

Non-photorealistic ray tracing with paint and toon shading

A Technical Report

presented to the faculty of the

School of Engineering and Applied Science

University of Virginia

by

Nicholas Moon

with

Megan Reddy

May 9, 2021

On my honor as a University student, I have neither given nor received unauthorized aid

on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Nicholas Moon

 Technical advisor: Luther Tychonievich, Department of Computer Science

Non-photorealistic ray tracing with paint and toon shading
Nicholas Moon

University of Virginia

nm9nz@virginia.edu

Megan Reddy
University of Virginia

mr8vn@virginia.edu

Luther Tychonievich
University of Virginia

tychonievich@virginia.edu

ABSTRACT

We present a modification to traditional ray tracing that stylistically

renders a scene with cartoon and painterly styles. Previous methods

rely on post-processing, materials, or textures to achieve a non-

photorealistic look. Our method uses a ray tracer to combine cel

animation art styles with complex lighting effects, such as

reflections, refractions, caustics, and shadows. The ray tracer

collects information about objects and their properties to

dynamically switch between cartoon and painterly rendering styles.

The renderer generates the styles by shooting additional rays for

each pixel and collecting information such as normals, distance,

slope, object identifiers, and light gradients from neighboring areas

of the image. The resulting algorithm produces images with visual

and artistic characteristics that allow artists to take advantage of

rendering techniques that are not commonly supported in

production ray tracers.

CCS Concepts

• Computing methodologies ➝ Computer graphics ➝

Rendering ➝ Ray tracing • Computing methodologies ➝

Computer graphics ➝ Rendering ➝ Non-photorealistic

rendering

Keywords

Cartoon rendering; painterly rendering; physically-based

rendering; global illumination

1. INTRODUCTION
Non-photorealistic rendering (NPR) encompasses cartoon and

painterly styles. Ray tracing creates photorealistic images with

reflections, refractions, and caustics. Our method combines both

techniques by using a ray tracer to stylistically render a 3D scene,

allowing interaction between various NPR styles simultaneously.

In order to create a cartoon or painterly look, many algorithms use

special materials or textures. In painterly rendering, most methods

perform stylization as a post-processing step on an image [4] or

determine stroke attributes with shaders [6] instead of acquiring

them through the ray tracing process. They also use surface normal

cutoffs for feature edge detection [5] or base quantized colors solely

on normal and light direction vectors [1]. Alternatively, work with

cartoon ray tracing has yielded results without outlines in

reflections and refractions [2].

2. METHOD
The primary ray cast for each pixel intersects with a foreground

(toon) or background (paint) object, and uses the object’s style type

to follow either the toon shading process or the paint generation

process (Figure 1).

Figure 1. Two scenes rendered with paint and toon shading.

Reflections and refractions include paint and outlines, and

caustics illuminate the left side of the refractive sphere.

2.1 Toon Rendering
2.1.1 Quantized Light Intensity
In order to implement the toon shading style, rays collect

illumination at the surface of the closest primary ray intersection,

and quantize it after accumulating direct light, indirect light, and

bidirectional light samples. The shading process illuminates

triangles using the barycentric coordinates of the intersection point,

so cutoffs of quantized light intensity values are smooth and

continuous for low polygon models.

2.1.2 Outline Detection
Outlines are generated in screen space by sending rays around a

disc centered on each pixel. These rays trace through the scene,

reflecting and refracting, and store information regarding every hit

object’s identifier, distance, object style type, and total number of

objects hit. We use this data to determine if the pixel lies on a

transition between two objects (different object identifiers), on a

crease in a single object (difference in distance), or on the edge of

reflective or refractive surfaces (comparing all hit objects’

identifiers). The total number of samples that differ from the

primary ray collision determines the resulting intensity of the

outline at that point, to enable an outline color gradient.

Figure 2. A scene without stylization (a) and with stylization (b).

2.2 Painterly Rendering
2.2.1 Brush Creation
We initialize a circular brush mask and compute its radius as a

constant fraction of image resolution. Our brush engine supports

two types of brushes, one with a linear falloff and one with no

falloff. Brush masks hold paint alpha values, which allow the

painterly renderer to perform a simple lookup and use the ray traced

color with those values while painting.

2.2.2 Stroke Creation
We create strokes based on data available during ray tracing,

following a process similar to those outlined in post-processing

painterly techniques [4] and particle system techniques [3]. We

initialize a constant stroke length based on image resolution. For

each pixel, we calculate the gradient direction according to normal

and lighting properties at the intersection point. We calculate the

rest of the stroke points and add the finished stroke to a list of

strokes for the scene.

2.2.3 Stroke Placement
Our algorithm sends the list of strokes to the painterly renderer,

which composites the strokes onto the canvas with the appropriate

brush type. We draw strokes in a random order to create an organic

and painterly look. If strokes overlap, the renderer mixes their

colors with alpha blending. During the ray tracing process, we keep

an object boundary buffer and object type buffer, which allow us to

trim strokes so that they do not bleed into neighboring objects or

toon objects.

2.2 Style Integration
In addition to determining which style to render for any given pixel,

we also implement techniques for integrating these two features to

create a cohesive image. To implement anti-aliasing, we average

ray samples for foreground objects; background objects paint a

stroke for each sample, and have anti-aliasing built into the stroke

placement itself. Cel-based animation styles typically treat shadows

as foreground objects, usually a single dark silhouette applied on

top of the painted background. We generate this effect by storing

shadow intensity in a buffer during the ray tracing process, and then

use the values stored in that buffer to attenuate the color of paint

strokes already applied to the scene. We also store outline intensity

in a buffer, and apply it over paint strokes and shadows as the last

step of the rendering process.

3. DISCUSSION
In Figure 2, all objects are background objects with the exception

of the person, plates, and food. In (b), the ground, buildings, tables,

and chairs have a stroked appearance instead of normal shading.

The foreground objects, such as the person, show color

quantization and outline detection. The shadowed parts of

background objects have paint stroke color attenuated.

4. ACKNOWLEDGMENTS
We would like to thank our animation professor at the University

of Virginia, Earl Mark, for his guidance over the past two years.

The model of the person was retrieved from free3d.com/3d-

model/girl-blind-703979.html

5. REFERENCES
[1] Ken-ichi Anjyo and Katsuaki Hiramitsu. 2003. Stylized

Highlights for Cartoon Rendering and Animation. IEEE

Comput. Graph. Appl. 23, 4 (July 2003), 54–61.

DOI:https://doi.org/10.1109/MCG.2003.1210865

[2] A. N. M. Imroz Choudhury and Steven G. Parker. 2009. Ray

tracing NPR-style feature lines. In Proceedings of the 7th

International Symposium on Non-Photorealistic Animation

and Rendering (NPAR '09). Association for Computing

Machinery, New York, NY, USA, 5–14.

DOI:https://doi.org/10.1145/1572614.1572616

[3] Andy Hanson and Scott Todd. 2014. Object-Space Painterly

Rendering for WebGL. Final Report, Advanced Graphics.

Rensselaer Polytechnic Institute, Troy, NY.

[4] Aaron Hertzmann. 1998. Painterly rendering with curved

brush strokes of multiple sizes. In Proceedings of the 25th

annual conference on Computer graphics and interactive

techniques (SIGGRAPH '98). Association for Computing

Machinery, New York, NY, USA, 453–460.

DOI:https://doi.org/10.1145/280814.280951

[5] Lee Markosian, Michael A. Kowalski, Daniel Goldstein,

Samuel J. Trychin, John F. Hughes, and Lubomir D.

Bourdev. 1997. Real-time nonphotorealistic rendering. In

Proceedings of the 24th annual conference on Computer

graphics and interactive techniques (SIGGRAPH '97). ACM

Press/Addison-Wesley Publishing Co., USA, 415–420.

DOI:https://doi.org/10.1145/258734.258894

[6] Barbara J. Meier. 1996. Painterly rendering for animation. In

Proceedings of the 23rd annual conference on Computer

graphics and interactive techniques (SIGGRAPH '96).

Association for Computing Machinery, New York, NY,

USA, 477–484. DOI:https://doi.org/10.1145/237170.237288

https://doi.org/10.1145/1572614.1572616
https://doi.org/10.1145/237170.237288

