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Abstract

In the field of social psychology, a huge amount of research has been conducted to understand human

behaviors by studying their physical space and belongings. Inspired from these fruitful findings,

can we design corresponding computational models to characterize diverse online user behaviors by

exploring users’ behavior data, to understand diverse user intents? Can we further integrate different

types of behavior signals driven by the same intents, to build a unified model for each user? Thanks

to the advent of participatory web, which created massive amounts of user-generated data, we are

able to study online user attributes and behaviors from these clues. Traditional social psychology

studies commonly conduct surveys and experiments to collect user data in order to infer attributes

of individuals, which are expensive and time-consuming. In contrast, we aim to understand users

by building computational user models automatically, thereby to save time and efforts. And the

principles of social psychology serve as good references for building such computational models.

In this dissertation, we develop new techniques to model online user behaviors based on user-generated

data to better understand user preferences and intents. We get inspired from social psychology

principles in user behavior modeling and these developed computational models provide alternative

to explain human behaviors in the physical world. More specifically, we focus on two challenges:

(1) model users’ diverse ways of expressing attitudes or opinions; (2) build unified user models by

integration of different modalities of user-generated data.

To tackle the challenge of capturing users’ diverse opinions, we borrow the concept of social norms

evolution to achieve personalized sentiment classification. By realizing the consistency existing in

users’ attitudes, we further perform clustered model adaptation to better calibrate such opinion

coherence. To understand users from a comprehensive perspective, we utilize different modalities

of user-generated data to form multiple companion learning tasks, which are further paired to

accommodate the consistency existing in multi-modal user-generated data. And each individual user
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Abstract iv

is modeled as a mixture over these paired instances to realize his/her behavior heterogeneity. To

better characterize the correlation among different modalities of user-generated data, joint learning

of different embeddings, together with explicit modeling of their relationships are performed, in order

to achieve a comprehensive understanding of user intents and preferences. This dissertation borrows

principles from social psychology to better design effective computational user modeling. It also

provides a foundation for making user behavior modeling useful for many other applications as well

as offers new directions for designing more powerful and flexible models.
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Chapter 1

Introduction

The advent of participatory web has transformed our way of living, such as how we communicate

with friends, how we make purchases, how we look for romantic partners, and how we stay in touch

with the world. Thanks to the rapid development of the Web, vast amounts of observational data

such as opinionated text content and social interactions are generated, to enable the discovery of new

knowledge about the human behaviors and attributes.

Online, users interact with various service systems to fulfill their idiosyncratic intents [1–4], and

create massive user-generated data at the same time, which leaves “clues” that can be examined to

infer the attributes and preferences of individual users. Such collection of personal data associated

with a specific user serves as great resources to build up a conceptual understanding of the user, i.e.,

the user profile which indicates certain characteristics about an individual user. And the accurate

depiction of user profile lays the foundation of adaptive changes to the system’s behavior, with the

process of obtaining such user profile known as user modeling. Without such accurate user modeling,

service systems can hardly capture user needs and desires, thus to provide exactly what the user cares

about. Therefore, computational user modeling is vital in helping automated systems to learn precise

user profiles, thus to better address users’ specific needs and to create compelling experience for

individual users. That is, the systems can “do the ‘right’ thing at the ‘right’ time in the ‘right’ way”

to individual. However, users’ intents are diverse and not directly observable, which pose challenges

for user modeling to capture such distinction among individuals explicitly.

Human behaviors have been studied in social psychology for a long time to understand how people

1
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think about, influence, and relate to others [5] in psychical world. Thus, the understanding of people

by studying their physical space and belongings naturally serves as good references for performing

computational user modeling of online users. For instance, the causes and consequences, the contexts

that shape it, the evolutionary and developmental trajectories, the collective dynamics of diverse

behaviors, all serve as principles and insights for modeling online user behaviors. And the massive

user-generated data further provides resources to perform computational user modeling effectively, in

order to understand user intents and preferences automatically.

In this dissertation, we accomplish the goal of understanding user intents via a computational

perspective. As life becomes increasingly digit, observational data becomes increasingly computational

- behaviors, opinions. Not only computational techniques are required to efficiently analyze the vast

amounts of data, but also a computational learning framework is necessary for proper understanding

and analyzing, with inspirations from social psychology. And the learning framework automates the

learning process of user profiles to capture user preferences and intents by taking advantages of

user-generated massive data and computational models, via the interactions between service systems

and online users.

In this chapter, we first describe the motivation and overview of this dissertation in Section 1.1,

and then introduce the definition of the general learning problem in Section 1.2, and discuss the

organization of this dissertation in Section 1.3.

1.1 Motivation and Overview

User modeling builds up a conceptual representation of users, and thus, is essential for understanding

users’ diverse preferences and intents, which in turn provides valuable insights for online service

systems to adaptively maximize their service utility [6,7]. Due to the distinct personal characteristics

and perceived environments, there exists a diverse range of human needs and desires among individual

users, leading to varying decision making autonomy. Even for the same task, different users may

exhibit distinct preferences and interests in order to meet their unique needs, which makes a

population-level solution insufficient to address the diversity existing among users. Thus, it calls

for personalized user models to capture individual users’ diverse information needs accurately and

effectively, so as to assist service systems to provide information the users care about or interested in,

quickly and efficiently.
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1.1.1 Motivating Example

For example, a student is looking for ideal jobs on professional network websites. As he/she browses

a set of potential companies and jobs, the system should be smart enough to know the student’s

preferences regarding to location, job duty, salary, environment, growth path, training opportunity,

and promotion mechanism, by retrieving all available information provided by the student, such

as the text posts, the skill sets, the working experience and so on. Moreover, the connections also

play an important role as they can help reveal the traits of character of the student, discover the

communities the student belongs to, find jobs or companies the student interested in. Through

such in-depth analysis of available information, the system can learn the particular student’s job

preferences, e.g. he/she emphasizes much more on the growth path and training opportunity than

salary or location. Due to the uniqueness of the student’s preferences, a population-level model

can hardly capture the student’s desires accurately and a personalized model is indeed necessary

to address the issue. By knowing exactly the student’s preferences, the system can recommend the

appropriate jobs for the student to apply for, which helps the student find the perfect match quickly

and accurately and make a good start for his/her career. Beside, the precise capture of needs for

both job hunters and recruiters can quickly establish the invisible bridges between them, which is

beneficial for both sides.

The example above illustrates the picture of computational user modeling studied in this dissertation.

First, the intelligent system should be able to identify individual user’s preferences beyond the

global preferences, such as the user cares more about growth path than location; second, the system

should utilize all available information generated by the user to enhance the understanding of

the user’s intents and preferences as they are driven by the same person and thus are consistent after

all. Such in-depth understanding of user will help the service systems to accurately recognize various

information needs, capture the correlations among their distinct information seeking behaviors, and

optimize the quality of delivered information.

Numerous successes have proved the value of user behavior modeling in practical applications. For

example, many researchers performed user behavior modeling to enable the applications in the filed of

health care. For instance, Rivera-Illingworth et al. [8] presented a novel embedded agent mechanism

to build normal user behavior models by recognizing their activities inside an environment recorded

by unobtrusive sensors and effectors to warn signs of Alzheimer and dementia. Christakis et al. [9]

analyzed a densely interconnected social network consisting of 12,067 people assessed repeatedly from
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1971 to 2003, to understand the relationships between users’ social behaviors and the spread of Obesity.

They indeed find that network phenomena is closely relevant to the biologic and behavioral trait of

obesity, and obesity appears to spread through social ties, which provides significant implications for

clinical and public health interventions. Ma et al. [10] incorporated discrete prior medical knowledge

of patients to their characteristics via posterior regularization, to predict patients’ potential diseases

more accurately. Successful user modeling also brings in tremendous business values for online

information systems. For example, Zhang et al. [3] found that modeling users’ review content for

explainable recommendation improved CTR by more than 34.7% and conversion rate by more than

25.5% in an online e-commerce website; Liu et al. [11] reported that the frequency of website visits

in Google News can be improved by more than 14.1% by modeling users’ genuine topical interests

on news articles and the influence of local news trends; Ai et al. [12] found that in the task of

personalized product search on Amazon, learning distributed representations for users, together with

queries and products, can help improve the MAP as high as 325%.

1.1.2 Challenges

Various behavior signals have been explored with different focuses in exploiting information about

users’ intents, such as log files [13,14], video service [15] and network structure [16,17]. Among all

the diverse means, user-generated data is exceptionally powerful and useful as it reveals the nature

of users and gives accurate insights into what really matters to them. People are actively involved in

different online platforms and want their voices to be heard through the power of a line or two of

text, a small, filtered image, or a low-resolution video slice. Take a closer look at the user-generated

data, it is easy to find that people are talking about products or services, sharing their interests,

seeking like-minded individuals. That is, they are expressing themselves - their preferences toward

other items or people. Therefore, studying such data usually helps reveal the inner desires of users

extensively. And we especially focus on two typical types of user-generated data: text content that

indicates users’ topical interests and attitudes; network structure that depicts user connectivity, as

they are two most widely available and representative forms of user-generated data.

Though massive amount of data is generated among the whole population, still, a large portion of

users have limited amount of data for deep exploration. Thus, most solutions on user modeling fall

into the category of population-level analysis [18–20] due to the sparsity of individual user’s data,

which is insufficient to capture the nuance among different users. Due to the unique personality
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and growing environment, each individual owns his/her preferences towards the world. Even for the

simple task of expressing opinions, different users may show quite different patterns, such as they

may use the same word for totally different attitudes, or use different words to express the same

opinions. Thus, simple population-level solutions would lose the resolution for precise

understanding of each individual user .

To capture individual intents via user-generated data, much efforts are devoted to explore or retrieve

one specific type of user-generated data, e.g., textual content, or network structure, to understand

one particular type of user behaviors. However, data usually comes with different modalities which

carry different information. For example, it is very common users share a set of friends beside

the textual posts or reviews, to convey their social intents. Thus, it is insufficient to characterize

users’ diverse information needs and desires with a single type of data. And it is important to

develop a novel model which is able to jointly represent the information such that the relationships

between different modalities can be captured. That is, exploring multiple modalities of user-generated

data to understand user preferences from a holistic view. Essentially, different modalities of data

is generated by the same user, thus, is consistent and united. The lack of such multi-modal

modeling would lose resolution for analyzing user behaviors, leading to one-sided user

understanding.

To overcome the aforementioned limitations, more thorough and comprehensive user behavior

modeling principles and approaches are needed. However, the task is never trivial because of three

major concerns. First, user-generated data is noisy, incomplete, highly unstructured, and

tied with social interactions [21], which imposes serious challenges in modeling such data. For

example, in an environment where users are connected, e.g., social network, their generated data

is potentially related, which directly breaks the popularly imposed independent and identically

distributed assumptions in most learning techniques [22–24]. Second, different users’ intents

are diverse and dynamic, which may diverge a lot among the whole population of users and may

evolve over time person by person. For instance, in expressing attitudes, “expensive” may indicate

negative feeling in comments like “the item is too expensive” while it may depict positive feeling in

comments like “the expensive cellphone is worth the price”. And accurate distinction of such nuance

is of great importance. Third, though oftentimes scattered and sparse, such observations

are neither isolated nor independent ; indeed, they reflect users’ underlying intents as a whole

and requires the consideration of corresponding interactions. Just as described in the proverb “Birds

of a feather flock together”, users of similar interests and preferences tend to be friends, indicating
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1 Introduction
Humans are both producer and consumer of big data. Modeling the role of humans in the process of mining
big data is thus critical for unleashing the vast potential of mined knowledge. Unfortunately, significant
research effort has been devoted to data-centric solutions, e.g., building efficient computation [4, 109] and
storage [133] architectures to scale up traditional data mining and machine learning methods for finding
patterns [90, 104, 19, 37, 121, 51]; but little attention has been paid to human factors [10] in this process.
The ignorance of human factors in this process will overlook the dependency among different types of
human-generated data, and thus lead to a shallow understanding of such data.

In this research, we propose to build a human-centric learning framework, which harnesses the power
of human-generated big data and computational models to automate knowledge service systems’ learning
process from the interactions with humans. Figure 1 depicts the blueprint and key components of this
framework, which emphasizes the role of humans in the loop of production, dissemination, acquisition, and
application of knowledge.

As data producer, humans constantly generate huge amount of text data and behavior data. Joint mod-
eling of such diverse types of data ensures in-depth understanding of humans. For example, in search log
mining, only focusing on users’ queries [67, 116] or clicks [99, 17, 26] can hardly lead to any satisfactory
model of searchers [25, 139]. On the other hand, as knowledge consumer, different users interact with
various systems to fulfill their idiosyncratic intents. Traditional static, ad-hoc and passive machine-human
interactions [106, 100, 79] are inadequate to optimize such dynamic decision making process. Online adap-
tively learning driven by the feedback from humans is more desirable. As a result, only with such an
integrated view, we can align our effort in knowledge discovery with that in optimizing humans’ decisions,
and identify opportunities to fundamentally improve existing algorithms’ and systems’ utilities.

Search results:  review 
documents, scientific 
literature, entities 
 

Mining human-generated data 

Behavior data: search 
engine logs, result voting  

Text data: opinionated 
reviews, forum discussions, 
scientific literature   

Humans: producer and 
consumer of big data Knowledge service systems

Recommendations: 
books, online courses    
 

Task 1: joint text & behavior analysis 

Mi
Task 2: collaborative 
behavior analysis Task 3: task identification 

Task 4: collaborative explore-exploit 
Task 5: long-term task optimization 

Task 6: system-oriented 
explanation generation 

Task 7: user-oriented 
explanation generation 

Challenges: unstructured data, 
implicit feedback 

Challenges: diverse needs, 
dynamic interactions 

Optimizing decision support 

Figure 1: Human-centric knowledge discovery and decision optimization. In this loop, improved systems’
utilities can be produced by in-depth understanding of humans (i.e., the flow from humans to systems); and
optimized humans’ decision making can be realized by customized knowledge services (i.e., the flow from
systems to humans). The proposed research tasks are labeled on their corresponding positions in the loop.

Our proposed framework is general and can be applied to many important application scenarios, where
machines interact with humans for knowledge discovery and decision optimization. In this project, we ma-
terialize our framework depicted in Figure 1 with users’ search activities, and use it as the running example
to illustrate the proposed research thrusts. Modern search engines, which serve over 90 percent of online
users [14], are equipped with sophistic data-driven models. For example, offline trained ranking models are
deployed to retrieve documents that best match users’ search keywords [79, 15], and a user’s recent clicks

1

Figure 1.1: Overview of the learning framework proposed in the dissertation

the consistency existing among different types of observations.

To tackle these challenges, it is inevitable to perform effective computational user modeling to capture

user intents. More importantly, we seek a comprehensive and unique solution for each individual

user by modeling each user from a holistic view, i.e., explore all information available and the

corresponding relationships. Thus, we propose a multi-modal user intent learning framework

to address the challenges, which is illustrated in Figure 1.1. We start from mining one particular

modality of user-generated data, text content, to understand how users express attitudes differently.

To encode the data sparsity issue, we perform linear transformations over global parameters to

alleviate the problem. By noticing the fact that similar users tend to share similar opinions, we

further cluster like-minded individuals to better address the sparsity issue. On the other dimension

of modality, we further incorporate user-generated network structure to capture user intents from

a comprehensive perspective. Therefore, joint modeling of both modalities is conducted with both

implicit and explicit capture of the correlations between them, to achieve the goal.
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1.2 Problem Formation

In the section, we formally discuss the multi-modal user intent learning framework for user behavior

modeling in the dissertation, with specifying the input, output and the corresponding computational

algorithms.

1.2.1 Multi-modal User Behavior

Human behavior is the response of individuals to internal and external stimuli. Thus, we interpret

online user behavior as a set of observations resulted from the interactions with the online service

systems under one specific task T , such as writing a textual review for one particular product on

crowd-sourced review forums, searching for machine learning tutorials on video sharing platforms

or purchasing the product based on recommendation provided by eCommerce websites. We further

quantify a particular observation xd as a M -dimensional vector characterized by corresponding

feature set {f1, f2, .., fM}, which is generated by user ui in interacting with the service system.

As one major type of behaviors studied in the dissertation, writing text reviews for expressing

attitudes is a typical type of user behaviors, which creates massive amount of opinionated text

data. The corresponding observation xd can then be characterized by selected representative textual

features, generating a M -dimensional vector. Text reviews usually come with numerical ratings

indicating the direct attitudes of the users, which can be treated as the behavior label for the

observation. Thus, we formally define yd as the label for the observation xd, which is an observable

numerical variable, either discrete or continuous. And each observation consists of two parts, the

observation content and observation label, i.e., (xi,d, yi,d).

Another extensively studied behavior in this dissertation is social behavior , i.e., whether the user

ui makes friends with the other users {uj}j 6=i. The corresponding observation between a pair of users

(ui, uj) is indeed a one-dimensional scalar with the value being the affinity between them. The social

behavior of the user ui can also be interpreted as a vector with the dimension being the number of

all the users and each element is the affinity between the current user ui and the other user uj , i.e.,

{(ui, uj)}Uj=1.

We should note that the behavior labels might not exist, such as the observed social connections or

posted forum discussions. Also, they might not be directly available such as the comments for news ar-
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ticles or posts on microblogs, in which case human-annotation is needed. Usually, each user is involved

with a set of observations, which can be denoted as {X,Y } = {(x1, y1), (x2, y2), ..., (xd, yd)}.

Online users are usually associated with multiple behaviors resulted from different tasks, generating

multiple modalities of data. Due to the distinct statistical properties of different information resources,

it is important to discover the relationships among different modalities. Thus, we introduce the

concept of multi-modal user behavior to act as different types of observations possessed by a

particular user. Especially, we focus on user-generated text and network in the dissertation

as they are two most available and representative user-generated data sources in inferring user

intents.

1.2.2 Diverse User Intents

User intents depict what a user wants and usually results in intentional actions. Such intentional

actions are functions to accomplish desired goals and are based on the belief that the course of actions

will satisfy the desires [25]. Due to the diversity existing among users, we cannot learn global user

intents as a whole. Instead, we focus on each individual user’s own intents based on his/her own

observations. Thus, user modeling aims at capturing each user’s intents by building up a conceptual

representation of the user, thus to explain observational behaviors or actions of the user. More

specifically, we interpret the intents as the preferences towards the target attributes. Assume user

profile is a M -dimension vector u = [u1,u2, ..,uM ], the target attributes are a L-dimension vector

p = [p1,p2, ..,pL] with each element indicting one basic attribute, user intents are then quantified as

a L-dimensional vector h = [h1,h2, ..,hL] with each dimension representing the emphasis on the

corresponding attribute. In order to align user profile with user intents, a proper mapping function

is needed to indicate the proximity between the user and the target attributes, i.e., h = f(u,p). For

instance, in the task of learning social intents, the basic attribute can be considered as every other

user, the user intents are then quantified as the affinity between the current user and every other

user, via defining mapping function as one affinity calculation method between a pair of user vectors.

Formally, we capture user intents by learning user emphasis on target attributes via

proper mapping of user profile, based on the user’s observations in specific tasks.

Moreover, user intents vary among different tasks, giving different practical meanings of user profile

and corresponding mapping function. For instance, in the task of opinion mining, user intents can be
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Figure 1.2: Relations of different components in the dissertation

interpreted as preferences over sentiment features, thus the learned feature weights directly act as

the user representation. While in the task of joint modeling of textual interests and social intents,

the learned user vector acts as a more general representation conveying consistency inside each user’s

mental states, and the preferences regarding to different attributes are realized by different mapping

functions with the same input user profile.

The problem studied in the dissertation is to infer the user intents by learning a unified user

representation, together with the corresponding mapping functions, which best explain the diverse

sets of observations, i.e., g : X → H ∼ f(U,P ), where X could take different forms of user-generated

data and mapping function f could also adjust based on observations. Moreover, principles from

social psychology provide insights in designing such computational framework such as imposing

assumptions and quantifying concepts or states. We explain the relations among different components

in Figure 1.2 to better illustrate the problem defined.

1.2.3 User Intent Learning

By defining the input and output of the problem studied in the dissertation, we can formalize the

computational problem in a principled way: Given a user’s multi-modal observations, learn user

intents characterized by mapping from user representation u to attributes r, that can best explain
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the user’s different sets of observations, as show in Eq 1.2.1.

argmax
H

p(X|H)p(H|f(U,R)) (1.2.1)

where X is the observations, H and U are user intents matrix and user profile matrix among all the

users.

Note, the mapping function could take different forms and could be more than one. If it is a direct

mapping from user representation to the target attributes, the mapping function can be defined as

simple as a constant. Assume the user representation shares the same space with the attribute unit,

then the representation itself already reveals the preferences, thus can be directly understood as the

user intents. For instance, in the task of opinion mining, we embed user representation to the same

space of sentiment features, thus the learned feature weights reveal the emphasis on sentiment units,

thus naturally serve as the user representation. However, if there are multiple sets of attributes in

different space, then multiple mapping functions are needed to encode the distinct emphasis towards

each individual attribute space.

1.3 Dissertation Organization

In the dissertation, we focus on modeling user behaviors by utilizing user-generated data, to capture

diverse user intents. More specifically, in the first part of Modeling Opinionated Text for

Personalized Sentiment Analysis, we aim at learning user profile characterized by users’ ways of

expressing opinions via utilizing diverse textual information indicating users’ true feelings and interests;

in the second part of Incorporating Network for Holistic User Behavior Modeling , we further

incorporate users’ social connections to perform a multi-modal learning to encode the correlations

among multiple modalities, thus, to gain a comprehensive understanding of user preferences as a

whole. An overview of the dissertation is described in Figure 1.1 to better illustrate our goal.

•Chapter 3: Modeling Social Norms Evolution for Personalized Sentiment Classification

Expressing attitudes is a typical type of user behaviors, indicating users’ preferences toward sentiment

words. And user-generated textual information provides great resources to examine such behavior to

understand user intents, which is also known as sentiment analysis or opinion mining. Sentiment

is personal as the same sentiment can be expressed in various ways and the same expression might
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carry distinct polarities across different individuals [26]. The sparsity of individual user’s data

limits the exploration of his/her attitudes. Thus, current mainstream solutions of sentiment analysis

usually focus on population-level models with two typical types of studies [27, 28]. The first is

classifying input text units (such as documents, sentences and phrases) into predefined categories,

e.g., positive v.s., negative [18, 29] and multiple classes [20]. The second is identifying topical aspects

and corresponding opinions, e.g., developing topic models to predict fine-grained aspect ratings [6,30].

All these works emphasize population-level analysis which apply a global model on all users, due to

the limited amount of observations of individual users. Therefore, such solution fails to recognize the

heterogeneity in which different users express their diverse opinions. Instead, we want to capture

individual users’ diverse ways of expressing attitudes by overcoming the sparsity issue.

As sentiment analysis is extensively studied in social science, we get motivated by the finding that

people’s opinions are diverse and variable while together they are shaped by evolving social norms. In

Chapter 3, we perform personalized sentiment classification via shared model adaptation

over time. In our proposed solution, a global sentiment model is constantly updated to capture the

homogeneity in which users express opinions, while personalized models are simultaneously adapted

from the global model to recognize the heterogeneity of opinions from individuals. Global model

sharing alleviates data sparsity issue, and individualized model adaptation enables efficient online

model learning to realize the intent learning in expressing attitudes.

•Chapter 4: Clustered Model Adaptation for Personalized Sentiment Analysis

With the aforementioned personalized sentiment analysis, little performance improvement can be

achieved for users with limited amount of observations while they form a major portion of the user

population. Thus, we take a new perspective to build personalized sentiment models by exploiting

social psychology theories about humans’ dispositional tendencies. Suggested by the Theory of Social

Comparison [31], the drive for self-evaluation can lead people to associate with others of similar

opinions and abilities, thus to form groups. This guarantees the relative homogeneity of opinions

and abilities within groups. Therefore, in Chapter 4, we propose to capture such clustering

property of different users’ opinions by postulating a non-parametric Dirichlet Process (DP)

prior [32] over the individualized models, such that those models automatically form latent groups.

In the posterior distribution of this postulated stochastic process, users join groups by comparing the

likelihood of generating their own opinionated data in different groups (i.e., realizing self-evaluation

and group comparison). According to the Cognitive Consistency Theory [33], once the groups are
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formed, members inside the same group will be influenced by other in-group members mutually

through both implicit and explicit information sharing, which leads to the development of group

norms and attitudes [34]. We formalize this by adapting a global sentiment model to individual users

in each latent user group, and jointly estimating the global and group-wise sentiment models. The

shared global model can be interpreted as the global social norms, because it is estimated based on

observations from all users. It thus captures homogenous sentimental regularities across the users.

The group-wise adapted models capture heterogenous sentimental variations among users across

groups. Because of this two-level information grouping and sharing, the complexity of preference

learning will be largely reduced. This is of particular value for sentiment analysis in tail users, who

only possess a handful of observations but take the major proportion in user population.

•Chapter 5: A Holistic User Behavior Modeling via Multi-task Learning

The availability of online social network provides an opportunity to learn users from extrinsic

regulations, i.e., the implicit social influence, in addition to self regulations. Nowadays, a lot of efforts

are devoted to network structure analysis. For instance, the proximity between a pair of users has

been studied to understand social influence and information diffusion [22]; and network structure

has been analyzed to examine users’ social grouping and belongings [35–37]. These works restrict

the analysis within network structure and fail to realize the dependency among different types of

user-generated data. That is, the consistency between extrinsic regulations and self regulations is

ignored, which is essentially governed by the same user. As the influence is not visible and measurable,

it is difficult to quantify the influence itself and the impacts of influence to user modeling.

We argue that, in order to accurately and comprehensively understand users, user modeling should

consist of multiple companion learning tasks focusing on different modalities of user-generated

data, such that the observed behaviors (e.g., opinion ratings or social connections) can be mutually

explained by the associated models. Our argument is supported by the Self Consistency Theory [38]

in social psychology study, as it asserts that consistency of ideas and representation of the self are

integral in humans.

In Chapter 5, we focus on user modeling in multiple modalities of user-generated data, where users

write text reviews to express their opinions on various topics, and connect to others to form social

network. It is therefore an ideal platform for collecting various types of user behavior data. We

model distinct behavior patterns of individual users by taking a holistic view of sentiment analysis

and social network analysis. In particular, we develop a probabilistic generative model to integrate
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two complementary tasks of opinionated content modeling for recognizing user preferences

and social network structure modeling for understanding user relatedness, i.e., a multi-task

learning approach [39–41]. The two tasks are paired to encode the consistency existing in user

intents. Instead of assigning one paired task for each user, a specific set of such paired instances

are assumed to accommodate the homogeneity among users’ behaviors. Individual users are then

modeled as a mixture over the unique instances of paired learning tasks to realize his/her own

behavior heterogeneity.

•Chapter 6: User Representation Learning with Joint Network Embedding and Topic

Embedding

In order to better understand user intents, explicitly modeling the structural dependency

among different modalities of user-generated data is of vital importance. This statement is also

supported by existing qualitative studies in social psychology, i.e., the concept the User Schema.

User Schema defines a generalized representation for understanding the knowledge of a person, which

organizes: 1) categories of information; and 2) the relationships among them. Thus, people’s online

schema enabled by their large amounts of online behavior data, naturally fits our goal of learning

unified user representation. And it further motivates us to learn such representation in a shared latent

space, and the concept of distributed representation learning [42], i.e., user embedding, provides the

concrete solution. The user representation is learned in a low-dimensional continuous space, where

the structural dependency among different modalities of user-generated data can be realized by the

proximity between the users and their generated data.

In Chapter 6, we utilize text content and social interactions for user representation learning. We

develop a probabilistic generative model to integrate user representation learning with content

modeling and social network modeling. On the one hand, we embed topics into the same latent

space with users to model user-generated text content. A user’s affinity to a topic is characterized

by his/her proximity to the topic in this learned space. A user’s text document is then generated

with respect to the projected topic vectors on his/her user embedding vector. On the other hand,

the affinity between users reflected in their social interactions is directly modeled by the proximity

between users’ embedding vectors. The observed network edges are sampled from this underlying

distribution of user affinity. The user representation is obtained via posterior inference over a set of

training data, which can be efficiently performed via a variational Bayesian procedure.

To sum up, we explored users’ diverse intents reflected in their corresponding behaviors by building
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computational user models. Instead of population-level user modeling, we performed individual-

level user understanding via personalized learning. We borrowed principles and concepts in social

psychology to facilitate the design of the computational models, which bridges the gap between the

two communities. More importantly, multiple modalities generated by the users are integrated in

different ways to achieve a comprehensive understanding of the user intents.



Chapter 2

Background

2.1 Sentiment Analysis

Text mining, also known as text analytics, aims at generating structured data out of free text content

to extract machine-readable facts from them. Text mining usually involves the process of structuring

the input text, deriving patterns within the structured data, and finally evaluation and interpretation

of the output. Typical text mining tasks include text categorization, text clustering, concept/entity

extraction, production of granular taxonomies, sentiment analysis, document summarization, and

entity relation modeling

Sentiment analysis, also called opinion mining, analyzes peoples opinions, sentiments, evaluations,

appraisals, attitudes, and emotions towards entities such as products, services, organizations, indi-

viduals, issues, events, topics, and their attributes [27]. Although linguistics and natural language

processing (NLP) have been studies for a long time, little attention had been paid on peoples opinions

and sentiments before the year 2000. Sentiment analysis becomes possible and prevalent later on due

to two major reasons: 1) the constantly growing popularity and availability of opinion-rich textual

content such as personal blogs and online reviews enable the study of people’s opinions and attitudes;

2) the wide range of applications in diverse domains such as political science, economics, and social

sciences, offer many challenging problems and motivate the research.

The primary goal of sentiment analysis includes data analysis on the body of the text for understanding

15
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the opinion expressed by it and other key factors comprising modality and mood. Text-based sentiment

classification forms the foundation of sentiment analysis [27,28]. A great deal of efforts have been

devoted in the exploration of opinion-rich textual content to understand users’ decision making

process [20,27,28].

There are two typical types of studies in sentiment classification. The first is classifying input

text units into predefined categories, such as classifying documents, sentences and phrases

into positive/negative [18, 29] or multiple classes [20]. Both lexicon-based [43–45] and learning-

based [20,28] solutions have been explored. For instance, [43] mined the features of the product on

which the customers have expressed their opinions. Then it concluded whether the opinions for a

particular feature are positive or negative by inferring the corresponding sentiment of the sentences

containing the feature. Different from the perspective of lexicon-based methods, Pang et al. [18]

examined several supervised machine learning methods for sentiment classification for the first time,

on the set of movie reviews and concluded that machine learning techniques outperform the method

that is based on human-tagged features.

The second is utilizing the user-generated text data to understand users’ emphasis on

specific entities or aspects [2, 6, 30, 46]. Statistical topic models [47, 48] serve as a building block

for statistical modeling of text data. Typical solutions model individual users as a bag of topics [49],

which govern the generation of associated text documents. Wang and Blei [50] combine topic modeling

with collaborative filtering to estimate topical user representations with additional observations from

user-item ratings. Wang et al. [2] analyzed users’ opinions about entities in an online review at the

level of topical aspects to discover each individual reviewers latent opinion on each aspect, together

with their emphasis on those latent aspects.

However, those works either emphasize population-level or document-level analysis while users’

feelings and attitudes are personal. Thus, population-level analysis which applies a global model on

all users, cannot recognize the heterogeneity in users’ different ways of expressing opinions. Though

document-level analysis treats each document individually, it may ignore the consistency existing

in each individual user’s documents. To accommodate the heterogeneity among users and the

homogeneity inside each individual user, user-level sentiment analysis is necessary to achieve the

goal.

Sparse observations of individuals opinionated data [51] prevent straightforward solutions from

building personalized sentiment classification models, such as estimating supervised classifiers on
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a per-user basis. Semi-supervised methods are developed to address the data sparsity issue. For

example, leveraging auxiliary information from user-user and user-document relations in transductive

learning [23,52]. However, only one global model is estimated there, and the details of how individual

users express diverse opinions cannot be captured. Our works overcome the limitations by building

personalized sentiment classification models through shared model adaptation. Instead of building

personal sentiment models from scratch, a predefined global sentiment model serves as the basis

model for diverse users to adapt from, so as to alleviate the data sparsity issue. In order to minimize

the efforts of realizing the personalization, linear transformations are utilized to realize the adaptation

from global model to personal models.

Moreover, the development in modeling user-generated text data directly enables personalized

recommendation and retrieval. Zhang et al. [3] combined phrase-level sentiment analysis with

matrix factorization for explainable recommendation. Ghose et al. [53] illustrated how user-generated

content can be mined and incorporated into a demand estimation model so as to generate a new

ranking system in product search engines.

2.2 Social Network Analysis

Social Network Analysis has gained increasing importance in recent years. It is the process of

investigating social structures through the use of networks and graph theory [54], which has been

used extensively in a wide range of applications and disciplines, including link prediction, community

detection, network propagation modeling and so on [55].

The task of link prediction predicts missing links in current networks and new or dissolution

links in future networks, which plays an important role in mining and analyzing the evolution of

social networks. Among the various methods realizing link prediction, they can roughly fall into

two categories. The first category of methods utilize the neighbor-based metrics to infer the missing

links [22,56], where different similarity functions are used to achieve so. Different similarity measures

are extensively evaluated by Liben-Nowell and Kleinberg [22] who found that the Adamic-Adar

measure of node similarity performed best. Cha et al. [57] interpret the directed links as the flow

of information and hence indicate a users influence on others. Correspondingly, they presented an

in-depth comparison of three measures of influence: indegree, retweets, and mentions and discovered

many interesting facts about the dynamics of user influence across topics and time. Huo et al. [58]
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calculated the linking probability between a pair of users by further considering their activities. The

second category of methods employ path-based metrics for link prediction, in which random walk

is designed to traverse the paths between two nodes to calculate the proximity. Tong et al. [59]

studied the role of directionality in measuring proximity on graphs. They defined a direction-aware

proximity measure based on the random walk notion of escape probability, which naturally weights

and quantifies the multiple relationships reflected through the many paths connecting node pairs.

Backstrom et al. [60] utilized node and edge attribute data to guide the random walks towards the

desired target nodes.

Another important task in studying networks is identifying network communities. Fundamen-

tally, communities allow us to discover groups of interacting objects (i.e., nodes) and the relations

between them. Thus, identifying network communities can be viewed as a problem of clustering a

set of nodes into communities, where a node may belong to multiple communities. Typically, two

sources of data can be used to perform the clustering task, the node attributes and network structure.

Therefore, some clustering methods focus on identifying nodes sharing similar attributes [36, 61].

Wang et al. [61] assumes that each node belongs to a cluster and the relationships between nodes

are governed by the corresponding pair of clusters. With posterior inference, one identifies a set

of latent roles which govern the nodes relationships with each other. Airoldi et al. [35] further

extended the single membership of each node to mixed membership, which provides more flexibility.

There are also some works aiming to find communities based on the network structure, e.g., to find

groups of nodes that are densely connected [62,63]. Though most works utilize one source to detect

communities,Yang et al. [64] developed an accurate and scalable algorithm for detecting overlapping

communities in networks communities with both Edge Structure and Node Attributes considered.

Due to the modeling of both sources of data, i.e., the interaction between the network structure and

the node attributes, it leads to more accurate community detection as well as improved robustness in

the presence of noise in the network structure.

Considerable efforts are made in utilizing network structure for learning more concise and effective user

representations, to facilitate the advanced analytic tasks. Network embedding techniques [17, 65],

which assigns nodes in a network to low-dimensional representations and effectively preserves the

network structure, naturally fit the needs of concise and effective user representation. Recently, a

significant amount of progresses have been made toward this emerging network analysis paradigm.

Inspired from word embedding techniques [66], random walk models are exploited to generate

random paths over a network to learn dense, continuous and low-dimensional representations of
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users [16,17,67]. Perozzi et al. [16] claims that the vertex frequency in random walks on scale free

graphs also follows a power law. Thus the truncated random walks are treated as sentences for

Skip-gram to learn the corresponding user embeddings. Grover et al. [67] proposed a framework,

node2vec, to learn low-dimensional representations of nodes in a graph by optimizing a neighborhood

preserving objective. With a flexible objective, the algorithm accommodates for various definitions

of network neighborhoods by simulating biased random walks. In the work [17], a novel network

embedding method LINE is developed to analyze arbitrary types of information networks: undirected,

directed, and/or weighted. It optimizes a carefully designed objective function that preserves both

the local and global network structures. Matrix factorization technique is also commonly used to

learn user embeddings [68, 69], as learning a low-rank space for an adjacency matrix representing the

topology of a network naturally fits the need of learning low-rank user/node embeddings. For instance,

Wang et al. [69] propose a modularized non-negative matrix factorization model to incorporate the

community structure into network embedding. Tang and Liu [70] factorize an input network’s

modularity matrix and use discriminative training to extract representative dimensions for learning

user representation. Deep neural network based methods [71–73] are also proved to be effective in

learning node representations as they can perform non-linear mapping between original space and

embedding space.

2.3 Joint Modeling of Text and Network

Though much efforts are devoted to the exploration of either text data or network structure, little

attention is paid to the joint modeling of the two modalities. Since they are generated by the

same person, there exists consistency between them. Due to its statistical property, they may also

complement each other. There are indeed some works combine text content with network structure

to improve the fidelity of learned user models. Speriosu et al. [74] proposed to propagate labels from

a supervised classifier over the Twitter follower graph to improve sentiment classification. Tan et

al. [23] believe that connected users are more likely to hold similar opinions; therefore, relationship

information can be incorporated to complement extraction about a users viewpoints from their

utterances. Hu et al. [75] developed a novel sociological approach to handle networked texts in

microblogging. In particular, they extracted sentiment relations between textual documents based on

social theories, and model the relations using graph Laplacian, which is employed as a regularization

to a sparse formulation. Cheng et al. [76] leveraged signed social network to infer the sentiment of
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text documents in an unsupervised manner. Tang et al. [77] proposed to propagate emotional signals

and text-based classification results via different relations in a social network, such as word-microblog

relations, microblog-microblog relations. Pozzi et al. [78] utilized the approval relations to estimate

user polarities about a given topic in a semi-supervised framework. Joint modeling of text and

network is also enabled in the framework of matrix factorization. By proving that DeepWalk is

actually equivalent to matrix factorization (MF), Yang et al. [79] further incorporated text features

of vertices into network representation learning.

However, all the aforementioned works only treat the network as side information for text data

modeling, and they do not model the interactions between different modalities of data. Our works

unify the modeling of textual data and network structure to capture the relationship between the

two modalities, thus to enable a comprehensive understanding of user intents.

2.4 Multi-task Learning

Learning multiple related tasks simultaneously has been empirically [80–85] as well as theoretically

[86–88] shown to often significantly improve performance relative to learning each task independently.

Multi-task learning exploits the commonalities and difference across tasks to facilitate the information

sharing. Tasks can be related in various ways. A typical assumption is that all models learned are

close to each other in some matrix norm of their model parameters [39, 89]. This assumption has

been empirically proved to be effective for capturing preferences of individual users [82]. Evgeniou

et al. [39] first generalized the regularizationbased methods from singletask to multitask learning,

which are natural extensions of existing kernel based learning methods for single task learning. Task

relatedness has also been imposed via constructing a common underlying representation across

different tasks [87, 88, 90, 91]. For instance, in modeling users preferences/choices, it may also be

the case that people make decisions (e.g. purchase of cellphones, visit of restaurants, etc.) using a

common set of features describing these products or service business. [91] presented a method for

learning a low-dimensional representation which is shared across a set of multiple related tasks.

Building personalized user models can be considered as a multi-task learning problem as users are

correlated to certain extends. By exploiting the relatedness among users/tasks, they can reinforce

each other mutually. Similar modeling approaches have been explored in user modeling before. Fei

et al. [92] used multi-task learning to predict users’ response (e.g., comment or like) to their friends’
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postings regarding the message content, where each user is modeled as a task and task relation is

defined by content similarity between users.

2.5 User Behavior Study in Social Psychology

Individual behavior has been studied in social psychology for a long time. Kurt Lewin, who is

recognized as the “founder of social psychology”, points out that behavior is affected both by the

individual’s personal characteristics and by the social environment as he or she perceives it [93].

As an important component of social psychology, behavior is extensively studied from both the

individual perspective and social perspective. That is, social psychologists study how people view

themselves and each other, how they interpret people’s behaviors, how their attitudes form and

change, how people act in groups and how groups affect each other. In order to conduct such studies,

data collection such as surveys or experiments are an important part in the process. Researchers

define what they need, design questionnaires or experimental treatments, and collect the data based

on the results of administering them [5]. The results provide a great degree of control over the

measurement but is expensive, time consuming and may even be dangerous sometimes.

With the data explosion of recent years, more and more data is generated in various aspects of life

for studying user behaviors. As we can understand people by studying their physical space and

belongings, we are also able to investigate users by studying their online connections, postings and

actions [5], enabled by the advent of participatory web. And the corresponding social psychological

principles in psychical space naturally serve as great resources to help understand user behaviors in

virtual space. In turn, the effective user modeling provides alternative or replacement for traditional

research techniques in social psychology.

sIndeed, much efforts are devoted to bridging the gap between social psychology and computational

user behavior modeling. One line of research focus on verifying the correlation between real-world

user behaviors and online user modeling. For instance, O’Connor et al. [19] analyzed sentiment

polarity of a huge number of tweets and found a correlation of 80% with results from public opinion

polls. Bollen et al [94] used Twitter data to predict trends in the stock market. They showed that one

can predict general stock market trends from the overall mood expressed in a large number of tweets.

Another line of research gets inspired from knowledge of social psychology in building computational
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models of online users. Tan et al [23] and Hu et al [75] adopted the principle of homophily, i.e., “birds

of a feather flock together”, to utilize social connections to complement users’ attitudes.



Part I

Modeling Opinionated Text for

Personalized Sentiment Analysis
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Chapter 3

Modeling Social Norms Evolution

for Personalized Sentiment

Classification

In this Chapter, we study the problem of understanding users’ preferences in expressing attitudes,

which is personalized sentiment classification. We get inspired from the evolution of social norms

and perform personalized sentiment classification via shared model adaptation over time. In

the proposed solution, a global sentiment model is constantly updated to capture the homogeneity

in which users express opinions, while personalized models are simultaneously adapted from the

global model to recognize the heterogeneity of opinions from individuals. Global model sharing

alleviates data sparsity issue, and individualized model adaptation enables efficient online model

learning.

3.1 Introduction

Sentiment is personal; the same sentiment can be expressed in various ways and the same expression

might carry distinct polarities across different individuals [26]. Current mainstream solutions of

sentiment analysis overlook this fact by focusing on population-level models [27, 28]. But the

24
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idiosyncratic and variable ways in which individuals communicate their opinions make a global

sentiment classifier incompetent and consequently lead to suboptimal opinion mining results. For

instance, a shared statistical classifier can hardly recognize that in restaurant reviews, the word

“expensive” may indicate some users’ satisfaction with a restaurant’s quality, although it is generally

associated with negative attitudes. Hence, a personalized sentiment classification solution is required

to achieve fine-grained understanding of individuals’ distinctive and dynamic opinions and benefit

downstream opinion mining applications.

Sparse observations of individuals’ opinionated data [51] prevent straightforward solutions from

building personalized sentiment classification models, such as estimating supervised classifiers on

a per-user basis. Semi-supervised methods are developed to address the data sparsity issue. For

example, leveraging auxiliary information from user-user and user-document relations in transductive

learning [23,75]. However, only one global model is estimated there, and the details of how individual

users express diverse opinions cannot be captured. More importantly, existing solutions build static

sentiment models on historic data; but the means in which a user expresses his/her opinion is changing

over time. To capture temporal dynamics in a user’s opinions with existing solutions, repeated model

reconstruction is unavoidable, albeit it is prohibitively expensive. As a result, personalized sentiment

analysis requires effective exploitation of users’ own opinionated data and efficient execution of model

updates across all users.

To address these challenges, we propose to build personalized sentiment classification models via

shared model adaptation . Our solution roots in the social psychology theories about humans’

dispositional tendencies [95]. Humans’ behaviors are shaped by social norms, a set of socially shared

“feelings” and “display rules” about how one should feel and express opinions [34, 96]. In the context

of content-based sentiment classification, we interpret social norms as global model sharing and

adaptation across users. Formally, we assume a global sentiment model serves as the basis to capture

self-enforcing sentimental regularities across users, and each individual user tailors the shared model

to realize his/her personal preference. In addition, social norms also evolve over time [97], which

leads to shifts in individuals’ behaviors. This can again be interpreted as model adaptation: a new

global model is adapted from an existing one to reflect the newly adopted sentimental norms. The

temporal changes in individuals’ opinions can be efficiently captured via online model adaptation at

the levels of both global and personalized models.

Our proposed solution can also be understood from the perspective of multi-task learning [39,89].
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Intuitively, personalized model adaptations can be considered as a set of related tasks in individual

users, which contribute to a shared global model adaptation. In particular, we assume the distinct

ways in which users express their opinions can be characterized by a linear classifier’s parameters,

i.e., the weights of textual features. Personalized models are thus achieved via a series of linear

transformations over a globally shared classifier’s parameters [1], e.g., shifting and scaling the weight

vector. This globally shared classifier itself is obtained via another set of linear transformations over

a given base classifier, which can be estimated from an isolated collection beforehand and serves as a

prior for shared sentiment classification. The shared global model adaptation makes personalized

model estimation no longer independent, such that regularity is formed across individualized learning

tasks.

We empirically evaluated the proposed solution on two large collections of reviews, i.e., Amazon and

Yelp reviews. Extensive experiment results confirm its effectiveness: the proposed method outper-

formed user-independent classification methods, several state-of-the-art model adaption methods,

and multi-task learning algorithms.

3.2 Related Work

The idea of model adaptation has been extensively explored in the context of transfer learning [98],

which focuses on applying knowledge gained while solving one problem to different but related

problems. In opinion mining community, transfer learning is mostly exploited for domain adaptation,

e.g., adapting sentiment classifiers trained on book reviews to DVD reviews [99,100]. Personalized

model adaptation has also been studied in literature. The idea of linear transformation based

model adaptation is introduced in [1] for personalized web search. Al Boni et al. applied a

similar idea to achieve personalized sentiment classification [101]. [102] developed an online learning

algorithm to continue training personalized classifiers based on a given global model. However, all of

these aforementioned solutions perform model adaptation from a fixed global model, such that the

learning of personalized models is independent from each other. Data sparsity again is the major

bottleneck for such solutions. Our solution associates individual model adaptation via a shared global

model adaptation, which leverages observations across users and thus reduces preference learning

complexity.



3.3 Methodology 27

3.3 Methodology

3.3.1 The Evolution of Social Norms

Social norms create pressures to establish socialization of affective experience and expression [103].

Within the limit set by social norms and internal stimuli, individuals construct their sentiment, which

is not automatic, physiological consequences but complex consequences of learning, interpretation,

and social influence. This motivates us to build a global sentiment classification model to capture

the shared basis on which users express their opinions. For example, the phrase “a waste of money”

generally represents negative opinions across all users; and it is very unlikely that anybody would use

it in a positive sense. On the other hand, members of some segments of a social structure tend to feel

certain emotions more often or more intensely than members of other segments [104]. Personalized

model adaptation from the shared global model becomes necessary to capture the variability in

affective expressions across users. For example, the word “expensive” may indicate some users’

satisfaction with their received service.

Studies in social psychology also suggest that social norms shift and spread through infectious

transfer mediated by webs of contact and influence over time [97, 105]. Members inside a social

structure influence the other members; confirmation of shifted beliefs leads to the development and

evolution of social norms, which in turn regulate the shared social behaviors as a whole over time.

The evolving nature of social norms urges us to take a dynamic view of the shared global sentiment

model: instead of treating it as fixed, we further assume this model is also adapted from a predefined

one, which serves as prior for sentiment classification. All individual users are coupled and contribute

to this shared global model adaptation. This two-level model adaptation assumption leads us to the

proposed multi-task learning solution, which will be carefully discussed in the next section.

3.3.2 Shared Linear Model Adaptation

In this paper, we focus on linear models for personalized sentiment classification due to their

empirically superior performance in text-based sentiment analysis [18,20]. We assume the diverse

ways in which users express their opinions can be characterized by different settings of a linear

model’s parameters, i.e., the weights of textual features.
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Formally, we denote a given set of opinionated text documents from user u as Du={(xud , yud )}|D
u|

d=1 ,

where each document xud is represented by a V -dimensional vector of textual features and yud is

the corresponding sentiment label. The task of personalized sentiment classification is to estimate

a personalized model y = fu(x) for user u, such that fu(x) best captures u’s opinions in his/her

generated text content. Instead of assuming fu(x) is solely estimated from user u’s own opinionated

data, which is prone to overfitting, we assume it is derived from a globally shared sentiment model

fs(x) via model adaptation [1, 101], i.e., shifting and scaling fs(x)’s parameters for each individual

user. To simplify the following discussions, we will focus on binary classification, i.e., yd ∈ {0, 1},

and use the logistic regression as our reference model. But the developed techniques are general and

can be easily extended to multi-class classification and generalized linear models.

We only consider scaling and shifting operations, given rotation requires to estimate much more free

parameters (i.e., O(V 2) v.s., O(V )) but contributes less in final classification performance [101]. We

further assume the adaptations can be performed in a group-wise manner [1]: features in the same

group will be updated synchronously by enforcing the same shifting and scaling operations. This

enables the observations from seen features to be propagated to unseen features in the same group

during adaptation. Various feature grouping methods have been explored in [1].

Specifically, we define g(i)→ j as a feature grouping method, which maps feature i in {1, 2, . . . , V }

to feature group j in {1, 2, . . . ,K}. A personalized model adaptation matrix can then be represented

as a 2K-dimensional vector Au = (au1 , a
u
2 , . . . , a

u
K , b

u
1 , b

u
2 , . . . , b

u
K), where auk and buk represent the

scaling and shifting operations in feature group k for user u accordingly. Plugging this group-wise

model adaptation into the logistic function, we can get a personalized logistic regression model

Pu(yd = 1|xd) for user u as follows,

Pu(yd = 1|xd) =
1

1 + e−
∑K

k=1

∑
g(i)=k (aukw

s
i +buk )xi

(3.3.1)

where ws is the feature weight vector in the global model fs(x). As a result, personalized model

adaptation boils down to identifying the optimal model transformation operation Au for each user

based on ws and Du.

In [1, 101], fs(x) is assumed to be given and fixed. It leads to isolated estimation of personalized

models. Based on the social norms evolution theory, fs(x) should also be dynamic and ever-changing
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to reflect shifted social norms. Hence, we impose another layer of model adaptation on top of the

shared global sentiment model fs(x), by assuming itself is also adapted from a predefined base

sentiment model. Denote this base classifier as f0(x), which is parameterized by a feature weight

vector w0 and serves as a prior for sentiment classification. Then ws can be derived via the same

aforementioned model adaptation procedure: ws = Asw̃0, where w̃0 is an augmented vector of w0,

i.e., w̃0 = (w0, 1), to facilitate shifting operations, and As is the adaptation matrix for the shared

global model. We should note As can take a different configuration (i.e., feature groupings) from

individual users’ adaptation matrices.

Putting these two levels of model adaptation together, a personalized sentiment classifier is achieved

via,

wu = AuAsw̃0 (3.3.2)

which can then be plugged into Eq (5.3.1) for personalized sentiment classification.

We name this resulting algorithm as Mutli-Task Linear Model Adaptation, or MT-LinAdapt in

short. The benefits of shared model adaptation defined in Eq (3.3.2) are three folds. First, the

homogeneity in which users express their diverse opinions are captured in the jointly estimated

sentiment model fs(x) across users. Second, the learnt individual models are coupled together to

reduce preference learning complexity, i.e., they collaboratively serve to reduce the models’ overall

prediction error. Third, non-linearity is achieved via the two-level model adaptation, which introduces

more flexibility in capturing heterogeneity in different users’ opinions. In-depth discussions of those

unique benefits will be provided when we introduce the detailed model estimation methods.

3.3.3 Joint Model Estimation

The ideal personalized model adaptation should be able to adjust the individualized classifier fu(x)

to minimize misclassification rate on each user’s historical data in Du. In the meanwhile, the shared

sentiment model fs(x) should serve as the basis for each individual user to reduce the prediction error,

i.e., capture the homogeneity. These two related objectives can be unified under a joint optimization

problem.

In logistic regression, the optimal adaptation matrix Au for an individual user u, together with As

can be retrieved by a maximum likelihood estimator (i.e., minimizing logistic loss on a user’s own
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opinionated data). The log-likelihood function in each individual user is defined as,

L(Au, As) =

|Du|∑

d=1

[
yd logPu(yd = 1|xd) + (1− yd) logPu(yd = 0|xd)

]
(3.3.3)

To avoid overfitting, we penalize the transformations which increase the discrepancy between the

adapted model and its source model (i.e., between wu and ws, and between ws and w0) via a L2

regularization term,

R(A) =
η1

2
||a− 1||2 +

η2

2
||b||2 (3.3.4)

and it enforces scaling to be close to one and shifting to be close to zero.

By defining a new model adaptation matrix Å = {Au1 , Au2 , . . . , AuN , As} to include all unknown

model adaptation parameters for individual users and shared global model, we can formalize the

joint optimization problem in MT-LinAdapt as,

maxL(Å)=

N∑

i=1

[
L(Aui)−R(Aui)

]
−R(As) (3.3.5)

which can be efficiently solved by a gradient-based optimizer, such as quasi-Newton method

[106].

Direct optimization over Å requires synchronization among all the users. But in practice, users

will generate their opinionated data with different paces, such that we have to postpone model

adaptation until all the users have at least one observation to update their own adaptation matrix.

This delayed model update is at high risk of missing track of active users’ recent opinion changes, but

timely prediction of users’ sentiment is always preferred. To monitor users’ sentiment in realtime, we

can also estimate MT-LinAdapt in an asynchronized manner: whenever there is a new observation

available, we update the corresponding user’s personalized model together with the shared global

model immediately. i.e., online optimization of MT-LinAdapt.

This asychronized estimation of MT-LinAdapt reveals the insight of our two-level model adaptation

solution: the immediate observations in user u will not only be used to update his/her own adaptation
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parameters in Au, but also be utilized to update the shared global model, thus to influence the other

users, who do not have adaptation data yet. Two types of competing force drive the adaptation

among all the users: ws = Asw̃0 requires timely update of global model across users; and wu = Auws

enforces the individual user to conform to the newly updated global model. This effect can be better

understood with the actual gradients used in this asychronized update. We illustrate the decomposed

gradients for scaling operation in Au and As from the log-likelihood part in Eq (5.3.13) on a specific

adaptation instance (xud , y
u
d ):

∂L(Au,As)

∂auk
=∆u

d

∑

gu(i)=k

(
asgs(i)w

0
i +bsgs(i)

)
xudi (3.3.6)

∂L(Au,As)

∂asl
=∆u

d

∑

gs(i)=l

augu(i)w
0
ix

u
di (3.3.7)

where ∆u
d = yud − Pu(yud = 1|xud), and gu(·) and gs(·) are feature grouping functions in individual

user u and shared global model fs(x).

As stated in Eq (3.3.6) and (3.3.7), the update of scaling operation in the shared global model and

individual users depends on each other; the gradient with respect to global model adaptation will be

accumulated among all the users. As a result, all users are coupled together via the global model

adaptation in MT-LinAdapt, such that model update is propagated through users to alleviate data

sparsity issue in each single user. This achieves the effect of multi-task learning. The same conclusion

also applies to the shifting operations.

It is meaningful for us to compare our proposed MT-LinAdapt algorithm with those discussed in the

related work section. Different from the model adaptation based personalized sentiment classification

solution proposed in [101], which treats the global model as fixed, MT-LinAdapt adapts the global

model to capture the evolving nature of social norms. As a result, in [101] the individualized model

adaptations are independent from each other; but in MT-LinAdapt, the individual learning tasks are

coupled together to enable observation sharing across tasks, i.e., multi-task learning. Additionally, as

illustrated in Eq (3.3.6) and (3.3.7), nonlinear model adaptation is achieved in MT-LinAdapt because

of the different feature groupings in individual users and global model. This enables observations

sharing across different feature groups, while in [101] observations can only be shared within the same

feature group, i.e., linear model adaptation. Multi-task SVM introduced in [39] can be considered

as a special case of MT-LinAdapt. In Multi-task SVM, only shifting operation is considered in

individual users and the global model is simply estimated from the pooled observations across users.
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Therefore, only linear model adaptation is achieved in Multi-task SVM and it cannot leverage prior

knowledge conveyed in a predefined sentiment model.

3.4 Experimental Results

In this section, we perform empirical evaluations of the proposed MT-LinAdapt model. We verified the

effectiveness of different feature groupings in individual users’ and shared global model adaptation by

comparing our solution with several state-of-the-art transfer learning and multi-task learning solutions

for personalized sentiment classification, together with some qualitative studies to demonstrate how

our model recognizes users’ distinct expressions of sentiment.

3.4.1 Experimental Setup

• Datesets. We evaluated the proposed model on two large collections of review documents, i.e.,

Amazon product reviews [107] and Yelp restaurant reviews [108]. Each review document contains a

set of attributes such as author ID, review ID, timestamp, textual content, and an opinion rating in

discrete five-star range. We applied the following pre-processing steps on both datasets: 1) filtered

duplicated reviews; 2) labeled reviews with overall rating above 3 stars as positive, below 3 stars

as negative, and removed the rest; 3) removed reviewers who posted more than 1,000 reviews and

those whose positive review ratio is more than 90% or less than 10% (little variance in their opinions

and thus easy to classify). Since such users can be easily captured by the base model, the removal

emphasizes comparisons on adapted models; 4) sorted each user’s reviews in chronological order. Then,

we performed feature selection by taking the union of top unigrams and bigrams ranked by Chi-square

and information gain metrics [109], after removing a standard list of stopwords and porter stemming.

The final controlled vocabulary consists of 5,000 and 3,071 textual features for Amazon and Yelp

datasets respectively; and we adopted TF-IDF as the feature weighting scheme. From the resulting

data sets, we randomly sampled 9,760 Amazon reviewers and 11,733 Yelp reviewers for testing

purpose. There are 105,472 positive reviews and 37,674 negative reviews in the selected Amazon

dataset; 108,105 positive reviews and 32,352 negative reviews in the selected Yelp dataset.

• Baselines. We compared the performance of MT-LinAdapt against seven different baselines,

ranging from user-independent classifiers to several state-of-the-art model adaption methods and
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multi-task learning algorithms. Due to space limit, we will briefly discuss the baseline models

below.

Our solution requires a user-independent classifier as base sentiment model for adaptation. We

estimated logistic regression models from a separated collection of reviewers outside the preserved

testing data on Amazon and Yelp datasets accordingly. We also included these isolated base models

in our comparison and name them as Base. In order to verify the necessity of personalized sentiment

models, we trained a global SVM based on the pooled adaptation data from all testing reviewers,

and name it as Global SVM. We also estimated an independent SVM model for each single user

only based on his/her adaptation reviews, and name it as Individual SVM. We included an instance-

based transfer learning method [110], which considers the k-nearest neighbors of each testing review

document from the isolated training set for personalized model training. As a result, for each testing

case, we estimated an independent classification model, which is denoted as ReTrain. [111] used L2

regularization to enforce the adapted models to be close to the global model. We applied this method

to get personalized logistic regression models and refer to it as RegLR. LinAdapt developed in [101]

also performs group-wise linear model adaptation to build personalization classifiers. But it isolates

model adaptation in individual users. MT-SVM is a multi-task learning method, which encodes task

relatedness via a shared linear kernel [39].

• Evaluation Settings. We evaluated all the models with both synchronized (batch) and asyn-

chronized (online) model update. We should note MT-SVM can only be tested in batch mode,

because it is prohibitively expensive to retrain SVM repeatedly. In batch evaluation, we split each

user’s reviews into two sets: the first 50% for adaptation and the rest 50% for testing. In online

evaluation, once we get a new testing instance, we first evaluate the up-to-date personalized classifier

against the ground-truth; then use the instance to update the personalized model. To simulate the

real-world situation where user reviews arrive sequentially and asynchronously, we ordered all reviews

chronologically and accessed them one at a time for online model update. In particular, we utilized

stochastic gradient descent for this online optimization [112]. Because of the biased class distribution

in both datasets, we computed F1 measure for both positive and negative class in each user, and

took macro average among users to compare the different models’ performance. Both the source

codes and data are available online 1.

1JNET. http://www.cs.virginia.edu/ lg5bt/mtlinadapthtml/index.html.

http://www.cs.virginia.edu/~lg5bt/mtlinadapt_html/index.html.
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3.4.2 Effect of Feature Grouping

In MT-LinAdapt, different feature groupings can be postulated in individual users’ and shared global

model adaptation. Nonlinearity is introduced when different grouping functions are used in these

two levels of model adaptation. Therefore, we first investigated the effect of feature grouping in

MT-LinAdapt.

We adopted the feature grouping method named “cross” in [1] to cluster features into different groups.

More specifically, we evenly spilt the training collection into N non-overlapping folds, and train a

single SVM model on each fold. Then, we create a V ×N matrix by putting the learned weights from

N folds together, on which k-means clustering is applied to extract K feature groups. We compared

the batch evaluation performance of varied combinations of feature groups in MT-LinAdapt. The

experiment results are demonstrated in Table 4.1; and for comparison purpose, we also included the

base classifier’s performance in the table.
Table 3.1: Effect of different feature groupings in MT-LinAdapt.

Method
Amazon Yelp

Pos F1 Neg F1 Pos F1 Neg F1
Base 0.8092 0.4871 0.7048 0.3495
400-800 0.8318 0.5047 0.8237 0.4807
400-1600 0.8385 0.5257 0.8309 0.4978
400-all 0.8441 0.5423 0.8345 0.5105
800-800 0.8335 0.5053 0.8245 0.4818
800-1600 0.8386 0.5250 0.8302 0.4962
800-all 0.8443 0.5426 0.8361 0.5122
1600-all 0.8445 0.5424 0.8357 0.5106
all-all 0.8438 0.5416 0.8361 0.5100

In Table 4.1, the two numbers in the first column denote the feature group sizes in personalized

models and global model respectively. And all indicates one feature per group (i.e., no feature

grouping). The adapted models in MT-LinAdapt achieved promising performance improvement

against the base sentiment classifier, especially on the Yelp data set. As we increased the feature

group size for global model, MT-LinAdapt’s performance kept improving; while with the same feature

grouping in the shared global model, a moderate size of feature groups in individual users is more

advantageous.

These observations are expected. Because the global model is shared across users, all their adaptation

reviews can be leveraged to adapt the global model so that sparsity is no longer an issue. Since

more feature groups in the global model can be afforded, more accurate estimation of adaptation

parameters can be achieved. But at the individual user level, data sparsity is still the bottleneck for
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Figure 3.1: Relative performance gain between MT-LinAdapt and baselines on Amazon and Yelp datasets.

accurate adaptation estimation, and trade-off between observation sharing and estimation accuracy

has to be made. Based on this analysis, we selected 800 and all feature groups for individual models

and global model respectively in the following experiments.

3.4.3 Personalized Sentiment Classification

• Synchronized model update. Table 6.3 demonstrated the classification performance of MT-

LinAdapt against all baselines on both Amazon and Yelp datasets, where binomial tests on win-loss

comparison over individual users were performed between the best algorithm and runner-up to verify

the significance of performance improvement. We can clearly notice that MT-LinAdapt significantly

outperformed all baselines in negative class, and it was only slightly worse than MT-SVM on positive

class. More specifically, per-user classifier estimation clearly failed to obtain a usable classifier, due to

the sparse observations in single users. Model-adaptation based baselines, i.e., RegLR and LinAdapt,

slightly improved over the base model. But because the adaptations across users are isolated and

the base model is fixed, their improvement is very limited. As for negative class, MT-LinAdapt

outperformed Global SVM significantly on both datesets. Since negative class suffers more from

the biased prior distribution, the considerable performance improvement indicates effectiveness of

our proposed personalized sentiment classification solution. As for positive class, the performance
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difference is not significant between MT-LinAdapt and MT-SVM on Amazon data set nor between

MT-LinAdapt and Global SVM on Yelp data set. By looking into detailed results, we found that

MT-LinAdapt outperformed MT-SVM on users with fewer adaptation reviews. Furthermore, though

MT-SVM benefits from multi-task learning, it cannot leverage information from the given base

classifier. Considering the biased class prior in these two data sets (2.8:1 on Amazon and 3.3:1

on Yelp), the improved classification performance on negative class from MT-LinAdapt is more

encouraging.

Table 3.2: Classification results in batch mode.

Method
Amazon Yelp

Pos F1 Neg F1 Pos F1 Neg F1
Base 0.8092 0.4871 0.7048 0.3495
Global SVM 0.8352 0.5403 0.8411 0.5007
Individual SVM 0.5582 0.2418 0.3515 0.3547
ReTrain 0.7843 0.4263 0.7807 0.3729
RegLR 0.8094 0.4896 0.7103 0.3566
LinAdapt 0.8091 0.4894 0.7107 0.3575
MT-SVM 0.8484 0.5367 0.8408 0.5079
MT-LinAdapt 0.8441 0.5422∗ 0.8358 0.5119∗

∗ indicates p-value<0.05 with Binomial test.

•Asynchronized model update. In online model estimation, classifiers can benefit from immediate

update, which provides a feasible solution for timely sentiment analysis in large datasets. In this

setting, only two baseline models are applicable without model reconstruction, i.e., RegLR and

LinAdapt. To demonstrate the utility of online update in personalized sentiment models, we illustrate

the relative performance gain of these models over the base sentiment model in Figure 3.1. The

x-axis indicates the number of adaptation instances consumed in online update from all users, i.e.,

the 1st review means after collecting the first review of each user.

MT-LinAdapt converged to satisfactory performance with only a handful of observations in each

user. LinAdapt also quickly converged, but its performance was very close to the base model, since

no observation is shared across users. RegLR needs the most observations to estimate satisfactory

personalized models. The improvement in MT-LinAdapt demonstrates the benefit of shared model

adaptation, which is vital when the individuals’ adaptation data are not immediately available but

timely sentiment classification is required.

It is meaningful to investigate how the shared global model and personalized models are updated

during online learning. The shift in the shared global model reflects changes in social norms, and

the discrepancy between the shared global model and personalized models indicates the variances of
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Figure 3.2: Online model update trace on Amazon.

individuals’ opinions. In particular, we calculated Euclidean distance between global model ws and

base model w0 and that between individualized model wu and shared global model ws during online

model updating. To visualize the results, we computed and plotted the average Euclidean distances

in every 3000 observations during online learning, together with the corresponding variance. To

illustrate a comprehensive picture of online model update, we also plotted the corresponding average

F1 performance for both positive and negative class. Because the Euclidean distance between ws and

w0 is much larger than that between ws and wu, we scaled ||ws −w0|| by 0.02 on Amazon dataset in

Figure 3.2. Similar results were observed on Yelp data as well; but due to space limit, we do not

include them.

As we can clearly observe that the difference between the base model and newly adapted global

model kept increasing during online update. At the earlier stage, it is increasing much faster than

the later stage, and the corresponding classification performance improves more rapidly (especially

in negative class). The considerably large variance between w0 and ws at the beginning indicates

the divergence between old and new social norms across users. Later on, variance decreased and

converged with more observations, which can be understood as the formation of the new social norms

among users. On the other hand, the distance between personalized models and shared global model

fluctuated a lot at the beginning; with more observations, it became stable later on. This is also

reflected in the range of variance: the variance is much smaller in later stage than earlier stage, which

indicates users comply to the newly established social norms.
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Table 3.3: Shared model adaptation for cold start on Amazon and Yelp.

Amazon Yelp
Obs. Shared-SVM MT-SVM MT-LinAdapt Shared-SVM MT-SVM MT-LinAdapt

Pos F1 Neg F1 Pos F1 Neg F1 Pos F1 Neg F1 Pos F1 Neg F1 Pos F1 Neg F1 Pos F1 Neg F1
1st 0.9004 0.7013 0.9264 0.7489 0.9122 0.7598 0.7882 0.5537 0.9040 0.7201 0.8809 0.7306
2nd 0.9200 0.6872 0.9200 0.7319 0.8945 0.7292 0.7702 0.5266 0.8962 0.6959 0.8598 0.6968
3rd 0.9164 0.6967 0.9164 0.7144 0.8967 0.7260 0.7868 0.5278 0.9063 0.7099 0.8708 0.7069

3.4.4 Shared Adaptation Against Cold Start

Cold start refers to the challenge that a statistic model cannot draw any inference for users before

sufficient observations are gathered [113]. The shared model adaptation in MT-LinAdapt helps

alleviate cold start in personalized sentiment analysis, while individualized model adaptation method,

such as RegLR and LinAdapt, cannot achieve so. To verify this aspect, we separated both Amazon

and Yelp reviewers into two sets: we randomly selected 1,000 reviewers from the isolated training

set and exhausted all their reviews to estimate a shared SVM model, MT-LinAdapt and MT-SVM.

Then those models were directly applied onto the testing reviewers for evaluation. Again, because it

is time consuming to retrain a SVM model repeatedly, only MT-LinAdapt performed online model

update in this evaluation. We report the performance on the first three observations from all testing

users accordingly in Table 3.3.

MT-LinAdapt achieved promising performance on the first testing cases, especially on the negative

class. This indicates its estimated global model is more accurate on the new testing users. Because

MT-SVM cannot be updated during this online test, only its previously estimated global model from

the 1,000 training users can be applied here. As we can notice, its performance is very similar to the

shared SVM model (especially on Amazon dataset). MT-LinAdapt adapts to this new collection

of users very quickly, so that improved performance against the static models at later stage is

achieved.

3.4.5 Vocabulary Stability

One derivative motivation for personalized sentiment analysis is to study the diverse use of vocabulary

across individual users. We analyzed the variance of words’ sentiment polarities estimated in the

personalized models against the base model. Table 3.4 shows the most and the least variable features

on both datasets. It is interesting to find that words with strong sentiment polarities tend to be

more stable across users, such as “disgust,” “regret,” and “excel.” This demonstrates the sign of
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Table 3.4: Top six words with the highest and lowest variances of learned polarities by MT-LinAdapt.

A
m

az
o
n Highest

cheat healthi enjoy-read
astound the-wrong the-amaz

Lowest
mistak favor excel
regret perfect-for great

Y
el

p

Highest
total-worth lazi was-yummi

advis impress so-friend

Lowest
omg veri-good hungri

frustrat disgust a-must

conformation to social norms. There are also words exhibiting high variances in sentiment polarity,

such as “was-yummi,” “lazi,” and “cheat,” which indicates the heterogeneity of users’ opinionated

expressions.

3.5 Conclusion

In this work, we captured users’ diverse preferences in expressing attitudes via personalized sentiment

classification. In particularly, it is achieved by the notion of shared model adaptation, which is

motivated by the social theories that humans’ opinions are diverse but shaped by the ever-changing

social norms. In the proposed MT-LinAdapt algorithm, global model sharing alleviates data sparsity

issue, and individualized model adaptation captures the heterogeneity in humans’ sentiments and

enables efficient online model learning. Extensive experiments on two large review collections from

Amazon and Yelp confirmed the effectiveness of our proposed solution.

The information sharing is achieved via multi-task learning by treating each individual user as a

single task, which can be further enhanced to alleviate the data sparsity issue, i.e., via the grouping

of similar users. The user groups can be automatically identified to maximize the effectiveness of

shared model adaptation. Users in the same group share the same model parameters by contributing

all their observations for optimizing group-wise model parameters.



Chapter 4

Clustered Model Adaptation for

Personalized Sentiment Analysis

In this Chapter, we propose to capture humans’ variable and idiosyncratic ways of expressing attitudes

via building personalized sentiment classification models at a group level . Our solution roots in the

social comparison theory that humans tend to form groups with others of similar minds and ability,

and the cognitive consistency theory that mutual influence inside groups will eventually shape

group norms and attitudes, with which group members will all shift to align. We exploit the clustering

property of users’ opinions via imposing a non-parametric Dirichlet Process prior over the personalized

models. Extensive experimental evaluations on large collections of Amazon and Yelp reviews confirm

the effectiveness of the proposed solution: it outperformed user-independent classification solutions,

and several state-of-the-art model adaptation and multi-task learning algorithms.

4.1 Introduction

In this work, we take a new perspective to build personalized sentiment models by exploiting social

psychology theories about humans’ dispositional tendencies. First, the theory of social comparison [31]

states that the drive for self-evaluation can lead people to associate with others of similar opinions

and abilities, thus to form groups. This guarantees the relative homogeneity of opinions and abilities

within groups. In our solution, we capture such clustering property of different users’ opinions by

40
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postulating a non-parametric Dirichlet Process (DP) prior [32] over the individualized models, such

that those models automatically form latent groups. In the posterior distribution of this postulated

stochastic process, users join groups by comparing the likelihood of generating their own opinionated

data in different groups (i.e., realizing self-evaluation and group comparison). Second, according

to the cognitive consistency theory [33], once the groups are formed, members inside the same

group will be influenced by other in-group members mutually through both implicit and explicit

information sharing, which leads to the development of group norms and attitudes [34]. We formalize

this by adapting a global sentiment model to individual users in each latent user group, and jointly

estimating the global and group-wise sentiment models. The shared global model can be interpreted

as the global social norm, because it is estimated based on observations from all users. It thus

captures homogenous sentimental regularities across users. The group-wise adapted models capture

heterogenous sentimental variations among users across groups. Because of this two-level information

grouping and sharing, the complexity of preference learning will be largely reduced. This is of

particular value for sentiment analysis in tail users, who only possess a handful of observations but

take the major proportion in user population.

We should note that our notion of user group is different from those in traditional social network

analysis, where user interaction or community structure is observed. In our solution, user groups

are latent: they are formed based on the textual patterns in users’ sentimental expressions, i.e.,

implicit sentimental similarity instead of direct influence, such that members inside the same latent

group are not necessarily socially connected. This aligns with our motivating social psychology

theories: people who have similar altitudes or behavior patterns might not know each other, while

they interact via implicit influence, such as being exposed to the same social norms or read each

others’ opinionated texts. Being able to quantitatively identify such latent user groups also provides

a new way of social network analysis – content-based community detection. But this is beyond the

scope of this paper.

Due to the relatedness among the tasks, the proposed solution can also be understood from the

perspective of multi-task learning [39,40,89]. In our solution, we formalize this idea as clustered

model sharing and adaptation across users. We assume the distinct ways in which users express

their opinions can be characterized by different configurations of a linear classifier’s parameters, i.e.,

the weights of textual features. Individualized models can thus be achieved via a series of linear

transformations over a globally shared classifier, e.g., shifting and scaling the weight vector [101].

Moreover, we enforce the relatedness among users via the automatically identified user groups – users
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in the same group would receive the same set of model adaptation operations. The user groups are

jointly estimated with the group-wise and global classifiers, such that information is shared across

users to conquer data sparsity in each user and non-linearity is achieved when performing sentiment

classification across users.

4.2 Related work

The proposed method utilizes the relatedness among users to perform user grouping, thus is closely

related with clustering-based user modeling algorithms. [114] proposed a simultaneous co-clustering

algorithm between customers and products considering the dyadic property of the data. Some

recent efforts suggest that relatedness between tasks should also be estimated to restrict information

sharing only within similar tasks [80, 115]. Dirichlet Process prior [32] naturally satisfies this goal: it

associates related tasks into groups via exploiting the clustering property of data. [116] utilized the

property to achieve content personalization of users by generating both the latent domains and the

mixture of domains for each user. And they trained the personalized models using the multi-task

learning idea to capture heterogeneity and homogeneity among users with respect to the content.

Their solution is different from ours as we consider clustering users regarding to opinionated sentiment

models. [40, 117] estimated a set of linear classifiers in automatically identified groups. However, due

to the sparsity of personal opinionated data in the sentiment analysis, a full set of model parameters

have to be estimated in each task. Our solution instead only learns simple model transformations

over groups of features in each user group [101], which greatly reduces the overall model learning

complexity. And because the number of groups is automatically identified from data, it naturally

balances sample complexity in learning group-wise models.

4.3 Methodology

Our solution roots in the social comparison theory and cognitive consistence theory. Specifically,

we build personalized sentiment classification models via a set of shared model adaptations for

both a global model and individualized models in groups. The latent user groups are identified by

imposing a Dirichlet Process prior over the individual models. In the following, we first discuss
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the motivating social behavior theories, and then carefully describe how we formulate these social

concepts to computational models for personalized sentiment analysis.

4.3.1 Group Formation and Group Norms

In social science, the theory of social comparison explains how individuals evaluate their own opinions

and abilities by comparing themselves to others in order to reduce uncertainty when expressing

opinions and learn how to define themselves [118]. In the context of sentiment analysis, we consider

building personalized sentiment models as a set of inductive tasks. Because of the explicit and

implicit comparisons users have performed when generating the opinionated data, those learning

tasks become related. [119] further suggested the drive for self-evaluation leads people to associate

with others of similar minds to form (latent) groups, and this guarantees the relative homogeneity of

opinions within groups. In sentiment analysis, this can be translated as model regularization among

users in the same group. Correspondingly, the process of self-definition can be considered as people

recognizing a specific group after comparison, i.e., joining an existing similar group or creating a

new distinct group after evaluating both self and group information. This further suggests us to

build personalized models in a group-wise manner and identify the latent groups by exploiting the

clustering property of users’ opinionated data.

Once the groups of similar opinions are formed, cognitive consistency theory [33,120] suggests that

members in the same group interact mutually in order to reduce the inconsistency of opinions, and

this eventually leads to group norms that all members will shift to align with. Group norms thus

act as powerful force that dramatically shapes and exaggerates individuals’ emotional responses [96].

Such groups are not necessarily defined by observed social networks, as the influence can take forms of

both implicit and explicit interactions. In the context of sentiment analysis, we capture group norms

by enforcing users in the same group to share identical sentiment models. Heterogeneity is thus

characterized by the distinct sentiment models across groups. This reduces the learning complexity

from per-user model estimation to per-group. Besides the group norms, the simultaneously estimated

global model provides the basis for group norms to evolve from, which represents the homogeneity

among all users.
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4.3.2 Personalized Model Adaptation

Following the assumptions described in Section 3.3.2, we also assume the diverse ways in which users

express their opinions can be characterized by different settings of a linear classifier, i.e., the weight

vector of textual features. Formally, denote a collection of N users as U = {u1, u2, ...uN}, in which

each user u is associated with a set of opinionated text documents as Du =
{

(xud , y
u
d )
}|Du|
d=1

. Each

document d is represented by a V -dimension vector xd of textual features, and yd is the corresponding

sentiment label. We assume each user is associated with a sentiment model f(x;wu)→ y, which is

characterized by the individualized feature weight vector wu. Estimating f(x;wu) for users in U

is the inductive learning task of our focus. Borrowing the techniques of linear transformations, we

assume each user’s personalized model is obtained from a global sentiment model f(x;ws) via a series

of linear model transformations [1, 101], i.e., shift and scale the shared model parameter ws into wu

based on Du. To simplify the discussions in this paper, we also assume binary sentiment classification,

i.e., y ∈ {0, 1}, and we use logistic regression as the reference model in the following discussions.

To handle sparse observations in each individual users’ opinionated data, we further assume that

model adaptations can be performed in feature groups [1], which is also utilized and introduced

in Section 3.3.2. By defining g(i) → k as the feature grouping method, which maps feature i in

{1, 2, . . . , V } to feature group k in {1, 2, . . . ,K}. The set of personalized model adaptation operations

in user u can then be represented as a 2K-dimension vector θu = (au1 , a
u
2 , . . . , a

u
K , b

u
1 , b

u
2 , . . . , b

u
K),

where auk and buk represent the scaling and shifting operations in feature group k for user u. This

gives us a one-to-one mapping of feature weights from global model ws to personalized model wu as

∀i ∈ {1, 2, . . . , V }, wu
i = aug(i)w

s
i + bug(i). Because θu uniquely determines the personalized feature

weight vector wu, we will then refer to θu as the personalized sentiment model for user u in our

discussions.

Different from what has been explored in [1, 101], where the global model ws is predefined and

fixed, we assume ws is unknown and dynamic. Therefore, it needs to be learnt based on the

observations from all the users in U . This helps us capture the variability of people’s sentiment,

such as the dynamics of social norms. In particular, we apply the same linear transformation

method to adapt ws from a predefined sentiment model w0. w0 can be empirically set based on

a separate user-independent training set, e.g., pooling opinionated data from different but related

domains. Since this transformation will be jointly estimated across all users, a different feature

mapping function g′(·) can be used to organize features into more groups to increase the resolution of
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sentiment classification in the global model. We denote the corresponding global model adaptation

as θs = (as1, a
s
2, . . . , a

s
L, b

s
1, b

s
2, . . . , b

s
L), in which additional degree of freedom is given to the feature

group size L. The benefit of this second-level model adaptation is two-fold. First, the predefined

sentiment model w0 can serve as a prior for global sentiment classification [101]. This benefits

multi-task learning when the overall observations are sparse. Second, non-linearity among features is

introduced when the global model and personalized models employ different feature groupings. This

enables observation propagation across features in different user groups.

Plugging this two-level linear transformation based model specification into the logistic function, we

can materialize the personalized logistic regression model for user u as,

P (yud = 1|xud ,θu,θs,w0) = σ
( K∑

k=1

∑

g(i)=k

(aukw
s
i + buk)xud,i

)
(4.3.1)

where ws
i = asg′(i)w

0
i + bsg′(i) and σ(x) = 1

1+exp(−x) .

4.3.3 Non-parametric Modeling of Groups

The inductive learning task in each user u hence becomes to estimate θu that maximizes the likelihood

of the user’s own opinionated data defined by Eq (5.3.1). Accordingly, a shared task for all users

is to estimate θs with respect to the likelihood over all of their observations. As we discussed in

the related social theories about humans’ dispositional tendencies, people tend to automatically

form groups of similar opinions, and follow the mutually reinforced group norms in their own

behavior. Therefore, instead of estimating the personalized model adaptation parameters {θu}Nu=1

independently, we assume they are grouped and those in the same group share identical model

adaptation parameters.

Determining the task grouping structure in multi-task learning is challenging, because the optimal

setting of individual models is unknown beforehand and it will also be affected by the imposed task

grouping structure. Ad-hoc solutions approximate the group structure by first performing clustering

in the feature space [121] or individually trained models [122], and then restarting the learning tasks

with the fixed task structure as additional regularization. Unfortunately, such solutions have serious

limitations: 1) they isolate the learning of task relatedness structure from the targeted learning

tasks; 2) one has to manually exhaust the number of clusters; and 3) the identified task grouping
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structure introduces unjustified bias into multi-task learning. To avoid such limitations, we appeal to

a non-parametric approach to jointly estimate the task grouping structure and perform multi-task

learning across users.

Motivated by the social comparison theory, in our solution instead of considering the optimal setting

of {θu}Nu=1 as fixed but unknown, we treat it as stochastic by assuming each user’s model parameter

θu is drawn from a Dirichlet Process prior [32, 123]. A Dirichlet Process (DP), DP (α,G0) with a

base distribution G0 and a scaling parameter α, is a distribution over distributions. An important

property of DP is that samples from it often share some common values, and therefore naturally

form clusters. The number of unique draws, i.e., the number of clusters, varies with respect to the

data and therefore is random, instead of being pre-specified.

Introducing the DP prior thus imposes a generative process over the learning task in each individual

user in our problem. This process can be formally described as follows,

G ∼ DP (α,G0),

θu|G ∼ G, (4.3.2)

yud |xud ,θu,θs,w0 ∼ P (yud = 1|xud ,θu,θs,w0).

where the hyper-parameter α controls the concentration of unique draws from the DP prior, the

base distribution G0 specifies the prior distribution of the parameters in each individual model, and

G represents the mixing distribution of the sampled results of θu. To simplify the notations for

discussion, we define au and bu as the scaling and shifting components in θu, such that θu = (au, bu).

We impose an isometric Gaussian distribution in G0 over θu as θu ∼ N(µ, σ2), where µ = (µa, µb)

and σ = (σa, σb) accordingly. That is, we allow the shifting and scaling operations to be generated

from different prior distributions. Correspondingly, we also treat the globally shared model adaptation

parameter θs as a latent random variable, and impose another isometric Gaussian prior over it as

θs ∼ N(µs, σs)
2, where µs and σs are also decomposed with respect to the shifting and scaling

operations.

By integrating out G in Eq (4.3.2), the predictive distribution of θu conditioned on the individualized

models in the other users, denoted as θ−u = {θ1, ..,θu−1,θu+1, ...θN}, can be analytically computed

as follows,

p(θu|θ−u, α,G0)=
α

N−1+α
G0+

1

N−1+α

N∑

j 6=i

δθu(θj) (4.3.3)
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where δθu(·) is the distribution concentrated at θu.

This predictive distribution well captures the idea of social comparison theory. On the one hand, the

second part of this predictive distribution captures the process that a user compares his/her own

sentiment model against the other users’ models, as the distribution δθu(·) takes probability one

only when θj = θu, i.e., they hold the same sentiment model. Hence, a user tends to join groups

with established sentiment models, and this probability is proportional to the popularity of this

sentiment model in overall user population. On the other hand, the first part of Eq (4.3.3) captures

the situation that a user decides to form his/her own sentiment model, but this probability is small

when the user population is large. As a result, the imposed DP prior encourages users to form shared

groups.

We denote the unique samples in G as {φ1,φ2, . . . ,φc}, i.e., the group models, where the group

index c takes value from 1 to ∞, and φi represents the homogeneity of sentiment models in user

group i. We should note that the notion of an infinite number of groups is only to accommodate the

possibility of generating new groups during the stochastic process. As the sample distribution G

resulting from the DP prior in Eq (4.3.2) only has finite supports at the points of {θ1,θ2, . . . ,θN},

the maximum value for c is N , i.e., all users have their own unique sentiment models. Then the

likelihood of the opinionated data in user u can be computed under the stick-breaking representation

of DP [124] as follows:

P (yu|xu,w0, α,G0) (4.3.4)

=

∫
dφ

∫
dθs
∫
dπ

∞∑

cu=1

|Du|∏

d=1

P (yud |xud ,φcu ,θs,w0)p(cu|π)p(φcu |µ, σ2)p(θs|µs, σ2
s)p(π|α)

where π = (πc)
∞
c=1 ∼ Stick(α) captures the proportion of unique sample φc in the whole collection.

And the stick-breaking process Stick(α) for π is defined as: π′c ∼ Beta(1, α), πc = π′c
∏c−1
t=1(1 −

π′t), which is a generalization of multinomial distribution with a countably infinite number of

components.

As the components to be estimated in each latent puser group (i.e., {φc}∞c=1) is a set of linear

model transformations, we name the resulting model defined by Eq (4.3.4) as Clustered Linear Model

Adaptation, or cLinAdapt in short. And using the language of graphical models, we illustrate the

dependency between different components of cLinAdapt in Figure 4.1. We should note that our

cLinAdapt model is not a fully generative model: as defined in Eq (4.3.4), we treat the documents



4.4 Posterior Inference 48

α

πi

cu yud xud

φi

µ, σ2

θs ω0

µs, σ
2
s

N

∞

D

1

Figure 4.1: Graphical model representation of cLinAdapt. Light circles denote the latent random variables, and
shadow circles denote the observed ones. The outer plate indexed by N denotes the users in the collection, the inner
plate indexed by D denotes the observed opinionated data associated with user u, and the upper plate denotes the
parameters for the countably infinite number of latent user groups in the collection.

{xu}Nu=1 as given and do not specify any generation process on them. The group membership variable

cu can thus only be inferred for users with at least one labeled document, since that is the only

supervision for group membership inference. As a result, we assume the group membership for each

user is stationary : once inferred from training data, it can be used to guide personalized sentiment

classification in the testing phase. Modeling the dynamics in such latent groups is outside the scope

of this work.

4.4 Posterior Inference

To apply cLinAdpat for personalized sentiment classification, we need to infer the posterior distri-

butions of: 1) group-wise model adaptation parameters {φc}∞c=1, each one of which captures the

homogeneity of personalized sentiment models in a corresponding latent user group; 2) global model

adaptation parameter θs, which is shared by all users’ sentiment models; 3) group membership

variable cu for user u; and 4) sentiment labels yu for testing documents in user u. However, because

there is no conjugate prior for the logistic regression model, exact inference for cLinAdapt becomes

intractable. In this work, we develop a stochastic Expectation Maximization (EM) [125] based

iterative algorithm for posterior inference in cLinAdapt. In particular, Gibbs sampling is used to

infer the group membership {cu}Nu=1 for all users based on the current group models {φc}∞c=1 and

global model θs, and then maximum likelihood estimation for {φc}∞c=1 and θs is performed based

on the newly updated group membership {cu}Nu=1 and corresponding observations in users. These

two steps are repeated until the likelihood on the training data set converges. During the iterative

process, the posterior of yu in testing documents in user u is accumulated for final prediction.
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Next we will carefully describe the detailed procedures of each step in this iterative inference

algorithm.

• Inference for {cu}Nu=1: Following the sampling scheme proposed in [126], we introduce a set of

auxiliary random variables of size m, i.e., {φai }mi=1, drawn from the same base distribution G0 to

define a valid Markov chain for Gibbs sampling over {cu}Nu=1. To facilitate the description of the

developed sampling scheme, we assume that at a particular step in sampling cu for user u, there

are in total C active user groups (i.e., groups that associate with at least one user, excluding the

current user u), and by permuting the indices, we can index them from 1 to C. By denoting the

number of users in group c as n−uc (excluding the current user u), the posterior distribution of cu

can be estimated by,

P
(
cu = c|yu,xu, {φi}Ci=1, {φaj }mj=1,θ

s,w0
)
∝





n−uc
∏|Du|
d=1 P (yud |xud ,φc,θs,w0) for 1 ≤ c ≤ C,

α
m

∏|Du|
d=1 P (yud |xud ,φac ,θs,w0) for 1 < c ≤ m.

(4.4.1)

If an auxiliary variable is chosen for cu, it will be appended to {φi}Ci=1 as one extra active user

group.

Because of the introduction of auxiliary variables {φai }mi=1, the integration of {φc}∞c=1 with respect to

the base distribution G0 is approximated by a finite sum over the current active groups and auxiliary

variables. Therefore, the number of sampled auxiliary variables affects accuracy of this posterior. To

avoid bias in sampling cu, we will draw a new set of auxiliary variables from G0 every time when

sampling. As the prior distributions for θu in G0 are Gaussian, sampling the auxiliary variables is

efficient.

We should note that the sampling step derived in Eq (4.4.1) for cLinAdapt is closely related to the

social comparison theory. The auxiliary variables can be considered as pseudo groups: no user has

been assigned to them but they provide options for constructing new sentiment models. When a user

develops his/her own sentiment model, he/she will evaluate the likelihood of generating his/her own

opinionated data under all candidate models together with such a model’s current popularity among

other users. In this comparison, the likelihood function serves as a similarity measure between users.

Additionally, new sentiment models will be created if no existing model can well explain this user’s

opinionated data. This naturally determines the proper size of user groups with respect to the overall
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data likelihood during model update.

• Estimate for {φc}∞c=1 and θs: Once the group membership {cu}Nu=1 is sampled for all users, the

grouping structure among individual learning tasks is known, and the estimation for {φc}∞c=1 and θs

can be readily performed by maximizing the complete-data likelihood based on the current group

assignments.

Specifically, assume there are C active user groups after the sampling of {cu}Nu=1, the complete-data

log-likelihood over {φc}Cc=1 and θs can be written as,

L
(
{φc}Cc=1,θ

s
)

=

N∑

u=1

logP (yu|xu,φcu ,θs,w0) +

C∑

c=1

log p(φc|µ, σ2) + log p(θs|µs, σ2
s) (4.4.2)

As the global model adaptation parameter θs is shared by all the users (as defined in Eq (5.3.1)),

it makes the estimation of {φc}Cc=1 dependent across all the user groups, i.e., information sharing

across groups in cLinAdapt.

In Section 4.3.3, we did not specify the dconfiguration of the prior distributions on θu and θs, i.e.,

Gaussian’s mean and standard deviation. But given θu and θs stand for linear transformations in

model adaptation, proper assumption can be postulated on their priors. In particular, we believe the

scaling parameters should be close to one and shifting parameters should be close to zero, i.e., µa = 1

and µb = 0, to encourage individual models to be close to the global model (i.e., reflecting social

norm). The standard deviations control the confidence of our belief and can be empirically tuned.

The same treatment also applies to µs and σ2
s for the global model adaptation parameter θs.

Eq (5.3.13) can be efficiently maximized by a gradient-based optimizer, and the actual gradients of Eq

(5.3.13) reveal the insights of our proposed two-level model adaptation in cLinAdapt. For illustration

purpose, we only present the decomposed gradients with respect to the complete-data log-likelihood

for scaling operation in φc and θs on a specific training instance (xud , y
u
d ) in user u:

∂L(·)
∂acuk

= ∆u
d

∑

g(i)=k

(
asg′(i)w

0
i + bsg′(i)

)
xudi +

acuk − 1

σ2
(4.4.3)

∂L(·)
∂asl

= ∆u
d

∑

g′(i)=l

acug(i)w
0
ix

u
di +

asl − 1

σ2
s

(4.4.4)

where ∆u
d = yud − P (yud = 1|xud ,φcu ,θs,w0), and g(·) and g′(·) are the feature grouping functions for

individual users’ and global model adaptation. First, observations from all group members will be
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aggregated to update the group-wise model adaptation parameter φc (as users in the same group

share the same model padaptations). This can be understood as the mutual interactions within

groups to form group norms and attitudes. Second, the group-wise observations are also utilized to

update the globally shared model adaptations among all the users (as shown in Eq (4.4.4)), which

adds another dimension of task relatedness for multi-task learning. Also as illustrated in Eq (4.4.3)

and (4.4.4), when different feature groupings are used in g(·) and g′(·), nonlinearity is introduced to

propogate information across features.

• Predict for yu: During the t-th iteration of stochastic EM, we use the newly inferred group

membership and sentiment models to predict the sentiment labels yu in user u’s testing documents

by,

P (yud = 1|xud , {φtc}Ct
c=1,θ

s
t ,w

0) =

Ct∑

c=1

P (ctu = c)P (yud = 1|xud ,φtctu ,θ
s
t ,w

0) (4.4.5)

where
(
{φtc}Ct

c=1, c
t
u,θ

s
t

)
are the estimates of latent variables at the tth iteration, P (ctu = c) is

estimated in Eq (4.4.1) and P (yud = 1|xud , φctu , θs, w0) is computed by Eq (5.3.1). Then the posterior

of yu can thus be estimated via empirical expectation after T iterations,

P (yud = 1|xud ,w0, α,G0) =
1

T

T∑

t=1

P (yud = 1|xud , {φtc}Ct
c=1,θ

s
t ,w

0)

To avoid auto-correlation in the Gibbs sampling chain, samples in the burn-in period are discarded

and proper thinning of the sampling chain is performed in our experiments.

4.5 Experimental Results and Discussions

We performed empirical evaluations to validate the effectiveness of our proposed personalized sentiment

classification algorithm. Extensive quantitative comparisons on two large-scale opinionated review

datasets collected from Amazon and Yelp confirmed the effectiveness of our algorithm against several

state-of-the-art model adaptation and multi-task learning algorithms. Our qualitative studies also

demonstrated the automatically identified user groups recognized the diverse use of vocabulary across

different users.
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Figure 4.2: Trace of likelihood, group size and performance during iterative posterior sampling in cLinAdapt for
Amazon.

Figure 4.3: Trace of likelihood, group size and performance during iterative posterior sampling in cLinAdapt for Yelp.

4.5.1 Experimental Setup

• Datesets. We used the same review datasets as in Section 3.4, Amazon [107] and Yelp1, for our

evaluation purpose. In these two datasets, each review is associated with various attributes such as

author ID, review ID, timestamp, textual content, and an opinion rating in a discrete five-star range.

This sparsity in the two datasets raises a serious challenge for personalized sentiment analysis.

We directly used the same processed Amazon data as in Section 3.4 in the following evaluation.

While for Yelp dataset, they update their data every 6 months. Thus, we get the latest data and

performed the same pre-processing steps: 1) labeled the reviews with less than 3 stars as negative,

and those with more than 3 stars as positive; 2) excluded reviewers who posted more than 1,000

reviews and those whose positive or negative review proportion is greater than 90% (little variance

in their opinions and thus easy to classify); 3) ordered each user’s reviews with respect to their

timestamps. From the resulting data, we randomly sampled 10,830 Yelp reviewers for evaluation

purpose. The controlled vocabulary consists of 5,000 and 3,071 text features for Amazon and Yelp

datasets respectively; and we adopted TF-IDF as the feature weighting scheme. There are 105,472

1Yelp dataset challenge. http://www.yelp.com/dataset challenge

http://www.yelp.com/dataset_challenge
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positive and 37,674 negative reviews in the selected Amazon dataset; 157,072 positive and 51,539

negative reviews in the selected Yelp dataset.

• Baselines. We compared the proposed cLinAdapt algorithm with nine baselines, covering several

state-of-the-art model adaptation and multi-task learning algorithms. Below we briefly introduce

each one of them and discuss their relationship with our algorithm.

1) Base: In order to perform the proposed clustered model adaptation, we need a user-independent

classification model to serve as the prior model (i.e., w0 in Eq (5.3.1)). We randomly selected a subset

of 2,500 users outside the previously reserved evaluation dataset in Amazon and Yelp to estimate

logistic regression models for this purpose accordingly. 2) Global SVM: We trained a global linear

SVM classifier by pooling all users’ training data together to verify the necessity of personalized

classifier training. 3) Individual SVM: We estimated an independent SVM classifier for each user

based on his/her own training data as a straightforward personalized baseline. 4) LinAdapt: This

is a linear transformation based model adaptation solution for personalized sentiment classification

proposed in [101]. 5) LinAdapt+kMeans: To verify the effectiveness of our proposed user grouping

method in personalized sentiment model learning, we followed [121] to first perform k-means clustering

of users based on their training documents, and then estimated a shared LinAdapt model in each

identified user group. 6) LinAdapt+DP: We also introduced DP prior to LinAdapt to perform

joint user grouping and model adaptation training. Because LinAdapt directly adapts from the

predefined Base model, no information is shared across user groups. 7) RegLR+DP: It is an

extension of regularized logistic regression for model adaptation [111] with the introduction of DP

prior for automated user grouping. In this model, a new logistic regression model will be estimated in

each group with the predefined Base model as prior. As a result, this baseline is essentially the same

algorithm as that in [40]. 8) MT-SVM: It is a state-of-the-art multi-task learning solution proposed

in [39]. It encodes the task relatedness via a shared linear kernel across tasks. Comparing to our

learning scheme, it only estimates shifting operation in each user without user grouping nor feature

grouping. 9) MT-RegLR+DP: This baseline identifies groups of similar tasks that should be learnt

jointly while the extend of similarity among different tasks are learned via a Dirichlet process prior.

Instead of estimating individual group models from the Base model in RegLR+DP independently,

the same task decomposition used in MT-SVM is introduced. As a result, the learning tasks will be

decomposed to group-wise model learning and global model learning. But it estimates a full set of

model parameters of size V in each individual task and global task, such that it requires potentially

more training data.
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• Evaluation Settings. In our experiment, we split each user’s review data into two parts: the first

half for training and the rest for testing. As we introduced in Section 4.3.3 and 4.4, the concentration

parameter α in DP together with the the number of auxiliary variables m in sampling of {cu}Nu=1

play an important role in determining the number of latent user groups in all DP-based models. We

empirically fixed α = 1.0 and m = 6 in all such models. Due to the biased class distribution in both

datasets, we compute F1 measure for both positive and negative class in each user, and take macro

average among users to compare the different models’ classification performance. Both the source

codes and data are available online 2.

4.5.2 Feasibility of Automated User Grouping

First of all, it is important to verify our stochastic EM based posterior inference in cLinAdapt is

converging, as only one sample was taken from the posterior of {cu}Nu=1 when updating the group

sentiment models {φc}∞c=1 and global model θs. We traced the complete-data log-likelihood, the

number of inferred latent user groups, together with the testing performance (by Eq (5.3.3)) during

each iteration of posterior inference in cLinAdapt over all users from both datasets. We reported

the results for the two datasets in Figure 4.2 and 4.3, where for visualization purpose the illustrated

results were collected in every five iterations (i.e., thinning the sampling chain) after the burn-in

period (the first ten iterations).

As observed from the results on both datasets, the likelihood kept increasing during the iterative

posterior sampling process and converged later on. In the meanwhile, the group size fluctuated a lot

at the beginning of sampling and became more stable near the end of iterations. On the other hand,

the classification performance on the testing collection kept improving as more accurate sentiment

models were estimated from the iterative sampling process. This verifies the effectiveness of our

posterior inference procedure. We also looked into the automatically identified groups and found

many of them exhibited unique characteristics. The median number of reviews per user in these two

datasets were only 7 and 8, while in some groups the average number of reviews per user is as large

as 22.1, with small variances. This indicates active users were grouped together in cLinAdapt. In

addition, the overall positive class ratio on these two datasets is 74.7% and 75.3% respectively, but

in many identified groups the class distribution was extremely biased: some towards negative, as

low as 62.1% positive; and some towards positive, as high as 88.2% (note users with more than 90%

2JNET. http://www.cs.virginia.edu/ lg5bt/clinadapthtml/index.html.

http://www.cs.virginia.edu/~lg5bt/clinadapt_html/index.html.


4.5 Experimental Results and Discussions 55

Figure 4.4: Word clouds on Amazon (left) and Yelp (right).

positive or negative reviews have been removed). This suggests users with similar opinions were also

successfully grouped in cLinAdapt. In addition, small fluctuation in the number of sampled user

groups near the end of iterations is caused by a small number of users keeping switching groups (as

new groups were created for them). This is expected and reasonable, since the group assignment is

modeled as a random variable and multiple latent user groups might fit a user’s opinionated data

equally well. This provides us the flexility to capture the variance in different users’ opinions.

In addition to the above quantitative measures, we also looked into the learnt word sentiment polarities

reflected in each group’s sentiment classifier to further investigate the automatically identified user

groups. Most of the learnt feature weights followed our expectation of the words’ sentiment polarities,

and many words indeed exhibited distinct polarities across groups. We visualized the variance of

learnt feature weights across all the groups using word clouds and demonstrated the top 10 words

with largest variance and top 10 words with smallest variance in Figure 4.4 for Amazon and Yelp

datasets respectively. Considering the automatically identified groups were associated with different

number of users, we normalized the group feature weight vector by its L2 norm. The displayed size

of the selected features in the word cloud is proportional to their variances. From the results we can

find that, for example, the words “bore, lack, worth” conveyed quite different sentiment polarities

among diverse latent user groups in Amazon dataset, while the words like “pleasure, deal, fail” had

quite consistent polarities. This is also observed in the Yelp dataset, as we can find words like “star,

good, worth” were used quite differently across groups, while the words like “horribl, sick, love” are

used more consistently.
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Table 4.1: Effect of different feature groupings in cLinAdapt.

Method
Amazon Yelp

Pos F1 Neg F1 Pos F1 Neg F1
Base 0.8092 0.4871 0.8809 0.6284
400-1600 0.8313 0.5033 0.8942 0.6563
400-all 0.8405 0.5213 0.8981 0.6632
800-1600 0.8325 0.5115 0.8959 0.6592
800-all 0.8437 0.5478 0.9010 0.6694
1600-all 0.8440 0.5334 0.8993 0.6674
all-all 0.8404 0.5391 0.8995 0.6681

4.5.3 Effect of Feature Grouping

We then investigated the effect of feature grouping in cLinAdapt. As discussed in Section 4.3.3,

different feature groupings can be applied to the individual models and global model, such that

nonlinearity is introduced when different grouping functions are used in these two levels of model

adaptation.

We adopted the most effective feature grouping method named “cross” from [1]. Following their

design, we first evenly spilt the hold-out training set (for Base model training) into N non-overlapping

folds, and estimated a single SVM model on each fold. Then, we created a V ×N matrix by collecting

the learned SVM weights from the N folds, on which k-means clustering was applied to group V

features into K and L feature groups. We compared the performance of varied combinations of feature

groups for individual and global models in cLinAdapt. The experiment results are demonstrated

in Table 4.1; and for comparison purpose, we also included the base classifier’s performance in the

table. In Table 4.1, the first column indicates the feature group sizes in the personalized models

and global model respectively. And all indicates one feature per group (i.e., no feature grouping).

All adapted models in cLinAdapt achieved promising performance improvement against the Base

model. In addition, further improved performance in cLinAdapt’s was achieved when we increased

the feature group size in the global model. Under a fixed feature group size in the global model, a

moderate size of feature groups in personalized models was more advantageous.

These observations follow our expectation. Since the global model is shared across all users, the whole

collection of training data can be leveraged to adapt the global model to overcome sparsity. This

allows cLinAdapt to afford more feature groups in the global model, and leads to a more accurate

model adaptation. But at the group level, data sparsity remains as the major bottleneck for accurate

estimation of model parameters, although observations have already been shared in groups. Hence,

the trade-off between observation sharing among features and estimation accuracy has to be made.
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Based on this analysis, we selected the combination of 800-all feature grouping methods in the

following experiments.

4.5.4 Personalized Sentiment Classification

We compared cLinAdapt against all nine baselines on both Amazon and Yelp datasets, and the

detailed performance is reported in Table 6.3. Overall, cLinAdapt achieved the best performance

against all baselines, except the prediction of positive class in Amazon dataset. Considering these

two datasets are heavily biased towards positive class, improving the prediction accuracy in negative

class is arguably more challenging and important.

It is meaningful to compare different algorithms’ performance according to their model assumptions.

First, as the Base model was trained on an isolated collection, though from the same domain, it

failed to capture individual users’ opinions. Global SVM benefited from gathering large collection of

data from the targeted user population but was short of personalization, thus it performed well on

positive class while suffered in negative class. Individual SVM could not capture each user’s own

sentiment model due to serious data sparsity issue; and it was the worst solution for personalized

sentiment classification.

Second, as a state-of-the-art model adaptation based baseline, LinAdapt slightly improved over the

Base model; but as the user models were trained independently, its performance was limited by

the sparse observations in each individual user. The arbitrary user grouping by k-means barely

helped LinAdapt in personalized classification, though more observations became available for model

training. The joint user grouping with LinAdapt training finally achieved substantial performance

improvement (especially on the Yelp dataset). Similar result was achieved in RegLR+DP as well.

This confirms the necessity of joint task relatedness estimation and model training in multi-task

learning.

Third, global information sharing is essential. All methods with a jointly estimated global model,

i.e., MT-SVM, MT-RegLR+DP, cLinAdapt and also Global SVM, achieved significant improvement

over others that do not have such a globally shared component. Additionally, as the class prior was

against negative class in both datasets, observations of negative class became even rare in each user.

As a result, compared with MT-SVM and MT-RegLR+DP baselines, cLinAdapt achieved improved

performance in this class by sharing observations across features via its unique two-level feature
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Table 4.2: Personalized sentiment classification results.

Method
Amazon Yelp

Pos F1 Neg F1 Pos F1 Neg F1
Base 0.8092 0.4871 0.8809 0.6284
Global SVM 0.8386 0.5245 0.8982 0.6596
Individual SVM 0.5582 0.2418 0.5691 0.3492
LinAdapt 0.8091 0.4894 0.8811 0.6281
LinAdapt+kMeans 0.8096 0.4990 0.8836 0.6461
LinAdapt+DP 0.8157 0.4721 0.8878 0.6391
RegLR+DP 0.8256 0.5021 0.8929 0.6528
MT-SVM 0.8484 0.5367 0.9002 0.6663
MT-RegLR+DP 0.8466 0.5247 0.8998 0.6630
cLinAdapt 0.8437 0.5478 0.9010 0.6694
Oracle-cLinAdapt 0.9049 0.6791 0.9268 0.7358

grouping mechanism. However, comparing to MT-SVM, although no user grouping nor feature

grouping was performed, its performance was very competitive. We hypothesized it was because on

both datasets we had overly sufficient training signals for the globally shared model in MT-SVM.

To verify this hypothesis, we reduced the number of users in the evaluation data set when training

MT-SVM and cLinAdapt. Both models’ performance decreased, but cLinAdapt decreased much

slower than MT-SVM. When we only had five thousand users, cLinAdapt significantly outperformed

MT-SVM in both classes on these two evaluation datasets. This result verifies our hypothesis and

demonstrates the distinct advantage of cLinAdapt: when the total number of users (i.e., inductive

learning tasks) is limited, properly grouping the users and leveraging information from a pre-trained

model help improve overall classification performance.

One limitation of cLinAdapt is that the latent group membership can only be inferred for users

with at least one labeled training instance. This limits its application in cases where new users keep

emerging for analysis. This difficulty is also known as cold-start, which concerns the issue that a

system cannot draw any inferences for users about which it has not yet gathered sufficient information.

One remedy is to acquire a few labeled instances from the testing users for cLinAdapt model update.

But it would be prohibitively expensive if we do so for every testing user. Instead, we decide to only

infer the group membership for the new users based on their disclosed labeled instances, while keep

the previously trained cLinAdapt model intact (i.e., perform sampling defined in Eq (4.4.1) without

changing the group structure). This implicitly assumes the previously identified user groups are

comprehensive and the new users can be fully characterized by one of those groups.

In order to verify this testing scheme, we randomly selected 2,000 users with at least 4 reviews to

create hold-out testing sets on both Amazon and Yelp reviews accordingly, and used the rest users to
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Table 4.3: Effectiveness of model sharing for cold-start on Amazon.

Obs. Individual SVM LinAdapt MT-SVM cLinAdapt
Pos F1 Neg F1 Pos F1 Neg F1 Pos F1 Neg F1 Pos F1 Neg F1

1st 0.0000 0.4203 0.8587 0.5898 0.8588 0.5073 0.8925 0.6675
2nd 0.4683 0.3831 0.8455 0.5495 0.8534 0.5267 0.8795 0.6076
3rd 0.7362 0.1751 0.8113 0.4863 0.8283 0.4919 0.8440 0.5402

Table 4.4: Effectiveness of model sharing for cold-start on Yelp.

Obs. Individual SVM LinAdapt MT-SVM cLinAdapt
Pos F1 Neg F1 Pos F1 Neg F1 Pos F1 Neg F1 Pos F1 Neg F1

1st 0.0000 0.4101 0.9322 0.7724 0.9251 0.7285 0.9582 0.8335
2nd 0.7402 0.3116 0.9243 0.7176 0.9291 0.7027 0.9501 0.7726
3rd 0.7812 0.1608 0.8873 0.6639 0.8954 0.6619 0.9116 0.7147

estimate the cLinAdapt model. During testing in each user, we held the first three reviews’ labels

as known, and gradually disclosed them to cLinAdapt to infer this user’s group membership and

classify in the rest reviews. For comparison purpose, we also included Individual SVM, LinAdapt

and MT-SVM trained and tested in the same way on these two newly collected evaluation datasets

for cold-start, and reported the results in Table 4.4.

From the results, it is clear that Individual SVM’s performance was almost random due to the limited

amount of training data in this testing scenario. LinAdapt benefited from a predefined Base model,

while the independent model adaptation in single users still led to suboptimal performance. The same

reason also limited MT-SVM: it treats users independently by only sharing the global model among

them, so that the newly available labeled instances could not effectively help individual models at

beginning. cLinAdapt better handled cold-start by reusing the learned user groups for new users.

Significant improvement was achieved for negative class, as the observations in negative class were

even more scarce in those newly disclosed labeled instances of each testing user.

Another observation in Table 4.4 is that all models’ testing performance decreased with more labeled

instances disclosed from the testing users. This is unexpected and might indicate the consistence

assumption about a user’s sentiment model does not hold. To verify this, we tested an oracle setting

of cLinAdapt in the original evaluation set: we revealed the labels of testing data when inferring

group assignments in testing, and this greatly boosted the test performance of cLinAdapt. We

appended the result in Table 6.3. This indicates the performance bottleneck of cLinAdapt is the

accuracy of inferred group membership in testing phase. We assumed this membership is stationary

in each user, but this might not be true given the reviews were generated in a chronological order

and users’ sentiment model might change over time. In our future work, we plan to also model the
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generation of document content in cLinAdapt, such that the inferred group membership can be

calibrated for each testing document accordingly.

4.6 Conclusion

In this work, we developed a clustered model adaptation solution for understanding users’ diverse

preferences in expressing opinions. Our work is inspired by the well-established social theories about

humans’ dispositional tendencies, i.e., social comparison and cognitive consistence. By exploiting

the clustering property of users’ sentiment models, empirically improved sentiment classification

performance was achieved on two large collections of opinionated review documents.

The relatedness among users are encoded implicitly by the task relatedness, i.e., multi-task learning.

While the available network structure provides explicit relatedness among users, thus it is interesting

to study whether we can gain a comprehensive understanding of user intents by incorporating network

structure and text content.
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Chapter 5

A Holistic User Behavior Modeling

via Multi-task Learning

In this Chapter, we perform user modeling to understand user intents by utilizing multiple modalities.

It is critical to achieve this goal while it is also challenging as user intents are so diverse and not directly

observable. Most existing works exploit specific types of behavior signals for user modeling, e.g.,

opinionated data or network structure; but the dependency among different types of user-generated

data is neglected. We focus on self-consistence across multiple modalities of user-generated data

to model user intents. A probabilistic generative model is developed to integrate two companion

learning tasks of opinionated content modeling and social network structure modeling for

users. Individual users are modeled as a mixture over the instances of paired learning tasks to realize

their behavior heterogeneity, and the tasks are clustered by sharing a global prior distribution to

capture the homogeneity among users. Extensive experimental evaluations on large collections of

Amazon and Yelp reviews with social network structures confirm the effectiveness of the proposed

solution. The learned user models are interpretable and predictive: they enable more accurate

sentiment classification and item/friend recommendations than the corresponding baselines that only

model a singular type of user behaviors.

62
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5.1 Introduction

User modeling is essential for understanding users’ diverse preferences and intents, which in turn

provides valuable insights for online service systems to adaptively maximize their service utility in a

per-user basis [6,7]. Numerous successes have proved its value in practical applications. For example,

Yan et al. [127] reported that Click-Through Rate (CTR) of an ad can be averagely improved as

high as 670% by properly segmenting users for behavioral targeted advertising in a sponsored search;

and Zhang et al. [3] found that modeling users’ review content for explainable recommendation

improved CTR by more than 34.7% and conversion rate by more than 25.5% in an online e-commence

website.

User modeling is also challenging, as humans are self-interested actors with diverse decision making

autonomy. Their intents are distinctive while not directly observable from the systems. Various

behavior signals have been explored, with different focuses in exploiting information about users’

intents. A large body of efforts explore opinionated text data to understand users’ emphasis on specific

entities or aspects [28, 43]. The distribution of words and their sentiment polarities are modeled in a

statistical way to decipher the embedded user intents. System logged behavior data, such as opinion

ratings and result clicks, provide direct supervision to infer users’ latent preferences over the systems’

outputs [7] or their decision making process [3, 6]. In parallel, social network structure among users

has been proved to be useful in examining users’ interactive behaviors. The proximity between a pair

of users has been studied to understand social influence and information diffusion [22], and network

structure has been analyzed to examine users’ social grouping and belonging [35–37].

However, most existing solutions restrict the analysis within a specific modality of user behaviors,

and fail to realize the dependency among these different types of user-generated data, which are

essentially governed by the same intents in each user. We argue that in order to accurately and

comprehensively understand users, user modeling should consist of multiple companion learning

tasks focusing on different modalities of user-generated data, such that the observed behaviors (e.g.,

opinion ratings or social connections) can be mutually explained by the associated models. Our

argument is also supported by the Self Consistency Theory [38] in social psychology studies, as

it asserts that consistency of ideas and representation of the self are integral in humans.

In this work, we focus on user modeling in social media data, where users generate opinionated

textual content to express their opinions on various topics, and connect to others to form social
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network. It is therefore an ideal platform for collecting various types of user behavior data. We

model distinct behavior patterns of individual users by taking a holistic view of sentiment analysis

and social network analysis. In particular, we develop a probabilistic generative model to integrate

two complementary tasks of opinionated content modeling for recognizing user preferences and

social network structure modeling for understanding user relatedness, i.e., a multi-task learning

approach [39–41]. In the first task, a statistical language model is used to model the generation of

textual content, and a logistic regression model maps the textual content to the sentiment polarity.

In the second task, a stochastic block model [128] is employed to capture the relatedness among

users. To realize the diversity across individual users, we assume there are multiple instances of both

learning tasks in a population of users, and different users are associated with different instances

of them. And to encode our consistency assumption about user behaviors, we further assume an

instance of opinionated content modeling task is always coupled with an instance of social network

structure modeling task. For example, users who prefer history books tend to connect to those

who like memoirs but not those who like makeup. Such pairing hence represents the shared user

intents.

The problem of user modeling is thus formulated as assigning users to those instances of paired

learning tasks, which best explain a particular user’s observed behaviors in both modalities. To

capture behavior heterogeneity of each individual user, such as a user might be in favor of both

history and science fiction books, we model a user as a mixture over those instances of paired

learning tasks. And to reflect the homogeneity across users, i.e., different users might share the same

intent, we impose a globally shared Dirichlet Process (DP) prior [126] over the instances of paired

learning tasks. The clustering property of DP is beneficial as draws from it often share some common

values and therefore naturally form clusters. Thus, we do not need to specify the number of unique

instances beforehand and we use a data-driven approach to explore the possible setting of potentially

infinite number of instances.

We refer to the unique instance of paired tasks as a collective identity in this paper, as it

characterizes the behavior norms in a collection of user-generated data [129]. To accommodate

the variable number of collective identities that a user can associate with, we impose another DP

prior over the mixing proportion of collective identities in each user, i.e., a hierarchical Dirichlet

Process (HDP) [130] structure. Accordingly, we refer to this user-specific mixing proportion as

his/her personal identity . This design is also supported by the social psychology theories about

human’s formation and evolution of behaviors. In particular, Self-Categorization Theory [131]
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asserts that human beings are able to act at individual level (i.e., their personal identity) and social

group level (i.e., their collective identity). Overall, the objective of model learning is thus to infer the

posterior distribution of those shared learning tasks and the belonging of each user to those tasks in

a given population of users.

To investigate the effectiveness of the proposed model for user modeling, we performed extensive

experiments on two different sets of user reviews collected from Amazon and Yelp, together with

the social network structures. The results clearly demonstrate the advantages of the proposed

solution: the learned user models are interpretable and unveil dominant behavior patterns across

users; they also introduce improved predictive power which is verified by the improved performance

in a diverse set of applications, such as sentiment classification, collaborative filtering based item

recommendation and friend recommendation, compared with the state-of-the-art solutions in each of

these problems.

5.2 Related Work

A lof of efforts are devoted to combine text content with network structure to improve the fidelity of

learned user models. Speriosu et al. [74] proposed to propagate labels from a supervised classifier

over the Twitter follower graph to improve sentiment classification. Studies in [23, 75] incorporated

user-user interactions as side information to regularize sentiment classification. Cheng et al. [76]

leveraged signed social network to infer the sentiment of text documents in an unsupervised manner.

Tang et al. [77] proposed to propagate emotional signals and text-based classification results via

different relations in a social network, such as word-microblog relations, microblog-microblog relations.

Pozzi et al. [78] utilized the approval relations to estimate user polarities about a given topic in a

semi-supervised framework.

5.3 Methodology

5.3.1 Problem Definition

We focus on a typical type of social media data, user reviews, in conjunction with the social network

among users. Formally, denote a collection of N users as U = {u1, u2, ...uN}, in which each user ui
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is associated with a set of review documents Di=
{

(xid, y
i
d)
}|Di|
d=1

. Each document d is represented

as a V -dimensional feature vector xd, and yd is the corresponding sentiment label. We assume

binary sentiment labels (i.e., +1 for positive and -1 for negative) to simplify the discussion, but the

developed algorithm can be easily extended to multi-grade or continuous rating settings. In this

collection, each user is connected to a set of other users, referred as friends. For a pair of users ui

and uj , a binary variable eij denotes the affinity between them: eij = 1 indicates they are directly

connected in the network, i.e., friends, and otherwise eij = 0. For user ui, we denote the complete

set of his/her social connections as Ei = {eij}Nj 6=i.

The task of opinionated content modeling is to specify the generation of review content and sentiment

labels in each individual user, i.e., p(Di). And the task of social network modeling is to specify the

generation of friendship relations, i.e., p(Ei). We pair these two learning tasks across users to capture

the consistency among different modalities of user behaviors. We assume multiple instances of these

paired tasks exist in a collection of users, to reflect behavior heterogeneity across individual users.

This is also supported by the Self-Categorization Theory as it states that “self-categorization

is comparative, inherently variable, fluid and context dependent”. As a result, the problem of user

modeling is formulated as learning a distribution over these paired tasks in each individual user,

i.e., p(Di, Ei) =
∫
p(Di, Ei|πi)p(πi|ui)dπi, where the latent variable πi indicates the distribution

of those paired tasks in user ui, together with estimating the configurations of paired tasks across

users.

5.3.2 A Holistic User Modeling via Multi-Task Learning

We model each individual user as a mixture over the instances of paired learning tasks, so that each

of his/her review documents and social connections can be explained by different paired tasks. We

refer to each instance of the paired tasks as a collective identity. In a given collection of users, we

assume there are C unique collective identities shared across users. When modeling the opinionated

content in user ui, we use an indicator variable zid to denote the assignment of a collective identity

to his/her document (xid, y
i
d). We employ a statistical language model to capture the generation

of review content, i.e., p(xid|zid) ∼Multi(ψzid), which is a V -dimensional multinomial distribution

over the vocabulary. And we use a logistic regression model to map the textual content to binary
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sentiment polarities as,

p(yid|xid, zid) =
1

1 + exp(−yidφ̄T
zi
d

xid)
, (5.3.1)

where φ̄zi
d

is a V -dimensional feature weight vector. Following the setting in [41] to handle data

sparsity issue, where the authors suggest to further decompose the feature weight vector φ̄c into

two parts, one global component φs shared by all models, and one local component φc just for this

current model, we further decompose φ̄c = φs + φc in our logistic regression model.

Putting these two components together, the task of opinionated content modeling in user ui is

formalized as,

p(Di|πi) =
∏

d∈Di

C∑

zid=1

p(yid|xid, zid)p(xid|zid)p(zid|πi) (5.3.2)

where we assume the review documents are independent from each other given the collective identity

assignments in user ui.

Based on the notion of collective identity, we appeal to the stochastic block model [128] to realize

the relatedness among users. We assume the connection between a pair of users is determined by the

affinity strength between their corresponding collective identities, rather than specifically who they

are. For example, history book lovers tend to connect to those who like memoirs. As a result, the

observed social connection eij between user ui and uj is modeled as a Bernoulli random variable

governed by the corresponding pairwise affinity, i.e., eij ∼ Bernoulli(Bzi→j ,zj→i
), where B is a C×C

matrix specifying the affinity between any pair of collective identities, and zi→j and zj→i denote

the collective identities that user ui and uj choose when forming this connection. Without loss of

generality, we do not assume the social affinity is symmetric. For example, history book lovers tend

to connect with memoirs lovers, but it might not be true vice versa. As a result, the task of social

network structure modeling in user ui can be formalized as,

p(Ei|πi, zj→i, B) =
∏

eij∈Ei

C∑

zi→j=1

p(eij |Bzi→j ,zj→i
)p(zi→j |πi) (5.3.3)

again we assume that given the collective identity assignments on the user connections, user ui’s

connections with other users are independent from each other.

Based on the above specifications, each collective identity indexed by c can be represented as a

homogeneous generative model characterized by a set of parameters θc = (ψc,φc, bc), where ψc is the

parameter for the multinomial distribution in a language model, φc is the feature weight parameter in
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0.1 Graphical Representation of the Model
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In the Eq (1), G0 is the distribution drawn from DP parameterized by
concentration parameter ↵ and base distribution H, which represents the
global mixture. There is another distribution Gu drawn from the second
layer of DP parameterized by concentration parameter ⌘ and base distri-
bution G0. Thus each user will have a mixture probability draw from the
second DP to represent their proportion of di↵erent user groups when inter-
acting with others.
The cluster indicator zi!j represents which cluster the user ui belongs to
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Figure 5.1: Graphical model representation of HUB. The upper plate indexed by ∞ denotes the unified model
parameters for collective identities. The outer plate indexed by N denotes distinct users. The inner plates indexed by
N and D denote each user’s social connections and review documents respectively.

a logistic regression model, and bc is a C-dimensional parameter vector for the Bernoulli distributions

specifying affinity between the collective identity c and all others. The affinity vectors of all the

collective identities constitute the aforementioned affinity matrix BC×C . The next step is to specify

the generation of the collective identities, such that they best characterize the behavior homogeneity

across a collection of users.

Instead of manually selecting the number of collective identities for each given collection of users, we

take a data-driven approach to jointly estimate the model structure embedded in the data and the

allocation of those learned models in each individual user. In particular, we assume the parameter θc

itself is also a random variable drawn from a Dirichlet Process prior [32] with base distribution H

and concentration parameter α. Each draw from DP is a discrete distribution consisting of weighted

sum of point masses with locations drawn from H. Thus, draws from DP may share common values

and form clusters naturally. As a result, the number of unique collective identities will be inferred

from data automatically.

As a result, the global distribution of opinionated content and social connections across users follows

DP (H,α), which can be described by the following stick-breaking representation:

p(D,E) =

∞∑

c=1

γcδθc , (5.3.4)

where δθc is an indicator of the location centered at the sample θc ∼ H, and {γc}∞c=1 represents the

concentration of the unique samples θc in the whole collection. The corresponding stick-breaking

process for γ is defined as: γ′c ∼ Beta(1, α), γc = γ′c
∏c−1
t=1(1 − γt), which is a generalization of

multinomial distribution with a countably infinite number of components.
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In particular, we impose a Dirichlet distribution, i.e., Dirichlet(β), as the prior over the language

model parameters {ψc}∞c=1; and an isometric Gaussian distribution N(µ, σ2) as the prior for {φc}∞c=1

of logistic regression models. A Beta distribution is introduced as the prior over each element of the

affinity matrix B, i.e., bij ∼ Beta(a, b). Outside the DP prior structure, we also impose an isometric

Gaussian distribution N(µs, σ
2
s) over the globally shared logistic regression parameter φs.

The global mixture structure defined in Eq (5.3.4) is to capture the common user behavior patterns

across all users; and the user-level mixture structure is to capture each user’s specific characteristics.

To afford a mixture over a possibly infinity number of collective identities, we introduce another

layer of DP to model the mixture proportion πi in user ui, which is referred as the personal identity,

with the global mixture γ as the base distribution and its own concentration parameter η. Another

challenge introduced by this possibly infinite number of collective identities resides in the modeling

of user social connections via the pairwise affinity between collective identities (i.e., in Eq (5.3.3)).

As the structure of collective identities becomes unspecified under the DP prior, the affinity relation

becomes undefined. Because Beta distribution is conjugate with the pairwise affinity measure matrix

B, we can integrate out B without explicitly specifying it. We will provide more details about this

special treatment in the later posterior inference discussions.

Putting all the developed components together, we obtain a full generative model describing multiple

modalities of user-generated data in a holistic manner. We name the resulting model as Holistic

User Behavior model, or HUB in short; we illustrate our imposed dependency between different

components of HUB in Figure 6.1, using a graphical model representation.

5.3.3 Posterior Inference

Since we formulate the problem of user modeling as assigning users to the instances of paired learning

tasks, i.e., collective identity, for a given user ui, we need to infer the latent collective identity zid

that he/she has used in generating the review document (xid, y
i
d), and zi→j taken by him/her when

interacting with user uj . Based on the inferred collective identities in a collection of users, we can

estimate the posterior distributions of model parameters, which collectively specify latent intents of

users. In particular, ψc characterizes the generation of textual content under each collective identity;

φc and φs capture the mapping from textual content to sentiment polarities; B represents the affinity

among collective identities.
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Due to the conjugacy between Beta distribution in our DP prior and the Binomial distribution over

the users’ social connections, the posterior distribution of zi→j can be analytically computed; but

the lack of conjugate prior for logistic regression makes the exact inference for zid impossible. This

also prevents us to perform exact inference on φc and φs. As a result, we appeal to a stochastic

Expectation Maximization (EM) [125] based iterative algorithm for posterior inference in these three

types of latent variables. More specifically, Gibbs Sampling method based on auxiliary variables [126]

is utilized to infer the collective identity for each review document possessed by each user, i.e.,

{zid}Dd=1, and the group membership for each interaction, i.e., {zi→j}Nj 6=i. This forms the E-step.

Then, Maximum A Posterior (MAP) is utilized to estimate the language model parameters {φc}∞c=1

and affinity matrix B, and Maximum Likelihood Estimation (MLE) is utilized to estimate the

parameters {φc}∞c=1 and φs for logistic regression model. This forms the M-step. During the iterative

process, we repeat the E-step and M-step until the likelihood on the training data converges.

We first describe the detailed inference procedures of zid and zi→j in each user’s review documents

and social connections.

• Sampling zid. Given user ui, the conditional distribution of zid and the mixing proportion πi is

given by,

p(πi, z
i
d|Di, Ei,γ, α, η,Ψ,Φ) ∝ p({zid}Dd=1|πi)p({zi→j}Nj 6=i|πi)p(πi|γ, η)p(yid, x

i
d|zui

d ,ψzid ,φzid).

(5.3.5)

Due to the conjugacy between Dirichlet distribution p(πi|γ, η) and multinomial distributions

p({zid}Dd=1|πi) and p({zi→j}Nj 6=i|πi), we can marginalize out πi in Eq (5.3.5). This leaves us the

conditional probability of zid in user ui given his/her rest collective identity assignments,

p(zid|γ, η) =
Γ(η)

Γ(η + ni? + li??)

C∏

c=1

Γ(ηγc + ni,c + li?,c)

Γ(ηγc)
, (5.3.6)

where ni,c denotes the number of reviews in ui assigned to collective identity c, li?,c denotes the

number of interactions ui and his/her friends assigned to collective identity c, li?? denotes the total

number of interactions ui has, and C denotes the total number of unique collective identities at this

moment. Thus, Eq (5.3.5) can be computed as follows:

p(zid = c|Di, Ei,γ, α, η,Ψ,Φ) ∝ (n−di,c + li?,c + ηγc)p(y
i
d, x

i
d|ψc,φc), (5.3.7)
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where n−di,c represents the number of reviews from user ui assigned to group c except the current

review d.

Because of the dynamic nature of DP, we need to account for the possibility that new model

components are needed to explain the observations. This requires us to compute the posterior

predictive distribution of p(yid,x
i
d|ψc,φc), by marginalizing out ψc and φc. We leverage a sampling

scheme proposed in [126] due to the lack of conjugate prior for logistic regression. We introduce a set

of auxiliary random variables of size M serving as new possible collective identities, i.e., {φam}Mm=1,

to define a valid Markov chain for Gibbs sampling. On the other hand, due to the conjugacy between

Dirichlet and multinomial distributions, the posterior predictive distribution of p(xid|ψzid) can be

analytically computed to avoid sampling ψ when calculating likelihood in the auxiliary models.

Therefore, the posterior distribution of zid can be estimated by,

p
(
zid = c|Di, Ei,Φ, {φam}Mm=1,Ψ) (5.3.8)

∝ (n−di,c + li?,c + ηγc)p(y
i
d, x

i
d|ψc,φc)

=





(n−i,di,c + li?,c + ηγc)p(y
i
d, x

i
d|ψc,φc) for 1 ≤ c ≤ C,

ηγe
M p(yid, x

i
d|ψc,φac ) for C < c ≤ C +M.

where ηγe represents the total proportion for the remaining inactive components in the stick-breaking

process. In particular, the p(yid,x
i
d|ψc,φc) under existing and new collective identities can be

calculated respectively,

p(yid,x
i
d|ψc,φc) = (5.3.9)





1
1+exp (−yidφ̄T

c x
i
d)

mi
d?!∏V

v=1m
i
d,v !

∏V
v=1 ψc,v

mi
d,v for 1 ≤ c ≤ C,

1

1+exp (−yidφ̄
a
c
T
xi

d)

Γ(β)
Γ(β+mi

d?)

∏V
v=1

Γ(mi
d,v+βv)

Γ(βv) for C < c ≤ C +M

where mi
d,v denotes the frequency of word v in review d and mi

d? indicates the total number of

words in review d. Again, following the design in [41], we have φ̄am = φam + φs. Once an auxiliary

component is sampled, it will be added to the global collection of collective identities; as a result, the

configuration of collective identities is dynamic rather than predefined.



5.3 Methodology 72

• Sampling zi→j. Given user ui, the conditional distribution of zi→j and πi is given by,

p(πi, zi→j |Di, Ei,γ, α, η,Ψ,Φ) ∝ p({zid}Dd=1|πi) (5.3.10)

p({zi→j}Nj 6=i|πi)p(πi|γ, η)p(eij |zi→j , zj→i, B)

Similarly to the sampling procedure of zid, we can integrate out πi to obtain the conditional probability

of zi→j as follows,

p(zi→j = c|Di, Ei,γ, α, η,Ψ,Φ) ∝ (ni,c + l
−(i→j)
i?,c + ηγc)p(e

ij |zi→j , zj→i, B) (5.3.11)

where zj→i is the collective identify that uj chose when interacting with ui, B is the affinity matrix

among all the collective identities, and l
−(i→j)
i?,c represents the number of interactions assigned to

collective identity c when user ui interacts with others except the current interaction.

However, as we could have countably infinite number of collective identities in a collection of users,

the dimension of the affinity matrix B is undefined, which makes the explicit calculation of Eq

(5.3.11) impossible. Fortunately, because of the conjugacy between Beta distribution and Bernoulli

distribution, we can integrate out the affinity matrix B to directly calculate the posterior predictive

distribution of the collective identity assignment that user ui has taken when interacting with user

uj ,

p(zi→j = c|Di, Ei,γ, α, η,Ψ,Φ, zj→i = h) (5.3.12)

∝ (ni,c + l
−(i→j)
i?, + ηγc)p(eij |zi→j , zj→i=h, B)

=





(ni,c + l
−(i→j)
i?,c + ηγc)B

eij
ch (1−Bch)(1−eij) for 1 ≤ c ≤ C,

ηγe
Γ(eij+a)Γ(1−eij+b)

(a+b)Γ(a)Γ(b) for c = C + 1.

Based on the sampled results in E-step, we perform posterior inference of {ψc}Cc=1, B, {φc}Cc=1 and

φs to capture the specification of those learning tasks in each identified collective identity. We should

note that as the collective identities have been determined in each user, we do not need to handle

the possible generation of new components at this step; and we assume at this stage we have in total

C unique collective identities.

• Estimating ψc and B. We use the Maximum A Posterior principle to infer the configuration



5.3 Methodology 73

of language models and the affinity matrix, as conjugate priors have been postulated on them.

Specifically, the posterior distribution of ψc follows a Dirichlet distribution: ψc ∼ Dirichlet(β +m),

where each dimension mv of m represents the frequency of word v occurring across all the reviews

assigned to the collective identity c.

Similarly, the posterior distribution of each element in B follows a Beta distribution: Bgh ∼

Beta(a+e1, b+e0) where e0 and e1 denote the number of non-interactions and interactions generated

between collective identity h and g accordingly.

• Estimating φc and φs. As no conjugate prior exists for logistic regression, we appeal to the

maximum likelihood principle to estimate φc and φs. Given the collective identity assignments in all

the review documents across users, the complete-data log-likelihood over the opinionated content can

be written as,

L({φc}Cc=1,φs) =

N∑

i=1

D∑

d=1

logP (yid|xid,φzid ,φs) +

C∑

c=1

log p(φc|µ,σ2) + log p(φs|µs,σ2
s). (5.3.13)

Using a gradient-based optimizer, Eq (5.3.13) can be optimized efficiently. With respect to the

complete-data log-likelihood, the gradients for φc and φs on a specific training instance (xid, y
i
d)

assigned to collective identity zid can be formalized as follows:

∂L(·)
∂φc

=

N∑

i=1

∑

zid=c

xid
[
yid − p(yid = 1|xid)

]
− (φc − µ)

σ2
,

∂L(·)
∂φs

=

N∑

i=1

D∑

d=1

xid
[
yid − p(yid = 1|xid)

]
− (φs − µs)

σ2
s

,

where the gradient for the globally shared sentiment model φs is collected from all the opinionated

documents, while the gradient for sentiment model φc of each collective identity is only collected

from the documents assigned to it. As a result, φs captures the global pattern in which users express

their opinions, and φc captures group-specific properties that users express opinions.

HUB can also predict sentiment polarity in a user’s unlabeled review documents, and missing

connections between users.
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• Predicting yid. During the t-th iteration of stochastic EM, we use the newly inferred collective

identity zid and corresponding sentiment model to predict yid in review xid of ui,

P (yid|xid, {φtc}Ct
c=1,φ

t
s) =

Ct∑

c=1

P (zid = c)P (yid = 1|xid,φtzid ,φ
t
s)

where
(
{φtc}Ct

c=1, z
i
d,φ

t
s

)
are the inferred latent variables at the tth iteration, P (zid = c) is by Eq

(5.3.8) for the inferred collective identity for review, and P (yid|xid,φtzid) is computed by Eq (5.3.1).

The posterior of yid can thus be estimated via an empirical expectation after T iterations,

P (yid = 1|xid, {φtc}Ct
c=1,φs, α, η,γ) =

1

T

T∑

t=1

P (yid = 1|xid, {φtc}Ct
c=1,φ

t
s)

• Predicting eij. Similarly, for each pair of user ui and uj , who are not currently connected in the

training data, we can predict their connectivity by,

P (eij = 1|B, γ, η, a, b) =
1

T

T∑

t=1

∑

g,h

∫
dπi

∫
dπj

∫
dBghP (eij = 1|Bgh)

p(zi→j = g|πi)p(zj→i = h|πj)p(πi|γ, η)p(πj |γ, η) (5.3.14)

To avoid auto-correlation in the Gibbs sampling chain, samples in the burn-in period are discarded

and proper thinning of the sampling chain is performed in our experiments.

5.3.4 Discussion

• Modeling Sparsity. The social network is usually sparse. That is, they contain many zeros

or non-interactions. We distinguish two sources of non-interactions between them: the rarity of

interactions in general or the pair of users rarely interact. It is reasonable to expect a large portion

of non-interactions is caused by the limited opportunity of contact instead of deliberate choices.

Thus, we introduce a sparsity parameter ρ to accommodate the two resources where we define ρ

as the proportion of deliberate choices among both interactions and non-interactions. Thus, the

corresponding probability of generating a social connection can be rewritten as:

p(eij |zi→j , B, zj→i) =





ρBzi→j ,zj→i eij = 1,

1− ρBzi→j ,zj→i eij = 0.
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• Computational Complexity. Inferring the latent collective identity zid that each user has used

in generating the review document (xid, y
i
d) is computationally cheap. Specifically, by Eq (5.3.8),

updating the membership of all the documents imposes a complexity of O
(
ND̄(C + M)

)
, where

ND̄ is the total number of documents, C is the number of collective identities and M is the size

for auxiliary collective identities. While inferring the latent collective identity for each interaction

requires a complexity of O(N2C), as we need to consider interaction among each pair of users. With

the consideration of sparsity, the computation for modeling interactions can be greatly reduced from

O(N2C) to O(ρN2C) as ρ usually takes a small value indicating the proportion of deliberate choices.

The overall complexity for the proposed algorithm is thus O
(
ND̄(C +M) + ρN2C

)
.

• Summarization. The proposed HUB model achieves the joint modeling of opinionated content

and social network structure. As explicitly expressed in Eq (5.3.8), inferring the collective identity

for each document of one user depends on not only the other documents of the current user, but also

the interactions between this current user and other users. This is also true for inferring the collective

identity for each pair of users as stated in Eq (5.3.12). This mutual effects of textual documents and

social connections well align with the Self Consistency Theory: the user-generated documents and

interactions can be understood as two different representations of self with the dependency being the

integrality in humans.

As noticed, the assignment of latent collective identity for a particular document d in user ui is

determined by three factors: 1) the proportion of the current collective identity ηγc; 2) the number

of documents and interactions of user ui belongs to a particular collective identity (n−i,di,c + li?,c);

3) the likelihood of the given document under a candidate collective identity p(yid, x
i
d|ψc,φc). As

a result, the choice of a proper collective identity for each document/interaction not only relies on

individual-level factors, i.e., whether the candidate collective identity can best explain the current

document/interaction, but also aggregate-level factors, i.e., if the candidate collective identity closely

aligns with the current user’s other observations, together with its own popularity.

By inferring the posterior distributions of latent variables, important knowledge about each user can

be discovered. First, the posterior distributions of the set of parameters θc = (ψc,φc, bc) reveal the

distribution of words, sentiment preferences and pair-wise affinities in a particular collective identity.

Second, the posterior distribution of each user’s personal identity p(πi|ui), which is defined as the

assignment of collective identities for this particular user, depicts an individual user’s intent in history.

In fact, this distribution of each user, together with the learned affinities between different collective



5.4 Experiments 76

Figure 5.2: Trace of likelihood, model size and sentiment classification performance when training HUB on Amazon
and Yelp.

identities, provides pair-wise user affinity that is useful for many personalized applications.

5.4 Experiments

We evaluated the effectiveness of our proposed user modeling solution on two large collections of

Amazon and Yelp reviews, together with their network structures. Both quantitative and qualitative

evaluations are performed to assess the effectiveness of the proposed solution for user modeling.

5.4.1 Datasets

We used two publicly available review datasets collected from Amazon [107] and Yelp 1, for our

evaluation purpose. We directly utilized the processed text data as introduced in Section 4.5. As

for the network structure, Yelp dataset provides user friendship imported from users’ Facebook

friend connections, while there is no explicit social network in Amazon dataset. We utilized the

1Yelp dataset challenge. http://www.yelp.com/dataset challenge

http://www.yelp.com/dataset_challenge
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“co-purchasing” information to build the network structure for Amazon users. We have 9,760 Amazon

reviewers and 10,830 Yelp reviewers for evaluation. From 9,760 Amazon users, there are 105,472

positive and 37,674 negative reviews; and from 10,830 Yelp users, there are 157,072 positive and

51,539 negative reviews. Correspondingly, we have 269,180 edges and 113,030 edges in the resulting

Amazon and Yelp social networks respectively, resulting in an average of 27.6 and 10.5 friends per

user. This indicates most users are not directly connected with others. Both the source codes and

data are available online 2.

5.4.2 The Formation of Collective Identities

First of all, it is important to study the inferred collective identities by the proposed model. We

traced the complete-data log-likelihood during the iterative process, the number of inferred collective

identities, together with the sentiment classification quality in hold-out testing reviews, during each

iteration of posterior inference in HUB to assess the model’s clustering property and predictive ability.

The results on the two datasets are demonstrated in Figure 5.2. We collected results in every three

iterations after the burn-in period.

It is clear that the likelihood keeps increasing during the iterative process and converges later on. It

increases much faster at the earlier stage when more collective identities are generated to cover the

diversity in user behaviors. Accordingly, the collective identities become stable and a more accurate

estimate of behavior models can be achieved in the later stage, leading to the improved sentiment

classification performance, especially for the negative class as its training observations are quite

limited.

We are also interested in the unified behaviors of each collective identity learned through the paired

tasks in HUB. As we examine the most frequently used words under different collective identities for

generating review content, it is easy to recognize the cohesive factor that defines them, such as the

type of restaurants in Yelp and the category of products in Amazon. Correspondingly, each collective

identity is associated with its own language style to express sentiment polarity. At the same time,

the interactions among different collective identities are also discovered to indicate the affinity among

them. In order to demonstrate the learned behaviors of collective identities, we selected a subset of

collective identities learned from Yelp dataset and visualized their corresponding behavior patterns

in Figure 5.3.

2JNET. https://github.com/Linda-sunshine/HUB.

https://github.com/Linda-sunshine/HUB.
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excel	amaz	yum	fabul	
terribl	greasi	poor	

yummi	delici	fantast	
tasteless	dirC	not-worth		

goodi	well-worth		
cheaper-than	
no-flavor	rude	
disappoint	

veri-saCsfi	veri-flavor		
wast	sad	tasteless	sick	

nice	fresh	perfect	
bland	stale	disgust	

Figure 5.3: The identified behavior patterns among a subset of collective identities on Yelp dataset.

In Figure 5.3, each collective identity is represented as a node with three behavior patterns: a word

cloud summarizes the frequently used words, a set of sentiment words depict the attitudes, and

connections to other nodes represent the affinity. As shown in the word cloud, it is easy to tell the

cohesive semantics of each collective identity, i.e., Asian v.s., Italian restaurants. The two sets of

words on the left are the most representative words used to indicate the sentiment polarities under

each collective identity, the words in orange are associated with positive learnt weights and those in

blue are with negative weights. It is clear that different collective identities tend to use different words

to express opinions. The green lines among collective identities indicate the affinity between each

pair of them, with darker and thicker lines indicating stronger affinity. We can recognize that strong

connections are detected in “similar” collective identities where the similarity can be understood from

both their interested topics and the corresponding sentiment words. By jointly modeling different

modalities of user-generated data, HUB recognized the collective identities which are interpretable

and descriptive.

5.4.3 Personalized Sentiment Classification

In order to evaluate the effectiveness of opinionated content modeling by HUB, we compared the

proposed HUB model with the following five baselines for sentiment classification: 1) MT-SVM: it
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is a state-of-the-art multi-task learning solution proposed in [39], which encodes the task relatedness

via a shared linear kernel across tasks without accumulating similar behavior patterns for information

sharing. 2) MTLinAdapt+kMeans: to verify the effects of proposed clustering algorithm, we

followed [24] to perform k-means clustering of users based on training reviews to estimate sentiment

model for each user group in a multi-task fashion. 3) cLinAdapt: the model [41] leveraged the

Dirichlet Process to explore the clustering property among users while neither mixed membership for

each user nor network structure is considered in the exploration. 4) cLinAdapt+HDP: the model

considered individual’s diversity inside a group by jointly modeling the generation of text content and

the sentiment labels, while social connections are neglected. 5) Graph-Based Semi-Supervised

Learning (GBSSL) : we followed [132] to construct a network among the textual reviews based on

two layers of proximity between each pair of documents: the affinity between the owners of the two

reviews and the proximity of the text content of the two reviews.

In this experiment, we chronologically partitioned the review data into two parts: the first half for

training and the second half for testing. Due to the biased class distribution in both datasets, we used

F1 measure as evaluation metric for both classes in each user, and used macro average among users

to compare the classification performance. Detailed performance can be found in Table 6.3. Due to

the large variance of the review size among users, there exists large variance in the macro average

F1 across all the users. Therefore, we utilized the Wilcoxon signed-rank test to verify whether their

population mean ranks differ, i.e., whether the difference between a paired value is significant.

Overall, HUB achieves encouraging classification performance as it outperforms all the baselines

except MT-SVM for Amazon dataset. Compared with the k-means based user grouping strategy, the

automatically identified collective identities can better capture the commonality shared among all

users. Different from the DP-based clustering algorithm, cLinAdapt, HUB relaxes the assumption

that one user can only have one single membership and allows mixed membership, which directly

helps capture the diversity existing in each individual user, thus yields better sentiment classification

performance. cLinAdapt+HDP baseline assigns each user’s mixed membership simply based on

review content, thus it cannot benefit from the information provided by social network. GBSSL

leverages the social connections as regularization to enhance the sentiment prediction, while mutual

influence between text content and network structure are ignored.

In order to further diagnose the performance difference between MT-SVM and HUB, we looked into

the classification performance with respect to user-specific statistics, i.e., the number of reviews
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Table 5.1: Personalized sentiment classification results.

Models
Amazon Yelp

Neg F1 Pos F1 Neg F1 Pos F1
Base 0.6300 0.8858 0.8141 0.9385
MT-SVM 0.6929∗ 0.8992∗ 0.8633 0.9591
MTLinAdapt+kMeans 0.6224 0.8390 0.8453 0.9336
cLinAdapt 0.6842 0.8752 0.8574 0.9527
cLinAdapt+HDP 0.6846 0.8868 0.8556 0.9566
GBSSL 0.6179 0.8847 0.8303 0.9529
HUB 0.6905 0.8934 0.8647∗ 0.9595∗

∗: p-value<0.05 under Wilcoxon signed-rank test.

and the number of friends. We found that MT-SVM performs well on those users with sufficient

training review data. That is, either the user has a large amount of reviews to support an accurate

estimation of his/her sentiment model; or the user’s attitude is quite unified and a handful of reviews

are sufficient. However, our proposed model is superior to MT-SVM for the users with limited amount

of review data while possessing a rich number of friends, i.e., users with an average of 2.2 training

reviews and an average of 40 friends. This observation clearly reflects the unique advantage of our

proposed model: the social connections help users with limited training reviews identify appropriate

collective identities, thus achieve more accurate sentiment classification results.

5.4.4 Serve for Collaborative Filtering

Collaborative filtering is popularly utilized in modern recommender systems to make predictions

about the interests of a user by collecting information from others. The key component is to infer

the similarity between users in order to achieve accurate recommendations. The learned distinct

personal identity of each user from HUB, i.e., the mixture of collective identities, naturally serves as

a good proxy of user preferences.

In this experiment, we evaluated the utility of learned personal identities of individual users and

affinity among collective identities from HUB, in a collaborative filtering based recommendation. In

order to construct a valid set of ranking candidates, we split each user’s reviewed items into two sets:

the items in training reviews and those in testing reviews. The training reviews are utilized to train

each user’s personal identity while the testing reviews provide the relevant items for ranking. For a

specific user ui, we also selected irrelevant items from the users who have rated ui’s purchased items

in their training set. Since many items are rarely rated, we utilized the popularity of each item as the

threshold to filter the irrelevant items. The popularity is defined as the number of reviews the item
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received among all the users’ training reviews and the same set of candidate items are maintained

in all the algorithms. For each candidate item, we selected the target user’s top K most similar

neighbors who also reviewed this item, and calculated the weighted average of neighbors’ actual

overall ratings to act as ranking score for this item. Normalized discounted cumulative gain (NDCG)

and mean average precision (MAP) are used to measure the quality of the recommendation.

To evaluate the recommendation performance, we selected three algorithms which achieve decent senti-

ment classification performance among the five baselines, i.e., MT-SVM, cLinAdapt, cLinAdapt+HDP,

and leveraged their learned sentiment models for similarity calculation on both Amazon and Yelp

datasets. For the proposed HUB model, each pair of users’ personal identities, together with the

corresponding social affinity, are utilized to calculate the similarity between them,

sim(ui, uj) =

G∑

g=1

H∑

h=1

ui,g · uj,h ·Bgh (5.4.1)

We include a baseline that makes recommendations by the simple average of ratings from all the users

who reviewed the item, and name it as Average. In addition, since low-rank matrix factorization

based solutions have achieved decent empirical performance in collaborative filtering, we also include

two baselines, SVD++ [133] and factorization machine (FM) [134] for comparison.

In the testing phrase, we selected users with at least one relevant ranking item, which resulted in

7216 and 9247 valid users for the Amazon and Yelp respectively. We selected 3 and 50 as popularity

threshold, which ended up with 31 and 103 average ranking candidates for the two datasets. Because

the average number of users who reviewed the same item in training data is 1.3 in Amazon and 5.8

in Yelp, we select top-4 neighbors for ranking score calculation for both datasets. We reported the

NDCG and MAP performance across all users in Table 5.2. As we can see, HUB achieves encouraging

recommendation performance on both datasets, which indicates the learned personal identity and

social affinity accurately capture the relatedness among users regarding their preferences over the

recommended items. Matrix factorization based methods can only exploit the observed association

between users and items, but not the opinionated text content. Due to the very sparse distribution

of items in both datasets, matrix factorization based methods suffer in performance.
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Table 5.2: Collaborative filtering results on Amazon and Yelp.

Models
Amazon Yelp

NDCG MAP NDCG MAP
Average 0.7813 0.6573 0.6606 0.4700
MT-SVM 0.7982 0.6798 0.7519 0.5847
cLinAdapt 0.7926 0.6725 0.7548 0.5898
cLinAdapt+HDP 0.7956 0.6766 0.7598 0.5989
SVD++ 0.5502 0.3853 0.5731 0.3880
FM 0.4874 0.3110 0.4057 0.1979
HUB 0.7993 0.6816 0.7685 0.6082

5.4.5 Serve for Friend Recommendation

The social network structure modeling in HUB helps friend recommendation. In particular, it is more

important to provide friend recommendation to new users in a system: they may actively post textual

content but may have very few friends in the system, which may lead to poor friend recommendation

from most existing network-based recommendation solutions. Our proposed model can overcome this

limitation by utilizing user-generated textual content to infer their personal identity, thus to provide

helpful friend recommendation.

In order to verify the effectiveness of the proposed model with respect to friend recommendation, we

split the whole set of users into varying sizes of training users and a fixed set of testing users. As

we only have the friendship for Yelp dataset, we performed this experiment on this dataset. More

specifically, we selected 4000, 6000 and 8000 users for training and utilized another set of 2830 users

for testing. For the training users, all their textual reviews, together with the social connections

are used for model training. Based on the trained model, each testing user’s personal identity is

inferred based on their review content. Then, both the social affinity and the personal identity are

utilized to calculate the similarity between each pair of users to serve as the ranking score for friend

recommendation, as described in Eq (5.3.14).

We include a baseline which utilized SVM to estimate the affinity among different collective identities.

We also include another baseline which represents each user with a BoW representation by aggregating

all their reviews. Though matrix factorization based methods are widely used in recommender systems,

they do not apply in this case as there is no direct friendship connection between training and testing

users. NDCG and MAP are utilized to evaluate the effectiveness and we reported the performance in

Table 5.3 by comparing against a random solution, i.e., divide the performance by the performance

of a random recommendation.



5.5 Conclusion 83

Table 5.3: Friend recommendation results on Yelp.

Train Size
BoW SVM HUB

NDCG MAP NDCG MAP NDCG MAP
4000 1.0003 1.0230 1.0314 1.3130 1.1017 1.8779
6000 1.0002 1.0419 1.0128 0.9222 1.1137 1.5928
8000 1.0010 1.0887 1.0602 1.4194 1.1428 2.6532

It is clear the proposed model achieves the best performance in friend recommendation as the accurate

proximity between pairs of users are properly identified. A simple BoW representation cannot well

represent users and therefore leads to poor similarity measurement between users. Compared with

the SVM based learning method, our model can benefit from the affinity between distinct collective

identities, thus to provide an accurate approximation of user similarity. This experiment further

verifies the effectiveness of the identified affinity among collective identities. At the same time,

it proves the necessity for joint modeling of opinionated content modeling and network structure

modeling in order to get an overall understanding of users.

5.5 Conclusion

In the work, we studied the problem of user behavior modeling by utilizing multiple types of user

generated data. We proposed a generative model HUB to integrate two companion learning tasks of

opinionated content modeling and social network structure modeling, for a holistic modeling of user

intents. The learning tasks are paired and clustered to reflect the homogeneity among users while

each user is modeled as a mixture over the instances of paired tasks to indicate heterogeneity. The

learned user behavior models are interpretable and predictive in enabling more accurate sentiment

classification and item/friend recommendations on two large collections of review documents from

Amazon and Yelp with corresponding social network structures.

Though text and network are jointly considered, they are only correlated by sharing the same mixing

component, without explicitly modeling the mutual influence between them. With such explicit

modeling of correlations between text and network enabled, we can get a better understanding of

users’ diverse behaviors.



Chapter 6

User Representation Learning with

Joint Network Embedding and

Topic Embedding

In this Chapter, we propose to perform user representation learning via explicit modeling of

the structural dependency among different modalities of user-generated data, thus to better

understand user intents. In particular, we developed a probabilistic generative model to learn

user embeddings via a joint modeling of text content and network structure. In order to model

user-generated text content, we further embed topics to the same latent space as users to enable a

joint network embedding and topic embedding and capture the relationships explicitly. We evaluated

the proposed solution on a large collection of Yelp reviews and StackOverflow discussion posts, with

the associated network structures. The proposed model outperformed several state-of-the-art topic

modeling based user models with better predictive power in unseen documents, and state-of-the-art

network embedding based user models with better link prediction in unseen nodes. The learned

user representations are also proved to be useful in content recommendation, e.g., expert finding in

StackOverflow.

84
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6.1 Introduction

User modeling builds up conceptual representations of users, which helps automated systems to

better capture users’ needs and to create compelling experience for them [135,136]. Thanks to the

rapid development of social media, ordinary users can actively participate in online activities and

create vast amount of observational data, such as social interactions [56,137] and opinionated text

content [138–140], which in turns provides informative clues about their intents. Extensive research

efforts have proved the value of user representation learning in various real-world applications, such as

latent factor models for collaborative filtering [134,141], topic models for content modeling [50, 142],

embedding based models for social link prediction [22,65], etc.

However, most work focuses on one particular type of behavior signals for user modeling, where

the dependency across multiple types of behavior data is ignored. For example, users’ social

interactions [16,65] and their generated text data [48,50,142] have been extensively studied, but they

are mostly modeled in isolation. Even among a few attempts for joint modeling of different types

of user-generated data [79,138], the explicit modeling of dependency among multiple behavior

modalities is still missing. For example, Yang et al. [79] incorporated user-generated text content

into network representation learning via a joint matrix factorization. In their solution, text data

modeling is only used as a regularization for network modeling; and thus the learnt model is not in a

position to predict future text content. Gong and Wang [138] paired the task of textual sentiment

classification with that of social network modeling, and represented each user as a mixture over

the instances of these paired tasks. Though text and network are jointly considered, they are only

correlated by sharing the same mixing component, without explicitly modeling the mutual influence

between them.

In social psychology and cognitive science, schema defines the knowledge structure a person holds

that organizes categories of information and the relationships among them [143]. In other words,

schema provides a way to transform input information to a generalized representation that realizes

the dependency between different categories of information. Inspired from this concept, we propose to

construct a uniform low-dimensional space to capture user scheme, which preserves the properties of

each modality of user-generated data, so as to capture the dependency among them. The space should

be constructed in such a way that the closeness among different modalities of user-generated data can

be easily characterized by the similarity measured in the latent space. For example, connected users
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in a social network should be closer to each other in this latent space; and by mapping user behavior

data into this space, e.g., text data, users should be surrounded by their own generated data.

To realize this new perspective of user representation learning, we exploit two most widely available

and representative forms of user-generated data, i.e., text content and social interactions. We develop

a probabilistic generative model to integrate user modeling with content and network embedding.

Due to the unstructured nature of text, we appeal to topic models to represent user-generated text

content [48, 50]. We embed both users and topics to the same low-dimensional space to capture their

mutual dependency. On one hand, a user’s affinity to a topic is characterized by his/her proximity to

the topic in this latent space, which is utilized to generate each text document of the user. On the

other hand, the affinity between users is directly modeled by the proximity between users’ embedding

vectors, which is utilized to generate the corresponding social network connections. In this latent

space, the two modalities of user-generated data are correlated explicitly. The user representation is

obtained by posterior inference over a set of training data, via variational Bayesian. To reflect the

nature of our proposed user representation learning solution, we name the solution Joint Network

Embedding and Topic Embedding, or JNET for short.

Extensive experiments are performed on two large collections of user-generated text documents

from Yelp and StackOverflow, together with their network structures. Compared with a set of

state-of-the-art user representation learning solutions, from the perspective of content modeling

[48, 142, 144] or network modeling [16, 79], clear advantages of JNET are observed by its explicit

modeling of correlations among different categories of information enabled by the latent space.

The use of learnt user representation generalizes beyond content prediction and link prediction: it

accurately suggests technical discussion threads for users to participate in StackOverflow, e.g., expert

recommendation.

6.2 Joint Network Embedding and Topic Embedding

6.2.1 Model Specification

We focus on user representation learning based on user-generated text data, in conjunction with their

social network interactions. Formally, denote a collection of U users as U = {u1, u2, ...uU}, in which

each user ui is associated with a set of Di text documents Di =
{
xi,d

}Di

d=1
. Each document xd is
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represented as a bag of words xd = {w1, w2, .., wN}, where wn is chosen from a vocabulary of fixed

size V . Each user is also associated with a set of social connections, referred as friendship, which we

denote as Ei = {eij = 1}Uj 6=i. For a pair of users ui and uj , the binary observation eij denotes the

connection between them: eij = 1 indicates they are directly connected in the network, i.e., friends;

otherwise, eij = 0.

We represent each user as a real-valued continuous vector ui ∈ RM in a low-dimensional space. And

we seek to impose a joint distribution over the observations in each user’s associated text documents

and social interactions, so as to capture the underlying structural dependency between these two types

of data. Based on our assumption that both types of users-generated data are governed by the same

underlying user intent, we explicitly model the joint distribution as p(Di, Ei) =
∫
p(Di, Ei,ui)dui,

which can be further decomposed into p(Di, Ei,ui) = p(Di|Ei,ui)p(Ei|ui)p(ui). We assume given the

user representation ui, the generation of text documents in Di is independent from the generation of

social interactions in Ei, i.e., p(Di|Ei,ui) = p(Di|ui). As a result, the modeling of joint probability

over a user’s observational data with his/her latent representation can be decomposed into three

related modeling tasks: 1) p(Di|ui) for content modeling, 2) p(Ei|ui) for social connection modeling,

and 3) p(ui) for user embedding modeling.

We appeal to statistical topic models [47, 48] for content modeling, because of their impressive

effectiveness shown in existing empirical studies. Classical topic models view each topic as a discrete

set of indices, from which specific word distributions are sampled from. But it is not compatible

with our continuous user representation. To build direct connection between users and topics, we

decide to embed topics into the same latent space as users. By projecting topic embedding vectors

to each user’s embedding vector, we can easily measure each user’s affinity to each topic, thus to

capture users’ topical preferences. Another benefit is that it also allows us to measure the topical

variance in documents from the same user and establish a valid predictive distribution of his/her

documents.

Formally, we assume there are in total K topics underlying the corpus with each one represented

as an embedding vector φk ∈ RM in the same latent space; denote Φ ∈ RK×M to facilitate our

representation of each user’s affinity towards different topics, i.e., Φ · ui. In order to be qualified

as a distribution over topics, the vector Φ · ui has to lie in a K-dimensional simplex. Thus,

we use a logistic-normal distribution to map Φ · ui back to the simplex [145]. As this mapped

vector reflects user ui’s topical preferences, it serves as the prior of topic distribution in each
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2.1 Graphical Model Representation

⇠ � ↵ �k �

eij �ij ui ✓id zidn widn

⌧
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U
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Putting all the developed components together, we obtain a generative model which learns
distributed representations of users and topics and capture different correlations jointly. We
name the resulting model as Explicit User Behavior model, or EUB in short. We successfully
achieve a holistic user behavior modeling by capturing three different types of correlations.

The generative process of EUB is as follows:

• For each topic �k:

– Draw topic compact representation �k ⇠ N (0, ↵�1I)

• For each user ui:

– Draw user compact representation ui ⇠ N (0, ��1I)

– For every other user uj:

⇤ Draw affinity �ij between ui and uj, �ij ⇠ N (uT
i uj, ⇠

2)

⇤ Draw interaction eij between ui and uj, eij ⇠ Bernoulli(logistic(�ij))

• For each opinionated document of user ui:

– Draw the user-document topic preference vector ✓id ⇠ N (�Tui, ⌧
�1I)

– For each word widn:

⇤ Draw topic assignment zidn ⇠ Multi(softmax(✓id))

⇤ Draw word widn ⇠ Multi(�zidn
)

where we make several assumptions:

• the dimensionality M of the compact representation of topics and users is predefined and
fixed;

• the word probabilities are parameterized by a K⇥V matrix � where �kv = p(wv = 1|zk = 1)

3 Inference
Posterior inference and parameter estimation is not analytically tractable due to the coupling
between latent variables and the non-conjugate logistic-normal prior. We develop a stochastic
variational method that involves only compact topic and user vectors which are cheap to infer.

2

Figure 6.1: Graphical model representation of JNET. The upper plate indexed by K denotes the learnt topic embeddings.
The outer plate indexed by U denotes distinct users in the collection. The inner plates indexed by U and D denote
each user’s social connections and text documents respectively. The inner plate indexed by N denotes the word content
in one text document.

text document from him/her. Specifically, denote the document-level topic vector as θid ∈ RK ,

we have θid ∼ N (Φ · ui, τ−1I), where τ characterizes the uncertainty when user ui is choosing

topics from his/her global topic preferences for each single document. By projecting the document-

level topic vector into the probability simplex, we obtain the topic distribution for document

xi,d: πid = softmax(θid), from which we sample a topic indicator zidn ∈ {1, ...,K} for each word

widn in xi,d by zidn ∼ Multi(softmax(θid)). As in conventional topic models, each topic k is also

associated with a multinomial distribution βk over a fixed vocabulary, and each word widn is

then drawn from respective word distribution indicated by corresponding topic assignment, i.e.,

widn ∼ p(w|βzidn). Put all pieces together, the task of content modeling for each user can be

summarized as p(Di|ui) =
∏Di

d=1 p(θid|ui,Φ, τ)
∏N
n=1 p(zidn|θid)p(widn|zidn,β).

The key in modeling social connections is to understand the closeness among users. As we represent

users with a real-valued continuous vector, this can be easily measured by the vector inner product in

the learnt low-dimensional space. Define the underlying affinity between a pair of users ui and uj as

δij , we assume E[δij ] = uT
i uj . To capture uncertainty of the affinity between different pairs of users,

we further assume δij is drawn from a Gaussian distribution centered at the measured closeness,

δij ∼ N (uT
i uj , ξ

2), where ξ characterizes the concentration of this distribution. The observed social

connection eij between user ui and uj is then assumed as a realization of this underlying user affinity:

eij ∼ Bernoulli(logistic(δij)). As a result, the task of social connection modeling can be achieved by

p(Ei|ui) =
∏U
j 6=i p(eij |δij)p(δij |ui,uj).

We do not have any specific constraint on the form or distribution of latent user embedding vectors

{ui}Ui=1, as long as they are in a M -dimensional space. For simplicity, we assume they are drawn

from an isotropic Gaussian distribution, i.e., ui ∼ N (0, γ−1I), where γ measures the concentration

of different users’ embedding vectors. Other types of prior distribution can also be introduced, if

one has more knowledge about the user embeddings, e.g., sparsity or a particular geometric shape.
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But it is generally preferred to have conjugate priors, so as to simplify later posterior inference steps.

This concludes our user embedding modeling task.

To make our model a complete generative model, we also impose flat priors over the topic embedding,

i.e., , φk ∼ N (0, α−1I). Putting these components together, the generative process of our solution

can be described as follows:

• For each topic φk:

– Draw a topic compact representation φk ∼ N (0, α−1I)

• For each user ui:

– Draw user compact representation ui ∼ N (0, γ−1I)

– For every other user uj :

∗ Draw affinity δij between ui and uj , δij ∼ N (uT
i uj , ξ

2)

∗ Draw interaction eij between ui and uj , eij ∼

Bernoulli(logistic(δij))

• For each document of user ui:

– Draw the user-document topic preference vector

θid ∼ N (ui · Φ, τ−1I)

– For each word widn:

∗ Draw topic assignment zidn ∼ Multi(softmax(θid))

∗ Draw word widn ∼ Multi(βzidn)

In this generative process, we make two explicit assumptions:

• the dimensionality M of the compact representation of topics and users is predefined and fixed;

• the word distributions under topics are parameterized by a K × V matrix β where βkv = p(wv =

1|zk = 1) over a fixed vocabular of size V .
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We obtain a full generative model capturing the structural dependency among multiple modalities of

user-generated data for effective user representation learning. In essence, we are performing a Joint

Network Embedding and Topic Embedding, we name the resulting model as JNET in short; we

illustrate our imposed dependency between different components of JNET in Figure 6.1, using a

graphical model representation.

6.2.2 Variational Bayesian Inference

The compact user representations can be obtained via posterior inference over the latent variables

u on a given set of data. However, posterior inference is not analytically tractable in JNET due

to the coupling among several latent variables, i.e., user-user affinity δ, user embedding u, topic

embedding Φ, document-level topic proportion θ and topic assignment of each word z. We appeal to

a mean-field variational method to efficiently approximate the posterior distributions. Different from

the conjugate-exponential family pairs, non-conjugate logistic-normal priors lead to difficulty in lower

bound based approximation. We further extend the approximation using Taylor expansion [145] to

improve the quality of inferred posteriors.

We begin by postulating a factorized distribution:

q(Φ, U,∆,Θ, Z) =
∏K
k=1 q(φk)

∏U
i=1 q(ui)

[∏U
j=1,j 6=i q(δij)

∏D
d=1 q(θid)

∏N
n=1 q(zidn)

]
,

where the factors have the following parametric forms:

q(φk) = N (φk|µ(φk),Σ(φk)), q(ui) = N (ui|µ(ui),Σ(ui)),

q(δij) = N (δij |µ(δij), σ(δij)2
), q(θid) = N (θid|µ(θid),Σ(θid)),

q(zidn) = Mult(zidn|ηidn)

Because the topic proportion vector θid is inferred in each document, it is not necessary to estimate

a full covariance matrix for it [145]. Hence, in its variational distribution, we only estimate the

diagonal variance parameters.

Variational algorithms aim to minimize the KL divergence from the approximated posterior distribu-

tion q to the true posterior distribution p. It is equivalent to tightening the evidence lower bound
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(ELBO) by Jensen’s inequality [48]:

log p(w, e,Φ, U,∆,Θ, Z|α, β, γ, τ) (6.2.1)

≥ Eq[log p(U,Θ, Z,Φ,∆,w, e|α, β, γ, τ)]− Eq[log q(U,Θ, Z,Φ,∆)]

where the expectation is taken with respect to the factorized variaitonal distribution of latent variables

q(Φ, U,∆,Θ, Z).

Let L(q) denote the right-hand side of Eq (6.2.1), the first step to maximize this lower bound is

to derive the analytic form of posterior expectations required in L(q). Thanks to the conjugate

priors introduced on {ui}Ui=1,Φ = {φk}Kk=1, the expectations related to these latent variables have

closed form solutions. Since there is no conjugate prior for logistic Normal distribution, we use

Taylor expansions to approximate the expectations related to θid, δij . Next we describe the detailed

inference procedure for each latent variable, but due to space limit we will omit most of details for

the expectation calculation.

• Estimate topic embedding. For each topic k, we relate the terms associated with q(φk|µ(φk),Σ(φk))

in Eq (6.2.1) and take maximization w.r.t. µ(φk) and Σ(φk). Closed form estimations of µ(φk),Σ(φk)

exist,

µ(φk) = τΣ(φk)
U∑

i=1

Di∑

d=1

µ
(θid)
k µ(ui) (6.2.2)

Σ(φk) =
[
αI + τ

U∑

i=1

Di∑

d=1

(Σ(ui) + µ(ui)µ(ui)
T

)
]−1

(6.2.3)

As we can find from Eq (6.2.3), the estimation of Σ(φk) is not related to a specific topic k, because

we impose an isotropic Gaussian prior for all {φk}Kk=1 in JNET. It suggests that the correlations

between different topic embedding dimensions are homogeneous across topics. Thus, {µ(φk)}Kk=1

serve as a posterior mode estimation of topic embeddings for the current corpora. Interestingly, as we

can notice that the posterior covariance Σ(φk) of topic embeddings is only related to user embeddings,

which introduces information from network modeling into content modeling.

• Estimate user embedding. For each user i, we relate the terms associated with q(ui|µ(ui),Σ(ui))

in Eq (6.2.1) and maximize it with respect to µ(ui),Σ(ui). The procedure here is similar to the

aforementioned posterior topic embedding estimation. Closed form estimations can also be achieved



6.2 Joint Network Embedding and Topic Embedding 92

for these two parameters as follows:

µui = Σ(ui)
(
τ

Di∑

d=1

K∑

k=1

µ
(θid)
k µ(φk) +

U∑

j 6=i

µ(δij)

ξ2
µ(uj)

)
(6.2.4)

Σ(ui) =
[
γI + τDi

K∑

k=1

(Σ(φk) + µ(φk)µ(φk)T) +

U∑

j 6=i

1

ξ2
(Σ(uj) + µ(uj)µ(uj)T)

]
(6.2.5)

The effect of joint content modeling and network modeling for user representation learning is clearly

depicted in this posterior estimation of user embedding vectors. The updates of µ(ui) and Σ(ui)

come from two types of influence: the textual content and social interactions of the current user.

For example, the posterior mode estimation of user embedding vector ui is a weighted average over

the topic vectors that this user has used in his/her past text documents and the user vectors from

his/her friends. And the weights measure his/her affinity to those topics and users in each specific

observation. The updates exactly reflect the formation of “User Schema” in social psychology, which

can be understood from two perspectives: both modalities of user-generated data contribute to the

shaping of user embedding, while the structural dependency between them are reflected in this unified

user representation.

• Estimate per-document topic proportion vector. Similar procedures as above can be taken

to estimate µ(θid) and Σ(θid). Due to the lack of conjugate prior for logistic Normal distributions, we

apply Taylor expansion and introduce an additional free variational parameter ζ in each document.

Because there is no closed form solution for the resulting optimization problem, we use gradient

ascent to optimize µ(θid) and Σ(θid) with the following gradients,

∂L

∂µ
(θid)
k

= −τµ(θid)
k + τ

M∑

m=1

µ(φk)
m µ(ui)

m +

N∑

n=1

[
ηidnk − ζ−1 exp(µ

(θid)
k +

1

2
Σ

(θid)
kk )

]
(6.2.6)

∂L

∂Σ
(θid)
kk

= −τ − N

ζ
exp(µ

(θid)
k +

1

2
Σ

(θid)
kk ) +

1

Σ
(θid)
kk

(6.2.7)

where ζ =
∑K
k=1 exp(µ

(θid)
k + 1

2Σ
(θid)
kk ). As we mentioned before, only the diagonal elements in Σ

(θ)
id are

statistically meaningful (i.e., variance). And we simply set its off-diagonal elements to zero in gradient

update. As the variance has to be non-negative, we can instead estimate the square root of it to avoid

solving a constrained optimization problem. The gradient function suggests that the document-level

topic proportion vector should align with the corresponding compact user representation and topic

representation. Although no closed form estimations of µ(θid) and Σ(θid) exist, the expected property
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of µ(θid) is clearly reflected in Eq (6.2.6): the proportion of each topic in document xi,d should

align with this user’s preference to this topic (i.e., affinity in the embedding space), and the topic

assignment in document content. And the variance is introduced by the uncertainty of per-word

topic choice and the intrinsic uncertainty of a user’s affinity with a topic.

• Estimate user affinity. Similar approach can be applied here to estimate µ(δij) and σ(δij)2
which

govern the latent user affinity. Again, gradient ascent is utilized to optimize µ(δij) and Σ(θid),

∂L

∂µ(δij)
= eij −

1

ε
exp (µ(δij) +

1

2
σ(δij)2

)− µ(δij)

ξ2
+
µ

(ui)
m

T
µ

(uj)
m

ξ2
(6.2.8)

∂L

∂σ(δij)
= −σ

(δij)

ε
exp (µ(δij) +

1

2
σ(δij)2

)− σ(δij)

ξ2
+

1

σ(δij)
(6.2.9)

The gradient functions clearly indicate the latent affinity between a pair of users is closely related

with their observed connectivity and their closeness in the embedding space.

• Estimate word topic assignment. The topic assignment zidn for each word widn in each

document xi,d can be easily estimated by,

ηidnk ∝ exp{µ(θid)
k +

V∑

v=1

widnv logβkv} (6.2.10)

We execute the above variational inference procedures in an alternative fashion until the lower bound

L(q) defined in Eq (6.2.1) converges. The variational inference algorithm endows rich independence

structures between the variational parameters, allowing straightforward parallel computing. Since the

variational parameters can be grouped into document level: µ(θid), Σ(θid) and η, topic-level: µ(φk)

and Σ(φk), and user-level: µ(ui), Σ(ui), µ(δij) and σ(δij)2
, we perform alternative update in parallel

to improve computational efficiency, e.g., fix topic-level parameters and user-level parameters, and

distribute the documents across different CPUs to estimate their own µ(θid), Σ(θid) and η in parallel

for large collections of user-generated data.

6.2.3 Parameter Estimation

When performing the variational inference described above, we have assumed the knowledge of

model parameters α, γ, τ, ξ and β. Based on the inferred posterior distribution of latent variables in
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JNET, these model parameters can be readily estimated by the Expectation-Maximization (EM)

algorithm.

Among these model parameters, the most important ones are the priors for user embedding γ and

topic embedding α, and word-topic distribution β. As ξ and τ serve as the variance for user affinity

δij and document topic proportion vector θid, and we have large amount of relevant observations in

users’ documents and social connections, our model is less sensitive to their settings. Therefore, we

will estimate α, γ and β with respect to available training data, and empirically set ξ and τ .

By taking the gradient of L(q) in Eq (6.2.1) with respect to α, and set it to 0, we get the closed form

estimation of α as follows:

α =
KM

∑K
k=1[

∑M
m=1 Σ

(φk)
mm + µ(φk)Tµ(φk)]

, (6.2.11)

Similarly, the closed form estimation of γ can be easily derived as,

γ =
UM

∑U
i=1[

∑M
m=1 Σ

(ui)
mm + µ(ui)

T
µ(ui)]

. (6.2.12)

And the closed form estimation for word-topic distribution β can be achieved by,

βkv ∝
U∑

i=1

Di∑

d=1

N∑

n=1

widnvηidnv, (6.2.13)

where widnv indicates the nth word in ui’s dth document is the vth word in the vocabulary.

The resulting EM algorithm consists of E-step and M-step. In E-step, variational parameters are

inferred based the procedures described in Section 6.2.2 until convergence; and in M-step, model

parameters α, γ and β are estimated based on collected sufficient statistics from E-step. These two

steps are repeated until the lower bound L(q) converges over all training data.

Inferring the latent variables with each user and each topic are computationally cheap. Specifically, by

Eq (6.2.3), updating the variables associated with each topic imposes a complexity of O
(
KM2|D|

)
,

where K is the total numnber of topicss, M is the latent dimension, |D| is the total number of

documents. By Eq (6.2.4), updating the variables for each user imposes a complexity of O(M2U2)

where U is the total number of users. Estimating the latent variables for per-document topic proportion

imposes a complexity of O(|D|K(N̄ +M)) by Eq (6.2.6), where N̄ is the average document length.
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And updating variables for each pair of user affinity takes constant time while there are U2 affinity

variables. With the consideration of the total number of users and topics, the overall complexity for

the proposed algorithm is O(KM2|D|+M2U2) by ignoring constants.

6.3 Experiments

We evaluated the proposed model on large collections of Yelp reviews and StackOverflow forum

discussions, together with their user network structures. Qualitative analysis demonstrates the

descriptive power of JNET through direct mapping of user vectors and topic vectors into 2-D

space. A set of quantitative evaluations confirm the effectiveness of JNET compared with several

existing state-of-the-art user representation learning solutions: social connections enhance the

model’s predictive power in unseen documents, and text content facilitates the model’s prediction on

missing links. Moreover, the learnt user representation enables accurate content recommendation to

users.

6.3.1 Experimental Setup

• Datesets. We employed two large publicly available user-generated text datasets together with

the associated user networks: 1) Yelp, collected from Yelp dataset challenge1, is a collection of

187,737 Yelp restaurant reviews generated by 10,830 users. The Yelp dataset provides user friendship

imported from their Facebook friend connections. Among the whole set of users, 10,194 of them have

friends with an average of 10.65 friends per user. 2) StackOverflow, collected from Stackoverflow2,

consists of 244,360 forum discussion posts generated by 10,808 users. While there is no explicit

network structure in StackOverflow dataset, we utilized the “reply-to” information in the discussion

threads to build the network, because this relation suggests implicit social connections among users,

e.g., their expertise and technical topic interest. We ended up with 10,041 users having friends, with

an average of 5.55 connections per user. We constructed 5,000 unigram and bigram text features

based on Document Frequency (DF) in both datasets. We randomly split the data for 5-fold cross

validation in all the reported experiments.

1Yelp dataset challenge. http://www.yelp.com/dataset challenge
2StackOverflow. http://stackoverflow.com

http://www.yelp.com/dataset_challenge
http://stackoverflow.com
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• Baselines. We compared the proposed JNET model against a rich set of user representation

learning methods: topic modeling based solutions, the state-of-the-art network embedding methods,

together with works combining text and network for learning user embeddings.

1) Latent Dirichlet Allocation (LDA) [48] assumes a global conjugate Dirichlet prior distribution

to generate the topic distribution in documents across different users. This classic topic model does

not explicitly model user, thus user embedding is created by averaging the posterior topic proportion

of documents associated with a user. 2) Relational Topic Model (RTM) [144] explicitly models

the connection between two documents conditioned on their text content. In our application scenario,

instead of document-level network, we constructed a user-level network by concatenating all documents

from one user into one to fit this baseline model. 3) Hidden Factors as Topics (HFT) [142]

combines latent rating dimensions of users captured by latent-factor based recommendation model,

with latent review topics learnt from topic models to achieve better recommendation. Latent user

factors indicating users’ implicit tastes and latent item factors representing properties of items are

jointly learnt from text and rating information. Since StackOverflow dataset does not come with

natural ratings, users’ “upvote” toward a question is utilized as a proxy of rating. 4) Collaborative

Topic Regression (CTR) [50] combines collaborative filtering with topic modeling to explain the

observed text content and ratings, which provides latent structures for both users and items. Since

CTR assumes one document for each item, we constructed an item by aggregating one restaurant’s

reviews in Yelp and one question’s answers in StackOverflow respectively. 5) DeepWalk (DW) [16]

takes network structure as input to learn social representations of vertices in the network. Via

techniques from neural language models, DW uses local information obtained from truncated random

walks to learn latent node representations by treating walks as an equivalent of sentences. 6) Text-

Associated DeepWalk (TADW) [79] further incorporates text features of vertices into network

representation learning under the framework of joint matrix factorization.

Among these baselines, LDA learns topic representation using documents only; DW learns user

representation by network structure only; CTR and HFT consider both user factors and item factors

(a.k.a. restaurant in Yelp and question in Stackoverflow) in modeling text content and ratings; TADW

and RTM learn user representations by jointly modeling text content and network structure.

• Parameter Settings. We set the latent dimensions of user and topic embeddings to 10 in JNET

and baselines. Though a larger dimension might improve some specific tasks’ performance, it is

computationally more expensive. As we tuned the topic size from 10 to 100, we found the learnt



6.3 Experiments 97

Figure 6.2: Visualization of user embedding with JNET (left) and TADW (right) and learnt topics in 2-D space of
StackOverflow.

topics are most representative and meaningful at around 40 topics. Hence, we set topic number to 40

in the reported experiments. For the model parameters in JNET, we empirically set the precision for

user embedding γ = 0.1, the precision for user-document topic proportion τ = 1 and the variance for

user affinity ξ = 2 and update other parameters in the M-step. The maximum number of iteration in

our EM algorithm is set to 100. Both the source codes and data are available online 3.

6.3.2 The Learnt User Representation

We first study the quality of the learnt user representations from JNET. Users are mapped to 2-D

space using the t-SNE package with the learnt user embeddings as input. For illustration purpose, we

simply assign each user to the topic that he/she is closest to, i.e., argmax(Φ · ui) and we mark users

sharing the same interested topic with the same color. We also plot the most representative words

of each topic learnt from JNET (i.e., argmax p(w|βz)), with the same color of the corresponding

set of users. For comparison purpose, we also plot the learnt user representation from TADW. In

order to assign the learnt user vectors from TADW to different topics, we adopted the same topic

assignment method explained above by borrowing the learnt topic embeddings from JNET. And the

visualizations of both methods with StakcOverflow dataset are shown in Figure 6.2.

3JNET. https://github.com/Linda-sunshine/JNET.

https://github.com/Linda-sunshine/JNET.
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Figure 6.3: Visualization of user embedding with JNET (left) and TADW (right) and learnt topics in 2-D space of
Yelp.

As we can find from the visualization of StackOverflow, users of similar interests are clearly clustered

in the 2-D space, which indicates the descriptive power of our learnt user vectors. Meanwhile,

representative topics are learnt as we can easily identify the theme of each word cloud, such as C++

(in light green circle), SQL (in dark purple circle) and java (in light blue circle) in the StackOverflow

dataset. It is also interesting to find correlations among the users and topics by looking into their

distances. The users in dark green are mainly interested in website development, thus are far away

from the users who are interested in C++ (in light green). The users in orange care more about the

network communication and they are overlapped with many other clusters of users focusing on SQL

(in dark purple) and C++ (in light green) as network communication is an important component

among different programming languages. However, the learnt user vectors from TADW are more

scattered. For instance, users in light blue are splitted into four parts, indicating the relative low

quality of the learnt user vectors.

We also provide the visualizations of Yelp dataset in Figure 6.3. Similar observations can also be

found on Yelp dataset with JNET, for example, the users in light orange like Italian food and users

in dark blue care about service. It is also interesting to find that users who like music and bar (in

purple) are far away from the users who are fans of thai food (in light blue). With the learnt user

vectors from TADW, users are scattered, such as users in light orange are clearly separated into

two parts, which further verifies the decent quality of learnt user representations from JNET over

TADW.
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Figure 6.4: Perplexity comparison on Yelp and StackOverflow.

6.3.3 Document Modeling

In order to verify the predictive power of the proposed model, we first evaluated the generalization

quality of JNET on the document modeling task. We compared all the topic model based solutions

by their perplexity on a held-out test set. Formally, the perplexity for a set of held-out documents

is calculated as follows [48]:

perplexity(Dtest) = exp
(
−
∑
d∈Dtest

log p(wd)∑
d∈Dtest

|d|
)

where p(wd) is the likelihood of each held-out document given by a trained model. A lower perplexity

indicates better generalization quality of a model.

Figure 6.4 reports the mean and variance of the perplexity for each model with 5-fold cross validation

over different topic sizes. JNET achieved the best predictive power on the hold-out dataset, especially

when an appropriate topic size is assigned. RTM achieved comparative performance as it utilizes the

connectivity information among users, but it is limited by not being able to capture the variance

within each user’s different documents. The other baselines do not explicitly model network data,

i.e., LDA, HFT and CTR, and therefore suffer in performance as they cannot take the advantage of

network structure in modeling users.

A good joint modeling of network structure and text content should complement each other to

facilitate a more effective user representation learning. Hence, we expect a good model to learn

reasonable representations on users lacking text information, a.k.a., cold-start users, by utilizing

network structure. We randomly selected 200 users and held out all their text content for testing.
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Figure 6.5: Comparison of perplexity in cold-start users on Yelp and StackOverflow.

Regarding to the number of social connections each testing user has in training data, we further

consider three different sets of users, and name them as light, medium and heavy users, to give a finer

analysis with respect to the degree of connectivity in cold-start setting. We end up with three sets of

users and each set consists of 200 users. The threshold for selecting different sets of users is based

on the statistics of each dataset. As a result, we selected 5 and 20 as the connectivity threshold for

Yelp, 5 and 15 as the threshold for StackOverflow respectively. That is, in Yelp, light users have

fewer than 5 friends, medium users have more than 5 friends while fewer than 20 friends and heavy

users have more than 20 friends. We compared JNET against four baselines, i.e., LDA, HFT, RTM,

CTR for evaluation purpose. We reported the perplexity on the held-out test documents regarding

to the three sets of users, in Figure 6.5, respectively.

As we can observe in Figure 6.5, JNET performed consistently better on the testing documents for

the three different sets of unseen users on Yelp dataset, which indicates the advantage of utilizing

network information in addressing cold-start content prediction issue. The benefit of network is

further verified across different sets of users as heavily connected users can achieve better performance

improvement compared with text only user representation model, i.e., LDA. Similar conclusion is

obtained for StackOverflow dataset, while we neglect it due to the space limit.

6.3.4 Link Prediction

The predictive power of JNET is not only reflected in unseen documents, but also in missing links.

In the task of link prediction, the key component is to infer the similarity between users. We split
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Figure 6.6: The performance comparison of link suggestion on Yelp and StackOverflow.

the observed social connections into 5 folds. Each time, we held out one fold of edges for testing and

utilized the rest for model training, together with users’ text content. In order to construct a valid

set of ranking candidates for each testing user, we randomly injected irrelevant users (non-friends) for

evaluation purpose. And the number of irrelevant users is proportional to the number of connections

the testing user has, i.e., t × number of social connections. We rank users based on their cosine

similarity to the target user. Normalized discounted cumulative gain (NDCG) and mean average

precision (MAP) are used to measure the quality of ranking. We started with the ratio between

irrelevant users and relevant users being t = 2 and increased the ratio to t = 8 to make the task more

challenging to further verify the effectiveness of the learnt user representations.

To compare the prediction performance, we tested five baselines, i.e., LDA, HFT, RTM, DW and

TADW. We reported the Normalized Discounted Cumulative Gain (NDCG) and Mean Average

Precision (MAP) performance for the two datasets in Figure 6.6.

As we can find in the results, JNET achieved encouraging performance on both datasets, which

indicates effective user representations are learnt to recover network structure. In Yelp dataset,

network only solutions, i.e., DW, and text only solutions, i.e., LDA and HFT, cannot take the full
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Table 6.1: The performance comparison of link prediction for light users of cold-start setting on StackOvewrflow.

Models
Light

Ratio=2 Ratio=4 Ratio=6
NDCG/MAP NDCG/MAP NDCG/MAP

LDA 0.786/0.648 0.664/0.477 0.632/0.431
HFT 0.666/0.493 0.543/0.333 0.483/0.259
RTM 0.777/0.642 0.688/0.514 0.627/0.433
TADW 0.695/0.525 0.583/0.373 0.515/0.291
JNET 0.794/0.664 0.697/0.534 0.643/0.453

Table 6.2: The performance comparison of link prediction for medium users of cold-start setting on StackOvewrflow.

Models
Medium

Ratio=2 Ratio=4 Ratio=6
NDCG/MAP NDCG/MAP NDCG/MAP

LDA 0.774/0.597 0.677/0.451 0.612/0.364
HFT 0.671/0.461 0.562/0.313 0.492/0.226
RTM 0.801/0.638 0.709/0.495 0.654/0.419
TADW 0.696/0.481 0.591/0.336 0.532/0.263
JNET 0.812/0.649 0.724/0.511 0.663/0.425

advantages of both modalities of user-generated data to capture user intents, while RTM achieved

descent performance due to the integration of content and network modeling. Since the way of

constructing network in StackOverflow is more content oriented, the performance of link suggestion

on StackOverflow would prefer the text based solutions, which explains the comparable performance

of LDA. Though TADW utilizes both modalities for user modeling, it fails to capture the dependency

between them, leading to the poor performance on this task.

In practice, link prediction for unseen users is especially useful. For example, friend recommendation

for new users in a system: they have very few or no friends, while they may associate with rich text

content. This is also known as “cold-start” link prediction. Network only solutions will suffer from

the lack of knowledge in such users. However, our proposed model can overcome this limitation by

utilizing user-generated text content to learn representative user vectors, thus to provide helpful link

prediction results.

In order to study the models’ predictive power in the cold-start setting, we randomly sampled three

sets of users, regarding to the number of documents each user has, and name them as light, medium

and heavy users. Each set of users consists of 200 users, and we selected 10 and 50 as the threshold

for Yelp, 15 and 50 as the threshold for StackOverflow respectively. For example, in StackOverflow,

light users have fewer than 15 posts, medium users have more than 15 but fewer than 50 posts, and

heavy users have more than 50 posts. We compared the proposed model against four baselines, i.e.,

LDA, HFT, RTM and TADW for evaluation purpose. DW cannot learn representations for users



6.3 Experiments 103

Table 6.3: The performance comparison of link prediction for heavy users of cold-start setting on StackOvewrflow.

Models
Heavy

Ratio=2 Ratio=4 Ratio=6
NDCG/MAP NDCG/MAP NDCG/MAP

LDA 0.818/0.581 0.745/0.443 0.697/0.366
HFT 0.682/0.389 0.591/0.250 0.532/0.179
RTM 0.837/0.624 0.760/0.481 0.711/0.399
TADW 0.739/0.448 0.639/0.298 0.587/0.229
JNET 0.842/0.626 0.763/0.483 0.713/0.399

without any network information, thus is excluded in this experiment. We also randomly injected

irrelevant users as introduced before for evaluation and we varied the ratio between irrelevant users

and relevant users to change the difficulty of the task. We reported the NDCG and MAP performance

on these three sets of users in Stackoverflow dataset with three differnet ratios, i.e., 2, 4 and 6, in

Table 6.3, respectively.

JNET achieved consistently favorable performance in link prediction in users without any social

connections, as accurate proximity between users are properly identified with its user representations

learnt from text data. Comparing across groups, better performance is achieved for users with more

text documents. Similar results were obtained on Yelp dataset as well, but omitted due to space

limit.

6.3.5 Expert Recommendation

In the sampled StackOverflow dataset, the average number of answers for questions is as low as 1.14,

which indicates the difficulty for getting an expert to answer the question. If the system can suggest

the right user to answer the posted questions, e.g., push the question to the selected user, more

questions would be answered more quickly and accurately. We conjecture the learnt topic distribution

of each question in StackOverflow, together with the identified user representation, facilitate the task

of expert recommendation for question answering. The task can be further decomposed into two

components: whether the question falls in a user’s skill set; and whether the user who asked question

shares similar interests with the potential candidate expert. With the learnt topic embeddings Φ and

each user’s embedding ui, each user’s interest over the topics can be characterized as a mapping from

the topic embeddings to the user’s embedding, i.e., Φ · ui. Together with the learnt topic distribution

of each question, we can estimate the proximity between the question and the user’s expertise to

score the alignment between the question and the user. In the meanwhile, the closeness between
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Figure 6.7: Expert recommendation on StackOverflow.

users can be simply measured by the distance of their corresponding embedding vectors. As a result,

the task can be formalized as finding the user that achieves the highest relatedness with the given

question, where we define the relatedness as follows:

score = α · cosine(ui · Φ,θid) + (1− α) · cosine(ui,uj) (6.3.1)

Due to the limited number of answers for each question in our dataset, we selected 1,816 questions

with more than 2 answers for the experiment. Besides the users that answered the given question,

we also incorporated irrelevant users for each question for evaluation purpose. And the number

of irrelevant users is 10 times of the number of answers. We compared against the learnt topic

distributions of questions and user representations from LDA, HFT and CTR. As we tune the weight

between the two components in Eq (6.3.1), we plot the corresponding NDCG and MAP in Figure

6.7.

The proposed model achieved very promising performance in the recommendation task, as it explicitly

models user’s expertise and the given question in the topic space. The estimated similarities between

user-user and user-content accurately align the question to the right user. However, baseline models

can only capture the similarity between questions and users based on their topical similarity, which

is insufficient in this task. Interestingly, as we gradually increased the weight of question-content

similarity from 0, JNET’s performance peaked, which indicates the relative importance between

user-user and user-content similarities for this specific problem.
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6.4 Conclusion

In the work, we captured user intents via user representation learning by explicitly modeling the

structural dependency among different modalities of user-generated data. We proposed a complete

generative model to integrate user representation learning with content modeling and social network

modeling. By constructing a shared latent space to embed both users and topics, the relationship

between different modalities can be clearly depicted, together with users’ preferences towards different

objects. The learnt user representations are interpretable and predictive, indicated by the performance

improvement in many important tasks such as link suggestions and expert finding.



Chapter 7

Conclusions and Future Works

In the era of Internet, people interact with diverse information service systems extensively everyday,

such as search engines and social media website, to satisfy their needs and desires. In order to

provide the service satisfying user needs and preferences quickly and efficiently, computational user

modeling becomes an essential component which enables an in-depth understanding of user intents.

The design of these computational user models introduced in the dissertation gets inspired from

social psychology principles, such as imposing certain assumptions and quantifying concepts,

which in turn provides effective computational techniques for research in social psychology. We try

to bridge the gap between social psychology and computational user behavior modeling

systematically, which make contributions to both communities.

In this dissertation, we focus on exploring multiple modalities of user-generated data to capture

diverse user intents via computational user modeling. We start from exploring user-generated text

content to examine their distinct ways of expressing attitudes. Multi-task learning is utilized to

encode the task relatedness, to build the connectivity among users. In addition to the implicit

connectivity, the availability of network structure provides the opportunity to encode task relatedness.

Thus, it is further incorporated to achieve a comprehensive understanding of user intents through

the learning of user representations.

106
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7.1 Conclusions

In the dissertation, we proposed a multi-modal user intent learning framework via performing

computational user modeling. In particular, we solved the user intent learning problem raised in the

introduction from two different perspectives.

• Modeling Opinionated Text for Personalized Sentiment Analysis. In the first part of

the dissertation, we mainly analyze users’ opinionated text to understand their different ways

of expressing opinions. The proposed MTLinAdapt and cLinAdapt models achieve personalized

sentiment analysis effectively, especially for the users with limited amount of textual information.

Within the specific task of opinion mining, the two approaches learn effective user profiles with

respect to their preferences of opinionated words selected for expressing attitudes, i.e., the set of

weights for the corresponding opinion words. More specifically, MTLinAdapt performs the user profile

learning from each individual’s opinionated reviews to capture the nuance in expressing attitudes. By

realizing the clustering property among users, cLinAdapt further imposes a non-parametric Dirichlet

Process prior over users’ personalized models to learn users’ diverse opinions in a group manner, to

better alleviate the data sparsity issue and enable the implicit connectivity among users. With the

limit of exploring text content only, the user profiles mainly characterize users’ sentiment and may

not generalize well to other tasks.

• Incorporating Network for Holisitic User Behavior Modeling. In the second part of the

dissertation, we further incorporate the available network structure to achieve a more comprehensive

understanding of user intents. The proposed HUB model performs holistic user behavior modeling

by integrating companion tasks of content modeling and network structure modeling. The learned

user representation is a more general depiction of user preferences, which can facilitate many other

applications such as friend recommendation. Limited by the implicit modeling of dependency

between different modalities of user-generated data, HUB cannot provide a clear picture explaining

the correlation between different modalities of user-generated data, i.e., the correlation between

text content and network structure. Thus, JNET model resolves the concern by learning a shared

low-dimensional space to embed different modalities of user-generated data so as to encode the

relatedness and dependency among them. With the learnt user embeddings and topic embeddings

available in the shared latent space, the closeness between textual content and network can be easily

measured, which provides a more clear and precise user understanding via such decomposition so as

to further facilitate the content recommendation.
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7.2 Future Work

• Incorporating Heterogeneous Data for User Representation Learning. With more het-

erogeneous user-generated data available today, such as images posted in image-sharing platforms or

short videos posted on video-sharing platforms, we have new resources to further explore user desires

or needs due to the unique properties of these data, which can help achieve user understanding in

a complementary way. For instance, personal images are growing explosively with the popularity

of social media, which largely exhibit users’ opinions, interests and emotions. Mining user intents

from personal images itself can facilitate a number of applications, such as interest based community

detection, image recommendation and advertising. Moreover, images can complement the other

modalities to gain comprehensive user intent understanding. Compared with texts, images are more

natural to express users interests and emotion as they usually conveys topics and themes. By properly

analyzing posted images, they can either confirm the intent discovered by text or complement text to

further exploit user intent. Besides, each individual user may have very limited amount of connections

online while images help reveal the implicit connections among users. Indeed, images can help build

interest graph among users as users who like, share or forward the same image are very likely to share

the same interest, thus serving as great resources to help establish connections, or even construct the

communities. In the framework of user intent learning, the utilization of heterogeneous data will

definitely help overcome the data sparsity issue, thus to achieve more effective and accurate user

representation learning, covering more aspects of each individual user.

• Studying the Dimension of Time for Capturing Dynamics. The aforementioned works

introduced in the dissertation assume the models are static in analyzing user behaviors, thus are

unable to capture the dynamic changes either individually or globally. The dimension of time provides

us a different angle to interpret user behaviors, enabling numerous time-sensitive applications. A

straightforward example would be users’ social intent may evolve obviously over time. In their 20s to

30s, they care more about like-minded individuals or romantic partners; Later on, they may spend

more time looking for cooperators and collaborators for successful career development, which cannot

be captured by static user model clearly. More interestingly, the dimension of time enables us to

identify users’ long-term interests and short-term interest efficiently.

Beside the individual-level changes, the whole society may evolve over time. With the quick

development of Internet, tremendous new information is emerging everyday, leading to a large amount

of new concepts, either replacing the old ones or creating new concepts. The dynamic view can
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help exploit the evolution of culture, technology, economy and many other fields, resulting in a lot

interesting research problems. The evolution of network helps understand the establishment of user

connections and the formalization of communities, enabling vast amounts of applications such as

friend recommendation, community suggestion and so on. At the same time, it also serves as great

reference for social psychologists to study human behaviors in real world.

• Multi-role User Representation Learning. In practice, users usually participate in different

communities and behave in certain ways accordingly, such as colleagues, family members, friends. This

kind of community is not limited to explicit social circle, which can also be an implicit context. That

is, users are usually associated with multiple roles under different contexts, leading one single user

embedding insufficient to represent and calling for the learning of multi-role user representation.

The identification of such role information can provide a clear picture of the decomposition of all the

interactions, which helps gain user understanding from a high-resolution. With such role identification

available, a lot of applications can be enabled. For example, the specific role information can help

find the candidate user or item for recommendation, and it also serve as the explanation to make the

recommendation more concrete and convincing at the same time.

• Scalability. The large amounts of user-generated data brings in opportunity for achieving user

understanding, while it also imposes challenges in the computational perspective. Especially, the

challenges lie in two folds: the first is caused by the complex interactions among different modalities

of user-generated data; and the second is raised by the network structure due to the pairwise

property. Therefore, improving the scalability of the learning models can speed up the training

process, imposing tremendous practical values directly. Especially, if we incorporate more modalities

of user-generated data, learning compact user representations quickly and accurately would be

challenging and difficult. We may comprise between speed and accuracy, to achieve a perfect balance

for practical applications.

7.3 Broader Impacts

This research is an amalgamation of important aspects of both social psychology and computational

modeling. The main aim of this work is two-fold, leverage social psychology principles to better

design user behavior models as psychical world provides good references for virtual world; the
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computational user behavior modeling can in turn benefit the community of social psychology as it

provides alternatives for researchers in social psychology to perform experiments instead of traditional

surveys and polls. Though users’ online behaviors might differ from their behaviors in psychical world,

still, the principles in social psychology provide insights in designing computational models, such as

motivating us to impose certain assumptions in performing user modeling. Since the data collection is

an important component in the study of social psychology, the massive user-generated data naturally

serves as great resources for this goal. In order to utilize the data, it is necessary to leverage

computational techniques to mine the data, so as to understand user behaviors efficiently.

Currently, the Internet has infiltrated every aspect of our lives, producing large amounts of data

everyday to facilitate the understanding of user behaviors online. Consequently, it will bring in

billions of dollars of value to the economy and a huge amount of social capital to society. Though the

systems are growing rapidly, they are still in their infancy, lacking rigorous principles and governance.

Different from the real world, it is more difficult and challenging to monitor and govern online users.

In the real world, interactions among individuals usually occur in a more direct way, i.e., face-to-face

communication or interaction, which makes the intent understanding relatively easy, thus to perform

regulation and governance effectively. However, online users usually behave anonymously, such as

expressing opinions or making connections, which makes it hard to infer their intents, thus to regulate

user behaviors timely and accurately. Due to the unique properties of online environment, a lot of

problems emerge gradually. For instance, rumors spread on the Internet quickly and extensively,

rile up users’ emotions and moods, cause anxiety and bring in negative effectiveness. Terrorists and

racists post evil comments online, which makes people uncomfortable and jittery. Also, cyber-bullying

happens frequently in various forms, and harms both children and adults. Different from schoolyard

bullying, teachers can’t intervene on the Internet to protect children, which makes it a more difficult

issue.

With these concerns, it is necessary to call for a healthy virtual social systems via establishing

rigorous principles or performing certain regulations. And the computational user modeling has great

impacts on building such healthy online social systems. By collecting the user-specific data, we can

get to know user intents via proper computational modeling. Once the harmful intent is detected,

corresponding actions should be performed to regulate so as to protect the online environment.

For instance, when rumors are detected by the system, the information source should be cut off

immediately to prevent diffusion and the person who spread the rumors should be punished and

reeducated to avoid recommit. When racists are found online, the relevant comments and posts
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should be deleted and the person should be punished and reeducated. Not only the individual-level

intent understanding can help build online social systems, global-level understanding also contributes

to the establishment of online social systems. For instance, analyzing users’ text content helps capture

new Internet culture, thus to form the standard of Internet language.

The process acts as a social eco-system, we will 1) gain knowledge of online users gradually

via the exploration of massive user-generated data , from which 2) smart systems can be

designed to detect abnormal or harmful behaviors such as cyber-bulling, so as to build

healthy online social systems. The sound social system will grow steadily and quickly, creating

more powerful clues for inferring user understanding on both individual level and global level. Though

we can only start with shallow understanding of user behaviors, it can still help detect abnormal

user behaviors to regulate the online social system. With more sound systems established, users will

participate in diverse activities with more interactions, generating more data for examination. The

aforementioned two steps will repeat to establish mature and healthy online social system mutually.

With perfect online social system, we can further integrate the online social system and physical

social system to make a unified social system.
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