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Abstract— With millions of vehicles on the road each day, 

traffic delays and interstate congestion result in loss of 
productivity and millions of dollars each year. A majority of these 
traffic delays are caused by traffic incidents including crashes and 
disabled vehicles. These incidents are safety hazards and can lead 
to secondary crashes. Rapid clearance of these events and scene 
management during an incident can significantly reduce the 
impact of congestion. To combat hazardous conditions and 
decrease congestion related delays, the Virginia Department of 
Transportation (VDOT) has a fleet of Safety Service Patrols (SSP) 
that monitor highway conditions and assist emergency responders 
in scene clearance and traffic management. Managers of the SSP 
program seek to schedule patrollers in a manner that optimizes 
their influence on safety and congestion. This paper proposes a 
Genetic Algorithm based route scheduling algorithm that assigns 
SSP routes with the goal of minimizing the total time vehicles are 
stranded before an SSP vehicle arrives. The algorithm adapts to 
different incident rates and response times to produce schedules 
that vary by time-of-day and day-of-week. To examine the 
performance of the algorithm, optimal schedules were made for I-
95 in Virginia. A regression model was also developed to estimate 
the incident rates using a combination of daily traffic counts and 
historic rates that accounts for the under-counting of incidents in 
non-patrolled regions. Another model was used to estimate the 
SSP response times that resolves the inconsistencies with historical 
response times for incidents that occurred outside of the patrolled 
roadways. The results indicate that new route schedules based on 
the day-of-week could lead to a reduction in total time waiting for 
SSP assistance by an average of 13%, helping VDOT maintain 
safety, increase impact, and Keep Virginia Moving. 

Keywords— Genetic Algorithm, Routing Optimization, Traffic 
Congestion 

I. INTRODUCTION 
With the responsibility of building, maintaining, and 

operating transportation infrastructure across the state, the 
Virginia Department of Transportation (VDOT) must balance 
the priorities of safety and economic value with each new 

initiative brought to the state. Noticing a need for roadside 
assistance and traffic management, VDOT deployed a fleet of 
Safety Service Patrols (SSPs) in the 1960s to patrol interstates 
for drivers in peril and help clear incidents quickly. SSP 
operators are routed to patrol areas of the greatest need. They 
continuously patrol between set mile markers during specified 
hours of the day and stop to assist citizens or they are dispatched 
to a scene. These mile marker and hour designations are known 
as patrol schedules. Typically, SSPs stay within their assigned 
patrol schedule, but they are sometimes permitted to travel off 
their route if they detect or are notified about problematic 
incidents close by. In addition to patrol, police officers and 
other state personnel can request SSP assistance. The use of 
SSP operators has helped reduce congestion while minimizing 
secondary crashes [1]. Since their introduction, VDOT has 
expanded SSP coverage to include 846 miles on all major 
interstates in Virginia within the Central, Eastern, Northern, 
Northwestern, and Southwestern regions of the state [2]. 

 VDOT aims to ensure that their current patrol 
schedules optimize their limited resources while also 
maximizing their impact. The resources include a fleet of 156 
vehicles and a $2.9 million budget [3]. Current patrol routes are 
county based and do not employ the use of any optimization or 
analytical algorithm, leading to potential inefficiencies in time 
and resources. With the goals of both VDOT and SSPs in mind, 
we are seeking an optimal schedule to distribute the covered 
mileage on Interstate-95 into routes that minimize the time 
vehicles are stranded in need of assistance. The I-95 roadway 
includes current patrol routes in the Northern and Central 
regions of the SSP program. VDOT has accrued vast amounts 
of incident and traffic data that make a more analytical selection 
of route schedules within reach. Using complex algorithms, 
optimization of their current route schedules could lead to faster 
response times, thus increasing safety and reducing costs. 

The team would like to thank the Virginia Department of Transportation 
for sponsoring this research effort. 



II. DATA AND EVALUATION METRICS 

A. Data 
The analysis is based on two main datasets: incident data 

and traffic volume data. The incident data was created by 
combining four datasets that were provided by VDOT. Data 
pertaining to roadway incidents was reported by the existing 
SSP program. Incidents used in analysis were recorded from 
August 2017 through October 2019 along I-95, I-195, I-295, I-
395, and I-495. The current SSP program includes 14 routes 
along I-95 and the connecting interstates, with 9 focused 
exclusively on I-95. Recorded incidents that had the same mile 
marker, date, and time were deemed duplicate entries and thus 
removed from the dataset. After this, we had a working dataset 
of 88,703 records with 47 attributes that were identified as 
useful for further analysis. Key attributes for this analysis 
include: date and time of incident, mile marker, route, direction, 
and SSP response time. The interstate crosses through two of 
the state’s largest metropolitan areas: Richmond and Northern 
Virginia. Naturally, these urban areas see the greatest spikes in 
traffic density and incident records. The mile markers of I-95 
span from 0 to 177 crossing several counties throughout the 
state. The graphic below shows the volume of incidents along 
SSP patrol schedules. The size of the markers show the volume 
of incidents occurring at that mile marker. It can be seen that in 
the Northern Virginia and Richmond areas, more incidents have 
occurred.  

To understand typical traffic patterns along I-95, we used 
traffic volume data.  VDOT’s Traffic Counts program collects 
information with regard to hourly traffic density monitored by 
mile markers in Virginia. Using the hourly volumes, estimates 
were calculated for the average daily traffic at each mile bin for 
every day of the week. Estimates were obtained from 2014 to 
2018 for I-95, I-195, I-295, I-395, and I-495. 

Overall, the data describes SSP activity and incident 
frequency throughout the state. Over half the incidents SSPs 
respond to are disabled vehicles, with the second most common 
incident type being a vehicle accident. 

B. Metric of Evaluation 
VDOT has a wide array of information surrounding traffic 

incidents, SSP operations, and daily traffic volumes. However, 
currently there is not a single, comprehensive metric to evaluate 
SSP performance in response to incidents. Therefore, we 
developed a new metric that fuses these information sources in 
order to capture the overall influence of the program. The SSP 
program’s goal is to quickly respond to incidents in order to 
minimize the amount of time a vehicle is disrupting traffic. The 
ideal scenario for the SSP program would be to instantly detect 
every traffic incident. As this is not always possible, patrol 
schedules should be designed such that SSP patrollers can 
minimize the amount of time that drivers in need are waiting 
for assistance. Thus, the metric for route optimization is the 
total time a vehicle is waiting for SSP assistance or total time 
stranded. The metric combines the response time to incidents 
and the amount of incidents by summing the estimated incident 
counts per mile marker multiplied by their corresponding 
response time. This motivates the creation of shorter routes over 
mile markers with high incident counts to achieve faster 
response times. Although SSPs cannot control incident rate, 
they can control how long they take on  average to respond to 
an incident by having shorter routes. Overall, this metric gives 
a comprehensive score to route schedules which allows for 
comparison of route schedules and optimization. 

III. METHODOLOGY 
Our goal is to leverage the total time waiting metric in order 

to develop optimized patrol schedules along I-95. To do this, 
we created an optimization model using a genetic algorithm 
(GA). Inspiration for the use of a GA comes from police patrol 
routes which have used GAs in the past to optimize police 
response to crime [4]. Police routes aim to fulfill a similar goal 
to SSPs since “police must proactively patrol and prevent 
offenders from committing crimes but must also reactively 
respond to real-time incidents” [4]. Similarly, SSPs patrol for 
undetected incidents and respond to incidents where they are 
dispatched. In addition, a GA was chosen as it is flexible to fit 
with the scheduling constraints for the routes and their 
evaluation. The flexibility allowed for combining and changing 
routes to score a variety of options while maintaining the 
constraints. GAs do not guarantee that a global minimum is 
found, but they can provide an improvement. Any 
improvements can be valuable to VDOT as other optimization 
methods have not been tried for their route schedules. For 
example, the improvements could be used as a starting point for 
further optimization efforts or provide general insight to factors 
influencing route performance.  

Fig. 1. Map of I-95 in Virginia with markers sized by incident 
density. 



A GA is based on the phrase “survival of the fittest” often 
used in evolution [5]. It uses the notion that an offspring's set of 
optimization rules can derive better results than its parent by 
pulling from solutions of the parent’s set of optimization rules 
[5]. The fittest offspring in this case, which are the routes with 
the lowest wait time, get passed to the next generation and 
influence the search towards an optimal solution. GAs are 
useful in a scenario when there is limited information about 
certain separate parts of the solution [5]. For detecting 
incidents, VDOT has reliable information on daily traffic 
volumes and past detected incidents, but lacks information on 
incidents in the future which makes finding a solution more 
difficult. 

To calculate the total time stranded metric, we created 
models to estimate incident rates and response time of an SSP 
to an incident by mile marker. The incident and response time 
estimates serve as input to the GA and are the key aspects of 
scoring the route schedules. 

A. Estimating Incident Rate 
VDOT collects information about all the incidents that SSP 

patrollers respond to across the state, however the 
transportation agency may not be made aware of every incident 
that occurs. We determined that regions outside of SSP 
coverage had disproportionately lower incident counts 
compared to areas of similar traffic volume that are currently 
covered by SSP patrol schedules. This bias in the incident 
reporting illustrates the effectiveness of SSP patrollers when 
they are deployed to new coverage areas, but to find the optimal 
locations for patrol we must use statistical modeling to address 
these concerns and estimate incidents in areas that previously 
have not been covered. 

In order to predict incidents, we used VDOT daily traffic 
data. VDOT collects data on the average daily traffic volume 
broken down by the time of day and mile marker. We 
hypothesized a relationship between the daily traffic and the 
number of incidents at a specific mile marker and hour of the 
day. Below is a scatterplot displaying the relationship where 
each point on the graph represents a mile marker at a specific 
hour.  

 
Fig. 2. Scatterplot of incidents vs. traffic volume. 

The scatter plot indicates two trends in the data. We 
previously noticed a difference in the data collection processes 
of the Northern and Central region, so we proposed those 
differences may describe the two trends in the data. Below is 
the scatterplot displaying the same relationships but controlling 
for regional differences.  

 
Fig. 3. Scatterplot of incidents vs. traffic volume controlling for region. 

These trends show a relationship between traffic volume 
and incidents in both regions. However, the trend for the 
Northern region suggests that this area experiences fewer 
incidents than the Central region. Based on discussion with 
VDOT and the strong positive trend in the Central region, the 
low incident rate in the Northern region is unexpected. The 
daily traffic volumes that are experienced in Northern Virginia 
do not rationalize the vastly lower levels of observed incidents 
as compared to the Central region. In fact, more incidents would 
be expected in the Northern region based on the traffic volume. 
The discrepancy between the two regional models for incidents 
may be explained by differences in data reporting. Without 
reason to believe the Northern region has less incidents, we 
moved forward with predicting incidents using only the Central 
region. We believe that the reporting in this region is closer to 
the true level of observed incidents.  

 We determined that the most appropriate model to 
predict incident counts based on average daily traffic volume 
data is a Poisson regression model. Poisson regression is 
designed to predict count data, like incidents. Due to this, it is 
the most commonly used approach in traffic modeling. Basu 
and Saha described useful modeling techniques for traffic 
crashes that provided a basis for our investigation [6]. The 
ultimate model selected is: 

 𝑙𝑜𝑔	(𝑢'( 	) = 	1.603 + 0.0000351𝑊3 (1) 

Where 𝑢3	represents the predicted number of incidents and 𝑊3 
represents the reported average daily traffic volume. 
B. Expected Response Time 
 The VDOT reported incident data included a field for 
response time. These response times were measured from the 
time the SSP knew the incident location to when the SSP 
arrived at the scene. This resulted in reports of zero and one 
minute response times which indicated that the SSP detected 



the incident and therefore was already on scene when they knew 
the incident location. This does not represent the metric of time 
a vehicle is waiting for assistance before SSP arrival. This 
motivated the following model for expected response time.  

 The expected response time for an incident occurring within 
route coverage is modeled based on route length. The route 
length is the number of mile markers covered multiplied by two 
since the SSPs travel the route in both directions. At each mile 
marker on a given route, the time in minutes required to travel 
to any other mile marker can be calculated by multiplying the 
number of miles between the two mile markers by minutes the 
SSP can travel per mile. We set the speed of an SSP to a 
constant 55 miles per hour, since it is the minimum speed limit 
throughout I-95. Then, to calculate minutes traveled per mile, 
we divided 60 by 55 which resulted in about 1.09 minutes 
needed to travel one mile. At the time of an incident, we assume 
that the probability of an SSP being at any given mile marker is 
equal. This simplifies the response time to an average of travel 
times along a route. The minimum distance needed to travel is 
one mile and the maximum is the entire route length. The 
minimum and maximum times correspond to an incident 
happening just before or after an SSP passes it. Given route 
length n, the expected on route response time can written as: 

 45
66
∗ 8
9
∑ 𝑖9
3<5  (2) 

 The expected response time for an incident occurring 
outside of route coverage was calculated as a linearly 
interpolated value between the modelled response times of the 
closest routes in either direction plus an additional dispatch 
time. The dispatch time accounts for the time taken for an 
alternative detection source to discover the incident and report 
it to an SSP. The interpolated value then accounts for the 
response time of the dispatched SSP from the closest route to 
the incident outside of coverage.  

 The  response time is a maximum expected time as it only 
considers SSP detections for on route coverage. There are other 
methods of detection for on route incidents, such as the Virginia 
State Police, which could notify an SSP dispatcher and expedite 
the SSPs arrival. Another assumption is that the SSP will not 
see an incident in the other direction of travel and be able to 
turn around early. 

C. Optimization 
In order to schedule new optimal routes, we employed the 

use of a GA. GAs are designed to mimic Darwin’s theory of 
evolution through natural selection. The process designs an 
algorithm where “the fittest individuals are selected for 
reproduction in order to produce offspring of the next 
generation” [7]. The GA has five components: an initial 
population, fitness function, selection, crossover, and mutation. 
The initial population corresponds to randomly generated route 
schedules on the exit numbers along  I-95. Nine routes were 
used to match the current amount on I-95 and they needed to be 
at exits to ensure that the SSP vehicle can efficiently loop 
around the route. The number of start and end point groupings 
represents how many routes are in each schedule. The 
translation of the vector input (v) by mile marker used in the 
GA to the routes (r) in a schedule is in Equation 3. 

v = [51, 73, 73, 83, … , 170, 177]                 (3) 

r1 = I-95 Exit 51-73 

r2 = I-95 Exit 73-83 

rn = I-95 Exit 170-177 

The overall set of random schedules should be 
comprehensive to ensure a varied initial population. We 
generated a total of 970 schedules in the initial population. The 
schedules were created by randomly selecting the start and end 
points from a list of all of the exit numbers or subsets of the exit 
numbers to increase the variety of coverage areas.   

Next, the fitness function evaluates the metric of 
performance, defined as total time waiting for SSP assistance. 
The fitness function calculates the response time per mile 
marker based on the model described previously. It then sums 
the multiplication of the estimated response time and the 
corresponding number of incidents per mile marker to obtain 
the score. After each schedule is scored, selection occurs by 
picking the top half of the population as the parents of the 
generation. Since our initial population is 970, the algorithm 
will select the top 485 route schedules with the lowest scores.  

Crossover creates the second half of the generation, called 
offspring, by combining information from the parents. This is 
done by merging the first half of the routes from one parent and 
the second half of the routes from another parent. If the 
schedule assumptions are not preserved in an offspring, such as 
no overlapping routes, the schedule is modified. In the case of 
an overlap, the schedule will have less routes than required. 
This is solved by splitting the longest routes until the necessary 
number of routes is reached.  

Finally, mutation occurs on the offspring to preserve the 
previous best solutions, the parents. Mutation ensures diverse 
solutions and explores other potential route options that may 
not have otherwise been considered by the crossover function. 
To mutate the offspring, we change one of the start or end exit 
numbers of a route in each schedule at random. The exit number 
can change to the next or previous one or two exit numbers. 
Again, we check to ensure that the schedule assumptions are 
preserved after the mutation. Since parents are not mutated, the 
next generation will either find a more optimal solution through 
crossover and mutation, or maintain the same most optimal 
solution from the parents of the previous generation. This 
ensures that the score will not become worse over the 
generations. If crossover does not find a better solution, 
mutations on the parents would risk the previous best score to 
increase and thus make the next generation worse than before.  

The GA continues to run until the termination condition is 
reached. This occurs when the score of the most optimal 
schedule remains consistent for 50 generations. The final 
outcome is a route schedule based on exit numbers that 
minimize the total estimated time a vehicle is stranded without 
SSP assistance. 



IV. RESULTS 
The majority of VDOT’s routes on I-95 run 24 hours or 16 

hours a day and seven days a week with eight hour shifts. This 
does not account for potential variance of traffic patterns on the 
weekend or weekday or during different hours of the day. The 
results aim to determine whether there can be a significantly 
improved overall schedule and if specific schedules based on 
traffic patterns should be considered.  

Each schedule was created using a subset of estimated 
incidents that represent weekday, weekend, and each day of the 
week and are further divided into three eight hour shifts. This 
totals 27 subsets of estimated incidents per mile marker to input 
into the GA. The overall schedule was built using the sum of 
the estimated incidents.  

The significance between the fitness scores of the initial and 
overall optimized schedule was evaluated by a one sided 
Wilcoxon signed-rank test. This tested if the median of the 
differences between the current and optimal schedule scores 
can be considered greater than zero or not. A median greater 
than zero would indicate the optimal schedule has a lower, and 
therefore better, score of total time waited. The sample 
consisted of the scores of the two schedules over each of the 27 
estimated incident subsets. The assumptions of this test include 
paired samples, independent differences, and symmetric 
distribution of the paired distribution. The results showed that 
a greater difference was significant at the 0.01 level. This shows 
that the overall optimized schedule can increase performance 
despite differences in estimated incidents from varied levels of 
traffic. The average percent difference between the scores was 
a decrease of 13%. Based on the metric, this corresponds to 
saving an estimated 442,000 minutes of total time waiting for 
SSP services over one year.  

 The routes and average route lengths of the specific 
schedules provide insight on how schedules could be adjusted 
to improve performance depending on the time of day. The 
overall route and day to day specific routes cover a similar 
region to the current coverage over mile markers 50 to 177. The 
average route length of these schedules ranges from 20 to 25 
miles, which is lower than the current average of 28 miles. The 
greatest difference was in the routes generated to optimize 
response to the subset of weekday incidents. These schedules 
were concentrated from mile markers 70 to 177 with an average 
route length of 10 to 15 miles. This is reasonable as this goes 
from the beginning of Richmond and up through Northern 
Virginia, which are areas of higher traffic.  

Overall, these results recommend further consideration of 
maintaining separate weekend and weekday route schedules 
due to high traffic volume. It also supports VDOT’s current 
practice of keeping routes less than 30 miles and not having 
routes on the lower part of I-95. 

V. CONCLUSION 
Although the results can potentially save over 

400,000 minutes of drivers in need of help, the GA can reach 
far beyond the drivers of Virginia. The data-driven solution 
VDOT leaders are seeking can help save lives, improve safety, 
reduce congestion, and reduce fuel consumption. The GA can 

improve services and lower inefficiencies for any department 
of transportation looking to optimize their efforts. The system 
that was built can be applied to other patrol services like 
ambulances, food trucks, and police officers. With slight 
modifications, the system outlines the process of implementing 
a GA, from the data cleaning, boundary definitions, response 
time estimation, and incident predictions. 

VI. LIMITATIONS 
A large portion of time was spent cleaning the data and 

ensuring that it was fit to apply to a model. There is a difference 
in reporting methodology between the regions associated with 
I-95 routes that created a disparity in data which needed to be 
resolved with statistical modeling. This process, though fit to 
Interstate 95, has not been tested on other roadways. This 
creates an individualized use case that has not yet been 
evaluated on other interstates. Additionally, GAs create 
solutions that are not guaranteed most optimal, but rather work 
towards an optimum. Therefore, it is not possible to say that the 
results are the best possible solution, but rather an improvement 
in minimizing total time waiting. 

VII. FUTURE WORK 
This model for the current route can be expanded upon in 

the future to be more robust and applied to more routes. The 
model in place should fit to new data in other regions and 
expand to other routes and interstates. With more accurate 
reporting of data and equal quality reporting of data amongst all 
regions, the model can be expanded and iterated over to create 
a more precise result. The use of other tools that the VDOT 
records can be supplemental to this work. Closed Circuit 
Televisions (CCTVs), or traffic cameras, are placed along much 
of the interstate and can be used as supplementary information 
to provide real time information to SSPs. In the future, if these 
improvements are implemented, the developed models for 
predicting incidents and response time can be tested against 
new data to evaluate their performance. If the models are not 
accurate to the region of patrol, they will need to be adjusted 
accordingly based on this more precise data. 
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