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Abstract

Nowadays information systems have been increasingly used in assisting our everyday decision-makings, from
recommending movies to watch, products to purchase, to even providing treatment to patients. Such systems
enable us to have every kind of data we possibly want at our fingertips. on the contrary, information system
become more involved in making crucial decisions affecting human livelihoods, e.g., clinical decision-making
criminal’s incarceration. It brings up serious concerns on whether the systems could provide reliable service,
and urges us to improve the reliability of the information systems.

The reliability of the decision-making can be evaluated in various aspects. First, accuracy undoubtedly is
the foundation of a reliable information system. Users’ trust on the system will be hurt if they are presented
with instances that are subsequently found to be inferior. Besides, only returning the most relevance results to
users is insufficient to help users to perceive the value of the provided information. To gain users’ trust, the
system also needs to be more transparent and make it more explicit why the users should pay attention to those
returned results. In addition, served as the inter-media between information provider and consumer, modern
information systems need to be trustful for both the consumer and the information provider. For the candidate
instances, a reliable decision-making should not create discriminatory or unjust impacts when comparing
across different demographics.

In this thesis, we focus on three aspects of the reliability of the decision-making in information system,
accuracy, fairness, and transparency,. More specifically, we present three main tasks to enhance the modern
information systems: 1) efficient online learning to rank; 2) fair online learning to rank; and 3) explainable
recommendation. Our study provides a deep and thorough understanding of the importance of the reliability
in information systems, and improves the reliability of the system by providing more effective, fair and
transparent service. Rigorous theoretical analysis and extensive empirical evaluation validated the approaches’
applicability in various contexts and applications.
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Chapter 1

Introduction and Overview

Information system serves as the predominant interface between users and massive amount of information.
Enhanced by advanced machine learning algorithms, such systems are being adopted in a growing number of
contexts and playing a central role in modern life, including health and wellness, entertainment, finance, and
commerce [1]. With the information overload caused by the explosive growth of information, information
systems bring myriad benefits. For example, recommendation systems help to filter, prioritize and highlight
the relevant or valuable instance from a vast catalog; intelligent online recruiting platforms enable the
matching between the applicants and the job requirements. On the contrary, information systems increasingly
make crucial decisions affecting human livelihoods, for example, to decide bank loans, clinical decision-
making, and the criminals’ incarceration. A minor mistake in the information systems has the potential for
significant negative impact. This makes a reliable decision-making in modern information system urgent and
crucial.

The reliability of an information system can be evaluated in various aspects. First, beyond any doubt, accuracy
is the foundation of a reliable information system. For example, users’ trust on the recommendation system
will be hurt if they are recommended with instances that are subsequently found to be inferior. A reliable
information system should be able to provide right information to the users based on their information
need to gain the trust. Besides, an accurate prediction alone is not sufficient to gain users’ trust. Equipped
with advanced machine learning techniques, existing modern information systems are more like a black-
box: computerized oracles give advice, but cannot be questioned. Previous research shows that transparent
information system, e.g., explaining how/why the results are presented to a user, help people make more
accurate decisions [2], improve user acceptance [3], and increase trust in the information systems [4]. For
example, in recommendation systems, in addition to "which one to buy", the users also seek for the reason
of the recommendation, e.g., "why should I buy it". Last but not least, serving as the intermediary that
provides the service to both consumers (users) and information providers (content providers), the information
system is responsible to make reliable decisions for both sides. A reliable decision-making should not create
discriminatory or unjust impacts when comparing across different demographics of the information providers.
For example, in a job marketplaces, fail to consider the fairness of the decisions will lead to unequal treatment
of a candidate based on some special properties such as gender and sex, which may limit the group’s visibility
and thus future engagement.

Many challenges are introduced in improving the reliability of the decision-making in information systems.
First, in modern information systems, most of the models are learned with user implicit feedback, instead of
the expert annotations. Such implicit feedback is not guaranteed to be reliable, e.g., click feedback is noisy and
biased. Efficiently learn an effective information model with unreliable data is one of the key challenges. In the
meantime, reliable information systems are also required to fullfill multiple objectives along with the accurate
prediction, e.g., ensuring transparency and fairness. The system needs to trade off the multiple objectives
when optimizing the serving performance to reach the desired outcome. To make things even worse, those
objectives oftentimes can be conflicting, e.g., relevance vs. fairness. To tackle the aforementioned challenges,
and improve the reliability of the decision-making in information systems, we focus on three main aspects,

1



1.1 Challenges and Insights 2

accuracy, transparency and fairness, and develop the algorithms in the following aspects: 1) efficient online
learning to rank, 2) explainable recommendation, and 3)fair online learning to rank.

1.1 Challenges and Insights

1.1.1 Effective Online Learning to Rank with Pairwise Exploration
The study of learning to rank with implicit user feedback such as click data has received considerable attention
in both academia and industry. By collecting data from user interactions, we can better capture the true utility
of instance for each user and create large-scale training data for ranking optimization without extensive and
expensive human annotations. However, directly learning with user implicit feedback suffers from the intrinsic
noise and bias in the interactions [5–7]. Online learning to rank (OL2R), which interactively optimizes and
updates a ranking model after interacting with users, has gain more and more attention in recent decade. OL2R
combats the bias by interventions, e.g., displaying a modified ranked list to users to complete the knowledge
of the model, which is known as the exploration in OL2R.

Although influential and theoretically sound, the current OL2R solutions are not compatible with the successful
practices in offline learning to rank, which directly optimize rankers by minimizing loss defined by rank-
based metrics, such as Average Relevance Position (ARP) [8] or Normalized Discounted Cumulative Gain
(NDCG) [9]. As a result, the performance of existing OL2R solutions is still behind that of offline solutions,
which directly restricts OL2R’s real-world applicability.

The key barrier separating the practices in online and offline learning to rank is the need of exploration. Since
users’ feedback is implicit and known to be biased and noisy [5–7], more clicks on a top-ranked document do
not necessarily indicate greater relevance. The requirement of effective exploration in the problem space for the
online model update introduces several challenges for OL2R. First, due to the combinatorial natural of ranking,
the action space is too large to be efficiently explored (e.g., all permutations of returned documents). Current
OL2R solutions either explore in the model space, or explore by taking a pointwise approach to estimated the
utility of each query-document pair. For model space exploration, though an interleaved test makes it possible
to compare different rankers with respect to a hidden utility function in an unbiased fashion, it is hard to link
this comparison to the optimization of any rank-based metrics. And with the required uniform sampling in
the model space, this type of OL2R solutions suffers from high variance and high regret during online result
serving and model update [10]. While for action space exploration, it has been proven that it is inferior to the
pairwise or listwise approaches in offline learning to rank studies [11]. Second, in the past decade, advances in
deep neural networks (DNN) have made sifnificant strides in improving offline learning to rank models, thanks
to DNN’s strong representation learning power. But quite remarkably, most existing work in online learning
to rank (OL2R) still assume a linear scoring function [10, 12, 13]. However, turning a neural ranker online
is non-trivial. While DNNs can be accurate on learning given user feedback, i.e., exploitation, developing
practical methods to balance exploration and exploitation in complex online learning problems remains largely
unsolved. In essence, quantifying a neural model’s uncertainty on new data points remains challenging. Third,
efficiency is crucial for online models to be applied in practice. Given the existing theoretical studies in bandit
algorithms [14–16], the added computational cost for exploration, e.g., quantifying the uncertainty the existing
model is prohibitively high. For example, the cost of the confidence interval construction depends the number
of parameters of the model, which is often in the order of 100 thousands.

Online learning to rank with pairwise exploration. Motivated by the nature of ranking that the complete
ranking of instances can be decomposed into a series of pairwise comparisons, we propose to explore in the
pairwise instance ranking space. Specifically, the ranker predicts the relative rank order between a pair of
instances. Exploration is only needed on the pairs where the ranker is currently still uncertain about their
rank orders, e.g., apply random permutation in their relative rankings; and for others, where the ranker is
already certain about their rank orders, the predicted rank orders will be followed. In particular, the certain
and uncertain rank orders are determined based on the model’s estimation uncertainty, e.g., the confidence
interval of the estimation. Our theoretical analysis shows that for both linear and neural ranker, the exploration
space shrinks exponentially fast as the ranker estimation converges. This leads to the gap-dependent sublinear
upper bound on the cumulative regret defined on the number of mis-ordered pairs, e.g., up to the order of
O(log4(T )). Our extensive empirical evaluations also demonstrate the strong advantage the proposed model
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against a rich set of state-of-the-art OL2R solutions over a collection of OL2R benchmark datasets on standard
retrieval metrics.

Scalable exploration with perturbed feedback. Despite being theoretically sound and empirically effective,
confidence interval based uncertainty calculation has remarkable limitation when being applied in practice: its
computational cost for performing the required exploration is prohibitively high (almost cubic to the number
of the model’s parameters). In this work, to eliminate the explicit confidence set construction, we develop a
bootstrapping technique to measure the uncertainty of the ranker’s output via a set of sample estimates. In
particular, N rankers are trained in parallel, each of which is learned with the user feedback and independently
generated pseudo noise from a zero-mean Gaussian distribution. The overall model’s estimation uncertainty
is then determined by the ensemble of the estimates from all N rankers. Besides regular neural network
updates, no additional computation is needed, which greatly reduces the computational overhead, and make
the pairwise OL2R model operational in practice. We rigorously prove that this model obtains the same regret,
i.e., O(log4(T )), but the computational complexity is way much lower.

1.1.2 Fair Online Learning to Rank
Existing ranking solutions that target at user-focused utility optimization unfortunately ignores the impact of
result ranking on the content providers, who might receive differential attention from the users depending on
their results’ ranked positions. Compared to the scenario where a pre-trained ranker is deployed in offline
ranking, the differential treatment can be accumulated and amplified in a faster rate during the course of
OL2R. This is driven by the need of exploration in OL2R, where the algorithm has to continuously place an
intentionally selected subset of results on top.

Though various exploration strategies have been proposed in OL2R literature [10, 12, 17–26], none of them
consider fairness when presenting results to users. With the fairness concern, a new conflict emerges in the
already complicated explore-exploit dilemma in OL2R. For instance, to ensure fairness, some results cannot
be displayed, which slows down or even prevents online model learning. The slow improving relevance
estimation in turn can lead to poor user experience (i.e., higher regret); in the meanwhile, if the bias from earlier
OL2R update cannot be quickly eliminated by new feedback, unfair result ranking will be accumulated and
amplified (e.g., one group is always mistakenly preferred). This leads to a new paradox among three elements
in OL2R: fairness, exploration and exploitation. Most of the existing fair ranking solutions unfortunately do
not apply to OL2R as they require expert-labeled relevance data or logged feedback for all items to train a
ranker beforehand. Their prerequisite on the availability of relevance labels restricts these solutions in the
OL2R setting, where the ranker is trained via the interactions with the users from scratch.

Calibrating exploration and exploration for fair exposure in OL2R. Group fairness concerns whether each
group of instances receives fair treatment, e.g., comparable exposure across different content providers in
rankings. In particular, the placement of groups (e.g., content providers), instead of the detailed placement
of instances, affects the unfairness across groups. In this work, we develop a fair OL2R framework which
confines the exploration within a subset of random permutations, where fairness across groups is maintained
while the feedback is unbiased. Briefly, in each round of result serving in OL2R, candidate templates of
group placements will first be selected based on the currently accumulated unfairness. Then ranked list then
will be generated with respect to the chosen group-level templates and the required exploration. In other
words, fairness is treated as a hard constraint when striking the balance between exploration and exploitation.
Extensive empirical analysis of the resulting algorithm is performed to demonstrate the effectiveness and
advantages of our proposed framework comparing to existing fair OL2R solutions.

1.1.3 Multi-task Learning for Explainable Recommendation
As recommendation systems are becoming more and more involved in daily life, they also shape people’s
personal and social life. Therefore, the opaque nature of most deployed recommendation algorithms, such as
latent factor models [27], eagerly calls for transparency [3]. The lack of transparency in personalization [4]
leaves users in a dilemma: a user can only assess the quality of personalized results by taking the suggested
items, e.g., read the recommended articles; however, in order for him/her to adopt the system’s customized
results, he/she needs to first build trust over the system. Arguably, the most important value of explanations in
an information system is not to convince users to adopt customized results (i.e., promotion), but to allow them
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to make more informed and accurate decisions about which results to utilize (i.e., satisfaction) [2]. If users are
convinced to accept personalized results that are subsequently found to be inaccurate, their confidence in the
system will rapidly deteriorate [3, 28].

Explaining recommendation systems’ output is non-trivial. Given the same information need, e.g., searching
for diabetes medications, different users might hold distinct decision criteria: e.g., price vs. side-effect. And
therefore, they will need different explanations in assessing the utility of personalized results. Precisely
understanding users’ preferences is the prerequisite for generating informative explanations to support their
decision making. The first challenge in generating user-oriented explanation is to understand what the users
want to know when making their decisions. For example, if an algorithm could predict the opinionated
content that the user would provide on the recommended item, this content can serve as an informative
explanation to illustrate why the user should pay attention to those recommended items. To obtain this
level of user understanding, we need to first identify aspects or features that mostly affect users’ decision
making and infer their importance to the users. Second, the fidelity of explanation and the quality of
personalization have long been considered as irreconcilable [29]: one has to trade personalization quality
for explainability. Various solutions have been proposed to approximate the underlying personalization
mechanisms for explanation [29, 30]. But to what extent these approximated explanations comply with the
personalization models is unknown, i.e., no guarantee in explanation fidelity.

We argue that a good recommendation system should consist of companion learning tasks focusing on different
aspects of users’ decisions over the recommended items such that the observed final decisions (e.g., clicks
or ratings) can be mutually explained by the associated observations. This insight motivates us to view
explainable recommendation as a multi-task learning problem [31–33], where two companion learning tasks
are formed: one focuses on user preference modeling for personalization, and another focuses on content
modeling for explanation. In particular, we propose two multi-task learning solutions to enhance and explain
the recommendations by leveraging the information from the user opinionated review text.

Explainable recommendation with joint tensor decomposition. With the available user opinion review
content, rich information can be extracted with feature-level sentiment analysis techniques [34]. With such
information, we propose to model the user, item, feature as a three-way tensor to describe users’ preferences
on specific features of the items. Besides, another two three-way tensors encoded with opinionated phrases
are modelled for explanations. Via a joint tensor decomposition, user, item, feature and opinionated phrases
can be projected to a shared latent representation space. In this way, the learning of latent factors for
users and instances are thus shaped by optimizing the objectives of personalization and explanation tasks.
The explanations can thus be generated by filling the predicated features and corresponding opinionated
descriptions in predefined templates. Extensive experimental comparisons between our proposed solution and
existing explainable recommendation algorithms demonstrate the effectiveness of our solution in both item
recommendation and explanation generation tasks.

Explainable recommendation with factorization tree. Prior studies show that rule-based explanations
are more easy to perceive and justify by the end-users [35]. Motivated by this, we propose to integrate the
rule-based decision making into the learning of latent factors. More specifically, we treat the latent factors
as a function of the rules: based on different outcomes of the rules, the associated groups of users and items
should be routed to the designated latent factors, which are then optimized for recommendation. As the latent
factors are learned subject to the explanation rules, the fidelity of explanations is ensured; and because latent
factors are optimized for improving personalization, the quality of personalization is also provided. Extensive
experiment evaluations demonstrate improved quality in recommendation and explanation of our proposed
solutions, compared to a set of state-of-the-art explainable recommendation algorithms.

1.2 Dissertation Structure
The rest of this thesis is organized as follows. In Chapter 2, we introduce the solutions to improve the accuracy
of the online ranking system with unreliable feedback. We propose a pairwise exploration framework, named
as PairRank, for online learning to rank. In Chapter 3, we consider the fairness in ranking, and present the fair
OL2R framework, FairExp, ensure fair exposure across different content providers. In Chapter 4, we describe
the solutions to improve the transparency of the decision-making in recommendation systems. We develop
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two multi-task learning solutions, MTER and FacT, for explainable recommendation by leveraging the rich
information in users’ text review data. In Chapter 5, we conclude this dissertation and discuss future research
directions.



Chapter 2

Effective Online Learning to Rank with
Pairwise Exploration

Modern information systems mostly learn from user interactions. Compared to learning from annotated
datasets, implicit feedback obtained through user interactions matches user preferences more closely. Further-
more, learning from user interactions makes supervised learning of ranking models possible when collecting
explicit annotations from experts is economically infeasible or even impossible (e.g., private collection search).
However, a big disadvantage of user interaction is not guaranteed to be reliable; they often contain different
types of bias and noise [5–7]. Online learning to rank (OL2R) [10, 12, 13, 19, 21–23, 25, 36] aims at removing
the bias from the learning process by directly interacting with users. OL2R combat bias by interventions, i.e.,
by displaying slightly modified rankings to the users. Previous research shows that OL2R is more robust to
selection bias, position bias and interaction noise than other debiasing method for learning to rank [37]. In this
chapter, we introduce an OL2R framework with pairwise exploration, named as PairRank. We present the
details of performing pairwise OL2R with linear and neural rankers, with constructed confidence interval of the
model’s estimation. Then, we introduce the extension focusing on scalable exploration, e.g., eliminating the
explicit confidence set construction, to make such pairwise OL2R framework operational in practice

2.1 Online Learning to Rank with Pairwise Exploration
The essence of an OL2R algorithm is to infer the utility of individual documents or a parameterized ranking
function via trial and error. As the system is learning while serving the users, and the users’ implicit feedback
is known to be biased and noisy [5–7, 38], the key challenge in OL2R is to balance the need to present the best
results estimated so far to satisfy users (i.e., to exploit) and the need to present currently underestimated results
to best improve the ranker (i.e., to explore). Although influential and theoretically sound, the current OL2R
solutions have serious deficiencies. First, they cannot directly optimize rankers with respect to any rank-based
metrics, such as Mean Average Precision (MAP) or Normalized Discounted Cumulative Gain (NDCG) [39].
Second, due to the combinatorial nature of ranking, the action space is too large to be efficiently explored. As
a result, the performance of existing OL2R solutions is still behind that of offline solutions, which directly
restricts OL2R’s real-world applicability.

In this work, we aim to bridge the gap between the offline and online learning to rank by directly training a
pairwise learning to rank model online. We target pairwise ranking models for three major reasons. First, a
pairwise ranker reduces the exponentially sized action space to quadratic, by deriving the full ranking order
from the pairwise comparisons between documents. Second, existing studies in search log analysis demonstrate
relative preferences derived from clicks are more accurate and reliable than absolute judgments [5, 7]. Third,
pairwise learning to rank models have competitive empirical performance and have been widely used in
practical systems [9,11,40]. In particular, we explore in the pairwise ranking space of all candidate documents
via divide-and-conquer: we partition documents under a given query into several blocks in each round of result
serving, where the document ranking across different blocks of the partition is certain (e.g., all documents in

6
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one block should be ranked higher than those in another block), but the ranking among documents within each
block is still uncertain. The ranked list is thus generated by a topological sort across blocks of a partition and
randomly shuffling within each block. We name our solution PairRank. We rigorously prove that with either
a linear ranker or a neural ranker, the exploration space shrinks exponentially fast as the ranker estimation
converges, such that the cumulative regret defined on the number of mis-ordered pairs has a sublinear upper
bound. Our extensive empirical evaluations also demonstrate the strong advantage of our model against a rich
set of state-of-the-art OL2R solutions over a collection of OL2R benchmark datasets on standard retrieval
metrics.

2.1.1 Related Work
Online learning to rank

We broadly categorize existing OL2R solutions into three families.

The first type learns the best ranked list for each individual query separately by modeling users’ click and
examination behaviors with multi-armed bandit algorithms [21,22,41,42]. Typically, solutions in this category
depend on specific click models to decompose the estimation on each query-document pair; as a result,
exploration is performed on the ranking of individual documents. For example, by assuming users examine
documents from top to bottom until reaching the first relevant document, cascading bandit models perform
exploration by ranking the documents based on the upper confidence bound of their estimated relevance [42–44].
Other types of click models have also been explored (such as the dependent click model) [20–24]. However, as
the relevance is estimated for each query-document pair, such algorithms can hardly be generalized to unseen
queries or documents. Moreover, pointwise relevance estimation is proved to be ineffective for rank estimation
in established offline learning to rank studies [9, 11].

The second type of OL2R solutions leverage ranking features for relevance estimation and explores for the best
ranker in the entire model space [12,23,25]. The most representative work is Dueling Bandit Gradient Descent
(DBGD) [12, 45], which proposes an exploratory direction in each round of interaction and uses an interleaved
test [38] to validate the exploration for model update. To ensure an unbiased gradient estimate, DBGD
uniformly explores the entire model space, which unfortunately costs high variance and high regret during
online ranking and model update. Subsequent methods improved upon DBGD by developing more efficient
sampling strategies, such as multiple interleaving and projected gradient, to reduce variance [10, 17–19, 46].
However, as exploration is performed in the model space, click feedback is used to infer which ranker is
preferred under a hypothetical utility function. It is difficult to reason how the update in DBGD is related to the
optimization of any rank-based metric. Hence, though generalizable, this type of OL2R solutions’ empirical
performance is still worse than classical offline solutions.

The third type of OL2R solutions explores the unknown by result perturbation. In [36], the authors adopt
ϵ-greedy to estimate a stochastic RankSVM [40, 47] model on the fly. Though RankSVM is effective for
pairwise learning to rank, the totally random exploration by ϵ-greedy is independent from the learned ranker. It
keeps distorting the ranked results, even when the ranker has identified some high-quality results. In [25], the
authors perform exploration by sampling the next ranked document from a Plackett-Luce model and estimate
gradients of this ranking model from the inferred pairwise result preferences. Although exploration is linked
to the ranker’s estimation, the convergence of this solution is still unknown.

Theoretical analysis for neural network

Recently, substantial progress has been made to understand the convergence of deep neural networks [48–55].
A series of recent studies showed that (stochastic) gradient descent can find global minimal of training
loss under moderate assumptions [48, 55–58]. Besides, the neural tangent kernel (NTK) [59] technique
was proposed to describe the change of a DNN during gradient descent based training. This motivates the
theoretical study of DNNs with kernel methods. Research in [60–64] showed that by connecting DNN with
kernel methods, (stochastic) gradient descent can learn a function that is competitive with the best function in
the corresponding neural tangent kernel space. In particular, under the framework of NTK, some recent work
show that the confidence interval of the learned parameters of a DNN can be constructed based on the random
feature mapping defined by the neural network’s gradient [15, 16]. This makes the quantification of a neural
model’s uncertainty possible, and enables our uncertainty-based exploration for neural OL2R.
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2.1.2 Problem Formulation
In OL2R, a ranker interacts with users for T rounds. At each round t = 1, 2, ..., T , the ranker receives a query
qt and its associated candidate documents, which are represented as a set of d-dimensional query-document
feature vectors Xt = {xt

1,x
t
2, . . .x

t
Vt
} with xt

i ∈ Rd and ∥xt
i∥ ≤ P . The ranker determines the ranking of

the candidate documents πt =
(
πt(1), πt(2), . . . , πt(Vt)

)
∈ Π([Vt]), based on its knowledge so far, where

Π([Vt]) represents the set of all permutations of Vt documents and πt(i) is the rank position of document i
under query qt. Once the ranked list is returned to the user, the user examines the results and provides his/her
click feedback Ct = {ct1, ct2, ..., ctVt

}, where cti = 1 if the user clicks on document i at round t; otherwise
cti = 0. Based on this feedback, the ranker updates itself and proceeds to the next query.

Ct is known to be biased and noisy [5–7]. Existing studies find that users tend to click more on higher-ranked
documents, as they stop examination early in the list. This is known as position bias. And users can only
interact with the documents shown to them, known as the presentation bias. As a result, the ranker cannot
simply treat non-clicked documents as irrelevant. Such implicit feedback imposes several key challenges for
online learning to rank: how to deal with the implicit feedback, and in the meanwhile, how to effectively
explore the unknowns for the model update. Following the practice in [5], we treat clicks as relative preference
feedback and assume that clicked documents are preferred over the examined but unclicked ones. In addition,
we consider every document that precedes a clicked document and the first subsequent unclicked document as
examined. This approach has been widely adopted and proven to be effective in learning to rank [6, 10, 25].
Accordingly, we use ot (ot ≤ Vt) to represent the index of the last examined position in πt at round t.

Exploration is the key component that differentiates OL2R to offline L2R, where OL2R needs to serve
while learning from its presented rankings. The most straightforward exploration is to provide a random list
of candidate documents. However, such random exploration is less appreciated for OL2R as it hurts user
experience, even though it may be beneficial for model training. Therefore, regret becomes an important metric
for evaluating OL2R. Though various types of regret have been defined and analyzed in existing OL2R studies,
few of them link to any rank-based metric, which is the key in ranker evaluation. For example, for OL2R
solutions that explore in the document space, regret is typically defined on the number of clicks received on the
presented ranking versus that known only in hindsight [21, 22, 42, 44]. For solutions that explore in the model
space, such as DBGD, regret is defined as the number of rounds where the chosen ranker is preferred over
the optimal ranker [10, 12]. It is difficult to reason how such measures indicate an OL2R solution’s ranking
performance against a desired retrieval metric, such as ARP and NDCG. To bridge this gap, we define regret
by the number of mis-ordered pairs from the presented ranking to the ideal one, i.e., the Kendall tau rank
distance,

RT = E
[∑T

t=1
rt
]
= E

[∑T

t=1
K(πt, π

∗
t )
]

where K(πt, π
∗
t ) =

∣∣∣{(i, j) : i<j, (πt(i)<πt(j)∧ π∗
t (i)>π

∗
t (j)

)
∨
(
πt(i)>πt(j)∧ π∗

t (i)<π
∗
t (j)

)}∣∣∣.
Remark 2.1.1. As shown in [65], most ranking metrics, such as Average Rank Position (ARP) and Normalized
Discounted Cumulative Gain (NDCG), can be decomposed into pairwise comparisons; hence, this regret
definition connects an OL2R algorithm’s online performance with classical rank evaluations. We consider it
more informative than “pointwise” regret defined in earlier work [22, 42].

2.1.3 Online Pairwise learning to Rank
The key in OL2R is to effectively explore the unknowns while providing high-quality results to the users, which
is often referred to as the explore-exploit trade-off. In this work, we propose to directly train a pairwise model
from its interactions with users and explore in the pairwise document ranking space via a divide-and-conquer
strategy.

The high-level idea is illustrated in Figure 2.1. The insight is to handle the prohibitively large exploration
space based on the nature of ranking: a complete ranking of instances can be decomposed into a series of
pairwise comparisons, which reduces the exponentially sized action space to quadratic. We can then learn and
explore in a parametric pairwise ranking space of all candidate instances via divide-and-conquer. Specifically,
in each round of result serving, we partition all the estimated pairwise comparisons into two sets, the certain
pairs and the uncertain pairs, according to the ranker’s current prediction about those instances’ relative rank
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Figure 2.1: Pairwise explore and exploit by divide-and-conquer. Assume that the optimal ranking order among the 5 documents is
1 ≻ 2 ≻ 3 ≻ 4 ≻ 5. At the current round t, the ranker is confident about its preference estimation between all the pairs expect
(1, 2), (3, 5), (4, 5). In this example, the instantaneous regret of the first proposed ranked list is 3 and 2 in the second proposal.

order. Exploration is only needed on the pairs where the ranker is currently still uncertain about their rank
orders, e.g., apply random permutation in their relative rankings; and for others, the ranker’s predicted rank
orders will be followed. In particular, we partition documents under a given query in each round of result
serving into several blocks, where the document ranking across different blocks of the partition is certain
(e.g., all documents in one block should be ranked higher than those in another block), but the ranking among
documents within each block is still uncertain. The ranked list is thus generated by a topological sort across
blocks of a partition and randomly shuffling within each block. We name our solution PairRank. For example,
referring to the example shown in Figure 2.1, assume that the optimal ranking order among the 5 instances is
1 ≻ 2 ≻ 3 ≻ 4 ≻ 5; and at the current round t, the ranker is confident about its pairwise prediction between
all the pairs except (1, 2), (3, 5), (4, 5). Accordingly, two blocks of instances are constructed, e.g., the current
model is certain that instances in block Bt

1 are more relevance than instances in block Bt
2 under the given

query qt. When generating the ranked list, we can randomly shuffle the order between instances 1 and 2 (i.e.,
to explore) while preserving the order between instance 1 and instance 3, 4, 5 (i.e., to exploit).

To perform such pairwise exploration, the key is to accurately quantifying the current ranker’s uncertainty
on pairwise rank prediction. The main reason behind the ranker’s estimation uncertainty is the existence of
noise in the click feedback. Passing through the learning process, such noise leads to the uncertainty in the
ranker’s parameter estimation, which then contributes to the uncertainty in its predicted relative rank order.
Hence, accurate noise modeling and rigorous analysis of the parameter estimation convergence are the two key
technical components of this thrust of PairRank. In the following sections, we present the details of PairRank
with linear and neural rankers.

Learning with a Linear Ranker

We first adopt a single layer RankNet model with a sigmoid activation function [9] as our pairwise ranker.
This choice is based on the promising empirical performance of RankNet and the feasibility of analyzing
the resulting online solution’s convergence. With f(·) as the relevance mapping function, in a single layer
RankNet, the relevance can be obtained by the linear combination of the query-document feature vector x and
the model θ, e.g., f(x) = x⊤θ. The probability that a document i is more relevant than document j under
query q is computed as P(i ≻ j|q) = σ(f(xi)− f(xj)) = σ(x⊤

i θ − x⊤
j θ), where θ ∈ Rd and ∥θ∥ ≤ Q is

the model parameter and σ(s) = 1/(1 + exp(−s)). To simplify our notations, we use xij to denote xi − xj

in our subsequent discussions.

Linear ranking model. With the knowledge of θ, due to the monotonicity and transitivity of the sigmoid
function, the ranking of documents in X can be determined by {x⊤

1 θ,x
⊤
2 θ, . . . ,x

⊤
Vt
θ}. Therefore, the key

of learning a RankNet model is to estimate its parameter θ. As RankNet specifies a distribution on pairwise
comparisons, the objective function for θ estimation can be readily derived as the cross-entropy loss between
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Figure 2.2: Illustration of certain and uncertain rank orders.

the predicted pairwise distribution on documents and those inferred from user feedback till round t:

Lt =

t∑
s=1

∑
(i,j)∈Ωs

−ysij log
(
σ(xs

ij
⊤θ)

)
− (1− ysij) log

(
1− σ(xs

ij
⊤θ)

)
+
λ

2
∥θ∥2 (2.1.1)

where λ is the l2 regularization coefficient, Ωs denotes the set of document pairs that received different click
feedback at round s, i.e., Ωs = {(i, j) : csi ̸= csj ,∀π(i) < π(j) ≤ os}, ysij indicates whether the document i is
preferred over document j in the click feedback, i.e., ysij =

1
2 (c

s
i − csj) + 1

2 [9]. Due to the log-convexity of
the loss function defined in Eq (2.1.1), the global optimal solution θ̂t at round t exists and can be efficiently
obtained by gradient descent.

Online learning of RankNet boils down to the construction of {Ωs}Ts=1 over time. However, the conventional
practice of using all the inferred pairwise preferences from click feedback [6, 40] imposes a higher risk in an
online setting. In the presence of click noise (e.g., a user mistakenly clicks on an irrelevant document), pairing
documents would cause a quadratically increasing number of noisy training instances, which impose strong
negative impact on the quality of the learned ranker [66]. As the updated ranker is immediately executed,
cascading of ranker deterioration is possible. To alleviate this deficiency, we propose to only use independent
pairs inferred from the feedback, e.g., Ωind

s = {(i, j) : csi ̸= csj ,∀(πs(i), πs(j)) ∈ Ds}, where D represents
the set of disjointed position pairs, for example, Ds = {(1, 2), (3, 4), ...(ot − 1, ot)}. In other words, we will
only use a subset of non-overlapping pairwise comparisons for our online ranker update.

Uncertainty quantification. As discussed before, θ̂t is obtained based on the acquired feedback from what
has been presented to the user, which is subject to various types of biases and noises [5–7]. Hence, θ̂t only
reflects what the ranker knows so far; and it is vital to effectively explore the unknowns to complete its
knowledge. In PairRank, we propose to explore in the pairwise document ranking space spanned by Xt under
qt, with respect to the current ranker’s uncertainty about the pairwise comparisons.

The model estimation uncertainty is caused by the existence of click noise, i.e., ∥θ̂t − θ∗∥ ≠ 0, where θ∗ is
the underlying ground-truth model parameter. And this model estimation uncertainty directly leads to the
uncertainty in the ranker’s pairwise preference estimation. To quantify the source of uncertainty, we follow
conventional click models to assume that as long as the documents are examined, the clicks are independent of
each other given the true relevance of documents, so as their noise [5, 67, 68]. As a result, the pairwise noise
becomes the sum of noise from the two associated clicks. Because we only use the independent document
pairs Ωind, the pairwise noise is thus independent of each other and the history of result serving, which directly
leads to the following proposition.
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Proposition 2.1.2. For any t ∈ [T ], ∀(i, j) ∈ Ωind
t , the pairwise feedback follows ytij = σ(xt

ij
⊤
θ∗) + ξtij ,

where ξtij satisfies that for all β ∈ R, E[exp(βξtij)|{{ξsi′j′}(i′,j′)∈Ωind
s
}t−1
s=1,Ω

ind
1:t−1] ≤ exp(β2R2), is a

R-sub-Gaussian random variable.

According to the property of sub-Gaussian random variables, such assumption can be easily satisfied in practice
as long as the pointwise click noise follows a sub-Gaussian distribution. For example, the pointwise noise
can be modeled as a binary random variable related to the document’s true relevance under the given query,
which follows 1

2 -sub-Gaussian distribution. Therefore, based on the solution of Eq (2.1.1), the uncertainty of
the estimated pairwise preference σ(xt

ij
⊤
θ̂t) by RankNet at round t can be analytically bounded with a high

probability, as shown in the following lemma.

Lemma 2.1.3. (Confidence Interval of Pairwise Preference Estimation for Linear Ranker). At round t ∈ [T ],
for any pair of documents xt

i and xt
j under query qt, with probability at least 1− δ1, we have,

|σ(xt
ij

⊤
θ̂t)− σ(xt

ij
⊤
θ∗)| ≤ αt∥xt

ij∥Alin
t

−1 ,

where αt = (
2kµ

cµ
)
(√

R2 log (
det(Alin

t )

δ21 det(λI)
) +
√
λQ
)

, Alin
t = λI +

∑t−1
s=1

∑
(i′,j′)∈Ωind

s
xs
i′j′x

s
i′j′

⊤, λ is the

regularization coefficient, kµ is the Lipschitz constant of the sigmoid link function σ, cµ = infθ∈Θ σ̇(x⊤θ),
with σ̇ as the first derivative of σ, and R is the sub-Gaussian parameter for noise ξ.

This lemma provides a tight high probability bound of the pairwise preference estimation uncertainty under a
single layer RankNet specified by θ̂t, which enables us to perform efficient pairwise exploration for model
update. To better illustrate our exploration strategy based on the pairwise estimation uncertainty, we introduce
the following definition on document pairs.

Definition 2.1.4. (Certain Rank Order for Linear Ranker) At any round t ∈ [T ], the ranking order be-
tween document i and j, denoted as (i, j), is considered in a certain rank order if and only if σ(xt

ij
⊤
θ̂t) −

αt∥xt
ij∥Alin

t
−1 > 1

2 .

Intuitively, based on Lemma 2.1.3, if (i, j) is in a certain rank order, with a high probability that the estimated
preference (order) between document i and j is consistent with the ground-truth. For example, as shown in
Figure 2.2, σ(xt

ij
⊤
θ̂t) and σ(xt

i′j′
⊤
θ̂t) represent the estimated pairwise preference on document pair (i, j)

and (i′, j′) based on θ̂t, while CBt
ij and CBt

i′j′ represent the corresponding confidence bound defined in
Lemma 2.1.3, i.e., CBt

ij = αt∥xt
ij∥Alin

t
−1 and CBt

i′j′ = αt∥xt
i′j′∥Alin

t
−1 . According to Lemma 2.1.3, we

know that the ground-truth pairwise preferences, σ(xt
ij

⊤
θ∗) and σ(xt

i′j′
⊤
θ∗) lie within the corresponding

confidence intervals with a probability at least 1 − δ1, i.e., σ(xt
ij

⊤
θ∗) ∈ [σ(xt

ij
⊤
θ̂t) − CBt

ij , σ(x
t
ij

⊤
θ̂t) +

CBt
ij ]. In Figure 2.2, for pair (i, j), the lower bound of the pairwise estimation, σ(xt

ij
⊤
θ̂t) − CBt

i,j , is
greater than 1

2 . This indicates that with a high probability 1 − δ1, the estimated order between document
i and j is consistent with the ground-truth; and thus there is no need to explore this pair. In contrast, with
σ(xt

i′j′
⊤
θ̂t) − CBt

i′j′ <
1
2 , the estimated order (i′ ≻ j′) is still uncertain as the ground-truth model may

present an opposite order e.g., j′ ≻ i′; hence, exploration on this pair is necessary. We use ωt
c to represent

the set of all certain rank orders at round t. Accordingly, the set of uncertain rank orders at round t is defined
as: ωt

u = {(i, j) ∈ Ψt : (i, j) /∈ ωt
c ∧ (j, i) /∈ ωt

c}, and Ψt represent the set of all possible document pairs at
round t, e.g., Ψt = {(i, j) ∈ [Vt]

2, i ̸= j} and |Ψt| = V 2
t − Vt.

Explore the unknowns via divide-and-conquer. With the aforementioned pairwise estimation uncertainty
and the corresponding sets of certain and uncertain rank orders, i.e., ωt

c and ωt
u, we can effectively explore the

unknowns. Intuitively, we only need to randomize the ranking of documents among which the model is still
uncertain about their ranking orders, i.e., the uncertain rank orders, and therefore obtain feedback to further
update the model (and reduce uncertainty). This naturally leads to a divide-and-conquer exploration strategy
in the space of pairwise document comparisons. Specifically, we partition Xt into different blocks based on ωt

c

and ωt
u such that the ranking orders between any documents belonging to different blocks are certain, shown

in the block graph in Figure 2.1. The ranked list can thus be generated by topological sort across blocks and
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Algorithm 1 PairRank: online learning to rank with pairwise exploration

1: Inputs: λ, δ1, δ2
2: Initiate M0 = λI, θ̂1 = 0
3: for t = 1 to T do
4: Receive query qt and its corresponding candidate documents set Xt = {xt

1,x
t
2, ...,x

t
Lt
}.

5: ωt
c = {(i, j) ∈ Ψt : σ(x

t
ij

⊤
θ̂t−1)− αt−1∥xt

ij∥At−1
> 1/2}

6: ωt
u = {(i, j) ∈ Ψt : (i, j) /∈ ωt

c ∧ (j, i) /∈ ωt
c}

7: Construct ordered block list Bt = {Bt1,Bt2, ...Btdt
}

8: Generate ranked list πt = {π(Bt1), π(Bt2), ..., π(Btdt
)}

9: Observe click feedback Ct, and corresponding ot.
10: Ωind

t = {(i, j) : cti ̸= ctj ∧ (πt(i), πt(j)) ∈ D}.
11: Set θ̂t as the solution of minimizing Eq (2.1.1).
12: Alin

t = Alin
t−1 +

∑
(i,j)∈Ωind

t
xt
ijx

t
ij

⊤.

random shuffling within each block. As the exploration is confined to the pairwise ranking space, it effectively
reduces the exponentially sized action space to quadratic.

Algorithm 1 shows the detailed steps. At round t, we first construct ωt
c and ωt

u according to the current mode
θ̂t−1. Then, we create blocks of Xt according to the definition below.

Definition 2.1.5. (Block) At any round t ∈ [T ], any block Btb in block list Bt satisfies,

1. ∀i ∈ Btd, (i, j) ∈ ωt
c for any j ∈ [Lt] \ Btd.

2. ∄k ∈ [Vt] \ Btd, for i, j ∈ Btd, (i, k) ∈ ωt
c ∧ (k, j) ∈ ωt

c

Intuitively, each block is a subset of documents linked to each other by the uncertain rank order. It can be
viewed as a connected component in an undirected graph with documents as vertices and uncertain rank order
as edges under a given query. The connected components (blocks) can be found by linearly scanning through
the vertices, based on breadth-first search or depth-first search if a vertex is not visited before. When the
algorithm stops, each vertex (document) will be assigned to a connected component (block). Once the blocks
are constructed, the order of the blocks can be obtained by topological sort (line 6). Let Bt = {Bt1,Bt2, ...Btdt

}
be the ordered block list for Xt at round t, the ranked list πt is generated as πt = {π(Bt1), π(Bt1), ..., π(Btdt

)},
where π(·) randomly permutes its input set as output.

Improving exploration efficiency. To further improve exploration efficiency, we propose two options to
generate the ranked list. As shown in Figure 2.1, the first ranked list is generated by randomly shuffling all
documents within each block (referred to as random exploration), while in the second list, only the uncertain
rank orders are shuffled, and the certain ones are preserved (referred to as conservative exploration). More
specifically, for the second option, due to the monotonicity and transitivity of the sigmoid function, the
document graph constructed with the candidate documents as the vertices and the certain rank order as
the directed edges is a directed acyclic graph (DAG). We can perform a topological sort on the constructed
document graph to efficiently generate the final ranked list. The certain rank orders are preserved by topological
sort to exploit the ranker’s high confidence predictions. On the other hand, the topological sort randomly
chooses vertices with zero in-degree, among which there is no certain rank orders. This naturally achieves
exploration among uncertain rank orders.

Learning with a Neural Ranker

In the past decade, advances in deep neural networks (DNN) have made significant strides in improving offline
learning to rank models [9, 69], thanks to DNN’s strong representation learning power. However, most of
the existing OL2R models assume that the expected relevance of a document under the given query can be
characterized by a linear function in the feature space, which unfortunately often fails in practice. With a linear
assumption, the potentially complex non-linear relations between queries and documents are ignored. For
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Figure 2.3: Linear discriminative analysis on two public benchmark datasets.

example, classical query-document features are usually constructed in parallel to the design and choices of
ranking models. As a result, a lot of correlated and sometimes redundant features are introduced for historical
reasons; and the ranker is expected to handle it. For instance, the classical keyword matching based features,
such as TF-IDF, BM25 and language models, are known to be highly correlated [70]; and the number of
in-links is also highly related to the PageRank feature.

To verify this issue, Figure 2.3 shows the linear discriminative analysis (LDA) [71] on two public learning
to rank benchmark datasets.åThe technique of LDA is typically used for multi-class classification that
automatically performs dimensionality reduction, providing a projection of the dataset that can best linearly
separate the samples by their assigned class. We provide the entire labeled dataset for the algorithm to learn
the separable representation. We set the reduced dimension to be two to visualize the results. In Figure 2.3, we
can clearly observe that a linear model is insufficient to separate the classes in both datasets.

Besides, classical learning to rank tasks take the well-constructed query-document features as input, while
in practice, such query-document features might not be always available. Thus, a neural ranker that has the
ability to handle the raw input data, e.g., learning embeddings from query-document raw text data, has more
advantage in real-world problems. To unleash the power of DNNs in OL2R, we propose to extend PairRank
with deep ranking models.

Similar to PairRank with a linear ranker, we need to 1) estimate the pairwise preference with a neural ranker,
and 2) quantify the estimation uncertainty of the neural ranker to perform the pairwise exploration. The
first part can be achieved by directly replacing the linear function with a deep neural network to capture
the non-linearity. The key challenge comes from the analytical quantification of the uncertainty of a neural
model’s prediction. This requirement seems impossible years ago; but thanks to the substantial progress made
in recent theoretical deep learning, we now have useful tools to analyze the expressive power of DNNs. A
series of recent studies showed that (stochastic) gradient descent can find global minima of training loss under
moderate assumptions [48, 55–58]. As the generalization to a DNN model, studies in [60–64] showed that
by using (stochastic) gradient descent, the learned parameters of a DNN are located in a particular regime,
and the generalization error bound of the DNN can be characterized by the best function in the corresponding
neural tangent kernel space [59]. In particular, under the framework of neural tangent kernel, two recent
papers [15, 16] proposed that the confidence interval of the learned parameters of a DNN can be constructed
based on the random feature mapping defined by the neural network’s gradient on the input instances. The
uncertainty of the pairwise rank estimation under a neural ranker can thus be quantified accordingly, which
makes directly learning a neural ranking model online possible. Next, we will introduce the details of neural
PairRank.

Neural ranking model. In order to learn the underlying optimal function h1, we utilize a fully con-
nected neural network f(x;θ) defined as f(x;θ) =

√
mWLϕ(WL−1ϕ(. . . ϕ(W1x)), where depth L ≥ 2,

ϕ(x) = max{x, 0}, and W1 ∈ Rm×d, Wi ∈ Rm×m, 2 ≤ i ≤ L − 1, WL ∈ Rm×1, and θ =

1for a linear ranker, h(x) = x⊤θ∗ where θ∗ is the underlying optimal model.
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[vec(W1)
⊤, . . . , vec(WL)

⊤]⊤ ∈ Rp with p = m + md + m2(L − 2). Without loss of generality, we
assume the width of each hidden layer is the same as m, concerning the feasibility of theoretical analysis. We
also denote the gradient of the neural network function with g(x;θ) = ∇θf(x;θ) ∈ Rp. We slightly change
the objective function of the pairwise ranker for easy analysis:

Lt(θ) =

t∑
s=1

∑
(i′,j′)∈Ωind

s

−(1− ysi′j′) log(1− σ(fsi′j′))− ysi′j′ log(σ(fsi′j′)) +
mλ

2
∥θ − θ0∥2, (2.1.2)

where m is the width of the neural network, λ is the l2 regularization coefficient, fsi′j′ = f(xi′ ;θs−1) −
f(xj′ ;θs−1).

We can see that eq (2.1.2) is an l2-regularized cross-entropy loss, where the regularization term centers at the
randomly initialized network parameter θ0. Follow the same criteria of inferring the pairwise preference from
the implicit feedback in PairRank with linear ranker, we can obtain the training data observed so far. Then we
adopt gradient descent to minimize eq (2.1.2) with step size η and total number of iterations J .

Uncertainty quantification. To quantify the estimation uncertainty, we follow the same assumptions on
the click feedback and click noise in the previous sections (Proposition 2.1.2). By minimizing the loss
function (2.1.2) with gradient descent, we obtain the following lemma.

Lemma 2.1.6. (Confidence Interval of Pairwise Preference Estimation under Non-linear Assumption). There
exist positive constants C1 and C2 such that for any δ1 ∈ (0, 1), if the step size of gradient descent η ≤
C1(TmL + mλ)−1 and m ≥ C2 max

{
λ−1/2L−3/2(log(TVmaxL

2/δ1))
3/2, T 7λ−7L21(logm)3

}
, then at

round t < T , for any document pair (i, j) ∈ Ψt under query qt, with probability at least 1− δ1,

|σ(f tij)− σ(hij)| ≤ αt∥gt
ij/
√
m∥Aneu

t
−1 + ϵ(m), (2.1.3)

where Vmax represents the maximum number of documents under a query over time, hij = h(xi)− h(xj),
gs
ij = g(xi;θs)−g(xj ;θs), Aneu

t =
∑t−1

s=1

∑
(i′,j′)∈Ωind

s

1
mgs

i′j′g
s
i′j′

⊤+λI, C̄1, C̄2, C̄3 and C̄4 are positive
constants,

ϵ(m) =C̄1

(
T

7
6m− 1

6λ−
7
6L4

√
log(m)(1 +

√
T/λ) + (1− ηmλ) J

2

√
TL/λ

+ T
1
6m− 1

6λ−
1
6L

7
2

√
log(m)S + T

2
3m− 1

6λ−
2
3L3

√
log(m)

)
,

αt =
(
1 + C̄2T

7
6m− 1

6

√
log(m)λ−

7
6L4

) 1
2 · ᾱt,

ᾱt =
(√

λC̄3 + (ν2 log(
det(Aneu

t )

δ21 det(λI))
+ C̄4T

5
3m− 1

6λ−
1
6L4

√
log(m))

1
2

)
.

Accordingly, the certain rank order can be defined as follows,

Definition 2.1.7. (Certain Rank Order) At round t, the rank order between documents (i, j) ∈ Ψt is in a
certain rank order if and only if σ(f tij)− CBt

ij >
1
2 , where CBt

ij = αt∥gt
ij/
√
m∥A−1

t
− ϵ(m) is the width

of confidence bound about the estimated pairwise rank order.

With the constructed sets of certain and uncertain rank orders, the ranked list can be generated according to the
ranking policy discussed in the previous section.

Extend to LambdaRank. LambdaRank directly optimizes the ranking metric of interest (e.g., NDCG)
with a modified gradient based on RankNet [9]. For a given pair of documents, the confidence interval
of LambdaRank’s estimation can be calculated by gradients of the neural network in the same way as in
RankNet (i.e., by Lemma 2.1.6). However, as the objective function of LambdaRank is unknown, it prevents
us from theoretically analyzing the resulting online algorithm’s regret. But similar empirical improvement
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from LambdaRank against RankNet known in the offline settings [9] is also observed in our online versions of
these two algorithms.

2.1.4 Regret Analysis
We theoretically analyze the regret of the propose pairwise exploration model, which is defined by the
cumulative number of mis-ordered pairs in its proposed ranked list till round T . The key in analyzing this
regret is to quantify how fast the model achieves certainty about its pairwise preference estimation in candidate
documents. First, we define Et as the success event at round t:

Et =
{
∀(i, j) ∈ [Vt]

2, |σ(f tij)− σ(hij)| ≤ CBt
ij

}
.

In the above definition, f tij represents the estimated pairwise preference between document i and j, while hij
represents the ground truth pairwise preference. This definition applies for both linear and neural rankers, with
corresponding confidence interval defined in Lemma 2.1.3 and Lemma 2.1.6. Intuitively, Et is the event that
the estimated model is “close” to the optimal model at round t. According to Lemma 2.1.3 and Lemma 2.1.6,
it is easy to reach the following conclusion,

Corollary 2.1.8. On the event Et, it holds that σ(hij) > 1/2 if (i, j) ∈ ωt
c.

Our pairwise exploration suffers regret as a result of misplacing a pair of documents, i.e., swapping a pair
already in the correct order. Based on Corollary 2.1.8, under event Et, the certain rank order identified is
consistent with the ground-truth. As our partition design always places documents under a certain rank order
into distinct blocks, under event Et the ranking order across blocks is consistent with the ground-truth. In
other words, regret only occurs when ranking documents within each block.

To analyze the regret caused by random shuffling within each block, we need the following technical lemma
derived from random matrix theory. We adapted it from Equation (5.23) of Theorem 5.39 from [72].

Lemma 2.1.9. Let A ∈ Rn×d be a matrix whose rows Mi are independent sub-Gaussian isotropic random
vectors in Rd with parameter σ, namely E[exp(x⊤(Mi − E[Mi])] ≤ exp(σ2∥x∥2/2) for any x ∈ Rd. Then,
there exist positive universal constants C1 and C2 such that, for every t ≥ 0, the following holds with
probability at least 1− 2exp(−C2t

2),where ϵ = σ(C1

√
d/n+ t/

√
n): ∥M⊤M/n− Id∥ ≤ max{ϵ, ϵ2}.

The detailed proof can be found in [72]. We should note the condition in Lemma 2.1.9 is not hard to satisfy in
OL2R: at every round, the ranker is serving a potentially distinct query; and even for the same query, different
documents might be returned at different times. This gives the ranker a sufficient chance to collect informative
observations for model estimation.

Regret Analysis for Linear Ranker

Based on Lemma 2.1.9, we have the following lemma, which provides a tight upper bound of the probability
that the model’s estimation of the pairwise preference is an uncertain rank order.

Lemma 2.1.10. At round t ≥ t′, with δ1 ∈ (0, 12 ), δ2 ∈ (0, 12 ), β ∈ (0, 12 ), and C1, C2 defined in
Lemma 2.1.9, under event Et, the following holds with probability at least 1− δ2: ∀(i, j) ∈ [Vt]

2, P
(
(i, j) ∈

ωt
u

)
≤

8k2
µ∥x

t
ij∥

2

Alin
t

−1

(1−2β)c2µ∆
2
min

log 1
δ1

, with t′ =
( c1

√
d+c2

√
log( 1

δ2
)+abd

√
omaxu2

dλ

λmin(Σ)

)2
+

2ab log(1/δ21)+8aλQ2−λ
λmin(Σ) , where

∆min = min
t∈T,(i,j)∈[Vt]2

|σ(xt
ij

⊤
θ∗) − 1

2 | representing the smallest gap of pairwise difference between any

pair of documents associated to the same query over time (across all queries), a = 4k2µu
2/(β2c2µ∆

2
min), and

b = R2 + 4
√
λQR,

Proof Sketch. According to the definition of certain rank order, a pairwise estimation σ(xt
ij

⊤
θ̂) is certain

if and only if |σ(xt
ij

⊤
θ̂) − 1/2| ≥ αt∥xt

ij∥Alin
t

−1 . By the reverse triangle inequality, the probability can

be upper bounded by P
(∣∣|σ(xt

ij
⊤
θ̂)− σ(xt

ij
⊤
θ∗)| − |σ(xt

ij
⊤
θ∗)− 1/2|

∣∣ ≥ αt∥xt
ij∥Alin

t
−1

)
, which can be
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further bounded by Theorem 1 in [14]. The key in this proof is to obtain a tighter bound on the uncertainty
of PairRank’s parameter estimation compared to the bound determined by δ1 in Lemma 2.1.3, such that its
confidence interval on a pair of documents’ comparison at round t will exclude the possibility of flipping their
ranking order, i.e., the lower confidence bound of this pairwise estimation is above 0.5.

In each round of result serving, as the linear model θ̂t would not change until next round, the expected number
of uncertain rank orders, denoted asNt = |Etu|, can be estimated by the summation of the uncertain probabilities
over all possible pairwise comparisons under the current query qt, e.g., E[Nt] =

1
2 (
∑

(i,j)∈[Vt]2
P((i, j) ∈ ωt

u).
Denote pt as the probability that the user examines all documents in πt at round t, and let p∗ = min1≤t≤T pt
be the minimal probability that all documents in a query are examined over time. We present the upper regret
bound as follows.

Theorem 2.1.11. Assume pairwise query-document feature vector xt
ij under query qt, where (i, j) ∈ [Vt]

2

and t ∈ [T ], satisfies Proposition 1. With δ1 ∈ (0, 12 ), δ2 ∈ (0, 12 ), β ∈ (0, 12 ), the T -step regret of the
proposed model with a linear ranker is upper bounded by:

RT ≤R′ + (1− δ1)(1− δ2)p∗−2

(
2adVmax log(1 +

omaxTu
2

2dλ
) + aw

)2

where R′ = t′V 2
max + (T − t′)

(
δ2V

2
max − (1 − δ2)δ1V 2

max

)
, with t′ and a defined in Lemma 2.1.10, and

w =
∑T

s=t′((V
2
max − 2Vmax)u

2/(λmin(Σs)), and Vmax representing the maximum number of document
associated to the same query over time. By choosing δ1 = δ2 = 1/T , we have the expected regret at most
RT ≤ O(d log4(T )).

Proof Sketch. The regret is first decomposed into two parts: R′ represents the regret when either Et or
Lemma 2.1.10 does not hold, in which the regret is out of our control, and we use the maximum number of
pairs associated to a query over time, Lmax to compute the regret. The second part corresponds to the cases
when both events happen. Then, the instantaneous regret at round t can be bounded by

rt = E
[
K(πt, π

∗
t )
]
=
∑dt

i=1
E
[ (N t

i + 1)N t
i

2

]
≤ E

[Nt(Nt + 1)

2

]
(2.1.4)

where N t
i denotes the number of uncertain rank orders in block Bti at round t, and Nt denotes the total number

of uncertain rank orders. From the last inequality, it follows that in the worst case where the Nt uncertain rank
orders are placed into the same block and thus generate at most (N2

t +Nt)/2 mis-ordered pairs with random
shuffling. This is because based on the blocks, with Nt uncertain rank orders in one block, this block can
at most have Nt + 1 documents. Then, the cumulative number of mis-ordered pairs can be bounded by the
probability of observing uncertain rank orders in each round, which shrinks rapidly with more observations
over time.

Remark 2.1.12. By choosing δ = 1/T , the theorem shows the expected regret increases at a rate ofO(log4 T ).
In this analysis, we provide a gap-dependent regret upper bound of PairRank, where the gap ∆min characterizes
the hardness of sorting the Vt candidate documents at round t. As the matrix Mt only contains information
from observed document pairs, we adopt the probability of a ranked list is fully observed to tackle with the
partial feedback [43, 73], which is a constant independent of T .

Remark 2.1.13. As the matrix Alin
t only contains information from examined document pairs, our algorithm

guarantees that the cumulative pairwise regret of the examined documents until round t ( {1 : os}ts=1) to
be sub-linear, while the regret in the leftover documents ({os + 1 : Vs}ts=1) is undetermined. We adopt a
commonly used technique that leverages the probability that a ranked list is fully examined to bound the regret
on those unexamined documents [43, 44, 73]. This probability is a constant independent of T . It is worth
noting that our algorithm does not need the knowledge of p∗ for model learning or result ranking; it is solely
used for the regret analysis to handle the partial observations. From a practical perspective, the ranking quality
of documents ranked below os for s ∈ [T ] does not affect users’ online experience, as the users do not examine
them. Hence, if we only count regret in the examined documents, RT does not need to be scaled by p∗
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Remark 2.1.14. Our regret is defined over the number of mis-ordered pairs, which is the first pairwise regret
analysis for an OL2R algorithm, to the best of our knowledge. As we discussed before, existing OL2R
algorithms optimize their own metrics, which can hardly link to any conventional rank metrics. As shown
in [65], most classical ranking evaluation metrics, such as ARP and NDCG, are based on pairwise document
comparisons. Our regret analysis of PairRank connects its theoretical property with such metrics, which has
been later confirmed in our empirical evaluations.

Regret Analysis for Neural Ranker.

Following the same logic in the regret analysis for linear ranker, we have the following lemma bounding the
probability that an estimated rank order being uncertain for neural ranker.

Lemma 2.1.15. With η, m satisfying the same conditions in Lemma 2.1.6, with δ1 ∈ (0, 1/2) defined in
Lemma 2.1.6, and δ2 ∈ (0, 1/2), such that for t ≥ t′ = O(log(1/δ2) + log(1/δ1)), under event Et, the
following holds with probability at least 1− δ2:

∀(i, j) ∈ Ψt,P((i, j) /∈ ωt) ≤
Cu log(1/δ1)

(∆min − 2ϵ(m))2
∥gt

ij/
√
m∥2Aneu

t
−1 ,

where Cu = 8ν2k2µ/c
2
µ with kµ and cµ as the Lipschitz constants for the sigmoid function, ∆min =

min
t∈T,(i,j)∈Ψt

|σ(hij)− 1
2 | represents the smallest gap of pairwise difference between any pair of documents

under the same query over time.

Remark 2.1.16. With m satisfying the condition in Lemma 2.1.6, and setting the corresponding η and
J = Õ(TL/λ), ϵ(m) = O(1) can be achieved. More specifically, there exists a positive constant c such that
∆min − 2ϵ(m) = c∆min.

Lemma 2.1.15 gives us a tight bound for an estimated pairwise order being uncertain. Intuitively, it targets to
obtain a tighter bound on the uncertainty of the neural model’s parameter estimation compared to the bound
determined by δ1 in Lemma 2.1.6.

With the same definition of pt, we present the upper regret bound as follows.

Theorem 2.1.17. With δ1 and δ2 defined in Lemma 2.1.6, 2.1.15, η, m satisfying the same conditions in
Lemma 2.1.6, there exist positive constants {Cr

i }2i=1 that with probability at least 1− δ1, the T -step regret is
bounded by:

RT ≤R′ + (Cr
1 log(1/δ1)d̃ log(1 + TVmax/λ) + Cr

2)(1− δ2)/(∆2
minp

∗)

whereR′ = t′V 2
max+(T−t′)δ2V 2

max, with t′ and Vmax defined in Lemma 2.1.15. By choosing δ1 = δ2 = 1/T ,
the expected regret is at most O(d̃ log4(T )).

Remark 2.1.18. In this analysis, we provide a gap-dependent regret upper bound, where the gap ∆min

characterizes the intrinsic difficulty of sorting the Vt candidate documents at round t. Intuitively, when ∆min

is small, e.g., comparable to the network’s resolution ϵ(m), many observations are needed to recognize the
correct rank order between two documents.

2.1.5 Experiments
In this section, we empirically compare our proposed models with an extensive list of state-of-the-art OL2R
algorithms on two large public learning to rank benchmark datasets.

Experiment Setup

Datasets. We empirically compare our proposed PairRank with an extensive list of state-of-the-art OL2R
algorithms on two public learning to rank benchmark datasets: 1) Yahoo! Learning to Rank Challenge
dataset [11], which consists of 292,921 queries and 709,877 documents represented by 700 ranking features;
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and 2) MSLR-WEB10K [74], which contains 10,000 queries, each having 125 assessed documents on average,
and is represented by 136 ranking features. Both datasets are labeled with a five-grade relevance scale: from
not relevant (0) to perfectly relevant (4). We followed the train/test/validation split provided in the datasets.
Both quantitative and qualitative evaluations are performed to examine our proposed solution, especially its
advantages over existing OL2R solutions in online learning efficiency.

User interaction simulation. We simulate user behavior via the standard setup for OL2R evaluations [10, 25]
to make our reported results directly comparable to those in literature. First, at each time t, a query is uniformly
sampled from the training set for result serving. Then, the model determines the ranked list and returns it to
the users. The interaction between the user and the list is then simulated with a dependent click model [68],
which assumes that the user will sequentially examine the list and make a click decision on each document. At
each position, the user decides whether to click on the document or not, modeled as a probability conditioned
on the document’s relevance label, e.g, P(click = 1|relevance grade). After the click, the user might stop due
to his/her satisfaction with the result or continue to examine more results. The stop probability after a click
is modeled as P(stop = 1|click = 1, relevance grade). If there is no click, the user will continue examining
the next position. We employ three different click model configurations to represent three different types of
users. Basically, we have the perfect users, who click on all relevant documents and do not stop browsing until
the last returned document; the navigational users, who are very likely to click on the first highly relevant
document and stop there; and the informational users, who tend to examine more documents, but sometimes
click on irrelevant ones, and thus contribute a significant amount of noise in their click feedback.

Table 2.1: Configuration of simulated click models.

Click Probability Stop Probability
R 0 1 2 3 4 0 1 2 3 4

per 0.0 0.2 0.4 0.8 1.0 0.0 0.0 0.0 0.0 0.0
nav 0.05 0.3 0.5 0.7 0.95 0.2 0.3 0.5 0.7 0.9
inf 0.4 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5

Baselines. We list the OL2R solutions used for our empirical comparisons below. And we name our proposed
model as PairRank (linear), PairRank (neural) to indicate different underlying ranking models. We also include
PairRank (Lambda) in the experiment result discussions.

• ϵ-Greedy [36]: At each position, it randomly samples an unranked document with probability ϵ or
selects the next best document based on the currently learned RankNet.

• Linear-DBGD and Neural-DBGD [12]: DBGD uniformly samples a direction from the entire model
space for exploration and model update. We apply it to both linear and neural rankers.

• Linear-PDGD and Neural-PDGD [25]: PDGD samples the next ranked document from a Plackett-
Luce model and estimates gradients from the inferred pairwise preferences. We also apply it to both
linear and neural network rankers.

• olLambdaRank GT: At each round, we estimate a new LambdaRank model with ground-truth relevance
labels of all the presented queries. This serves as the skyline in all our experiments.

Experiment Results

Offline evaluation. In offline evaluation, while the algorithm is learning, we evaluate the learned rankers on a
separate testing set using its ground-truth relevance labels. We use Normalized Discounted Cumulative Gain
at 10 (NDCG@10) to assess different algorithms’ ranking quality. We can clearly observe that both linear and
neural PairRank achieved significant improvement compared to all baselines. Under different click models,
both linear and neural DBGD performed the worst. This is consistent with previous findings: DBGD depends
on interleave tests to determine the update direction in the model space. But such model-level feedback
cannot inform the optimization of any rank-based metric. Moreover, with a neural ranker, random exploration
becomes very ineffective. PDGD consistently outperformed DBGD under different click models. However, its
document sampling based exploration limits its learning efficiency, especially when users only examine a small
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(a) Offline performance (NDCG@10) on the MSLR-WEB10K dataset.
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(b) Offline performance (NDCG@10) on the Yahoo! dataset.

Figure 2.4: Offline ranking performance on two different datasets under three different click models.

portion of documents, e.g., the navigational users. It is worth noting that in the original paper [25], PDGD
with a neural ranker outperformed linear ranker after much more interactions, e.g., 20000 iterations. Our
proposed solutions with only 5000 iterations already achieved better performance than the best results reported
for PDGD, which demonstrates the encouraging efficiency of our proposed OL2R solution. Compared to
linear PairRank, the neural PairRank had a worse performance at the beginning. We attribute it to the limited
training samples available at the initial rounds, i.e., the network parameters were not well estimated yet. But
the neural model enables non-linear relation learning and quickly leads to better performance than the linear
models when more observations arrive. Compared to neural PairRank, olLambdaRank directly optimizes the
evaluation metrics, e.g., NDCG@10, with corresponding gradients. We can observe similar improvements
from LambdaRank compared to RankNet as previously reported in offline settings. As a brief summary, our
solution showed much faster convergence compared to all baselines. This directly leads to much better online
performance improvement. We attribute this advantage to our uncertainty based exploration: it only explores
when the ranker’s estimation on a pair of documents is uncertain; for the certain pairs of documents, they are
already in the correct ranking order for the ranker to directly return.

Online evaluation. In OL2R, in addition to the offline evaluation, the models’ ranking performance during
online optimization should also be considered, as it reflects user experience during model update. Sacrificing
users experience for model training will compromise the goal of OL2R. We adopt the cumulative Normalized
Discounted Cumulative Gain to assess models’ online performance. For T rounds, the cumulative NDCG is
calculated as

Cumulative NDCG =

T∑
t=1

NDCG(πt) · γ(t−1),

which computes the expected reward a user receives with a probability γ that he/she stops searching after
each query [25]. Following the previous work [10, 19, 25], we set γ = 0.9995. Figure 2.5 shows the online
performance of the proposed online neural ranking model and all the other baselines. It is clear to observe that
DBGD-based models have a much slower convergence and thus have worse online performance. Compared
to the proposed solution, PDGD showed consistently worse performance, especially under the navigational
and informational click models with a neural ranker. We attribute this difference to the exploration strategy
used in PDGD: PDGD’s sampling-based exploration can introduce unwanted distortion in the ranked results,
especially at the early stage of online learning. We should note in cumulative NDCG ranking performance in
the earlier stages plays a much more important role due to the strong shrinking effect of γ. Our proposed linear
and neural PairRank demonstrated significant improvements over all baseline methods on both datasets under
three different click models. Such improvement indicates the effectiveness our uncertainty based exploration,
which only explores when the ranker’s pairwise estimation is uncertain. Its advantage becomes more apparent



2.1 Online Learning to Rank with Pairwise Exploration 20

0 1000 2000 3000 4000 5000
Impressions

0
100
200
300
400
500
600
700

ND
CG

@
10

perfect

MSLR-Web10K Dataset

olLambdaRank GT
PDGD (linear)
DBGD (linear)
PDGD (neural)

DBGD (neural)
PairRank (linear)
PairRank (neural)
PairRank (lambda)

0 1000 2000 3000 4000 5000
Impressions

0

100

200

300

400

500

600

ND
CG

@
10

navigational
0 1000 2000 3000 4000 5000

Impressions

0

100

200

300

400

500

600

ND
CG

@
10

informational

(a) Online performance (cNDCG@10) on the MSLR-WEB10K dataset.
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(b) Online performance (cNDCG@10) on the Yahoo! dataset.

Figure 2.5: Online ranking performance on two different datasets under three different click models.

in this online ranking performance comparison, as an overly aggressive exploration in the early stage costs
more in cumulative NDCG. We can also observe the improvement of olLambdaRank compared to neural
PairRank in this online evaluation, although the difference is not very significant. The key reason is also the
strong discount applied to the later stage of model learning: olLambdaRank’s advantage in directly optimizing
the rank metric becomes more apparent in the later stage, as suggested by the offline performance in Figure
2.4. At the beginning of model learning, both models are doing more explorations and therefore the online
performance got more influenced by the number of document pairs with uncertain rank orders, rather than
those with certain rank orders.

Zoom into PairRank.

To further verify the effectiveness of the exploration strategy devised in , we zoom into the trace of its block
size across queries during the online model update. As PairRank uses random shuffling within each block for
exploration, a smaller block size, especially at the top-ranked positions, is preferred to reduce regret. Figure 2.6
shows the size of document blocks at rank position 1, 5 and 10.

First, we can clearly observe that after hundred rounds of interactions, the sizes of blocks quickly converge
to 1, especially at the top-ranked positions. This confirms our theoretical analysis about PairRank’s block
convergence. And by comparing the results across different click models, we can observe that the block size
converges slower under the navigational click model. Similar trends can be observed in Figure 2.7b. In this
figure, the number of blocks is calculated by averaging in every 200 iterations to reduce variance. We can
observe that at the early stages, PairRank under the navigational click model has fewer blocks (hence more
documents in one block), which indicates a higher uncertainty in model estimation. The key reason is that
much fewer clicks can be observed in each round under the navigational click model, as the stop probability is
much higher, i.e., stronger position bias. As a result, more interactions are needed to improve model estimation.
For the same reason, in Figure 2.6, the block size at rank position 10 shrinks much slower than that at other
positions also suggests position bias is the main factor that slows down the learning of PairRank.

In Figure 2.7a, we show the block size at each rank position in PairRank under the informational click model
at different time points. One interesting finding is the blocks in the middle ranks, i.e., rank 300 - 400, tend to
have more documents, while for the ranks at both the top and the bottom, the corresponding blocks tend to
have fewer documents. We attribute it to the pairwise learning in PairRank, where the uncertainty is calculated
on the pairwise preferences, and thus it is easy to identify the document pairs with greater differences.
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(a) MSLR-WEB10K Dataset (b) Yahoo Dataset

Figure 2.6: The size of blocks at top ranks.

2.2 Scalable Exploration with Perturbed Feedback.
Deep neural networks demonstrates significant advantages in improving ranking performance in retrieval
tasks. Our PairRank with neural ranker provids encouraging performance improvement compared to PairRank
(linear). Despite being theoretically sound and empirically effective, PairRank (neural)’s limitation is also
remarkably serious: its computational cost for performing the required exploration is prohibitively high
(almost cubic to the number of neural network’s parameters). In particular, to quantify the uncertainty of its
estimated pairwise preferences among candidate documents, it has to maintain a high-probability confidence
set for the current ranker’s parameter estimation over time. However, the construction of the confidence
set depends on the dimensionality of the neural network’s parameters: as required by the neural tangent
kernel, an inverse of the covariance matrix computed based on the gradient of entire neural network is needed
whenever the network is updated. For example, for a simple two layer feed-forward neural network with
input dimension d and m neurons in each layer, the size of the covariance matrix is (md+m2 +m)2. The
best known time complexity for computing the inverse of this covariance matrix is O

(
(md+m2 +m)2.373

)
,

by the optimized Coppersmith–Winograd algorithm [75]. This computational complexity quickly outpaces
the limit of any modern computational machinery, given m or d are usually very large in practice (e.g., m
is often in hundreds and d in tens of thousands) and this matrix inverse operation is needed in every round
when the neural network is updated. Due to this limitation, PairRank (neural) has to employ the diagonal
approximation of the covariance matrix in its actual implementations. But such a diagonal approximation
loses its all theoretical guarantees, which unfortunately leads to a gap between the theoretical and empirical
performance of PairRank (neural). And even how this gap would depend on the dimensionality of the network
and affect PairRank (neural) performance is completely unknown. This inevitably limits the application of the
neural OL2R solutions in practice.

In this work, we propose an efficient and scalable exploration strategy for PairRank by eliminating its explicit
confidence set construction. The basic idea is to use bootstrapping technique to measure the uncertainty of a
ranker’s output via a set of sample estimates. In particular, we maintain N rankers in parallel. And in each
round, after receiving the user’s click feedback, each of the rankers is updated with the observed clicks and
independently generated pseudo noise from a zero-mean Gaussian distribution. The overall model’s estimation
uncertainty on a pair of documents is then determined by an ensemble of the estimates from all N rankers. For
example, for a document pair (i, j), if all N rankers predict i ≻ j, then (i, j) is considered as in a certain rank
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(a) MSLR-WEB10K with informational click model. (b) Number of blocks identified on MSLR-WEB10K dataset

Figure 2.7: Qualitative analysis of blocks in PairRank (linear)

order, otherwise it is considered as in an uncertain rank order. Besides regular neural network updates, no
additional computation is needed, which greatly reduces the computational overhead as required in PairRank.
We name our new solution as Perturbed PairRank (or PePairRank in short). We rigorously prove that with a
high probability PePairRank obtains the same regret as PairRank, but the computational complexity is way
much lower. In addition, as no approximation is needed in PePairRank, its theoretical analysis directly suggests
its empirical performance. Our extensive empirical evaluations demonstrate the strong advantage in both
efficiency and effectiveness of PePairRank against PairRank and a rich set of state-of-the-art solutions over
two OL2R benchmark datasets on standard retrieval metrics.

2.2.1 Related Work
Randomized exploration in online learning

Efficient exploration is critical for online algorithms, as the model learns by actively acquiring feedback
from the environment [76]. Distinct from the deterministic exploration strategies, such as upper confidence
bound [14,77], randomization-based exploration enjoys advantages in its light computational overhead and thus
has received increasing attention in online learning community. The most straightforward randomization-based
exploration strategy is ϵ-greedy [77], which takes the currently estimated best action with probability 1− ϵ,
otherwise randomly take an action. It has been applied in OL2R in [36]. Almost no additional computation is
needed in ϵ-greedy for exploration, but the exploration is also independent from the current model estimation
and therefore can hardly be optimal in practice. More advanced randomization-based exploration strategies are
built on the bootstrapping technique in statistics. Giro [78] explores by updating a model with a bootstrapped
sample of its history with pseudo reward. In [79, 80], random noise is added to the observed feedback for the
model training to achieve exploration in model’s output. Such a strategy is proved to be effective in both linear
and generalized linear model training. Most recently, Jia et al. [81] proved randomization can also be used for
online neural network learning. The most closely related work to our study is [82, 83], where an ensemble
of models are trained to approximate the confidence interval for the purpose of exploration in online model
update.

2.2.2 Bootstrapping with Perturbed Feedback
Discussed in previous sections, PairRank (linear) and PairRank (neural) have a strong theoretical foundation.
However, its scalability is severely limited due to the additional computation required for constructing the
confidence interval. In particular, the covariance matrix Alin

t in Lemma 2.1.3 is constructed with the feature
vectors of the observed instance, and Aneu

t in Lemma 2.1.6 is constructed with the gradient of the scoring
function with respect to the network parameters. In order to construct the confidence interval, the inverse of
the covariance matrix Alin

t , Aneu
t has to be computed whenever the model is updated, which results in an

unacceptably high computational cost (around O(p3) for neural ranker with p as the number of parameters
in the neural network). As a consequence, it is practically impossible for PairRank to be exactly executed,
especially for PairRank with neural ranker. In practice, approximation can be employed to make PairRank
(neural) operational, e.g., using the diagonal approximation of Aneu

t . However, there is no theoretical guarantee
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Figure 2.8: Comparison between PairRank and PePairRank

for such an approximation, which unfortunately breaks the theoretical promise of PairRank and directly leads
to an unknown gap between its theoretical and empirical performance.

To bridge the gap, we develop an efficient and scalable strategy for recognizing the certain and uncertain rank
orders without explicitly constructing the confidence set. And our basic idea is to leverage the bootstrapping
technique to create randomness in a ranker’s output. In particular, at each round, we perturb the entire user
feedback history for N times with noise freshly and independently sampled from a zero-mean Gaussian
distribution, and train the corresponding neural ranker as usual. Denote model θ(n) for n ∈ [N ] as the solution
of minimizing the following objective function with gradient descent,

θ(n) =min
∑t

s=1

∑
(i,j)∈Ωs

−
(
1− (ysij + ζ

s,(n)
ij )

)
log
(
1− σ(fij)

)
− (ysij + ζ

s,(n)
ij ) log

(
σ(fij)

)
+mλ/2∥θ − θ0∥2, (2.2.1)

where {ζs,(n)ij }ts=1 ∼ N (0, ν2) are Gaussian random variables that are independently sampled in each round t,
and ν is a hyper-parameter that controls the strength of perturbation (and thus the exploration) in PePairRank.
The difference between PePairRank and PairRank is shown in Figure 2.8.

The detailed procedure of PePairRank is given in Algorithm 2. The algorithm starts by initializing the N
neural rankers. At each round of interaction, given a query qt, for each pair of candidate documents, N parallel
predictions about their rank order will be generated by the set of neural rankers. If all the N estimations give
the same prediction about the document pair’s rank order, e.g., i ≻ j for document i and document j, then
(i, j) is considered as a certain rank order (line 9 - line 13 in Algorithm 2). Otherwise, the relation between
these two documents is still uncertain and further exploration is needed there when generating the ranked list.
Once the sets of certain and uncertain rank orders are determined, we follow the same procedure of PairRank
to generate the ranked list.

The key intuition for PePairRank is to utilize the variance introduced in the randomly perturbed click feedback
to encourage exploration. With the injected perturbation, there are two kinds of deviations existing in the
estimated pairwise preference in each of the N parallel neural rankers: 1) the deviation caused by the
observation noise introduced by the click feedback; 2) the deviation caused by the added perturbations. By
properly setting the variance parameter ν for the added perturbation, the corresponding deviation will help
“correct” any deviation caused by the observation noise (e.g., insufficient observations might lead to inaccurate
predictions in such models), and guarantee that the final estimation is optimistic with a constant probability
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Algorithm 2 Perturbed PairRank (PePairRank)

1: Inputs: Number of rounds T , regularization coefficient λ, perturbation parameter ν, network width m,
network depth L, and number of rankers N

2: Initialize N neural network models {θn
0 }Nn=1 with m and L

3: for t = 1 to T do
4: Sc

t = ∅, Su
t = ∅

5: qt ← receive_query(t)
6: Xt = {xt

1,x
t
2, . . .x

t
Vt
} ← retrieve_candidate_documents(qt)

7: for each document pair (i, j) ∈ [Vt]
2 do

8: {σ(fnij,t)}Nn=1 ← get_N_estimations(xt
i, x

t
j , {θn

t }Nn=1)
9: if minn∈[N ] σ(f

n
ij,t) > 1/2 or maxn∈[N ] σ(f

n
ij,t) < 1/2 then

10: Sc
t ← Sc

t ∪ (i, j)
11: else
12: Su

t ← Su
t ∪ (i, j)

13: πt ← topological_sort(Sc
t , Su

t )
14: Ct ← collect_click_feedback(πt)
15: Ωt, {yij}(i,j)∈Ωt

← construct_training_data(Ct)
16: for n = 1, ..., N do
17: Generate {{ζij}(i,j)∈Ωs

}ts=1 ∼ N (0, ν2)
18: Set θn

t by the output of gradient descent for solving Eq (2.2.1) with {Ωs}ts=1.

(i.e., the Optimism in the Face of Uncertainty principle [14]). On top of this perturbation, maintaining N
models guarantees that the maximum of these estimations is optimistic with a high probability.

Compared to PairRank, which requires to maintain the inverse of the covariance matrix, PePairRank does
not need any added computation for the purpose of exploration, besides the regular neural network updates.
As a result, PePairRank greatly alleviates the computation burden in PairRank. More specifically, PairRank
generally takes the following steps: (1) predict the rank order in each document pair, (2) generate the
ranked list with divide-and-conquer with respect to the constructed certain and uncertain rank orders, and
(3) update the model according to the newly received click feedback. With p representing the total number
of parameters in a neural ranker, PairRank has the time complexity O(Vtp+ V 2

t ) for the first step. As the
N neural models in PePairRank are independent from each other, the time complexity of PePairRank in
the first step is also O(Vtp+ V 2

t ) by executing the N ranker’s predictions in parallel. For the third step,
again by training the N neural rankers in parallel using gradient descent, both PairRank and PePairRank
have the time complexity of O(Jp

∑t
s=1 |Ωs|) where J is the number of epochs for training the neural

network. The key difference lies in the second step. PairRank requires the computation of the inverse
covariance matrix, which has the time complexity at least O(p2.2373). Besides, constructing the confidence
interval for all the document pairs has the time complexity of O(V 2

t p
2). While for PePairRank, finding the

minimum of the N predictions for all the document pairs costs O(NV 2
t ). Once the certain and uncertain

rank orders are determined, both algorithms require O(Vt + Et) for the topological sort, where Et represents
the number of certain rank orders and Et ≤ Vt. Therefore, for the second step, PairRank has the total
time complexity as O(p2.2373 + V 2

t p
2 + Vt + Et) = O(p2.2373 + V 2

t p
2), while PePairRank has the time

complexity as O(NV 2
t + Vt + Et) = O(NV 2

t ). As p is oftentimes in the order of tens of thousands (if not
less), PePairRank greatly reduces the time required for performing exploration in neural PairRank. And
also empirically, the number of parallel rankers N in PePairRank does not need to be large. For example,
in our experiments, we found N = 2 already led to promising performance of PePairRank comparing to
PairRank.

2.2.3 Regret Analysis
In this section, we provide the regret analysis of the proposed exploration strategy. For better readibility, we
present the analysis of a linear ranker. According to our previous analysis for PairRank (neural), under the
neural tangent technique and the convergence analysis of the gradient descent in neural network optimization,
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the linear analysis can be readily applied to the neural ranker. And we discuss the difference between the
analysis between the linear ranker and neural ranker at the end of this section.

Follow the standard assumption in previous sections, we assume that on the examined documents where
πt(i) ≤ ot, the obtained feedback Ct is independent from each other given the true relevance of documents,
so is their noise [5, 67, 68]. Therefore, the noise in the inferred preference pair becomes the sum of noise from
the clicks in the two associated documents. And we also only use the independent pairs to construct Ωt as
suggested in PairRank. Thus, the pairwise noise satisfies Proposition 2.1.2.

With f(x;θ) = x⊤θ as the scoring function for a linear ranker, the loss function can be re-written as,

L(n)
t (θ)=

t∑
s=−d+1

∑
(i,j)∈Ωind

s

−
(
ysij + ζ

s,(n)
ij

)
log(σ(xs

ij
⊤θ))−

(
1− (ysij + ζ

s,(n)
ij )

)
log
(
1− σ(xs

ij
⊤θ)

)
,

where d is the dimension of the feature vectors. With |Ωs| = 1, xs
ij =

√
λei, ysij = 0 for s ∈ [−d+ 1, 0], this

loss function can be interpreted as adding l2 regularization to the cross-entropy loss.

By optimizing the objective, we can have the following lemmas to bound the deviations caused by different
sources of noise.

Lemma 2.2.1. (Deviation from observation noise). At round t < T , for any pair of document (xt
i,x

t
j) under

query qt, with probability at least 1− δ, we have,

|σ(xt
ij

⊤
θ̄t)− σ(xt

ij
⊤
θ∗
t )| ≤ αt∥xt

ij∥A−1
t
,

where αt = (2kµ/cµ)
(√

R2 log(det(At)/(δ2 det(λI)))+ d
)
, At = λI+

∑t−1
s=1

∑
(i′j′)∈Ωs

xi′j′x
⊤
i′j′ , kµ is

the Lipschitz constant of the sigmoid link function σ, cµ = infθ∈Θ σ̇(x⊤θ), with σ̇ as the first derivative of σ.

Accordingly, we define Et as the success event at round t:

Et =
{
∀(i, j) ∈ [Vt]

2, |σ(xt
ij

⊤
θ̄t)− σ(xt

ij
⊤
θ∗)| ≤ αt∥xt

ij∥A−1
t

}
.

Intuitively, Et is the event that the auxiliary solution θ̄t is “close” to the optimal model θ∗ at round t.

As discussed before, we define the regret as the number of mis-ordered pairs. Therefore, the key step in regret
analysis is to quantify the probability that an estimated preference is uncertain. According to Algorithm 2, the
certain rank order in the perturbed pairwise ranker is defined as follows,

Definition 2.2.2. (Certain Rank Order) At round t, the rank order between documents (i, j) ∈ [Vt]
2 belongs

to the set of certain rank orders ωc
t if and only if minn∈[N ] σ

(
f
t,(n)
ij

)
> 1

2 or maxn∈[N ] σ
(
f
t,(n)
ij

)
< 1

2 ;
otherwise, (i, j) ∈ ωu

t .

According to the definition, and the deviations caused by the observation noise and the pseudo noise, we have
the following lemma quantifying the probability of an estimation being uncertain.

Lemma 2.2.3. There exist positive constants c,C1 andC2, that with t′ =
(

C1

√
d+C2

√
log(1/δ)+(P 2Rkµ)/(

√
λcµ∆min)

λmin(Σ)

)2
+

2kµP
cµ∆min

(√
R2 log(1/δ) +

√
λQ
)

, δ ∈ (0, 1), for round t ≥ t′, with probability at least 1− δ, event Et holds

with αt defined in Lemma 2.2.1, with N ≥ log δ/ log(1 − exp(−β2)/(4
√
πβ)), where β =

k2
µα

2
t

c2µν
2 , for a

document pair (i, j) that i ≻ j for the given query, the probability that the estimated pairwise preference is un-

certain is upper bounded as P
(
(i, j) ∈ ωu

t

)
≤

2Nν2k2
µ∥x

t
ij∥

2

A
−1
t

c2µc
2∆2

min
, where ∆min = min

t∈T,(i,j)∈[Vt]2
|σ(xt

ij
⊤
θ∗)− 1

2 |
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representing the smallest gap of pairwise difference between any pair of documents associated to the same
query over time (across all queries).

The detailed proof is provided in the appendix. This lemma provides the upper bound of the probability that an
estimated pairwise preference is uncertain. The key idea is to analyze the concentration and anti-concentration
property of the deviation caused by the pseudo noise. In particular, the deviation caused by the pseudo noise γ,
and the ensemble of N rankers should be sufficiently large so that for document pairs (i, j), the maximum
estimated pairwise preference, maxn∈[N ] σ(x

t
ij

⊤
θ̂
(n)
t ) is optimism to trigger exploration. On the other hand,

with more observations, the probability of being uncertain will be shrinking with the concentration property of
the pseudo noise.

Following the assumption in [26, 43, 84], denote pt as the probability that the user examines all documents in
τt at round t, and let p∗ = min1≤t≤T pt be the minimal probability that all documents in a query are examined
over time. The regret of the proposed model can be upper bounded as follows.

Theorem 2.2.4. Assume pairwise query-document feature vector xt
ij under query qt, where (i, j) ∈ [Vt]

2

and t ∈ [T ], satisfies Proposition 1. With δ ∈ (0, 1), with probability at least 1− δ, the T -step regret of the
proposed model is upper bounded by:

RT ≤R′ +
1

p∗
2dVmaxC log

(
1 +

omaxTP
2

2dλ

)
where R′ = t′Vmax, Vmax represents the maximum number of document associated with the same query over
time, and t′ is defined in Lemma 2.2.3, and w =

∑T
s=t′

(
(V 2

max − 2Vmax)P
2/λmin(As)

)
, and By choosing

δ1 = δ2 = 1/T , we have the expected regret at most RT ≤ O(d log4(T )).

We provide the detailed proof in the appendix. According to the pairwise exploration strategy, the regret
only comes from the document pairs that are uncertain, e.g., random shuffling will be conducted to perform
the exploration. With the quantified uncertain probability in Lemma 2.2.3, the pairwise regret can be upper
bounded accordingly.

In neural rankers, the neural network approximation error should be considered in addition to the deviations
caused by the noise. According to the analysis in [81], the variance of the added noise should be set according
to the deviations caused by both the observation noise and the approximation error. Based on the theoretical
analysis in [84], by properly setting the width of the neural network and the step size of gradient descent, the
model with a neural ranker will still have a sublinear regret.

2.2.4 Experiment Results
Online and offline performance.

We first compare our proposed model with the baselines using a linear ranker. The results are reported in
Figure 2.9. For PePairRank (linear), we reported the best performance with N = 2 and N = 5. We can clearly
observe PePairRank (linear) maintained PairRank’s strong advantage over other OL2R solutions, including
ϵ-Greedy, DBGD, and PDGD, in both online and offline evaluations across three click models. It is also
obvious that a straightforward perturbation of model’s output, i.e., ϵ-Greedy, basically led to the worst OL2R
performance, although it is often the default choice for exploration in online learning.

More importantly, PairRank with a diagonal approximated covariance matrix showed serious degradation in its
ranking performance, especially its online performance. For example, on MSLR-Web10K dataset, PairRank
with diagonal approximation was even worse than PDGD in the online evaluation under both perfect and
informational click models. This means an approximated covariance matrix cannot accurately measure the
ranker’s estimation uncertainty. Furthermore, this inaccuracy’s impact is not deterministic: under perfect
feedback, the seriously degenerated online performance together with mild decrease in offline performance
suggest the model over explored; but under informational feedback, both online and offline performance
dropped, which suggests insufficient estimation. This demonstrates the complication of using approximations
in OL2R solutions, which loses all theoretical guarantees in the original analysis. As a result, it also strongly
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(a) Offline performance (NDCG@10) of linear rankers on the MSLR-WEB10K dataset.
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(b) Offline performance (NDCG@10) of linear rankers on the Yahoo! dataset.
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(c) Online performance (NDCG@10) of linear rankers on the MSLR-WEB10K dataset.
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(d) Online performance (NDCG@10) of linear rankers on the Yahoo! dataset.

Figure 2.9: Offline and online ranking performance of linear rankers on two different datasets under three different click models.

suggests olRankNet might not be optimal in practice, given the diagonal approximation employed to make its
computation feasible. This will be demonstrated in our experiments next.

It is worth noting that PePairRank (linear) with N = 2 already exhibits faster convergence than PairRank,
and simply increasing N does not necessarily further improve the model’s performance. This result is very
promising: as the only computational overhead in our perturbation-based exploration strategy is to estimate
N − 1 additional rankers, the actual added cost in practice is minimum when N = 2. Similar observation is
also obtained when applied to neural rankers.

In Figure 2.10, we report the results obtained on the neural rankers. First of all, PairRank (neural) and PePair-
Rank (neural) still showed significant improvement over other OL2R solutions, including ϵ-Greedy, DBGD,
MGD and PDGD. This means the pairwise exploration implemented in PairRank (neural) is still effective
for neural OL2R. The most important finding in this experiment is that PePairRank (neural) outperformed
PairRank (neural), where m = 100 for the neural network structure. As we have repeatedly mentioned, though
enjoying nice theoretical advantages, in practice it is impossible to use the required full covariance matrix to
compute the confidence interval in PairRank (neural), the diagonal approximation creates an unknown gap
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(a) Offline performance (NDCG@10) of neural rankers on the MSLR-WEB10K dataset.
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(b) Offline performance (NDCG@10) of neural rankers on the Yahoo! dataset.
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(c) Online performance (NDCG@10) of neural rankers on the MSLR-WEB10K dataset.
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(d) Online performance (NDCG@10) of neural rankers on the Yahoo! dataset.

Figure 2.10: Offline and Online ranking performance of neural rankers on two different datasets under three different click models.

from its theoretical guarantee to practical performance. In Figure 2.11, we compare the offline performance of
PePairRank (neural) with m = 100, PairRank (neural) with m = 100, and neural models with simpler neural
structures under the perfect click model. The results demonstrate that for the models with 16 × 16 neural
network, the diagonal approximation hurts the performance compared to using the full covariance matrix.
As proved in our theoretical analysis, PePairRank (neural) enjoys the same theoretical regret guarantee as
PairRank (neural); but because it does not need to endure the approximation, all its nice theoretical properties
are preserved in its actual implementation. Compared to the results obtained in linear models, we have good
reasons to believe PairRank (neural) with full covariance matrix could perform even better, but with a much
larger (if not infeasible) computational overhead.

Again the impact from the number of parallel rankers one needs to maintain for perturbation-based exploration
in PePairRank (neural) is still not sensitive. As shown in both Figure 2.10, N = 2 gave us the most promising
empirical performance, with the minimum added computational overhead. This is a strongly desired property
for applying PePairRank (neural) in practice.
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Figure 2.11: Comparison among neural rankers

Zoom into PePairRank

In this experiment, we provide detailed analysis on PePairRank (neural). PePairRank (neural) has only two
hyper-parameters, in addition to those inherited from PairRank (neural), i.e., the number of parallel rankers N
and the scaled of pesudo noise ν2. In Figure 2.12 and 2.13, we report the online and offline performance of
PePairRank (neural) with varying value of N for a fixed variance scale ν2 of the added noise. We can clearly
observe that with a larger noise scale, e.g., ν = 0.1, setting N = 2 gives the best performance, comparing to
N = 5 and N = 10. When the added noise scale is small, e.g., ν = 0.01, setting N = 10 demonstrates better
performance than those with fewer number of models. This indicates that the variance of the added noise ν and
the number of parallel rankers N together control the exploration in PePairRank (neural). A larger variance
scale, e.g., ν = 0.1, together with too many models, e.g., N = 10, lead to more aggressive exploration and
less effective model training. A smaller variance, e.g., ν = 0.01, together with fewer models might not lead to
sufficient exploration for model update, which also leads to worse performance. Therefore, in practice, the
value of ν and N should be carefully handled to perform effective exploration. And considering the added
computational overhead, using fewer parallel rankers with larger scale of added noise should be a preferred
solution.

Efficiency comparison.

In this section, we compare the running time of our proposed PePairRank (neural) and the PairRank (neural)
with full covariance matrix and PePairRank (neural) with N = 1, which ind models. We performed the
experiments on a NVIDIA GeForce RTX 2080Ti graphical card. As discussed before, with complex neural
networks, e.g., m = 100, it is impossible to perform the inverse of the full covariance matrix due to both
high space and time complexity. Therefore, to compare running time, we perform the experiments on the
MSLR-Web10K dataset using a simpler neural network with m = 16, where the perfect click model is adopted
to generate the clicks. The result is reported in Figure 2.14. We compare the PairRank (neural) with full
covariance matrix and PePairRank (neural) with N = 1, which ind with a full covariance matrix, PairRank
(neural) with full covariance matrix and PePairRank (neural) with N = 1, which ind with diagonal covariance
matrix, PePairRank (neural) with N=2 and PePairRank (neural) with N = 1. For PePairRank (neural), no extra
computation is required for exploration. Therefore, the running time of PePairRank (neural) with N = 1 can be
viewed as the time used for the model training. We can clearly notice the big gap between the running time
of PairRank (neural) with full covariance matrix and PePairRank (neural) with N = 1, which indicates the
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Figure 2.12: PairRank with variance ν2 = 0.1
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Figure 2.13: PairRank with variance ν2 = 0.01

computational overhead caused by constructing the confidence interval with the full covariance matrix. Using
diagonal approximation greatly reduces the total running time. However, according to our previous discussion,
there is no theoretical performance guarantee for such an approximation, and our empirical results show that
the diagonal approximation often leads to decreased performance in both offline and online evaluations. On
the other hand, PePairRank (neural) with N=2 takes slightly more time than PairRank (neural) with diagonal
approximation, while the empirical performance is significantly better (shown in Figure 2.9 and Figure 2.11).
Besides, in practice, the N models can be trained in parallel, which will further reduce the running time. This
demonstrate the feasibility and advantage of our proposed OL2R model in real applications.

2.3 Conclusion
In this chapter, we focus on improving the relaibility of decision-making in OL2R with unreliable user feedback.
Motivated by the success of offline models, we propose to estimate a pairwise learning to rank model on the
fly, named as PairRank. Based on the model’s pairwise order estimation confidence, exploration is performed
only on the pairs where the ranker is still uncertain, i.e., divide-and-conquer. It reduces the exponentially large
search space to quadratic. We prove a sub-linear upper regret bound defined on the number of mis-ordered pairs,
which directly links PairRank’s convergence with classical ranking evaluations. Our empirical experiments
support our regret analysis and demonstrate significant improvement of PairRank over several state-of-the-art
OL2R baselines. Then, we developed a provable efficient exploration strategy for neural PairRank based on
bootstrapping, named as PePairRank. Confidence interval based PairRank solutions are too expensive to be
exactly implemented in practice. PePairRank is proved to induce a sublinear upper regret bound counted over
the number of mis-ordered pairs during online result serving, and its added computational overhead is feasible.
Our extensive empirical evaluations demonstrate that our perturbation-based exploration unleashes the power
of neural rankers in OL2R, with minimally added computational overhead (e.g., oftentimes only one additional
ranker is needed to introduce the required exploration). And our perturbation-based exploration is general and
can also be used in linear models when the input feature dimension is very large.

Our effort sheds light on deploying powerful offline learning to rank solutions online and directly optimizing
rank-based metrics, e.g., RankNet and LambdaRank. Our current theoretical analysis depends on gradient
descent over the entire training set for model update in each round, which is still expensive and should be
further optimized. We would like to investigate the possibility of more efficient model update, e.g., online



2.3 Conclusion 31

0 1000 2000 3000 4000 5000
impressions

0

2000

4000

6000

8000

10000

se
co

nd
s

Running time
PairRank (neural)
PairRank-Diag (neural)
PePairRank (neural) N=2
PePairRank (neural) N=1

Figure 2.14: Efficiency comparison

stochastic gradient descent or continual learning, and the corresponding effect on model convergence and
regret analysis. In addition, how to generalize our neural ranker architecture to more flexible choices, e.g.,
recurrent neural networks and transformers, is another important direction of our future work. Most OL2R
solutions focus on population-level ranker estimation; thanks to the improved learning efficiency by PairRank,
it is possible for us to study individual-level ranking problems, e.g., personalized OL2R.



Chapter 3

Fair Online Learning to Rank

Existing OL2R solutions target at user-focused utility optimization, which unfortunately ignores the impact
of result ranking on the content providers, who might receive differential attention from the users depending
on their results’ ranked positions. More specifically, it is widely known that the position of an instance in
the ranked list has a crucial influence on its exposure and chance to be consumed by the users, e.g., position
bias [5, 6, 85]. Even a minor difference in relevance can translate into huge discrepancy in exposure across
groups and thus societal or economic impact [86, 87]. For example, job postings ranked on top positions of
LinkedIn’s search result pages are more likely to be examined and considered by most applicants; as a result,
those employers can gain an edge in the business competitions [88]. In this chapter, we introduce our research
on fairness aspect of OL2R, aiming to develop OL2R solutions that are fair, and thus reliable to the content
providers. We present the work focusing on calibrating the exploration and exploitation trade-off in OL2R for
fairness constraints.

3.1 Fair Exploration-Exploitation for OL2R
Fairness does not only pertain to OL2R; instead, any ranking solutions (online or offline) should concern
the fairness. But OL2R brings in unique new challenges for fair ranking: compared to the scenario where a
pre-trained ranker is deployed in offline ranking, the differential treatment can be accumulated and amplified in
a faster rate during the course of OL2R. This is driven by the need of exploration in OL2R, where the algorithm
has to continuously place an intentionally selected subset of results on top. Though various exploration
strategies have been proposed in OL2R literature, including those exploring in model space [10,12,17–19] and
ranking space [20–26], none of them consider fairness when presenting results to users. When the exploration
is deterministic, e.g., confidence interval based methods [22, 23, 26], the situation can become even worse,
especially when the confidence estimation is correlated with protected attributes of results. This introduces a
new conflict in the already complicated explore-exploit dilemma in OL2R. For instance, to ensure fairness,
some results cannot be displayed, which slows down or even prevents online model learning. The slow
improving relevance estimation in turn can lead to poor user experience (i.e., higher regret); in the meanwhile,
if the bias from earlier OL2R update cannot be quickly eliminated by new feedback, unfair result ranking will
be accumulated and amplified (e.g., one group is always mistakenly preferred). This leads to a new paradox
among three elements in OL2R: fairness, exploration and exploitation.

In this chapter, we introduce a general new framework to achieve fairness defined on group exposure during
OL2R, named as FairExp. The key idea is to calibrate the trade-off between exploration and exploitation
under fairness constraints. In particular, when the model is exploring a set of results for relevance feedback,
the exploration is confined within a subset of random permutations, where fairness across groups is maintained
while the feedback is still unbiased. When the model is exploiting, fairness is directly enforced. This is
achieved by constructing a set of group-level placement templates for the top-k positions. Briefly, in each
round of result serving, candidate templates will first be selected based on the currently accumulated unfairness.
Based on the expected exposure of each rank position under the current query, all templates need to maintain

32
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unfairness below a threshold. As fairness on group exposure only concerns the placement of each group (i.e.,
their ranking order), the construction of such templates is independent from the ranker’s relevance estimation.
Then, the ranked list will be generated with respect to the chosen template and the required exploration by the
OL2R algorithm. When multiple templates are qualified, the one with the projected minimum OL2R regret
will be chosen (i.e., exploitation). In other words, fairness is treated as a hard constraint when striking the
balance between exploration and exploitation.

Our proposed framework is general and can be applied to OL2R solutions with ranking space exploration, as
long as their exploration is deterministic (i.e., where to explore can be explicitly computed). And a typical
family of such solutions are the confidence interval based methods, such as TopRank [22], RecurRank [23]
and PairRank [26]. Extensive empirical analysis of the resulting algorithm is performed on two public learning
to rank datasets to demonstrate the effectiveness and advantages of our proposed framework comparing to
existing fair OL2R solutions.

3.1.1 Related Work
In the context of decision-making, fairness is the absence of any prejudice or favoritism toward an individual
or group based on their inherent or acquired characteristics [89], such as gender and race. As fairness is an
elusive concept, an abundance of definitions and models of fairness have been proposed. According to the level
of fairness, fairness formulations can be distinguished into [90] individual fairness, i.e., similar individuals
should be treated similarly, and group fairness, i.e., individuals are partitioned into groups based on their
protected attributes and different groups should be treated similarly. In this proposed work, we focus on group
fairness.

Most work in fairness so far focused on classification algorithms used in decision making. The definition
of fairness varies under different concerns of the protected individuals or groups so as the corresponding
methods. Parity-based metrics typically consider the predicted positive rates across different groups. For
example, Demographic or statistical parity [91–94] defines fairness as an equal probability of being classified
with positive label, while disparate impact [93] considers the ratio between unprivileged and privileged groups.
There are also some fairness definitions focusing on the confusion matrix which take additional aspects such
as true positive rate, true negative rate into consideration, such as equal opportunity [95, 96], which consider
a algorithm to be fair if it true positive rate is the same across different groups, and equalized odds [97],
which considers both true positive rate and false positive rate to be the same across different groups. Besides,
counterfactual fairness [98–100] was proposed to ensure that the prediction for an individual coincides with
the decision if the sensitive variable would have been different. To tackle the fairness problem in classification,
with the defined fairness metrics, many methods are proposed to mitigating the unfairness in the decision-
making. Causal methods assumes that the training data reflect some form of underlying discrimination, and
try to uncover causal relationships in the data and find dependencies between sensitive and non-sensitive
variables [98, 100–105]. Sampling methods focus on identifying groups of data that are disadvantaged by the
model, and creating samples for the training of robust algorithms [106–111]. There is also some work focusing
on learning a fair representation of the data with a mapping or projection function in which fairness in ensured
and the fidelity of the prediction is preserved [91, 93, 112–114]. Regularization and constraint optimization
methods [92, 93, 115–119] are popularly used to either penalize the model for discriminatory practices, or
include notions of fairness in the loss function during model training.

Unlike the classification problem, ranking problem is a structured output prediction problem with an exponen-
tially large output space. Due to the special property of ranking, the fairness definition from classification can
not directly be translated to ranking problems. Unfairness in ranking typically either comes from the external
factors such as the bias in the data or during the relevance estimation [120–122], or the internal design of the
ranking system [123–127], e.g., the ranking generated by the system may be unfair to different groups.

Fairness in ranking is concerned with an insufficient presence or a consistently differential treatment over
different groups in the ranked lists [128]. Various definitions of fairness in ranking have been proposed, together
with their fair ranking solutions [129]. Most metrics are motivated by those defined in fair classification
problems [89]. Specifically, solutions focusing on group parity enforces a proportional allocation of exposure
between groups. For example, [123] proposed to reduce the difference in occurrences of different groups
on a subset of ranking positions. And a series of work proposed to set a limit on the number of items
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Figure 3.1: Illustration of FairSwap: calibrate pairwise exploration in PairRank under fairness constraint. It satisfies the required fair
placement of groups by introducing minimum number of swaps between blocks generated in PairRank.

from each group in the top-k positions [88, 124, 127]. On the other hand, merit-based fairness of exposure
allocates exposure to groups based on their merit instead of the group size. Both in-processing [130–132] and
post-processing approaches [86, 87] are proposed to achieve this type of fairness in ranking. However, all
the methods assume either the expert-labeled relevance or logged implicit feedback are available for model
training or result ranking beforehand. This unfortunately prevents the application of such fair ranking solutions
in the online setting.

The most relevant work to ours is the FairCo algorithm proposed in [133], which applies proportional control to
mitigate unfairness in dynamic learning to rank. Its online ranker update is achieved by the inverse propensity
scoring method on user clicks [134]. This however imposes strong assumption on the user examination
behavior (i.e., position-based examination). And when enforcing fairness, uncertainty in the ranker’s relevance
estimation is not considered. As a result, inaccurate fairness measure leads to unfair control in this solution.
Additionally, the provided theoretical analysis is limited to a fixed set of items, which cannot be applied
to the unseen queries and items. Some recent work studied fairness under inference uncertainty but in
somehow different settings. [135] studied the impact from the uncertainty in sensitive attributes on fair ranking.
And [136] focused on the uncertainty in the estimated merit and individual fairness in the ranking problem. In
this work, we study group fairness defined by the exposure on the item side in OL2R, where we assume the
grouping of items is given and new queries and items can emerge at any time.

3.1.2 Calibrating Explore-Exploit Trade-off Trade-off for Fair OL2R
Fairness in OL2R

It is asserted by the probability ranking principle that user-side utility reaches its optimal when the docu-
ments are ranked by the expected values of their estimated relevance (merit) to the user [137]. However,
it unfortunately ignores the differential treatment that content providers would receive from the user side
in such rankings. The key resource that a ranking system allocates among the documents is exposure [87],
which influences the probability that the documents to be examined by the users and consequentially the
social and/or economic benefit the content provider will receive. Without loss of generality, in this work, we
assume all ranking candidates among all queries over time belong to two groups (GA and GB). We define the
instantaneous unfairness resulted in a particular ranked list as the difference between the exposure received by
group GA and group GB from the presented ranking,

UF (GA, GB , β) = Exposure(GA)− βExposure(GB),

where β is an unfairness coefficient that controls the relative exposure that group GA and GB should receive.
β is an hyper-parameter chosen by the system designer to weigh the discrepancy in exposure between the two
groups based on the need of specific applications. The definition of exposure is also application-specific: it
can be quantified as the examination probability [133] or the clicks/dwelling time received by the documents.
In this work, we adopt the classical choice of examination probability to simplify our discussion, but our
solution can be generalized to other definitions with specific instrument to measure/infer the corresponding
exposure.
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Algorithm 3 FairExp-PairRank

1: Input: unfairness coefficient β, unfairness threshold ϵ, L2 coefficient λ, uncertainty coefficient δ1, length
of the returned ranked list k.

2: Initialize M0 = λI,θ1 = 0, UF0 = 0.
3: for t = 1, . . . , T do
4: qt ←receive_query(t)
5: Xt = {xt

1, · · · ,xt
Lt
} ← retrieve_documents(qt)

6: Ω̄k
t ← retrieve_group_placement(k, ϵ, β, UF realized

t−1 )
7: Sc

t , S
u
t ← construct_order_sets(Xt,θt−1,Mt−1, δ1)

8: for ω ∈ Ω̄k
t do

9: πω, aω ← FairSwap(Sc
t , Su

t , ω)
10: πt ← πω = argminω∈Ω̄k

t
nω

11: Ct ← collect_click_feedback(πt)
12: UFt ← UFt−1 + realized_unfairness(πt, Ct)
13: Dt ← construct_training_set(πt, Ct)
14: Obtain θt by minimizing Eq (2.1.1)
15: At = At−1 +

∑
(i,j)∈Dt

xijxij
⊤

To capture the difference of the cumulative treatment received during the course of OL2R up to time t, we
consider a ranking system fair, if for any t ∈ [T ], we have

|UFt| =
∣∣∣∑t

s=1

(
Exposures(GA)− βExposures(GB)

)∣∣∣ ≤ ϵ, (3.1.1)

where ϵ > 0 is a threshold chosen by the system designer to satisfy task-specific requirement of fairness.

Our definition of unfairness is general to cover most of the existing exposure-based ranking fairness metrics.
First, for demographic parity constraint proposed in [87] which enforces that the average exposure of groups
to be equal, β can be set as the expected ratio of the group sizes between GA and GB; while for fairness
concerning the disparate treatment [87, 133], of which the exposure received by each group should be
proportional to their relevance or merit, β can be set as the ratio of expected utility between groups. Besides,
our unfairness definition is not limited to only two groups. Different pairs of groups can have different β to
control the relative exposure as long as the βs satisfy the transitivity constraint.

Fair Placement of Groups

Group fairness concerns whether each group of documents receives fair treatment, e.g., the exposure received
by documents belonging to group GA should be comparable to that received by documents belonging to group
GB . Therefore, when considering the top-k ranking positions, the placement of groups, instead of the detailed
placement of documents, affects the unfairness across groups. Such a group-level ranking space for fairness
control is much smaller than the exponentially sized ranking space for individual documents. Specifically, with
a fixed value k, which is chosen by the system designer for each specific ranking task, the set of all possible
combinations of group rankings Ωk is fixed and can be constructed beforehand. For example, with two groups
at top-k positions, there are in total 2k different group-level placements, assuming each group has at least k
candidate documents under each query.

For a particular group-level placement template for the top-k positions, its resulting unfairness can be computed
based on the expected exposure at each position, before the user examines the realized ranking. For example,
under the position-based examination model [138], the examination probability of each document i only
depends on its position in the ranked list, e.g., P (e(i) = 1|i, π) = P (π(i)). Several techniques have been
proposed to estimate such position-based examination probabilities in practice [134, 139, 140]. Other more
sophisticated examination models can also be employed for the purpose to account for more factors than
just the rank positions, such as document content [141] and query intent [142]. Then, given the group-level
placement, the expected exposure each group will receive can be projected accordingly beforehand; and such
values can be indexed for efficient online access later. For example, at round t, for the group placement



3.1 Fair Exploration-Exploitation for OL2R 36

template ω = {A,A,B,A,B} ∈ Ω5, we can compute the expected exposure for group GA and GB as,

˜Exposure
ω

t (GA) = P (1) + P (2) + P (4),

˜Exposure
ω

t (GB) = P (3) + P (5).

where ˜Exposure
ω

t (G) denotes the expected exposure that group G will receive under the group placement
template ω at round t.

According to the definition in Eq (3.1.1), with the unfairness coefficient β, and currently realized unfairness
UFt−1, if ω is chosen, the expected (projected) cumulative unfairness at round t, i.e., ŨF t, can be estimated
as,

ŨF
ω

t (GA, GB , β) = UFt−1(GA, GB , β) + ˜Exposure
ω

t (GA)− β × ˜Exposure
ω

t (GB). (3.1.2)

|ŨF
ω

t (GA, GB , β)| can then be used to guide the selection of final group placement template for round t. But
we should note that ŨF

ω

t (GA, GB , β) indicates the estimated cumulative unfairness for template ω. After
user examines the results, the realized (true) unfairness UFt(GA, GB , β) is computed based on the actual
exposure in the displayed ranking πt, which will then be used to guide fairness control in the next round.
Under specific types of exposure, e.g., position-based examination, the expected exposure can be directly used
to update UFt(GA, GB , β).

Calibrating Explore-Exploit Trade-off

Based on the notion of projected unfairness of a particular group placement template, UFω
t (GA, GB , β), we

design our FairExp framework to ensure fairness during OL2R.

To make our discussion more concrete, we demonstrate how to cast PairRank into a fair OL2R solution with
our proposed FairExp framework in Algorithm 3, named as FairExp-PairRank. Specifically, at round t, we first
select all templates from Ωk that satisfy Eq (3.1.1) under the current cumulative unfairness UFt−1 and the
projected instantaneous unfairness induced by the template (line 6 in Algorithm 3). More formally, denote this
set of templates as Ω̄k

t , such that Ω̄k
t = {ω ∈ Ωk : |UFt−1+ ˜Exposure

ω

t (GA)−β× ˜Exposure
ω

t (GB)| ≤ ϵ, }.
For each group-level placement template ω in Ω̄k

t , we use it to calibrate the exploration and exploitation at
round t: the exploration will be confined within a subset of random permutations satisfying ω; while for
the exploitation, the fairness will be directly enforced: when the algorithm’s chosen ranking is against the
template’s requirement, follow the template’s.

To find the satisfying fair ranking at each round t in PairRank, the most straightforward way is to first generate
all possible ranked lists that satisfy the templates in Ω̄k

t , and then return the one with minimum expected regret,
which can be readily computed based on the violation of certain rank order set Sc

t in PairRank [26]. However,
the search space becomes exponentially large. Hence though valid, such an exhaustive search is prohibitively
expensive for online result serving.

In FairExp-PairRank, we propose to modify the block structure in PairRank to efficiently find the ranking with
minimum expected regret under each qualifying template ω ∈ Ω̄k

t , and then find the best ranking across all
templates (line 8 - line 11 in Algorithm 3). We name this modification method as FairSwap and describe its
procedure in Algorithm 4. More specifically, with the certain and uncertain rank orders (Sc

t and Su
t ), PairRank

divides the documents into a sorted list of n blocks B = {b1, ..., bn} (line 2 in Algorithm 4). Then, for a
chosen template, we can segment it according to the size of each block in the sorted list, and then calibrate
the blocks segment by segment. For example, in line 5 of Algorithm 4, a segment ω′ of the template ω is
obtained based on current block bi. Then FairSwap will check whether the group combination of the block is
satisfied with the template segment ω′. If bi is satisfied (cnt = 0 in Algorithm 4), no modification is needed
for the current block. The ranking of documents can be generated with respect to the group template. As any
permutation of documents within a block is allowed in PairRank, no regret is added. But for the segment
where we do not have enough documents for group g in the corresponding block (cnt ̸= 0 in Algorithm 4), we
have to fetch satisfying documents from the lower ranked block(s) (line 9 to line 13 in Algorithm 4). FairSwap
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Algorithm 4 FairSwap

1: Input: certain order set Sc
t , uncertain order set Su

t , group placement template ω.
2: B = {b1, b2, ...bn} ← rank_blocks(Sc

t , S
u
t )

3: s = 0
4: for bi in B do
5: e← s+ size(bi), ω′ ← ω[s : e], s← e
6: g, cnt← get_missing_group(ω′, bi)
7: if cnt ̸= 0 then
8: Θ = ∅, j ← i+ 1
9: while |Θ| < cnt and j ≤ n do

10: bgj ← fetch_documents(bj , g, cnt− |Θ|)
11: Θ← Θ ∪ bgj
12: j ← j + 1

13: bnewi ← fetch_documents(bi, ḡ, cnt)
14: bi ← bi − bnew, bi ← bi ∪Θ
15: Insert bnew after bi and update block list B
16: πω ← generate_ranking(B, ω)
17: aω ← count_violations(πω , Sc

t )
18: return πω , aω
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Figure 3.2: MSLR-Web10K with group attribute=#inlinks, β = 1.0
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Figure 3.3: Yahoo with group attribute=Feature 9, β = 1.0

sequentially scans the following blocks after bi, and fetches documents belonging to group g in the block (line
10 - line 11 in Algorithm 4). Once the sufficient number of documents belonging to group g are obtained,
FairSwap will add them to the current block bi, and remove cnt documents belonging to ḡ to a new block bnew,
which will be inserted after bi to guarantee that the added regret is minimized. After the structure of blocks is
calibrated, the ranked list πω and the corresponding number of violations aω will be generated.

We use an intuitive example in Figure 3.1 to further illustrate the procedure of FairSwap. In this example,
PairRank already partitions the five documents into two blocks: B1 = {x1,x2} and B2 = {x3,x4,x5}
according to PairRank, and requires the first block to be ranked above the second. The chosen template ω
requires the ranking to follow {A,A,B,A,B}. Then, FairSwap gets the first segment ω′ = {A,A} based on
the size of the first block. ω′ requires two documents from GA, but there is only one such document in the first
block. Hence FairSwap needs to fetch one from the next block. FairSwap will arbitrarily move one of them
into the first block, e.g., x4 in the example, to avoid any presentation bias. But because the first segment only
requires two documents and they must belong to GA, x2 has to be moved downwards. Therefore, FairSwap
creates a new block only containing x2 and inserts it before the next block. Then FairSwap moves to the next
segments, until new violations emerge between a segment and its corresponding block. The same procedure
will be applied to calibrate the block structure. In this result, because x4 is moved up ahead of x2 to satisfy
ω, added regret is introduced. And this added regret can be precisely computed using the certain rank order
set Sc

t in PairRank. For instance, in this example, the added regret will be 2, if the finally output ranking is
{x4 ≻ x1 ≻ x2 ≻ x3 ≻ x5}.

3.1.3 Experiment
In this section, we empirically compared our proposed fair OL2R solution with existing state-of-the-art OL2R
and fair OL2R algorithms on two public learning to rank benchmark datasets.
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Table 3.1: Group information for two datasets.

Dataset Group Group A Group B
attribute Size Utility Size Utility

MSLR Inlink number 64.85% 0.6665 35.15% 0.6776
WEB10K PageRank 50.57% 0.7302 49.43% 0.6093

Yahoo! Feature 9 49.22% 1.2371 50.78% 0.5893
Feature 471 85.75% 1.2384 14.25% 1.2239
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Figure 3.4: MSLR-WEB10K dataset with group attribute=number of inlinks, β = 1.0

Experiment Setup

Datasets. We experimented on two publicly available learning to rank benchmarks, Yahoo! Learning to
Rank Challenge dataset [11], which consists of 292,921 queries and 709,877 documents represented by 700
ranking features, and MSLR-WEB10K [74], which contains 10,000 queries, each having 125 documents
on average represented by 136 ranking features. Both datasets are labeled on a five-grade relevance scale:
from not relevant (0) to perfectly relevant (4). These two datasets are the most popularly used in literature for
evaluating OL2R algorithms. We followed the train/test/validation split provided in the datasets to perform
the cross-validation to make our results comparable to previously reported results. These two are the most
frequently used datasets for OL2R evaluations.

Since no group information about the documents is provided in these two datasets, we manually divided
the datasets into groups. For MSLR-WEB10K dataset, where the detailed information about each ranking
feature is provided by the data publisher, we chose the document-specific feature inlink number (feature id
128) and PageRank (feature id 130) as the group attribute, as they measure the popularity of documents. Inlink
number roughly separates the dataset into two groups with similar average utility, while PageRank separates
the datatset into two groups with similar size. But the Yahoo dataset did not provide any specific feature
information. To follow a similar split as obtained in the MSLR-WEB10K dataset (i.e., average utility vs.,
size across document groups), we checked all the features and chose feature 9 and feature 471 as the group
attribute. The detailed group constructions in these two datasets are provided in Table 3.1. In addition to
studying the trade-off among exploration, exploitation and fairness in OL2R, our choice of group attributes
will also demonstrate how the intrinsic property of the problem/dataset affects these three elements in fair
OL2R.

User interaction simulation. We follow standard settings in OL2R literature to simulate user clicks [25, 26],
which is the most popularly used procedure for OL2R evaluation. At each round, a query is uniformly sampled
from the training set for result serving. A ranked list will be determined by the model and returned to the
user. Use clicks are simulated with a dependent click model (DCM) [68], which assumes that the user will
sequentially scan the list and make click decisions on the examined documents. In DCM, the probabilities of
clicking on a given document and stopping the subsequent examination are both conditioned on the document’s
true relevance label. As both datasets are labeled on a five-grade relevance scale, we set the click probability
for relevance 0-4 as: {0.4, 0.6, 0.7, 0.8, 0.9}, and the stop probability as: {0.1, 0.2, 0.3, 0.4, 0.5}. Such a click
model simulates the users who tend to examine more documents, but sometimes click on irrelevant documents.
Hence, there exists significant amount of noise in the click feedback. To reflect presentation bias, only top
k = 10 ranked results are returned to the users.
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Figure 3.5: MSLR-WEB10K dataset with group attribute=PageRank score, β = 1.22

Baselines and settings. We compare the proposed fair framework FairExp on top of TopRank and PairRank,
with several state-of-the-art OL2R solutions, and the fair OL2R model, FairCo.

• DBGD [12]: DBGD uniformly samples a direction from the entire model space for exploration and
model update.

• PDGD [25]: PDGD samples the next ranked document from a Plackett-Luce model and estimates
gradients from the inferred pairwise preferences.

• PairRank [26]: PairRank directly learns a pairwise model with logistic regression, and explores based
on the model’s uncertainty with divide-and-conquer.

• TopRank [22]: TopRank maintains a partial order over the ranking candidates and randomly permutes
the pairs where the model’s estimation is still uncertain. In essence, TopRank is very similar to PairRank,
but it performs the rank estimation under each query independently.

• FairCo [133]: FairCo achieves the group fairness with a proportional control based on the exposure of
each group. This is the only fair OL2R solution known in literature so far.

For the comparison between FairExp-PairRank and the baselines, we perform a cross-validation on both
datasets. For each fold in cross validation, the models are trained with the simulated clicks on the training
dataset, and the hyper-parameters are selected based on their offline performance (relevance learning) on the
validation set. We used grid search for the best set of hyper-parameters. For PDGD and DBGD, learning
rate is selected among {10−i}3i=1. For PairRank, we did a grid search for its regularization parameter λ over
{10−i}3i=1 and exploration parameter α over {10−i}3i=1. FairCo depends on the pre-defined examination
probability of each position to perform inverse propensity scoring. We followed [8] to use randomization
to estimate the position-based examination probabilities. The fairness coefficient in FairCo is searched over
{10−i}3i=1. For FairExp-PairRank, we did the same grid search for the hyper-parameters associated with
PairRank. To make the fairness control comparable between FairExp-PairRank and FairCo, we set β to the ratio
of the true utility of each group. For example, for MSLR-WEB10K dataset with inlink as the group attribute,
we set β to 1 according to the statistics reported in Table 3.1. For FairCo, we set the merit of each group based
on the ground-truth relevance labels. To calculate exposure, FairExp-PairRank, FairExp-TopRank and FairCo
use the independently estimated examination probabilities as the exposure received by each document. With
such a setting, all these three fair OL2R solutions focus on the merit-based exposure for group fairness.

Evaluation. We evaluate the fair OL2R models under three aspects, user satisfaction (i.e., exploitation),
relevance learning (i.e., exploration), and unfairness treatments across groups over time. For user satisfaction
and relevance learning, we adopt the same metric and setting, e.g., NDCG@10 and Cumulative NDCG@10,
as we did in OL2R. Besides, we calculate unfairness according to Eq (3.1.1) with a chosen β value in each
dataset.

Experiment Results

FairExp-TopRank. TopRank learns the ranking of documents for each query independently, such that its
sample complexity increases linearly with the number of unique queries and documents in a corpus. This
puts it in a disadvantageous position when compared with the parametric ranking models, such as PairRank,
because TopRank cannot generalize its observations across queries. Hence, in practice when the ranking
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Figure 3.6: Yahoo dataset with group attribute=feature 9, β = 1.0
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Figure 3.7: Yahoo dataset with group attribute=feature 471, β = 0.477

features are available, TopRank is not a good choice for OL2R. But in this experiment, we created a dedicated
dataset only to evaluate the effectiveness of our proposed FairExp framework for turning TopRank into a fair
OL2R solution. In particular, we randomly select 10 queries from both MSLR-Web10K and Yahoo datasets,
and performed evaluation only for TopRank, PairRank and their fair versions, and FairCo for 10,000 rounds,
so that each query will be selected and modeled for sufficient times in TopRank and FairExp-TopRank.

We reported the cumulative unfairness and cumulative NDCG@10 for the five OL2R solutions in Figure 3.2
and 3.3. We can clearly observe that FairExp is able to maintain almost perfect fairness for TopRank and
PairRank, compared to FairCo. To our surprise, FairCo even accumulated more unfairness than TopRank and
PairRank, which are not constrained by fairness controls at all. This is caused by the “overreaction” in FairCo
for fairness control. FairCo considers the currently accumulated disparity between the exposure received in
each group and directly promotes all documents in the disadvantaged group by the disparity. Such a promotion
fails to consider what’s actually needed in the current round, and is very likely to over compensate. As a
result, FairCo has to compensate different groups back and forth. But in our FairExp framework, the projected
unfairness after the current round is considered to minimize the impact on subsequent rounds. On the other
hand, in terms of ranking performance, TopRank performed the worst, comparing to FairCo and PairRank.
And FairExp further downgrades its ranking performance due to the fairness control. Similar effect is observed
in PairRank vs., FairExp-PairRank, but it is expected. In our following experiments, we will exclude TopRank
and its fair version in our discussion, as their ranking performance is too much worse than other parametric
OL2R solutions.

Exploration, exploitation, and fairness in FairExp-PairRank. We report the online performance, offline
performance and unfairness on the two datasets with four different group attributes in Figure 3.4 to 3.7. First,
we can clearly observe that PairRank consistently showed the best online performance across all the settings.
And due to the fairness control, FairExp-PairRank encounters reduced online performance. This is the expected
trade-off between utility and fairness: to allocate fair exposure for different groups, documents with low-quality
have to be swapped to the top positions. Fortunately, due to our FairSwap strategy that guarantees minimum
added regret and the already good performance of PairRank, the cost of such trade-off is under control,
such that FairExp-PairRank even outperformed most of other OL2R solutions that are not subject to fairness
constraints. On the other hand, FairCo showed worse online performance than FairExp-PairRank and other
OL2R solutions. We attribute this to FairCo’s “overreacting” fairness control. In FairCo, to reduce the current
unfairness, the ranking scores of documents belonging to the underrepresented group will all be promoted
by the same value; but the differences of their relevance quality are ignored. As a result, documents with
low-quality will be equally promoted for fairness, which directly results in its bad online performance.

Offline performance indicates the models’ convergence for relevance learning. We can observe that the
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Figure 3.8: Number of violations on certain rank orders.

convergence rate of FairExp-PairRank is slower than that in PairRank. This is consistent with our previous
discussion that due to the fairness control some documents originally selected for exploration cannot be
displayed, which directly slows down the improvement of relevance estimation. Besides, we can observe that
such control shows different impact across different group settings. For example, there is almost no impact
on the offline performance of FairExp-PairRank on MSLR-WEB10K dataset when choosing the PageRank
feature to define groups, while on Yahoo dataset with feature 471 as the group attribute, the drop is significant.
We checked the detailed output in FairExp-PairRank and found that in the former case, the fairness constraint
can be largely satisfied with the original rankings in PairRank. Therefore, little calibration is added. However,
in the latter case the underexplored documents always got demoted by fairness control (because the group size
differs significantly), it seriously slowed down relevance learning.

On the other hand, thanks to our template-guided fairness control, FairExp-PairRank showed significant
advantages in its cumulative unfairness compared to all baselines across all settings, as fairness is handled as a
hard constraint in it. It is worth noting that in the Yahoo dataset, even with FairExp-PairRank, the cumulative
unfairness is increasing. This is because there are many queries with highly imbalanced candidate documents
from the two groups such that no ranking can be generated with respect to the fair templates in Ω̄. In FairExp,
when no qualified template can be satisfied, we will first choose a ranking with the minimum unfairness,
and then compare their added regret. And this observation also reflects the intrinsic incompatibility of an
environment in fair ranking problems: the distribution of queries and/or their associated documents is out of
the control of algorithms. Compared to FairExp-PairRank that treats unfairness as a hard constraint, FairCo
shows much higher unfairness during the course of OL2R. And this is still resulted from its “overreacting”
behavior in the proportional control: it aims to fix all the previous unfair treatments in the current query,
which might over compensate the current underrepresented group and lead to oscillation in the subsequent
controls.

Zoom into FairExp-PairRank To further verify the effect of fairness control on the trade-off between
exploration and exploitation in PairRank, we zoom into the trace of the number of violations on the certain
rank orders during online interactions in Figure 3.8. We can observe that the fairness control inevitably leads
to constant violations on the identified certain rank orders (i.e., added regret) and the impact varies across
different group configurations. This also shows another intrinsic incompatibility in fair result ranking: when
the optimal utility-driven ranking is not fair, the system has to trade utility for fairness. And this trade-off is
beyond the system’s control, as it is affected by the distribution of queries that are issued by the users and the
associated documents that are produced by the content providers.

3.2 Conclusion
In this chapter, we focus on improving the reliability of decision-making in OL2R by ensuring fair treatment
across content providers. Existing OL2R solutions focus on optimizing user-oriented utilities of the ranked list,
but ignore the potential unfair treatment that result ranking can introduce on the content providers. We present
a general framework FairExp for fair OL2R. During the interaction with the users, the trade-off between
exploration and exploitation in OL2R is calibrated with respect to the fairness constraint. By taking advantage
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of the structure of deterministic exploration in PairRank, fairness control, relevance learning and online quality
can be best optimized simultaneously. We proved that our strategy introduces the minimum distortion in
OL2R’s regret to obtain fairness. And our empirical evaluations demonstrate the strong advantage of FairExp
in balancing exploitation, exploration and fairness in OL2R.



Chapter 4

Multi-task Learning for Explainable
Recommendation

Modern personalized information systems are black boxes to their users: computerized oracles give advice,
but cannot be questioned. The lack of transparency in personalization [4] leaves users in a dilemma: a user can
only assess the quality of personalized results by taking the suggested instances, e.g., read the recommended
articles; however, in order for him/her to adopt the system’s customized results, he/she needs to first build
trust over the system. If users are persuaded to accept recommended results that are subsequently found to
be inferior, their confidence and trust in the system will rapidly deteriorate [3, 28]. Hence, the fidelity of
explanations becomes a prerequisite for explainable recommendations, and also, reliable information system.
In this chapter, we introduce two solutions for explainable recommendation. Given the rich information in the
users’ review text, we adopt feature-level sentiment analysis [34,143] on reviews to construct a domain-specific
sentiment lexicon. Based on the lexicon, we develop two mutli-task learning models [31–33], where two
companion learning tasks are formed: one focuses on user preference modeling for personalization, and
another focuses on content modeling for explanation. The two tasks operate in the same latent space by
sharing the representation of users, instances and aspects. Therefore, the learning of latent factors for users
and instances are thus shaped by both the loss from personalization and explanation tasks.

4.1 Explainable Recommendation with Joint Tensor Factorization
We believe the tension between recommendation quality and explanation fidelity is not necessarily inevitable;
and a good recommendation algorithm should consist of companion learning tasks focusing on different
aspects of users’ decisions over the recommended instances, such that the observed final decisions (e.g., clicks
or ratings) can be mutually explained by the associated observations. Due to the effectiveness in numerous
practical deployments [27, 144], we focus on latent factor models to develop explainable personalization
solutions. The essence of a latent factor model based personalization solution is to represent users and instances
in a latent space such that the distance between them captures the users’ preference over the instances [27,144].
To introduce explainability, when constructing the latent space, we also need to consider the generation of
explanations. For example, the identified decision aspects should also be embedded in this space, such that
their distances to a particular user-instance pair reflect their importance for the user to evaluate the customized
instance. Intuitively, in this latent space, users should be surrounded by their preferred instances; and each
user-instance pair should be surrounded by the aspects that best characterize the matching between them
(shown in Figure 4.1). Both personalization and explanation can thus be effectively addressed by searching in
this latent space.

In this work, we focus on explaining factorization-based recommendation algorithms [145, 146] by taking a
holistic view of item recommendation and sentiment analysis. We present a joint tensor factorization solution
to integrate two complementary tasks of user preference modeling for recommendation and opinionated content
modeling for explanation, i.e., a multi-task learning approach [147–149]. The task of item recommendation is
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Figure 4.1: Multi-task personalization and explanation learning scheme.
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Figure 4.2: Joint tensor factorization.

modeled by a three-way tensor over user, item and feature, to describe users’ preferences on individual items’
features, constructed by feature-level sentiment analysis in opinionated review content. The companion task of
opinionated content analysis is modeled by another two three-way tensors, one over user, feature, opinionated
phrase, and another over item, feature, opinionated phrase, both of which are constructed from user-generated
review content. Via a joint factorization over these three tensors, we map users, items, features and opinionated
phrases to a shared latent representation space. Extensive experimental comparisons between our proposed
solution and existing explainable recommendation algorithms demonstrate the effectiveness of our solution
in both item recommendation and explanation generation tasks in two different application scenarios, i.e.,
product recommendation based on Amazon reviews and restaurant recommendation based on Yelp reviews.
In particular, we perform serious user studies to investigate the utility of our explainable recommendation in
practice. Positive user feedback further validates the value of our proposed solution.

4.1.1 Related Work
Explainable personalization is still in its nascent stage, although from a broader perspective it is closely
related to general explainable machine learning [150–154]. Studies related to explanations can also be found
in cognitive science [155], psychology [156] and philosophy [157]. Past work has considered explaining
latent factor models [143], explainable deep models [158], social explainable recommendations [159], visual
explanations [160], sequential explanations [161] and dynamic explanations [162]. Broadly speaking, we
categorize the existing explanation methods into neighbor-based and feature-based categories. Both of them
however suffer from the trade-off between recommendation quality and explanation fidelity to different
extents.

The neighbor-based explanation methods root in content-based collaborative filtering [163, 164]. As the
recommendations are made directly by measuring similarities between users and/or items, explaining the
recommended results becomes straightforward. For example, Herlocker et al. proposed 21 types of explanation
interfaces for a collaborative filtering system [165] and found a histogram showing the ratings from similar
users was the most persuasive. Sharma and Cosley [28] conducted user studies to investigate the effect of
social explanations, e.g., “X, Y and 2 other friends like this.” But the unsatisfactory recommendation quality
limits the utility of provided explanations at the first place. This type of explanation has also been used in latent
factor based collaborative filtering algorithms, where the similarity is measured in the learnt latent space [29].
Zhang et al. [143, 166] combined techniques for phrase-level sentiment analysis with matrix factorization.
Abdollahi and Nasraoui [29] introduced explainability as a constraint in factorization: the learned latent
factors for a user should be close to those learned for the items positively rated by him/her. There are also
solutions considering the latent factor models from a probabilistic view, which provides the flexibility of
modeling associated opinionated text data for explanation. Wang and Blei [167] combine probabilistic matrix
factorization with topic modeling for article recommendation. Explanations are provided by matching topics in
items against the target user. A follow-up work [168] introduces aspect-level topic modeling to capture users’
finer-grained sentiment on different aspects of an item, so that aspect-level explanations become possible.
Ren et al. [169] introduce social relations into topic modeling based recommendation via a concept named
viewpoint, which enables social explanation. However, as the latent space is not constructed for explanation,
there is no guarantee that such type of explanations will comply with the recommendations.
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Feature-based explanation methods introduce information beyond classical dyadic interaction between users
and items, such as user ratings and clicks. Earlier work in this category uses meta-data of items for explanation.
For instance, Tintarev et al. [170] use genre, director and cast to explain movie recommendations. Bilgic
and Mooney [2] extracted keywords from recommended books as explanations. But such explanations are
heavily item-focused, and therefore independent of the recommendation algorithms. Their fidelity is often
questionable. Later works in this category integrate feature representation learning with recommendation
model learning, with the hope that the provided explanations can best correlate with the recommendations.
For example, in [143], phrase-level sentiment analysis is first used to extract users’ feature-level descriptions
of the items, and joint matrix or tensor factorization is then performed to map users, items and features onto
the same latent space. The explanations are created by looking for the most related features to the user and
recommended items in the learnt latent space, which is essentially neighbor-based explanation. But as the
feature representation is learnt jointly with user and item representations, this type of explanations is believed
to be more relevant and informative. Recently, neural attentive models are also developed to directly rank user
reviews for explanation [171].

4.1.2 Joint Tensor Factorization for Explainable Recommendation
In this section, we elaborate our multi-task learning solution for explainable recommendation. We exploit the
opinionated review text data that users provide in addition to their overall assessments of the recommended
items to enhance and explain the recommendation. Two companion learning tasks, i.e., user preference
modeling for recommendation and opinionated content modeling for explanation, are integrated via a joint
tensor factorization.

In the following discussions, we denote m,n, p, q as the number of users, items, features and opinionated
phrases in a dataset, and a, b, c, d as the corresponding dimensions of latent factors for them in the learnt
model. As a result, after factorization, users, items, features and opinion phrases can be represented by
four non-negative matrices U ∈ Rm×a

+ , I ∈ Rn×b
+ , F ∈ Rp×c

+ and O ∈ Rq×d
+ in the latent factor space,

respectively. Note that these four types of entities are associated with different degrees of complexity in
practice, and therefore we do not restrict them to the same dimension of latent factors. To capture users’
detailed feature-level opinions, we assume the existence of a domain-specific sentiment lexicon L. Each
entry of L takes the form of (feature, opinion, sentiment polarity), abbreviated as (f, o, s), to represent the
sentiment polarity s inferred from an opinionated text phrase o describing feature f . Specifically, we label the
sentiment polarity s as positive (+1) or negative (-1), but the developed solution can be seamlessly extended to
multi-grade or continues rating cases. Based on this notation, our sentiment analysis is to map each user’s
review into a set of (f, o, s) entries. We use RU

i and RI
j to denote the set of reviews associated with user i and

item j, respectively.

User Preference Modeling for Item Recommendation

This task is to predict the relevance of a recommendation candidate to a user, such that relevant candidates
can be ranked higher. Traditional solutions perform the estimation by mapping users and items to a shared
latent space via low-rank factorization over an input user-item affinity matrix [172, 173]. However, because
this input matrix is usually constructed by users’ overall assessment of items, such as clicks or ratings, the
learnt factors cannot differentiate nor explain the detailed reason that a user likes/dislikes an item. To address
this limitation, we focus on feature-level preference modeling for item recommendation. We aim to not only
predict a user’s overall assessment of an item, but also his/her preference on each feature of this item to
enhance the recommendation.

Since different users would focus on different features of the same item, and even for the same feature of
an item, different users might express distinct opinions on them, we use a three-way tensor X ∈ Rm×n×p

+

to summarize such a high-dimensional relation. The key is to define the element Xijk in this tensor, which
measures to what extent user i appreciates item j’s feature k reflected in his/her opinionated review set RU

i . In
this work, we adopt the method developed in [174] to construct a domain-specific sentiment lexicon L for
analyzing users’ detailed feature-level opinions. As the construction of a sentiment lexicon is not a contribution
of this work and limited by space, we will not discuss the details of this procedure; interested readers can refer
to [174, 175] for more details.
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Based on the constructed sentiment lexicon L, a user review can be represented as a list of (f, o, s) tuples.
It is possible that a user mentions a particular feature multiple times in the same review but with phrases of
different sentiment polarities. To denote the overall sentiment, we calculate the summation of all sentiment
polarities that user i has expressed on item j’s feature k. Suppose feature k is mentioned tijk times by user i
about item j with the sentiment polarity labels {s1ijk, s2ijk, . . . , s

tijk
ijk }, we define the resulting feature score as

ŝijk =
∑tijk

n=1 s
n
ijk.

As we discussed in the introduction, a user’s overall assessment of an item is usually a composition of multiple
factors. In order to build the connection between a user’s feature-level and overall assessments of an item,
we introduce the overall assessment as a dummy feature to all items and append the overall rating matrix
A ∈ Rm×n

+ to tensor X . This results in a new tensor X̃ ∈ Rm×n×(p+1)
+ . To normalize the scale between

feature score ŝijk and item overall rating Aij in X̃ , we perform the following nonlinear mapping on its
elements introduced by the feature scores,

X̃ijk =

{
0, if fk is not mentioned by ui about ij
1 + N−1

1+exp(−ŝijk)
, otherwise (4.1.1)

where N is the highest overall rating in the target domain.

Tensor X̃ describes the observed affinity among users, items and features in a training data set. To predict
unknown affinity among these three types of entities in testing time, we factorize X̃ in a lower dimensional
space to find the latent representation of these entities, and complete the missing elements in X̃ based on
the learnt representations. As we do not restrict these three types of entities to the same dimension of latent
factors, we require a more flexible factorization scheme. Tucker decomposition [146, 176] best fits for this
purpose, i.e.,

min
X̂
||X̂ − X̃||F (4.1.2)

s.t. X̂ =

a∑
r=1

b∑
t=1

c∑
v=1

grtvur ⊗ it ⊗ fv

∀r, t, v ur ≥ 0, it ≥ 0, fv ≥ 0, and grtv ≥ 0

where ur is the r-th column in the resulting user factor matrix U , it is the t-th column in the resulting item
factor matrix I , fv is the v-th column in the resulting feature factor matrix F̃ (with dummy overall assessment
feature expansion), || · ||F denotes the Frobenius norm over a tensor, and ⊗ denotes vector outer product. As
we have mapped the feature scores to the same range of overall ratings in the target domain (i.e., [1, N ]), we
impose non-negative constraint over the learnt latent factors to avoid any negative predictions.

In Tucker decomposition, a core tensor G ∈ Ra×b×c
+ is introduced to describe how and to what extent different

tensor elements interact with each other. This provides us another degree of freedom in performing the joint
factorization in our multi-task learning solution. We will carefully elaborate this important advantage later
when we discuss the detailed learning procedure in Section 4.1.2.

The resulting factor matrices U , I , and F are often referred to as the principal component in the respective
tensor mode. And the unknown affinity among user i, item j and feature k can therefore be predicted by,

X̂ijk =

a∑
r=1

b∑
t=1

c∑
v=1

grtvuriitjfvk. (4.1.3)

The predicted user’s feature-level assessment can already serve as a form of rating-based explanation [175]. In
the next section, we will enhance our explanation to free text based, by learning from user-provided opinionated
content about the items and features.

We should note recommendation is essentially a ranking problem, in which one needs to differentiate the relative
relevance quality among a set of recommendation candidates. However, the current Tucker decomposition is
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performed solely by minimizing element-wise reconstruction error, i.e., in Eq (4.1.2), which cannot directly
optimize any ranking loss. To address this limitation, we introduce the Bayesian Personalized Ranking (BPR)
principle [177] into our factorization of X̃ . Because we only have explicit user assessments at the item-level,
we introduce the BPR principle in the overall rating predictions. In particular, for each user ui we construct a
pairwise order set DS

i based on the observations about him/her in X̃:

DS
i :=

{
(j, l)| x̃ij(p+1) > x̃il(p+1)

}
where x̃ij(p+1) > x̃il(p+1) indicates in the given review set RU

i : 1) the user i gives a higher overall rating
to item j than item l; or 2) item j is reviewed by user i while item l is not. Then the BPR principle can be
realized by:

BPR-OPT := −λB
m∑
i=1

∑
(j,l)∈DS

i

lnσ
(
x̂ij(p+1) − x̂il(p+1)

)
(4.1.4)

in which λB is a trade-off parameter and σ(·) is the logistic function. Intuitively, Eq (4.1.4) is minimized when
all the pairwise ranking orders are maintained and the difference is maximized. By introducing it into the
objective function of Eq (4.1.2), the decomposition is forced to not only reduce element-wise reconstruction
error in X̃ , but also to confine with the pairwise ranking order between items.

Although we only impose ranking loss over the overall rating predictions in Eq (4.1.4), it also implicitly
regularizes the feature-level predictions. To better understand this benefit, we can rewrite Eq (4.1.3) into a
matrix product form,

X̂ijk = G ×a Ui ×b Ij ×c F̃k (4.1.5)

where G ×n M denotes the n-mode product between tensor G and matrix M , i.e., multiply matrix M with
each mode-n fiber in G.

For a given pair of user i and item j, the first two n-mode product results in a matrix, denoted as Tij , which
presents a (p+1)× c dimensional space spanned by the latent factors for user i and item j. The feature scores
and overall ratings are predicted by projecting the feature factors, i.e., matrix F̃ , onto it. To satisfy the BRP
principle in Eq (4.1.4), Tij has to be adjusted for each pair in DS

i . As F̃ is globally shared across users and
items, this introduces the pairwise ranking loss into the gradient for all features’ latent factor learning; this
effect becomes more evident when we introduce the learning procedures for our joint factorization later in the
Section 4.1.2.

Opinionated Content Modeling for Explanation

If an algorithm could predict the opinionated content that the user would provide on the recommended item, it is
an informative explanation to reveal why the user should pay attention to those features of the recommendation.
Based on this principle, we develop a companion learning task of opinionated content modeling to generate
detailed textual explanations for the recommendations.

With the factorization scheme discussed in the last section, a straightforward solution for content modeling
is to create a four-way tensor to summarize the complex relations among users, items, features, and opinion
phrases. However, this four-way tensor would be extremely sparse in practice, as an ordinary user would
only comment on a handful of items and we cannot expect their comments to be exhaustive. It is known
that in natural language the distribution of words is highly skewed, e.g., Zipf’s law [178]; we hypothesize
that the distribution of opinion phrases that an item often receives for describing its features, and that a user
often uses to describe a type of items’ features are also highly skewed. In other words, the appearance of an
opinion phrase towards a feature should strongly depend on the user or the item. Therefore, we approximate
the four-way tensor by two three-way tensors, one summarizes the relation among user, feature and opinion
phrase, and another for item, feature and opinion phrase.

This approximation is also supported by prior studies in mining opinionated text data. Amarouche [179]
specifies that opinion phrase associated with a feature is apparently dependent on the opinion holder (user) as
well as the target object (item) in product opinion mining. Kim and Hovy [180] focus on the importance of
the opinion holder, explaining that the opinion holder’s identification can be used independently to answer
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several opinion questions. Ronen and Moshe [181] compare products on their features/attributes by mining
user-generated opinions, and report the dependence of opinions on different products features/attributes. In
our experiments, we also empirically confirmed our hypothesis for approximation via a permutation test on
two large review data sets.

We denote the first tensor as Y U ∈ Rm×p×q
+ . From the review set RU

i of user i, we extract all positive phrases
this user has used to describe feature k across all items, i.e.,RU

i,k =
{
o| (f, o, s) ∈ RU

i , f = k, s = +1
}

. We
only include positive phrases, as we need to explain why a user should appreciate the feature of a recommended
item, rather than avoid it; otherwise we should not recommend this item or feature at all. But our algorithm
can be easily extended to the scenario where one needs to provide warning messages (e.g., include the negative
phrases in the tensor). To reflect the frequency of user i uses opinion phrase o to describe feature k, and to
facilitate the joint factorization later, we construct Y U as,

Y U
ikw =

{
0, if w is not inRU

i,k

1 + (N − 1)
(

2
1+exp(−Γ) − 1

)
, otherwise (4.1.6)

where Γ is the frequency of phrase w inRU
i,k.

We construct the second tensor Y I ∈ Rn×p×q
+ in a similar way. For item j, we first obtain a collection of

positive phrases about its feature k from RI
j , i.e., RI

j,k =
{
o|(f, o, s) ∈ RI

j , f = k, s = +1
}

, and then
construct Y I as:

Y I
jkw =

{
0, if w is not inRI

j,k

1 + (N − 1)
(

2
1+exp(−Ω) − 1

)
, otherwise (4.1.7)

where Ω is the frequency of phrase w inRI
j,k.

The construction of tensor X̃ , Y U and Y I impose strong dependency between the two learning tasks of
item recommendation and opinionated explanation, as every two tensors share the same two types of entities
(as shown in Figure 4.2). Instead of isolating the factorization of these three tensors, we propose a joint
factorization scheme, which will be discussed in detail in the next section. Once the latent factors are learnt,
we can predict user i’s opinionated comments on feature k by the reconstructed vector Ŷ U

i,k, which can be
calculated in the same way as in Eq (4.1.3) with the corresponding latent factors. Similarly, the opinionated
comments that item j will receive on its feature k can be predicted by the reconstructed vector Ŷ I

j,k. As a result,
to predict the opinionated comments that user i will provide on item j’s feature k, we take an element-wise
product between these two vectors to construct an opinion phrase scoring vector Ŷ U,I

i,j,k, in which each element
is computed as,

Ŷ U,I
i,j,k,w = Ŷ U

i,k,w × Ŷ I
j,k,w (4.1.8)

This estimation reflects our approximation of the original four-way tensor with two three-way tensors. Because
the tensor Y U and Y I record the frequency of an opinion phrase used in describing the features by the user
and about the item, Eq (4.1.8) prefers to choose those that are popularly used to describe this feature of the
item in general, and also by this target user to describe this feature in similar items.

Multi-task Learning via a Joint Tensor Factorization

Both of our proposed learning tasks are modeled as a tensor factorization problem, and they are coupled with
the shared latent factors. Ideally, the predicted users’ assessment about the recommendation candidates from
the first task should be supported by the predicted users’ opinionated comments about the recommendations
from the second task. To leverage the dependency between these two tasks, we develop a joint factorization
scheme.

In Tucker decomposition, a three-way input tensor will be decomposed into a core tensor and three principle
component matrices. The core tensor captures multivariate interactions among the latent factors; and the
principle component matrices can be viewed as basis of the resulting latent space. Based on this property, we
decide to share the principle component matrices across the three tensors of X̃ , Y U and Y I to learn the latent
representations of user, item, feature and opinion phrases across the two learning tasks, and keep independent
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core tensors for these tensors to capture the tasks’ intrinsic variance and scaling of the shared latent factors. As
a result, we devise the following joint optimization formulation,

min
X̂,Ŷ U ,Ŷ I

||X̂ − X̃||F + ||Ŷ U − Y U ||F + ||Ŷ I − Y I ||F − λB
m∑
i=1

∑
(j,l)∈DS

i

lnσ
(
x̂ij(p+1) − x̂il(p+1)

)
+ λF

(
||U ||2 + ||I||2 + ||F ||2 + ||O||2

)
+ λG

(
||G1||2 + ||G2||2 + ||G3||2

)
s.t. X̂ = G1 ×a U ×b I ×c F̃ ,

Ŷ U = G2 ×a U ×c F ×d O,

Ŷ I = G3 ×b I ×c F ×d O,

U ≥ 0, I ≥ 0, F ≥ 0, O ≥ 0,G1 ≥ 0,G2 ≥ 0,G3 ≥ 0. (4.1.9)

where we introduce l2 regularization over the learned latent factor matrices and core tensors to avoid over-fitting.
This joint factorization ensembles the two companion learning tasks for recommendation and explanation,
i.e., multi-task learning; and therefore, we name our solution as Multi-Task Explainable Recommendation, or
MTER in short.

The above optimization problem can be effectively solved by stochastic gradient descent (SGD), with projected
gradients for non-negative constraints. However, because the number of observations in each tensor and in
the pairwise ranking constraint set varies significantly, vanilla SGD procedure suffers from local optimum.
To improve the convergence, we randomly select small batches of samples from each tensor and pairwise
constraint set per iteration to calculate a averaged gradient, i.e., a mini-batch SGD. And to avoid manually
specifying a step size, we employ adaptive gradient descent [182], which dynamically incorporates the updating
trace in earlier iterations to perform more informative and faster gradient-based learning. The parameter
estimation procedure of our model is off-line, and large-scale learning tasks could be solved within reasonable
periods.

Interactions between the two learning tasks become more evident in MTER when we look into the detailed
gradients for model update. Denote the objective function in Eq (4.1.9) as L, and we list the gradient of Fk as
an example to illustrate how the elements in three tensors X̃ , Y U and Y I contribute to it:

∂L

∂Fk

=
∂L

∂X̂ijk

G1 ×a Ui ×b Ij +
∂L

∂Ŷ U
ikl

G2 ×a Ui ×d Ow +
∂L

∂Ŷ I
jkl

G3 ×b Ij ×d Ow (4.1.10)

In Eq (4.1.10), as Fk is shared across the decomposition of all three tensors, it bridges the other three
components Ui, Ij and Ow in these two tasks. Similarly, the gradient of Ui, Ij and Ow also involves all the
rest factors. Furthermore, the BPR constraint introduced on overall rating prediction indirectly affects the
learning of Ui, Ij and Ow, via gradient sharing. This also helps MTER conquer data sparsity issue when we
have a large number of users, items, features and opinionated phrases to model.

4.1.3 Experiment
In this section, we quantitatively evaluate our solution MTER in the tasks of item recommendation and
opinionated content modeling, on two popular benchmark datasets collected from Amazon1 [183, 184] and
Yelp Dataset Challenge2. We perform extensive comparisons against several state-of-the-art recommendation
and explainable recommendation algorithms. Improved quality in both recommendation and opinionated
content prediction confirms the comprehensiveness and effectiveness of our solution.

1http://jmcauley.ucsd.edu/data/amazon/
2https://www.yelp.com/dataset
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Table 4.1: Basic statistics of evaluation datasets.

Dataset #users #items #features #opinions #reviews
Amazon 6,285 12,626 95 591 55,388

Yelp 10,719 10,410 104 1,019 285,346

Experiment Setup

Datasets and Preprocessing. To verify our model’s effectiveness in different application domains, we choose
restaurant businesses from Yelp dataset and cellphones and accessories category from Amazon dataset. These
two datasets are very sparse: 73% users and 47% products only have one review in Amazon dataset, and 54%
users only have one review in Yelp dataset. However, in the constructed sentiment lexicons, 401 features
are extracted from Amazon dataset, and 1065 are extracted from Yelp dataset. It is very difficult to estimate
the affinity between users and those hundreds of features from only a handful of reviews. To refine the raw
datasets, we first analyze the coverage of different features in these two datasets. Within the sentiment lexicon,
only a small number of features (around 15%) that are frequently covered in 90% reviews, while most of
features occur rarely in the whole datasets (i.e., Zipf’s law). As a result, we perform recursive filtering to
alleviate the sparsity issue. We only select the features whose support is above a pre-defined threshold. With
the subset features, we further filter out reviews associated with too few features and items associated with too
few reviews. By fine tuning these different thresholds, we obtain two refined datasets with decent amount of
users and items, whose basic statistics are reported in Table 4.1.

Baselines. To evaluate the effectiveness of our proposed explainable recommendation solution, we include the
following recommendation algorithms as baselines:

• MostPopular: A non-personalized recommendation solution. Items are ranked by their observed
frequency in the training dataset.

• NMF: Nonnegative Matrix Factorization [185], which is a widely applied latent factor model for
recommendation.

• BPRMF: Bayesian Personalized Ranking on Matrix Factorization [177], which introduces BPR pairwise
ranking constraint into factorization model learning (as shown in Eq (4.1.4)).

• JMARS: A probabilistic model that jointly models aspects, ratings, and sentiments by collaborative
filtering and topic modeling [168].

• EFM: Explicit Factor Models [175]. A joint matrix factorization model for explainable recommendation,
which considers user-feature attention and item-feature quality.

• MTER-S(SA): Replace Tucker decomposition with canonical decomposition [146] in our MTER
solution. With canonical decomposition, each decomposed matrix is represented as a summation of
a shared component and a local component. For example, user factor matrix is then represented as
U0+U1, where U0 is shared across three tensors and U1 is only estimated for X̃ . Similar decomposition
structure design can be found in [149, 175]. If we do not allow the local components and assume all
components are shared across tensors, we can get another variant of MTER, named as MTER-SA.

Evaluation Metric. We use Normalized Discounted Cumulative Gain (NDCG) to evaluate top-k recommenda-
tion performance. 80% of each dataset is used for training, 10% for validation and 10% for testing respectively.
We use grid search to find the optimal hyper parameters in a candidate set for all baseline models.

Experiment Results

Performance of Recommendation. We report the recommendation performance of each model measured by
NDCG@{10,20,50,100} in Table 4.2. Paired t-test is performed between the best and second best (MTER-
S(SA) excluded) performing algorithms under each metric to confirm the significance of improvement.
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Table 4.2: Comparison of recommendation performance.

NDCG @K Amazon
FMF [186] NMF [187] BPRMF [188] JMARS [189] EFM [143] MTER FacT

10 0.1009 0.0649 0.1185 0.1064 0.1109 0.1351 0.1482
20 0.1331 0.0877 0.1490 0.1348 0.1464 0.1653 0.1795
50 0.1976 0.1601 0.2070 0.1992 0.2056 0.2234 0.2367
100 0.2529 0.2144 0.2669 0.2575 0.2772 0.2803 0.2869

NDCG@K Yelp
FMF [186] NMF [187] BPRMF [188] JMARS [189] EFM [143] MTER FacT

10 0.0931 0.0564 0.1266 0.1155 0.1071 0.1380 0.1499
20 0.1243 0.0825 0.1643 0.1553 0.1354 0.1825 0.1991
50 0.1871 0.1345 0.2214 0.2111 0.1903 0.2365 0.2488
100 0.2509 0.2175 0.2668 0.2575 0.2674 0.2783 0.2867

* p-value < 0.05

Figure 4.3: NDCG@50 vs. relative weight ϕ of BPR on Amazon and Yelp datasets.

Results in Table 4.2 clearly demonstrate the advantage of MTER over the baselines. First, straightforward
factorization algorithm (i.e., NMF) cannot optimize the ranking quality of the recommended items, and its
performance is even worse than a simple popularity based solution, which provides generic recommendations
to all users. The pairwise ranking constraints introduced by BPR greatly improve the recommendation
effectiveness of BPRMF, which shares the same decomposition structure as in NMF. However, as BPRMF
only models users’ overall assessment on items, it cannot exploit information available in the user-provided
opinionated content. Hence, its performance is generally worse than MTER and its variants. Second,
comparing to JMARS and EFM, which also utilize review content for recommendation, MTER is the only
model that outperforms BPRMF. JMARS models all entities in a shared topic space, which limits it resolution
in modeling complex dependencies, such as users v.s., items, and users v.s., features. EFM implicitly integrates
the interaction among users, items and features via three loosely coupled matrices, and it is only optimized
by the reconstruction error on those three matrices. This greatly limits its recommendation quality. Third,
by comparing different variants of MTER, we can recognize the advantage of Tucker decomposition in this
multi-task learning setting. Because MTER-SA forces everything to be shared across three tensors, it fails to
recognize task-specific variance. MTER-S enables task-specific learning, but it requires all entities to share the
same dimension of latent factors. As we have observed when preprocessing the two datasets, different types of
entities are associated with different number of observations, and therefore they consist of different degrees
of intrinsic complexity. Forcing the latent factors to share the same structure cannot capture such intrinsic
complexity, and therefore leads to sub-optimal recommendation performance. In addition, we can also observe
that the best improvement from MTER is achieved at NDCG@10 (more than 15% against the best baseline
on Amazon and over 11% on Yelp). This result is significant: it indicates a system equipped with MTER
can provide satisfactory results earlier down the ranked list, which is crucial in all practical recommender
systems.

Contribution of BPR. As the influence of BPR in our MTER training is related to both the number of pairwise
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constraints selected per iteration and the trade-off coefficient λB , we define a relative normalized weight of
BPR to analyze its contribution in our model training:

ϕ =
λB ×NSBPR

× Titer
m× n2

(4.1.11)

where Titer is the the number of iterations, NSBPR
is the number of pairwise constraints sampled for BPR in

each iteration, and m× n2 is the number of all pairwise samples from a dataset of m users and n items [177].
We fix NSBPR

and tune λBPR for optimization.

We evaluate NDCG@50 on an increasing weight ϕ for BPR, while keeping all the other hyper-parameters as
constant. The result is shown in Figure 4.3. We can find that when ϕ is small, the tensor reconstruction error
dominates our model learning and thus its ranking performance is worse than most baselines. But thanks to
the additional information introduced in opinionated reviews, MTER is still better than NMF, which is purely
estimated by the reconstruction error of the overall rating matrix. With an increased ϕ, the pairwise ranking
constraints help our model identify better latent factors that differentiate users’ preferences over different items,
which in turn lead to better modeling of dependency among users, items, features and opinionated phrases (as
shown in Eq (4.1.10)). However, if ϕ goes beyond a certain threshold, the ranking quality degenerates. This is
also expected: as the pairwise constraints dominate factor learning, the quality of content modeling task will
be undermined, and it also increases the risk of over-fitting.

4.2 Explainable Recommendation with Factorization Tree
MTER incorporate the phrase-level sentiment analysis into latent factor learning, e.g., joint tensor factorization,
for explanations. Basically, MTER maps users’ feature-level opinions into the latent space and finds the
most related features to the users and recommended items as explanations. However, to what extent these
approximated explanations comply with the learned latent factor models is unknown, i.e., no guarantee in
explanation fidelity. The fidelity of explanation and the quality of recommendation have long been considered
as irreconcilable [29]: one has to trade recommendation quality for explanation. For example, it is believed
that content-based collaborative filtering algorithms are easy to explain, as their underlying recommendation
mechanism is straightforward. Nevertheless, we believe the tension between recommendation quality and
explanation fidelity is not necessarily inevitable. We can attain both by optimizing the recommendation in
accordance with the designed explanation mechanism.

In this work, we aim at explaining latent factor based recommendation algorithms with rule-based explanations.
Our choice is based on the facts that 1) latent factor models have proved their effectiveness in numerous
practical deployments [144, 190], and 2) prior studies show that rule-based explanations are easy to perceive
and justify by the end-users [35]. However, as the latent factors are not learned by rules, it is hard to craft any
rules to explain the factors afterwards. Therefore, we propose to integrate the rule-based decision making into
the learning of latent factors to provide explanations for the recommendation. In particular, we treat the latent
factors as a function of the rules: based on different outcome of the rules, the associated groups of users and
instances should be routed to the designated latent factors, which are then optimized for recommendation. Due
to similar characteristics shared by each group of users/instances created by the learned rules, the descriptive
power of the learned group-level latent factors is enhanced, and the data sparsity problem in individual
users/instances could be substantially alleviated by this group-level latent factor learning.

More specifically, we format the explanation rules based on feature-level opinions extracted from user-
generated review content, e.g., whether a user holds positive opinion towards a specific feature. The rules
are extracted by inductive learning on the user side and item side separately, which form a user tree and an
item tree. We alternate the optimization between tree construction and latent factor estimation under a shared
recommendation quality metric. An example of user tree is shown in Figure 4.4. For instance, according to the
figure, if two users both expressed their preference of “burger” in their reviews, they should be assigned to
the same node on the user tree to share the latent user factors; accordingly, if two restaurants receive similar
negative comments about their “cleanliness”, they should appear in the same node on the item tree. In testing
time, the learned user and item factors are used for recommendation as in standard latent factor models, and
the rules that lead to the chosen user and item factors are output as explanations: e.g., “We recommend item X
because it matches your preference on burger and cleanness of a restaurant.”
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Figure 4.4: An example user tree: Top three levels of our FacT model learned for restaurant recommendations.

Extensive experiment evaluations on two large sets of reviews, i.e., Amazon reviews for product recommen-
dation and Yelp reviews for restaurant recommendation, demonstrate improved quality in recommendation
and explanation from our algorithm, compared with a set of state-of-the-art explainable recommendation
algorithms. In particular, we perform serious user studies to investigate the utility of our explainable recom-
mendation in practice, in both warm-start and cold-start settings. Positive user feedback further validates the
value of our proposed solution.

4.2.1 Related Work
The idea of providing rule-based explanations was popularized in the development of expert systems [191,192].
For example, MYCIN [193], a rule-based reasoning system, provides explanations by translating traces of
rules followed from LISP to English. A user could ask both why a conclusion was arrived at and how much
was known about a certain concept. But since modern recommender systems seldom use rule-based reasoning,
there is very little research on explaining latent factor models with rules. We propose to embed latent factor
learning under explanation rule learning, by treating the latent factors as a function of rules, such that the
generated explanations can strictly adhere to the provided recommendations. On a related note, a existing
work [194] uses gradient boosting decision trees (GBDT) to learn rules from the reviews and incorporate rules
into an attention network. But it only uses the rules as the input of embedding models and thus isolates the
learning of tree structure and embeddings. Some systems [186,195] combine decision tree learning with matrix
factorization to extract a list of interview questions for solving the cold-start problem in recommendation.
But the rules are only built on the user side with their rating responses to items, i.e., the same as matrix
factorization’s input; it thus cannot provide any explanation to the recommended items.

4.2.2 Taming Latent Factor Models with Factorization Tree
We elaborate our solution for joint latent factor learning and explanation rule construction in this section.
Briefly, we model the latent factors for both users and items as a function of the rules: users who provide
the same responses to the same set of rules would share the same latent factors, and so do the items. The
predicates of rules are selected among the text features extracted from user-generated reviews. For example,
whether a specific user expressed his/her preference on a particular feature in reviews. And the rules are
constructed by recursive inductive learning based on previously selected predicate’s partition of users and
items. To reflect the heterogeneity between users and items, we construct rules for users and items separately.
As a result of rule induction, the latent factors for users and items are organized in a decision tree like structure
accordingly, where each node on the tree represents the latent factors for the group of users or items routed
to that node. We alternate the optimization of the explanation rule construction and latent factor learning
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under a recommendation quality based metric. Hence, we name our solution as Factorization Tree, or FacT in
short.

We start our discussion with factorization based latent factor learning, which is the basic building block of
FacT. Then we provide details in rule induction based on the learned latent factors. Finally, we integrate these
two learning components with an alternative optimization procedure.

Latent Factor Learning

Latent factor models [144, 190] have been widely deployed in modern recommender systems. The idea behind
this family of solutions is to find vectorized representations of users and items in a lower dimensional space,
which capture the affinity between users and items. Various latent factor models have been developed, such as
matrix/tensor factorization [190] and factorization machines [144]. Our FacT is independent of the choice of
latent factor models, as it treats the latent factor learning as a sub-routine.

Formally, denote U = {u1, u2, ..., um} as a set of m users, V = {v1, v2, ..., vn} as a set of n items, and rij as
an observed rating from user i to item j. The goal of latent factor learning is to associate each user and each
item an d dimensional vector respectively, i.e., ui ∈ Rd and vj ∈ Rd, such that the inner product between user
i’s factor and item j’s factor predicts the rating rij . The latent factors for all the users and items, denote as
U ∈ Rm×d and V ∈ Rn×d, can thus be learned by minimizing their prediction error over a set of observed
ratings O = {(i, j)|rij is observed} as follows,

L(U, V,O) = min
U,V

∑
(i,j)∈O

(rij − u⊤i vj)2. (4.2.1)

It is well accepted that recommendation is essentially a ranking problem [188, 196]; however, the objective
function introduced in Eq (4.2.1) cannot fully characterize the need of ranking, i.e., differentiate the relative
quality among candidates. To supplement information about relative item ranking into latent factor learning,
Bayesian Personalized Ranking (BPR) loss [188] has been popularly adopted to enforce pairwise ranking
order. To realize the BPR loss, one needs to first construct a pairwise ordered set of items Do

i for each user i:
Do

i := {(j, l)| rij > ril}, where rij > ril means that given the observations in O, either user i gives a higher
rating to item j than item l, or item j is observed in user i’s rating history, while item l is not. Then, the BPR
loss can be measured on each user i as:

B(ui, V,Do
i ) =

∑
(j,l)∈Do

i

log σ(u⊤i vj − u⊤i vl)

where σ(·) is a logistic function.

Putting together the pointwise rating prediction loss with the pairwise ranking loss, the latent factors for users
and items can be learned by solving the following optimization problem:

(Û , V̂ ) = argmin
U,V

L(U, V,O)− λb
∑
i

B(ui, V,Do
i ) + λu∥U∥2 + λv∥V ∥2 (4.2.2)

where λb is a trade-off parameter to balance these two types of loss, ∥U∥2 and ∥V ∥2 are l2 regularization to
control model complexity, and λu and λv are the corresponding coefficients. Eq (4.2.2) can be efficiently
addressed by gradient-based optimization [197]. Once the user factors U and item factors V have been learned,
the recommendations for user i can be generated by returning the top ranked items based on the predicted
ratings r̂ij = û⊤i v̂j .

The premise behind the aforementioned learning procedure is that there is only a small number of factors
influencing users’ preferences, and that a user’s preference vector is determined by how each factor applies to
that user and associated items. But the factors are retrieved by solving a complex optimization problem (e.g.,
Eq (4.2.2)), which makes the resulting recommendations hard to explain. In FacT, we embed latent factor
learning under explanation rule construction, so that why a user or an item is associated to a particular latent
factor can be answered by the matched rules, so do the generated recommendations.
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Explanation Rule Induction

In FacT, we consider the latent factors as a function of explanation rules: the latent user factor ui for user i
is tied to the outcomes of a set of predicates applied to him/her, so does the latent item factor vj for item j.
Based on different outcomes of the rules, the associated groups of users and items should be routed to the
designated latent factors. At testing time, the activated predicates on user i and item j naturally become the
explanation of this recommendation.

We select the predicates among the item features extracted from user-generated reviews. User reviews
provide a fine-grained understanding of a user’s evaluation of an item [198]. Feature-level sentiment analysis
techniques [34] can be readily applied to reviews to construct a domain-specific sentiment lexicon. Each
lexicon entry takes the form of (feature, opinion, sentiment polarity), abbreviated as (f, o, s), and represents
the sentiment polarity s inferred from an opinionated text phrase o describing feature f . Specifically, we
label the sentiment polarity s as +1 or -1, to represent positive or negative opinions. As how to construct a
sentiment lexicon with phrase-level sentiment analysis is not the focus of this work, we refer interested readers
to [34, 143] for more details.

The extracted item features become candidate variables for predicate selection. To compose predicates for
explanation rule construction, we first need to define the evaluation of a single variable predicate on users/items
according to their association with the item features. To respect the heterogeneity between users and items, we
construct the predicates for users and items separately; but the construction procedures are very similar and
highly related on these two sides.

Denote F = {f1, f2, ..., fk} as a set of k extracted item features. Suppose feature fl is mentioned by user
i for puil times with a positive sentiment polarity in his/her reviews and nuil times with a negative sentiment
polarity. We can construct a feature-level profile Fu

i for user i, where each element of Fu
i is defined as,

Fu
il =

{
∅, if puil = nuil = 0,

puil + nuil, otherwise. (4.2.3)

Intuitively, Fu
il is the frequency of user i mentioning feature fl in his/her reviews, such that it captures the

relative emphasis that he/she has given to this feature. And similarly, on the item side, denote pvjl as the number
of times that feature fl is mentioned in all user-generated reviews about item j with a positive sentiment
polarity, and nvjl as that with a negative sentiment polarity, we define the feature-level profile F v

j for item j
as,

F v
jl =

{
∅, if pvjl = nvjl = 0,

pvjl − nvjl, otherwise. (4.2.4)

Accordingly, F v
jl reflects the aggregated user sentiment evaluation about feature fl of item j.

Based on the feature-level user and item profiles, the evaluation of a single variable predicate can be easily
performed by comparing the designated feature dimension in the user or item profile against a predefined
threshold. For example, on the user side, if a predicate is instantiated with feature fl and threshold tul , all
users can have three disjoint responses to this predicate based on their Fu

il values, i.e., Fu
il ≥ tul , or Fu

il < tul ,
or Fu

il is unknown. This gives us the opportunity to model the latent factors as a function of the explanation
rules: based on the evaluation results of a predicate, we allocate the input users into three separate user groups
and assign one latent vector per group. We should note that other forms of predicates are also applicable
for our purpose, e.g., select a list of thresholds or a nonlinear function for one variable. For simplicity, we
adhere to the form of single threshold predicates, and leave the more complex forms of predicates for future
exploration.

Two questions remain to be answered: First, how to select the threshold for user-side and item-side predicate
creation; and second, how to assign latent vectors for each resulting user/item group. We answer the first
question in this section by inductive rule learning, and leave the second to the next section, where we present
an alternative optimization procedure for joint rule learning and latent factor learning. In the following
discussions, we will use user-side predicate construction as an example to illustrate our rule induction method;
and the same procedure directly applies to item-side predicate construction.
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Intuitively, an optimal predicate should create a partition of input users where the latent factors assigned to
each resulting user group lead to minimal recommendation loss defined in Eq (4.2.2). This can be achieved
by exhaustively searching through the combination of all item features in F and all possible corresponding
thresholds. This seems infeasible at a first glance, as the combinatorial search space is expected to be large.
But in practice, due the sparsity of nature language (e.g., Zipf’s law [199]), the mentioning of item features
and its frequency in user reviews are highly concentrated at both user-level and item-level [200]. Besides,
feature discretization techniques [201] can also be used to further reduce the search space.

To perform the search for optimal predicate in an input set of users Ua, we first denote the resulting partitions
of Ua by feature fl and threshold tul as,

L(fl, t
u
l |Ua) = {i|Fu

il ≥ tul , i ∈ Ua},
R(fl, t

u
l |Ua) = {i|Fu

il < tul , i ∈ Ua}, (4.2.5)
E(fl, t

u
l |Ua) = {i|Fu

il = ∅, i ∈ Ua},

and the set of possible threshold tul for feature fl as Tu
l . The optimal predicate on Ua can then be obtained by

solving the following optimization problem with respect to a given set of item factors V ,

(f̄l, t̄
u
l ) = argmin

fl∈F,tul ∈Tu
l

min
uL,uR,uE

L(uL, V,OL)−λb
∑

i∈E(fl,tul )

B(uL, V,Do
i )

+L(uR, V,OR)−λb
∑

i∈R(fl,tul )

B(uR, V,Do
i )

+L(uE , V,OE)−λb
∑

i∈E(fl,tul )

B(uE , V,Do
i )

+λu(∥uL∥2 + ∥uR∥2 + ∥uE∥2) (4.2.6)

where OL, OR and OE are the observed ratings in the resulting three partitions of Ua, and uL, uR and uE
are the correspondingly assigned latent factors for the users in each of the three partitions. As users in the
same partition are forced to share the same latent factors, the choice of text feature fl and corresponding
threshold tul directly affect recommendation quality. In practice, considering each user and item might associate
with different number of reviews, the size of user profile Fu

i and item profile F v
j might vary significantly.

Proper normalization of Fu
i and F v

j can be performed, e.g., normalize by the total observation of feature
mentioning in each user and item respectively. In this work, we follow [201] for feature value normalization
and discretization.

Inside the optimization of Eq (4.2.6), a sub-routine of latent factor learning is performed to minimize recom-
mendation loss induced by matrix factorization (as defined in Eq (4.2.2)) on the resulting partition of users.
As we mentioned before, the choice of latent factor models does not affect the procedure of our predicate
construction for FacT, and many other recommendation loss metrics or latent factor models can be directly
plugged into Eq (4.2.2) for explainablity enhancement. We leave this exploration as our future work.

Our predicate construction can be recursively applied on the resulting user partitions L(f̄l, t̄ul |Ua),R(f̄l, t̄ul |Ua)
and E(f̄l, t̄

u
l |Ua) on the input user set Ua to extend a single variable predicate to a multi-variable one, i.e.,

inductive rule learning. The procedure will be terminated when, 1) the input user set cannot be further
separated, e.g., all users there share the same user profile; or 2) the maximum depth has been reached. Starting
the procedure from the complete set of users U , the resulting set of multi-variable predicates form a decision
tree like structure, which we refer as user tree in FacT (as shown in Figure 4.4). On the user tree, each node
hosts a latent factor assigned to all its associated users, and its path to the root node presents the learned
predicates for this node. The same procedure can be applied on the item side with a given set of user factors U
to construct item-specific predicates, i.e., item tree.

Once the user tree and item have been constructed, explaining the recommendations generated by the latent
factors becomes straightforward. Assume we recommend item j to user i: we first locate user i and item j
at the leaf nodes of user tree and item tree accordingly, extract their paths back to each tree’s root node, and
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find the shared features on the paths to create feature-level explanations. As each branch on the selected path
corresponds to a specific outcome of predicate evaluation, e.g., Eq (4.2.5), we can add predefined modifiers in
front of the selected features to further elaborate the associated latent factors. For example,

• We recommend this item to you because its [good/excellent] [feature 1] matches with your [empha-
size/taste] on [feature 1], and ...

• We guess you would like this item because of your [preference/choice] on [feature 1], and ...

It is also possible that the number of shared features on the two paths is low, especially when the maximum
tree depth is small. In this situation, one can consider to use the union of features on these two paths, and
give higher priority to the shared features and those at the lower level of the trees, as they are more specific.
Another possible way of explanation generation is to use the selected features to retrieve sentences from the
corresponding item reviews [171].

Alternative Optimization

The aforementioned procedure for explanation rule induction is intrinsically recursive and requires the
availability of user factors for item tree construction and item factors for user tree construction. In this section,
we will unify the learning of latent factors with tree construction to complete our discussion of FacT.

Define the maximum rule length, i.e., tree depth, as h. We alternate rule induction by recursively optimizing
Eq (4.2.6) between user side and item side. At iteration t, we start induction from the complete user set U with
the latest item factors Vt−1. For each pair of feature and threshold in the hypothesis space of Eq (4.2.6), we
use gradient based optimization for learning latent factors according to Eq (4.2.2). Once the induction finishes,
we collect the latent user factors Ut from the leaf nodes of the resulting user tree, and use them to execute the
rule induction on the item side from the complete item set V to estimate Vt. This procedure is repeated until
the relative change defined in Eq (4.2.2) between two consecutive iterations is smaller than a threshold, or
the maximum number of iterations is reached. To break the inter-dependency between item tree and user tree
construction, we first perform plain matrix factorization defined in Eq (4.2.2) to obtain the initial item factors
V0. We should note that one can also start with item tree construction from initial user factors U0, but this does
not change the nature and convergence of this alternative optimization.

The above alternative optimization is by nature greedy, and its computational complexity is potentially high.
When examine the optimization steps in Eq (4.2.6), we can easily recognize that the exhaustive search of item
features and thresholds can be performed in parallel in each input set of users and items. This greatly improves
the efficiency of rule induction. Besides, beam search [202] can be applied in each step of predicate selection
to improve the quality of learned rules and factors, but with a cost of increased computation.

One can realize that during the alternative optimization, only the latent factors learned for the leaf nodes are
kept for next round of tree construction and finally the recommendation, while the factors associated with the
intermediate nodes are discarded. As the procedure of inductive rule learning can be considered as a process
of divisive clustering of users and items, the intermediate nodes actually capture important information about
homogeneity within the identified user clusters and item clusters. To exploit such information, we introduce
the learned latent factors from parent node to child node as follows,

uL,z = ũL,z + uz, uR,z = ũR,z + uz, and uE,z = ũE,z + uz,

where uL,z , uR,z and uE,z are the latent factors to be plugged into Eq (4.2.6) for the three child nodes
under parent node z, and uz is the factor already learned for the parent node z. Intuitively, ũL,z , ũL,z

and ũL,z can be considered as residual corrections added to the shared representation from parent nodes.
Hence, the rule induction process becomes a recursive procedure of latent factor refinement. Without loss of
generality, this recursive refinement can be applied to individual users and items on the leaf nodes of both
user tree and item tree as well. If we refer the latent factors on the leaf node for individual users and items
as personalized representations of users and items, those on the intermediate nodes could be considered as
grouplized representations for the partition of users and items.
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4.2.3 Experiment
We performed a set of controlled experiments on two widely used benchmark datasets collected from Amazon3

and Yelp Dataset Challenge4 to quantitatively evaluate our FacT model. We follow the same technique
discussed in Section 4.1.3 to perform pre-processing on the dataset, and the detailed statistic can be found in
Table 4.1. Besides, we compare FacT against the same baselines as that for MTER in both recommendation
and explanation quality.

Top-K Recommendation

We first evaluate FacT’s recommendation quality. In a good recommender system, items ranked higher in a
result list should be more relevant to a user’s preference. NDCG assigns higher importance to the items ranked
on top. In this experiment, we fix the depth of the user tree and item tree in FacT to 6 and the size of latent
dimension to 20. The recommendation performance measured by NDCG@10, 20, 50, 100 of each model is
shown in Table 4.2 for Amazon and Yelp datasets, respectively.

Compared with all the baselines, FacT consistently gives better recommendation in both Amazon and Yelp
datasets. Among all the baselines, NMF is widely used in practice. But it only uses dyadic user-item ratings
for model learning. By introducing the pairwise ranking constraint, BPRMF improves greatly comparing to
NMF. However, like reported in previous works [143, 200], BPRMF is also limited to the rating information,
and cannot utilize the implicit information included in user reviews. By exploiting the review content for rec-
ommendation, JMARS and EFM gave explainable recommendation to users with comparable ranking quality
with BPRMF, and MTER showed its potential in providing explanations along with decent recommendation
quality. However, they are still limited for different reasons. JMARS maps users, items and features into the
same topic space, where the dependency among them is not preserved. Both EMF and MTER model the
users and items as individual vectors by matrix or tensor factorization, while FacT clusters users and items
into groups (e.g., the intermediate nodes in user and item trees) to take advantage of in-group homogeneity
for better latent factor learning. The basic intuition here is that the representations of users and items that
share the same preferences or feature qualities should be pushed close to each other. And FacT enforced it by
item feature based tree construction. Moreover, the personalized vectors added to the leaf nodes distinguish
individual users/items, and provide accurate personalized recommendations. Besides, we observe that FacT
achieves the significant improvement at NDCG@10 (9.70% against the best baseline on Amazon and 8.62%
on Yelp) and NDCG@20 (8.59% against the best baseline on Amazon and 9.10% on Yelp). This is important
for practical recommender system as FacT can provide more accurate recommendations earlier down the
ranking list.

Latent Dimensions

The dimension of latent factors determines model capacity, and is an important hyper-parameter for factoriza-
tion based methods. In this experiment, we explore the influence of latent dimension and the stability of FacT
against this hyper-parameter comparing to baseline latent factor models. We varied the dimension of latent
factors from 5 to 1000 and compared the results of FacT with FMF, NMF, and BPRMF, which also utilize
matrix factorization as their base learning component. The results are summarized in Figure 4.5.

It is clear from the figure that FacT outperformed the other baselines with NDCG@50 under all different
settings. We can also observe that for all models, the performance varied significantly when the dimension was
lower. And with larger size of latent dimensions, all models’ performance degenerated, as they demand more
training data to fit the increasing number of parameters. The situation becomes especially worse for FacT,
as we are also learning latent factors for intermediate nodes. This follows what we expected: it is generally
hard for a model with a smaller dimension of latent factors to capture the affinity between users and items;
but model with a higher dimension for latent factors is easier to get over-fitted with insufficient training data.
Thus, in the following experiment, we choose 20 as the dimension of latent factor in FacT.

3http://jmcauley.ucsd.edu/data/amazon/
4https://www.yelp.com/dataset
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Figure 4.5: NDCG@50 vs. the size of latent dimensions.
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Figure 4.6: NDCG@50 v.s. the number of item features.
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Figure 4.7: Varying the depth of user tree.
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Figure 4.8: Depth of trees v.s. FacT performance.

Number of item features

As shown in Table 4.1, there are 101 item features extracted from Amazon dataset and 104 features from
Yelp dataset. Though we have filtered out features with low frequency, limited by the depth of our tree
structure, not all of these features will be selected for rule construction. In this analysis, we study the impact
of number of features in the dataset on the performance of different models. We first ordered the features in a
descending order of frequency, and then trained the models with an increasing number of features. The results
are reported in Figure 4.6. From Figure 4.6, it is easy to observe that all the models get significantly improved
with an increasing number of features. As the number of features got larger, the performance became stable,
as more less frequent features were added. This observation suggests that features with high frequency in
reviews contribute more to the feature-based recommendation algorithm learning. Especially in FacT, when
the number of item features is limited, it cannot correctly create tree branches to guide latent factor learning.
And more item features give FacT a higher degree of freedom to recognize the dependency between users and
items.

Maximum tree depth

In FacT, we cluster the users and items along with the tree construction. The maximum tree depth controls
the resolution of clusters, e.g., how many intermediate and leaf nodes will be created. We fixed all the other
hyper-parameters and only tuned the maximum depth of each tree to verify the effect of it. The results are
shown in Figure 4.7. We compared the performance of FacT with FMF and MTER. FMF introduces user
tree construction to cluster users for cold-start recommendation. And MTER is the best baseline we had in
Table 4.2, but as it does not have a tree structure, its performance remains constant in this experiment. And
for FacT, we fixed the depth of item tree to 6 and varied the depth of user tree. We can observe both FMF
and FacT got better performance with an increasing tree depth, which increases the granularity of the learned
latent representations for users.

A more detailed result of varying the depth of both user tree and item tree is shown in Figure 4.8. From
this result, we can clearly find that with a larger tree depth, FacT generated consistently better performance.
We also notice that the performance change from varying the depth of item tree is much smaller than that
from varying the depth of user tree. A possible explanation is that there are only a small portion of items to
be recommended to users. The improved resolution on other items has little contribution to FacT’s ranking
quality.

Inclusion of factors from parent nodes

As discussed before, during the tree construction, the learned latent factors from parent nodes are introduced
to the latent factor learning of child nodes. Thus, information about homogeneity in grouped users and items
could be passed along the tree. In this experiment, we quantify the contribution of this design in FacT by
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Table 4.3: NDCG@50 for FacT with/without inclusion of factors from parent node. (PF: Parent Factor)

Maximum
Depth

Amazon Yelp
w/ PF w/o PF w/ PF w/o PF

4 0.2265 0.1811 0.2422 0.1837
5 0.2328 0.1854 0.2451 0.1906
6 0.2367 0.1892 0.2477 0.1985
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Figure 4.9: NDCG@50 v.s. the amount of training data.
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Figure 4.10: NDCG@50 v.s., the # observations in cold-start.

disabling it. From Table 4.3, we can observe that with the personalized term, the model gives significantly
better recommendation performance than without it. This directly demonstrates the significance of information
sharing among the clustered users and items in FacT.

Dependency on training data

The last thing we investigate is different recommendation algorithms’ dependency on the availability of
training data. A model requiring less training data is always preferred. We used 30% to 80% of training in
each fold during 5-fold cross validation in all the models, and reported the results in Figure 4.9. As expected
all models performed better when more training data became available; by exploiting the shared information
across users and items assigned to the same tree node, FacT better utilized the available information and stably
outperformed all of the baselines.

Cold-start Recommendation

Cold-start is an well-known and challenging problem in recommender systems. Without sufficient information
about a new user, it is hard for a recommender system to understand the user’s interest and provide recommen-
dations with high quality. A by-product of FacT is that the rules learned in the user tree naturally serve as a set
of interview questions to solicit user preferences when a new user comes to the system, i.e., cold-start. For
example, based on the user tree in Figure 4.4, the system would get a good understanding of a new user by
asking just a few questions following the paths on the tree. In this experiment, we study how FacT performs
on the new users. First, we separated the users into two disjoint subsets, containing 95% and 5% users, for
training and testing respectively. On the training set, we learned the model and built the user tree and item tree.
During testing, for each testing user, we select their first k reviews to construct his/her item feature based user
profile (i.e., Fu

i as defined in Eq (4.2.3)). By matching against the user tree, we can easily find the leaf node
for each testing user. Then, we use the latent factors reside in the selected leaf node to rank items for this user.
We evaluate the performance in the remaining observations from the same user as ground-truth.

We compared FacT with FMF model as it is the only baseline that can handle cold-start. We varied the number
of observations for each testing user from 0 to 5, and the results are shown in Figure 4.10. First, it is clear to
observe that NDCG got improved with an increasing number of observations used to create the user profile for
both FacT and FMF. This indicates the effectiveness of user clustering on the user tree in these two models.
Second, thanks to the construction of item tree and BPR constraint, FacT got consistently better performance
than FMF. In particular, NDCG@50 for FacT increases faster than FMF with more observations. We attribute
this to the fact that FacT uses the item features and user opinions collected from the reviews to perform tree
construction, while FMF only uses the item ratings to group users. This indicates the effectiveness of review
information in modeling users.
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Table 4.4: Result of warm-start user study.

Average Score Amazon Yelp
EFM MTER FacT EFM MTER FacT

Q1 3.64 3.96 4.45* 3.45 4.06 4.30*
Q2 3.48 3.88 4.03 3.40 3.87 4.13
Q3 3.07 3.02 3.88* 2.98 3.26 3.94*

* p-value < 0.05

4.2.4 User Study
We performed serious user studies to evaluate user satisfaction of both the recommendations and explanations
generated by FacT. We evaluated the performance of FacT on both warm-start users, whose ratings and reviews
are known to the system beforehand, and cold-start users who are totally new to the system. The study is based
on the review data in Amazon and Yelp datasets used in previous experiments. We recruited participants on
Amazon Mechanical Turk to interact with our system and collected their responses. To reduce the variance
and noise of the study, we required the participants to come from an English-speaking country, older than 18
years, and have online shopping experience.

Warm-start Users

In the warm-start setting, we assume user’s purchase history is known to the recommender system. However,
we are not able to trace the participants’ purchase history on Mechanical Turk. Instead, we performed a
simulation-based study, in which we asked the participants to evaluate our system from the perspective of
selected users in our datasets. Specifically, for each participant, we randomly selected a user from our review
dataset and presented this user’s reviews for the participant to read. The participants were expected to infer this
user’s preferences from the review content. Then the participant will be asked several questions to evaluate the
recommendation and explanation generated by our algorithm.

We designed the survey questions to evaluate different aspects of our recommender algorithm as follows:

Q1: Generally, are you satisfied with our recommendations?

Q2: Do the explanations presented to you really match your preference?

Q3: Do you have any idea about how we make recommendations for you?

We intended to use Q1 to evaluate user satisfaction of recommended items, use Q2 to judge the effectiveness of
explanations, and use Q3 to evaluate the transparency of an explainable recommendation algorithm. For each
question, the participants are required to choose from five rated answers: 1. Strongly negative; 2. Negative; 3.
Neutral; 4. Positive; and 5. Strongly positive. We used EFM and MTER as baselines, since they both can
provide textual explanations, and conducted A/B tests to ensure the evaluation is unbiased. Three hundred
questionnaires were collected in total and the results are reported in Table 4.4.

From the statistics, FacT apparently outperformed both baselines in all aspects of this user study, which is
further confirmed by the paired t-test. Comparing FacT with EFM and MTER on Q1, the improvement in
offline validated recommendation quality directly translated into improved user satisfaction. For Q2, the
advantage of FacT shows the effectiveness of our predicate selection in explanation rule construction, which
captures user’s underlying preferences. Moreover, the results on Q3 verified the user-perceived transparency
of our tree guided recommendation and rule-based explanation mechanism.

Cold-start Users

Unlike warm-start users, cold-start users have no review history. In order to generate recommendation and
explanation for these users, we progressively query user responses through an interview process. Specifically,
each node of the user tree in FacT corresponds to an interview question: "How do you like this [feature]?",
where [feature] was learned to optimize the explanation rule at this node. When the user answers the interview
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Table 4.5: Results of cold-start interleaved test.

number of votes Amazon Yelp
FMF FacT FMF FacT

Q1 44 63* 40 64*
Q2 43 64* 34 70*
Q3 45 62 33 71*

* p-value < 0.05

question designated at the current node, he/she will be directed to one of its three child nodes according to
the answer. As a result, each user follows a possibly different path from the root node to a leaf node during
the interview process. A user’s associated latent factor is adaptively refined at each intermediate node based
on the user’s responses. We make recommendations and explanations according to the resulting path. For
comparison, FMF is set as a baseline, since it is the only algorithm that can address the cold-start problem with
the same interview process as FacT. As FMF uses items instead of features to construct the tree, the interview
question there is changed to "How do you like this [item]?"

To interview each participant in this user study, we developed a platform to let the participant interact with our
system. 5 To increase the sensitivity of comparison between two recommendation algorithms, we conduct
interleaved test [203] in this cold-start study. The participant was asked to interact with two models one
after the other in a random order, to compare which one is better according to our designed questions. The
recommendation is interactive, based on the participants’ responses to the interview questions (i.e., traversing in
the user tree). There are three questions for them to answer to compare the recommendations and explanations
generated by these two algorithms:

Q1: Generally, between system A and B, whose recommendations are you more satisfied with?

Q2: Between system A and B, whose explanations do you think can better help you understand the recom-
mendations?

Q3: Between system A and B, whose explanations can better help you make a more informed decision?

We collected more than 100 valid responses on each dataset and reported the results in Table 4.5. We can find
that FacT is preferred than FMF in all questions on both datasets. It suggests that: First, feature-based rule
construction is more effective than item-based rule construction, which leads to improved ranking quality in
FacT. Second, the feature-based explanations are preferred than the item-based ones, as the former characterizes
user preferences at a finer granularity. Last, feature-based explanation rules also provide improved transparency
than item-based explanations, which verifies the explainability of our solution. All the evidences from this
interleaved user study demonstrate the power of FacT to address the cold-start problem.

4.3 Conclusion
In this chapter, we focus on improving the transparency of the information systems by providing explanations
for the recommendations. We introduce a multi-task learning solution via a joint tensor factorization for
explainable recommendation, which spearheads a new direction for boosting the performance of recommen-
dations and explanations jointly. Both offline experiments and user study show the comprehensiveness and
effectiveness of our model. Then, we present FacT model, which seamlessly integrates latent factor learning
with explanation rule learning for explainable recommendation. The fidelity of explanation is guaranteed by
modeling the latent factors as a function of explanation rules; and the quality of recommendation is ensured by
optimizing both latent factors and rules under a recommendation based metric. Offline experiments and user
studies have shown the effectiveness of our model in both aspects.

This is the first step towards exploiting explicit opinionated content for explainable recommendation; and
it creates several lines of important future works. For MTER, the dependency among different entities is

5https://aobo-y.github.io/explanation-recommendation/

https://aobo-y.github.io/explanation-recommendation/
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implicitly modeled via the observations in users’ rating and review history. It can be further explored and
more accurately modeled by incorporating external resources, such as social network structures among users
and product taxonomy among items. And our tensor structure provides necessary flexibility to do so. More
advanced text synthesis techniques, such as neural language models, can be utilized to generate more complete
and natural sentences for explanations. For FacT, instead of using a set of single threshold predicates, we can
introduce more complex forms, such as nonlinear function, for better explainability. Last, our model only uses
templates to generate explanations, we believe that using features as key words and retrieving sentences from
items reviews will definitely generate more natural explanations.



Chapter 5

Conclusion and Future Work

The importance of reliable decision-making in information system can never be overestimated, especially
when the decisions made by the systems will directly influence human’s social life, e.g., which treatment
to take, which products get purchased, which opinion gets heard. In this thesis, we provide a deep and
thorough understanding of the reliability of the decision-making in modern information systems, and focus on
three importance aspects of the reliability: accuracy, transparency and fairness. By combining the proposed
techniques, a modern information system can have a more reliable decision-making when serving both the
consumer and information provider. Rigorous theoretical analysis and extensive empirical evaluation validate
the proposed models’ applicability in various contexts and applications.

In Chapter 2, we introduced a pairwise online learning to rank framework, PairRank, to handle the noisy and
biased feedback during the online interactions with the users. We effectively explore the unknowns in the
quadratic pairwise ranking space, which significantly reduced the exponentially large search space in ranking
problems. We present the details of apply PairRank to linear ranker, and extend PairRank to a neural ranker,
e.g., a multi-layer RankNet with the advanced theoretical analysis of neural network, e.g., neural tangent
kernel technique. Rigorous theoretical analysis show that PairRank achieves sublinear upper regret bound
defined on the number of mis-ordered pairs, which directly links PairRank’s convergence with classical ranking
evaluations. method directly optimizes the ranking-based metrics with significant improvement compared
to existing baselines. To eliminate the computation overhead and make PairRank operational in practice,
we developed a provable efficient exploration strategy for neural PairRank based on bootstrapping, named
as PePairRank. Confidence interval based PairRank solutions are too expensive to be exactly implemented
in practice. PePairRank is proved to induce a sublinear upper regret bound counted over the number of
mis-ordered pairs during online result serving, and its added computational overhead is feasible. Our extensive
empirical evaluations demonstrate that our perturbation-based exploration unleashes the power of neural
rankers in OL2R, with minimally added computational overhead (e.g., oftentimes only one additional ranker is
needed to introduce the required exploration). Overall, we show that with PairRank, the model can efficiently
and effectively explore the unknowns while providing satisfying service to the users.

In Chapter 3, we focus on providing fair exposure across information providers in online learning to rank. We
develop a framework to equipment the online learning to rank solutions with deterministic exploration with
fair exposure guarantee. The key idea is to calibrate the explore-exploit trade-off with respect to the fairness
control. In particular, the model’s exploration is confined within a subset of random permutations, where
fairness across groups is maintained while the feedback is still unbiased. Theoretically we prove such a strategy
introduces minimum distortion in OL2R’s regret to obtain fairness. Extensive empirical analysis is performed
on two public learning to rank benchmark datasets to demonstrate the effectiveness of the proposed solution in
balancing fairness, exploration and exploitation when compared to existing fair OL2R solutions.

In Chapter 4, we focus on improving the transparency of the existing recommendation systems by providing
the explanations. We developed two different multi-task learning solutions for explainable personalization.
In MTER, the task of personalization and explanation are modeled by three three-way tensors over user,

64
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item, feature, and opinionated phrases, which are constructed from user-generated review content. Via a joint
decomposition, we map user, item, feature and opinionated phrase to a shared latent representation space and
provide the explanation by searching in the space. Built upon MTER, our second work, FacT, explains latent
factor models with rule-based explanations. It treats the latent factors as a function of the rules. As the latent
factors are learnt subject to the explanation rules, the fidelity of explanations is ensured; and because latent
factors are optimized for improving personalization, the quality of personalization is also provided.

5.1 Future Work
Research in this dissertation focus on improving the reliability of the decision-making in information systems
on three main aspects. There are more challenges to be conquered towards a more reliable or truthful modern
systems.

5.1.1 Collaborative Learning for Personalized Online Learning to Rank
The proposed OL2R solution focuses on population-level model estimation, hence fail to recognize the
heterogeneity across different users’ information needs and result ranking preference. A reliable decision-
making in information systems should be able to present the correct information to the right user. Given the
value of personalization in modern online systems, it is of great importance to push the frontier of OL2R
research to a personalized setting, where the online optimization of ranking functions is performed on a
per-user basis.

Collaborative learning [31, 204–206] leverages explicit and implicit user dependency to jointly estimate
individual models and is thus a promising framework for us to develop personalized OL2R solutions. It has the
advantage to balance data sparsity and heterogeneity in different users’ ranking preferences. We can coordinate
the pairwise exploration in uncertain pairs and model learning across related users in parallel for efficient joint
exploration and personalized learning. One key technical challenge is how to define the relatedness among
the individualized OL2R models. Many existing collaborative learning algorithms assume the knowledge
of user networks [205–207] (either social relations or similarity information). This assumption is often hard
to satisfy, especially in task-specific online systems, such as a library system or a medical record search
system. Even when such information is available, there is no guarantee it correlates with the underlying user
ranking preferences [208]. What’s more, almost all the existing collaborative learning solutions assume the
dependency among users is static. This is rarely true in real-world systems, in which users frequently join and
leave the system, and users’ similarity and relatedness can shift over time [209]. Another unique challenge
in collaborative OL2R is the data privacy. Data or model sharing across users is at the risk of revealing
private information [210], and the frequent communications further amplify the risk of privacy breaches (e.g.,
extraction attacks) [211, 212]. We can randomize individual user’s data before communicating with others
to achieve strong privacy guarantees, such as local differential privacy [213, 214]. The federated learning
framework [215–217] can also be leveraged to achieve private model aggregation by sharing randomized
parameters for decentralized model estimation.

5.1.2 Robustness of Online Learning to Rank
In this thesis, we assume a benign learning environment: users will fully cooperate and trust the retrieval
system. But real information systems operate in adversarial contexts, where users may have strong motivation
to manipulate the rankings, and have reasons to fear that sensitive information about their actions will be
exposed. The essence of most existing OL2R algorithms is online bandit optimization, either in the form of
DBGD [12, 218], or stochastic multi-armed bandit [21–23]. Several effective poisoning attacks have been
demonstrated against multi-armed bandits that only require logarithmic efforts to fully control the actions of
learned models [219, 220]. Hence, it is necessary to consider the decision-making in an adversarial setting
with robustness guarantee.

5.1.3 Fairness vs. Utility
Various solutions for ranking fairness have been developed, existing studies and our proposed FairExp
framework believed the trade-off between result fairness and utility is inevitable, and thus the users have to



5.1 Future Work 66

accept the deteriorated ranking utility. However, we argue that serving as the intermediary that provides the
ranking and recommendation service to both users and content providers, the platform should be responsible
for the satisfaction of both sides. Any downgrade of the service will lead to the dissatisfaction, and make the
users or the providers leave the platform. Hence, a reliable information system should guarantee that neither
of these two parties should pay for the requirement on the system by the other party.

The scarce resource that the content providers seek is the exposure of the items, i.e., the expected examination
from a population of users. Most of the existing work of fair ranking is under the assumption that the exposure
of each position is pre-defined and fixed, e.g., position-based examination models [5,6,85]. However, research
shows that item position is not the only factor that affects exposure. For example, when searching on an
e-commerce platform, items with promotion badges can get more attention from the users, irrespective of
its position in the list [221]. This motivates us to alter the exposure of each position by incentives. The
information service provided by the platform attracts the content providers and users, which in turn, can be
used to generate revenue. Hence, the platform can allocate part of the revenue to the positions of the ranked
list as incentives. Such incentives can alter the examination probability and lead to a different distribution
of users’ attention, compared to the original position-based exposure, to guarantee the fair exposure across
content providers. Besides, users’ dissatisfaction on the decreased ranking quality can be compensated by the
provided bonus, e.g., the incentive for examining the target position.
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[215] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

[216] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, and Rachel Cummings. Advances and
open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

[217] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19, 2019.

[218] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling bandits
problem. Journal of Computer and System Sciences, 78(5):1538–1556, 2012.

[219] Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Jerry Zhu. Adversarial attacks on stochastic bandits. In
Advances in Neural Information Processing Systems, pages 3640–3649, 2018.

[220] Fang Liu and Ness Shroff. Data poisoning attacks on stochastic bandits. In International Conference
on Machine Learning, pages 4042–4050, 2019.

[221] Fatemeh Sarvi, Maria Heuss, Mohammad Aliannejadi, Sebastian Schelter, and Maarten de Rijke.
Understanding and mitigating the effect of outliers in fair ranking. arXiv preprint arXiv:2112.11251,
2021.

[222] Diane Kelly and Jaime Teevan. Implicit feedback for inferring user preference: a bibliography. In
Acm Sigir Forum, volume 37, pages 18–28. ACM New York, NY, USA, 2003.



Bibliography 81

[223] Filip Radlinski, Madhu Kurup, and Thorsten Joachims. How does clickthrough data reflect retrieval
quality? In Proceedings of the 17th ACM conference on Information and knowledge management,
pages 43–52, 2008.

[224] Simon Caton and Christian Haas. Fairness in machine learning: A survey. arXiv preprint
arXiv:2010.04053, 2020.

[225] Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without discrimi-
nation. Knowledge and Information Systems, 33(1):1–33, 2012.

[226] Katja Hofmann, Anne Schuth, Shimon Whiteson, and Maarten De Rijke. Reusing historical inter-
action data for faster online learning to rank for ir. In Proceedings of the sixth ACM international
conference on Web search and data mining, pages 183–192, 2013.

[227] Yongfeng Zhang and Xu Chen. Explainable recommendation: A survey and new perspectives. arXiv
preprint arXiv:1804.11192, 2018.

[228] Yongkai Wu, Lu Zhang, and Xintao Wu. On discrimination discovery and removal in ranked data us-
ing causal graph. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2536–2544, 2018.

[229] Rishabh Mehrotra, James McInerney, Hugues Bouchard, Mounia Lalmas, and Fernando Diaz. To-
wards a fair marketplace: Counterfactual evaluation of the trade-off between relevance, fairness &
satisfaction in recommendation systems. In Proceedings of the 27th acm international conference
on information and knowledge management, pages 2243–2251, 2018.

[230] Lin Xiao, Zhang Min, Zhang Yongfeng, Gu Zhaoquan, Liu Yiqun, and Ma Shaoping. Fairness-aware
group recommendation with pareto-efficiency. In Proceedings of the eleventh ACM conference on
recommender systems, pages 107–115, 2017.

[231] Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair determi-
nation of risk scores. arXiv preprint arXiv:1609.05807, 2016.

[232] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Men also like
shopping: Reducing gender bias amplification using corpus-level constraints. arXiv preprint
arXiv:1707.09457, 2017.

[233] Solon Barocas and Andrew D Selbst. Big data’s disparate impact. Calif. L. Rev., 104:671, 2016.

[234] Dino Pedreshi, Salvatore Ruggieri, and Franco Turini. Discrimination-aware data mining. In
Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 560–568, 2008.

[235] Preethi Lahoti, Krishna P Gummadi, and Gerhard Weikum. ifair: Learning individually fair data
representations for algorithmic decision making. In 2019 ieee 35th international conference on data
engineering (icde), pages 1334–1345. IEEE, 2019.

[236] Flavio du Pin Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy,
and Kush R Varshney. Data pre-processing for discrimination prevention: Information-theoretic
optimization and analysis. IEEE Journal of Selected Topics in Signal Processing, 12(5):1106–1119,
2018.

[237] Lequn Wang and Thorsten Joachims. Fairness and diversity for rankings in two-sided markets. arXiv
preprint arXiv:2010.01470, 2020.



Bibliography 82

[238] Tom Sühr, Asia J Biega, Meike Zehlike, Krishna P Gummadi, and Abhijnan Chakraborty. Two-sided
fairness for repeated matchings in two-sided markets: A case study of a ride-hailing platform. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 3082–3092, 2019.

[239] Gourab K Patro, Arpita Biswas, Niloy Ganguly, Krishna P Gummadi, and Abhijnan Chakraborty.
Fairrec: Two-sided fairness for personalized recommendations in two-sided platforms. In Proceedings
of The Web Conference 2020, pages 1194–1204, 2020.

[240] Robin Burke. Multisided fairness for recommendation. arXiv preprint arXiv:1707.00093, 2017.

[241] Andrew Stanton, Akhila Ananthram, Congzhe Su, and Liangjie Hong. Revenue, relevance, arbitrage
and more: Joint optimization framework for search experiences in two-sided marketplaces. arXiv
preprint arXiv:1905.06452, 2019.

[242] Himan Abdollahpouri, Gediminas Adomavicius, Robin Burke, Ido Guy, Dietmar Jannach, Toshihiro
Kamishima, Jan Krasnodebski, and Luiz Pizzato. Multistakeholder recommendation: Survey and
research directions. User Modeling and User-Adapted Interaction, 30(1):127–158, 2020.

[243] Kinjal Basu, Cyrus DiCiccio, Heloise Logan, and Noureddine El Karoui. A framework for fairness
in two-sided marketplaces. arXiv preprint arXiv:2006.12756, 2020.

[244] L Elisa Celis, Sayash Kapoor, Farnood Salehi, and Nisheeth Vishnoi. Controlling polarization in per-
sonalization: An algorithmic framework. In Proceedings of the conference on fairness, accountability,
and transparency, pages 160–169, 2019.

[245] Paul Lagrée, Claire Vernade, and Olivier Cappe. Multiple-play bandits in the position-based model.
In Advances in Neural Information Processing Systems, pages 1597–1605, 2016.

[246] Aadirupa Saha and Aditya Gopalan. Regret minimization in stochastic contextual dueling bandits.
arXiv preprint arXiv:2002.08583, 2020.

[247] Harrie Oosterhuis, Anne Schuth, and Maarten de Rijke. Probabilistic multileave gradient descent. In
European Conference on Information Retrieval, pages 661–668. Springer, 2016.

[248] Abraham D Flaxman, Adam Tauman Kalai, Adam Tauman Kalai, and H Brendan McMahan. Online
convex optimization in the bandit setting: gradient descent without a gradient. In Proceedings of
the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 385–394. Society for
Industrial and Applied Mathematics, 2005.

[249] Alekh Agarwal, Ofer Dekel, and Lin Xiao. Optimal algorithms for online convex optimization with
multi-point bandit feedback. In COLT, pages 28–40. Citeseer, 2010.

[250] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends® in
Machine Learning, 4(2):107–194, 2012.

[251] Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based exploration.
arXiv preprint arXiv:1911.04462, 2019.

[252] Jerri L Ledford. Search engine optimization bible, volume 584. John Wiley & Sons, 2015.

[253] Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The
generalized linear case. In NIPS, pages 586–594, 2010.

[254] Lihong Li, Yu Lu, and Dengyong Zhou. Provably optimal algorithms for generalized linear contextual
bandits. arXiv preprint arXiv:1703.00048, 2017.



Bibliography 83

[255] Tie-Yan Liu. Learning to rank for information retrieval. 2011.

[256] Michal Valko, Nathaniel Korda, Rémi Munos, Ilias Flaounas, and Nelo Cristianini. Finite-time
analysis of kernelised contextual bandits. arXiv preprint arXiv:1309.6869, 2013.

[257] Wei Hu, Zhiyuan Li, and Dingli Yu. Understanding generalization of deep neural networks trained
with noisy labels. arXiv preprint arXiv:1905.11368, 2019.

[258] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and deep
neural networks. arXiv preprint arXiv:1905.13210, 2019.

[259] Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit
feedback. 2008.

[260] Lin F Yang and Mengdi Wang. Reinforcement leaning in feature space: Matrix bandit, kernels, and
regret bound. arXiv preprint arXiv:1905.10389, 2019.

[261] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games. Cambridge university press,
2006.

[262] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff
functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pages 208–214, 2011.

[263] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference on
World wide web, pages 661–670. ACM, 2010.

[264] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
neural information processing systems, pages 1177–1184, 2008.

[265] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks. arXiv preprint arXiv:1505.05424, 2015.

[266] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.

[267] Tom Zahavy and Shie Mannor. Deep neural linear bandits: Overcoming catastrophic forgetting
through likelihood matching. arXiv preprint arXiv:1901.08612, 2019.

[268] Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration
through Bayesian deep Q-networks. In 2018 Information Theory and Applications Workshop (ITA),
pages 1–9. IEEE, 2018.

[269] Naoki Abe, Alan W Biermann, and Philip M Long. Reinforcement learning with immediate rewards
and linear hypotheses. Algorithmica, 37(4):263–293, 2003.

[270] Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized bandits. Mathematics of
Operations Research, 35(2):395–411, 2010.

[271] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

[272] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Citeseer,
2009.



Bibliography 84

[273] Ziwei Ji and Matus Telgarsky. Risk and parameter convergence of logistic regression. arXiv preprint
arXiv:1803.07300, 2018.

[274] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference On Learning Theory,
pages 2–47, 2018.

[275] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. arXiv preprint arXiv:1802.08246, 2018.

[276] Mor Shpigel Nacson, Nathan Srebro, and Daniel Soudry. Stochastic gradient descent on separable
data: Exact convergence with a fixed learning rate. arXiv preprint arXiv:1806.01796, 2018.

[277] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. In Advances in Neural Information Processing Systems, pages 5947–5956,
2017.

[278] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Implicit bias of gradient descent
on linear convolutional networks. arXiv preprint arXiv:1806.00468, 2018.

[279] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[280] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems, pages 8157–8166,
2018.

[281] Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms
via accelerated gradient methods. In Advances in neural information processing systems, pages
1647–1655, 2011.

[282] Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi
Matematiki i Matematicheskoi Fiziki, 3(4):643–653, 1963.

[283] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized loss
minimization. Journal of Machine Learning Research, 14(Feb):567–599, 2013.

[284] Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. SGD learns over-
parameterized networks that provably generalize on linearly separable data. arXiv preprint
arXiv:1710.10174, 2017.

[285] Daniel Soudry, Elad Hoffer, and Nathan Srebro. The implicit bias of gradient descent on separable
data. arXiv preprint arXiv:1710.10345, 2017.

[286] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. arXiv
preprint arXiv:1810.02032, 2018.

[287] David Slepian. The one-sided barrier problem for gaussian noise. Bell Labs Technical Journal,
41(2):463–501, 1962.

[288] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

[289] Peter Bartlett, Dave Helmbold, and Phil Long. Gradient descent with identity initialization efficiently
learns positive definite linear transformations. In International Conference on Machine Learning,
pages 520–529, 2018.



Bibliography 85

[290] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient
descent for deep linear neural networks. arXiv preprint arXiv:1810.02281, 2018.

[291] Simon S Du, Jason D Lee, and Yuandong Tian. When is a convolutional filter easy to learn? arXiv
preprint arXiv:1709.06129, 2017.

[292] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with ReLU activation.
arXiv preprint arXiv:1705.09886, 2017.

[293] Mahdi Soltanolkotabi. Learning relus via gradient descent. arXiv preprint arXiv:1705.04591, 2017.

[294] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guarantees
for one-hidden-layer neural networks. arXiv preprint arXiv:1706.03175, 2017.

[295] Yuandong Tian. An analytical formula of population gradient for two-layered ReLU network and its
applications in convergence and critical point analysis. arXiv preprint arXiv:1703.00560, 2017.

[296] Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with gaussian
inputs. arXiv preprint arXiv:1702.07966, 2017.

[297] Daniel Hsu, Sham Kakade, Tong Zhang, et al. A tail inequality for quadratic forms of subgaussian
random vectors. Electronic Communications in Probability, 17, 2012.

[298] William Dally. High-performance hardware for machine learning. NIPS Tutorial, 2015.

[299] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal
Processing Magazine, 29(6):82–97, 2012.

[300] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pages 3104–3112, 2014.

[301] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages 1097–1105,
2012.

[302] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[303] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing systems,
pages 91–99, 2015.

[304] Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard M Schwartz, and John
Makhoul. Fast and robust neural network joint models for statistical machine translation. In ACL (1),
pages 1370–1380, 2014.

[305] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[306] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.



Bibliography 86

[307] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,
4(2):251–257, 1991.

[308] Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks: The
power of initialization and a dual view on expressivity. In Advances In Neural Information Processing
Systems, pages 2253–2261, 2016.

[309] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. In Advances in neural information processing systems,
pages 6231–6239, 2017.

[310] Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning: A tensor
analysis. In Conference on Learning Theory, pages 698–728, 2016.

[311] Nadav Cohen and Amnon Shashua. Convolutional rectifier networks as generalized tensor decom-
positions. In International Conference on Machine Learning, pages 955–963, 2016.

[312] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. arXiv preprint arXiv:1606.05336, 2016.

[313] Ben Poole, Subhaneil Lahiri, Maithreyi Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponen-
tial expressivity in deep neural networks through transient chaos. In Advances In Neural Information
Processing Systems, pages 3360–3368, 2016.

[314] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In Advances in neural information processing systems, pages
2924–2932, 2014.
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Appendix

A Background and Notations
Table 1: Notations used in this paper.

Notation Description

xt
i, x

t
j feature vector of document i and j under query qt at round t.

m the width of a DNN in each layer.
L the number of layers of a DNN.
p the total number of parameters in a DNN.

h(·),h the underlying optimal ranking score function.
γ∗ optimal model for the underlying scoring function, γ∗ = θ∗ − θ0.
γ̂t solution of the cross-entropy loss with the linearized neural network at round t.
H the neural tangent kernel matrix for all possible query-document features.
λ0 H ≻ λ0I minimum eigen-value of H

Vt, Vmax the number of candidate documents at round t, and the maximum Vt across all queries.
Ψt the set of all possible document pairs at round t, e.g., Ψt = {(i, j) ∈ Ψt, i ̸= j}
ωt the set of certain rank orders at round t.
nt the total number of query-document feature vectors until round t, which satisfies

nt =
∑t

s=1 Vs ≤ tVmax.
nPt the total number of training document pairs. As we only show top-K documents to

the users, nPt satisfies that nPt ≤
⌈
tK
2

⌉
f(xi;θt) estimated ranking score of document xi at round t
f tij the difference between the estimated ranking scores, f tij = f(xt

i;θt−1)−f(xt
j ;θt−1).

g(xi;θt) the gradient of the neural network function at time t, g(x;θ) = ∇θf(x;θ) ∈ Rp

gt
ij the difference between the gradients at time t, gt

ij = g(xt
i;θt)− g(xt

j ;θt).
gt,0
ij the difference between the gradients at time 0, gt,0

ij = g(xt
i;θ0)− g(xt

j ;θ0).
η step size for gradient descent in neural network optimization.
J the number of gradient descent steps.
ξ pairwise noise in the click feedback.
ν sub-Gaussian variable for the pairwise noise ξ.
S norm parameter for neural tangent kernel.
λ regularization parameter for loss function.
ζ pseudo noise for perturbation
υ variance of the pseudo noise

Alin
t Alin

t =
∑t−1

s=1

∑
(i,j)∈Ωind

s
xs
ijx

s
ij

⊤ + λI

Aneu
t Aneu

t =
∑t−1

s=1

∑
(i,j)∈Ωind

s
gs
ijg

s
ij

⊤/m+ λI.

Āneu
t Āneu

t =
∑t−1

s=1

∑
(i,j)∈Ωind

s
gs,0
ij gs,0

ij

⊤
/m+ λI.

∆min ∆min = mint∈T,(i,j)∈Ψt
|σ(hij)− 1/2|.
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Before we provide the detailed proofs, we first assume that there are n possible documents to be evaluated
during the model learning. It is easy to conclude that n ≤ TVmax.

First, we introduce the neural tangent kernel matrix defined on the n possible query-document feature vectors
across T rounds, {xi}ni=1.

Definition A.1 ( [59, 61]). Let {xi}nT
i=1 be the set of all pairwise document feature vectors. Define

H̃
(1)
i,j = Σ

(1)
i,j = ⟨xi,xj⟩, B

(l)
i,j =

(
Σ

(l)
i,i Σ

(l)
i,j

Σ
(l)
i,j Σ

(l)
j,j

)
,

Σ
(l+1)
i,j = 2E

(u,v)∼N(0,B
(l)
i,j)

[ϕ(u)ϕ(v)] ,

H̃
(l+1)
i,j = 2H̃

(l)
i,jE(u,v)∼N(0,B

(l)
i,j)

[
ϕ̇(u)ϕ̇(v)

]
+Σ

(l+1)
i,j .

Then, H = (H̃(L) +Σ(L))/2 is called the neural tangent kernel (NTK) matrix on the context set {xi}nT
i=1,

where nT =
∑T

s=1 Vs ≤ TVmax .

We also need the following assumption on the NTK matrix and the corresponding feature set.

Assumption A.2. H ⪰ λ0I; moreover, for any 1 ≤ i ≤ n, ∥xi∥2 = 1 and [xi]j = [xi]j+d/2.

With this assumption, the NTK matrix is assumed to be non-singular , which is mild and commonly made in
literature [61, 64, 362]. As the query-document features are manually crafted ranking features, it can be easily
satisfied when no two feature vectors are in parallel. The second assumption is for convenience in analysis and
can be easily satisfied by: for any context x, ∥x∥2 = 1, we can construct a new context x′ = [x⊤,x⊤]⊤/

√
2.

Equipped with this assumption, it can be verified that with θ0 initialized as in Algorithm 1, f(xi;θ0) = 0 for
any i ∈ [nT ].

For the sigmoid function σ applied for estimating the pairwise probability, it is well known that σ is continu-
ously differentiable, Lipschitz with constant kµ = 1/4 and cµ = inf σ̇ > 0.

B Proofs of Theorems and Lemma in Section 2.1

B.1 Proof of Lemma 2.1.3
The proof starts with the following technique lemmas.

Lemma B.1. For the logistic function σ(x) = 1/(1 + exp(−x)), we have: |σ(x)− σ(y)| < kµ|x− y| where
kµ = 1/4.

Lemma B.2 (Self-normalized bound for martingales, Lemma 9 in [14]). Let t be a stopping time with respect
to the filtration {Fτ}∞τ=0. Because ξsij is 1

2 -sub-Gaussian, for δ > 0, with probability 1− δ,

∥∥∥∥∥∥
t−1∑
s=1

∑
(i,j)∈Ωind

s

ξsijx
s
ij

∥∥∥∥∥∥
2

Alin
t

−1

≤ (1/2) log(det(Alin
t )1/2/(δ det(λI)1/2))

With the above lemmas, we prove Lemma 2.1.3 as follows.

Proof of Lemma 2.1.3. We adopt a single layer RankNet model with sigmoid activation function as our
pairwise ranker. Given the objective function, Eq (2.1.1), is log-convex with respect to θ, its solution θ̃t is
unique under the following estimating equation at each round t,
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t−1∑
s=1

∑
(i′,j′)∈Ωind

s

(
σ(xs

i′j′
⊤θ)− ysi′j′

)
xs
i′j′ + λθ = 0 (B.1)

Let gt(θ) =
∑t−1

s=1

∑
(i′,j′)∈Ωind

s
σ(xs

i′j′
⊤θ)xs

i′j′ + λθ be the invertible function such that the estimated

parameter θ̃t satisfies gt(θ̃t) =
∑t−1

s=1

∑
(i′,j′)∈Ωind

s
ysi′j′x

s
i′j′ . Since θ̃t might be outside of the admissible set

of parameter Θ that θ ∈ Θ (e.g., ∥θ∥2 ≤ Q), the estimation can be projected into Θ to obtain θ̂t:

θ̂t=argmin
θ∈Θ

∥∥∥gt(θ)−gt(θ̃t)∥∥∥
Alin

t
−1

=argmin
θ∈Θ

∥∥∥∥∥∥gt(θ)−
t−1∑
s=1

∑
(i′,j′)∈Ωind

s

ysi′j′x
s
i′j′

∥∥∥∥∥∥
Alin

t
−1

(B.2)

where Alin
t is defined as Alin

t =
∑t−1

s=1

∑
(i′,j′)∈Ωind

s
xs
i′j′x

s
i′j′

⊤ + λI. To summarize, θ̃t is the solution of

Eq (4), and θ̂t is the estimated model which is generated by projecting θ̃t onto Θ.

At round t, for any document pair xt
i and xt

j , the estimation error of the pairwise preference in PairRank is

defined as |σ(xt
ij

⊤
θ∗) − σ(xt

ij
⊤
θ̂t)|, which is based on the model θ̂t learned from the observations until

last round. According to Lemma B.1, we have |σ(xt
ij

⊤
θ∗) − σ(xt

ij
⊤
θ̂t)| ≤ kµ|xt

ij
⊤
θ∗ − xt

ij
⊤
θ̂t|. As

logistic function σ(·) is continuously differentiable,∇gt is continuous. Hence, according to the Fundamental
Theorem of Calculus, we have gt(θ∗)− gt(θ̂t) = Gt(θ

∗ − θ̂t), where Gt =
∫ 1

0
∇gt

(
lθ∗ + (1− l)θ̂t

)
dl.

Therefore,∇gt(θ) =
∑t−1

s=1

∑
(i′,j′)∈Ωind

s
σ̇(xs

i′j′
⊤θ)xs

i′j′x
s
i′j′

⊤ + λI, where σ̇ is the first order derivative of
σ. As cµ = infθ∈Θ σ̇(x⊤θ), it is easy to verify that cµ ≤ 1/4. Thus, we can conclude that Gt ⪰ cµA

lin
t .

Accordingly, we have the following inequality,

∣∣∣σ(xt
ij

⊤
θ∗)− σ(xt

ij
⊤
θ̂t)
∣∣∣ ≤ kµ ∣∣∣xt

ij
⊤
G−1

t

(
gt(θ

∗)− gt(θ̂t)
)∣∣∣

≤kµ∥xt
ij∥G−1

t

∥∥∥gt(θ∗)− gt(θ̂t)
∥∥∥
G−1

t

≤ (
2kµ
cµ

)∥xt
ij∥Alin

t
−1

∥∥∥gt(θ∗)− gt(θ̃t)
∥∥∥
Alin

t
−1

where the first and second inequalities stand as Gt and G−1
t are positive definite. The third inequality stands as

Gt ⪰ cµAlin
t , which implies that G−1

t ⪯ c−1
µ Alin

t
−1 and ∥x∥G−1

t
≤ ∥x∥Alin

t
−1/
√
cµ hold for any x ∈ Rd.

The last inequality stands as θ∗ ∈ Θ, and θ̂t is the optimum solution for Eq (B.2) at round t within Θ.

Based on the definition of θ̃t and the assumption on the noisy feedback that yt = σ(xt
⊤θ∗) + ξt, where ξt is

the noise in user feedback defined in Section 3.2, we have

gt(θ̃t)− gt(θ∗) =

t−1∑
s=1

∑
(i′,j′)∈Ωind

s

(ysi′j′ − σ(xs
i′j′

⊤θ∗))xs
i′j′ − λθ∗

=

t−1∑
s=1

∑
(i′,j′)∈Ωind

s

ξsi′j′x
s
i′j′ − λθ∗ = St − λθ∗.
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where we define St =
∑t−1

s=1

∑
(i′,j′)∈Ωind

s
ξsi′j′x

s
i′j′ .

Therefore, the confidence interval of the estimated pairwise preference in PairRank can be derived as:

∣∣∣σ(xt
ij

⊤
θ∗)− σ(xt

ij
⊤
θ̂t)
∣∣∣ ≤(2kµ

cµ
)∥xt

ij∥Alin
t

−1 ∥St − λθ∗∥Alin
t

−1

≤(2kµ
cµ

)∥xt
ij∥Alin

t
−1

(
∥St∥Alin

t
−1 +

√
λQ
)

where the second inequality is based on minimum eigenvalue λmin(A
lin
t ) ≥ λ and ∥θ∥2 ≤ Q.

As ξti′j′ ∼ R-sub-Gaussian, according to Theorem 1 in [14],

P
[
∥St∥2Alin

t
−1 > 2R2 log

det(Alin
t )1/2

δ det(λI)1/2

]
≤ δ

Therefore, with probability at least 1− δ1, we have∣∣∣σ(xt
ij

⊤
θ̂t)− σ(xt

ij
⊤
θ∗)
∣∣∣ ≤ αt∥xt

ij∥Alin
t

−1

with αt = (2kµ/cµ)
(√

R2 log
det(Alin

t )

δ21 det(λI)
+
√
λQ
)

B.2 Proof of Lemma 2.1.10

Proof. Proof of Lemma 2.1.10

In this proof, we will first provide an upper bound of the minimum eigenvalue of Alin
t , and then provide the

detailed derivation of the probability’s upper bound.

• Upper bound the minimum eigenvalue of Alin
t . As discussion in Lemma 2.1.9 , we assume that pairwise

feature vectors are random vectors drawn from distribution v. With Σ = E[xs
i′j′x

s
i′j′

⊤] as the second moment

matrix, define Z = Σ
−1
2 X, where X is a random vector drawn from the same distribution v. Then Z is

isotropic, namely E[ZZ⊤] = Id.

Define U =
∑t−1

s=1

∑
(i′,j′)∈Ωind

s
Zs

i′j′Z
s
i′j′

⊤ = Σ
−1
2 Ālin

t Σ
−1
2 , where Ālin

t =
∑t−1

s=1

∑
(i′,j′)∈Ωind

s
xs
i′j′x

s
i′j′

⊤ =

Alin
t − λI. From Lemma 2.1.9, we know that for any l, with probability at least 1 − 2exp(−C2l

2),
λmin(U) ≥ n− C1σ

2
√
nd− σ2l

√
n, where σ is the sub-Gaussian parameter of Z, which is upper-bounded

by ∥Σ−1/2∥ = λmin(Σ), and n =
∑t−1

s=1 |Ωind
s |, represents the number of observations so far. We thus can

rewrite the above inequality which holds with probability 1− δ2 as λmin(U) ≥ n− λ−1
min(Σ)(C1

√
nd+ l

√
n).

We now bound the minimum eigenvalue of Ālin
t , as follows:

λmin(Ā
lin
t ) = min

x∈Bd
x⊤Ālin

t x = min
x∈Bd

x⊤Σ1/2UΣ1/2x ≥ λmin(U) min
x∈Bd

x⊤Σx

= λmin(U)λmin(Σ) ≥ λmin(Σ)n− C1

√
nd− C2

√
n log(1/δ2)

According to Lemma 2.1.9, for t ≥ t′, we have:



B Proofs of Theorems and Lemma in Section 2.1 146

λmin(Σ)t− (c1
√
d+ c2

√
log(1/δ2) + abd

√
omaxu2/(dλ))

√
t− (ab log(1/δ21) + 4aλQ2 − λ) ≥ 0

As n ≥ t, we have

λmin(A
lin
t ) ≥ λmin(Ā

lin
t ) + λ ≥ abd

√
omaxu2

dλ
+ ab log(

1

δ21
) + 4aλQ2 (B.3)

• Upper bound the probability of being uncertain rank order. Under event Et, based on the definition
of ωt

u in Section 3.2, we know that for any document xt
i and xt

j at round t, (i, j) ∈ ωt
u if and only if

σ(xt
ij

⊤
θ̂t)−αt∥xt

ij∥Alin
t

−1 ≤ 1
2 and σ(xt

ji
⊤
θ̂t)−αt∥xt

ji∥Alin
t

−1 ≤ 1
2 . For a logistic function, we know that

σ(s) = 1− σ(−s). Therefore, let CBt
ij denote αt∥xt

ij∥Alin
t

−1 , we can conclude that (i, j) ∈ ωt
u if and only

if |σ(xt
ij

⊤
θ̂t)− 1

2 | ≤ CB
t
ij ; and accordingly, (i, j) ∈ ωt

c, when |σ(xt
ij

⊤
θ̂t)− 1

2 | > CBt
ij . To further simplify

our notations, in the following analysis, we use σ̂t and σ∗ to present σ(xt
ij

⊤
θ̂t) and σ(xt

ij
⊤
θ∗) respectively.

According to the discussion above, the probability that the estimated preference between document xt
i and xt

j

to be in an uncertain rank order, e.g., (i, j) ∈ ωt
u can be upper bounded by:

P
(
(i, j) ∈ ωt

u

)
= P

(
|σ̂t − 1/2| ≤ CBt

ij
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(
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ij

)
≤ P

(
∆min − |σ̂t − σ∗| ≤ CBt

ij

)
.

where, the first inequality is based on the reverse triangle inequality. The last inequality is based on the
definition of ∆min. Based on Lemma 2.1.3, the above probability can be further bounded by

P
(
∆min − |σ̂t − σ∗| ≤ CBt

ij
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For the RHS of the inequality inside the probability, we know that:
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where the last inequality follows Eq (B.3). Therefore, the probability could be upper bounded as:
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P
(
∆min − |σ̂t − σ∗| ≤ CBt

ij

)
≤P

∥St∥2Alin
t

−1 ≥

 cµ∆min

2kµ∥xt
ij∥Alin

t
−1

−
(√

R2 log
det(Alin

t )

δ det(λI)
+ 2
√
λQ
)2


≤P

(
∥St∥2Alin

t
−1 ≥

(1− 2β)c2µ∆
2
min

4k2µ∥xt
ij∥

−1
Alin

t

+R2 log(
det(Alin

t )

δ21 det(λI)
)

)

≤P

(
∥St∥2Alin

t
−1 ≥2R2 log

(
exp

(
(1− 2β)c2µ∆

2
min

8R2k2µ∥xt
ij∥

−1
Alin

t

)
· det(A

lin
t )

δ21 det(λI)
)

))

≤δ1 · exp−1

(
(1− 2β)c2µ∆

2
min

8R2k2µ∥xt
ij∥2Alin

t
−1

)
≤ log(

1

δ1
) ·

8R2k2µ∥xt
ij∥2Alin

t
−1

(1− 2β)c2µ∆
2
min

B.3 Proof of Theorem 2.1.11

Proof. Proof of Theorem 2.1.11

With δ1 and δ2 defined in the previous lemmas, we have the T-step regret upper bounded as:

RT = Rt′ +RT−t′ ≤ R′ + (1− δ1)(1− δ2)
T∑

s=t′

rs (B.4)

where R′ = t′ · Vmax + (T − t′) [δ2 · Vmax + (1− δ2) · δ1Vmax] Under event E1
t and E2

t , the instantaneous
regret at round s is bounded by

rs = E
[
K(τs, τ

∗
s )
]
=

ds∑
i=1

E [(Ns
i + 1)Ns

i /2] ≤ E [Ns(Ns + 1)/2] (B.5)

where Ns
i denotes the number of uncertain rank orders in block Bsi at round s and Ns denotes the total number

of uncertain rank orders at round s. It follows that in the worst case scenario, when Ns uncertain rank orders
are all placed into the same block, at most (N2

s + Ns)/2 mis-ordered pairs will be generated by random
shuffling in PairRank. This is due to the fact that based on the block created by PairRank, with Ns uncertain
rank orders in one block, this block can have at most Ns + 1 documents.

Therefore, the cumulative regret after t′ can be bounded by:

T∑
s=t′

rs ≤
T∑

s=t′

E [Ns(Ns + 1)/2] ≤

(
T∑

s=t′

E[N2
s ] + E[Ns]

)
/2 ≤

(
E[

T∑
s=t′

Ns]
2 + E[

T∑
s=t′

Ns]

)
/2

According to our previous analysis, at round t ≥ t′, the number of uncertain rank orders can be estimated

by the probability of observing an uncertain rank order, i.e., P
(
(i, j) ∈ ωt

u

)
≤ log(1/δ1) ·

8R2k2
µ∥x

t
ij∥

2

Alin
t

−1

(1−2β)c2µ∆
2
min

.
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Therefore, the cumulative number of mis-ordered pairs can be bounded by the probability of observing
uncertain rank orders in each round, which shrinks with more observations become available over time,

E

[
T∑

s=t′

Ns

]
≤E

1
2

T∑
s=t′

∑
(i′,j′)∈[Vs]2

P
(
(i′, j′) ∈ ωt

u

) ≤ E

a T∑
s=t′

∑
(i′,j′)∈[Vs]2

∥xs
i′j′∥2Alin

s
−1


where a = log(1/δ1) · 4k2µ/((1− 2β)c2µ∆

2
min)

Because Alin
t only contains information of observed document pairs so far, PairRank guarantees the number

of mis-ordered pairs among the observed documents in the above inequality is upper bounded. To reason
about the number of mis-ordered pairs in those unobserved documents (i.e., from ot to Vt for each query qt),
we leverage the constant p∗, which is defined as the minimal probability that all documents in a query are
examined over time,

E

 T∑
s=t′

∑
(i′,j′)∈[Vs]2

∥xs
i′j′∥2Alin

s
−1

 = E

 T∑
s=t′

∑
(i′,j′)∈[Vs]2

∥xs
i′j′∥2Alin

s
−1 × E

[
1

ps
1{os = Vs}

]
≤p∗−1E

 T∑
s=t′

∑
(i′,j′)∈[Vs]2

∥xs
i′j′∥2Alin

s
−11{os = Vs}


Besides, in PairRank, we only use the independent pairs, Ωind

t to update the model and the corresponding
Alin

t matrix. Therefore, to bound the regret, we rewrite the above equation as:

E

 T∑
s=t′

∑
(i′,j′)∈[Vs]2

∥xs
i′j′∥2Alin

s
−1


=E

 T∑
s=t′

∑
(i′,j′)∈Ωind

t

∥xs
i′j′∥2Alin

s
−1 +

∑
k∈[Vt]\{i′,j′}

∥xs
i′k∥2Alin

s
−1 + ∥xs

j′k∥2Alin
s

−1


=E

 T∑
s=t′

∑
(i′,j′)∈Ωind

t

(Vt − 1)∥xs
i′j′∥2Alin

s
−1 +

∑
k∈[Vt]\{i′,j′}

2xs
i′k

⊤Alin
s

−1
xs
j′k


Based on Lemma 10 and Lemma 11 in [14], the expected number of the first term can be bounded by,

T∑
s=t′

∑
(i′,j′)∈Ωind

t

(Vt − 1)∥xs
i′j′∥2Alin

s
−1 ≤ 2dLmax log(1 +

omaxTu
2

2dλ
)

And the second term can be bounded as:
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T∑
s=t′

∑
(i′,j′)∈Ωind

t

∑
k∈[Vt]\{i′,j′}

2xs
i′k

⊤Alin
s

−1
xs
j′k ≤

T∑
s=t′

(L2
max − 2Lmax)u

2/λmin(A
lin
s ) = w.

By chaining all the inequalities, we have the regret upper bounded by:

RT ≤R′ + (1− δ1)(1− δ2)
1

p∗2

(
2adVmax log(1 +

omaxTu
2

2dλ
) + aw

)2

where R′ = t′Vmax + (T − t′)(δ2Vmax − (1 − δ2)δ1Vmax), with t′ defined in Lemma 2.1.10, and Vmax

representing the maximum number of documents associated to the same query over time. By choosing
δ1 = δ2 = 1/T , the theorem shows that the expected regret is at most RT ≤ O(d log4(T )).

B.4 Proof of Lemma 2.1.6
In order to prove Lemma 2.1.6, we need the following technical lemmas.

Lemma B.3 (Lemma 5.1, [15]). There exists a positive constant C̄ such that for any δ ∈ (0, 1), if m ≥
C̄n4TL

6 log(n2TL/δ)/λ
4
0, then with probability at least 1− δ, there exists a θ∗ ∈ Rp such that for any i ∈ [nT ],

with h = (h(x1), . . . , h(xn)).

h(xi) = ⟨g(xi;θ0),θ
∗ − θ0⟩,

√
m∥θ∗ − θ0∥2 ≤

√
2h⊤H−1h ≤ S (B.6)

Lemma B.4 (Lemma B.3, [15]). There exist constants {Cϵ
i }5i=1 > 0 such that for any δ > 0, if m satisfies,

Cϵ
1m

−3/2L−3/2[log(nTL
2/δ)]3/2 ≤ τ ≤ Cϵ

2L
−6[logm]−3/2

then with probability at least 1− δ, for any t ∈ [T ], we have

∥Aneu
t ∥2 ≤ λ+ Cϵ

3n
P
t L,

∥Āneu
t −Aneu

t ∥F ≤ Cϵ
4n

P
t

√
log(m)τ1/3L4,∣∣∣∣ log det(Āneu

t )

det(λI)
− log

det(Aneu
t )

det(λI)

∣∣∣∣ ≤ Cϵ
5(n

P
t )

3/2λ−1/2
√
log(m)τ1/3L4

For the constants, Cϵ
3 = 2Cz

3 , Cϵ
4 = 8Cw

3 (Cz
3 )

2, and Cϵ
5 = 4Cw

3 (Cz
3 )

2, with Cz
3 and Cw

3 from the technique
lemmas, Lemma B.6 and Lemma B.7.

Lemma B.5 (Lemma B.4, [15]). There exist constants {Cv
i }3i=1 > 0 such that for any δ > 0, if τ satisfies that

Cv
1m

−3/2L−3/2[log(nTL
2/δ)]3/2 ≤ τ ≤ Cv

2L
−6[logm]−3/2,

then with probability at least 1− δ, for any θ̃ and θ̂ satisfying ∥θ̃ − θ0∥2 ≤ τ, ∥θ̂ − θ0∥2 ≤ τ and i ∈ [nT ]
we have ∣∣∣f(xi; θ̃)− f(xi; θ̂)− ⟨g(xi; θ̂), θ̃ − θ̂⟩

∣∣∣ ≤ Cv
3 τ

4/3L3
√
m logm.
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Lemma B.6 (Lemma B.5, [15]). There exist constants {Cw
i }3i=1 > 0 such that for any δ ∈ (0, 1), if τ satisfies,

Cw
1 m

−3/2L−3/2 max{log−3/2m, log3/2(nT /δ)} ≤ τ ≤ Cw
2 L

−9/2 log−3m,

then with probability at least 1− δ, for all ∥θ − θ0∥2 ≤ τ and i ∈ [nT ] we have

∥g(xi;θ)− g(xi;θ0)∥2 ≤ Cw
3

√
logmτ1/3L3∥g(xi;θ0)∥2.

Lemma B.7 (Lemma B.6, [15]). There exist constants {Cz
i }3i=1 > 0 such that for any δ > 0, if τ satisfies that

Cz
1m

−3/2L−3/2[log(nTL
2/δ)]3/2 ≤ τ ≤ Cz

2L
−6[logm]−3/2,

then with probability at least 1− δ, for any ∥θ − θ0∥2 ≤ τ and i ∈ [nT ] we have ∥g(xi;θ)∥F ≤ Cz
3

√
mL.

We also need the following lemmas. The first lemma is based on the generalized linear bandit [253] and the
analysis of linear bandit in [14]. For the second lemma, we adapted it from the original paper with our pairwise
cross-entropy loss. The key difference lies in 1) the different number of observations in each round, which
affects the required condition on the width of the neural network m; 2) we extend the original error bound
analysis for the least square loss to the generalized linear model, e.g., logistic regression model.

Lemma B.8. For any t ∈ [T ], with γ̂t defined as the solution of the following equation,

γ̂t = min
γ

t−1∑
s=1

∑
(i,j)∈Ωind

s

−ysi,j log
(
σ(⟨gt,0

i,j ,γ⟩)
)
− (1− ysi,j) log

(
1− σ(⟨gt,0

i,j ,γ⟩)
)
+
mλ

2
∥γ∥2. (B.7)

Then, with the pairwise noise ξsijsatisfying Proposition 2.1.2, for any (i, j) ∈ Ψt, with probability at least
1− δ1, we have,

∥
√
m(θ∗ − θ0 − γ̂t)∥Āneu

t
≤ c−2

µ (
√
ν2 log(det(Āneu

t ))/(δ21 det(λI)) +
√
λS)

Lemma B.9 (Lemma B.2, [15]). There exist constants {C̄i}6i=1 > 0 such that for any δ > 0, if for all t ∈ [T ],
η and m satisfy√

2nPt /(mλ) ≥ C̄1m
−3/2L−3/2[log(nTL

2/δ)]3/2,√
2nPt /(mλ) ≤ C̄2 min

{
L−6[logm]−3/2,

(
m(λη)2L−6(nPt )

−1(logm)−1
)3/8}

,

η ≤ C̄3(mλ+ nPt mL)
−1,

m1/6 ≥ C̄4

√
logmL7/2(nPt )

7/6λ−7/6(1 +
√
nPt /λ),

then with probability at least 1− δ, we have that ∥θt − θ0∥2 ≤
√

2nPt /(mλ) and

∥θt − θ0 − γ̂t∥2 ≤ (1− ηmλ)J/2
√
2nPt /(mλ) +m−2/3

√
logmL7/2(nPt )

7/6λ−7/6(C̄5 + C̄6

√
nPt /λ).

Proof of Lemma 2.1.6. We first bound the estimated pairwise preference based on the Lipschitz continuity:∣∣∣σ(f(xt
i;θt−1)− f(xt

j ;θt−1))− σ(h(xt
i)− h(xt

j))
∣∣∣ ≤ kµ∣∣∣f(xt

i;θt−1)− f(xt
j ;θt−1)−

(
h(xt

i)− h(xt
j)
)∣∣∣
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According to Lemma B.3, and f(x;θ0) = 0, we could have the following equation for document xt
i,

f(xt
i;θt−1)− h(xt

i) =f(x
t
i;θt−1)− f(xt

i;θ0)− ⟨g(xt
i;θt−1),θt−1 − θ0⟩

+ ⟨g(xt
i;θt−1),θt−1 − θ0⟩ − ⟨g(xt

i;θt−1),θ
∗ − θ0⟩

+ ⟨g(xt
i;θt−1),θ

∗ − θ0⟩ − ⟨g(xt
i;θ0),θ

∗ − θ0⟩.

Therefore, we could have the following inequalities based on the triangle inequality.∣∣∣f(xt
i;θt−1)− f(xt

j ;θt−1)−
(
h(xt

i)− h(xt
j)
)∣∣∣

≤
∣∣∣⟨g(xt

i;θt−1)− g(xt
j ;θt−1),θt−1 − θ∗⟩

∣∣∣
+ ∥θ∗ − θ0∥2

(
∥g(xt

i;θt−1)− g(xt
i;θ0)∥2 + ∥g(xt

j ;θt−1)− g(xt
j ;θ0)∥2

)
+
∣∣∣f(xt

i;θt−1)− f(xt
i;θ0)− ⟨g(xt

i;θt−1),θt−1 − θ0⟩
∣∣∣

+
∣∣∣f(xt

j ;θt−1)− f(xt
j ;θ0)− ⟨g(xt

j ;θt−1),θt−1 − θ0⟩
∣∣∣

≤2Cv
3 τ

4/3L3
√
m logm+ 2Cz

3C
w
3 τ

1/3L7/2
√
log(m)S +

∣∣∣⟨gt
ij ,θt−1 − θ∗⟩

∣∣∣,
where the last inequality is due to Lemma B.3, B.5, B.6, B.7, with satisfied τ as the upper bound of ∥θ− θ0∥2.

Now we start to bound the last term
∣∣∣⟨gt

ij ,θt−1 − θ∗⟩
∣∣∣.∣∣∣⟨gt

ij ,θt−1 − θ∗⟩
∣∣∣ =∣∣∣⟨gt

ij ,θt−1 − θ0 − γ̂t − (θ∗ − θ0 − γ̂t)⟩
∣∣∣

≤|⟨gt
ij ,θ

∗ − θ0 − γ̂t⟩|+ ∥gt
ij∥∥θt−1 − θ0 − γ̂t∥ (B.8)

For the first term, we have the following analysis.

|⟨gt
ij ,θ

∗ − θ0 − γ̂t⟩| ≤ ∥gt
ij/
√
m∥Aneu

t
−1∥
√
m(θ∗ − θ0 − γ̂t)∥Aneu

t

≤ ∥gt
ij/
√
m∥Aneu

t
−1

√
(1 + ∥Aneu

t − Āneu
t ∥2/λ)∥

√
m(θ∗ − θ0 − γ̂t)∥Āneu

t

≤
√

1 + Cϵ
4n

P
t

√
log(m)τ1/3L4∥

√
m(θ∗ − θ0 − γ̂t)∥Āneu

t
∥gt

ij/
√
m∥Aneu

t
−1 ,

where the first inequality is trivial, and the second inequality is due to the fact that x⊤Px ≤ x⊤Qx ·
∥P∥2/λmin(Q), and λmin(Ā

neu
t ) ≥ λ, the third inequality is based on Lemma B.4 with ∥Aneu

t − Āneu
t ∥2 ≤

∥Aneu
t − Āneu

t ∥F . According to Lemma B.8, with probability 1− δ1, we have

∥
√
m(θ∗ − θ0 − γ̂t)∥Āneu

t
≤c−2

µ (
√
ν2 log(det(Āneu

t ))/(δ21 det(λI)) +
√
λS)

≤c−2
µ (

√
ν2 log(det(Aneu

t ))/(δ21 det(λI)) + Cϵ
5(n

P
t )

3/2λ−1/2
√

log(m)τ1/3L4 +
√
λS)

where the second inequality is based on Lemma B.4. For the second term of Eq B.8, it can be bounded according
to Lemma B.7 and Lemma B.9. By chaining all the inequalities, and with ∥θ − θ0∥ ≤ τ ≤

√
2nPt /(mλ),

and the satisfied m and η, we complete the proof.

B.5 Proof of Lemma 2.1.15

Proof of Lemma 2.1.15. In this proof we will first provide an analysis on the minimum eigenvalue of ¯Aneu
t ,

and then provide the detailed derivation of the upper bound of the probability.

At initialization, DNNs are equivalent to Gaussian processes in the infinite-width limit. Thus, we assume
that the gradient differences between the documents at the initial step are random vectors drawn from some
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distribution v. With Σ = E[g0
ijg

0
ij

⊤
] as the second moment matrix, define Z = Σ−1/2X, where X is a

random vector drawn from the same distribution v. Then Z is isotropic, namely E[ZZ⊤] = Ip. Define D =∑t−1
s=1

∑
(i′,j′)∈Ωind

s
Zs

i′j′Z
s⊤
i′j′ , where Zs

i′j′ = Σ−1/2gs,0
i′j′ . It is trivial to have D = Σ−1/2( ¯Aneu

t −λI)Σ−1/2.
From Lemma 2.1.9, we know that for any l, with probability at least 1 − 2exp(−C2l

2), λmin(D) ≥ nt −
C1σ

2nt − σ2l
√
nt, where σ is the sub-Gaussian parameter of Z, which is upper-bounded by ∥Σ−1/2∥ =

λmin(Σ), and nt =
∑t−1

s=1 |Ωind
s |, represents the number of pairwise observations so far. Thus, we can rewrite

the above inequality which holds with probability 1− δ2 as λmin(D) ≥ nt − λ−1
min(Σ)(C1nt + l

√
nt), and:

λmin( ¯Aneu
t − λI) = min

x∈Bp
x⊤( ¯Aneu

t − λI)x = min
x∈Bp

x⊤Σ1/2DΣ1/2x

≥ λmin(D) min
x∈Bp

x⊤Σx = λmin(D)λmin(Σ) ≥ λmin(Σ)nt − C1nt − C2

√
nt log(1/δ2)

Under event Et, based on the definition of ωc
t , we know that for any document i and j at round t, (i, j) /∈ ωt if

and only if σ(f tij)− αt∥gt
ij/
√
m∥Aneu

t
−1 − ϵ(m) ≤ 1/2 and σ(f tji)− αt∥gt

ji/
√
m∥Aneu

t
−1 − ϵ(m) ≤ 1/2.

For a logistic function, we know that σ(s) = 1 − σ(−s). Therefore, according to Lemma 2.1.6, let CBt
ij

denote αt∥gt
ij/
√
m∥Aneu

t
−1 + ϵ(m), we can conclude that (i, j) /∈ ωt if and only if |σ(f tij)− 1/2| ≤ CBt

ij ;
and accordingly, (i, j) ∈ ωt, when |σ(f tij)− 1/2| > CBt

ij .

According to the discussion above, at round t, the probability that the estimated preference between document
i and j to be in an uncertain rank order, i.e., (i, j) /∈ ωt, can be upper bounded by:

P
(
(i, j) /∈ ωt

)
=P
(
|σ(f tij)− 1/2| ≤ CBt

ij

)
≤ P
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ij

)
≤ P

(
∆min − |σ(f tij)− σ(htij)| ≤ CBt

ij

)
,

where the first inequality is based on the reverse triangle inequality. The last inequality is based on the
definition of ∆min. Based on Lemma 2.1.6, the above probability can be further bounded by

P
(
∆min − |σ(f tij)− σ(htij)| ≤ CBt

ij

)
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(
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√
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where Wt =
∑t
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∑
(i′,j′)∈Ωind

s
ξsi′j′g

s
i′j′ .

For the right-hand side, we know that λmin(A
neu
t ) ≥ λmin( ¯Aneu

t )+∥Aneu
t − ¯Aneu

t ∥ ≥ λmin( ¯Aneu
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Hence, we have the following inequalities,(
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t ∥)c2µ(∆min − 2ϵ(m))2/(4Cz

3k
2
µL)

− (4
√
λSν + ν2)

(
log(det(Aneu

t )/det(λI)) + log(1/δ21)
)
− 4λS2

≥λmin(Σ)(nt −
√
nt
(
Cu

1 + Cu
2

√
log(1/δ2) + Cu

3 Vmax

)
− Cu

4 log(1/δ1) + Cu
5 ) ≥ 0

with corresponding positive constants {Cu
i }5i=1. Therefore, the probability could be upper bounded:

P
(
∆min − |σ(f tij)− σ(htij)| ≤ CBt

ij

)
≤P

∥Wt∥2Aneu
t

−1 ≥

(
cµ(∆min − 2ϵ(m))

2kµ∥gt
ij/
√
m∥Alin

t
−1

−
(√

ν2 log
det(Aneu

t )

δ1 det(λI)
+ 2
√
λS
))2


≤P

(
∥Wt∥2Aneu

t
−1 ≥

c2µ(∆min − 2ϵ(m))2

4k2µ∥gt
ij/
√
m∥−1

Aneu
t

+ ν2 log(
det(Aneu

t )

δ21 det(λI)
)

)

≤P

(
∥Wt∥2Aneu

t
−1 ≥2ν2 log

(
exp

(
c2µ(∆min − 2ϵ(m))2

8ν2k2µ∥gt
ij/
√
m∥−1

Aneu
t

)
· det(A

neu
t )

δ21 det(λI)

))

≤δ1 · exp−1

(
c2µ(∆min − 2ϵ(m))2

8ν2k2µ∥gt
ij/
√
m∥2

Aneu
t

−1

)
≤ Cu

6 log(1/δ1)
∥gt

ij/
√
m∥2

Aneu
t

−1

(∆min − 2ϵ(m))2
,

with an additional positive constant C
u

6 . This completes the proof.

B.6 Proof of Theorem 2.1.17

Lemma B.10. There exist positive constants {Ci}2i=1 such that for any δ ∈ (0, 1), if η ≤ C̄1(TmL+mλ)−1

and m ≥ C̄2 max
{
T 7λ−7L21(logm)3, N6L6(log(nTL

2/δ))3/2
}

, then with probability at least 1 − δ, we
have

T∑
t=1

∑
(i′,j′)∈Ωind

t

∥gt
i′j′/
√
m∥Aneu

t
−1 ≤ 2 log

detAT

detλI
≤ d̃ log(1 + TV 2

max/λ) + 1

where d̃ is defined as the effective dimension of H.

Proof of Theorem 2.1.17. With δ1 and δ2 defined in the previous lemmas, we have with probability at least
1− δ1, the T -step regret is upper bounded as:

RT = Rt′ +RT−t′ ≤ t′ ∗ V 2
max + (T − t′)δ2Vmax2 + (1− δ2)

T∑
t=t′

rt (B.9)

When event Et and the event defined in Lemma 2.1.6 both occur, the instantaneous regret at round t is bounded
by rt = E

[
K(τs, τ

∗
s )
]
≤ E[Ut], where Ut denotes the number of uncertain rank orders under the ranker at

round t. As the ranked list is generated by topological sort on the certain rank orders, the random shuffling only
happens between the documents that are in uncertain rank orders, which induce regret in the proposed ranked
list. In each round of result serving, as the model θt would not change until the next round, the expected
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number of uncertain rank orders can be estimated by summing the uncertain probabilities over all possible
pairwise comparisons under the current query qt, e.g., E[Ut] = 1/2

∑
(i,j)∈Ψt

P((i, j) /∈ ωt).

Based on Lemma 2.1.15, the cumulative number of mis-ordered pairs can be bounded by the probability of
observing uncertain rank orders in each round, which shrinks with more observations become available over
time,

E
[ T∑
s=t′

Ut

]
≤E
[
1/2

T∑
s=t′

∑
(i′,j′)∈Ψs

P((i′, j′) /∈ ωt)
]

≤E
[
1/2

T∑
s=t′

∑
(i′,k′)∈Ψs

Cu
6 log(1/δ1)∥gt

i′j′∥2Aneu
t

−1/(∆min − 2ϵ(m))2
]
.

Because Aneu
t only contains information of observed document pairs so far, our algorithm guarantees the

number of mis-ordered pairs among the observed documents in the above inequality is upper bounded. To
reason about the number of mis-ordered pairs in those unobserved documents (i.e., from ot to Vt for each
query qt), we leverage the constant p∗, which is defined as the minimal probability that all documents in a
query are examined over time,

E
[∑
t=t′

∑
(i′,j′)∈Ψt

∥gt
i′j′/
√
m∥Alin

t
−1

]
=E
[∑
t=t′

∑
(i′,j′)∈Ψt

∥gt
i′j′/
√
m∥Alin

t
−1 × E

[
p−1
t 1{ot = Vt}

]]
≤p∗−1E

[∑
t=t′

∑
(i′,j′)∈Ψt

∥gt
i′j′/
√
m∥Alin

t
−11{ot = Vt}

]

Besides, we only use the independent pairs, Ωind
t to update the model and the corresponding Aneu

t matrix.
Therefore, to bound the regret, we rewrite the above equation as:

E

 T∑
t=t′

∑
(i′,j′)∈Ψt

∥gt
i′j′/
√
m∥2Aneu

t
−1

 (B.10)

=E

 T∑
t=t′

∑
(i′,j′)∈Ωind

t

∥gt
i′j′/
√
m∥2Aneu

t
−1 +

∑
k∈[Vt]\{i′,j′}

∥gt
i′k/
√
m∥2Aneu

t
−1 + ∥gt

j′k/
√
m∥2Aneu

t
−1


=E

 T∑
t=t′

∑
(i′,j′)∈Ωind

t

(Vt − 1)∥gt
i′j′/
√
m∥2

A−1
s

+
∑

k∈[Vt]\{i′,j′}

(2/m)gt
i′k

⊤
Aneu

t
−1gt

j′k


For the second term, it can be bounded as:

T∑
t=t′

∑
(i′,j′)∈Ωind

t

∑
k∈[Vt]\{i′,j′}

(2/m)gt
i′k

⊤
Aneu

t
−1gt

j′,k ≤
T∑

t=t′

2Cz
3 (V

2
max − 2Vmax)L

2/λmin(A
neu
t )

where the first inequality is due to Lemma B.7. According to the analysis of λmin(A
neu
t ) and λmin(Ā

neu
t ),

the convergence rate the above upper bound is faster than the self-normalized term in Eq B.10. Hence, by
chaining all the inequalities, we have with probability at least 1− δ1, the regret satisfies,

RT ≤R′ + (1− δ2)Cu
6 log(1/δ1)(w + Vmax(d̃ log(1 + TV 2

max/λ) + 1)/(∆min − 2ϵ(m))2

≤R′ + (Cr
1 log(1/δ1)d̃ log(1 + TV 2

max/λ) + Cr
2)(1− δ2)/p∗

where {Cr
i }2i=1 are positive constants, R′ = t′V 2

max + (T − t′)δ2V 2
max. By choosing δ1 = δ2 = 1/T , the

theorem shows that the expected regret is at most RT ≤ O(log4(T )).
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C Proofs of Theorems and Lemmas in Section 2.2

C.1 Proof of Lemma 2.2.1

Proof. According to the definition of gt(θ) in Section 4, we have the following equation for the auxiliary
solution θ̄t,

gt(θ̄t) =

t−1∑
s=−d+1

∑
(i,j)∈Ωs

ysijx
s
ij

Then, to bound the deviation caused by the observation noise, we have the following derivations for any input
x

|σ(x⊤θ̄t)− σ(x⊤θ∗)| ≤ kµ|x⊤(θ̄t − θ∗)|

=kµ|x⊤G−1
t (gt(θ̄t)− gt(θ∗))| ≤ kµ

cµ
|x⊤A−1

t (gt(θ̄t)− gt(θ∗))|

≤kµ
cµ
∥x∥A−1

t
∥gt(θ̄t)− gt(θ∗)∥A−1

t

The first inequality is due to the Lipschitz continuity of the logistic function. As logistic function is continuously
differentiable, the second equality is according to the Fundamental Theorem of Calculus, where Gt =∑t−1

s=1

∑
(i,j)∈Ωs

σ̇(xs
ij

⊤θ)xs
ijx

s
ij

⊤ + λI. In the third inequality, At =
∑t−1

s=1

∑
(i,j)∈Ωs

xs
ijx

s
ij

⊤ + λI. And
this inequality holds as Gt ≻ cµAt, with cµ = infθ∈Θ σ̇(x⊤θ).

Next, we will bound ∥gt(θ̄t)− gt(θ∗)∥A−1
t

.

∥gt(θ̄t)− gt(θ∗)∥A−1
t

=∥
t−1∑

s=−d+1

ysijx
s
ij − σ(xs

ij
⊤θ∗)xs

ij∥A−1
t

≤∥
0∑

s=−d+1

σ(xs
ij

⊤θ∗)xs
ij∥A−1

t
+ ∥

t−1∑
s=1

ϵsijx
s
ij∥A−1

t

≤d+R

√
log(

det(At)

δ2 det(λI)
)

The first equality is based on the definition of function gt, and θ̄t. The last inequality is according to the
self-normalized bound for martingales in [14]. This completes the proof.

C.2 Proof of Lemma 2.2.3

Proof. According to Lemma 2.2.1, with probability at least 1− δ, event Et defined in Section 4 occurs. Under
event Et, for document pair (i, j) satisfying i ≻ j for the given query (e.g., σ(xt

ij
⊤
θ∗) > 1

2 ), we first analyze

the probability that at least one estimate σ(xt
ij

⊤
θ̂
(n)
t ) > 1

2 for n ∈ [N ], e.g., P(maxn∈[N ] σ(x
t
ij

⊤
θ̂
(n)
t )) > 1

2 .

For simplicity, in the following analysis, we use σ̂(n)
t , σ̄tand σ∗ to present σ

(
xt
ij

⊤
θ̂
(n)
t

)
, σ
(
xt
ij

⊤
θ̄t

)
and

σ
(
xt
ij

⊤
θ∗
)

respectively.

P(max
n∈[N ]

σ̂
(n)
t ≥ 1

2
) = 1−

N∏
n=1

P(σ(n)
t <

1

2
)
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For any n ∈ [N ], we have the following bound for P(σ(n)
t < 1

2 ) .

P(σ(n)
t <

1

2
) ≤P(σ(n)

t < σ∗)

=P(σ(n)
t − σ̄t < σ∗ − σ̄t)

≤P(σ(n)
t − σ̄t < αt∥xt

ij∥A−1
t
)

≤P(cµxt
ij

⊤
(θ̂t − θ̄) < αt∥xt

ij∥A−1
t
)

≤P(cµxt
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⊤
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t (gt(θ̂t)− gt(θ̄)) < αt∥xt
ij∥A−1

t
)

≤P( cµ
kµ

xt
ij

⊤
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t (gt(θ̂t)− gt(θ̄)) < αt∥xt
ij∥A−1

t
)

=P(U(xt
ij) <

kµ
cµ
αt∥xt

ij∥A−1
t
)

where U(xt
ij) = xt

ij
⊤
A−1

t (gt(θ̂t)− gt(θ̄)). According to the definition of θ̄t, we know that,

U(xt
ij) = xt

ij
⊤
A−1

t

t−1∑
s=−d+1

γsijx
s
ij

It is easy to obtain that E[U(xt
ij)] = 0 with E[γ] = 0. And the variance of U(xt

ij) is,

V ar[U(xt
ij)] =ν

2xt
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⊤
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s
ij
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=ν2xt
ij

⊤
A−1
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s
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t xt

ij

=ν2∥xt
ij∥2A−1

t

Therefore, we have U(xt
ij) ∼ N (0, ν2∥xt

ij∥2A−1
t

), and the probability can be upper bounded as,

P(U(xt
ij) <

kµ
cµ
αt∥xt

ij∥A−1
t
) =1− P(U(xt

ij) >
kµ
cµ
αt∥xt

ij∥A−1
t
)

≤1− exp(−β2)

4
√
πβ

where β =
kµαt

cµν
. By chaining all the inequalities, we have that with N ≥ log δ/ log(1− exp(−β2)/(4

√
πβ)),

with probability at least 1− δ, P(maxn∈[N ] σ̂
(n)
t ≥ 1

2 ).

Therefore, under event Et, with N ≥ log δ/ log(1− exp(−β2)/(4
√
πβ)), based on the definition of ωu

t in
Section 3.2, we know that for document i and j at round t, (i, j) ∈ ωc

t if and only if minn∈[N ] σ
(
xt
ij

⊤
θ̂
(n)
t

)
>

1
2 . For simplicity, in the following analysis, we use σ̂(n)

t , σ̄tand σ∗ to present σ
(
xt
ij

⊤
θ̂
(n)
t

)
, σ
(
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⊤
θ̄t

)
and

σ
(
xt
ij

⊤
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)

respectively. Then the probability of being uncertain can be bounded as,

P
(
(i, j) ∈ ωu

t

)
= 1− P

(
min
n∈[N ]
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(n)
t > 1/2

)
=1−

N∏
n=1

P
(
σ̂
(n)
t > 1/2

)
= 1−

(
P
(
σ̂
(n)
t > 1/2

))N
Based on the definition of ∆min, σ∗ − 1/2 ≥ ∆min and σ∗ − σ̄t ≤ CB. And according to the random



C Proofs of Theorems and Lemmas in Section 2.2 157

matrix theory and Lemma 2 in [26], when t > t′, ∆min − CB > 0 which can be viewed as a constant c∆min.
Therefore, we have the following inequalities,

P
(
σ̂
(m)
t > 1/2

)
= P

(
σ̂
(m)
t − σ∗ + σ∗ − σ̄t + σ̄t > 1/2

)
≥P
(
σ̄t − σ̂(m)

t < ∆min − CB
)
= 1− 1

2
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(
|σ̄t − σ̂(m)

t | ≥ ∆min − CB
)

≥1− 1

2
P
(
kµ|U(x)| ≥ ∆min − CB

)
≥ 1− exp(−

c2µc
2∆2

min

2k2µν
2∥x∥2

A−1
t

)

Let B =
c2µc

2∆2
min

2k2
µν

2∥x∥2

A
−1
t

, we have the probability of being uncertain rank order upper bounded as,

P
(
(i, j) ∈ ωu

t

)
≤1−

(
1− exp(−B))

)N
=1− expN log(1− exp(−B))

≤−N log(1− exp(−B)) ≤ −N log exp(−1/B))

Therefore, P
(
(i, j) ∈ ωu

t

)
≤ min

{
1,

2Nk2
µν

2∥xi,j∥2

A
−1
t

c2µc
2∆2

min

}
. This completes the proof.

C.3 Proof of Theorem 2.2.4

Proof. Once the certain and uncertain rank orders are determined, our proposed model will generate the ranked
list by topological sort with respect to the certain rank orders. Therefore, the regret only comes from the
uncertain rank orders. In each round of result serving, as the model θt would not change until the next round,
the expected number of uncertain rank orders, Ut, can be estimated by summing the uncertain probabilities
over all possible pairwise comparisons under the current query qt, e.g., E[Ut] =

Vt(Vt−1)
2 P((i, j) ∈ ωu

t ).

Based on Lemma 2.2.3, the cumulative number of mis-ordered pairs can be bounded by the probability of
observing uncertain rank orders in each round, which shrinks with more observations become available over
time,

E
[∑T

s=t′
Ut

]
≤E
[1
2

∑T

s=t′

∑
(i,j)∈[Vt]2

2Nk2µν
2∥xs

ij∥2A−1
s

c2µc
2∆2

min

]
.

As At only contains information of observed document pairs so far, the number of mis-ordered pairs among
the observed documents is guaranteed to be upper bounded. To reason about the number of mis-ordered pairs
in those unobserved documents (i.e., from ot to Vt for each query qt), we leverage the constant p∗, which is
defined as the minimal probability that all documents in a query are examined over time,

E
[∑T

t=t′

∑
(i,j)∈[Vt]2

∥xt
ij∥A−1

t

]
=E
[∑T
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∑
(i,j)∈[Vt]2

∥xt
ij∥A−1

t
× E

[
p−1
t 1{ot = Vt}

]]
≤p∗−1E

[∑T

t=t′

∑
(i,j)∈[Vt]2

∥xt
ij∥A−1

t
1{ot = Vt}

]
Besides, we only use the independent pairs Ωt to update the model and the corresponding At matrix. Therefore,
to bound the regret, the pairs can be divided into two parts based on whether they are belonging to the observed
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set Ωt. Then, we have the following inequalities,∑T

s=t′

∑
(i,j)∈Ωs

∑
k∈[Vt]\{i,j}

2xs
ik

⊤A−1
s xs

jk

≤
∑T

s=t′
(V 2

max − 2Vmax)P
2/λmin(As).

And for the pairs belonging to the {Ωs}Ts=1, based on Lemma 10 and Lemma 11 in [14], we have,∑T

s=t′

∑
(i,j)∈Ωs

(Vt − 1)∥xs
ij∥2A−1

s
≤ 2dVmax log(1 +

omaxTP
2

2dλ
)

Then, chaining all the inequalities, we have when event Et happens, the regret can be upper bounded as,

RT ≤R′ +
∑T

s=t′
rs ≤ R′ +

1

p∗
2dVmaxC log(1 +

omaxTP
2

2dλ
)

where C = 2Nk2µν
2/c2µc

2∆2
min, R′ = t′Vmax, with t′ defined in Lemma 2.2.3. This completes the proof.

D Proofs of Lemmas in Appendix B
In this section, we provide the detailed proofs of Lemma B.9 and Lemma B.8 in Section B. For the technical
lemmas, interested readers can refer to the original paper to [15] for more details.

We need the following technical lemma adopted from [15].

Lemma D.1 (Lemma 5.1, [15]). Let G = [g(x1;θ0), . . . ,g(xnT
;θ0)]/

√
m ∈ Rp×nT . Let H be the NTK

matrix as defined in Definition A.1. For any δ ∈ (0, 1), if

m = Ω

(
L6 log(nTL/δ)

ϵ4

)
,

then with probability at least 1− δ, we have ∥G⊤G−H∥F ≤ nϵ.

D.1 Proof of Lemma B.9
In this section, we will provide the detailed proof of Lemma B.9. First, assume that until round t, there are in
total nPt observed document pairs, e.g.,

∑t−1
s=1 |Ωind

s | = nPt ≤ Vmaxt, where | · | represents the cardinality of
the designated set, and Vmax is the maximum number of document pairs that can be observed given query
q across all queries. For simplicity, we will re-index all the observed pairs until round t from 1 to nt in the
following analysis.

Then, for round t, define the following quantities,

J(j) =
(
g(x1,1;θ

(j))− g(x1,2;θ
(j), . . . ,g(xnP

t ,1;θ
(j))− g(xnP

t ,2;θ
(j))
)
∈ Rp×nP

t (D.1)

H(j) = J(j)⊤J(j) ∈ RnP
t ×nP

t (D.2)

f (j) =
(
f(x1,1;θ

(j))− f(x1,2;θ
(j)), . . . , f(xnP

t ,1;θ
(j))− f(xnP

t ,2;θ
(j))
)⊤
∈ RnP

t ×1 (D.3)

p(j) =
(
σ(f(x1,1;θ

(j))− f(x1,2;θ
(j))), . . . , σ(f(xnP

t ,1;θ
(j))− f(xnP

t ,2;θ
(j))
)⊤
∈ RnP

t ×1 (D.4)

y =
(
y1, . . . ynP

t

)⊤ ∈ RnP
t ×1 (D.5)
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According to the loss function defined in Eq (2.1.2), we have the update rule of θ(j) as follows:

θ(j+1) = θ(j) − η[J(j)(p(j) − y) +mλ(θ(j) − θ(0))] (D.6)

Besides, we have the following auxiliary sequence {θ̃(k)},

θ̃(0) = θ(0), θ̃(j+1) = θ̃(j) − η[J(0)(σ(J(0)⊤(θ̃(j) − θ̃(0)))− y) +mλ(θ̃(j) − θ̃(0))].

Next lemma provides perturbation bounds for J(j),H(j) and ∥f (j+1)− f (j)− [J(j)]⊤(θ(j+1)−θ(j))∥2.

Lemma D.2. There exist constants {Ĉi}6i=1 > 0 such that for any δ > 0, if τ satisfies that

Ĉ1m
−3/2L−3/2[log(nTL

2/δ)]3/2 ≤ τ ≤ Ĉ2L
−6[logm]−3/2,

then with probability at least 1− δ, for any j, s ∈ [J ], ∥θ(j) − θ(0)∥2 ≤ τ and ∥θ(s) − θ(0)∥2 ≤ τ , we have
the following inequalities,∥∥J(j)

∥∥
F
≤ Ĉ4

√
nPt mL, (D.7)

∥J(j) − J(0)∥F ≤ Ĉ5

√
nPt m logmτ1/3L7/2, (D.8)∥∥f (s) − f (j) − [J(j)]⊤(θ(s) − θ(j))

∥∥
2
≤ Ĉ6τ

4/3L3
√
nPt m logm, (D.9)

∥y∥2 ≤
√
nPt . (D.10)

Lemma D.3. There exist constants {C̃i}4i=1 > 0 such that for any δ > 0, if τ, η satisfy that

C̃1m
−3/2L−3/2[log(nTL

2/δ)]3/2 ≤ τ ≤ C̃2L
−6[logm]−3/2, ,

η ≤ C̃3(mλ+ nPt mL)
−1, τ8/3 ≤ C̃4m(λη)2L−6(nPt )

−1(logm)−1,

then with probability at least 1− δ, for any j ∈ [J ], ∥θ(j) − θ(0)∥2 ≤ τ , we have ∥p(j) − y∥2 ≤ 2
√
nPt .

Next lemma gives an upper bound of the distance between auxiliary sequence ∥θ̃(j) − θ(0)∥2.

Lemma D.4. There exist constants {Ci}3i=1 > 0 such that for any δ ∈ (0, 1), if τ, η satisfy that

C1m
−3/2L−3/2[log(nPt L

2/δ)]3/2 ≤ τ ≤ C2L
−6[logm]−3/2, η ≤ C3(n

P
t mL+mλ)−1,

then with probability at least 1− δ, we have that for any j ∈ [J ],∥∥θ̃(j) − θ(0)
∥∥
2
≤
√

2nPt /(mλ), and
∥∥θ̃(j) − θ(0) − ŵt

∥∥
2
≤ (1− ηmλ)j/2

√
nPt /(mλ).

With above lemmas, we prove Lemma B.9 as follows.
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Proof of Lemma B.9. Set τ =
√
2nPt /(mλ). First we assume that ∥θ(j) − θ(0)∥2 ≤ τ for all 0 ≤ j ≤ J .

Then with this assumption and the choice of m, τ , we have that Lemma D.2, D.3 and D.4 hold. Then we have∥∥θ(j+1) − θ̃(j+1)
∥∥
2

=
∥∥θ(j) − θ̃(j) − ηJ(j)(p(j) − y)− ηmλ(θ(j) − θ(0)) + ηJ(0)(σ(J(0)⊤(θ̃(j) − θ̃(0)))− y) + ηmλ(θ̃(j) − θ̃(0))

∥∥
2

=
∥∥(1− ηmλ)(θ(j) − θ̃(j))− η(J(j) − J(0))(p(j) − y)− ηJ(0)(p(j) − σ(J(0)⊤(θ̃(j) − θ̃(0))))

∥∥
2

≤
∥∥(1− ηmλ)(θ(j) − θ̃(j))

∥∥
2
+ η
∥∥(J(j) − J(0))(p(j) − y)

∥∥
2
+ η
∥∥J(0)

∥∥
2

∥∥p(j) − σ(J(0)⊤(θ̃(j) − θ̃(0)))
∥∥
2

≤
∥∥(1− ηmλ)(θ(j) − θ̃(j))

∥∥
2
+ η
∥∥(J(j) − J(0))(p(j) − y)

∥∥
2
+ kµη

∥∥J(0)
∥∥
2

∥∥f (j) − J(0)⊤(θ̃(j) − θ̃(0))
∥∥
2

≤
∥∥(I− η(mλI+ kµH

(0)))
∥∥
2

∥∥θ(j) − θ̃(j)
∥∥
2
+ η
∥∥J(j) − J(0)

∥∥
2

∥∥p(j) − y
∥∥
2

+ kµη
∥∥J(0)

∥∥
2

∥∥f (j) − J(0)⊤(θ(j) − θ(0))
∥∥
2

where the inequality holds due to triangle inequality, matrix spectral norm inequality, and the Lipschitz
continuity of the logistic function. We now bound the three terms in the RHS separately.∥∥I− η(mλI+ kµH

(0))
∥∥
2

∥∥θ(j) − θ̃(j)
∥∥
2
≤ (1− ηmλ)

∥∥θ(j) − θ̃(j)
∥∥
2
,

where the inequality holds since, η(mλI − kµ[J(0)⊤J(0)]) ⪯ η(mλI + C1ntmLI) ⪯ I, for some C1 > 0,
where the inequality holds due to the choice of η. For the second term, we have,

η
∥∥J(j) − J(0)

∥∥
2

∥∥p(j) − y
∥∥
2
≤ C2ηn

P
t τ

1/3L7/2
√
m logm,

for some C2 > 0, where the inequality holds due to Eq (D.8) and Lemma D.3. For the third term,

kµη
∥∥J(0)

∥∥
2

∥∥f (j) − J(0)⊤(θ(j) − θ(0))
∥∥
2
≤ C3ηn

P
t mτ

4/3L7/2
√
logm

for some C3 > 0, where the inequality holds due to Eq (D.7) and Eq (D.9). By chaining all the inequalities,
we have,∥∥θj+1 − θ̃j+1

∥∥
2
≤ (1− ηmλ)

∥∥θ(j) − θ̃(j)
∥∥
2
+C2ηn

P
t τ

1/3L7/2
√
m logm+C3ηn

P
t mτ

4/3L7/2
√
logm,

where C4 > 0 is a constant. By recursively applying the above inequality from 0 to j, we have,∥∥θj+1 − θ̃j+1
∥∥
2
≤(C2ηn

P
t τ

1/3L7/2
√
m logm+ C3ηn

P
t mτ

4/3L7/2
√

logm)/(ηmλ) ≤ τ/2,

where C5 > 0 is a constant, the equality holds by the definition of τ . The last inequality holds due to the
choice of m, where m1/6 ≥ C4L

7/2(nPt )
2/3λ−2/3

√
logm(C2 +C3

√
nPt /λ). Therefore, for any j ∈ [J ], we

have ∥∥θ(j) − θ(0)
∥∥
2
≤
∥∥θ̃(j) − θ(0)

∥∥
2
+
∥∥θ(j) − θ̃(j)

∥∥
2
≤
√
nPt /(2mλ) + τ/2 = τ,

where the first inequality holds due to triangle inequality, the second inequality holds due to Lemma D.4. This
inequality also shows the assumption

∥∥θ(j) − θ(0)
∥∥
2
≤ τ holds for any j. Hence, according to Lemma D.4,

we have∥∥θ(j) − θ(0) − γ̂t

∥∥
2
≤ (1− ηmλ)j/2

√
t/(mλ) + C5m

−2/3L7/2(nPt )
7/6λ−7/6

√
logm(1 +

√
nPt /λ).

This completes the proof.
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D.2 Proof of Lemma B.8
We first define At = λI+

∑t−1
s=1

∑
(i′,j′)∈Ωind

s
gs,0
i′j′g

s,0⊤
i′j′ /m. By taking the gradient of Eq (B.7), we have γ̂t

as the solution of,

t−1∑
s=1

∑
(i′j′)∈Ωind

s

(
σ(⟨gs,0

i′j′ ,γ⟩)− y
s
i′j′

)
gs,0
i′j′ +mλγ = 0

Define qt(γ) =
∑t−1

s=1

∑
(i′,j′)∈Ωind

s
σ(⟨gs,0

i′j′ ,γ⟩)g
s,0
i′j′/m + λγ be the invertible function such that the esti-

mated parameter γ̂t satisfies q(γ̂t) = ysi′j′g
s,0
i′j′/m.

As logistic function σ(·) is continuously differentiable, ∇qt is continuous. Hence, according to the Fundamen-
tal Theorem of Calculus, we have qt(γ∗)− qt(γ̂t) = Qt(γ

∗ − γ̂t), where Qt =
∫ 1

0
∇qt (lγ∗ + (1− l)γ̂t) dl,

and γ∗ is the optimal solution of Eq (B.7), and according to Lemma B.3, γ∗ = θ∗ − θ0.

Therefore,∇qt(γ) =
∑t−1

s=1

∑
(i′,j′)∈Ωind

s
σ̇(⟨gs,0

i′j′ ,γ⟩)g
s,0
i′j′g

s,0
i′j′

⊤
/m+λI, where σ̇ is the first order derivative

of σ(·). Accordingly, we have the following inequality,

∥θ∗ − θ0 − γ̂t∥Āt
=∥Q−1

t (qt(θ
∗ − θ0)− qt(γ̂t))∥Āt

=

√
(qt(θ∗ − θ0)− qt(γ̂t))⊤Q

−1
t ĀtQ

−1
t (qt(θ∗ − θ0)− qt(γ̂t))

≤c−1
µ ∥qt(θ∗ − θ0)− qt(γ̂t)∥Ā−1

t

where the first equality is due to the definition of qt and Qt, and the inequality is based on the definition of
cµ, which is defined as cµ = infθ∈Θ σ̇(x⊤θ). It is easy to verify that cµ ≤ 1

4 . Thus, we can conclude that
Qt ⪰ cµĀt, which implies that Q−1

t ⪯ c−1
µ Ā−1

t .

Based on the definition of γ̂t and the assumption on the noisy feedback that ytij = σ(h(xi)− h(xj)) + ξtij ,
where ξtij is the noise in user feedback, we have

√
mqt(γ̂t)−

√
mqt(θ

∗ − θ0)

=

t−1∑
s=1

∑
(i′,j′)∈Ωind

s

(yi′j′ − ⟨gs,0
i′j′ , θ

∗ − θ0⟩)gs,0
i′j′/
√
m− λ

√
m(θ∗ − θ0)

=

t−1∑
s=1

∑
(i′,j′)∈Ωind

s

ξsi′j′g
s,0
i′j′/
√
m− λ

√
m(θ∗ − θ0).

As ξsi′j′ ∼ ν-sub-Gaussian, according to Theorem 1 in [14], with probability at least 1− δ1

∥
√
m(θ∗ − θ0 − γ̂t)∥Āt

≤c−1
µ ∥

t−1∑
s=1

∑
(i′,j′)∈Ωind

s

ξsi′j′g
s,0
i′j′/
√
m− λ

√
m(θ∗ − θ0)∥Ā−1

t

≤c−1
µ

(
∥

t−1∑
s=1

∑
(i′,j′)∈Ωind

s

ξsi′j′g
s,0
i′j′/
√
m∥Ā−1

t
+
√
λm∥θ∗ − θ0∥

)
≤c−1

µ (
√
ν2 log det(Āt)/(δ21 det(λI)) +

√
λS).

This completes the proof.
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D.3 Proof of Lemma B.10
As defined before, we assume that there are in nT possible document candidate to be evaluated during the
model learning, and there are NP

T possible document pairs to be evaluated, and NP
T =

∑T
s=1 V

2
s ≤ TV 2

max.
Then, we define the following quantities.

G = [g(x1;θ0)/
√
m, . . . ,g(xnT

;θ0)/
√
m] ∈ Rp×nT

Ĝ = [G, (g(x1,1;θ0)− g(x1,2;θ0))/
√
m, . . . , (g(xN,1;θ0)− g(xNP

T ,2;θ0))/
√
m] ∈ Rp×(NP

T +nT )

where Ĝ contains all the possible document features, and feature vectors of all the possible document pairs.
Similarly, we can have the corresponding Ĥ for Ĝ based on the values of H. We define the effective dimension
of Ĥ as,

d̂ = (log det(I+ Ĥ/λ))/(log(1 + 4(NP
T + nT )/λ)). (D.11)

First, we will verify the definition of the effective dimension. Suppose there exists a mapping ψ : Rd →
Rd̃ satisfying ∥ψ(x)∥2 ≤ 1 which maps any document feature vector x ∈ Rd to the Hilbert space H
associated with the Gram matrix H ∈ RnT×nT over the set of all the possible document features. Then
H = Ψ⊤Ψ with Ψ = [ψ(x1), ...ψ(xnT

)]. And for the pairwise matrix Ĥ, we have Ĥ = Ψ̂⊤Ψ̂ with
Ψ̂ = [ψ(x1), ψ(x1) − ψ(x2), ..., ψ(xnT

) − ψ(xnT−1), 0]. Thus, we can bound the effective dimension d̂
as,

d̂N =
log det(I+ Ĥ/λ)

log(1 + 4(NP
T + nT )/λ)

=
log det(I+ Ψ̂Ψ̂⊤/λ)

log(1 + 4(NP
T + nT )/λ)

≤ d̃ · log ∥I+ Ψ̂Ψ̂⊤/λ∥2
log(1 + 4(NP

T + nT ))

which is based on the fact that det(I + M⊤M/λ) = det(I + MM⊤/λ) holds for any M, and we have
det(M) ≤ ∥M∥d̃2 for any M ∈ Rd̃×d̃. As we know that,

∥I+ Ψ̂Ψ̂⊤/λ∥2 ≤ 1 + ∥Ψ̂Ψ̂⊤∥2/λ ≤ 1 +

nP
T∑

s=1

∥(ψ(xi,1)− ψ(xi,2))(ψ(xi,1)− ψ(xi,2))
⊤∥2/λ ≤ 1 + 4(nPT + nT )

we have d̂ ≤ d̃.

Proof of Lemma B.10. According to Lemma 11 in [14]], we have the following inequality:

T∑
t=1

∑
(i′,j′)∈Ωt

min

{
∥gt,0

i′j′/
√
m∥2

A−1
t
, 1

}
≤ 2 log

detAT

detλI
.

Based on the definition of G and Ĝ, we have,

log
detAT

detλI
= log det

(
I+

T∑
t=1

∑
(i′,j′)∈Ωind

t

gt,0
i′j′g

t,0⊤
i′j′ /(mλ)

)

≤ log det

(
I+

N∑
i=1

gig
⊤
i /(mλ)

)
= log det

(
I+ ĜĜ⊤/λ

)
= log det

(
I+ Ĝ⊤Ĝ/λ

)
,
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where the inequality holds naively, the third equality holds since for any matrix M ∈ Rp×N , we have
det(I+MM⊤) = det(I+M⊤M). Therefore, we have

log det

(
I+ Ĝ⊤Ĝ/λ

)
= log det

(
I+ Ĥ/λ+ (Ĝ⊤Ĝ−H)/λ

)
≤ log det

(
I+ Ĥ/λ

)
+ ⟨(I+ Ĥ/λ)−1, (Ĝ⊤Ĝ− Ĥ)/λ⟩

≤ log det

(
I+ Ĥ/λ

)
+ ∥(I+ Ĥ/λ)−1∥F ∥(Ĝ⊤Ĝ− Ĥ)/λ∥F

≤ log det

(
I+ Ĥ/λ

)
+
√
NP

T + nT ∥Ĝ⊤Ĝ− Ĥ∥2

where the first equality stands trivially, the second inequality is due to the convexity of log det(·), the third
inequality holds due to the fact that ⟨M,B⟩ ≤ ∥M∥F ∥B∥F , the third inequality holds due to the facts that
I+ Ĥ/λ ⪰ I, λ ≥ 1 and ∥M∥F ≤

√
N∥M∥2 for any M ∈ RN×N . According to Lemma D.1, we know that

with properly chosen m, ∥G⊤G−H∥F ≤ nϵ. For any (i, j) ∈ [N ]2 in Ĝ⊤Ĝ− Ĥ, we have

|⟨g(xi,1;θ0)− g(xi,2;θ0),g(xj,1;θ0)− g(xj,2;θ0)⟩/m− Ĥi,j |
≤|⟨g(xi,1;θ0),g(xj,1;θ0)⟩ −H(i,1),(j,1)|+ |⟨g(xi,1;θ0),g(xj,2;θ0)⟩ −H(i,1),(j,2)|
+ |⟨g(xi,2;θ0),g(xj,1;θ0)⟩ −H(i,2),(j,1)|+ |⟨g(xi,2;θ0),g(xj,2;θ0)⟩ −H(i,2),(j,2)|.

Therefore, we have ∥Ĝ⊤Ĝ− Ĥ∥F ≤ 4NP
T /nT ∥G⊤G−H∥F , and by choosing m, we have

log det

(
I+ Ĥ/λ

)
+
√
N∥Ĝ⊤Ĝ− Ĥ∥2 ≤ d̂ log(1 + 4(nT +NP

T )/λ) + 1

This completes the proof.

E Proofs of lemmas in Appendix D

E.1 Proof of Lemma D.2

Proof of Lemma D.2. With τ satisfying the condition of Lemmas B.5,B.6, and B.7, for any j ∈ [J ] at round t,
we have,

∥J(j)∥F ≤
√
nPt max

i∈[nP
t ]
∥g(xi,1;θ

(j))− g(xi,2;θ
(j))∥2 ≤ 2̂Cz

3

√
nPt mL (E.1)

where the first inequality holds due to ∥J(j)∥F ≤
√
nPt ∥J(j)∥2,∞, the second inequality holds due to the

triangle inequality and Lemma B.7. Accordingly, we have,

∥J(j) − J(0)∥F ≤
√
nPt max

i∈[nP
t ]
∥g(xi,1;θ

(j))− g(xi,2;θ
(j))− (g(xi,1;θ

(0))− g(xi,2;θ
(0)))∥2

≤2̂Cw
3 C

z
3

√
nPt m logmτ1/3L7/2, (E.2)

where the second inequality holds due to triangle inequality and lemma B.7. Similarly, we have,

∥f (s) − f (j) − [J(j)]⊤(θ(s) − θ(j))∥F ≤ Ĉ6τ
4/3L3

√
ntm logm,

where C4 > 0 and C5 > 0 are constants, the second inequality is based on Lemma B.5 with the assumption
that ∥θ(j) − θ(0)∥2 ≤ τ and ∥θ(s) − θ(0)∥2 ≤ τ .

Last, it is easy to have that ∥y∥2 ≤
√
nt maxi∈[nt] |yi| ≤

√
nt. This completes the proof.
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E.2 Proof of Lemma D.3

Proof of Lemma D.3. The proof is based on Lemma C.3 in [251], where the convergence of squared loss is
analyzed. In our case, we adopt the cross-entropy loss. In the following, we provide the key difference between
our analysis concerning the cross-entropy function.

With τ satisfying the conditions in Lemmas B.7, B.5, B.6, and the loss function we have for the neural network
as,

Lt(θ)

=

t∑
s=1

∑
(i,j)∈Ωind

s

−(1− ysij) log(1− σ(fij))− ysij log(σ(fij)) +
mλ

2
∥θ − θ0∥2

=

nt∑
i=1

−yi log(σ(f(xi,1;θ)− f(xi,2;θ))− (1− yi) log(1− σ(f(xi,1;θ)− f(xi,2;θ)) +
mλ

2
∥θ − θ0∥2

with the first equation the same as Eq (2.1.2), and we re-write the loss with nt, which is defined in the proof
lemma B.9.

We need the following quantities,

J(θ) =
(
g(x1,1;θ)− g(x1,2;θ), . . . ,g(xnt,1;θ)− g(xnt,2;θ)

)
∈ Rp×nt

f(θ) =
(
f(x1,1;θ)− f(x1,2;θ), . . . , f(xnt,1;θ)− f(xnt,2;θ)

)⊤
∈ Rnt×1

p(θ) =
(
σ(f(x1,1;θ)− f(x1,2;θ)), . . . , σ(f(xnt,1;θ)− f(xnt,2;θ))

)⊤
∈ Rnt×1

y =
(
y1, . . . ynt

)⊤ ∈ Rnt×1.

First, the cross entropy loss, l =
∑K

k=1−yk log(σ(sk))− (1− yk) log(1− σ(sk)) is convex and 1
4 -smooth.

The convexity is trivial to prove. For the smoothness, we have ∂l
∂sk

= σ(sk)−yk, and ∂2l
∂s2k

= σ(sk)(1−σ(sk)).

As σ(sk) ∈ [0, 1], ∂2l
∂s2 ⪯ 1

4I.

Based on the smoothness of cross entropy loss function, we have for arbitrary θ and θ′

Lt(θ
′)− Lt(θ) (E.3)

≤⟨p(θ)− y, f(θ′ − f(θ))⟩+ 1

8
∥f(θ′)− f(θ)∥2 +mλ⟨θ − θ0,θ′ − θ⟩+ mλ

2
∥θ′ − θ∥2

≤⟨∇L(θ),θ′ − θ⟩+ ∥p(θ)− y∥2∥e∥2 +
1

8
∥e∥2 + Ce

8
(mλ+ ntmL)∥θ′ − θ∥2 (E.4)

where e = f(θ′)− f(θ)− J(θ)⊤(θ′ − θ), the last inequality is based on Lemma D.2. By the convexity of
cross entropy loss, we have,

Lt(θ
′)− Lt(θ) ≥⟨p(θ)− y, f(θ′)− f(θ)⟩+mλ⟨θ − θ0,θ′ − θ⟩+ mλ

2
∥θ′ − θ∥2

≥− ∥∇L(θ)∥
2

2mλ
− ∥p(θ)− y∥2∥e∥2, (E.5)

where the third inequality is based on Cauchy-Schwarz inequality, the fourth inequality is based on the fact
that ⟨a,x+ c∥x∥22⟩ ≥ −∥a∥22/(4c) for any vectors a, x and. c > 0.
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Taking θ′ = θ − η∇L(θ) for Eq (E.4) and substituting Eq (E.5) into Eq (E.4), we have

Lt(θ − η∇L(θ))− Lt(θ) ≤− η(1−
Ce

8
(mλ+ ntmL)η)∥∇L(θ)∥2 + ∥p(θ)− y∥2∥e∥2 +

1

8
∥e∥2

≤mλη(L(θ′)− L(θ)/2) + ∥e∥22(1 + 2mλη + 2/(mλη)).

Interested readers can refer to [251] for the details of the derivations. It is easy to verify that ∥p(θ)− y∥2 ≤
2L(θ). Therefore, by taking θ = θ(j) and θ′ = θ(0), we have

L(θ(j+1))− L(θ(0)) ≤ (1−mλη/2)
[
L(θ(j))− L(θ(0))

]
+mλη/2L(θ(0)) + ∥e∥22

(
1 + 2mλη + 2/(mλη)

)
We have L(θ(0)) = nt log 2 ≤ nt, and ∥e∥22

(
1 + 2mλη + 2/(m/λη)

)
≤ mληnt/2 from [251], we have

L(θ(j+1))− L(θ0) ≤ 2nt, ∥p(j+1) − y∥2 ≤ 2
√
nt

This completes the proof.

E.3 Proof of Lemma D.4

Proof of Lemma D.4. It can be verified that τ satisfies the conditions of Lemma D.2, thus Lemma D.2 holds.
We know that θ̃(j) is the sequence generated by applying gradient descent on the following problem:

min
θ
L̃(θ) =

nt∑
i=1

−(1− yi) log(1− σ((g(xi,1;θ
(0))− g(xi,2;θ

(0)))⊤(θ − θ(0))))

− yi log(σ((g(xi,1;θ
(0))− g(xi,2;θ

(0)))⊤(θ − θ(0)))) +
mλ

2
∥θ − θ0∥2

Therefore ∥θ(0) − θ̃(j)∥2 can be bounded as

mλ

2
∥θ(0) − θ̃(j)∥22 ≤

nt∑
i=1

−(1− yi) log(1− σ((g(xi,1;θ
(0))− g(xi,2;θ

(0)))⊤(θ̃(j) − θ(0))))

− yi log(σ((g(xi,1;θ
(0))− g(xi,2;θ

(0)))⊤(θ̃(j) − θ(0)))) +
mλ

2
∥θ̃(j) − θ0∥2

≤
nt∑
i=1

−(1− yi) log(1− σ((g(xi,1;θ
(0))− g(xi,2;θ

(0)))⊤(θ̃(0) − θ(0))))

− yi log(σ((g(xi,1;θ
(0))− g(xi,2;θ

(0)))⊤(θ̃(0) − θ(0)))) +
mλ

2
∥θ̃(0) − θ0∥2.

It is easy to verify that L̃ is a mλ-strongly convex function and C1(ntmL+mλ)-smooth function for some
positive constant C1, since

∇2L̃ ⪯
(1
4

∥∥J(0)
∥∥2
2
+mλ

)
I ⪯ C1(ntmL+mλ),

where the first inequality holds due to the definition of L̃, the second inequality holds due to Lemma D.2. Since
we choose η ≤ C1(ntmL+mλ)−1, then by standard results of gradient descent on ridge linear regression,
θ̃(j) converges to θ(0) + γ̂t with a convergence rate specified as follows,∥∥θ̃(j) − θ(0) − γ̂t

∥∥2
2
≤(1− ηmλ)j · 2

mλ
(L(θ(0))− L

(
θ(0) + γ̂t

)
)

≤2(1− ηmλ)j

mλ
L(θ(0)) ≤ (1− ηmλ)jnt,
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where the first inequality holds due to the convergence result for gradient descent and the fact that θ(0) + γ̂t is
the minimal solution to L, the second inequality holds since L ≥ 0, the last inequality holds due to Lemma
D.2.
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