NB

B (V 8π2)NA+NB (φw)NA(φm)NB

(6.10)

In the ideal gas state the free energy difference between two states i and j having com-

positions mixi and mixj can be estimated by the ratio of Qid,mixi and Qid,mixj .

∆Gid,ji =− kT ln

[
Qid,mixi

Qid,mixj

]
=− kT (ln

[
NAj

!NBj
!

NAi
!NBi

!
Λ
−3(NAi

−NAj
)

A Λ
−3(NBi

−NBj
)

B

]
+ ln

[
(φw)NAi

−NAj (φm)NBi
−NBj

]
)

(6.11)

To calculate ∆G1i, and ∆G10 we propose to do NT simulations. The starting state is

water and then we will convert 1 water molecule per simulation to a methanol molecule

till all molecules are transformed to methanol. We don’t know how good the phase space

overlap is between the different intermediate states so we take so many steps. The phase

space difference can be problematic because methanol and water have different densities so

the box volume will change significantly going from pure water to pure methanol. If we get

the converged free energy estimates then we can find the minimum number of simulations

required to get satisfactorily converged free energy estimates.

We will change the interaction type i.e charges and LJ and the geometry from water to

methanol but will keep the masses of atoms same as that of water molecule throughout the
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series of transformations. The united atom methyl group will weigh same as the hydrogen

atom in all the transformations. This will allow us to by pass the velocity rescaling due to

change in mass in all the reevaluation of energies.

We don’t have to correct for mass as all the mass containing kinetic energy contributions

cancel out. in Eq. 6.8. We will not get the correct transport properties using this procedure

but thermodynamic properties will remain unaffected.

The variance inGE
xA,i

can be calculated by examining which terms in Eq. 6.8 contribute.

var
(
GE
xA,i

)
=var (∆G1i −∆GIG,1i − xA,i(∆G10 −∆GIG,10))

=var (∆G1i − xA,i∆G10 −∆GIG,1i + xA,i∆GIG,10)

let α =∆G1i − xA,i∆G10

and β =−∆GIG,1i + xA,i∆GIG,10

var
(
GE
xA,i

)
=var (α + β)

=cov (α, α) + cov (β, β) + 2cov (α, β)

(6.12)

β in Eq. 6.12 is a sum of analytical estimates so cov(β, β) = var(β) = 0. cov(α, β) is

like a covariance between a random variable and a constant which is also zero.
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var
(
GE
xA,i

)
=cov (α, α)

=var (∆G1i − xA,i∆G10)

=cov (∆G1i,∆G1i) + cov (xA,i∆G10, xA,i∆G10)− 2cov (∆G1i, xA,i∆G10)

=var (∆G1i) + x2
A,i var (∆G10)− 2xA,i cov (∆G1i,∆G10)

=var (∆G1i) + x2
A,i var (∆G10)− 2xA,i

× (cov (Gi, G0)− cov (Gi, G1)− cov (G1, G0) + cov (G1, G1))

(6.13)

6.2.2 Calculation of excess enthalpy, HE

HE can be calculated with the analog of Gibbs-Helmholtz equation and applying central

difference to the temperature derivative.

HE

kT 2
=−

(
∂(GE/kT )

∂T

)
P,N

HE
(T,P,xi)

kT 2
=−

(
1

2δT

(
GE

((T+δT ),P,xi)

k(T + δT )
−
GE

((T−δT ),P,xi)

k(T − δT )

)) (6.14)

The difference in the excess free energies in the numerator of Eq. 6.14 can be evaluated

using reweighting. We just need to reevaluate energies at T+δT and T- δT using samples

generated at NTP to estimate the difference.
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6.2.3 Calculation of excess volume of mixing V E

Similar to HE , V E can also be calculated with the Gibbs-Helmholtz equation and applying

central difference to the pressure derivative.

V E

kT
=

(
∂(GE/kT )

∂P

)
TN

V E
(T,P,xi)

kT
=−

(
1

2δP

(
GE

(T,(P+δP ),xi)

kT
−
GE

(T,(P−δP ),xi)

kT

)) (6.15)

The difference in the excess free energies in the numerator of Eq. 6.15 can be evaluated

using reweighting. We just need to reevaluate energies at new pressures P+δP and P- δP

using samples generated at NTP to estimate the difference.

6.2.4 Calculation of excess entropy, SE

Since we have GE
xA,i

and HE
xA,i

it is straightforward to calculate the SExA,i
.

SExA,i
=
HE
xA,i
−GE

xA,i

T

var (()SExA,i
) =

var
(
HE
xA,i

)
+ var

(
GE
xA,i

)
− 2cov

(
HE
xA,i

, GE
xA,i

)
T 2

(6.16)

We could also calculate using the temperature derivative of excess free energy.

SE= −
(
∂(GE)

∂T

)
P,N

=−
(

1

δT

(
GE

((T+δT ),P,xi)
−GE

((T−δT ),P,xi)

)) (6.17)

Both approaches could be used without any additional function calls.
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Since we cannot estimate cov(HE
xA,i

, GE
xA,i

) we will calculate bootstrap error estimate

for SExA,i
. Since we will have to bootstrap HE

xA,i
, GE

xA,i
multiple times to calculate SExA,i

we can also evaluate bootstrap error estimates for HE
xA,i

, GE
xA,i

, V E
xA,i

. This will serve as a

sanity check for the error estimates.

We will be using rigid 3 site water model with TIP3P force field parameters and a rigid

methanol model with TRAPPE force field parameters. The simulations will be done at

25 ◦C and 1 atmosphere as we have experimental data at these conditions to compare our

simulated results with.

6.2.5 Parameterization of water and methanol

The objective function ξ will include density and heat of vaporization of water and methanol

at normal temperature and pressure. ξ will also include excess free energy, excess enthalpy

and excess volume for compositions for which the corresponding experimental values are

known. We will use the TIP3P parameters and TRAPPE force field parameters as the start-

ing input set for the optimization routine.
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Appendix

Prediction Validation using

One set Two sets simultaneously

sampled at→ B B or E or O B and E B and O E and O

Parameter set ↓ (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol)

∆H for methane solvation

Benchmark (B) 1.950±2.111 1.950±2.111 1.879±1.558 -0.983±1.583 N/A

Expensive (E) -0.316±2.627 -5.935±2.076 -1.553±2.415 N/A -0.749±1.955

Optimized (O) 0.547±2.809 0.115±2.098 N/A -6.155±2.451 -0.006±1.684

∆∆H for methane solvation

∆HB −∆HE 2.266±1.595 7.885±2.961 3.432±2.078 N/A N/A

∆HB −∆HO 1.403±1.883 1.835±2.976 N/A 5.172±2.144 N/A

∆HE −∆HO -0.863±0.881 -6.050±2.952 N/A N/A -0.743±0.666

Table S1: Predictions and validation results for enthalpy of methane solvation match for
expensive and optimal parameter sets within two standard deviations
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Prediction Validation using

One set Two sets simultaneously

sampled at→ B B or E or O B and E B and O E and O

Parameter set ↓ (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol)

Enthalpy ∆H for complete dipole inversion +e/-e to -e/+e

Benchmark (B) -2.898±3.319 -0.564±2.952 1.714±2.535 -0.493±2.578 N/A

Expensive (E) -5.294±4.900 4.683±3.348 0.347±2.539 N/A 3.830±2.420

Optimized (O) -5.301±5.197 -0.125±3.381 N/A 0.053±2.576 3.291±2.423

∆∆H for complete dipole inversion +e/-e to -e/+e

∆HB −∆HE 2.396±3.620 -5.247±4.464 1.367±1.926 N/A N/A

∆HB −∆HO 2.403±4.025 -0.439±4.488 N/A -0.546±2.080 N/A

∆HE −∆HO 0.007 ±1.946 4.808±4.758 N/A N/A 0.538±0.935

Table S2: Predictions and validation results for enthalpy of dipole inversion match for
expensive and optimal parameter sets within two standard deviations
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Prediction Validation using

One set Two sets simultaneously

sampled at→ B B or E or O B and E B and O E and O

Parameter set ↓ (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol)

Enthalpy ∆H of anthracene solvation with a vdw cutoff 1.3 nm

Benchmark (B) 49.220±2.316 49.220±2.316 46.783±1.776 46.471±1.787 N/A

Expensive (E) 49.816±3.544 47.324±2.284 45.784±1.763 N/A 48.120±1.647

Optimized (O) 51.136±3.701 45.898±2.305 N/A 47.319±1.785 47.243±1.655

∆∆H of anthracene solvation with a vdw cutoff 1.3 nm

∆HB −∆HE -0.596±2.699 1.896±3.253 0.999±1.406 N/A N/A

∆HB −∆HO -1.915±2.912 3.322±3.268 N/A -0.848±1.478 N/A

∆HE −∆HO -1.319±1.396 1.426±3.245 N/A N/A -0.877±0.619

Table S3: Predictions and validation results for enthalpy of anthracene solvation match for
expensive and optimal parameter sets are within two standard deviations.
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