

Automated Loan Servicing Documentation

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Rudolph Schneider

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

1

ABSTRACT

The Mortgage and Loan Department at Wells

Fargo headquarters in Charlotte, North

Carolina needed a system to automate the

payment priority data on their service

agreement records. To fix this issue, I built an

application to automatically parse through

the different mortgage deals and their

respective service agreements and extract

data concerning prioritization of payments on

said mortgage deals. The application was

built entirely in Python and employed a

number of coding libraries to help me explore

Wells Fargo’s file system, as well as read in

the service agreements and write extracted

data to a separate file. Regular expressions

and breadth-first searching was used

extensively throughout my application to

help me locate both the service agreements

themselves and the required information

within the agreements. The completed

application was able to find and extract all

required information from a given service

agreement at an average of five seconds per

deal at an accuracy of around 98%, greatly

expediting a process that originally took

several minutes to complete per deal. Further

improvements to my application could give it

a much need user interface to assist with its

usability, as well as improvements on falsely

flagged service agreements extracted by the

application.

1. INTRODUCTION

Payment priority brackets are stipulations

on a loan that describe in which order a loan

should be paid back. For example, interest on

the loan must be paid back in full before the

principle of a loan can be paid. However, for

the multi-million, or sometimes multi-billion

dollar loans held by Wells Fargo, these

payment priority brackets are exceedingly

complex. A single deal can have as many as

32 different brackets, a level of complexity

that made it increasingly difficult to

document these brackets, especially when

new brackets are created each year. For years

employees within the Mortgage and Loan

Department at Wells Fargo would undergo

the yearly task of creating excel sheets listing

the payment priority brackets of each of their

thousands of loans they held. Employees

were forced to read through the loan’s entire

service agreement, which is a 400-500 page

document describing every detail of the loan,

in order to locate the section dictating the

payment priority bracket, and record its

contents onto a spreadsheet.

Every step in this process has an asterisk.

Sometimes service agreements are split into

separate parts or located dozens of files deep

within a directory. Which section in the

service agreement contains the payment

priority brackets is never consistent. The way

the brackets are represented (e.g., lists,

enumerated, if/then statements) change

constantly. Wording for payment priority

brackets are confusing and also vary wildly.

All these inconsistencies resulted in an

employee task that was not only boring and

monotonous, but frustrating as well.

I automated this process to relieve

employees of a task that wasted human

resources, and nobody wanted to perform. I

had the unique problem of creating a flexible

program that both accounted for the issues in

finding brackets and ensured that any

brackets added in the future would be caught.

2. RELATED WORKS

The application I created at Wells Fargo

falls under the branch of Robotic Process

Automation. RPA is an increasingly popular

mechanism to build automation on top

existing computer systems in order to

complete typically human tasks with robotic

levels of precision and efficiency (Asquith et.

al., 2019).

One such application of RPA to the field

of auditing was proposed by Moffit, et. al.

(2018) to complete more repetitive, trivial

tasks during an audit to free human auditors

2

to complete higher level tasks. This approach

to RPA is very similar to mine, as it applies

RPA to more monotonous tasks that can be

applied to time-intensive jobs and completed

without any level of machine learning or

artificial intelligence. However, since

auditing is such a robust process, not all tasks

can be solved this way. Thus, this approach

differs from my work at Wells Fargo as my

role was confined to automating the process

of finding priority brackets from start to

finish.

Another case study on the use of RPA in

the banking industry attempted the

application of RPA to a broad array of

banking-business related applications. Not

only was this study by Romao et. al. (2019)

more broad-reaching than mine, but also

included uses of AI for automation. This

approach makes sense for undertaking tasks

larger and more complex than just

documenting priority payment brackets, but

is also far riskier. I considered using AI when

I first started building my application, but

ultimately decided against it due to time

constraints and the risk of AI failing at tasks

if I did not train my application properly.

3. PROJECT DESIGN

Wells Fargo divides the content of their

different deals and holdings into several

different directories. These directories each

contain a large number of subdirectories that

represent individual loans held by Wells

Fargo. The loan subdirectories contain many

additional subdirectories and other files, the

service agreement being among them. It was

my task to first locate the service agreement

PDF file within these directories, then

process the service agreement to find and

extract the payment priority brackets within

them. I used Python scripts for both tasks, as

it was my preferred language and easily

available to me as an intern.

I first familiarized myself with the

language and layout of the service

agreements I would be processing, along with

the file systems that contained the deals. The

language of these service agreements varied

quite a bit from deal to deal, but there is a

general format that almost all deals followed

that allowed them to be processed for their

payment priority brackets without machine

learning. For example, all brackets are

enumerated with either cardinal numbers,

roman numerals, or ordinal numbers, and

thus can be evaluated through predetermined

regular expressions.

I first focused on the PDF processing, as

this was the most important function of my

project. I opted to use an open-source PDF

reading library to make the documents

digestible. The document first processed

page by page and concatenated into a single,

large string, as this made it very easy to work

with. From this giant string I was able to

locate the table of contents in the first few

pages, and then isolate sections that might

contain the payment priority brackets. This

was done through regular expressions, by

looking for keywords in section headers that

were likely to have priority brackets.

However, an issue I faced with almost

every PDF I ingested was that letters or entire

words would be garbled when taken in by the

reader. The issue lay with the PDF format

itself, not the reader, so I had to design a

work-around. I was forced to format every

regular expression I looked for to account for

possible errors, especially erroneously added

spaces, periods, or deleted letters. The

mechanism I used to search for the section

that contained the required brackets was

similar to a human’s approach; I separated

sections that might contain brackets, saved

their page number, and looked at that page

number to see if it contained language that

pertained to enumerating brackets. Here I

faced another issue, that many sections’ page

numbers were listed incorrectly. To account

for this, I had to search several pages before

or after the section to ensure I did not miss

3

the section. Once I found the correct section,

I separated the brackets using further regular

expressions. The method of enumeration for

the priority brackets varied from document to

document, but luckily could be separated

through regular expressions. Last, I extracted

the brackets from my script and wrote them

onto a separate spreadsheet file.

Once I completed the bracket finding

mechanism, the next step was finding the

deal’s PDF file within Wells Fargo’s

directories. To accomplish this, I created a

simple breadth first search script designed to

search through a desired directory. The script

would then check if any given file matched

regular expressions that pertain to service

agreement PDFs. If so, it opened that file and

ran it through the bracket processing script

repeatedly until it produced a single

spreadsheet containing every service

agreement’s brackets of separate lines.

I designed my application for Wells

Fargo employees within their Service and

Loans department who had little to no

experience with coding, so I wanted to make

it easy to set up and use. I limited myself on

how many libraries I needed to install so

employees could download and set up my

application quickly and hassle-free. I also

made the functionality of my application

come down to a single command line

instruction, my main script followed by the

path of the directory of interest, to further

simplify things for the end users.

Additionally, because my application was

built out entirely in Python, only Python

would have to be installed on the user’s

machine for my program to run.

4. RESULTS

The program I created was used by the

Service and Loans Department of Wells

Fargo in Charlotte to drastically decrease the

time it took to extract payment priority

bracket details for their mortgage loan

holdings. Employees must find these

brackets on both new and old deals, resulting

in thousands of service agreements being

evaluated or reevaluated every year. As

preparation for my project, I preformed this

evaluation manually on several different

service agreements. On average, this took me

around 10 minutes, not including the time

theoretically required to search for the

desired service agreement within a Wells

Fargo directory, although I imagine a

seasoned employee would be able to do this

process in around half the time. In trial runs,

my application extracted all required

information in a directory full of service

agreements at an average of about five

seconds per service agreements. Most of this

time was actually spent just searching for

service agreements, and an isolated service

agreement could be processed in around a

second. Trial tests also showed that if a

document was a service agreement, it was

correctly identified and had its contents

correctly extracted 98% of the time.

It should be noted that my program had a

high false positive rate; that is, it processed

many documents that were not actually loan

servicing agreements. This was by design as

falsely processed documents added little time

and added harmless additional lines to the

spreadsheet, in exchange for a low chance of

missing actual service agreements. From the

number of service agreements processed per

year, I estimated the amount of time I saved

in automating this process to be around 400

hours per year. At an average salary of 80k a

year, this would save Wells Fargo around

$16,000 a year.

5. CONCLUSION

The program I created utilized RPA

techniques and regular expressions to

properly document loan servicing documents

for Wells Fargo in a fraction of the time when

compared to traditional, manual methods of

documentation. I found workarounds for

formatting issues in the documents,

4

simplified my design to account for

useability, and trained employees on the use

of my program. Through this project I

eliminated a monotonous job for Wells Fargo

workers, while improving both my technical

and social skills. In the end, my work was

able to save Wells Fargo an estimated

hundreds of hours of productivity and

thousands of dollars in wages.

6. FUTURE WORK

My project could be further improved by

increasing ease of use and functionality. I

was unable to implement a UI for my

program during my internship, which would

have greatly simplified the process of

running my application. Since the end users

have little technical background, using

command-line arguments to run my program

may still be confusing for them.

Additionally, I would have liked to have

improved the high false positive rate of my

program. Though it does little to affect the

end product, it would make the output look

far cleaner, and would be relatively simple to

implement by tweaking the regular

expressions that look for the servicing

agreement PDFs.

There is also the possibility of adapting

my project to other documentation tasks on

other documents or information, not just loan

servicing agreements. Given more time, I

could refactor my code to find different kinds

of data for servicing agreements or other

financial documents.

REFERENCES

Kevin C. Moffitt, Andrea M. Rozario, Miklos

A. Vasarhelyi. 2018. Robotic Process

Automation for Auditing. Journal of

Emerging Technologies in Accounting 1 July

2018; 15 (1): 1–10.

https://doi.org/10.2308/jeta-10589

M. Romao, J. Costa and C. J. Costa. 2019.

"Robotic Process Automation: A Case Study

in the Banking Industry," 2019 14th Iberian

Conference on Information Systems and

Technologies (CISTI), Coimbra, Portugal,

2019, pp. 1-6, doi:

10.23919/CISTI.2019.8760733.

