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Abstract

Personal weather stations (PWSs) empower people to monitor the real-time tempera-

ture, humidity, wind speed, wind direction and rainfall of any personalized locations.

Currently, there are more than 250,000 personal weather stations across the globe,

providing rich and hyperlocal weather data. With the availability of higher spa-

tial and temporal resolution of rainfall and temperature measurements, the question

comes that should we count on them without any doubt? Even though PWSs are

user-friendly and affordable, they are owned by amateur citizens that might be lack of

professional knowledge or guidance on installation or maintenance. As a consequence,

there are ’untrustworthy’ personal weather stations, and we want to find out which

weather station we can trust and which is unreliable. We want to detect abnormal

behaviors with the data, especially rainfall and temperature data.

In this thesis, we present comprehensive methods to identify ’untrustworthy’

PWSs effectively. Our methods include two perspectives. One approach is to con-

duct hypothesis testing under time series context, which means we test each PWS

data against ground truth. Weather measurements reported by PWS can be of differ-

ent statistical properties. For example, daily maximum temperature has a seasonal

pattern and can be converted to stationary time series, so we propose the theory

for testing periodograms by smoothing, which turns out to outperform all the exist-

ing methods. Precipitation measurement, however, has its unique property of zero-

inflated distribution and non-stationarity. Tweedie distribution is introduced for the

modelling purpose, and we also convert the rainfall data to the truncated stationary

process to implement our proposed testing procedure. Based on the practical problem

that PWS has multiple weather measurements, we also propose to apply tapered test

statistic to the setting of multivariate time series. Besides, we introduce a clustering-
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based time series abnormal detection method, which is based on the assumption that

we do not have access to the outside data source as the ground truth. We apply

the proposed tapered test statistic to hierarchical clustering as modified dissimilarity

measure.

With proposed methods, as PWSs produce real-time climatological data daily, we

can generate Bayes Factors with the input data and consistently be used to quantify

the ’trustworthiness’ of PWS, as well as use clustering results for the situation where

surrounding NCDC stations are not available.
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Chapter 1

Introduction

1.1 Objective and Outline

At present, the National Climatic Data Center (NCDC) has achieved the real-time

monitoring of the essential meteorological factors such as temperature, humidity, air

pressure, wind speed, and wind direction. Despite the authority and reliability, how-

ever, there are a limited amount of NCDC stations in each city, for densely populated

areas, this coverage is far from enough. For modern weather monitor and forecasts,

it is necessary to have enough accurate weather information for improving decision-

making quality related to operation and forecast.

Personal weather stations (PWSs) provide a higher spatial and temporal resolu-

tion of temperature and rainfall measurements, empowering people to monitor the

real-time temperature, humidity, wind speed, wind direction and rainfall of any per-

sonalized locations. This hyper-local weather management for the environment made

it possible for more accurate flood prediction. Thus, it can be deployed in a large

area to improve monitoring density.

Currently, more than 250,000 personal weather stations across the globe already

1
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send data to Weather Underground. Personal weather station (PWS) is user-friendly

and affordable, as well as easy to install and manage, which enables real-time data

observation and transmission.

In our research, we pay special attention to PWS in Norfolk in Virginia state. In

general, there are 2778 stations in Virginia of the area around 42,775 square miles;

the density is one station per 15 square miles. For PWS in Norfolk area, however,

the density is much higher of 1 station per 2.90 square miles, since there are 33

stations in 96 square miles area. Among them, there are 21 (63.6%) stations started

from 2015-2018 (7 stations/year, compared to 0.5 stations/year from 2003-2015). The

spread-out plot of PWS is shown in Figure 1.3.

The motivating example comes from the underground weather station daily rain-

fall data and temperature data in Norfolk, Virginia. Norfolk is located on the coast,

and the city has a long history as a strategic military and transportation point. The

largest Navy base in the world, Naval Station Norfolk, is located in Norfolk along

with one of NATO’s two Strategic Command headquarters. However, it suffers from

coastal flooding due to land subsidence and sea-level rise, making it an ideal motivat-

ing example for testing the proposed methods. We can access and extract real-time

and historical data through websites or API of the personal weather station. How-

ever, with the availability of user-friendly and affordable weather stations and rapid

growth of weather enthusiasts, challenges arise concerning the trustworthiness issues.

Low-cost meteorological devices are vulnerable to external variables, which might

lead to discrepancies between the measured data and the standard data because of

its unstable performance. Unlike the professional stations owned and managed by

experts, there are ’untrustworthy’ personal weather stations. We intend to detect

abnormal behaviors with the data, especially the rainfall and temperature data. Cur-

rently, there lack well-defined tools and methods to measure the trustworthiness of
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Figure 1.1: Personal Weather Station

the crowdsourced data in real-time, and barriers exist in capturing the integrity of

published data by PWSs.

In the thesis, we propose to come up with methods of standardized evaluation

of PWSs at large scales. To begin with, the crucial step is to define the anomaly

of PWSs. Two approaches to capturing the abnormal behavior will be provided

in our research. The first approach is based on the comparison of PWS weather

measurement with official data sources. National Climatic Data Center (NCDC) is

the most comprehensive, accessible, and trusted source of state-of-the-art historical

weather data for climate monitoring, which provides quality controlled daily, monthly,

seasonal, and yearly historical measurements such as temperature, precipitation as a

baseline. Despite its authority and reliability, however, there are a limited amount

of NCDC stations in each city. Thus the weather measurements can not achieve

the granularity as PWSs. With the belief that similar locations should share similar

weather patterns, one way of detecting suspicious PWS is to conduct time-series

hypothesis testing with NCDC data, and for those labelled as ’alternative hypothesis’

time-series data, it will be labelled as ’untrustworthy’ ones.

The second approach, however, can be applied to the scenario that we do not have
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Figure 1.2: Geographical distribution of PWS and NCDC in Norfolk
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Figure 1.3: PWS and NCDC in Norfolk

access to the outer data source as the ground truth. Instead of comparison of time

series, we implement time series clustering of the weather time series historical data

in the same region, with the belief that stations within the cluster, if appropriately

worked, should report similar weather measurements. Then we investigate the pattern

within each cluster and detect abnormal ones. Ideally, if an abnormality exists, they

should be clustered apart from the majority of the data. Existing methods also have

limitations for this problem, for the reason that clustering methods on time series are

different from other types of data since time-series data has strong dependencies and

unique properties.

The distribution of PWS and NCDC weather stations is shown in Figure 1.2 ,



5

40

60

80

100

Jan 2017 Apr 2017 Jul 2017 Oct 2017 Jan 2018

date

v
a

lu
e

station

IDW

KVANORFO22

KVANORFO22 and IDW Time Series

40

60

80

100

Jan 2017 Apr 2017 Jul 2017 Oct 2017 Jan 2018

date

v
a

lu
e

station

IDW

KVANORFO72

KVANORFO72 and IDW Time Series

Figure 1.4: Time Series Plot of PWS vs IDW for Max Temperature (Green for PWS,
Red for IDW)

which illustrates they share very similar geographical locations. In Figure 1.3, we

take PWS KVANORFO22 and NCDC USW00013750 as example, and draw the time

series plot and ACF, PACF plots to visualize the comparison of two weather stations.

In our research, geographical difference is also handled by means that observations

of NCDC stations being interpolated at gridded locations using technique such as

Inverse Distance Weighting (IDW), so that we can derive the ground truth based on

NCDC for testing the reliance of PWSs. Figure 1.4 shows the time series plot of PWS

compared with interpolated IDW time series.

In this work, to address the first problem, we propose the theory for testing pe-

riodograms by smoothing and introduce Bayesian testing framework to time series

setting, and also propose to apply our tapered test statistic to the setting of multi-

variate time series. We want to come up with an end-to-end framework for hypothesis

testing problems in the time series context. This approach also brings in the challenge

that existing testing procedures for assessing whether two stationary time series have

the same dynamics lose power for the periodogram-based test, for the reason that the

periodogram is not a consistent estimator of the spectral density. It also brings in

the issue of high-dimensionality, which motivates incorporating tapered weights, em-
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Figure 1.5: Time Series Plot of Precipitation of KVANORFO72

phasizing low-frequency periodic shapes over high-frequency periodic shapes, which

is critical for avoiding accumulating stochastic errors for the high-dimensional data.

Weather measurements such as daily maximum temperature and daily minimum tem-

perature have strong seasonality and can be easily converted to stationary time series,

so we propose the theory for testing periodograms by smoothing for temperature-

related measurements. Precipitation measurement, however, has its unique property

of zero-inflated distribution and non-stationarity, as shown in Figure 1.5, so in this

case, the two-step hypothesis testing procedure will be introduced. In the first step,

we reduce data to indicators of the presence or absence of precipitation and carry out

analysis for binary time series. On condition that the binary time series can pass the

test, we will apply our analysis for the non-zero subspace of precipitation data.

To solve the second problem, we propose methods by applying the proposed ta-

pered test statistic to hierarchical clustering as modified dissimilarity measure to

identify the cluster with abnormal behaviors.

With proposed methods, in real settings, the goal is to assign each PWS a label

to distinguish whether it is trustworthy or not based on the data stream it provides
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to the network. Once data has been collected, preprocessing methods will be applied,

such as spatial interpolation and outlier detection. There are three testing problems

and a clustering problem:

1. Hypothesis testing on temperature data

2. Hypothesis testing on precipitation data

3. Hypothesis testing on multivariate data

4. Time-series clustering-based abnormal detection

The first three approaches are established on the grounds that the underlying

truth on the PWS is given, and Bayesian testing procedure is carried out to generate

Bayes Factors individually, which can ’quantify’ the evidence of whether or not sup-

porting the null hypothesis for each PWS. Hypothesis testing on temperature data

lays out the foundation of this thesis, for the reason that temperature data, after pre-

processing steps of interpolation and outlier removal as well as transformation, can

be converted to stationary time series, thus we can use periodogram-based methods

with tapering technique to conduct the hypothesis testing framework. Hypothesis

testing on precipitation data is more relevant to the problem of our concern, since

it directly apply to rainfall data and can give us informational result on flood mon-

itoring and prediction. Hypothesis testing on multivariate data is motivated by the

practical situation that weather stations report multiple weather measurements such

as minimum temperature, maximum temperature and average temperature, and this

approach can compare multiple weather measurements jointly and test whether their

underlying spectral matrices are the same. Bayesian approach to the correction of

multiplicity is proposed to handle the multiple testing problem. For each of these

three tests, Bayes Factors (BF) are calculated to ’quantify’ our belief for each scene-

rio. For those classified as ’alternative hypothesis’ time-series data, it will be labelled

as ’untrustworthy’. The fourth approach, time series clustering based abnormal de-
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tection, models PWSs in the same district jointly and output multiple clusters so that

we can further investigate into the pattern within each cluster. If abnormality exists,

they should be clustered apart from the majority of the data.

Our methods can be used for consistently producing real-time Bayes Factors to

achieve a standardized evaluation of PWSs at large scales. The entire toolbox works

in this fashion: first of all, historical time series data of PWSs of our interest and

surrounding NCDC stations within the same region is collected, along with their ge-

ographical information for the data interpolation purpose. Once the data has been

collected, preprocessing techniques such as missing value imputation, outlier detec-

tion and changepoint detection is applied. In the next step, three hypothesis testing

processes are implemented, and Bayes Factors are calculated correspondingly. Fur-

thermore, clustering-based abnormal detection as complementary methods. This pro-

cess can help us achieve real-time monitoring of the integrity of published data by

PWSs. The workflow is shown in Figure 1.6.
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Chapter 2

Personal Weather Station

Temporal Data

From the previous chapter, we introduce the testing framework of comparing Personal

Weather Stations (PWS) with the National Climatic Data Center (NCDC) as the

accurate underlying distribution. However, before we jump to the modelling part,

there are several preprocessing steps we have to follow along, including the spatial

interpolation and outlier detection, as well as change-point detection.

2.1 Hypothesis Testing With Spatial Interpolation

In the proposal, among more than 40 NCDC stations in Norfolk area, we choose one

of the NCDC as the ground truth and implement our proposed model, with the belief

that weather measurements within the same region should share a similar pattern.

However, such approach did not take into consideration of the fact that geographical

difference between given PWS and NCDC might introduce some random error which

will cause bias to the hypothesis testing results, for the reason that there is the spatial

10
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difference among the stations, there should be minor difference in their underlying

distribution.

Multiple NCDC stations are distributed in various locations in Norfolk, providing

real-time climatological and meteorological data. PWS covers the personal residences

of finer granularity, in order to derive the time series for any location of PWS as similar

as the accurate underlying distribution, the observations of NCDC stations need to be

interpolated at gridded locations using a technique such as Inverse Distance Weighting

(IDW).

2.1.1 Inverse Distance Weighting (IDW)

Introduced by Burrough and McDonnell (1998), inverse distance weighting (IDW)

method, with the advantage of easy to implement and fast computation, as well as

straightforward to interpret, has been widely used in the context of spatial interpola-

tion. Based on the assumption that the attribute value of an unsampled point is the

weighted average of known values within the neighbourhood, the weights are inversely

related to the distances between the prediction location and the sampled locations.

Mathematically, the unknown value ŷpS0q is represented by a linear combination of

the weights and observed y values at sampled locations Si:

ŷpS0q “

n
ÿ

i“1

λiypSiq

where λi is defined as:

λi “ d´α0i {

n
ÿ

i

d´α0i
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with
řn
i λi “ 1. In which S0 denotes the location of the PWS where we desire to

test the ’trustworthiness’, which can be regarded as an interpolated (arbitrary) point,

Si is the location of NCDC, and is an interpolating (known) point, d is the distance

measure from the known point Si to the unknown point S0, n is the total number

of NCDC stations used in interpolation and α is a positive real number, called the

power parameter. With the distance d increases from the interpolated point, the

weight parameter λi decreases. The greater value of α assigns a higher weight to

stations closer to the interpolated point.

In our research, since multiple stations can be observed with the latitude and

longitude information, which makes it feasible to apply IDW based on neighbouring

stations to make an estimate of the measurement at the station of interest, with the

belief that weather measurement values at nearby locations will be similar.

In the case study of Norfolk area, take the station KVANORFO72 as a motivat-

ing example, the neighbouring NCDC stations is distributed as on the left side of

Figure 2.1, while the corresponding time series plot is on the right side. In the year

2017, the NCDC stations share a quite similar pattern with a small variation. To
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get the interpolated value for PWS KVANORFO72 with longitude 36.938 and lati-

tude -76.262, we apply IDW to interpolate those NCDC stations to the coordinates

of PWS in order to get the derived time-series data at the given spatial grid. The

time series plot of interpolated value by IDW and the several typical PWS is shown

in Figure 2.2. Based on visual inspection, it seems that PWS KVANORFO22 is con-

sistent with IDW time series, while there is some discrepancies with KVANORFO72.

KVANORFO69, however, seems hard to draw a decision based on eyeballing. Thus

our modelling procedure will take into effect for such scenarios.

2.2 Formulation on ’Abnormal’ PWS

In this section, we will take a closer look at the data, to understand the pattern and

look into outliers. Figure 2.3 shows the daily maximum temperature time series plot

of PWS in the Norfolk area compared with NCDC data. It is noteworthy that some

stations such as KVANORFO20, KVANORFO72 and KVANORFO305 have several

very distinct outliers, which can significantly influence the outcome of abnormal de-

tection, even though the rest part seems consistent with NCDC time series data.

Figure 2.3 is the plot on a daily scale, still taking PWS KVANORFO72 as an

example, since there are several suspicious spikes among the data for the daily maxi-

mum temperature, to figure out mechanics for those outliers, we also extract the data

from Weather Underground API, which provides real-time measurement for every 15

minutes. In Figure 2.4, the top plot is the time series of maximum temperature for

every 15 minutes over the period from 2017 January to 2019 March. There are two

discrepant parts which look suspicious, and the left bottom and right bottom plots

are the enlarged plots of those two time periods with abnormalities. We discover

that during February 2018, there are two measurements significantly low compared
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Figure 2.2: Time Series Plot of PWS vs IDW for Max Temperature (Green for PWS,
Red for IDW)
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Figure 2.3: Time Series Plot of PWS vs NCDC for Max Temperature (Blue for NCDC,
Red for PWS)

with neighbouring points, and during 2018 December and 2019 January, there are

several suspiciously high and low spikes, as well as a portion of missing values. In a

word, the existence of values that deviate a lot from neighbouring points and missing

values makes it essential to add data preprocessing part before the modelling part,

to successfully identify the outliers and diminish the bias of the model introduced by

the suspicious outliers.

2.2.1 Outlier Detection

In the domain of time series outlier detection, the challenge arises concerning treating

data with temporal dependencies and seasonal variations, as well as how to find sur-

prising instances efficiently. Many temporal anomaly detection techniques have been

proposed in a variety of research disciplines including data mining, environmental

science and spatio-temporal mining.

Grubbs (1950) introduced the Grubbs test for the univariate sample set to identify
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Figure 2.4: Time Series Plot of KVANORFO72 (Top) and Outlier Parts (Bottom)
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Figure 2.5: Data Distribution of KVANORFO72 Daily Maximum Temperature

the largest anomaly. The basic assumption is that the underlying data distribution

is normal, and the hypothesis is :

H0 : There are no outliers in the data set

vs

HA : There is at least one outlier in the data

The Grubbs’ test statistic is defined as follows:

C “
maxt |xt ´ x̄|

s

in which x̄ is the mean and s is the variance of time series X. The hypothesis is
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rejected at α if:

C ą
N ´ 1
?
N

d

ptα{p2Nq,N´2q2

N ´ 2` ptα{p2Nq,N´2q2

In other words, Grubbs’ test measures whether the minimum or maximum deviates

from the mean value with a suspicious extent. However, in the practical context,

instead of a single outlier, quite often there are multiple outliers in the given time

series. Rosner (1975) introduced the Extreme Studentized Deviate test (ESD), which

computes the following test statistic for the k most extreme values in the data set:

Ck “
maxk |xk ´ x̄|

s

The test statistic is then compared with a critical value:

λk “
pn´ kqtp,n´k´1

b

pn´ k ´ 1` t2p,n´k´1qpn´ k ` 1q

ESD repeats this process k times, with the number of anomalies equal to the

largest k such that Ck ą k.

In practice, when we want to apply the abnormal detection techniques to weather

data, two significant challenges arise: The first challenge is that weather data, espe-

cially temperature, displays substantial seasonality. Grubbs and ESD testing proce-

dure can potentially be used for detecting multiple anomalies. However, it is ill-suited

for capturing seasonal anomalies, for the reason that ESD test is used to detect one

or more outliers in a univariate data set that follows an approximately normal dis-

tribution, so it can not deal with seasonal data successfully. Another challenge is

that temperature data exhibits multimodal data distribution, as shown in Figure 2.5,
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which violates the normal distribution assumed for the ESD test.

To address those challenges, Hochenbaum (2017) adopted the time series decom-

position, to decompose the given time series X into three components to compute

the residuals:

RX “ X ´ TX ´ SX

in which RX is the residual, SX and TX denotes seasonal component and trend

component respectively. ESD is then applied to the residual component to detect

anomalies, which is referred to as Seasonal-ESD (S-ESD). Seasonal decomposition is

employed to filter the trend and seasonal components of the time series, followed by

the use of robust statistical metrics – median and median absolute deviation (MAD)

to accurately detect anomalies, including some unusual noise and breakdown.

Figure 2.6 is the outlier detection result by applying Hochenbaum (2017)’s method

to KVANORFO72 on both daily scale and 15-minute scale of the maximum temper-

ature. The top plot shows that the two abnormal periods at the end of the year

2017 and 2018 can be captured, the bottom plot shows more outliers on the finer

granularity.

2.3 Changepoint Detection

In our proposed methods, we come up with the theory for testing periodograms

by smoothing and introduce Bayes Factor to measure our ’belief’ on the likelihood of

PWS abnormality. However, this process is to use all of the time-series data generated

by each PWS as input, although in the previous section, the influence of existence

of outliers can be removed by adding step for outlier detection. Such modelling
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procedure may lose some information on the time series pieces. For example, when

we look into the case for KVANORFO305 from Figure 2.3, it’s noteworthy that some

pieces of time series data seem to be consistent with interpolated NCDC time series,

and some part of the data in the latter part of the year 2018 seem to be higher

than NCDC data. It motivates our curiosity of developing the changepoint detection

procedure to better capture the dynamics of the time series.

Bayesian partitioning models partition the entire sequentially observed data into

disjoint clusters (temporal clusters). The timestamp when a cluster ends and another

one starts is called a ’change point’. Within each cluster, the sequential observations

can be treated as independent and identically distributed random variables, following

a single distribution such as the normal or Poisson distribution. The main inferential

problem is the estimation of the number and locations.

2.3.1 Changes In Mean

We can analyze time-series data by partitioning the observations into disjoint con-

tiguous segments, referred to as temporal clusters. Within each cluster, it is assumed

that the data are independent and identically distributed random variables with a

normal distribution.

Barry and Hartigan (1992) proposed the product partition model (PPM) to iden-

tify multiple change points in normal means with common variance. The setting is to

consider the time series tY1, Y2, ..., Ynu, given a partition π “ tC1, ..., Ccu, c P I, there

are common parameters µCj for j “ 1, ..., c which indexes the conditional density of

YCj. GCj denotes the prior cohesion function associated with the block Cj, then the
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prior distribution of π “ tC1, ..., Ccu following the distribution:

P pπ “ tC1, ..., Ccuq “
K

śc
j“1GCj

ř

C K
śl

j“1GCj

(2.1)

Conditional on π, the sequence Y1,...,Yn has the joint density given by

P py|π “ tC1, ..., Ccuq “
c
ź

i“1

fpyCiq (2.2)

Under the PPM, the posteriors distribution can be written as:

P pπ “ tC1, ..., Ccu|yq “
c
ź

i“1

GCjfpyCiq (2.3)

In the PPM model, the key assumption is that with µ1, ..., µn given, random

variables Y1, ..., Yn are independently distributed. However, this assumption might

be too restricted for the problem. Given the fact that there exists a minor difference

in the geographical locations, instead of fixing a constant value for each µi within a

cluster, we want to model it as vary smoothly within one cluster.

Monteiro, etal. (2011) extended the product partition model (PPM) by intro-

ducing a one-dimensional version of the intrinsic conditional autoregressive (ICAR)

model as prior distribution:

fpµ|π, τµq9τ
pn´cq{2
µ expt

τµ
2

n´1
ÿ

i“1

δipµi ´ µi`1q
2
u

n
ź

i“1

1Spµiq (2.4)

The spatial difference is modelled conditionally in ICAR model that random ef-

fect in a given area depends on a small set of neighbouring values. Monteiro, et al.

(2011) introduced the framework to both Poisson and normal cases. In the context

of abnormal weather station detection, since the difference between PWS and NCDC
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may have non-positive values so that we would adopt the scenario of Normal distri-

bution for the sample distributions. The set up is to suppose given µ “ tµ1, ..., µnu

and τy, the random variables Y1,...,Yn follows that Yi|µi, τy „ Npµi, τ
´1
y q. With the

prior specification that τy „ Gammapt, µq, the posterior distribution for parameters

θ “ pµ, τy, π, p, τµq is calculated as:

P9fpY |µ, τyqfpµ|τµ, πqP pπ|pqfpτyqfppqfpτµq

9 expt´
τy
2
p

n
ÿ

i“1

pyi ´ µiq
2
` 2µqu expt´τµp

n´1
ÿ

i“1

δipµi ´ µi`1q
2
` squ

˚ τ pn`2t´2q{2τ
pn´c`2r´2q{2
µ pn`a´c´1p1´pqc`b´2

y

(2.5)

Since the above posterior distributions do not have a closed form, Markov chain

Monte Carlo (MCMC) methods have been applied. A Gibbs sampler approximates

the posteriors for the other parameters.

Figure 2.7 is the result by applying Monteiro, etc.(2011)’s approach to the dif-

ference between KVANORFO72 and IDW data to detect the change points. Several

distinct points can be detected as changepoint, such as the point on timestamp 146.
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Chapter 3

Models and Asymptotics for Time

Series Testing Problem

3.1 Introduction

The comparison and clustering of different time series is an important topic in statis-

tical data analysis. In this section, the methodology of PWS-NCDC comparison has

been developed. Fundamentally, time series data of PWS and NCDC stations will be

compared through hypothesis testing procedure. Our research proposes to identify

similarities or dissimilarities between PWS-NCDC time series data by comparing the

entire auto-covariance structure of two time series, which can be effectively done in

the frequency domain by comparing their spectral characteristics.

In the field of economy, finance and healthcare, e.g. inflation, interest rates,

EEG data, exhibit slow decay in correlation, so parametric model may lose power,

since in general, parametric approach is likely to give a more powerful test when

the parametric assumptions are approximately valid and it is hard to be achieved

with complex data patterns. Thus, the tendency is to use a flexible, non-parametric

25
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approach. Therefore, we devise an “optimal tapering test” based on kernel smoothing

model using the “optimal bandwidth”.

This chapter overviews testing procedures for assessing whether two stationary

time series have the same dynamics (or equivalent autocovariances at all lags). The

context is as follows:

Consider two stationary and independent series tXtu and tYtu, with autocovari-

ance functions γXphq, γY phq respectively at lag h. The spectral density function

fXpωq defined by fXpωq “
1
2π

ř8

h“´8 γXphqe
´iωh, in which ω is the frequency, γXphq

is the auto-covariance function at lag h, and e´iωh denotes complex exponentiation.

Spectral density f1pωq is known to characterize the process’s auto-covariance function

and the entirety of its distributional properties. We can regard spectral density as

Fourier transformation of autocovariance. To test for equality or non-equality of the

spectral densities across all frequencies, we have:

H0 : f1pωq “ f2pωq, for all ω P p0, πq

H1 : f1pωq ‰ f2pωq, for some ω P p0, πq

where f1pωq and f2pωq are spectral density functions of these two time series process

tXtu and tYtu, respectively.

Since the spectral density is unknown, we need to estimate it. The periodogram

is a commonly used way of estimating the spectral density. The periodogram of

a time-series is the sample analogue of the spectral density. For time-series tXiu,

the periodogram at frequency ωij “ 2πj{ni, for j “ 0, . . . , rni{2s, where ωi,j is a

uniform grid of points in p´π, πq, is Iipωijq “
ř

|k|ăni
γ̂ipkqe

´ikωij , in which γ̂ipkq “
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n´1i
řni´k
t“1 pXit`k ´ X iqpXit ´ X iq for k ě 0, γ̂ipkq “ γ̂ip´kq for k ă 0, and X i “

n´1i
řni
t“1Xt.

Though a periodogram intuitively estimates its underlying spectral density, it

is well known that variability in Iipωjq does not vanish as ni grows large, which

means the periodogram is an unbiased but non-consistent estimate of spectral density,

hence it cannot estimate fipωjq with asymptotic consistency. A common technique to

adjust this shortcoming in the development of nonparametric time-series procedures

is to substitute a smoothed periodogram for the raw periodogram. We explore this

technique within an adaptation of nonparametric testing methodology developed in

Spitzner (2008), in which tuning parameters are determined using asymptotic “rates-

of-testing” theory. We will refer to Spitzner’s (2008) procedure as a “tapering” test,

motivated by its form, which will be described soon in detail.

The remainder of the chapter is organized as follows. In Section 3.2 we discuss

briefly previous test statistics in time series and present Spitzner’s tapering test and

rate-of-testing theory, which lay out the theorectical ground for our proposed method.

In Section 3.3 we discuss the models and asymptotics for the proposed block average

model and kernel smoothing model, and derive the optimal tapering test based on

the optimal bandwidth. In Section 3.4 we present results from comprehensive power

study.

3.2 Literature Review

3.2.1 Test Statistics

The problem of identifying similarities or dissimilarities in time series data has been

widely studied in the statistical research. Early work on this topic is described in



28

Coates and Diggle (1986), they considered a number of periodogram-based tests of the

hypthesis that two independent time series tXt : t “ 1, ..., nu and tYt : t “ 1, ..., nu are

realizations of the same stationary process. Their motivation arises from the context

to test whether or not there are significant differences between the wall thickness of

a gas pipe at two different locations. Their test is based on the range of periodogram

ratios with the test statistics:

R “ maxtlog
I1pωjq

I2pωjq
u ´mintlog

I1pωjq

I2pωjq
u

This test statistic is extremely weak and can not provide an accurate solution to the

time series testing problem. A semiparametric procedure is also proposed by Coates

and Diggle (1986), which is based on the model that the underlying spectral densities

fXpωq and fY pωq are related via the equation:

fY pωq “ fXpωq exppα ` βω ` γω2
q

However, semi-parametric approach is likely to give a more powerful test when the

parametric assumptions are approximately valid.

Motivated by the problem in the analysis of hormonal time series data, Diggle

and Fisher (1991) developed graphical techniques to test the hypothesis that the two

underlying spectral densities are the same. They adapted techniques such as the

Kolmogorov-Smirnov and Cramer-Von Mises tests to the analysis of periodograms to

access departure, which is based on empirical spectral distribution as follows:

Dm “ sup |F1pωq ´ F2pωq|
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where

F1pωjq “
j
ÿ

i“1

I1pωiq{
pn
ÿ

i“1

I1pωiq

F2pωjq “
j
ÿ

i“1

I2pωiq{
pn
ÿ

i“1

I2pωiq

The use of normalized cumulative periodograms implies that they wish to identify

only shape difference between the two underlying spectral. Although this approach

refrains from the need for the subjective smoothing, it only uses the normalized

cumulative periodogram, so they can only detect shape rather than scale difference

between the two underlying spectral. Diggle and Fisher (1991) deliberately used test

statistics which are insensitive against alternatives of the form Xpωq “ cfY pωq for

all ω, where c. When pure scale difference between two underlying process is to be

detected, however, the test statistic Dm then seems less natural.

Driven by the need to identify a good climatological reference series for a given

station, Lund, et al. (2009) considered the test statistics Dl “ lnpIXpωlqq´lnpIY pωlqq.

Under the null hypothesis H0, the Dl follow log-logistic distribution. The sample

average of absolute deviation is:

D “
1

n{2´ 1

n{2´1
ÿ

l“1

|Dl|

Large values of D support rejection of equivalent autocovariances. However, Lund,

et al. (2009) ponits out that the test statistic D has relatively low power, so they

considered test statistics in the time domain to access whether two stationary and

independent time series have the same autocovariance at all lags. Lund. et al. (2009)
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demonstrated that the above time domain based test statistic C performs better than

frequency domain test statistics D in terms of power. Nevertheless, C depends on

the selection of smoothing parameter L, which is subjective.

Lu and Li (2013) developed new adaptive tests which do not depend on the choices

of unknown parameters. The work is inspired by Fan (1996)’s Adaptive Neyman

Test (ANT). The original context of ANT is goodness-of-fit testing, nonparametric

regression, and functional data analysis. Lu and Li (2013) applied ANT to the log-

ratio periodogram test for assessing whether two stationary and independent time

series have the same spectral densities. The frequency domain test is defined through

the test statistic:

TA,N
˚
“ max

1ďkďNM

1

2kσ̂4

k
ÿ

i“1

ppDiq
2
´ σ̂2

q

where

σ̂2
“

1

Nm ´ Im

Nm
ÿ

i“INm`1

pDiq
2
´ p

1

Nm ´ Im

Nm
ÿ

i“INm`1

Di
2
q

Based on this statistic, they normalize the test statistic to obtain:

TA,N “
a

2 log logpNmqTA,N
˚
´ t2 log logpNmq ` .5 log log logpNmq ´ .5 logp4πqu

Therefore, for the hypotheses H0 and H1, large values of TA,N tend to reject H0.

The main contribution of Lu and Li (2013)’s approach is that the test statistics

are completely data-driven, since the approach does not crucially depend on any

parameter selection. However, for the reason that periodogram is not consistent

estimator, the lack of asymptotic consistency of the periodogram is mishandled by

Lu and Li (2013), thus preventing the ANT from carrying over at full strength in their
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adaptation. A revised procedure derived from a smoothed periodogram is proposed

as a more suitable analogue, and we propose to adapt Spitzner’s tapering technique

to the time series setting with the use of rates-of-testing theory as a guide. In the

following part I’ll review Spitzner’s tapering test and rates-of-testing theory.

3.2.2 Spitzner’s Tapering Test

Spitzner (2008)’s tapering test is developed under the similar context as of Fan

(1996)’s method, i.e., goodness-of-fit testing, nonparametric regression, and func-

tional data analysis. Under suitable stationarity assumptions, asymptotic theory

establishes an approximate model for this scenario given by

Yj “
?
nθj ` σεj,

in which the θj are the parameters of interest, σ is a fixed scale parameter, and

the εj are zero-mean, unit-variance, independent and identically distributed random

variables. The objective of inference is to test the hypotheses:

H0 : θj “ 0 for every j “ 1, . . . , p

H1 : θj ‰ 0 for some j “ 1, . . . , p

The test statistic based on the quadratic form are constructed as:

Q “

p
ÿ

j“1

wjY
2
j , (3.1)
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whose weights, wj, are presumed to “taper” to zero, in the sense that wj Ñ 0 as

j Ñ 8. The value Yj is the j’th of a set of Fourier coefficient summaries. The impact

of incorporating tapered weights is to emphasize low-frequency periodic shapes over

high-frequency periodic shapes, which is critical for avoiding accumulating stochastic

errors for the high-dimensional data (i.e., when p is large). Spitzner (2008) identifies a

preferred choice of the weights, given by wj “ j´1{2 under the rates-of-testing theory,

whose details are described below.

Our interest in comparing spectral density thus originated from how well Spitzner’s

tapering test would adapt to the time-series context.

3.2.3 Rate of Testing Theory

The rates-of-testing theory provides a formal setup for deducing the asymptotic per-

formance of models. A geometric constraint is imposed on the parameter space that

may be interpreted as a “smoothness constraint” on the functional mean parameter.

Suppose the sequence θ “ pθ1, θ2, ...q is bounded with respect to a Sobolev-type norm:

Bs,M “ pθ1, θ2, ...q :

g

f

f

e

8
ÿ

j“1

j2sθ2j ďM (3.2)

Within this framework, asymptotic performance is evaluated through sequences δn

such that δn Ñ 0 as n Ñ 8. A satisfactory procedure must retain statistical power

across all parameter values at minimum distance δn from the null hypotheses. Within

this framework, asymptotic performance is evaluated through sequences δn such that

δn Ñ 0 as n Ñ 8. A satisfactory procedure must retain statistical power across all

parameter values at minimum distance δn from the null hypotheses. In frequentist
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terms, this requirement is precisely stated according to

inf
θPH1pδn{δ‹n;s,Mq

Pθr“reject H0”s Ñ 1 for every δ˚n Ñ 0 (3.3)

where

H1pδ; s,Mq “ tθ :
ÿ

j

θ2j ě δ2 and

d

ÿ

j

j2sθ2j ďMu (3.4)

Stronger performing procedures are those satisfying the requirement for sequences,

δn, that tend to zero at faster rates. Performance limits of various types are deduced

in Ingster (1993), Spokoiny (1996), and Spitzner (2008).

Earlier papers by Ingster (1993) and by Lepski and Spokoiny (1995b) evaluated

the minimax rate of testing for this problem:

xδMn psq “ n´2s{p4s`1q (3.5)

xδMn psq is commonly expressed as the minimax rate for geometry Bs,M at specific s.

However, it was shown that both the optimal rate of testing and the structure of

optimal (in rate) tests depend on smoothness parameters which are usually unknown

in practical applications.

To address this issue, Spokoiny (1996) considered the problem of adaptive (as-

sumption free) testing, and he came up with the optimal adaptive rate defined based

on the adaptive factor. Spokoiny (1996) showed that for the problem under con-

sideration the minimal adaptive factor is plog log ε´2q1{4, and he defined the optimal

adaptive rate of testing as below:

yδAMn psq “ rn2
plog log nq´1s4s{p4s`1q across s˚ ă s ă s˚ (3.6)
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This optimal adaptive rate of testing is restricting the unknown smoothness parameter

s to the interval ps˚, s
˚q, in which s˚ and s˚ are two known constants. It is shown

that adaptive testing without loss of efficiency is impossible. An extra log log-factor

is inessential but unavoidable payment for the adaptation. A simple adaptive test

based on wavelet technique is constructed which is nearly minimax for a wide range

of Besov classes. The rate yδAMn psq is commonly expressed as the adaptive minimax

rate for geometry Bs,M across s˚ ă s ă s˚.

Spitzner (2008) proved that no tapering test with rate δn goest to 0 faster than

xδQn psq “ rn
2
plog nq´1s´s{p4s`1q across s˚ ă s ă s˚ (3.7)

Although compared with Ingster’s minimax rate in (3.5) and Spokoiny’s adaptive

minimax rate in (3.6), the rate (3.7) is slower than both of them. But xδQn psq al-

ready represents an adaptively optimal configuration among tests based on tapering.

Spitzner (2008) shows that the test QOPT
n has superior power against a class of alter-

natives in a non-asymptotic context.•

3.3 Models and Asymptotics

3.3.1 Models and Asymptotics: Kernel Smoothing Periodogram

The goal of our proposed method is to develop a new powerful test based on ’rate

of testing’ theory. Although Spitzner’s tapering test was originally proposed in func-

tional data analysis framework, we can still borrow the idea of tapering and try

to identify suitable definitions of those quantities for time series problems. Thus,

our testing procedures will be derived from Spitzner’s tapering test based on certain

transformation of periodograms.
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For the moment, let us suppose the lengths of series are equal, so n “ n1 “ n2,

and the raw periodogram values of both time series are calculated at the same set of

frequencies, ωj “ 2πj{n for j “ 0, . . . , rn{2s. It is then possible to define summary

coefficients according to

Yj “ log I1pωjq ´ log I2pωjq, (3.8)

Statistical properties of the Yj in (3.8) may be understood from asymptotic analysis

of the periodogram: as nÑ 8 and ωj Ñ ω P p0, 2πq, it is known that

log I2pωjq Ñ πfipωjqχ
2
2, (3.9)

where convergence is “in distribution” and χ2
2 is a chi-square random variable with

two degrees of freedom. The coefficients are moreover asymptotically independent

when the corresponding ωj have distinct limits. An approximate model for (3.8) is

therefore given by

Yj “ θj ` σεj, (3.10)

where θj “ log f1pωjq´ log f2pωjq, σ
2 “ π2{3, and the εj are zero-mean, unit-variance,

independent and identically distributed random variables.

Pan (2016) explored the tapering test based on the model of raw log-periodograms

as estimates for log-spectrums, in which the tapering test statistic is constructed in

the form of a tapered sum of squared summary coecients Yjs as in (11). Pan (2016)

proved it will never satisfy the rate of testing criteria, since the tapering test based

on non-consistent estimates of log-spectrum will always be sub-optimal to the test

based on model based on consistent estimates.
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To avoid the deficiency when the Yj are formulated from raw periodograms, the

proposed approach instead reformulates the Yj in a manner directly paralleling (3.8),

but on smoothed periodograms. The advantage over using raw periodograms is

twofold: primarily, a smoothed periodogram, when suitably constructed, is an asymp-

totically consistent estimate of its underlying spectral density (provided that density

is also smooth), which admits consideration of asymptotic performance concepts used

in rates of testing theory; secondly, a smoothed periodogram may be calculated at any

frequency, ω, which provides a means of extension to the case of unequal time-series

lengths, n1 ‰ n2.

To take a closer look at the “rate of testing” criteria, let’s firstly write it into two

equivalent conditions involving the asymptotic mean and variance of Qn.

Theorem 3.3.1. Suppose the hypotheses H0 vs H1 are to be tested under the Neyman-

Pearson framework on the basis of a statistic Qn and rejection rule such that H0 is

rejected when Qn is large. For fixed smoothness parameter s ą 1{2 and M ą 0, and

some positive sequence δn Ñ 0, the rate of testing criteria holds for the test statistic

Qn if and only if

inf
θPH1pδn{δ‹n;s,Mq

EH1´0pQnq{
a

V arH0pQnq Ñ 8

and

inf
θPH1pδn{δ‹n;s,Mq

EH1´0pQnq{
a

V arH1´0pQnq Ñ 8
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where

EH1´0pQnq “ EH1pQnq ´ EH0pQnq

V arH1´0pQnq “ V arH1pQnq ´ V arH0pQnq

Theorem 3.3.1 provides the equivalent conditions of “rate of testing” criteria rep-

resented in the form of Qn, which will be used for getting the optimal bandwidth as

will be discussed below.

In this section, we are trying to develop the tapering test under time series context.

Since the model based on the raw periodogram as the estimate for spectrum suffers

from the inefficiency problem because of the in-consistency of the periodogram. We

propose to overcome this obstacle by block average and kernel smoothing models

where the estimate is consistent. We further prove that if the number of blocks of the

block average model and the bandwidth of the kernel satisfy certain conditions, the

“rate of testing criteria” can be satisfied. Corresponding “optimal bandwidth” and

“optimal adaptive rate of testing” are derived.

3.3.2 Discussion on the Blocked Average Setting

Our main goal is to develop a new powerful test based on “rate of testing” theory

which can provide guidance for practical appliance. We intend to construct model

based on kernel smoothing model. As a simplier version of kernel smoothing model,

we’ll explore the case for the blocked average model to gain insight of how selection

of block numbers will influence the power of test.

For now, let’s suppose the length of these two time series tX1,t1 , t1 “ 1, ..., n1u and
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tX2,t2 , t2 “ 1, ..., n2u are equal, i.e. n1 “ n2 “ n. Define

Yj “ log I1pωjq ´ log I2pωjq, (3.11)

and

θ “ log f1pωjq ´ log f2pωjq, (3.12)

for j “ 1, ...p. p is the number of frequencies and p “ n{2 if n is even, p “ n{2´ 1 if

n is odd. The hypothesis is equivalent to

H0 : θj “ 0 for all j “ 1, ..., pn

H0 : θj ‰ 0 for some j “ 1, ..., pn

For time series tX1,t1u and tX2,t2u, the periodogram is calculated at frequency ωj “

2πj{n, for j “ 0, 1, ..., p, where ωj is a uniform grid of points in p´π, πq. The setting

of blocked average model is that we evenly divide the n points into mn blocks with

rn{mns points within each block, and denote the blocks as Si, i “ 1, ...,mn. We take

the average of the Yj s within each block as the modified Ȳi, this procedure can be

represented as:

Ȳi “
1

|Si|

ÿ

tYj : j P Siu (3.13)

Then it’s easy to prove that:

Ȳi “ θ̄i `
σ

?
mn

ε (3.14)

and mn Ñ 8 as nÑ 8.
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We construct the block average tapering statistics:

Q̄n “

mn
ÿ

j“1

1

j1{2
Ȳ 2
j (3.15)

Our goal is to set a setting of mn under the rates-of-testing criterion. The block

average settings would be formulated as functions of dimension, m̂n “ m̂nppq. We

also try to identify the high-performance, as characterized via δ̂n.

An accompanying theorem would have the following form.

Theorem 3.3.2. For arbitrary mn, suppose the statistic Q̄n “ Q is defined from the

block averaged Ȳj in (3.15), and the decision rule is to “reject H0” precisely when Q̄n

exceeds a specified cutoff. Define known constant s ą 1{2. Under the model (3.10),

the following properties hold:

• Define the sequence δ̄n “ pp1{4´3s log p1{4q
2s

4s`1 . For arbitrary mn, and

δn “ opδ̄nq, the rate-of-testing criterion is not satisfied. i.e. δ̄n is the

optimal adaptive rate of testing for the block average tapering mechanism.

Additionally, when mn “ m̂n, then the test Q̄n will satisfy the rate of

testing criteria for δ̄n.

• If m̂n — ps`3{4 log p1{4 for i “ 1, 2, and δn is such that δ̄n “ Opδnq, then

the rate-of-testing criterion is satisfied.

The setting m̄n would thus offer a specific setting of the bandwidth parameters that is

expected to yield good performance in a test based on the tapering statistic.

3.3.3 Discussion on the Kernel Smoothing Model

Blocked average statistic explores the most basic setting which can give us the criteria

of selecting the number of intervals mn for time series of different lengths. The
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intuitive explanation is that if mn is very large, it means that very few points with

each block is averaged, which is quite close to the setting of raw periodogram and

may suffer from low power in detecting the difference in spectral density. When mn is

relatively small, however, then the raw periodogram is averaged within a very broad

block, the testing framework may also lose power due to the loss of information when

averaging over too many points. The idea of how to select the number of blocks in

the block average tapered statistic motivates us to find the optimal bandwidth under

the kernel smoothing model.

Let us denote by Ĩipωq a smoothed periodogram calculated at frequency ω by

kernel weighing of raw periodogram values on a logarithmic scale.

Let’s firstly define the kernel smoothing function as:

Ci,j,ki “ Kp
wiki ´ wj

bi
q{

pi
ÿ

ki“1

Kp
wiki ´ wj

bi
q, (3.16)

Then define the kernel smoothed log-periodogram:

log Ĩipωjq “
pi
ÿ

ki“1

Ci,j,ki log Iipωjq, (3.17)

In the proposed methodology, the Yj are defined according to

Ỹj “ log Ĩ1pωjq ´ log Ĩ2pωjq, (3.18)

By Brockwell and Davis (1991), it is easy to prove that Ỹj ÝÑ Npθj, Vn,jq, in which

Vn,j “
σ2

2

#

rn1{2s´1
ÿ

k1“1

C2
1,j,k1

`

rn2{2s´1
ÿ

k1“1

C2
2,j,k2

+

, (3.19)

A central objective of this project is to a settings, b̂n,i, of the bandwidth parameters
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that performs optimally with respect to some rate, δ̂n, denoting high-performance

(or optimality) under the rates-of-testing criterion. The bandwidth settings would

be formulated as functions of dimension, b̂n,i “ b̂n,ippnq, and might also depend on

the characteristics of the kernel. High-performance, as characterized via δ̂n, is to be

identified as the investigation proceeds.

In the first stage, we would consider the case when n1 “ n2 “ n for the two

time series to be compared, and in this case, the kernel smoothing funciton can be

simplified as:

Cj,k “ Kp
wk ´ wj
bn

q{

pn
ÿ

k“1

Kp
wk ´ wj
bn

q, (3.20)

Thus, the kernel smoothed log-periodogram is defined as:

log Ĩipωjq “
pn
ÿ

k“1

Cj,k log Iipωjq, (3.21)

which leads to:

Vn,j “
σ2

2
r

rn1{2s´1
ÿ

k“1

C2
j,k `

rn2{2s´1
ÿ

k“1

C2
j,ks “ σ2

r

rn{2s´1
ÿ

k“1

C2
j,ks

In this section, we define the kernel smoothing of log-periodogram as estimated as:

Ỹi “ θ̃i ` σnε (3.22)

in which σ2
n “ σ2

řrn{2s´1
k“1 C2

j,k
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We construct the tapering statistics

Q̃n “

p
ÿ

j“1

1

j1{2
Ỹj

2
(3.23)

Our goal is to set a setting of bn under the rates-of-testing criterion. The block aver-

age settings would be formulated as functions of dimension, b̂n “ b̂nppq. We also try

to identify the high-performance, as characterized via δ̃n.

Uniform Kernel Smoothing Model

To begin with, we adopt the most straightforward kernel smoother, the uniform kernel

smoother, for which the kernel function is defined as below:

Kpµq “
1

2
(3.24)

for |µ| ď 1.

Pan (2016) derive the “optimal” bandwidth parameter under the uniform kernel

smoothing setting with the bandwidth parameter bn,j such that

min
i,j

Ci,j,ki “ tp
4s`1
n log pnu

´1{4

We get the optimal bandwidth under the rate of testing framework and an accom-

panying theorem would have the following form.

Theorem 3.3.3. For arbitrary bn, suppose the statistic Q̂n “ Q is defined from the

block averaged Ŷj in (3.15), and the decision rule is to “reject H0” precisely when Q̂n
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exceeds a specified cutoff. Define known constant s ą 1{2. Under the model (3.10),

the following properties hold:

• Define the sequence δ̂n “ ppp4s`1qlogpq
2s

4s`1 . For arbitrary bn, and δn “

opδ̂nq, the rate-of-testing criterion is not satisfied. i.e. δ̂n is the optimal

adaptive rate of testing for the block average tapering mechanism. Addi-

tionally, when bn “ b̂n, then the test Q̂n will satisfy the rate of testing

criteria for δ̂n.

• If b̂n — p
4s`1

2 for i “ 1, 2, and δn is such that δ̂n “ Opδnq, then the

rate-of-testing criterion is satisfied.

The setting b̂n would thus offer a specific setting of the bandwidth parameters for

unifrom kernel that is expected to yield good performance in a test based on the tapering

statistic.

Gaussian Kernel Smoothing Model

Gaussian kernel is also considered for the tapered statistic, which takes the following

form:

Kpµq “
1
?

2π
e´

1
2
u2 (3.25)

An accompanying theorem would have the following form.

Theorem 3.3.4. For arbitrary bn, suppose the statistic Q̃n “ Q is defined from the

block averaged Ỹj in (3.15), and the decision rule is to “reject H0” precisely when Q̃n

exceeds a specified cutoff. Define known constant s ą 1{2. Under the model (3.10),

the following properties hold:
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• Define the sequence δ̃n “ p4slogp4s. For arbitrary bn, and δn “ opδ̃nq, the

rate-of-testing criterion is not satisfied. i.e. δ̃n is the optimal adaptive rate

of testing for the block average tapering mechanism. Additionally, when

bn “ b̂n, then the test Q̃n will satisfy the rate of testing criteria for δ̃n.

• If b̃n —
n2´1
log p4s

for i “ 1, 2, and δn is such that δ̃n “ Opδnq, then the

rate-of-testing criterion is satisfied.

The setting b̃n would thus offer a specific setting of the bandwidth parameters for

Gaussian kernel that is expected to yield good performance in a test based on the

tapering statistic.

Theorem 3.3.2, Theorem 3.3.3 and Theorem 3.3.4 provide the criteria for choices

of mn and bn under blocked average and kernel smoothing settings. The optimal mn

is relatively smaller than the optimal bn, which is as expected, for the reason that

when we try to implement the blocked average model, a broader interval selection

will result in the loss of individual information, since we just did the average over

each block. However, for the kernel smoothing case, the choice of bn can be relatively

large, because we did the kernel smoothing for each individual point, so a broader

uniform or Gaussian kernel will take into consideration of the neighboring points as

well as achieve the goal of smoothing.

In a word, existing testing procedures for assessing whether two stationary time

series have the same dynamics lose power for the raw periodogram-based test, for the

reason that periodogram is not a consistent estimator of the spectral density. In this

thesis, we apply multiple smoothing methods to tackle this issue, it will integreate the

information from neighboring points to achieve the goal of smoothing, however, it will

introduce dependencies among different frequencies. Rate-of-testing framework has

the assumption of non-dependencies, which is violated in this setting. However, in
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the simulation studies, this tapered test statistic shows superior performance among

the existing methods.

3.4 Power Study

3.4.1 Simulation for Choosing Number of Blocks for the Blocked

Average

In this section, we want to present a comprehensive simulation study of the blocked

average model. We present different choices for the number of blocks and assess the

empirical power under each scenerio to find the optimal bandwidth.

Test Statistics To Be Compared

• Proposed blocked average test statistic Q̄n of different lengths mn:

Ȳi “
1

|Si|

ÿ

tYj : j P Siu

and mn Ñ 8 as nÑ 8.

The tapering statistics is constructed as:

Q̄n “

mn
ÿ

j“1

1

j1{2
Ȳ 2
j

The choice of mn, however, might affect the power of the testing problem, so in

the first simulation studies, we investigate in how the choice of mn affect the model

performance.
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Figure 3.1: Spectral Density of AR(1) and MA(1) with Different Parameter Values

Simulation Design

The simulation design is such that the models examined have dimensionality pn.

Two scenarios are considered for the length of the time series, short time series with

n “ 256 and long time series with n “ 1024. We compare the power of the tests by

applying them to simulations of AR(1) and MA(1) time series of various coefficients.

• Setting 1: AR(1) with φ1 “ 0.1 versus AR(1) with

φ˚1 “ t0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9u.

• Setting 2: MA(1) with θ1 “ 0.1 versus MA(1) with

θ˚1 “ t0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9u

Figure 3.1 illustrates the spectral density distribution of AR(1) and MA(1) models

of various parameter values as listed above, which indicate that they have different

underlying spectral densities.
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Empirical Comparisons

This section explores the empirical critical values of the suggested testing procedures

for finite sample performance. First, two independent Gaussian AR(1) and MA(1)

series of length n “ 256 and n “ 1024 with the same autoregressive parameter φ and θ

are generated, and we make sure that |φ| ă 1 and |θ| ă 1. Based on the fact that both

time series share the same parameter, hence they have equivalent spectral densities.

In the first step, we get the empirical critical values for the proposed blocked average

test statistics with the significance level 0.05, for the length of the time series n “256

and 1024, and the parameter φ1 “ 1 for AR(1) and θ “ 1 for MA(1).

Power Comparisons

In this section, we want to obtain estimates of the power when the two underlying

processes are different. 1000 replicate simulations of each pair are performed.

We try to look at different scenarios as mn varies. As shown in Figure 3.1 there

is difference among the underlying spectral density for time series with various pa-

rameters. We compare the powers of the test statistics listed above, and the power

of each test is evaluated at the alternative given in the simulation design. Basically,

we calculated the empirical power (the proportion of values of tests exceeding their

critical values) for each choice of mn under different scenerios. The empirical powers

are summarized in the following plots.

Figure 3.2 shows the empirical power for AR(1) short and long time series of

different bandwidth selection. In this setting, I mainly look into the case of comparing

with φ equal to 0.2, 0.3 and 0.4, for the reason that when φ takes a large value such

as φ “ 0.6, 0.7, 0.8 and 0.9, the empirical power of the tests is quite close to 1.0 for

all of the selection of mn, especially for the case of long series, so it’s hard to get
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Figure 3.2: Empirical Power for Short and Long AR(1) Series of Different Bandwidth
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Figure 3.3: Empirical Power for Short and Long MA(1) Series of Different Bandwidth
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any conclusion on the optimal choice of mn. However, for the case of φ equal to 0.2,

0.3 and 0.4, it’s straightforward that for the short time series n “ 256, mn “ 3 is

the optimal selection, and for the long time series n “ 1024, mn “ 4 is the optimal

selection.

Figure 3.3 is the similar power study for MA(1) short and long time series. Same

findings hold that for the short time series n “ 256, mn “ 3 is the optimal selection

for both AR(1) and MA(1) process, and for the long time series n “ 1024, mn “ 4

is the optimal selection for both AR(1) and MA(1) process. The results consolidate

our conclusion that regardless of the underlying distribution of the data (in this case,

whether the data has AR or MA representation), the optimal selection of bandwidth

mn only depends on the length of time series.

3.4.2 Simulation for Choosing Bandwidth for Uniform Ker-

nel

In this section, we also conduct the simulation study for the tapered test based on the

uniform kernel smoothing. We present different choices for the number of bandwidths

and assess the empirical power under each scenerio to find the optimal bandwidth.

Test Statistics To Be Compared

The tapering statistics is constructed as as proposed in the uniform kernel

smoothing model setting, with test statistic:

Q̂n “

mn
ÿ

j“1

1

j1{2
Ŷ 2
j

The choice of bandwidth bn, however, might affect the power of the testing problem,
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Figure 3.4: Empirical Power for Short and Long AR(1) Series of Different Bandwidth

so in the simulation studies, we investigate in how the choice of bn affect the model

performance.

3.4.3 Simulation for Choosing Bandwidth for Gaussian Ker-

nel

In this section, we also conduct the simulaiton study for the tapered test based on

Gaussian kernel smoothing. We present different choices for the number of blocks

and assess the empirical power under each scenerio to find the optimal bandwidth.

Test Statistics To Be Compared

The tapering statistics is constructed as proposed in the Gaussian kernel smooth-

ing model setting, with test statistic:

Q̃n “

mn
ÿ

j“1

1

j1{2
Ỹ 2
j
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Figure 3.5: Empirical Power for Short and Long MA(1) Series of Different Bandwidth

The choice of bandwidth bn, however, might affect the power of the testing problem,

so in the simulation studies, we investigate in how the choice of bn affect the model

performance.

3.4.4 Simulation Design for Power Comparison

Test Statistics To Be Compared

In this section, empirical power of the tests based on different test statistics are

compared for existing tests. For our proposed blocked average statistic, we’ll use the

one with the optimal bandwith mn.

We want to carry out empirical comparison of the following test statistics:

• Coates and Diggle (1986)’s test based on the range of periodogram ratios. with

the test statistic:

R “ maxtlog
I1pωjq

I2pωjq
u ´mintlog

I1pωjq

I2pωjq
u
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Figure 3.6: Empirical Power for Short and Long AR(1) Series of Different Bandwidth
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• Lund et al. (2009)’s frequency domain test based on the average of log ratio of

periodograms, with the test statistic:

D “
1

n{2´ 1

n{2´1
ÿ

j“1

| log
I1pωjq

I2ωjq
|

• Lu and Li (2013)’s frequency domain test applying Fan’s adaptive Neyman tests

idea to the Lund’s test, with the test statistic:

TA,N
˚
“ max

1ďkďNM

1

2kσ̂4

k
ÿ

i“1

ppDiq
2
´ σ̂2q

where

σ̂2 “
1

Nm ´ Im

Nm
ÿ

i“INm`1

pDiq
2
´ p

1

Nm ´ Im

Nm
ÿ

i“INm`1

Di
2
q

• Pan (2017)’s tapering test based on uniform kernel smoothing with test statistic:

Q̂n “

p
ÿ

j“1

1

j1{2
Ŷj

2

with the optimal bandwidth: Pan (2016) derive the “optimal” bandwidth pa-

rameter under the uniform kernel smoothing setting with the bandwidth pa-

rameter bn,j such that

min
i,j

Ci,j,ki “ tp
4s`1
n log pnu

´1{4

• Proposed blocked average test statistic Q̄n over averaging interval of optimal

mn proportion to ps`3{4 log p1{4, and as shown in the above section, for the short
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time series n “ 256, mn “ 3 is the optimal selection and for the short time series

n “ 1024, mn “ 4 is the optimal selection.

Ȳi “
1

|Si|

ÿ

tYj : j P Siu

The tapering statistics is constructed as:

Q̄n “

mn
ÿ

j“1

1

j1{2
Ȳ 2
j

• Proposed tapering test based on Gaussian kernel smoothing with test

Q̃n “

p
ÿ

j“1

1

j1{2
Ỹj

2

with the optimal bandwidth:

b̂n “ Br
1

2
p3{4n plog pnq

1{4
´

1

2
s

Simulation

The simulation design is such that the models examined each have dimensionality

pn. The length of the time series are specified into several scenarios, short time series

with n “ 256 and long time series with n “ 1024.

The MA(q) refers to the moving average model of order q :

Xt “ µ` εt ` θ1εt´1 ` ¨ ¨ ¨ ` θqεt´q

where µ is the mean of the series, the θ1, ..., θq are the parameters of the model and

the εt, ..., εt´q are white noise error terms.
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The AR(p) indicates an autoregressive model of order p. The AR(p) model is

defined as

Xt “ c` ϕ1Xt´1 ` ...` ϕpXt´p ` εt

where φ1, ... ,φp are parameters of the model, and εt is white noise.

In a seasonal model, seasonal AR and MA terms predict using data values and

errors at times with lags that are multiples of S (the span of the seasonality). An

ARp1q12 process tXtu, which is a generalized exponential smoothing models that can

incorporate long-term trends and seasonality, is defined by

Xt “ φ12Xt´12 ` εt

where φ12 is the parameter of the model, εt is the white noise error term.

We compared the powers of different tests by applying them to simulations of

AR(1) and MA(1) as well as seasonal AR(1) and MA(1) time series of various coeffi-

cients.

• Setting 1: AR(1) with φ1 “ 0.1 versus AR(1) with

φ˚1 “ t0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9u.

• Setting 2: MA(1) with θ1 “ 0.1 versus MA(1) with

θ˚1 “ t0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9u.

• Setting 3: Long-order Gaussian seasonalMAp1q12 with θ1 “ 0.1 versus Gaussian

seasonal MAp1q12 of θ˚1 “ t0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9u.

• Setting 4: Long-order Gaussian seasonal ARp1q12 with φ1 “ 0.1 versus Gaussian

seasonal ARp1q12 of φ˚1 “ t0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9u.



56

Empirical Comparisons

We explore the empirical critical values of the suggested testing procedures for finite

sample performance. First, two independent Gaussian AR(1) and MA(1) with the

same autoregressive parameter φ series of length n “ 256 and n “ 1024 are generated,

and we make sure that |φ| ă 1 and |θ| ă 1. Based on the fact that both time series

share the same parameter, hence they have equivalent spectral densities. In the

first step, we get the empirical critical values for the proposed blocked average test

statistics and the other comparing test statistics with the significance level 0.05, for

the length of the time series n “256 and 1024, and the parameter φ1 for AR(1) and

θ1 for MA(1).

Power Comparisons

In this section, we want to obtain estimates of the power when the two underlying

processes are different. 1000 replicate simulations of each pair are performed.

We try to look at different scenarios as introduced in Section 2.4.2. We compare

the powers of the test statistics listed above, and the power of each test is evaluated

at the alternative given in the simulation design. Basically, we calculated the empir-

ical power (the proportion of values of tests exceeding their critical values) for each

scenerio. The empirical powers are summarized in the following figures.

It’s noteworthy that the test statistic proposed by Coates and Diggle (1986) has

the poorest performance among others, and the statistic proposed by Lu and Li (2013)

has relative high performance in both short and long time series. The block average

statistic exceed the existing methods in different scenerios, Pan (2016)’s method based

on the uniorm kernel smoothing is relatively better, and the proposed method based

on the Gaussian kernel smoothing turns out to have the best performance.
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Figure 3.8: Empirical Power for Short and Long AR(1) Series
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Figure 3.9: Empirical Power for Short and Long MA(1) Series
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Figure 3.10: Empirical Power for Short and Long Seasonal MA(1) Series
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Figure 3.11: Empirical Power for Short and Long Seasonal MA(1) Series
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Motivated by our proposed method, which prove to be very powerful and effec-

tive, we are interested in applying this proposed statistic to the practical case of

untrustworthy personal weather station detection in Norfolk area, under the context

of Bayesian testing.

3.5 Modeling Procedure

3.5.1 Critical Value Generation for Test Statistic

In our research, we have demonstrated that blocked average tapering statistic outper-

forms existing test statistics in the time series context, which can be a good approach

for detecting abnormal PWS problem. However, under practical settings, it’s hard to

get the empirical critical value for two time series with unknown spectral densities,

and we’ll tackle this problem from two approaches.

In the first approach, since we are conducting the hypothesis between Personal

Weather Stations (PWS) and National Climatic Data Center (NCDC). Based on the

fact that there are around 40 NCDC stations located in Norfolk area. Assuming that

they come from the same underlying distribution, then we can use these time series

data to generate the critical value, which is 0.1613813 at the significance level 0.05.

Then we can conduct the hypothesis testing procedure.

Table 3.1 is the test statistic for each PWS compared with NCDC, which shows

that PWS KVANORFO72, KVANORFO305 and KVANORFO69 is coming from dif-

ferent distributions from NCDC.
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Table 3.1: Tapered Statistic for PWS

PWS Tapered Statistic
KVANORFO2 0.1205419
KVANORFO20 0.03537467
KVANORFO72 0.2666065
KVANORFO305 0.2063066
KVANORFO306 0.1161478
KVANORFO22 0.03651071
KVANORFO28 0.02810953
KVANORFO42 0.05843504
KVANORFO66 0.05786412
KVANORFO69 0.2773826

3.5.2 Bayes Factor and Bayesian Setup

In the first approach, based on the fact that there are multiple NCDC weather stations

distributed in Norfolk area, we can get the empirical critical value based on the

pairwise comparison distribution of the tapered statistics. In this section, we plan to

solve the problem based on Bayesian perspective.

From frequentist perspective, p-value is the proportion of unexpected outcomes

under repeated tests. From Bayesian view, however, probability quantifies our sub-

jective belief about the likelihood of an outcome, and is rationally updated given new

data. The Bayes factor is the ratio of the data likelihoods, compares the marginal

likelihood of the data under competing models:

BF0pY q “
mpY |H0q

mpY |H1q
(3.26)

where mpY |H0q is the marginal density of Y under model H0 and mpY |H1q for the

marginal density under model H1. Thus, the Bayes Factor is the measurement, by

considering the collected data at hand, transforms the prior opinion, hence repre-
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Table 3.2: Decision Rules for Bayes Factor

log BF Evidence for H0

0 to 1 Not worth more than a bare mention
1 to 3 Positive
3 to 5 Strong
greater than 5 Very strong

sents the evidence provided by the data. Consequently, the Bayes Factor is a more

informative measure than the posterior odds ratio of the evidence for a given model.

In particular, Bayes factor determines the decision rules for Bayesian hypothesis

testing problems as discussed in Kass and Raftery (1995) and Jeffreys (1961). The

higher the Bayes factor value supports, the more evidence in favor of H0. In Kass

and Raftery (1995), a rough descriptive statement of some decision rules regarding

Bayes factors was empirically addressed in table 3.2. More discussions and empirical

examples regarding Bayes factor are provided in Kass and Raftery (1995). Basically, If

this ratio is large, we can conclude that there is strong evidence for the null hypothesis.

In contrast, if the inverse of this ratio is large, we have evidence supporting the

alternative hypothesis.

Based on the definition of the kernel smoothing of log-periodogram as:

Ỹi “ θ̃i ` σ̃nε (3.27)

in which σ2
n “ σ2

řrn{2s´1
k“1 C2

j,k

for j “ 1, ..., pn. We have the asymptotically independent property that:

Ỹi Ñ Npθ̃i, σ̃n
2
q (3.28)
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The objective of inference is to test the hypotheses:

H0 : θj “ 0 for every j “ 1, . . . , pn

H1 : θj ‰ 0 for some j “ 1, . . . , pn

Essentially, we can treat this problem as a Gaussian means problem: Suppose a

sample of n independent p-dimensional measurements, Y “ pY1, ..., Ypq is observed.

The data are generated from Gaussian distributions, Yi|Σ „ Gpθ,Σq. Under H0, the

mean vector parameter is restricted to θ “ 0 while unrestricted under H1. Suppose

further that the prior distribution under H1 is such that θ|Σ „ Gp0, τ 2Σ1{2∆Σ1{2q,

where ∆ is a symmetric, positive-definite matrix. It follows that the conditional Bayes

factor for the model-comparison H0 vs. H1 is:

BF01 “
mpỸ |H0q

mpỸ |H1q

“ Np0,Σq{Np0,Σ` τ 2Σ1{2∆Σ1{2
q

“ pτ 2nqv{2|∆|1{2|W |´1{2expt´
1

2
ZTWZu

“

pn
ź

j“1

!

p1´ vn,jq
´ 1

2 exp
”

´
1

2σ12n
pỸj

2
´ p1´ vn,jqỸj

2
q

ı)

“

pn
ź

j“1

exp
!

´
1

2σ12n
vn,jỸj

2
´

1

2
logp1´ vn,jq

)

“ exp
!

´
1

2σ12n

pn
ÿ

i“1

vn,jỸj
2
´

1

2
logp1´ vn,jq

)

(3.29)

where Z “ n1{2Σ´1{2Ȳ , Ȳ “ n´1
řn
i“1 Yi, and W “ tI `∆´1{pτ 2nqu´1.

The choice of τ , however, can be subjective. Under this setting, we choose τ “ 1.

Note that in equation (3.29), the quadratic term
řpn
i“1 vn,jỸj

2
in the Bayes Factor can
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Figure 3.12: Time Series Plot of PWS vs NCDC for Max Temperature (Blue for
NCDC, Red for PWS)

Table 3.3: log BF for PWS

PWS log BF
KVANORFO2 43.74921
KVANORFO20 -8.630177
KVANORFO72 47.90501
KVANORFO305 49.67174
KVANORFO306 -203.297
KVANORFO22 43.74921
KVANORFO28 49.04882
KVANORFO42 2.686782
KVANORFO66 -17.72713
KVANORFO69 46.34115
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relate to the optimal test statistic Q̃n “
řpn
i“1 j

´ 1
2 Ỹj

2
, which leads us to set the value

of vn,j such that

vn,j “ j´
1
2 , j “ 1, 2, ..., pn

and borrow the idea of proposed Gaussian smoothed term with the test statistic

Q̃n “

p
ÿ

j“1

1

j1{2
Ỹj

2

of the optimal bandwidth:

b̂n “ Br
1

2
p3{4n plog pnq

1{4
´

1

2
s

As discussed in the previous part in this chapter, this rate is optimal among

tests based on quadratic forms.Thus this weight setting achieves the prior that, from

an adaptive “rate of testing” viewpoint, reduce the indistinguishable region to the

greatest extent.

With this method applied, the result of the logrithm of Bayes Factoris shown in Ta-

ble 3.3, which shows that PWS KVANORFO20, KVANORFO306 and KVANORFO66

turn out to be abnormal.



Chapter 4

Problem Formulation on

Precipitation Data

Time series hypothesis testing on precipitation data, unlike the temperature data,

can be more challenging due to the difficulty in applying standard tests given the

zero-inflated and non-stationary process.

Hamill (1999) performed the lag-one Spearman rank correlation analysis, showing

that there is no statistically significant correlation. Hence, it can be assumed that

rainfall occurred each day may effectively be treated as independent from previous

and subsequent days. Thus, Hamill (1999) evaluated several possible hypothesis test

methods, including the paired t-test, the nonparametric Wilcoxon signed-rank test,

and two resampling tests.

Besides, Hamill (1999) also introduced the equitable threat score, and the problem

can be summarized to the contingency table. Threat score can be regarded as evidence

of a difference in forecast skill between competing forecasts, which are generated from

a contingency table of hits, misses, false alarms, and correct no forecasts:

In our research, we are very interested in whether PWS can successfully capture

65
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Table 4.1: Contingency table of possible events
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Figure 4.1: Time Series Plot of NCDC and PWS Rainfall in Norfolk

the flood event. Thus this idea can be borrowed to generate a contingency table of

hits, misses, false alarms, and correct no flood. Figure 4.1 illustrates the rainfall time

series plot of both PWS and NCDC stations in the Norfolk area, and we are interested

in proposing the method to detect the abnormal PWS concerning precipitation.

The left side of Figure 4.2 shows that the precipitation time series can be either

zero, which means there is no rainfall on a given day, or there might be positive

continuous values on a rainy day. The right side of Figure 4.2 is the histogram of

precipitation data.
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Figure 4.2: Time Series Plot of Precipitation of KVANORFO72

4.1 Modeling Precipitation Data as Tweedie Fam-

ily

Rainfall data is generally zero-inflated in that the amount of rainfall received on a

day can be zero with a positive probability but continuously distributed otherwise,

which makes it challenging to transform the data to normality by power transforms

or to model it directly using continuous distribution. The Poisson-Gamma distribu-

tion is an appropriate way of modelling the rainfall distribution. However, it has a

complicated probability density function, making parameters challenging to estimate.

Thus, it is easier to estimate the parameters in terms of a Tweedie distribution.

Jørgensen (1987) established the exponential dispersion model (EDM), which is a

two-parameter family of distributions consisting of a linear exponential family with

an additional dispersion parameter. EDMs are important in statistics because they

are the response distributions for generalized linear models. An EDM is characterized

by its variance function V (), which describes the mean-variance relationship of the

distribution when the dispersion is held constant. If Y follows an EDM distribution
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with mean µ and variance function V (), then

varpY q “ φV pµq

where φ is the dispersion parameter.

Of special interest are EDMs with power mean-variance relationships,

varpµq “ µp

This class of EDM is named after Tweedie. Some very familiar distributions fall into

the Tweedie family. Setting p “ 0 gives a normal distribution. p “ 1 is Poisson.

p “ 2 gives a gamma distribution and p “ 3 yields an inverse Gaussian. The Tweedie

model distributions for 1 ă p ă 2 can be represented as Poisson mixtures of gamma

distributions. They are mixed distributions with mass at zero but are otherwise

continuous on the positive real values.

McCullagh and Nelder (1989) showed rainfall distributions belong to the expo-

nential family of distributions based on generalized linear models. Let Ri denote the

amount of precipitation on the i-th event, and suppose it follows a gamma distribu-

tion with parameters pα, γq, which tells us that the mean value for the precipitation

is ´αγ and variance is ´αγ2. We want to model precipitation for N days and assume

that the number of precipitation events in any given day has a Poisson distribution,

which implies that there are days with no precipitation events. The total daily pre-

cipitation Y can be found as the Poisson summation of the gamma random variables,

which means
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Y “ R1 `R2 ` ...`RN

where N „ Poissonpλq.

The resulting distribution has been called a compound Poisson distribution. How-

ever, numerical methods are needed as no closed forms exist for evaluating the density

function or cumulative distribution functions, except in special cases. The resulting

probability function is complicated, and can be written as:

log fppy;µ, φq “

$

’

&

’

%

´λ y “ 0

´y{γ ´ λ´ log y ` logW py;φ, pq y ą 0

where γ “ φpp ´ 1qµp´1, λ “ µ2´p{rφp2 ´ pqs, and W is an example of Wright’s

generalized Bessel function (Wright, 1933), which is expressed as:

W py, φ, pq “
yjαpp´ 1qαj

φjp1´αqp2´ pqjj!Γp´jαq

Importantly, the probability of recording no precipitation is given by:

P pY “ 0q “ expp´λq “ expp´
µ2´p

φp2´ pq
q

In theory, the Tweedie distribution can be characterized by the parameters pµ, φ, pq,

however, in the real world under the climatological setting, we would prefer the pa-

rameterization in terms of pλ, γ, αq. In the context of precipitation, λ refers to the

mean number of precipitation events per year, γ refers to the shape of the precipita-

tion events, and ´αγ refers to the mean quantity of precipitation per event.
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Based on the previous discussion, the Tweedie family is a three-parameter family:

µ (the mean), φ (the dispersion parameter) and p. The estimation procedure is to plot

a profile log-likelihood based on the maximum likelihood value, then get the estimate

of p. Once the value of p is found, estimates of and can be computed correspondingly,

so the distribution within the class of Tweedie distribution is identified.

The methods for estimating the parameters of Tweedie distributions are discussed.

The estimation of µ is straightforward since we restrict ourselves to using no covari-

ates, µ can be estimated by the sample mean. φ can be estimated using the maximum

likelihood estimate. Estimating the maximum likelihood value of p is performed us-

ing a profile log-likelihood plot, which requires the computation of the density. For

a given fixed value of p, estimates of µ and φ can be computed. Nominal confidence

intervals for p can also be found, using that 2rlogLpp̂q´ logLpp0qs has χ2
1 distribution

asymptotically, where p0 is the true parameter value.

The left side of Figure 4.4 shows the maximum likelihood estimation of the

Tweedie index parameter power p, basically, by estimating the power parameter p

by maximizing the profile log-likelihood across the grid values of p in the range of 1.1

to 1.8, the value of p corresponding to the MLE is approximately estimated at 1.65

in this case, and the estimate of φ is 10.96688.

Tweedie distribution, with its property of taking care of zero-inflated data distri-

bution, is suitable for modelling the distribution of precipitation data. However, it

has a complicated probability density function, making it hard to be applied to the

rate-of-testing theory, so it has not been incorporated into the current work yet.
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4.1.1 Hypothesis Testing For Precipitation Data

Precipitation, unlike temperature data, has its unique property of inflated with zero

values, thus making it difficult to be converted into stationary time series, which

makes our previous approach of hypothesis testing by smoothing not applicable here.

However, we come up with two approaches to deal with this issue. The first approach

is to smooth the precipitation data with the surrounding values, making it more

stationary. The second approach is a two-step process. In the first step, we reduce

the data to indicators of the presence or absence of precipitation and carry out analysis

for binary time series. On condition that the binary time series can pass the test, we

carry forward to the next step of applying time-series hypothesis testing analysis for

the non-zero subspace of precipitation data.

Approach one: Time Series Hypothesis Testing For Smoothed Precipita-

tion Data

A straightforward way to deal with the non-stationary time series is to convert it to

stationary process, so in the first approach, we smooth the precipitation data with

the surrounding values, to eliminate the presence of zero values. Figure 4.5 is an

illustration of PWS KVANORFO20 when smoothing technique is applied, we are

making the rainfall data stationary.

For the PWSs in Norfolk area, the smoothing method is applied to both PWS

and NCDC precipitation data, then we carry out the testing procedure based on the

previous chapter, and the consequent results table is shown in Table 4.2. Figure 4.6

shows the smoothed time series of PWS KVANORFO20 and KVANORFO72 com-

pared with smoothed series of interpolated NCDC data. From the visualization we

can see that the smoothed data of PWS KVANORFO20 matches quite well with
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smoothed interpolated NCDC data, which agrees with the result that the log Bayes

Factor for this station is 5.49975, meaning there is the strong evidence that the null

hypothesis is true. PWS KVANORFO72, however, as shown on the right side of

Figure 4.6, exhibit distinct discrepancies from the NCDC data, with -1908.528 as the

log Bayes Factor, so we can get the conclusion that the null hypothesis is rejected in

this case, indicating the station PWS KVANORFO72 is not trustworthy.

Approach two: Two-Step Testing Procedure For Zero-Inflated Data

Although the smoothing method is an effective way of converting the time series into

the stationary process, however, it might introduce extra noise to the raw data. So

the second approach only deals with the raw data itself, with the treatment of only

extracting the non-zero values to avoid the effect of zero-inflated distribution.

• Pass One: Reduce the data to indicators of the presence or absence of precipi-

tation and carry out analysis for binary time series.

• Pass Two: On condition that the binary time series can pass the test, we will
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Figure 4.6: Raw Data and Smoothed Value of Precipitation

Table 4.2: log BF for PWS

PWS log BF
KVANORFO2 -333.4697
KVANORFO20 5.49975
KVANORFO22 -87.52388
KVANORFO28 -22.98318
KVANORFO42 -685.3949
KVANORFO66 18.40082
KVANORFO69 -172.1699
KVANORFO72 -1908.528
KVANORFO305 -203.2546
KVANORFO306 -666.7461
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Figure 4.7: Emperical Power for Tweedie Family

apply our analysis for the non-zero subspace of precipitation data.

Once we have the all-year precipitation data, we can truncate the non-zero rainfall

data and find the overlap of both PWS and NCDC. Figure 4.7 and Figure 4.8 illus-

trate rainfall data on the left side and the truncated non-zero data on the right side

for both PWS KVANORFO20 and KVANORFO72. After carrying out the testing

procedure based on the previous chapter, the following results table is shown in Table

4.3. PWS KVANORFO20 matches quite well with interpolated NCDC data, which

agrees with the result that the log Bayes factor for this station is 26.53325, meaning

there’s the strong evidence that the null hypothesis is true. For PWS KVANORFO72,

however, as shown on the right side of Figure 4.8 , exhibits several obvious discrep-

ancies from the NCDC data, with -1326.598 as the log Bayes Factor, so we can get

the conclusion that the null hypothesis is rejected in this case, indicating the station

PWS KVANORFO72 is not trustworthy.
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Table 4.3: log BF for PWS

PWS log BF
KVANORFO2 -49.06801
KVANORFO20 26.53325
KVANORFO22 -44.09912
KVANORFO28 -22.98318
KVANORFO42 -338.7884
KVANORFO66 -12.02769
KVANORFO69 19.94753
KVANORFO72 -1326.598
KVANORFO305 21.78035
KVANORFO306 20.64477



Chapter 5

Spectrum-Based Comparison of

Multivariate Time Series

5.1 Multivariate Time Series Setting

In the previous work, we come up with a new non-parametric testing approach to test

the hypothesis that the two underlying spectra are the same, which is only applied to

stationary univariate time series. In this section, however, motivated by our problem

that weather stations report multiple weather measurements, we would like to explore

the tapering test based on the smoothed periodogram for multivariate time series

context. Figure 5.1 shows the time series structure plot of minimum temperature,

maximum temperature and average temperature of both PWS and NCDC, and we

are motivated by the question of comparing multiple weather measurements jointly

and test whether their underlying spectral matrices are the same.

Consider two stationary and independent p-dimensional processes tXtu and tYtu.

Let x1, ..., xT and y1, ..., yT denote T observations from tXtu and tYtu, µx and µy de-

note their respective means, let λXpωlq and λY pωlq denote their respective autocovari-

77
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Figure 5.1: Multiple Time Series Plot of PWS and NCDC

ance matrices at lag r, and letλXpωlq “ tλX,jkpωlqu and λY pωlq “ tλY,jkpωlqu denote

their respective spectral density matrices at Fourier frequency ωl where ωl “ 2πl{T ,

l “ 1, 2, ..., rT {2s. The components of the spectral matrices are defined as

λX,jkpωq “ 1{2π
8
ÿ

r“´8

e´irωγX,jkprq, j, k “ 1, ..., p (5.1)

and

λX,jkpωq “ 1{2π
8
ÿ

r“´8

e´irωγX,jkprq, j, k “ 1, ..., p (5.2)

where i “
?
´1.

To assess whether the two multivariate series are similar, the approach is based

on a test of the equality of their spectral density matrices, i.e., consider the null

hypothesis:

H0 : λXpωq “ λY pωq, @ω P p´π, πq
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where ωX , ωY are the spectral density matrices of multivariate time series tXtu,tYtu.

This formulation assumes the variances are the same, so we will standardize the data.

Since the spectral density matrice is unknown, we need to estimate it. The peri-

odogram is a commonly used way of estimating the spectral density. The periodogram

of a time-series is the sample analogue of the spectral density. The p ˚ p raw peri-

odogram matrix of tXtu at the Fourier frequency ωl is IXpωlq “ tIX,jkpωlqu where

IX,jkpωq “
1

2πT
p

T
ÿ

i“1

xtje
´itωlqp

T
ÿ

i“1

xtke
´itωlq (5.3)

and

IY,jkpωq “
1

2πT
p

T
ÿ

i“1

ytje
´itωlqp

T
ÿ

i“1

ytke
´itωlq (5.4)

Similar to the case of univariate time series, under multivariate time series settings,

raw periodogram matrix is asymptotically unbiased but not consistent of the spectral

density matrix. Brockwell and Davis (1991) came up with the smoothed periodogram

estimate using the Daniell window at ωl, then the average of the raw periodogram

ordinates in a neighborhood of ωl is defined as:

I‹Xpωlq “ p2m` 1q´1
ÿ

|k|ďm

IXpωl`kq (5.5)

for ω P p´π, πq, where 2m ` 1 is a positive integer related to the degrees of freedom

of a complex Wishart distribution. It is known that

I‹Xpωq «
1

2m` 1
Wcp2m` 1, p, λXpωqq (5.6)
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5.1.1 Likelihood Ratio Test Based on Cross-Spectra

Ravishanker et al. (2010) defined a similarity measure using the smoothed peri-

odogram estimates of the spectral matrices for two stationary multivariate time series.

The likelihood functions LpλXpωqq, LpλY pωqq and Lpλ0pωqq can be derived as:

LpλXpωq, λY pωqq “
1

Γpp2m` 1q2
|I‹XpωqI

‹
Y pωq|

2m`1´p
|λ‹Xpωqλ

‹
Xpωq|

´p2m`1q

˚expr´trtλ´1X pωqI
‹
Xpωq ` λ

´1
Y pωqI

‹
Y pωqus

Under the null hypothesis, define:

Qpωq “
L0pλpωqq

LXpλpωqqLY pλpωqq
“ 22pp2m`1q |I

‹
Xpωq|

2m`1|I‹Xpωq|
2m`1

|I‹Xpωq ` I
‹
Y pωq|

2m`1
(5.7)

An effective overall test statistic for H0 is the unweighted average of the M smallest

Qpωjq. The quasi-distance Q‹XY is defined as the average of the M smallest values of

the likelihood ratio:

Q‹XY “
1

M

M
ÿ

j“1

QXY pωpjqq (5.8)

Ravishanker et al. (2010) give a subjective guideline for selecting the value of M

in the definition of Q‹XY , where M is chosen large enough to provide some smoothing

of Q without being too large to miss details of the spectra. The idea is to choose

M sufficiently large such that local variations in the ratios Qpωjq over the Fourier

frequencies should be smoothed out, but also to keep it small enough so that we can

uncover sufficient detail in the overall spectra, and be sensitive to relatively narrow

peaks in the spectra. Ravishanker et al. (2010) point out that a practical guideline

is to take
?
T ďM ď T {10. However, the author did not provide a specific criterion
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of selecting the value of M , in our research, we use the optimal M based on the

rate-of-testing theory as the guideline of the smoothing methods.

5.1.2 Tapered Test for the Multivariate Settings

As discussed earlier, Ravishanker et al. (2010) propose a quasi-distance between the

series based on the pairwise comparison between two multivariate stationary time

series via a likelihood ratio test based on the estimated cross-spectra of the series

yields. Ravishanker et al. (2010) give a subjective guideline for selecting the value of

M in the definition of Q‹XY . In this section, for the goal of comparing two spectral

matrices, we borrow the idea of tapered testing developed for the univariate time

series and apply to the multivariate scenario. With our proposed tapering test based

on Gaussian kernel smoothing of test

Q̃n “

p
ÿ

j“1

1

j1{2
Ỹj

2

with the optimal bandwidth:

b̂n “ Br
1

2
p3{4n plog pnq

1{4
´

1

2
s

In the simulation study, we apply this kernel smoothing method to each time series of

bivariate time series simultaneously and compare the performance with the approach

by Ravishanker et al. (2010).

5.1.3 Simulation Design for Multivariate Time Series Setting

In this section, we present a comprehensive simulation study to illustrate the per-

formance of our proposed tapered test under the multivariate time series setting.
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Figure 5.2: Raw periodogram of Bivariate MA(1) models of various parameter values

The simulation design is based on a bivariate VAR time series under three different

scenarios:

• Setting 1: Bivariate first-order MA(1) with series generated from each of two

different distribution, the null distribution is defined by MA(1) θ1 “ 0.1 versus

MA(1) with θ˚1 “ t0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9u.

• Setting 2: Bivariate first-order AR(1) with series generated from each of two

different distribution, the null distribution is defined by AR(1) φ “ 0.1 versus

AR(1) with φ˚1 “ t0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9u.

• Setting 3: Bivariate first-order seasonal MAp1q12 with series generated from

each of two different distribution, the null distribution is defined byMAp1q12

with θ1 “ 0.1 versus MAp1q12 with θ˚1 “ t0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9u.

Figure 5.2 illustrates the raw periodogram of bivariate MA(1) models of various

parameter values as listed above, which implies that they have different underlying

spectral densities. Figure 5.3, Figure 5.4 and Figure 5.5 show that by applying the
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Figure 5.3: Empirical Power for Short and Long Bivariate MA(1) Series
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Figure 5.4: Empirical Power for Short and Long Bivariate AR(1) Series
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Figure 5.5: Empirical Power for Short and Long Bivariate Seasonal MA(1) Series
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optimal bandwidth we derive from the previous chapter under the univariate time

series setting, it is also superior to Ravishanker et al. (2010)’s methods under the

multivariate settings.

5.2 Bayesian Approach to the Correction of Mul-

tiplicity

In the case of variable selections, each of m variables can be chosen independently

from huge possible model space with 2m model forms. If we assign 2´m to each

variable, which is equivalent to assigning each variable the prior of 1
2

to be included

in the final model, as a consequence, no multiplicity control is carried out. Scott and

Berger (2010) define a hierarchical model structure for the variable selection in the

regression analysis. The context is given that the response vector y is of length n,

and the input matrix X of size n ˚m, the regression model is represented as:

yi “ β0 `Xijβ1 ` ...`Ximβm ` εi

in which j “ 1, ...,m, and i “ 1, .., n. εi denotes noise of distribution Np0, σ2q. The

null model is denoted with only the intercept term, represented as M0, and the full

model is defined with all covariates included as Mm. Within the model space, each

model is indexed by a length m binary vector γ indicating whether the corresponding

coefficient is included or excluded in the regression:

γi “

$

’

’

&

’

’

%

0, ifβj “ 0

1, ifβj ‰ 0
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Scott and Berger (2010) treat the inclusion of every βj as Bernoulli trial with

success probability p, so the overall probability of the included coefficients can be

represented as:

ppMγ|qq “
m
ź

j“1

qγjp1´ qq1´γj “ qkγ p1´ qqm´kγ

We have p „ Uniformp0, 1q on p, and the likelihood is

fpY |yq “
M
ź

k“1

fpYk|γkq “
ź

γk“1

Np0,ΣH0
n q

ź

γk“0

Np0,ΣH1
n q

The MCMC algorithm can be found as below:

Algorithm 1 Metropolis-Hastings MCMC Algorithm

1: procedure run metropolis MCMC(tγ},{L},{BF}q Ź MCMC Input: Initial
State, Iterations, Bayes Factor

2: Define the initial state γp0q=
´

γ
p0q
1 , ..., γ

p0q
K

¯

3: for i in 1:L do
4: for j in 1:K do Ź Update all K elements of γ, repeat for L times

5: Generate a candidate t
plq
k from the proposal distribution Bernoulli(0.5).

6: The current state S
plq
k =

´

γ
pl`1q
1 , ..., γ

pl`1q
k´1 , γ

plq
k , γ

plq
k`1, ..., γ

plq
K

¯

the can-

didate state T
plq
k =

´

γ
pl`1q
1 , ..., γ

pl`1q
k´1 , t

plq
k , γ

plq
k`1, ..., γ

plq
K

¯

with the acceptance ratio

α “ min
!

1,
ppT

plq
k |Y q

ppS
plq
k |Y q

)

The posterior ratio in the algorithm can be derived from the settings of priors:

ppT
plq
k |Y q

ppS
plq
k |Y q

“ BFTSk ˚
ppT

plq
k q

ppS
plq
k q

“ BFTSk ˚
nT plq !pM ´ nT plqq!

nSplq !pM ´ nSplqq!

In the context of PWS abnormal detection, the multiple measurements are recorded

for each PWS, and we take the variables of minimum temperature, maximum temper-
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ature to model jointly using the Bayesian approach to correct multiplicity, it will be

a promising future direction to access the Integrity of the PWSs based on the overall

performance of various variables.



Chapter 6

Time Series Clustering Based

Abnormal Detection

6.1 Time Series Clustering

In recent years, there has been increasing research works on unsupervised solutions

like clustering algorithms to extract knowledge from a huge amount of data. Cluster-

ing is a solution for classifying enormous data when there is not any early knowledge

about classes. Clustering is an unsupervised data mining technique where similar

data are placed into related or homogeneous groups without previous knowledge of

the groups information.

Specifically, time-series clustering has been widely used in diverse areas such as

financial, marketing and biomedical time series in order to uncover patterns to extract

valuable information from complex and massive datasets. Clustering of time-series

data is widely used for the discovery of interesting patterns in time-series datasets.

This task can be applied in finding patterns that frequently appears in the dataset

as well as to detect abnormal patterns which happened in datasets surprisingly. We

87
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can define the time series clustering problem as below:

Time-series clustering, given a dataset of n time-series data D “ tF1, F2, ..., Fnu;

the process of unsupervised partitioning of D into C “ tC1, C2, ..., Cku, in such a

way that homogenous time-series are grouped together based on a certain similarity

measure, is called time-series clustering. Then, Ci is called a cluster, where D “

Yki“1Ci and Ci X Cj “ ∅ for i ‰ j.

Many types of statistical data analyses have been proposed from both frequentist

view and Bayesian view to identifying similarity patterns in heterogeneous observa-

tions.

6.2 Hierarchical Clustering Based on Tapered Test

Statistics

A wide variety of clustering methods from a frequentist perspective have been pro-

posed. Mac Queen (1967) proposed the K-Means algorithm for producing clusters

that separate data into K groups. However, the main drawback of this algorithm is

that of a priori fixation of the number of clusters and seeds. Ran Vijay Singh et al.

(2011) presented a modified k-means algorithm based on the sensitivity of the initial

centre of clusters. Kaufmann and Rousseeuw (1990) introduced the agglomerative

hierarchical clustering. It starts by placing each object in its cluster and then merges

these atomic clusters into a more massive cluster until certain termination conditions

are satisfied. It uses the Single-Link method and the dissimilarity matrix. Kaufmann

and Rousseeuw (1990) also introduced divisive hierarchical clustering. It does the

reverse of agglomerative hierarchical clustering by starting with all objects in one

cluster.
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In agglomerative (bottom-up) clustering method, we assign each observation to

its cluster, then compute the similarity (e.g., distance) between each of the clusters

and join the two most similar clusters. Finally, repeat those steps until there is only

a single cluster left. Traditional hierarchical clustering used Euclidean distance as

the distance measure. However, in the case of time series clustering, such distance

measure may lose power due to the unique property of time series. Inspired by our

previous work, we apply the tapered test statistics as the distance measure and run

the preliminary results on personal weather station data. The related algorithm is

shown below.

Algorithm 2 Clustering Algorithm

1: procedure HACTSp{X1u, ..., tXnu) Ź Time Series Input
2: ci “ ttXiuu

3: C “ tc1, ..., cnu
4: while C.size ą 1 doŹ Repeat until all items are clustered into a

single cluster of size N
5: pcmin1, cmin2q “ mintaperedpci, cjq for all ci,cj in C
6: remove cmin1 and cmin2 from C
7: add tcmin1, cmin2u to C

8: return C Ź The clustered result is C
=0

We apply the proposed algorithm to our dataset. In the first step, we select the

daily maximum temperature as the variable of interest. We extract time-series data

of the year 2017 and 2018, with 689 timestamps in total. The comparison of each

personal weather station concerning NCDC data is shown in Figure 3.12. Based on the

exploratory data analysis, PWS KVANORFO2, KVANORFO66 and KVANORFO42

seem to be consistent with official data, while part of KVANORFO20 deviates a lot,

KVANORFO72 and KVANORFO305 seem to be inconsistent with the ground truth.

In the next step, we carry out time-series clustering method to make clusters and

uncover the patterns in each cluster. When we set the number of clusters k equal to
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Figure 6.1: Maximum Temperature Hierarchical Clustering for k=2
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Figure 6.2: Maximum Temperature Hierarchical Clustering for k=3

2, the result is shown in Figure 6.1. Figure 6.2 and Figure 6.3 is the results when we

set k “ 3, 4 separately. All the plots give us very similar conclusions, KVANORFO72,

KVANORFO20 are very different from the other personal weather stations time series

patterns, and KVANORFO42 and KVANORFO305 look very suspicious when k “ 4,

they are also separated from the clusters of the majority of time series data.

Except for the maximum of daily temperature, we also investigate into the min-

imum of daily temperature, and Figure 3.12 illustrates that station KVANORFO2

deviates dramatically from the underlying truth at multiple time points. The clus-
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Figure 6.3: Maximum Temperature Hierarchical Clustering for k=4

tering results consolidate the finding that KVANORFO2 is abnormal concerning the

minimum daily rainfall report.

Daily precipitation is also modelled by our clustering method. Unlike temperature

data, the rainfall data has unique properties: it has a large portion of zeros, and its

distribution does not follow the normal distribution. As shown in Figure 1.3, it is hard

to see the general trend and seasonality from the time series plot, when clustering

method is applied, station KVANORFO72 and KVANORFO306 seem to always in

the unique abnormal clusters while the remaining stations tend to distribute equally

among the other clusters.

To sum up, stations KVANORFO72, KVANORFO20, KVANORFO306 and KVANORFO2

seem to be untrustworthy, especially station KVANORFO72 is abnormal with regard

to minimum daily temperature, maximum daily temperature and daily precipitation.



92

KVANORFO2

Time

0 100 300 500 700

0
20

40
60

80
KVANORFO20

Time

0 100 300 500 700

0
20

40
60

80

KVANORFO72

Time

0 100 300 500 700

−40
−20

0
20

40
60

80

KVANORFO66

Time

0 100 300 500 700

0
20

40
60

80

KVANORFO305

Time

0 100 300 500 700

0
20

40
60

80

KVANORFO42

Time

0 100 300 500 700

0
20

40
60

80

Figure 6.4: Time Series Plot of PWS vs NCDC for Minimum Temperature
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Figure 6.5: Minimum Temperature Hierarchical Clustering for k=2
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Figure 6.6: Minimum Temperature Hierarchical Clustering for k=3
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Figure 6.7: Minimum Temperature Hierarchical Clustering for k=4
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Figure 6.8: Time Series Plot of PWS vs NCDC for Rainfall
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Figure 6.9: Rainfall Hierarchical Clustering for k=2



95

0

1

2

3

0 200 400 600

time

val
ue

series

KVANORFO2

KVANORFO42

KVANORFO69

Time Series in Cluster 1

0

1

2

3

0 200 400 600

time

val
ue

series

KVANORFO20

KVANORFO22

KVANORFO28

KVANORFO305

KVANORFO66

Time Series in Cluster 2

0

1

2

3

4

0 200 400 600

time

val
ue

series

KVANORFO72

KVANORFO306

Time Series in Cluster 3

Figure 6.10: Rainfall Hierarchical Clustering for k=3
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Figure 6.11: Rainfall Hierarchical Clustering for k=4



Chapter 7

Demo on Personal Weather Station

In this chapter, we will demo the entire toolbox applied to PWSs in Norfolk area. As

discussed earlier in the thesis, our methods can be used for consistently producing

real time Bayes Factors to achieve standardized evaluation of PWSs at large scales.

Hypothesis testing framework is dependent on the assumption that we can retrieve

NCDC data and use the interpolated data to account for spatial difference as ground

truth. This approach is powerful since reliable data sources are introduced as a

benchmark, and we can derive Bayes Factors to quantify our ’belief’ on whether a

PWS is abnormal or not. However, the shortcoming is also straightforward since we

mainly rely on NCDC to reflect whether a PWS is reliable. Clustering-based abnormal

detection, on the other hand, with the advantage of avoiding introducing outside

data sources, can be used as a complementary approach for the abnormal detection

purpose. Without other data sources, we only count on PWS API to retrieve all

the PWSs within the similar region and make comparisons among them, with the

belief that if abnormality exists, they should be clustered apart from the majority

ones. We can use the visualization of cluster patterns to verify our conclusion. This

method also has the drawback that geographical difference is not considered, unlike
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in the first approach, we can handle this concern by interpolation. Fundamentally,

both methods share the same theoretical support built from the proposed tapered

statistics with kernel transformation.

The entire toolbox works in this fashion: first of all, historical time series data of

PWSs of our interest and surrounding NCDC stations within the same region is col-

lected, along with their geographical information for the data interpolation purpose.

Once the data has been collected, they fall into two pipelines:

1. With NCDC data as part of input, three hypothesis testing procedures for

temperature, precipitation and multiple weather measurements are implemented, and

Bayes Factors are calculated correspondingly. For hypothesis testing on daily max-

imum temperature and daily precipitation, the null hypothesis is that the weather

measurement time series of PWS and NCDC follow the same distribution, and the

alternative hypothesis is there is dissimilarity between them. We apply the tapered

test statistics with Gaussian kernel of optimal bandwidth, and derive the logarithm

of Bayes factors. If logBF ă 0, it indicates that the evidence is against H0, showing

the PWS is abnormal. If 0 ă logBF ă 1, then the evidence for H0 is ’not worth

a bare mention’, we do not hold strong belief on the trustworthiness of PWS. If

1 ă logBF ă 3, we are ’positive’ that there exists evidence for H0. If 3 ă logBF ă 5,

’strong’ evidence supports H0. If logBF ą 5, then we have ’very strong’ belief on

the null hypothesis that the PWS comes from the same distribution as interpolated

NCDC, thus the PWS is trustworthy.

2. Without outer data sources like NCDC, clustering based abnormal detection is

applied at the same time solely based on surrounding PWSs. We check the pattern

of each cluster and identify clustered apart from the majority PWSs and label them

as suspicious.

In general, the workflow pipeline generates multiple metrics for different ap-
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precipitation data from both PWS and NCDC in Norfolk area are collected from
the network jointly; the data is then preprocessed to get interpolated with the NCDC
data; the system computes the Bayes factor based on temperature and rainfall data for
each PWS individually; the system conduct the clustering-based time series abnormal
detection for all the neighboring PWSs jointly.)
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proaches. Even though we offer comprehensive solutions, it might be a little so-

phisticated to draw a consensus conclusion. The guideline is analysts can make the

decision based on the practical problems. For example, if they are interested in flood

monitoring, then they can emphasize the Bayes Factor generated by the precipitation

testing problem. If they care more about the overall performance, they can use the

combination of the three metrics, to decide by majority vote. They can always check

the density of NCDC in the surrounding area if the number of NCDCs is relatively

small, then they can conduct clustering-based methods to capture the abnormal ones.

With methods proposed, we come up with well-defined tools to measure the trustwor-

thiness of the crowdsourced data in real-time. The workflow is shown in Figure 7.1.

To make the workflow more directly perceived, I’ll mainly use two PWSs, KVANORFO22

and KVANORFO72 to demo the flowchart of our methods proposed in this thesis,

and also present the overall results for 11 stations in Norfolk.

7.1 Demo on Temporal Data Preprocessing

With accessed data from weather underground API published by PWS at the fre-

quency of every 15 minutes and daily historical data released by NCDC in the Nor-

folk area, they will fall into abnormal detection toolbox. To begin with, we carry

out data preprocessing steps on daily maximum temperature. It is noteworthy that

KVANORFO72 presents several enormous and small values at specific timestamps

which makes it quite suspicious and unstable. In our analysis of comparing two time

series, we want to eliminate the random effect caused by the outliers in order to

get a more convincing result based on the majority of published data points. Fig-

ure 7.2 is the outlier detection result for KVANORFO72 daily maximum temperature.

The model uncovers during February 2018, December 2018 and January 2019, sev-
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eral suspiciously high and low spikes have been captured in abnormal detection and

eliminated in the further analysis.

7.2 Demo on Time Series Hypothesis Testing

In the demo of time series hypothesis testing, besides PWS temporal data, the time

series data of surrounding NCDCs is also needed. With the practical concern that

PWS and neighboring NCDC does not necessarily share the same locations, sources
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Figure 7.4: Time Series Plot for Daily Maximum Temperature of PWS vs NCDC

of NCDC data must be interpolated based on their geographical information. As

shown in the left pipeline, to begin with, we interpolate the surrounding NCDCs to

the same longitude and latitude of PWS of interest. The time series plots of both

PWS stations compared with NCDC are shown in Figure 7.3.

With both preprocessed PWS and NCDC temporal data, we move on to carry

out the time-series hypothesis testing framework.

7.2.1 Hypothesis Testing on Temperature

The next step is to conduct hypothesis testing on the daily maximum temperature,

with pre-chosen optimal bandwidth under the Bayesian setup, Bayes Factors are

calculated accordingly as shown in Table 7.1.

KVANORFO22 and KVANORFO72, with outliers detected and eliminated, have

logarithm of Bayes factors around 43.7 and 47.9, indicating both of them have solid ev-

idence that PWSs come from the same underlying distribution as interpolated NCDC,

in other words, KVANORFO22 and KVANORFO72 are trustworthy concerning daily

maximum temperature measurements.
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Table 7.1: log BF for Daily Maximum Temperature of PWS in Norfolk

PWS log BF
KVANORFO2 43.74921
KVANORFO20 -8.6301
KVANORFO72 47.9050
KVANORFO305 49.6717
KVANORFO306 -203.2970
KVANORFO22 43.7492
KVANORFO28 49.04882
KVANORFO42 2.6867
KVANORFO66 -17.7271
KVANORFO69 46.3411

Table 7.2: log BF for Daily Precipitation of PWS in Norfolk

PWS log BF
KVANORFO2 -49.06801
KVANORFO20 26.53325
KVANORFO22 -44.09912
KVANORFO28 -22.98318
KVANORFO42 -338.7884
KVANORFO66 -12.02769
KVANORFO69 19.94753
KVANORFO72 -1326.598
KVANORFO305 21.78035
KVANORFO306 20.64477

7.2.2 Hypothesis Testing on Precipitation

Similarly, for hypothesis testing on daily precipitation, under the two-step setup, in

the first step, hypothesis testing on precipitation is conducted. If the null hypothesis

is supported, we will conduct time-series hypothesis testing on the daily maximum

temperature data, with pre-chosen optimal bandwidth under the Bayesian setup,

Bayes Factors are calculated as shown in Table 7.2.

KVANORFO22 and KVANORFO72 have logarithm of Bayes factors around -44.1
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Figure 7.5: Time Series Plot for Daily Precipitation of PWS vs NCDC

and -132.6, which implies that both stations seem to follow different distribution from

NCDC data concerning daily precipitation. Visualization from Figure 7.5 shows that

there indeed exist significant gaps between PWS and NCDC on the top part, and on

the bottom part, such as for KVANORFO20, KVANORFO69 and KVANORFO305,

PWSs appear consistent with NCDC rainfall data.

7.2.3 Hypothesis Testing on Multivariate Time Series

When we take into consideration of multiple measurements of maximum tempera-

ture, minimum temperature and average temperature jointly, the Bayesian approach

is adopted to correct multiplicity, both KVANORFO22 and KVANORFO72 are la-

belled as trustworthy with regard to multiple weather measurements on maximum

temperature, minimum temperature and average temperature.
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Figure 7.6: Maximum Temperature Hierarchical Clustering for k=2

7.3 Demo on Clustering-based Abnormal Detec-

tion

Besides abnormal detection under the hypothesis testing framework, we also apply

time series clustering based abnormal detection on daily maximum temperature for

all PWSs in the Norfolk area. Given a predefined number of clusters k, for instance,

with k “ 2, clusters generated are shown in Figure 7.6, with k “ 3, clusters generated

are shown in Figure 7.7, we find out that regardless of the setting of the number of

clusters k, KVANORFO72 either falls into a separate cluster by itself, or isolated from

the majority of clusters, while KVANORFO22 is always grouped with the majority

of stations in the same cluster. So based on those patterns, we can conclude that

KVANORFO72 exists abnormal behaviors, while KVANORFO22 is trustworthy.
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Figure 7.7: Maximum Temperature Hierarchical Clustering for k=3

7.4 Demo on Final Decisions

With methods proposed, we can run the entire toolbox and get a decision for every

aspect. For PWS KVANORFO72, when we carry out hypothesis testing on daily

maximum temperature, the Bayes factor is 47.9, showing strong evidence to support

the null hypothesis that it comes from the same distribution as interpolated NCDC.

However, when we conduct the clustering-based abnormal detection, it has been clus-

tered apart from the majority of the PWSs in Norfolk, the reasons can be that for

clustering, the geographical information of PWs have not been taken care. Thus the

results are not as convincing as hypothesis testing. We would refer to the testing prob-

lem to conclude that PWS KVANORFO72 provides reliable measurement on daily

maximum temperature, but we should keep in mind to eliminate the few extremely

values in the analysis. For PWS KVANORFO22, with Bayes factor equal to 43.7

in the hypothesis testing and also clustered along with the majority of surrounding

PWSs in clustering methods, we can safely conclude that KVANORFO22 is reliable

concerning daily maximum temperature. Both KVANORFO72 and KVANORFO22

have negative Bayes factors for daily precipitation, meaning we can not trust both

stations for reliable daily precipitation measurements.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

Motivated by the application of abnormal detection for personal weather stations

(PWS), in our research, we propose comprehensive methods to effectively identify the

’untrustworthy’ personal weather stations (PWS) for multiple weather measurements.

Periodogram-based tapered test under rate-of-testing framework and clustering-based

abnormal detection methods have been proposed.

In Chapter 2, we lay out the preprocessing steps for the weather measurement

data, since PWSs cover the personal residences of finer granularity than NCDC, the

observations of NCDC stations need to be interpolated at gridded locations using a

technique such as Inverse Distance Weighting (IDW) to take care of the geograph-

ical difference. Based on the findings that the very few very distinct outliers can

significantly influence the outcome of abnormal detection, even though the rest part

seems consistent with the NCDC time series data, we apply outlier detection as the

preprocessing step to avoid signifying an anomaly.

In Chapter 3, the first approach based on the PWS-NCDC comparison is proposed.
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Fundamentally, we test PWS against interpolated NCDC stations through hypothesis

testing procedure. We develop the theory for testing periodograms by smoothing and

introduce Bayesian testing framework to time series setting, and we come up with

an end-to-end framework for hypothesis testing problems in the time series context.

This approach also handles the challenge that existing testing procedures for assess-

ing whether two stationary time series have the same dynamics lose power for the

periodogram-based test, for the reason that the periodogram is not a consistent esti-

mator of the spectral density. It also brings in the issue of high-dimensionality, which

motivates us to incorporate tapered weights, to emphasize low-frequency periodic

shapes over high-frequency periodic shapes as it is critical for avoiding accumulating

stochastic errors for the high-dimensional data. Theoretical theorems and proofs un-

der each model are explained in details, and comprehensive simulation studies have

shown that the Gaussian kernel smoothing model with “optimal bandwidth” is supe-

rior and corresponding tapering test procedures are recommended.

In Chapter 4, we deal with the challenge brought by precipitation data because

of the unique property of inflated with zero values, which makes it difficult to be

converted into a stationary time series. We propose the two-stage approach where

in the first stage, we reduce the data to indicators of the presence or absence of

precipitation and carry out analysis for binary time series. On condition that the

binary time series can pass the test, we carry forward to the next stage of adapting

the methods from Chapter 3 for testing non-zero part of rainfall data.

In Chapter 5, we extend the idea of Chapter 3 to the multivariate time series

context. We use the optimal m based on the rate-of-testing theory as the guideline

of the smoothing methods with simulation studies showing its powerful performance

under multivariate time series settings.

In Chapter 6, we develop the clustering-based time series abnormal detection
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methods without introducing external data sources. We apply the proposed tapered

test statistic to hierarchical clustering as modified dissimilarity measure and con-

duct time-series clustering model to all the PWS in Norfolk area. Our model tends

to classify the similar ’normal’ PWS into the same cluster, and we can detect the

untrustworthy ones by investigating into the pattern of the remaining clusters.

In chapter 7, the demo of the entire toolbox is presented. We use KVANORFO22

and KVANORFO72 to demo the flowchart of the methods proposed in this thesis and

present the results for all 11 stations in Norfolk. We illustrate end-to-end analysis

and the decision making process for practical problems.

With the many proposed methods, they have pros and cons and can be applied to

various applications. The methodology of hypothesis testing on stationary time series

such as temperature data lays out the foundation of the thesis. Temperature data,

after the preprocessing steps of interpolation and outlier removal, can be converted

to stationary time series. Thus we can use periodogram-based methods with tapering

technique to conduct the hypothesis testing framework. This approach has a solid

theoretical foundation with consistent and stationary input, making the final decision

more convincing. The method developed on the hypothesis testing on precipitation

data can be more relevant to the problem of our concern since it directly applies to

the rainfall data and can give us an informational conclusion on the flood monitoring.

However, it also has the drawback that to avoid the issue of zero inflation, the time

series with zero values are either removed or smoothed in the processing process,

resulting in the loss of information. Hypothesis testing on multivariate data is mo-

tivated by the problem that weather stations report multiple weather measurements

such as minimum temperature, maximum temperature and average temperature, and

this approach can compare multiple weather measurements jointly and test whether

their underlying spectral matrices are the same. Bayesian approach to the correction
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of multiplicity is proposed to handle the multiple testing problem. For testing prob-

lems, Bayes Factors (BF) are calculated to ’quantify’ our belief for each scenario. For

those classified as ’alternative hypothesis’ time-series data, it will be labelled as ’un-

trustworthy’ ones. Time-series clustering is a widely used approach for the abnormal

detection since clustering method can reveal similarities among the PWSs. If abnor-

mality exists, they should be clustered apart from the majority of the data, making it

practical to check the credibility of the PWSs within the same district jointly. With

our proposed distance measure of tapered test statistics, our approach can handle the

temporal dependencies and seasonal variation of time series data. This method can

avoid bringing external information, but it also has the drawback that we have to

check each cluster manually and make decisions based on human judgement. To sum

up, we propose multiple solutions for the abnormal detection in the PWSs, hypothesis

testing problems output Bayes factors which can ’quantify’ our belief of whether or

not to support the null hypothesis for each PWS. However, this may bring in the issue

that with multiple Bayes factors produced by different testing procedures, it is likely

that one PWS might have contradictory results. It is crucial to identify the problem

we are most concerned of, for example, if we care most about the flood monitoring,

then we can rely on the Bayes factor generated by the testing on precipitation data.

If we care about the overall performance of the PWS, we can rely on the Bayes Factor

of the hypothesis testing of multivariate time series or the majority vote of Bayes fac-

tors generated by different measurements. For those PWSs classified as ’alternative

hypothesis’ time-series data, it will be labelled as ’untrustworthy’ ones. The clus-

tering method can be applied for the situation where we external data sources are

unavailable, to check the pattern of PWSs and find out abnormal clusters.
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8.2 Future Work

Hypothesis testing for time series has enormous potential for a variety of scientific

studies and industrial applications. In particular, the approaches proposed in our

work has favourable computation complexity and theoretical guarantee. For future

work, we will calibrate on the following aspects:

1. The rate-of-testing theory provides powerful toolsets for calibrating the mod-

elling procedures for hypothesis testing. Exploring the richer families (such as

the Tweedie family) with our proposed framework may lead to more advanta-

geous approaches, which we leave to the future work.

2. From the application perspective, with the increasing popularity of PWS, abnor-

mal detection will play more critical parts in the crowdsourcing weather station

studies. Future work may extend the current analysis by including more sta-

tions from geologically-different locations. In particular, we are interested in

Chapel Hill and Houston. In Chaple Hill, there are 108 PWS, and in Houston,

there are 428 PWS. One of the advantages of Huston rainfall data is that it

does not have the snow season and can avoid dealing with such special cases.
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Chapter 10

Proof

Appendix 1

Proof of Theorem 3.3.1. Denote by P0 and P1 the respective distributions of the data

under H0 and H1. Suppose there is a scalar series Zn that is asymptotically constant such

that

P0r
Qn ´ E0rQns
a

V0rQns
ą Zns “ α

where α is the size of the test. The power of the test is:

P1rQn ą E0rQns ` zn
a

V0rQnss “ P1r
Qn ´ E1rQns
a

V1rQns
ą
E0rQns ` zn

a

V0rQns ´ E1rQns
a

V1rQns
s

“ P1r
Qn ´ E1rQns
a

V1rQns
ą

zn ´ pE1rQns ´ E0rQnsq{
a

V0rQns
b

1` pE1rQns´E0rQnsq2

V0rQns
V1rQns´V0rQns

pE1rQns´E0rQnsq2

s

We can also rewrite this as:
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P1r
Qn ´ E1rQns
a

V1rQns
ą

zn ´An
a

1`A2
n{B

2
n

s

where

An “
E1rQns ´ E0rQns

a

V0rQns

and

Bn “
E1rQns ´ E0rQns
a

V1rQns ´ V0rQns

So if the rate of testing criteria holds, then it implies that

inf
θPH1pδn{δ‹n;s,Mq

An Ñ8

and

inf
θPH1pδn{δ‹n;s,Mq

Bn Ñ8

Proof of Theorem 3.3.2. For the mean and variance of the Q̄n:
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EpQ̄nq “ Ep

pn
ÿ

j“1

1

j1{2
Ȳ 2
j q

“

pn
ÿ

j“1

1

j1{2
EpȲ 2

j q

“

pn
ÿ

j“1

1

j1{2
rV arpȲjq ` EȲjq

2s

“

pn
ÿ

j“1

1

j1{2
r
σ2

mn
` θ̄2i s

V pQ̄nq “ V p

pn
ÿ

j“1

1

j1{2
Ȳ 2
j q

“

pn
ÿ

j“1

1

j
V pȲ 2

j q “

pn
ÿ

j“1

1

j
rEpȲ 4

j q ´ EpȲ
2
j q

2s

“

pn
ÿ

j“1

1

j
rpθ̄4i ` 6θ̄2i

σ2

mn
` 3

σ4

m2
n

q ´ p
σ2

mn
` θ̄2i q

2s

“

pn
ÿ

j“1

1

j
r4θ̄2i

σ2

mn
` 2

σ4

m2
n

s

Similarly, we have the constraint that

θ “ pθj , j “ 1, 2, ...q P Bs,M

Bs,M “ pθ1, θ2, ...q :

g

f

f

e

8
ÿ

j“1

j2sθ2j ďM
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H1pδ; s,Mq “ θ P Bs,M :

g

f

f

e

8
ÿ

j“1

θ2j ě δ

According to Theorem 1, if we want the rate of testing criteria holds, then the following

constraint should be satisfied:

řp
j“1wj θ̄

2
j

b

řpn
j“1

1
j θ̄

2
i
σ2

mn

Ñ8 (10.1)

as well as

řp
j“1wj θ̄j

2

b

řpn
j“1

1
j
σ4

m2
n

Ñ8 (10.2)

For the numerator part of both constraints, since

p
ÿ

j“1

wj θ̄
2
j “

8
ÿ

j“1

wj θ̄j
2
´

8
ÿ

j“p`1

wj θ̄j
2

“

8
ÿ

j“1

wj ||
mn

n

ÿ

iPCj

θi||
2 ´

8
ÿ

j“p`1

wj ||
mn

n

ÿ

iPCj

θi||
2

“
m2
n

n2
r

8
ÿ

j“1

wj ||
ÿ

iPCj

θi||
2 ´

8
ÿ

j“p`1

wj ||
ÿ

iPCj

θi||
2s

The lower bound of
ř8
j“1

1
j1{2
||
ř

iPCj
θi||

2 subject to constraint θ P Bs,M is achieved by

θj “

$

’

&

’

%

δn{δ
˚
n j “ ĵ

0 o.w.

where ĵ is the largest index between 1 and 8 that satisfies ĵ ď p δ
˚
nM
δn
q1{s.
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So

8
ÿ

j“1

1

j1{2
||
ÿ

iPCj

θi||
2 ě ĵ´1{2pδn{δ

˚
nq

2 “ pδn{δ
˚
nq

4s`1
2s M´ 1

2s

and

8
ÿ

j“p`1

1

j1{2
||
ÿ

iPCj

θi||
2 ď p´p2s`1{2q

8
ÿ

j“p`1

j2s||
ÿ

iPCj

θi||
2 ď p´p2s`1{2q

mn

n
M2

So

infθPH1

p
ÿ

j“1

1

j1{2
θ̄2j ě

m2
n

n2
pδn{δ

˚
nq

4s`1
2s M´ 1

2s ´
mn

n
p´

4s`1
2 M2

Which leads constraint (10.1) and (10.2) to the following conditions:

limsupnÑ8

m2
n

n2 p
δn
δ˚n
q
4s`1
2s M´ 1

2s

1
mn
σ2
b

řp
j“1

1
j

“ 8 (10.3)

limsupnÑ8

mn
n p

´ 4s`1
2 M2

1
mn
σ2
b

řp
j“1

1
j

ď 8 (10.4)

and

řp
j“1

1
j1{2

θ̄2j

1?
mn
σ
b

řpn
j“1

1
j θ̄

2
i

Ñ8 (10.5)

For the condition of (10.1), since the left part

?
mn

řp
j“1

1
j1{2

θ̄2j

σ
b

řpn
j“1

1
j θ̄

2
i

ą
?
mn

řp
j“1

1
j1{2

θ̄2j

σ
b

řpn
j“1

1
j1{2

θ̄2i

“
?
mn

g

f

f

e

p
ÿ

j“1

1

j1{2
θ̄2j Ñ8
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which can be implied from condition (10.2).

Since we have the property that

pn
ÿ

j“1

1

j
— log pn (10.6)

By taking square of equation (10.17), it is equivalent to:

limsupnÑ8

m4
n

n2 p
´4s`1M4

σ4logp
ď 8

which leads to the conclusion that

mn — pn
2p4s`1logpq1{4 (10.7)

Note that since we have the relationship that p=[n/2], so the equation (10.7) is equiva-

lent to that

mn — pp
s`3{4logp1{4q (10.8)

Similarly, equation (10.3) leads to:

limsupnÑ8p
δn
δ˚n
q
4s`1
2s

m3
n

n2
1

logp
“ 8 (10.9)

Equation (10.9) implies that

δn — p
n2logp

m3
n

q
2s

4s`1

By the definition of mn, we have
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δn — pp
1{4´3s log p1{4q

2s
4s`1 (10.10)

Proof of Theorem 3.3.3. For the mean and variance of the Q̃n:

EpQ̃nq “ Ep

pn
ÿ

j“1

1

j1{2
Ỹj

2
q

“

pn
ÿ

j“1

1

j1{2
EpỸj

2
q

“

pn
ÿ

j“1

1

j1{2
rV arpỸjq ` EpỸjq

2s

“

pn
ÿ

j“1

1

j1{2
rVn,j ` θ

2
i s

V pQ̃nq “ V p

pn
ÿ

j“1

1

j1{2
Ỹj

2
q

“

pn
ÿ

j“1

1

j
V pỸj

2
q “

pn
ÿ

j“1

1

j
rEpỸj

4
q ´ EpỸj

2
q2s

“

pn
ÿ

j“1

1

j
rpθ4i ` 6θ2i Vn,j ` 3V 2

n,jq ´ pVn,j ` θ
2
i q

2s

“

pn
ÿ

j“1

1

j
r4θ2i Vn,j ` 2V 2

n,js

The parameter is restricted to the following constraints that

θ “ pθj , j “ 1, 2, ...q P Bs,M
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Bs,M “ pθ1, θ2, ...q :

g

f

f

e

8
ÿ

j“1

j2sθ2j ďM

H1pδ; s,Mq “ θ P Bs,M :

g

f

f

e

8
ÿ

j“1

θ2j ě δ

According to Theorem1, if we want the rate of testing criteria holds, then the following

constraint should be satisfied:

řp
j“1wjθ

2
j

b

řpn
j“1

1
j θ

2
i Vn,j

Ñ8 (10.11)

as well as

řp
j“1wjθ

2
j

b

řpn
j“1

1
jV

2
n,j

Ñ8 (10.12)

For the numerator part of both constraints, since

p
ÿ

j“1

wjθ
2
j “

ř8
j“1wjθ

2
j ´

ř8
j“p`1wjθ

2
j

The lower bound of
ř8
j“1

1
j1{2

θ2i subject to constraint θ P Bs,M is achieved by

θj “

$

’

&

’

%

δn{δ
˚
n j “ ĵ

0 o.w.

where ĵ is the largest index between 1 and 8 that satisfies ĵ ď p δ
˚
nM
δn
q1{s.
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So

8
ÿ

j“1

1

j1{2
θ2j ě ĵ´1{2pδn{δ

˚
nq

2

“ pδn{δ
˚
nq

4s`1
2s M´ 1

2s

(10.13)

and

8
ÿ

j“p`1

1

j1{2
θ2j “

8
ÿ

j“p`1

1

j1{2
j´2sj2sθ2j

ď p´p2s`1{2q
8
ÿ

j“p`1

j2sθ2j

ď p´p2s`1{2qM2

(10.14)

So

infθPH1

p
ÿ

j“1

1

j1{2
θ̃j

2
ě pδn{δ

˚
nq

4s`1
2s M´ 1

2s ´ p´
4s`1

2 M2
(10.15)

Which leads constraint (10.6) to the following conditions:

limsupnÑ8
p δn
δ˚n
q
4s`1
2s M´ 1

2s

Vn,j
b

řp
j“1

1
j

“ 8 (10.16)

limsupnÑ8
p´

4s`1
2 M2

Vn,j
b

řp
j“1

1
j

ď 8 (10.17)

For the condition of (10.5), it can be implied from condition (10.6).

Since we have the property that

pn
ÿ

j“1

1

j
— log pn (10.18)

By taking square of equation (10.17), it is equivalent to:



124

limsupnÑ8
p´p4s`1qM4

V 2
n,j log p

ď 8 (10.19)

which leads to:

V 2
n,j — p´p4s`1q (10.20)

Since we consider the case for the uniform kernel smoothing, the kernel function Kpuq

is defined as:

Kpuq “

$

’

&

’

%

1{2 |u| ď 1

0 o.w.

When we investigate the definition of Cj,k, it is represented in the form of Kp
wk´wj
bn

q,

which can be expressed as:

Kp
wk ´ wj
bn

q “
1

2
1|wk´wj |ďbn “

$

’

&

’

%

1 |wk ´ wj | ď 1

0 o.w.

Thus, Vn,j can be expressed as:
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Vn,j “ σ2
rn1{2s´1
ÿ

k“1

C2
j,k

“ σ2
p
ÿ

k“1

rKp
wk ´ wj
bn

q{

p
ÿ

k“1

Kp
wk ´ wj
bn

qs2

“ σ2
p
ÿ

k“1

r
1

2
1|wk´wj |ďbns

2{r
1

2

p
ÿ

k“1

1|wk´wj |ďbns
2

“ σ2
p
ÿ

k“1

r1|wk´wj |ďbns
2{r

p
ÿ

k“1

1|wk´wj |ďbns
2

“ σ2
p
ÿ

k“1

1|wk´wj |ďbn{r

p
ÿ

k“1

1|wk´wj |ďbns
2

“ σ2
nbn{2π

pnbn{2πq2

“ σ22π{nbn(10.21)

Thus, according to equation (10.25), we have 2π{nbn — p´p4s`1q{2, which leads to:

bn — p
4s`1

2 (10.22)

Similarly, equation (10.16) leads to:

lim sup
nÑ8

p
δn
δ˚n
q
4s`1
2s

1

V 2
n,jlogp

“ 8 (10.23)

Equation (10.33) implies that

δn — pp
p4s`1qlogpq

2s
4s`1 (10.24)

Proof of Theorem 3.3.4. Based on Theorem 3, we have the conclusion that in order to

achieve rates of testing, we would have:
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V 2
n,j — p´p4s`1q (10.25)

Since we consider the case for the Gaussian kernel smoothing, the kernel function Kpuq

is defined as:

Kpµq “
1
?

2π
e´

1
2
u2 (10.26)

So we have the expression for kernel as:

Kp
wk ´ wj
bn

q “
1
?

2π
e´

1
2
p
wk´wj
bn

q2

Thus, Vn,j can be expressed as:

Vn,j “ σ2
rn1{2s´1
ÿ

k“1

C2
j,k (10.27)

“ σ2
p
ÿ

k“1

rKp
wk ´ wj
bn

q{

p
ÿ

k“1

Kp
wk ´ wj
bn

qs2 (10.28)

“ σ2
p
ÿ

k“1

1

2π
e´p

wk´wj
bn

q2
{r

p
ÿ

k“1

1
?

2π
e´

1
2
p
wk´wj
bn

q2
s2 (10.29)

“ σ2
p
ÿ

k“1

e´p
wk´wj
bn

q2
{r

p
ÿ

k“1

e´
1
2
p
wk´wj
bn

q2
s2 (10.30)

(10.31)

For the term e´p
wk´wj
bn

q2 , it falls within the range that e´
n2

b2 ď e´p
wk´wj
bn

q2
ď e´

1
b2

So equation (10.27) would falls in the range that

Vn,j ě σ2
1

n
e
n2´1
bn
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and

Vn,j ď σ2
1

n
e
n2´1
bn

Thus, we have 1
ne

n2´1
bn — p´p4s`1q{2, which leads to:

bn —
n2 ´ 1

log p4s
(10.32)

Similarly, equation (10.16) leads to:

lim sup
nÑ8

p
δn
δ˚n
q
4s`1
2s

1

V 2
n,jlogp

“ 8 (10.33)

Equation (10.33) implies that

δn — p4slogp4s (10.34)


