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Abstract 

 

The theory of elasticity serves as a vital mathematical framework for studying 

deformations and stress distributions in elastic solid bodies and structural members subjected to 

external loads. However, the analysis of three-dimensional elasticity problems can be intricate and 

computationally demanding. To simplify the analysis, assumptions are made based on the 

geometry and boundary conditions, leading to quasi-three-dimensional models. This dissertation 

presents, for the first time, novel implementations of finite-volume based solutions for important 

classes of elasticity problems discussed in standard and advanced monographs on the theory of 

elasticity, namely: plane problems, torsion problems, and flexure problems of structural members.  

For plane problems, which pertain to structural members subjected to loads acting solely 

in the plane of the structure, the dissertation formulates plane stress, plane strain, and generalized 

plane strain conditions within a parametric finite-volume framework. This framework is extended 

to analyze orthotropic and monoclinic materials. The developed finite-volume method (FVM) is 

verified using elasticity solutions for bending of rectangular cantilever beams under plane strain 

and plane stress assumptions and then applied to investigate deformation and attendant stress fields 

of multi-layered and heterogeneous beams with inclusions and porosities. Additionally, FVM is 

employed to assist in accurate shear characterization of advanced unidirectional composites in off-

axis tension tests and Iosipescu shear tests. 

This dissertation also addresses the study of prismatic bars with arbitrary cross sections 

bounded by a cylindrical surface and transverse planes with loadings applied solely on their end 

faces. Solutions to this class of problems play critical roles in structural engineering design of 

members of practical cross sections whose response to transverse loading is limited to bending, 

with twisting eliminated or minimized. By utilizing the principle of superposition, the complete 

equilibrium problem of an elastic bar was solved by decomposing the applied loading into four 

elementary loadings: extension, bending, torsion, and flexure. FVM-based approach was 

subsequently developed to analyze torsion of bars with curved boundaries and to assess the flexural 

response of beams with different cross sections. The accuracy and convergence of the FVM were 

validated through comparison with analytical solutions for cross sections with convex and concave 

boundaries. 
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Overall, FVM was demonstrated to successfully assess torsion-flexure behavior of various 

beam cross sections of practical interest in structural design. Upon comparison with three-

dimensional finite element simulations of a series of cantilever beams, it also verified Saint 

Venant's principle often invoked in structural design by quantifying the extent to which end effects 

propagate into the beam.   

The developed method fills the gap in the elasticity theory formulation and limited 

analytical solutions of complex problems, offering a powerful alternative to variational techniques. 

The findings obtained by the demonstrated accurate FVM analyses of a wide range of structural 

problems contribute to the design and development of safer and more efficient structures in various 

engineering fields. Moreover, the method’s transparent framework makes it readily accessible to 

the structural engineering community, democratizing the analysis and design process. A Graphical 

User Interface (GUI) developed for torsion problems of common structural engineering members 

has been employed successfully in the delivery of advanced mechanics of materials courses and 

made available to structural engineers in the industry and government laboratories. 
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Chapter 1  

Introduction 

 

1.1 Motivation 

 Structural engineering, one of the disciplines of civil engineering, aims to design and create 

forms, shapes, and constructs of man-made structures that meet desired function and safety 

requirements. It is crucial to calculate stability, strength, stiffness, and even dynamic susceptibility 

of built structures including buildings and other types of structures. Stability, strength, stiffness, 

and dynamic susceptibility are potentially involved in the integral structural design, manufacture 

and building process, and they are calculated based on applied physical laws and empirical 

knowledge of structural performance of different materials and configurations. Empirical 

knowledge in structural engineering leads to the application of proven sizes, proportions, materials, 

and assemblies based on previous engineering practice, and the basis of empirical design is merely 

accumulated experience without regard to any systematic theory. Previous experience increases 

our confidence in conventional design; however, it can be insufficient or inaccurate when 

constructing novel or complex structures. The theory of elasticity provides the underpinning 

knowledge necessary for the design of durable and safe structures. In particular, as most civil 

structures are designed to resist loadings and provide long-term service without drastic geometric 

changes, linear elasticity enables accurate analysis of structural members undergoing small 

deformations. 

 Elasticity is the ability of a deformed elastic material body to return to its original shape 

and size when the forces causing the deformations are removed. The theory of elasticity is 

concerned with the study of the response of elastic material bodies to the action of applied forces. 

In linear elasticity, deformations do not exceed certain limits that are determined by the constitutive 

characteristics of materials represented by mathematical models of linearly elastic solid materials. 

The linearly elastic properties of any solid material relate forces to deformations, thus providing 
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rigorous mathematical insight into physics. Hooke's law states that the force needed to extend or 

compress a spring by some distance scales linearly with respect to that change in the spring’s 

length, and the generalization of this principle to continuous elastic materials produces generalized 

Hook’s law that is essentially important in the fundamentals of elasticity. A wide range of real 

structural engineering problems undergoing small deformation may be solved using this model 

within the framework of elasticity. 

 One of the fundamental concepts in mechanics is continuum. At the atomistic scale, a 

medium occupied by a solid or fluid, is made of discrete particles of protons, neutrons, and 

electrons; macroscopically, the medium is assumed to contain no gaps or voids between material 

points so that it can be divided indefinitely into smaller and smaller parts without encountering a 

void. This ideal concept allows to shrink an arbitrarily small region to a point, and all spatial 

derivatives of various quantities associated with the medium can be properly defined using the 

tools of calculus. 

 The governing equations of a continuum are derived using the laws of physics, which are 

the principle of conservation of mass, the principle of balance of linear momentum, the principle 

of balance of angular momentum, and the principle of conservation of energy. However, these 

principles do not explicitly account for geometric changes or mechanical responses of the 

continuum. Without these considerations, the equations derived from the conservation and balance 

laws are insufficient to determine the total response of a continuum. Moreover, to apply these 

equations in the small or at a point within a body, additional variables need to be introduced that 

define the internal forces and deformations, how they are allowed to vary and how they are related. 

These variables describe the statics and kinematics of material points within the body. 

 The variation of internal forces or statics is described using the concept of traction or force 

intensity acting across an infinitesimal area of a surface as this area tends to a point (see Figure 

1-1), 

 𝑡𝑖 = 𝜎𝑖𝑗𝑛𝑗 (1. 1) 



 3 

where 𝑛𝑗  is the unit normal vector components. Hence an infinitesimal material element with six 

orthogonal faces is subjected to three traction vectors on the front faces, and equal but opposite 

traction vectors on the back faces that ensure equilibrium in each orthogonal axial direction. 

Traction vectors on each face may be expressed in terms of normal and tangential components, 

leading to the concept of a stress tensor at a point characterized by nine components that occur in 

pairs on three faces. 

 

Figure 1-1 Illustration of stress and traction in an infinitesimal cubical element in a body 

The moment equilibrium about each of the three orthogonal axes leads to the symmetry of the 

stress tensor components. Moreover, the force equilibrium consideration of an infinitesimal 

tetrahedron generated by slicing the infinitesimal material element diagonally leads to the 

conclusion that the stress components transform as the components of a second-order tensor from 

one coordinate system to another. If we allow the stress components on opposite faces of an 

infinitesimal material element to vary, we obtain three partial differential equations of equilibrium 

that govern the variation of six stress components from material point to material point along three 

orthogonal axes, 

 
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝑝𝑖 = 0 (1. 2) 
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 The variation of internal deformations or kinematics is described using the concept of strain. 

Strain is defined in terms of displacements by measuring the change in the distance between any 

two infinitesimally close adjacent material points. This leads to the expressions for strain 

components in terms of three displacement components of a material point along the three axes, 

known as strain-displacement relations.  In linear elasticity, strain is assumed to be small so that 

the strain valid for large deformation is replaced by its first-order approximation, 

 𝜖𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) +

𝜕𝑢𝑘
𝜕𝑥𝑖

𝜕𝑢𝑘
𝜕𝑥𝑗

 →  𝜖𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)  (1. 3) 

where 𝑢 ’s are the displacement components and 𝑥 ’s are the coordinate components in the 

permutation notation. By definition, the nine strain components are symmetric, and may be shown 

to obey second-order tensor coordinate transformation laws. Whereas the three continuous 

displacement components may be varied arbitrarily, the six strain components may not because 

the integration of the six strain-displacement equations may not produce unique expressions of 

displacements if strain variation is prescribed arbitrarily. The uniqueness of displacements is 

ensured by compatibility conditions, which impose constraints on how each strain can vary with 

spatial coordinates. 

 𝛿𝑖𝑗𝑘𝛿𝑝𝑞𝑟
𝜕2𝜖𝑗𝑞

𝜕𝑥𝑘𝜕𝑥𝑟
= 0 (1. 4) 

Three compatibility equations govern the variation of three in-plane strains in each plane, and the 

remaining three govern the variation of shear strains in each plane. They may be considered 

analogous to the stress equilibrium equations. 

 Constitutive equations describe the mechanical behavior of the continuum, and for a 

linearly elastic solid relate stress components (static variables) to strain components (kinematic 

variables). The most general way to relate the second-order stress tensor components to the 

corresponding strain components in a three-dimensional space is through a fourth-order tensor 
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called the stiffness tensor as follows: 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑚𝜀𝑘𝑚, ensuring each stress component is a linear 

combination of all nine strain components. If the material is isotropic (independent of the 

orientation of the material tested), homogeneous and linearly elastic, the number of coefficients in 

fourth-order tensor is reduced to two, and the stress-strain relation is simplified as 

 𝜎𝑖𝑗 = 𝜆𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝜖𝑖𝑗 (1. 5) 

where 𝜆 and 𝜇 are known as Lamé’s constants, and 𝛿𝑖𝑗 is the Kronecker delta. 

 In general, the governing differential equations in elasticity represent the variation in the 

dependent variables, such as strain and stress, as a function of position and time. The governing 

differential equations involve derivatives with respect to spatial coordinates and time, the solution 

of problems in elasticity depends on the appropriate boundary and initial conditions. For example, 

an elasticity problem could be simplified as a boundary value problem if it is time-independent, 

and one can either employ the displacement formulation or stress formulation to solve this problem. 

 In the displacement formulation, the three stress equilibrium equations are expressed in 

terms of displacements using stress-strain and strain-displacement equations to yield three 

Navier’s equations, 

 (𝜆 + 𝜇)
𝜕2𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
+ 𝜇

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

+ 𝑝𝑖 = 0 (1. 6) 

This formulation with continuous displacement fields automatically satisfies the compatibility 

conditions. Therefore, the displacements, strains and stresses (15 variables) can be solved from the 

strain-displacement equations, stress-strain relations and stress equilibrium equations (15 

equations). Those fifteen equations can be incorporated into three Navier’s equations for three 

displacement components in a homogenous isotropic medium. The other formulation is the stress 

formulation, which requires the satisfaction of the six strain compatibility equations. Stress 

formulation expresses strain compatibility equations in terms of six stress components using stress-
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strain relations and stress equilibrium equations where strain-displacement equations are not 

actually used. While Navier’s equations depict a relationship for the displacements, the stress 

formulation alternatively develops a relationship for the stresses by incorporating the strain-stress 

relations into the compatibility equations, which are known as Beltrami-Michell equations. 

 𝜎𝑖𝑗,𝑘𝑘 +
1

1 + 𝜐
𝜎𝑘𝑘,𝑖𝑗 = −

𝜐

1 − 𝜐
𝑝𝑘,𝑘𝛿𝑖𝑗 − (𝑝𝑖,𝑗 + 𝑝𝑗,𝑖) (1. 7) 

A summary of the governing equations of elasticity described above is provided in the table below. 

Table 1-1 The governing differential equations in elasticity 

 Equation expression in index notation Equation set index Number of 

equations 

in each set 

Strain-displacement 

equations 
𝜖𝑖𝑗 =

1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

(1.1) 6 

Constitutive equations 

(stress-strain relations) 
𝜎𝑖𝑗 = {

𝐶𝑖𝑗𝑘𝑚𝜀𝑘𝑚 (anisotropic)

𝜆𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝜖𝑖𝑗  (isotropic)
  (1.2) 6 

Stress equilibrium equations 𝜕σ𝑖𝑗

𝜕𝑥𝑗
+ 𝑝𝑖 = 0 (1.3) 3 

Strain compatibility equations 
𝜖𝑖𝑗𝑘𝜖𝑝𝑞𝑟

𝜕2𝑒𝑗𝑞

𝜕𝑥𝑘𝜕𝑥𝑟
= 0 

(1.4) 6 

Navier’s equations (𝜆 + 𝜇)
𝜕2𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
+ 𝜇

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

+ 𝑝𝑖 = 0 
(1.1)+(1.2)+(1.3) 3 

Beltrami-Michell equations 𝜎𝑖𝑗,𝑘𝑘 +
1

1 + 𝜐
𝜎𝑘𝑘,𝑖𝑗 = −

𝜐

1 − 𝜐
𝑝𝑘,𝑘𝛿𝑖𝑗 − (𝑝𝑖,𝑗 + 𝑝𝑗,𝑖) 

 

(1.2)+(1.3)+(1.4) 6 

 To solve a set of differential equations for an elasticity problem, boundary conditions are 

crucial to determine the solution from those governing differential equations with either 

displacement or stress formulation. Based on prescribed displacements, tractions, or both on the 

boundary of the analyzed object, there are three types of boundary conditions: displacement 

boundary conditions, traction boundary conditions and mixed boundary conditions with both 

prescribed displacements and tractions.  

 A general analytical solution to the three-dimensional governing differential equations for 

an arbitrarily shaped body does not exist. Hence elasticity problems are divided into classes of 
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problems which enables simplification of the solution based on specific constraints and boundary 

conditions with appropriate assumptions made for the geometric shape of the object. 

1.2 Categories of Elasticity Problems and Solution Methodologies 

 The categories of elasticity problems are based on geometry and the manner of boundary 

condition application that gives rise to specific functional forms of displacements, strains and 

stresses arising within the elastic body or structure. The extension, torsion and flexure of prismatic 

bars is directly applicable to structural engineering problems involving beams of arbitrary cross 

sections loaded on their ends only, with the bounding surface parallel to the axis traction free.  

 Plane problems is another large category applicable to prismatic bars with rectangular cross 

sections. Quasi-three-dimensional problems involving axisymmetric geometries and loading is 

another class that reduces to fields in cylindrical coordinates without longitudinal dependence. The 

most general class involves fully three-dimensional problems where the displacements, strains and 

stresses are functions of the three spatial coordinates, and hence require fully numerical 

formulations and solutions. The specific classes of problems and corresponding analytical solution 

methodologies that serve as validation tools for established or emerging alternative solution 

approaches are discussed in the sequel to motivate the approach taken in this dissertation in solving 

structural engineering problems. 

1.2.1 Extension, Torsion and Flexure Problems 

 One technically important class of problems in the theory of elasticity concerns the study 

of prismatic bars of arbitrary cross section bounded by a cylindrical surface and by a pair of planes 

normal to the traction-free surface with loading applied only on its end faces. Suppose the length 

of such a bar is much longer than its transverse dimensions, the exact details of end face load 

application would not matter so long as the resultants forces or moments are statically equivalent 

to the applied ones. Based on Saint-Venant’s principle, the effect of actual load distribution decays 

rapidly with the distance from the ends, leaving the stress or strain field in a central region 

depending only on the force resultants transmitted along the prismatic bar. The solution to such 

problems is directly applicable to beams of arbitrary cross section loaded on their end faces. 
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Figure 1-2 Four fundamental elasticity problems for prismatic bars 

 The complete problem of equilibrium of an elastic bar with a traction-free lateral surface 

can be solved by utilizing the principle of superposition because loading applied to the end faces 

may be decomposed into four elementary loadings that produce: extension, bending, torsion, and 

flexure (illustrated in Figure 1-2). The flexure problem involves loading of the bar’s end-face by 

tangential force that produces not just bending about two axes orthogonal to the bar’s longitudinal 

axis, but also twisting if not applied through a specific point. The identification of this point, as 

known as the shear center, is a key problem in the design of prismatic bars. The combined problem 

involving loading by end-face tangential forces that produce both bending and torsion is often 

known as the torsion-flexure problem. 

 The general way to solve the four elementary problems (extension, bending, torsion, and 

flexure) is the Saint-Venant’s semi-inverse method. Categorizing a bar problem into any of those 

four consists of making certain assumptions about the components of stress, strain, or displacement, 

yet leaving enough freedom in the quantities involved to satisfy equilibrium and compatibility 

conditions. The extension of homogeneous isotropic beams by longitudinal forces has a straight-

forward solution where the non-zero stress is the only normal stress in the direction of extension 
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based on uniform stretch assumption. The stress in a bar subjected to a bending moment that 

produces constant curvature gives rise to axial normal stress that varies linearly across the bar’s 

cross section, with the origin set at the centroid. This result is valid for any cross-section’s shape. 

The remaining problems involving torsion and flexure require more intricate analysis and solution 

approaches and are discussed below. 

Saint-Venant’s Torsion Problem 

 The solution to torsion problems occupies an important place in the theory of elasticity as 

it demonstrates an important solution technique that reduces a seemingly three-dimensional 

elasticity problem involving three unknown displacements to a two-dimensional one involving just 

one displacement. In this approach, known as Saint Venant's semi-inverse method, explicit 

expressions for the two in-plane displacements in the bar's cross section are obtained from 

geometric considerations of the deformation of a prismatic bar subjected to pure torsion by twisting 

moments directed along the bar's axis applied to the end faces. The out-of-plane displacement, 

proportional to the so-called warping function, is assumed to depend on the in-plane coordinates. 

The displacement field satisfies two of the three equilibrium equations of elasticity and produces 

only shear stresses acting on the bar's cross section that generates the applied twisting moment. 

The governing differential equation for the unknown warping function is the Laplace equation 

obtained from the third equilibrium equation, expressed in terms of displacements, that relates the 

out-of-plane shear stress components. The boundary conditions that the warping function must 

satisfy are given in terms of the normal derivative of the warping function on the cross-section’s 

boundary defined by the boundary itself. They are obtained from the traction-free condition on the 

bar’s lateral boundary. This formulation belongs to one of the boundary-value problems in the 

potential theory and may be solved in terms of harmonic functions. However, it is more convenient 

to reformulate the problem in terms of the Prandtl stress function defined to satisfy the third 

equilibrium equation directly. The Prandtl stress function is governed by the Poisson’s equation 

subject to simpler boundary conditions that may be used to construct solutions to a number of 

technologically important cross section using simple polynomials (circular, elliptical and 

triangular) or Fourier series (rectangular). 
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 A general solution methodology to torsion problems involves the use of a complex potential, 

with real and imaginary harmonic parts representing the warping function and its complement, that 

may be expressed in terms of a series or constructed through a mapping of a unit circle onto the 

actual cross section of the bar, both in complex planes. The mapping function for an arbitrary cross 

section involves complex series whose coefficients dictate the actual shape. This approach requires 

the determination of the inverse transformation in the construction of the complex potential 

function which is typically done numerically. For this reason, numerical techniques based on 

variational principles or finite-difference approximation of the governing differential equations are 

prevalent for pure torsion of arbitrarily shaped cross sections. 

Flexure Problem 

 The solution to the flexure problem is also obtained using the Saint-Venant’s semi-inverse 

method, albeit based on the assumption of axial stress field motivated by the bending problem. 

The governing differential equations for the remaining stress components are obtained from the 

compatibility equations and reduced to the determination of three harmonic functions that 

represent bending about two orthogonal axes and twisting. The general torsion-flexure problem 

may be decoupled into pure torsion and bending problems if a point is found through which a 

prismatic bar, fixed at one end and loaded at the other, may be loaded to produce just pure bending. 

This point known as the shear center plays a significant role in the design of cantilever beams. By 

identifying the location of the shear center, one can minimize the local twisting in the torsion-

flexure problem by applying the loading on it. 

 Analytical solutions have been developed for torsion-flexure problems, but they are limited 

to cross sections that are typically not of wide-ranging structural engineering interest. Beam cross 

sections that appear in structural designs, including I-beams, T-beams, and channel beams amongst 

many others, are not easily amenable to analytical techniques and require either thin-wall 

approximations when applicable or numerical solutions. 

1.2.2 Plane Problems 

 Plane problems are two-dimensional problems wherein the stress and displacement 

components in the analysis plane of the structure depend on only two in-plane coordinates and the 
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boundary conditions are imposed in that plane. They are simplified elasticity models that are more 

manageable than those simulated in real three-dimensions. In these simplified elasticity models, 

the variation of the specific mechanical response is neglected in the thickness direction. 

 There are two distinct types of two-dimensional problems: plane strain and plane stress 

(see Figure 1-3). Plane strain arises in the study of the deformation of large cylindrical bodies 

loaded by external forces so that the component of deformation in the direction of the axis of the 

cylinder vanishes.  The remaining components do not vary along the length of the cylinder. Plane 

stress appears in the study of the deformation of thin plates without any capability to resist the 

stress in the out-of-plane direction. Therefore, the stress components in the direction of the 

thickness of the plate vanish. These two physically distinct assumptions can be useful when 

modeling certain idealized geometries and solving technically important structural problems. 

 

Figure 1-3 Plane stress (left) and plane strain (right) illustration 

 The solution of a problem under either the plane strain or plane stress assumptions involves 

finding a two-dimensional stress field, defined in terms of the in-plane stress components which 

satisfy the equilibrium equations, Eq. (1. 1), and for which the corresponding strains satisfy only 

one compatibility equation, Eq. (1. 4). Additionally, the relation between the in-plane shear stress 

and the in-plane shear strain stays the same for both assumptions. In fact, the equilibrium and 

compatibility equations are the same in both assumptions, with the only difference being in the 

relation between the stress and strain components. 
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 The general method of solution of two-dimensional boundary value problems in elasticity 

requires proof of the existence of solutions, the method involving the complex variable is based 

on a reduction of the problems to the solutions of certain functional equations in a complex domain, 

thus effectively deduces explicit solutions of many technically important problems. In plane 

elasticity, Kolossoff (1909) put forward the systematic use of the complex variable theory. The 

complete conclusion was made forty years later inspired by the work of Muskhelishvili (1953). 

The boundary value problems in plane elasticity can always be reduced from a set of differential 

equations to solving a biharmonic equation of the case with the absence of body force. The Airy 

stress function, which relates to the three in-plane stress components, is specifically used for two-

dimensional elasticity problems without any body forces. Therefore, stress fields that are derived 

from an Airy stress function which also satisfies the biharmonic equation will certainly satisfy 

equilibrium and correspond to compatible strain fields. Most three-dimensional problems are 

treated in terms of displacements instead of strains, which satisfies the requirement of 

compatibility identically. However, in two-dimensional problems, all except one of the 

compatibility equations degenerate to identities, so that a formulation in terms of stresses or strains 

is more practical than the displacements. Solving this sort of problem is essentially looking for the 

solution to the fundamental biharmonic boundary-value problem for a homogeneous isotropic 

elastic material. Because this boundary-value problem depends on the Airy stress function, two 

analytical functions of a complex variable rise to be the key to the general solution of the 

biharmonic solution. Analytical solutions to the biharmonic equation have their limitations in 

dealing with problems with irregular domains, therefore mapping to a unit circle was introduced 

to the complex theory method to better approximate the analyzed domains. Methods of the theory 

of functions of a complex variable and the conformal transformation can give solutions to planes 

with arbitrary shapes, and have been applied for solving many plane elasticity problems, yet they 

are not computationally efficient with high accuracy results because the mapping function is based 

on sufficient finite series of complex functions. 

 With the rapid development of composites technology, materials employed in beams can 

be tailored and assembled to achieve the required stiffness and strength of the beam. Composite 

beams are widely used in civil, mechanical and aerospace engineering to resist end loadings with 

better performance, for instance, reinforced concrete beams, rotating shafts in advanced motor 
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engines, air-craft wings, etc. They all involve the problem of determining this “central” form of 

stress or strain distribution associated with various force resultant at the end of beam. 

1.3 The Finite Volume Method in the Solution of Elasticity Problems 

 Numerical methods based on variational principles in mechanics can provide solutions to 

elasticity problems for which analytical solutions do not exist, in the case of complex geometries 

and heterogeneous materials for instance. These methods are in wide use because they only require 

use of standard functions and operations, thereby avoiding complex mathematical manipulation 

and computation. Variational formulation of boundary value problems may be traced to minimum 

hypotheses that minimize certain functionals and is based on the continuous development of 

solutions of differential equations by using variational ideas. Rayleigh (1896), Ritz (1909), and 

Galerkin (1968) were the major contributors to approximations of solutions based on variational 

methods in engineering applications at the end of the nineteenth century and in the early years of 

the twentieth century. Modern variational principles began with the works of Hellinger (1907) and 

Hu (1955), and Reissner (1950) (1965) (1985) on mixed variational principles for elasticity 

problems. The finite element method (FEM) then became a popular method for numerically 

solving differential equations in engineering practice. While solving an elasticity problem, the 

FEM discretizes a large object into smaller and simpler parts that are called finite elements. This 

is achieved by a particular space partitioning in the space dimensions, which is implemented by 

the construction of a mesh of the object: the numerical domain for the solution, which has a finite 

number of points. The finite element method formulation of a boundary value problem results in 

a system of algebraic equations rather than differential equations. The FEM approximates a 

solution at nodes by minimizing an associated error function via the calculus of variations, and 

finally gives the approximation of the unknown variables over the entire domain. 

 An attractive alternative to the solution of the elasticity problem is offered by the finite-

volume method (FVM) which has gained popularity because of its explicit form and ability to deal 

with composite structures. FVM is a well-established numerical technique for the solution of 

boundary-value problems in fluid mechanics, cf. LeVeque (2002), Versteeg and Malalasekera 

(1965). The entire domain also requires discretization like FEM, but each partition is called 

“subvolume” as the conventional name of the domain is “volume” inherited from fluid mechanics.  
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Satisfaction of the governing field equations within subvolumes of the investigated discretized 

domain in an integral sense is a key feature of FVM which distinguishes it from variational 

techniques such as the finite-element method. In the context of fluid mechanics applications, this 

is done upon first expressing the field equations in a finite-difference form, and then extrapolating 

the grid point field variables to the subvolume surfaces surrounding each point to enable the 

required surface integration, thereby ensuring local field equation satisfaction in the integral sense. 

The simplicity and stability of the FVM in fluid mechanics applications have motivated the 

transition of this technique to solid mechanics problems as an alternative to the finite-element 

approach. Three versions of the finite-volume technique can be identified in the analysis of solid 

mechanics problems, as Cavalcante et al. (2012) discussed. These versions are characterized by 

different subvolume discretization of the investigated domain and different displacement field 

representations within subvolumes, which lead to a different manner of approximating field 

variables along subvolume surfaces. 

 The first two approaches, known as the cell-centered and cell vertex finite-volume 

techniques originally developed for homogeneous materials and structures, were motivated by the 

established finite-volume technique for fluid mechanics problems and elements of the finite-

element method. The cell-centered FVM is similar to the original fluid mechanics version and 

employs subvolumes which are centered around grid points at which field variables are defined. 

In the cell vertex or vertex-based version, the finite-volume approach leverages elements of the 

finite-element method in domain discretization and displacement field approximation. The third 

version of FVM evolved independently and nearly in parallel to model materials with 

heterogeneous microstructures, including periodic and functionally graded materials, cf. Suquet 

(1985), Charalambakis and Murat (2006), Buryachenko (2007), Birman and Byrd (2007), 

Chatzigeorgiou et al. (2008), and Paulino et al. (2003). The structural finite-volume theory has its 

origins in the so-called Higher-Order Theory for Functionally Graded Materials (HOTFGM), 

developed in a sequence of papers in the 1990s and summarized in Aboudi et al. (1999). This 

theory provided the main framework for the construction of its homogenized counterpart initially 

named the Higher-Order Theory for Periodic Multiphase Materials by Aboudi et al. (2003). The 

structural and homogenized versions of these so-called higher-order theories were subsequently 

reconstructed in a sequence of papers by Bansal and Pindera (2003) (2005) (2006) and Zhong et 
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al. (2004) by simplifying the discretization of the analysis domain which, in turn, facilitated 

implementation of the efficient local/global stiffness matrix approach, Bufler (1971), Pindera 

(1991). The re-constructed theories were further extended by Cavalcante et al. (2007), Gattu et al. 

(2008) and Khatam and Pindera (2009) by incorporating parametric mapping to enable efficient 

modeling of complex microstructures using quadrilateral subvolumes. The re-constructed finite-

volume theories are similar to the cell-centered techniques that evolved in parallel for 

homogeneous materials and structures during the same time frame. However, in contrast with the 

early cell-centered techniques, the re-constructed theories employ explicit displacement field 

approximation within individual subvolumes, and follow an elasticity-based approach in satisfying 

interfacial displacement and traction continuity conditions in a surface-averaged sense. This is 

consistent with the satisfaction of equilibrium equations in a surface-averaged sense and leads to 

an explicit construction of local stiffness matrices for individual subvolumes which, in turn, 

substantially reduces the number of unknown variables, and allows direct comparison with the 

finite-element method. Assembly of local stiffness matrices into the global stiffness matrix is then 

performed such that the continuity of surface-averaged tractions and displacements is satisfied. 

The satisfaction of both traction and displacement continuity across subvolume faces produces a 

robust solution technique that naturally accommodates heterogeneous material microstructures. A 

review of FVM in solid mechanics applications has been recently provided by Cardiff and 

Demirdzic (2021). 

1.4 Objectives 

 The overarching objective of this dissertation is to demonstrate the application of the FVM 

developed at the University of Virginia during the past twenty years to structural engineering 

problems involving torsion, flexure and plane problems of elasticity theory, thereby building a 

bridge between the two fields that are often treated separately. This involves further extension of 

the theory to enable solutions to the above classes of problems, and subsequent application to the 

solution of specific problems of importance in the design of structural engineering components as 

well as advanced material testing. Traditional and emerging structural components are considered, 

including components made up of laminated cross sections, and cross sections reinforced or 

weakened by cylindrical inclusions or cavities. Application to the testing of orthotropic and 

monoclinic materials using the off-axis tension test and Iosipescu shear test for the determination 
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of axial and transverse moduli of unidirectional composites, is also provided through appropriate 

extension of the theory. 

 The proposed work fills the gap between structural engineering and mechanics on the one 

hand and elasticity theory formulation and limited solutions of the related problems when they 

cannot be treated using the analytical approach. It also provides a powerful alternative to the 

widespread use of variational techniques for the considered classes of structural engineering 

problems. 

1.5 Contribution and Its Significance 

 While FVM has been used extensively in the solution of plane problems with isotropic 

materials, including contact and crack problems, there appear to be no reported results that address 

the use of FVM in the solution of plane problems with materials more complicated than orthotropic, 

such as monoclinic materials with a single plane of material symmetry. Materials with monoclinic 

elastic moduli in the coordinate system in which analysis is conducted are obtained by rotating a 

unidirectional composite through an angle about the out-of-plane axis. Multi-directional laminated 

plates made up of a number of such plies are employed in numerous structural engineering 

applications, including the aircraft industry. Off-axis plies are also employed in the determination 

of the axial shear modulus of advanced unidirectional composites based on the off-axis tension 

test because of its simplicity. The extended finite-volume theory enables re-examination of the 

effects of various parameters on the accuracy of the results obtained from this test method. 

 Selected problems involving laminated constructs with rectangular cross sections within 

the plane strain elasticity framework are also revisited in the context of microstructural effects 

introduced by the individual layers. Explicit treatment of such microstructures based on the finite-

element method is challenging due to the need for extensive discretization when the elastic moduli 

contrast between the layers is large in the presence of large number of layers. Such problems are 

illustrated to be readily solved using FVM.  

 The major contributions of this dissertation include further extension of the finite-volume 

theory to the Saint-Venant’s torsion problem involving arbitrarily shaped cross sections enabled 

by newly implemented parametric mapping, and the implementation of displacement-based 



 17 

formulation of the general flexure problem based on the inverse method. The parametric mapping 

capability is implemented within any structured or non-structured mesh framework. This is 

complemented by a novel incorporation of arbitrary discretization capability and the corresponding 

assembly algorithm for the global system of equations that enables efficient modeling of cross 

sections reinforced or weakened by inclusions or porosities, illustrated through examples from the 

plant world. 

 In addition, there is a need for accurate, efficient and easy-to-use computational tools that 

automatically generate results and provide quick answers to pure torsion and the more general 

torsion-flexure problems in the analysis and design of structural elements. The final products of 

this research are computer codes that enable pure torsion and combined torsion-flexure analysis of 

homogeneous and composite structures with the output given in terms of displacement, strain, and 

stress fields, as well as the torsion rigidity and shear center location, based on solid elasticity 

foundations. At present, this may only be achieved by a detailed finite-element analysis based on 

a variational principle that requires detailed meshing, as well as substantial training. The 

MATLAB-based computational tool executed through a user-friendly graphical user interface 

based on the developed finite-volume solution strategy will democratize structural engineering 

analysis in this area, increasing accessibility, and accelerating the development of novel structural 

designs. 

1.6 Outline 

 The rest of this dissertation is organized as follows. Chapter 2 describes the parametric 

finite volume method solving for the solution of structural mechanics problems for orthotropic and 

monoclinic materials within the plane stress and plane strain frameworks, with application to on-

axis and off-axis plies and laminated bars of rectangular cross section under tensile, shear and 

flexural loading. Chapter 3 illustrates the finite-volume solution of Saint-Venant’s torsion problem 

for homogenous and heterogenous orthotropic prismatic bars of arbitrary cross section that require 

parametric mapping. Both elasticity and finite-element method results are included for comparison 

with the results generated by FVM based on displacement formulation. Extension of the theory to 

the general torsion-flexure of structures constructed with homogenous orthotropic materials is 

given in Chapter 4. The torsion-flexure performances of beams are both analyzed by FVM and 
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analytical method for simple axis-symmetric geometry cross sections loading going through the 

centroid of the free end face. Chapter 5 discusses the twisting center of any cross sections subjected 

to torsion, and also includes the algorithm for finding the shear center of arbitrary homogenous 

shape cross sections via FVM. With the knowledge of the shear center location determined, FVM 

is further validated by the flexure for a category of heterogenous cantilever beam. Chapter 6 

explores the three-dimensional structural problem of prismatic cantilever beams subjected to 

torsion-flexure deformation and assesses the constraint-induced effects for specific cross sections 

between the proposed FVM and three-dimensional finite-element method (3D FEM). Lastly, 

Chapter 7 summarizes the approach of bridging elasticity and structural engineering with FVM 

and the contributions to both elasticity and structural engineering communities. 
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Chapter 2  

Plane Problems 

 

2.1 Introduction 

 Solutions to most three-dimensional problems in structural engineering are typically not 

feasible to obtain analytically due to their complexity. However, many three-dimensional problems 

may be reduced to two-dimensional if the variation of specific mechanical response in one 

direction is negligible. This makes such reduced problems more manageable than those simulated 

in three dimensions. These types of simplifications produce approximate models which do not 

capture all the details in three dimensions, often not necessary, and the nature and accuracy of the 

approximation depend on the problems themselves and their loading conditions. Simplifying a 

three-dimensional problem greatly reduces the computational cost of structural analysis. 

 Two fundamental simplifications which are frequently used in solid mechanics are the 

plane strain and plane stress conditions, where solutions are developed for dimension-reduced 

problems with axis of symmetry or two-dimensionality. The problems within the plane stress and 

plane strain assumptions are categorized as plane problems, and plane strain and plane stress 

conditions simplify particular aspects of the complete problem formulation to a plane. The 

formulation of plane problems results in boundary value problems cast within a two-dimensional 

domain in a Cartesian coordinate system. Labeling the direction along which stress and strain 

quantities do not change as 𝑧, the plane problem analysis is reduced to the 𝑥 − 𝑦 plane. 

 The solutions to plane elasticity problems using the finite volume method are well 

documented for isotropic materials, including those with spatial property variations called 

functionally graded materials cf., Cavalcante and Pindera (2007). Fewer FVM-based solutions to 

plane problems are available for orthotropic or monoclinic materials in the plane of analysis, 

including plates laminated with orthotropic layers subjected to bending by transverse loads. Hence 

in this chapter, the previously developed FVM is extended to the analysis of structural components 
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composed of orthotropic and monoclinic in a state of plane stress, plane strain or generalized plane 

strain as appropriate, and applied to several technologically important problems. 

2.2 Plane Problems 

 We consider problems involving structures of arbitrary cross section in the 𝑥 –  𝑦 plane that 

are either very thin or very thick in the direction of the 𝑧 axis. Moreover, the loading is applied in 

the 𝑥 –  𝑦 plane in a manner that does not vary along the 𝑧 axis, and the cross-section dimensions 

do not change along this axis. The material or materials making up the cross section obey 

generalized Hooke’s law whose structure depends on the number of planes of material symmetry 

relative to the 𝑥 –  𝑦 –  𝑧  coordinate system. For orthotropic materials with three planes of 

symmetry, the stiffness matrix [𝑪] of the generalized Hooke’s law has the form, 

 [𝑪] =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13
𝐶12 𝐶22 𝐶23
𝐶13 𝐶23 𝐶33

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐶44 0 0
0 𝐶55 0
0 0 𝐶66]

 
 
 
 
 

 (2. 1) 

This form is general enough to admit unidirectional composites with the fibers oriented either 

along the 𝑥 axis, 𝑦 axis or 𝑧 axis, with the corresponding relationships among the various stiffness 

matrix components. Additional relationships are obtained when the stiffness matrix represents 

isotropic materials. For monoclinic materials with the 𝑥 –  𝑦 plane as the single plane of material 

symmetry, the stiffness matrix [𝑪] has the form, 

 [𝑪] =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13
𝐶12 𝐶22 𝐶23
𝐶13 𝐶23 𝐶33

0 0 𝐶16
0 0 𝐶26
0 0 𝐶36

0 0 0
0 0 0
𝐶16 𝐶26 𝐶36

𝐶44 𝐶45 0
𝐶45 𝐶55 0
0 0 𝐶66]

 
 
 
 
 

 (2. 2) 
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This form represents a unidirectional composite with fibers rotated through an angle about the 𝑧 

axis, producing a material with just one plane of material symmetry in the fixed 

𝑥 –  𝑦 –  𝑧 coordinate system. 

 Structural components with in-plane dimensions that are large relative to the thickness 

dimension along the 𝑧 axis are assumed to be in plane stress condition in the 𝑥 –  𝑦 plane, if they 

are homogeneous and if the lateral surfaces are traction free. In this case, the state of stress is 

assumed to have the following functional form,  

 

𝜎𝑥𝑥 = 𝜎𝑥𝑥(𝑥, 𝑦), 𝜎𝑦𝑦 = 𝜎𝑦𝑦(𝑥, 𝑦), 𝜎𝑥𝑦 = 𝜎𝑥𝑦(𝑥, 𝑦) 

𝜎𝑧𝑧 = 𝜎𝑥𝑧 = 𝜎𝑦𝑧 = 0 

(2. 3) 

where potential dependence of in-plane stresses on the 𝑧 coordinate is neglected, and the out-of-

plane stresses vanish given the lateral surface traction-free condition and the small thickness of the 

structure relative to cross-section dimensions. These assumptions imply that if there is a 𝑧 

dependence on the in-plane stress components, it is small. Additionally, the out-of-plane stresses, 

if present, are small relative to the in-plane stresses and are typically neglected. These 

approximations make the concept of plane stress an approximate one. Hence the corresponding 

strain components are also functions of only the in-plane coordinates 𝑥 and 𝑦 in light of Eqs. (2. 

1) and (2. 2), with the additional result that the out-of-plane normal and shear strains vanish. With 

the absence of the stresses 𝜎𝑧𝑧, 𝜎𝑥𝑧 and 𝜎𝑦𝑧 in the assumption, the derivation of its compliance 

matrix reduced for monoclinic materials under the plane stress condition is elaborated in Appendix 

I.  

 Conversely, when the thickness dimension of the structural component becomes large 

relative to the in-plane dimensions, the deformation is prevented along the 𝑧 axis, and the loading 

applied in the 𝑥 –  𝑦 plane on the boundary of the cross section does not vary with the 𝑧 coordinate, 

the functional form of the displacement field in the 𝑥 –  𝑦 –  𝑧 coordinate system becomes, 



 22 

 𝑢 = 𝑢(𝑥, 𝑦), 𝑣 = 𝑣(𝑥, 𝑦), 𝑤 = 0 (2. 4) 

Using strain-displacement relations, the corresponding strains have the functional form, 

 

𝜖𝑥𝑥 = 𝜖𝑥𝑥(𝑥, 𝑦), 𝜖𝑦𝑦 = 𝜖𝑦𝑦(𝑥, 𝑦), 𝛾𝑥𝑦 = 𝛾𝑥𝑦(𝑥, 𝑦) 

𝜖𝑧𝑧 = 𝛾𝑥𝑧 = 𝛾𝑦𝑧 = 0 

(2. 5) 

The above strain field in the plain strain condition produces stress field of the same functional 

form as that for the plane stress state, with the exception that the normal stress component 𝜎𝑧𝑧 is 

also a function of the in-plane coordinates 𝑥 and 𝑦, which is obtained directly from generalized 

Hooke’s law. With the absence of the strains 𝜖𝑧𝑧, 𝜖𝑥𝑧 and 𝜖𝑦𝑧 in the assumption, the derivation of 

its compliance matrix reduced for monoclinic materials under the plane strain condition is also 

detailed in Appendix II.  

 The concept of generalized plane strain is similar to that of plane strain except that the 

constraint on the out-of-plane normal strain is replaced by 𝜖𝑧𝑧 =  𝜖𝑧𝑧
𝑜 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. The constant 

is either specified or obtained from the condition that the average stress in the direction of the 𝑧 

axis is known, 𝜎𝑧𝑧 = ∫ 𝜎𝑧𝑧𝑑𝐴
 

𝐴
  (where 𝐴  is the entire cross-sectional area). This average stress 

includes zero if no total force is acting in 𝑧 direction. 

 The above assumptions on the functional form of stresses and displacements reduce the 

generalized Hooke’s law, producing direct relations between the in-plane stresses and strains for 

plane stress, plane strain and generalized plane strain situations. Below, we list these reduced 

constitutive equations for the most general case of monoclinic material described by Eq. (2. 2). 

For plane stress problems, we obtain, 
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 [

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

] = [

𝐶1̅1 𝐶1̅2 𝐶1̅6
𝐶1̅2 𝐶2̅2 𝐶2̅6
𝐶1̅6 𝐶2̅6 𝐶6̅6

] [

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

] (2. 6) 

where 𝐶�̅�𝑗 = 𝐶𝑖𝑗 −
𝐶𝑖3𝐶3𝑗

𝐶33
 (𝑖, 𝑗 = 1, 2, 6)  are called reduced stiffness elements. For orthotropic 

materials, the terms that couple normal stresses to shear strains, and vice versa, vanish, 𝐶16 =

𝐶26 = 𝐶36 = 𝐶45 = 0, which results in 𝐶1̅6 = 𝐶2̅6 = 0 and 𝐶6̅6 = 𝐶66. 

 Alternatively, for plane strain problems, the relations between in-plane stresses and strains 

relations reduce directly to, 

 [

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

] = [

𝐶11 𝐶12 𝐶16
𝐶12 𝐶22 𝐶26
𝐶16 𝐶26 𝐶66

] [

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

] (2. 7) 

with the out-of-plane normal stress 𝜎𝑧𝑧 obtained in terms of the in-plane stresses. For generalized 

plane strain problems, the above constitutive relations are modified as follows, 

 [

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

] = [

𝐶11 𝐶12 𝐶16
𝐶12 𝐶22 𝐶26
𝐶16 𝐶26 𝐶66

] [

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

] + [

𝐶13
𝐶23
𝐶36

] 𝜖𝑧𝑧 (2. 8) 

where the overall out-of-plane strain 𝜖𝑧𝑧
𝑜  is either specified or determined as a part of the solution.  

 For all the above classes of plane problems, the in-plane stresses and strains are functions 

of the in-plane coordinates, the out-of-plane shear stresses and strains are zero, and the out-of-

plane normal stress and strain are either zero or constant. Therefore, the essential governing 

differential equations described in Chapter 1, equilibrium reduces as follows, 
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𝜕𝜎𝑥𝑥
𝜕𝑥

+
𝜕𝜎𝑥𝑦

𝜕𝑦
= 0 

𝜕𝜎𝑥𝑦

𝜕𝑥
+
𝜕𝜎𝑦𝑦

𝜕𝑦
= 0 

(2. 9) 

in the absence of body forces, and compatibility reduces as follows 

 
𝜕2𝜖𝑥𝑥
𝜕𝑦2

+
𝜕2𝜖𝑦𝑦

𝜕𝑥2
=
𝜕2𝛾𝑥𝑦

𝜕𝑥𝜕𝑦
 (2. 10) 

For plane stress problems, the additional compatibility equations that are not identically satisfied 

 
𝜕2𝜖𝑧𝑧
𝜕𝑥2

=
𝜕2𝜖𝑧𝑧
𝜕𝑦2

=
𝜕2𝜖𝑧𝑧
𝜕𝑥𝜕𝑦

= 0 (2. 11) 

are simply neglected, which further highlights the approximate nature of the plane stress 

formulation even though solutions may satisfy exactly the reduced system of governing differential 

equations and the corresponding boundary conditions.  

The above equations are solved subject to boundary conditions on the bounding surface of 

the structure that may be specified in terms of displacements, 

 

𝑢 = 𝑢𝐶(𝑥, 𝑦) on  𝐶 

𝑣 = 𝑣𝐶(𝑥, 𝑦) on  𝐶 

(2. 12) 

tractions, 
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𝑡𝑥
𝑛 = 𝜎𝑥𝑥

(𝐶)
𝑛𝑥 + 𝜎𝑥𝑦

(𝐶)
𝑛𝑦 on 𝐶 

𝑡𝑦
𝑛 = 𝜎𝑥𝑦

(𝐶)
𝑛𝑥 + 𝜎𝑦𝑦

(𝐶)
𝑛𝑦 on 𝐶 

(2. 13) 

or a combination of the two. 

 Solutions to the above elasticity equations subject to the specified boundary conditions, 

dependent on the problem at hand, may be formulated using displacement or stress formulation 

for the three classes of problems discussed in the foregoing. In the displacement formulation, the 

stress equilibrium equations are expressed in terms of displacements using strain-displacement and 

constitutive equations, reducing the problem to two coupled partial differential equations in the 

unknown displacements 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) subject to displacement, traction, or mixed boundary 

conditions. These equations are similar for the three classes of plane problems, with the difference 

in the constant coefficients multiplying various partial derivatives of the displacements involving 

elastic moduli that depend on whichever plane stress, plane strain, or generalized plane strain 

problem is being solved. 

 In the stress formulation, the governing equations are the two stress equilibrium equations, 

Eq. (2. 9) and the surviving compatibility equation, Eq. (2. 10), which is then expressed in terms 

of in-plane stresses using the constitutive equations, and further simplified with the aid of the two 

stress equilibrium equations. A potential function called Airy’s stress function is subsequently 

introduced from which in-plane stresses are derived such that the stress equilibrium equations are 

identically satisfied, thereby reducing the three equations to a single compatibility equation in the 

unknown potential. For isotropic materials, this fourth-order partial differential equation is known 

as the biharmonic equation which is characterized by the absence of material dependent 

coefficients associated with the various partial derivatives. Its solution has been described in 

Chapter 1 for plane problems. For orthotropic or monoclinic materials, the transformed 

compatibility equation contains material dependent coefficients, different for plane stress and 

plane strain problems, complicating the solution approaches. The monograph by Ting (1996) is 

one of the few authoritative books on anisotropic elasticity with applications to composite 

materials. 
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2.3 Finite Volume Method for Plane Problems 

 The finite volume method employs the displacement formulation to solve plane problems 

involving arbitrary cross sections of investigated structural components that may be homogeneous 

or heterogeneous. These features motivate the partition of the cross section into quadrilateral 

subvolumes that are assigned material properties which mimic the cross-section’s microstructure 

and shape. The subvolumes may be isotropic, transversely isotropic in the 𝑥 –  𝑦 plane, orthotropic 

or monoclinic. These quadrilateral subvolumes are the elementary units in the finite volume 

analysis wherein the local displacement fields are approximated using simple polynomial 

expressions. Using the displacement formulation ensures that the compatibility equations in each 

subvolume are identically satisfied, and the use of strain-displacement and constitutive equations 

leads to direct calculation of the local stress fields through simple differentiation. In addition, the 

use of simple polynomials precludes point-wise satisfaction of the displacement and traction 

components across common faces of adjacent subvolumes. Hence a compromise is employed that 

involves the imposition of interfacial displacement and traction continuity in a surface-average 

sense. The equilibrium equations are satisfied in a surface-average sense as well. Hence the 

solution strategy employed in FVM follows the elasticity-based solution strategy, albeit in a 

surface-average as opposed to a point-wise sense. Thus, it differs fundamentally from the 

variational-based solution strategies based on energy minimization. Whereas the subvolume 

equilibrium is always satisfied in a surface-average sense, the point-wise accuracy of the method 

increases with partition refinement. 

 The above overview of the method clearly suggests that the finite volume method was 

originally developed as a semi-analytical tool to account for material heterogeneity with arbitrary 

geometric shapes and distributions, and avoid intricate mathematical derivations in the presence 

of complex microstructural details in the solution of plane problems beyond isotropic materials. In 

this chapter, structures and components with orthotropic and monoclinic materials with the plane 

of material symmetry lying in the 𝑥 − 𝑦  plane are analyzed due to their importance in the 

composite structural industry. This fills a void in the current literature where the majority of 

analyses are conducted for cross sections made up of isotropic materials. 
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 The partitioning of the analyzed domain using (𝑖) quadrilateral subvolumes to 

accommodate cross sections of arbitrary shapes is accomplished using parametric mapping of the 

actual quadrilateral subvolume in the physical plane, Figure 2-1 (left), onto the square domain in 

the reference plane, Figure 2-1 (right). The displacement field approximation is also made in the 

reference plane, and thus the FVM analysis, which entails the development of relations between 

displacement and traction quantities, is conducted in both planes. The establishment of these 

relations enables the construction of the local stiffness matrix for each quadrilateral subvolume in 

the physical plane that relates the surface‐averaged in-plane displacements to the corresponding 

tractions. The local stiffness matrix is constructed such that the quadrilateral subvolume’s 

equilibrium is satisfied in the physical plane, and the assembly of all the local stiffness matrices 

ensures that traction and displacement continuity, and prescribed boundary conditions are satisfied 

as well. 

 

Figure 2-1 Mapping of square reference subvolume onto quadrilateral one used in the 

construction of meshes for FVM analysis 

 This section first describes the parametric mapping employed in the theory’s construction, 

followed by subvolume discretization into quadrilateral partitions, displacement field construction, 

and the solution for these in‐plane displacements using the parametric FVM. Towards this end, 

local coordinate systems  (�̅�, �̅�)(𝑖) are set up at the subvolumes’ centroids, where the coordinates 

(𝑥, 𝑦)(𝑖)of an arbitrary point within the subvolume (𝑖) are referred to the global coordinate system. 

The global coordinates are employed in the parametric mapping described in the following 

subsection, whereas the local coordinates transferred in the reference system are employed in the 

in-plane displacement, strain, and stress field representation in each subvolume. 
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2.3.1 Parametric Mapping 

 The reference subvolume is a square in the 𝜂 –  𝜉 plane bounded by −1 ≤ 𝜂 ≤ 1, 1 ≤ 𝜉 ≤

1. The vertices are numbered such that the first set of coordinates is at the lower left corner and 

the numbering convention increases in a counterclockwise fashion. The faces are numbered 

similarly such that the face 𝐹𝑝 lies between the vertices (�̅�𝑝, �̅�𝑝)
(𝑖)

and (�̅�𝑝+1, �̅�𝑝+1)
(𝑖)

 with 𝑝 + 1 

going to 1 when 𝑝 = 4. Thus, the components of the unit normal vector 𝒏𝒑
(𝒊) = [𝑛𝑥, 𝑛𝑦]𝑝

(𝑖)
 to the 

face 𝐹𝑝 in each subvolume (𝑖) are given by 

 𝑛𝑥|𝑝 =
�̅�𝑝+1
(𝑖) − �̅�𝑝

(𝑖)

𝑙𝑝
,  𝑛𝑦|𝑝 =

�̅�𝑝+1
(𝑖) − �̅�𝑝

(𝑖)

𝑙𝑝
 (2. 14) 

where 𝑙𝑝 = √(�̅�𝑝+1
(𝑖) − �̅�𝑝

(𝑖))
2

+ (�̅�𝑝+1
(𝑖) − �̅�𝑝

(𝑖))
2

. The mapping if the point (𝜂, 𝜉) in the reference 

subvolume to the corresponding point (�̅�, �̅�)(𝑖) in the subvolume of the actual discretized cross 

section is given by Cavalcante et al (2007). 

 

�̅�(𝑖)(𝜂, 𝜉) = 𝑁1(𝜂, 𝜉)�̅�1
(𝑖)
+ 𝑁2(𝜂, 𝜉)�̅�2

(𝑖)
+𝑁3(𝜂, 𝜉)�̅�3

(𝑖)
+𝑁4(𝜂, 𝜉)�̅�4

(𝑖)
 

�̅�(𝑖)(𝜂, 𝜉) = 𝑁1(𝜂, 𝜉)�̅�1
(𝑖) + 𝑁2(𝜂, 𝜉)�̅�2

(𝑖) +𝑁3(𝜂, 𝜉)�̅�3
(𝑖) +𝑁4(𝜂, 𝜉)�̅�4

(𝑖)
 

(2. 15) 

where 𝑁1(𝜂, 𝜉) =
1

4
(1 − 𝜂)(1 − 𝜉)   𝑁2(𝜂, 𝜉) =

1

4
(1 + 𝜂)(1 − 𝜉)   𝑁3(𝜂, 𝜉) =

1

4
(1 + 𝜂)(1 + 𝜉)   

𝑁4(𝜂, 𝜉) =
1

4
(1 − 𝜂)(1 + 𝜉). 

 The determination of the strains and stresses within quadrilateral subvolumes requires the 

relationship between first partial derivatives of the subvolume displacements (general expression: 

𝜑) in the two planes 𝜂 −  𝜉 and 𝑥 −  𝑦. These are related through the Jacobian 𝑱 and its inverse 

𝑱−1, 
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[
 
 
 
 
𝜕𝜑

𝜕𝜂
𝜕𝜑

𝜕𝜉]
 
 
 
 
(𝑖)

= 𝑱

[
 
 
 
𝜕𝜑

𝜕𝑥
𝜕𝜑

𝜕𝑦]
 
 
 
(𝑖)

↔

[
 
 
 
𝜕𝜑

𝜕𝑥
𝜕𝜑

𝜕𝑦]
 
 
 
(𝑖)

= 𝑱−1

[
 
 
 
 
𝜕𝜑

𝜕𝜂
𝜕𝜑

𝜕𝜉]
 
 
 
 
(𝑖)

 (2. 16) 

where the Jacobian 𝑱 is obtained from the transformation equations in the form 

 𝑱 =

[
 
 
 
 
𝜕�̅�(𝑖)

𝜕𝜂

𝜕�̅�(𝑖)

𝜕𝜂

𝜕�̅�(𝑖)

𝜕𝜉

𝜕�̅�(𝑖)

𝜕𝜉 ]
 
 
 
 

= [
𝐴1
(𝑖)
+ 𝐴2

(𝑖)
𝜉 𝐴4

(𝑖)
+ 𝐴5

(𝑖)
𝜉

𝐴3
(𝑖)
+ 𝐴2

(𝑖)
𝜂 𝐴6

(𝑖)
+ 𝐴5

(𝑖)
𝜂
] (2. 17) 

with 𝐴1, … , 𝐴6 are given in terms of the vertex coordinates (�̅�𝑝, �̅�𝑝)
(𝑖)

 

𝐴1
(𝑖) =

1

4
(−�̅�1 + �̅�2 + �̅�3 − �̅�4)

(𝑖), 𝐴2
(𝑖) =

1

4
(�̅�1 − �̅�2 + �̅�3 − �̅�4)

(𝑖) 

𝐴3
(𝑖) =

1

4
(−�̅�1 − �̅�2 + �̅�3 + �̅�4)

(𝑖), 𝐴4
(𝑖) =

1

4
(−�̅�1 + �̅�2 + �̅�3 − �̅�4)

(𝑖) 

𝐴5
(𝑖) =

1

4
(�̅�1 −  𝑦2 + �̅�3 − �̅�4)

(𝑖), 𝐴6
(𝑖) =

1

4
(−�̅�1 −  𝑦2 + �̅�3 + �̅�4)

(𝑖) 

For consistency with the surface‐averaging framework of the finite‐volume theory, the two sets 

of partial derivatives are connected through the volume‐averaged Jacobian �̅�, 

 �̅� =
1

4
∫ ∫ 𝑱𝑑𝜂𝑑𝜉

+1

−1

=
+1

−1

[
𝐴1 𝐴4
𝐴3 𝐴6

]
(𝑖)

 (2. 18) 

with the inverse �̅�−1 
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 �̅�−1 =
1

|�̅�|
[
𝐴6 −𝐴4
−𝐴3 𝐴1

]
(𝑖)

=
1

𝐴1
(𝑖)
𝐴6
(𝑖)
− 𝐴3

(𝑖)
𝐴4
(𝑖)
[
𝐴6
(𝑖)

−𝐴4
(𝑖)

−𝐴3
(𝑖)

𝐴1
(𝑖)
] (2. 19) 

 In constructing the local stiffness matrix for each subvolume in terms of the surface‐

averaged displacements and tractions, 𝑱−1 is replaced by �̅�−1 in order to generate the elements of 

the stiffness matrix in closed form. This replacement avoids costly numerical integrations. For 

each subvolume (𝑖), 

 

[
 
 
 
 
𝜕𝜑

𝜕𝑥

̂

𝜕𝜑

𝜕𝑦

̂

]
 
 
 
 

𝜉=∓1

(𝑖)

= �̅�−1
(𝑖)

[
 
 
 
 
𝜕𝜑

𝜕𝜂

̂

𝜕𝜑

𝜕𝜉

̂

]
 
 
 
 

𝜉=∓1

(𝑖)

=
1

|�̅�|(𝑖)
[
𝐴6 −𝐴4 0 ±3𝐴4
−𝐴3 𝐴1 0 ∓3𝐴1

]
(𝑖)

[
 
 
 
 
𝑊𝜑(10)

𝑊𝜑(01)

𝑊𝜑(20)

𝑊𝜑(02)]
 
 
 
 
(𝑖)

 

[
 
 
 
 
𝜕𝜑

𝜕𝑥

̂

𝜕𝜑

𝜕𝑦

̂

]
 
 
 
 

𝜂=±1

(𝑖)

= �̅�−1
(𝑖)

[
 
 
 
 
𝜕𝜑

𝜕𝜂

̂

𝜕𝜑

𝜕𝜉

̂

]
 
 
 
 

𝜂=±1

(𝑖)

=
1

|�̅�|(𝑖)
[
𝐴6 −𝐴4 ±3𝐴6 0
−𝐴3 𝐴1 ∓3𝐴3 0

]
(𝑖)

[
 
 
 
 
𝑊𝜑(10)

𝑊𝜑(01)

𝑊𝜑(20)

𝑊𝜑(02)]
 
 
 
 
(𝑖)

 

(2. 20) 

where 𝜑(𝑥, 𝑦) could be any of the selected field quantities. Some concise notations of the vectors 

in the expressions above are made for convenience of notation,  

𝒂1,3
(𝑖) =

1

|�̅�|(𝑖)
[𝐴6 −𝐴4 0 ±3𝐴4]

(𝑖), 𝒂2,4
(𝑖) =

1

|�̅�|(𝑖)
[𝐴6 −𝐴4 ±3𝐴6 0](𝑖), 

𝒃1,3
(𝑖) =

1

|�̅�|(𝑖)
[−𝐴3 𝐴1 0 ∓3𝐴1]

(𝑖), 𝒃2,4
(𝑖) =

1

|�̅�|(𝑖)
[−𝐴3 𝐴1 ∓3𝐴3 0](𝑖) 

And also 𝑾𝜑
(𝑖)

 is used to denote the vector of coefficients in the second-order expansion of 𝜑(𝑥, 𝑦) 

which will be explained in detail in the following section. 
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𝑾𝜑
(𝑖)
=

[
 
 
 
 
𝑊𝜑(10)

𝑊𝜑(01)

𝑊𝜑(20)

𝑊𝜑(02)]
 
 
 
 
(𝑖)

 

2.3.2 Displacement and Stress Fields 

 The two in-plane displacements are approximated in each subvolume using a second‐order 

expansion in the local coordinates as follows, 

 

𝑢(𝑖) = 𝑊𝑢(00)
(𝑖) + 𝜂(𝑖)𝑊𝑢(10)

(𝑖) + 𝜉(𝑖)𝑊𝑢(01)
(𝑖) +

1

2
(3𝜂(𝑖)

2
− 1)𝑊𝑢(20)

(𝑖)

+
1

2
(3𝜉(𝑖)

2
− 1)𝑊𝑢(02)

(𝑖)
 

𝑣(𝑖) = 𝑊𝑣(00)
(𝑖) + 𝜂(𝑖)𝑊𝑣(10)

(𝑖) + 𝜉(𝑖)𝑊𝑣(01)
(𝑖) +

1

2
(3𝜂(𝑖)

2
− 1)𝑊𝑣(20)

(𝑖)

+
1

2
(3𝜉(𝑖)

2
− 1)𝑊𝑣(02)

(𝑖)
 

𝑤 = 𝜖𝑧𝑧𝑧 (𝜖𝑧𝑧 = 0 if it is plane stress/strain) 

(2. 21) 

where 𝑊𝑢(𝑚𝑛)
(𝑖)

  and 𝑊𝑣(𝑚𝑛)
(𝑖)

  are unknown coefficients subsequently redefined in terms of the 

surface‐averaged displacements along the four subvolume faces (𝑝 = 1, 2, 3, 4  following the 

subvolume faces order convention described in Eq. (2. 14)). The above displacement field 

representations produce the three in-plane strains and an additional out-of-plane normal strain for 

the generalized plane strain case, 

 𝜖�̂�𝑥|𝑝
(𝑖)

=
𝜕𝑢

𝜕𝑥

̂

𝑝

(𝑖)

= 𝒂𝑝
(𝑖)𝑾𝑢

(𝑖)
 (2. 22) 
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𝜖�̂�𝑦|𝑝
(𝑖)

=
𝜕𝑣

𝜕𝑦

̂

𝑝

(𝑖)

= 𝒃𝑝
(𝑖)
𝑾𝑣
(𝑖)

 

𝛾𝑥𝑦|𝑝
(𝑖)

=
𝜕𝑢

𝜕𝑦

̂

𝑝

(𝑖)

+
𝜕𝑣

𝜕𝑥

̂

𝑝

(𝑖)

= 𝒃𝑝
(𝑖)
𝑾𝑢
(𝑖)
+ 𝒂𝑝

(𝑖)
𝑾𝑣
(𝑖)

 

𝜖�̂�𝑧|𝑝
(𝑖)

=
𝜕𝑤

𝜕𝑥

̂

𝑝

(𝑖)

= 𝜖𝑧𝑧 (𝜖𝑧𝑧 = 0 if it is classic plane stress/strain) 

 The subvolumes may be occupied by monoclinic materials whose stiffness matrix elements, 

in the case of unidirectional composites, may be obtained by rotational transformation about the 𝑧 

axis from the principal material coordinate system wherein they are orthotropic. The reduced 

constitutive equations contain stiffness matrix elements that dependent on the plane case 

considered, and these elements may vary from subvolume to subvolume as is the case in 

functionally graded materials within the framework of the specific plane case. The corresponding 

in-plane stress components (𝜎𝑧𝑧 may be of interest in generalized plane strain condition) in these 

planes in each subvolume are given, respectively, below after substituting the surface-averaged 

expressions in Eq. (2. 22): 

Plane strain 

 [

�̂�𝑥𝑥
�̂�𝑦𝑦
�̂�𝑥𝑦

]

𝑝

(𝑖)

= [

𝐶11 𝐶12 𝐶16
𝐶12 𝐶22 𝐶26
𝐶16 𝐶26 𝐶66

]

(𝑖)

[
 
 
 𝒂𝑝

(𝑖)𝑾𝑢
(𝑖)

𝒃𝑝
(𝑖)𝑾𝑣

(𝑖)

𝒃𝑝
(𝑖)𝑾𝑢

(𝑖) + 𝒂𝑝
(𝑖)𝑾𝑣

(𝑖)
]
 
 
 

 (2. 23) 

Generalized plane strain 
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 [

�̂�𝑥𝑥
�̂�𝑦𝑦
�̂�𝑥𝑦

]

𝑝

(𝑖)

= [

𝐶11 𝐶12 𝐶16
𝐶12 𝐶22 𝐶26
𝐶16 𝐶26 𝐶66

]

(𝑖)

[
 
 
 𝒂𝑝

(𝑖)
𝑾𝑢
(𝑖)

𝒃𝑝
(𝑖)
𝑾𝑣
(𝑖)

𝒃𝑝
(𝑖)
𝑾𝑢
(𝑖)
+ 𝒂𝑝

(𝑖)
𝑾𝑣
(𝑖)
]
 
 
 

+ [

𝐶13
𝐶23
𝐶36

] 𝜖𝑧𝑧 (2. 24) 

Plane stress 

 [

�̂�𝑥𝑥
�̂�𝑦𝑦
�̂�𝑥𝑦

]

𝑝

(𝑖)

= [

𝐶1̅1 𝐶1̅2 𝐶1̅6
𝐶2̅1 𝐶2̅2 𝐶2̅6
𝐶1̅6 𝐶2̅6 𝐶6̅6

]

(𝑖)

[
 
 
 𝒂𝑝

(𝑖)
𝑾𝑢
(𝑖)

𝒃𝑝
(𝑖)
𝑾𝑣
(𝑖)

𝒃𝑝
(𝑖)
𝑾𝑢
(𝑖)
+ 𝒂𝑝

(𝑖)
𝑾𝑣
(𝑖)
]
 
 
 

 (2. 25) 

2.3.3 Local Stiffness Matrix Construction 

 In order to reduce the number of unknown coefficients in the in-plane displacement 

approximation when cross sections are discretized into a large number of subvolumes, we re‐

formulate the plane problem in terms of surface‐averaged displacements on the four faces of each 

subvolume as the primary solution variables. Then we construct a local stiffness matrix for each 

subvolume by relating the surface‐average displacements to the corresponding surface‐average 

tractions. We start by defining the surface‐average displacements, 

 

�̂�1,3
(𝑖)
=
1

2
∫ 𝑢(𝑖)(𝜂, 𝜉 = ∓1)𝑑𝜂
1

−1

  = 𝑊𝑢(00)
(𝑖) ∓𝑊𝑢(01)

(𝑖) +𝑊𝑢(02)
(𝑖)

 

�̂�2,4
(𝑖)
=
1

2
∫ 𝑢(𝑖)(𝜂 = ±1, 𝜉)𝑑𝜉
1

−1

= 𝑊𝑢(00)
(𝑖) ±𝑊𝑢(10)

(𝑖) +𝑊𝑢(20)
(𝑖)

 

𝑣1,3
(𝑖)
=
1

2
∫ 𝑣(𝑖)(𝜂, 𝜉 = ∓1)𝑑𝜂
1

−1

  = 𝑊𝑣(00)
(𝑖) ∓𝑊𝑣(01)

(𝑖) +𝑊𝑣(02)
(𝑖)

 

𝑣2,4
(𝑖)
=
1

2
∫ 𝑣(𝑖)(𝜂 = ±1, 𝜉)𝑑𝜉
1

−1

= 𝑊𝑣(00)
(𝑖) ±𝑊𝑣(10)

(𝑖) +𝑊𝑣(20)
(𝑖)

 

(2. 26) 
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 Hence the first and second‐order coefficients 𝑊𝑢(𝑚𝑛)
(𝑖)

  and 𝑊𝑣(𝑚𝑛)
(𝑖)

  may be expressed in 

terms of the surface‐averaged displacements and the zero‐order coefficients 𝑊𝑢(00)
(𝑖)

 and 𝑊𝑣(00)
(𝑖)

, 

 

𝑾𝑢
(𝑖)
=

[
 
 
 
 
𝑊𝑢(10)

𝑊𝑢(01)

𝑊𝑢(20)

𝑊𝑢(02)]
 
 
 
 
(𝑖)

=
1

2
[

0 1
−1 0

0 −1
1 0

0 1
1 0

0 1
1 0

] [

�̂�1
�̂�2
�̂�3
�̂�4

]

(𝑖)

− [

0
0
1
1

]𝑊𝑢(00)
(𝑖)

 

𝑾𝑣
(𝑖)
=

[
 
 
 
 
𝑊𝑣(10)

𝑊𝑣(01)

𝑊𝑣(20)

𝑊𝑣(02)]
 
 
 
 
(𝑖)

=
1

2
[

0 1
−1 0

0 −1
1 0

0 1
1 0

0 1
1 0

] [

𝑣1
𝑣2
𝑣3
𝑣4

]

(𝑖)

− [

0
0
1
1

]𝑊𝑣(00)
(𝑖)

 

(2. 27) 

or 

𝑾𝑢
(𝑖) =

1

2
𝜶�̂�(𝑖) − 𝜷𝑊𝑢(00)

(𝑖)
 

𝑾𝑣
(𝑖)
=
1

2
𝜶�̂�(𝑖) − 𝜷𝑊𝑣(00)

(𝑖)
 

Similarly, the corresponding surface‐averaged interfacial tractions are defined as follows, 

 

�̂�𝑥|1,3
(𝑖)

=
1

2
∫ 𝑡𝑥

(𝑖)(𝜂, 𝜉 = ∓1)𝑑𝜂
1

−1

 

�̂�𝑥|2,4
(𝑖)

=
1

2
∫ 𝑡𝑥

(𝑖)(𝜂 = ±1, 𝜉)𝑑𝜉
1

−1

 

�̂�𝑦|1,3
(𝑖)

=
1

2
∫ 𝑡𝑦

(𝑖)(𝜂, 𝜉 = ∓1)𝑑𝜂
1

−1

 

(2. 28) 
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�̂�𝑦|2,4
(𝑖)

=
1

2
∫ 𝑡𝑦

(𝑖)(𝜂 = ±1, 𝜉)𝑑𝜉
1

−1

 

where the traction vector associated with the face 𝑝 characterized by the unit normal vector 𝒏𝑝 is 

𝑡𝑥
(𝑖)|𝑝 = 𝜎𝑖𝑥

(𝑖)
𝑛𝑖
(𝑖)|𝑝 (𝑖 = 𝑥, 𝑦)  and 𝑡𝑦

(𝑖)|𝑝 = 𝜎𝑖𝑦
(𝑖)
𝑛𝑖
(𝑖)|𝑝 (𝑖 = 𝑥, 𝑦) . Hence the traction vector 

components on any of the four subvolume faces become, in terms of the three in-plane stress 

components, 

 

�̂�𝑥|𝑝
(𝑖)

= [�̂�𝑥𝑥
(𝑖)
𝑛𝑥
(𝑖)
+ �̂�𝑥𝑦

(𝑖)
𝑛𝑦
(𝑖)
]𝑝 

�̂�𝑦|𝑝
(𝑖) = [�̂�𝑥𝑦

(𝑖)𝑛𝑥
(𝑖)
+ �̂�𝑦𝑦

(𝑖)𝑛𝑦
(𝑖)
]𝑝 

(2. 29) 

which are expressed in terms of the corresponding surface‐averaged shear strains for the three 

plane strain cases below. 

Plane strain 

 

�̂�𝑥|𝑝
(𝑖) = ([𝐶11 𝐶12 𝐶16]

(𝑖)𝑛𝑥|𝑝
(𝑖) + [𝐶16 𝐶26 𝐶66]

(𝑖)𝑛𝑦|𝑝
(𝑖) ) 

[

𝒂𝑝𝑾𝑢

𝒃𝑝𝑾𝑣

𝒃𝑝𝑾𝑢 + 𝒂𝑝𝑾𝑣

]

(𝑖)

 

�̂�𝑦|𝑝
(𝑖) = ([𝐶16 𝐶26 𝐶66]

(𝑖)𝑛𝑥|𝑝
(𝑖) + [𝐶21 𝐶22 𝐶26]

(𝑖)𝑛𝑦|𝑝
(𝑖) ) 

[

𝒂𝑝𝑾𝑢

𝒃𝑝𝑾𝑣

𝒃𝑝𝑾𝑢 + 𝒂𝑝𝑾𝑣

]

(𝑖)

 

(2. 30) 

Generalized plane strain 
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�̂�𝑥|𝑝
(𝑖) = ([𝐶11 𝐶12 𝐶16]

(𝑖)𝑛𝑥|𝑝
(𝑖) + [𝐶16 𝐶26 𝐶66]

(𝑖)𝑛𝑦|𝑝
(𝑖) ) 

[

𝒂𝑝𝑾𝑢

𝒃𝑝𝑾𝑣

𝒃𝑝𝑾𝑢 + 𝒂𝑝𝑾𝑣

]

(𝑖)

+ (𝐶13𝑛𝑥|𝑝
(𝑖) + 𝐶36𝑛𝑦|𝑝

(𝑖) )𝜖𝑧𝑧 

�̂�𝑦|𝑝
(𝑖)

= ([𝐶16 𝐶26 𝐶66]
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ [𝐶12 𝐶22 𝐶26]

(𝑖)𝑛𝑦|𝑝
(𝑖)
) 

[

𝒂𝑝𝑾𝑢

𝒃𝑝𝑾𝑣

𝒃𝑝𝑾𝑢 + 𝒂𝑝𝑾𝑣

]

(𝑖)

+ (𝐶3̅6𝑛𝑥|𝑝
(𝑖) + 𝐶2̅3𝑛𝑦|𝑝

(𝑖) )𝜖𝑧𝑧 

(2. 31) 

Plane stress 

 

�̂�𝑥|𝑝
(𝑖)

= ([𝐶1̅1 𝐶1̅2 𝐶1̅6]
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ [𝐶1̅6 𝐶2̅6 𝐶6̅6]

(𝑖)𝑛𝑦|𝑝
(𝑖)
) 

[

𝒂𝑝𝑾𝑢

𝒃𝑝𝑾𝑣

𝒃𝑝𝑾𝑢 + 𝒂𝑝𝑾𝑣

]

(𝑖)

 

�̂�𝑦|𝑝
(𝑖) = ([𝐶1̅6 𝐶2̅6 𝐶6̅6]

(𝑖)𝑛𝑥|𝑝
(𝑖) + [𝐶2̅1 𝐶2̅2 𝐶2̅6]

(𝑖)𝑛𝑦|𝑝
(𝑖) ) 

[

𝒂𝑝𝑾𝑢

𝒃𝑝𝑾𝑣

𝒃𝑝𝑾𝑢 + 𝒂𝑝𝑾𝑣

]

(𝑖)

 

(2. 32) 

 The last step in the construction of the local stiffness matrix is to express the zero-order 

coefficients 𝑊𝑢(00)
(𝑖)

 and 𝑊𝑣(00)
(𝑖)

 in terms of the surface-averaged displacements. This is achieved 

by satisfying the first two equilibrium equations in the surface-averaged sense. The surface 

tractions associated with each face of the (𝑖)  subvolume are related to each other through the 

equilibrium equations satisfied in a volume-average sense. Using Gauss Theorem, the equilibrium 

equations are expressed in terms of surface-averaged traction components, 
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∮𝜎𝑗𝑥
(𝑖)𝑛𝑗

(𝑖)𝑑𝑠
𝑠

= ∮𝑡𝑥
(𝑖)

𝑠

 𝑑𝑠 = ∑ �̂�𝑥
(𝑖)𝑙𝑝

(𝑖)

4

𝑝=1

= 0 

∮𝜎𝑗𝑦
(𝑖)
𝑛𝑗
(𝑖)
𝑑𝑠

𝑠

= ∮𝑡𝑦
(𝑖)

𝑠

 𝑑𝑠 = ∑ �̂�𝑦
(𝑖)
𝑙𝑝
(𝑖)

4

𝑝=1

= 0 

(2. 33) 

where 𝑠 is the contour of subvolume (𝑖) boundary. 

 Expanding the summation equations Eq. (2. 33) for the surface-averaged tractions 

multiplied with the corresponding length over each subvolume contour, there are two equations 

for each plane condition describing the stress equilibrium in the surface-averaged sense in 𝑥 and 

𝑦 directions that may be expressed in the same symbolic form: 

 

𝑋 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛:  𝒜(𝑖)𝑾𝑢
(𝑖)
+ℬ(𝑖)𝑾𝑣

(𝑖)
= 𝜖𝑧𝑧∁𝒜ℬ 

𝑌 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛: 𝒞(𝑖)𝑾𝑢
(𝑖)
+𝒟(𝑖)𝑾𝑣

(𝑖)
= 𝜖𝑧𝑧∁𝒞𝒟 

(2. 34) 

where the coefficients 𝒜(i), ℬ(𝑖), 𝒞(𝑖), 𝒟(𝑖), ∁𝒜ℬ and ∁𝒞𝒟 for the three plane cases are, 

Plane strain and generalized plane strain 

𝒜(𝑖) =∑(𝐶11
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ 𝐶16

(𝑖)𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)𝑙𝑝
(𝑖)

4

𝑝=1

+∑(𝐶16
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ 𝐶66

(𝑖)𝑛𝑦|𝑝
(𝑖)
) 𝒃𝑝

(𝑖)𝑙𝑝
(𝑖)

4

𝑝=1

 

ℬ(𝑖) =∑(𝐶16
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ 𝐶66

(𝑖)𝑛𝑦|𝑝
(𝑖)
) 𝒂𝑝

(𝑖)𝑙𝑝
(𝑖)

4

𝑝=1

+∑(𝐶12
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ 𝐶26

(𝑖)𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)𝑙𝑝
(𝑖)

4

𝑝=1

 

𝒞(𝑖) =∑(𝐶16
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ 𝐶12

(𝑖)𝑛𝑦|𝑝
(𝑖)
) 𝒂𝑝

(𝑖)𝑙𝑝
(𝑖)

4

𝑝=1

+∑(𝐶66
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ 𝐶26

(𝑖)𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)𝑙𝑝
(𝑖)

4

𝑝=1
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𝒟(𝑖) =∑(𝐶66
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ 𝐶26

(𝑖)𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)𝑙𝑝
(𝑖)

4

𝑝=1

+∑(𝐶26
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ 𝐶22

(𝑖)𝑛𝑦|𝑝
(𝑖)
) 𝒃𝑝

(𝑖)𝑙𝑝
(𝑖)

4

𝑝=1

 

∁𝒜ℬ= {

0      (𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛)

−∑(𝐶1̅3
(𝑖)𝑛𝑥|𝑝

(𝑖) + 𝐶3̅6
(𝑖)𝑛𝑦|𝑝

(𝑖) )

4

𝑝=1

𝑙𝑝
(𝑖)     (𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛)

 

∁𝒞𝒟= {

0      (𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛)

−∑(𝐶3̅6
(𝑖)𝑛𝑥|𝑝

(𝑖) + 𝐶2̅3
(𝑖)𝑛𝑦|𝑝

(𝑖) )

4

𝑝=1

𝑙𝑝
(𝑖)      (𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛)

 

Plane stress 

𝒜(𝑖) =∑(𝐶1̅1
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ 𝐶1̅6

(𝑖)𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)𝑙𝑝
(𝑖)

4

𝑝=1

+∑(𝐶1̅6
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ 𝐶6̅6

(𝑖)𝑛𝑦|𝑝
(𝑖)
) 𝒃𝑝

(𝑖)𝑙𝑝
(𝑖)

4

𝑝=1

 

ℬ(𝑖) =∑(𝐶1̅6
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ 𝐶6̅6

(𝑖)𝑛𝑦|𝑝
(𝑖)
) 𝒂𝑝

(𝑖)𝑙𝑝
(𝑖)

4

𝑝=1

+∑(𝐶1̅2
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ 𝐶2̅6

(𝑖)𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)𝑙𝑝
(𝑖)

4

𝑝=1

 

𝒞(𝑖) =∑(𝐶1̅6
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ 𝐶1̅2

(𝑖)𝑛𝑦|𝑝
(𝑖)
) 𝒂𝑝

(𝑖)𝑙𝑝
(𝑖)

4

𝑝=1

+∑(𝐶6̅6
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ 𝐶2̅6

(𝑖)𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)𝑙𝑝
(𝑖)

4

𝑝=1

 

𝒟(𝑖) =∑(𝐶6̅6
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ 𝐶2̅6

(𝑖)𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)𝑙𝑝
(𝑖)

4

𝑝=1

+∑(𝐶2̅6
(𝑖)𝑛𝑥|𝑝

(𝑖)
+ 𝐶2̅2

(𝑖)𝑛𝑦|𝑝
(𝑖)
) 𝒃𝑝

(𝑖)𝑙𝑝
(𝑖)

4

𝑝=1

 

∁𝒜ℬ= 0 

∁𝒞𝒟= 0 

 Solving the set of two linear equations above by Cramer's rule and using the expressions 

for the surface-averaged tractions in terms of the surface-averaged displacements and the zero-



 39 

order coefficients, Eq. (2. 30), (2. 31), (2. 32), the above two equilibrium equations yield the zero-

order coefficients solely in terms of the surface-averaged displacements for each direction, 

 

𝑊𝑢(00)
(𝑖) = [(𝒜(𝑖)𝒟(𝑖)𝜷 − 𝒞(𝑖)ℬ(𝑖)𝜷)𝜶�̂�(𝑖) + (ℬ(𝑖)𝒟(𝑖)𝜷− 𝒟(𝑖)ℬ(𝑖)𝜷)𝜶�̂�(𝑖) + (∁𝒞𝒟ℬ

(𝑖)𝜷

− ∁𝒜ℬ𝒟
(𝑖)𝜷)𝜖�̅�𝑧]/(2𝒜

(𝑖)𝜷𝒟(𝑖)𝜷 − 2ℬ(𝑖)𝜷𝒞(𝑖)𝜷) 

𝑊𝑣(00)
(𝑖)

= [(𝒞(𝑖)𝒜(𝑖)𝜷 −𝒜(𝑖)𝒞(𝑖)𝜷)𝜶�̂�(𝑖) + (𝒟(𝑖)𝒜(𝑖)𝜷− ℬ(𝑖)𝒞(𝑖)𝜷)𝜶�̂�(𝑖)

+ (∁𝒜ℬ𝒞
(𝑖)𝜷 − ∁𝒞𝒟𝒜

(𝑖)𝜷)𝜖�̅�𝑧]/(2𝒜
(𝑖)𝜷𝒟(𝑖)𝜷 − 2ℬ(𝑖)𝜷𝒞(𝑖)𝜷) 

(2. 35) 

Now the first and second‐order coefficients 𝑊𝑢(𝑚𝑛)
𝑖   and 𝑊𝑣(𝑚𝑛)

𝑖   (where 𝑚+ 𝑛 ≠ 0 ) can be 

expressed in terms of the surface‐averaged displacements and the additional constant 𝜖𝑧𝑧 strain. 

 

𝑾𝑢
(𝑖)
= ℰ�̂�(𝑖) +ℱ�̂�(𝑖) + ∁⃗ ℰℱ𝜖𝑧𝑧 

𝑾𝑣
(𝑖)
= 𝒢�̂�(𝑖) +ℋ�̂�(𝑖) + ∁⃗ 𝒢ℋ𝜖𝑧𝑧 

(2. 36) 

where 

ℰ =
1

2
𝜶 − 𝜷

𝒜(i)𝒟(i)𝜷−𝒞(i)ℬ(i)𝜷

2𝒜(i)𝜷𝒟(i)𝜷−2ℬ(i)𝜷𝒞(i)𝜷
𝜶,        ℱ = −𝜷

ℬ(i)𝒟(i)𝜷−𝒟(i)ℬ(i)𝜷

2𝒜(i)𝜷𝒟(i)𝜷−2ℬ(i)𝜷𝒞(i)𝜷
𝜶, 

∁⃗ ℰℱ= −𝜷
∁𝒞𝒟ℬ

(𝑖)𝜷−∁𝒜ℬ𝒟
(𝑖)𝜷

2𝒜(𝑖)𝜷𝒟(𝑖)𝜷−2ℬ(𝑖)𝜷𝒞(𝑖)𝜷
, 

𝒢 =
1

2
𝜶 − 𝜷

𝒟(i)𝒜(i)𝜷−ℬ(i)𝒞(i)𝜷

2𝒜(i)𝜷𝒟(i)𝜷−2ℬ(i)𝜷𝒞(i)𝜷
𝜶,        ℋ = −𝜷

𝒞(i)𝒜(i)𝜷−𝒜(i)𝒞(i)𝜷

2𝒜(i)𝜷𝒟(i)𝜷−2ℬ(i)𝜷𝒞(i)𝜷
𝜶, 

∁⃗ 𝒢ℋ − 𝜷
∁𝒜ℬ𝒞

(𝑖)𝜷−∁𝒞𝒟𝒜
(𝑖)𝜷

2𝒜(𝑖)𝜷𝒟(𝑖)𝜷−2ℬ(𝑖)𝜷𝒞(𝑖)𝜷
, 

For the generalized plane strain problem, the out-of-plane normal stress is obtained after 

substituting the coefficients in the expressions of Eq. (2. 36), and is given below. 
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𝜎𝑧𝑧
(𝑖)
= [𝐶13 𝐶23 𝐶36] [

𝒂𝑝𝑾𝑢

𝒃𝑝𝑾𝑣

𝒃𝑝𝑾𝑢 + 𝒂𝑝𝑾𝑣

]

(𝑖)

+ 𝐶33𝜖𝑧𝑧 =

= (𝐶13𝒂𝑝ℰ + 𝐶36𝒃𝑝ℰ + 𝐶23𝒃𝑝ℋ+ 𝐶36𝒂𝑝ℋ)�̂�
(𝑖)

+ (𝐶13𝒂𝑝ℱ + 𝐶36𝒃𝑝ℱ + 𝐶23𝒃𝑝𝒢 + 𝐶36𝒂𝑝𝒢)�̂�
(𝑖) + (𝐶13𝒂𝑝∁⃗ ℰℱ

+ 𝐶36𝒃𝑝∁⃗ ℰℱ + 𝐶23𝒃𝑝∁⃗ 𝒢ℋ + 𝐶36𝒂𝑝∁⃗ 𝒢ℋ + 𝐶33)𝜖𝑧𝑧 

(2. 37) 

Also, substituting the first and second‐order coefficient expressions Eq. (2. 36) into the surface-

averaged traction components in the 𝑥 and 𝑦 direction acting on the four edges of the subvolume 

Eq. (2. 29), (2. 30), (2. 31), the surface-averaged traction components are obtained solely in terms 

of the corresponding surface-averaged displacements, related through the local stiffness matrix, 

 

[
 
 
 
 
 
 
 
 
 
�̂�𝑥|1

�̂�𝑦|1

�̂�𝑥|2

�̂�𝑦|2

�̂�𝑥|3

�̂�𝑦|3

�̂�𝑥|4

�̂�𝑦|4]
 
 
 
 
 
 
 
 
 
(𝑖)

= 𝑲(𝑖)

[
 
 
 
 
 
 
 
 
�̂�1
𝑣1
�̂�2
𝑣2
�̂�3
𝑣3
�̂�4
𝑣4]
 
 
 
 
 
 
 
 
(𝑖)

+𝑲𝑒𝑧𝑧
(𝑖)
𝜖𝑧𝑧 (2. 38) 

where 𝑲(𝑖) =

[
 
 
 
 
 
 
 
 
𝑘11 𝑘12 𝑘13 𝑘14 𝑘15 𝑘16 𝑘17 𝑘18
𝑘21 𝑘22 𝑘23 𝑘24 𝑘25 𝑘26 𝑘27 𝑘28
𝑘31 𝑘32 𝑘33 𝑘34 𝑘35 𝑘36 𝑘37 𝑘38
𝑘41 𝑘42 𝑘43 𝑘44 𝑘45 𝑘46 𝑘47 𝑘48
𝑘51 𝑘52 𝑘53 𝑘54 𝑘55 𝑘56 𝑘57 𝑘58
𝑘61 𝑘62 𝑘63 𝑘64 𝑘65 𝑘66 𝑘67 𝑘68
𝑘71 𝑘72 𝑘73 𝑘74 𝑘75 𝑘76 𝑘77 𝑘78
𝑘81 𝑘82 𝑘83 𝑘84 𝑘85 𝑘86 𝑘87 𝑘88]

 
 
 
 
 
 
 
 
(𝑖)

and 𝑲𝑒𝑧𝑧
(𝑖)

=

[
 
 
 
 
 
 
 
 
𝑘1
𝑒𝑧𝑧

𝑘2
𝑒𝑧𝑧

𝑘3
𝑒𝑧𝑧

𝑘4
𝑒𝑧𝑧

𝑘5
𝑒𝑧𝑧

𝑘6
𝑒𝑧𝑧

𝑘7
𝑒𝑧𝑧

𝑘8
𝑒𝑧𝑧]
 
 
 
 
 
 
 
 
(𝑖)

 

The distinct elements 𝑘𝑟𝑐
(𝑖)

  in the local stiffness matrix 𝑲(𝑖)  and the local vector 𝑲𝑒𝑧𝑧
(𝑖)

  are given 

explicitly in terms of subvolume moduli and geometry in the Appendix III (plane stress) and 
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Appendix IV (plane strain and generalized plane strain) for a general monoclinic material. The 

vector 𝑲𝑒𝑧𝑧
(𝑖)

  is zero unless the generalized plane strain problem is considered. 

2.3.4 Global Stiffness Matrix Assembly 

 The solution for the unknown surface-averaged displacements is obtained by constructing 

a system of equations such that the interfacial displacement and traction continuity conditions are 

satisfied together with the traction and/or displacement boundary condition. To maintain the order 

of the subvolume edges for general unstructured meshing pattern, each subvolume has four 

identical surface-averaged displacements and tractions allocated in the system of equations. The 

system of equations for the solution of the unknown surface-averaged displacements, which is 

comprised of displacement and traction continuity, boundary and constraint conditions, is called 

the global system. 

 The index (𝑖) that represents a subvolume in the discretized cross section is employed in 

the numbering system for all subvolumes in the assembly of the global system of equations. To 

facilitate the assembly of the global stiffness matrix when unstructured meshing is employed, an 

adjacency matrix is introduced to relate two common edges of adjacent subvolumes. The 

dimension of this matrix is equal to the number of all edges, i.e., four times the number of all 

subvolumes. This adjacency matrix has all “1” s along the diagonal as well as other locations which 

indicate commonality of any two edges of adjacent subvolumes. Thus, the adjacency matrix is 

symmetric since the contact of two adjacent edges is in a mutually connected relationship. Figure 

2-2 demonstrates a simple example of the adjacency matrix when there are eight edges arising 

from two subvolumes, where only Edge #2 from Subvolume #1 and Edge #8 from Subvolume 

#2 are connected. 
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Figure 2-2 A simple system of two subvolumes analyzed in FVM and its 8 × 8 adjacency matrix 

 We first denote the number of connected edges by 𝑁𝑐𝑜𝑛 and the number of unconnected 

edges by 𝑁𝑢𝑛𝑐𝑜𝑛 from the discretized grid. To solve the global system of equations for the surface-

averaged displacements, the global stiffness matrix is allocated (4𝑁𝑐𝑜𝑛 + 2𝑁𝑢𝑛𝑐𝑜𝑛) + 1 columns 

and 4𝑁𝑐𝑜𝑛 + 2𝑁𝑢𝑛𝑐𝑜𝑛 rows. Each subvolume has four edges that has 𝑥 and 𝑦 displacements and 

contributes eight equations to the global system. To admit the generalized plane strain problem, 

there is an additional relationship for surface-averaged tractions with 𝜖𝑧𝑧 as an unknown besides 

the unknown surface-averaged displacements, therefore there are (4𝑁𝑐𝑜𝑛 + 2𝑁𝑢𝑛𝑐𝑜𝑛) + 1 

unknowns that need to be determined for plane problems. Also, each two connected edges have 

the same surface-averaged displacements and equal and opposite tractions, which results in 4𝑁𝑐𝑜𝑛 

equations for traction and displacement continuity conditions in both 𝑥 and 𝑦 directions, whereas 

the unconnected edges only need to satisfy the boundary or constraint conditions also in both 𝑥 

and 𝑦 directions, producing 2𝑁𝑢𝑛𝑐𝑜𝑛 equations. The breakdown of the 4𝑁𝑐𝑜𝑛 + 2𝑁𝑢𝑛𝑐𝑜𝑛 rows in 

the global system is given below: 

Displacement continuity condition equations 

For a pair of connected edges from adjacent subvolumes, the displacement continuity conditions 

contribute one equation in the 𝑥 and 𝑦 direction each to the global stiffness matrix. 𝑝 is the edge 

index from the first subvolume and 𝑝′ is the edge index from the second subvolume. 

 

�̂�𝑝
(𝑖)
− �̂�

𝑝′
(𝑖′)

= 0 

𝑣𝑝
(𝑖)
− 𝑣

𝑝′
(𝑖′)

= 0 

(2. 39) 

Traction continuity condition equations 

For a pair of connected edges from adjacent subvolumes, the traction continuity conditions 

contribute one equation each in the 𝑥 and 𝑦 direction to the global stiffness matrix. 𝑝 is the edge 

index from the first subvolume and 𝑝′ is the edge index from the second subvolume. 
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𝑡𝑥|𝑝
(𝑖)
+ 𝑡

𝑥|𝑝′
(𝑖′)

= 0 

𝑡𝑦|𝑝
(𝑖)
+ 𝑡

𝑦|𝑝′
(𝑖′)

= 0 

(2. 40) 

𝑡𝑥|𝑝
(𝑖)

 and 𝑡𝑦|𝑝
(𝑖)

 are expressed as linear combinations of surface-averaged displacements in the global 

system. 

Boundary condition equations 

For a pair of connected edges from adjacent subvolumes, the traction boundary conditions 

contribute one equation each in the 𝑥 and 𝑦 direction to the global stiffness matrix,  

 

�̂�𝑥|𝑝
(𝑖)

= 𝐵𝑥 

�̂�𝑦|𝑝
(𝑖)

= 𝐵𝑦 

(2. 41) 

where 𝐵𝑥 and 𝐵𝑦 are the exterior tractions applied on the boundary of the domain. 

Constraint condition equations 

The penalty method is employed to enforce constraints which cannot be easily incorporated into 

the unstructured subvolumes computation. It works by adding a penalty term to the global stiffness 

matrix and the restoring-force vectors to impose a prescribed zero. This penalty term imposes a 

cost on any deviation from the desired constraint, effectively forcing the system to behave as 

though the constraint is being enforced. This method is applied to those subvolumes next to the 

constraints based on the zero-displacement conditions in x and 𝑦 directions. If the subvolume edge 

is on one of the constraints, e.g., if the first edge (𝑝 = 1) of subvolume (𝑖) is fixed, the penalty 

term in the surface-averaged traction expression 𝑘11
(𝑖)

, 𝑘12
(𝑖)

, 𝑘21
(𝑖)

, 𝑘22
(𝑖)

 turned to outstanding numbers 
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1𝑒7 to ensure little displacements for fixed end condition in both x and 𝑦 directions. Thus, the 

traction expressions at the constraints become 

 [
�̂�𝑥|1
(𝑖)

�̂�𝑦|1
(𝑖)
]

(𝑖)

= [
1𝑒7 1𝑒7 𝑘13 𝑘14 𝑘15 𝑘16 𝑘17 𝑘18
1𝑒7 1𝑒7 𝑘23 𝑘24 𝑘25 𝑘26 𝑘27 𝑘28

]
(𝑖)

[
�̂�1
𝑣1
]

(𝑖)

= 0 (2. 42) 

in the global system of equations. 

Additional equation for the generalized plane strain problem 

The out-of-plane strain is constant over the analyzed domain for the generalized plane strain 

problem, such that the resultant out-of-plane stress is zero. 

 𝐹𝑧 =∑𝜎𝑧𝑧
(𝑖)
∆𝐴

𝑛

𝑖=1

= 0 (2. 43) 

where 

𝜎𝑧𝑧
(𝑖) = [𝐶13(𝐽1̅1

(𝑖)ℰ(1,:) + 𝐽1̅2
(𝑖)ℰ(2,:)) + 𝐶23(𝐽2̅1

(𝑖)ℋ(1,:) + 𝐽2̅2
(𝑖)ℋ(2,:))

+ 𝐶36(𝐽2̅1
(𝑖)ℰ(1,:) + 𝐽2̅2

(𝑖)ℰ(2,:) + 𝐽1̅1
(𝑖)ℋ(1,:) + 𝐽1̅2

(𝑖)ℋ(2,:))] �̂�
(𝑖)

+ [𝐶13(𝐽1̅1
(𝑖)ℱ(1,:) + 𝐽1̅2

(𝑖)ℱ(2,:)) + 𝐶23(𝐽2̅1
(𝑖)𝒢(1,:) + 𝐽2̅2

(𝑖)𝒢(2,:))

+ 𝐶36(𝐽2̅1
(𝑖)ℱ(1,:) + 𝐽2̅2

(𝑖)ℱ(2,:) + 𝐽1̅1
(𝑖)𝒢(1,:) + 𝐽1̅2

(𝑖)𝒢(2,:))] �̂�
(𝑖) + [(𝐶13𝐽1̅1

(𝑖)

+ 𝐶36𝐽2̅1
(𝑖))∁⃗ ℰℱ(1) + (𝐶13𝐽1̅2

(𝑖) + 𝐶36𝐽2̅2
(𝑖))∁⃗ ℰℱ(2) + (𝐶23𝐽2̅1

(𝑖) + 𝐶36𝐽1̅1
(𝑖))∁⃗ 𝒢ℋ(1)

+ (𝐶23𝐽2̅2
(𝑖) + 𝐶36𝐽1̅2

(𝑖))∁⃗ 𝒢ℋ(2) + 𝐶33]𝜖𝑧𝑧 

The solution of the above augmented global system of equations yields the unknown 

surface‐averaged displacements, which, in turn, yield the corresponding surface‐averaged tractions 

and pointwise displacements, strains, and stresses in each subvolume. 
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2.4 Structural Applications 

 The developed finite-volume solution methodology for plane problems is verified by 

comparison with several elasticity solutions to structural problems, as well as experimental results 

for determining mechanical properties of unidirectional composites. Analytical approaches that 

generate exact elasticity solutions for the flexure of a homogeneous isotropic beam is the first 

application of FVM within the plane elasticity framework. FVM for plane strain problems is used 

as an efficient simulation tool to study microstructural effects in deep composite layered plates 

subjected to flexure using a replacement scheme based on the Postma model (1957). In addition, 

the parametric mapping capability that facilitates the use of arbitrary quadrilateral subvolumes in 

mesh discretization levered to investigate the flexure of deep heterogeneous plates reinforced or 

weakened by circular inclusions and voids, respectively. The increasing use of composites as high-

performance structural materials in modern aircraft requires accurate determination of the 

composite material’s response to mechanical loads. Testing provides the means to determine these 

characteristics of composite materials under controlled conditions. FVM is used to simulate the 

plane stress response of monoclinic and orthotropic composite test specimens under off-axis tensile 

and pure shear loading based on the Iosipescu test fixture, and validates key assumptions made in 

these experiments in the determination of the axial shear modulus. 

2.4.1 Flexure of a Cantilever Beam by an End Vertical Load  

 We consider a homogenous isotropic beam with a rectangular cross section of height ℎ and 

thickness 𝑏 subjected to a vertical end load shown in Figure 2-3. If the thickness 𝑏 is small relative 

to the height ℎ, the state of stress may be modeled as plane stress. Suppose the left end of the beam 

is fixed to a rigid wall and loaded on its right end with a resultant force 𝑃. 

 

Figure 2-3 Cantilever beam with an end load 
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Figure 2-3 shows a rectangular beam configuration (0 ≤ 𝑥 ≤ 𝑙, −
ℎ

2
≤ 𝑦 ≤

ℎ

2
) , subjected to a 

transverse force, 𝑃 at the end 𝑥 = 𝑙, with the horizontal boundaries 𝑦 = ±
ℎ

2
 being traction-free. 

Accordingly, the boundary conditions for this problem are prescribed on its three edges as follows: 

 

@𝑦 = ±
ℎ

2
∶ {
𝜎𝑥𝑦 = 0 

𝜎𝑦𝑦 = 0
 

@𝑥 = 𝑙 ∶ {

𝜎𝑥𝑥 = 0 

∫ 𝜎𝑥𝑦(𝑥 = 𝑙, 𝑦)𝑑𝑦 = 𝑃

ℎ
2

−
ℎ
2

 

(2. 44) 

Elasticity solution 

 The boundary conditions above are imposed in an integral or weak form on the right end 

face, which means that the actual traction distribution at each point is replaced by the equivalent 

force resultant. Elasticity problems on rectangular domains, including rectangular beams, may be 

solved using a polynomial stress function approach when the boundary conditions are expressible 

as a superposition of polynomials of different orders satisfying the biharmonic equation, or stated 

in a weak form. Infinite series or transform based solutions are employed when point-wise 

boundary condition satisfaction is required, such as discontinuous tractions that cannot be 

expressed as a superposition of polynomials. In the present case, the weak form of boundary 

conditions on the right end is employed in the elasticity solution below based on the polynomial 

stress function superposition. 

 The bending moment in this problem varies linearly with 𝑥 , and hence that the stress 

component 𝜎𝑥𝑥 will have a leading term proportional to 𝑥𝑦. This in turn suggests a fourth-degree 

polynomial term 𝑥𝑦3 in the stress function 𝜑 with the additional stress function terms 𝐶2𝑥𝑦 and 

𝐶3𝑦
3  that ensure satisfaction of the traction-free boundary conditions on the upper and lower 

surfaces. The stress-based procedure is therefore to start with the Airy stress function 𝜑 =

𝐶1𝑥𝑦
3 + 𝐶2𝑥𝑦 + 𝐶3𝑦

3 , and determine the unknown constants such that all the boundary 

conditions are satisfied. This yields the solution in terms of the following stresses,  
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𝜎𝑥𝑥 = −
𝑃𝑦

𝐼𝑧𝑧
(𝑙 − 𝑥) 

𝜎𝑥𝑦 = −
𝑃(𝑦2 −

ℎ2

4
)

2𝐼𝑧𝑧
 

𝜎𝑦𝑦 = 0 

(2. 45) 

where 𝐼𝑧𝑧 =
𝑏ℎ3

12
  is the moment of inertia about the 𝑧  axis. These stresses satisfy the boundary 

conditions on all four faces that maintain the beam in static equilibrium in both plane stress and 

plane strain. 

 To determine how the beam is fixed at the wall, the strain-displacement equations are 

integrated, using Hooke’s law, to obtain the corresponding displacement field. Displacement 

boundary conditions are then employed to determine the unknown integration constants, based on 

zero rotation of the neutral axis intersecting at the middle point on the fixed end, 

 @(𝑥 = 0, 𝑦 = 0){

𝜕𝑣

𝜕𝑥
= 0  

𝑢 = 0 
𝑣 = 0

 (2. 46) 

If the beam is relatively thin, it may be assumed to be in plane stress, yielding the following 

displacements, 

 

𝑢(𝑥, 𝑦) =
𝑃

𝐸𝐼𝑧𝑧
[− (𝑙 −

𝑥

2
) 𝑥𝑦 −

2 +  𝜐

6
𝑦3 +

1 −  𝜐

4
ℎ2𝑦] 

𝑣(𝑥, 𝑦) =
𝑃

𝐸𝐼𝑧𝑧
[
𝜐(𝑙 − 𝑥)

2
𝑦2 +

𝑙𝑥2

2
−
𝑥3

6
] 

(2. 47) 
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If the beam is relatively thick, it may be assumed to be in plane strain, yielding the following 

displacements from the conversion table below that relates plane stress and plane strain problems. 

Replacing the engineering constants in Eq. (2. 47) by the corresponding constants in Table 2-1, the 

displacements for a thick beam in flexure are 

 

𝑢(𝑥, 𝑦) =
𝑃(1 − 𝜐2)

𝐸𝐼𝑧𝑧
[− (𝑙 −

𝑥

2
) 𝑥𝑦 −

2 − 𝜐

6(1 − 𝜐)
𝑦3 +

1 − 2𝜐

4(1 − 𝜐)
ℎ2𝑦] 

𝑣(𝑥, 𝑦) =
𝑃(1 − 𝜐2)

𝐸𝐼𝑧𝑧
[
𝜐(𝑙 − 𝑥)

2(1 − 𝜐)
𝑦2 +

𝑙𝑥2

2
−
𝑥3

6
] 

(2. 48) 

Table 2-1 Conversion table of the plane problems for isotropic materials 

Plane condition switch Young’s modulus Poisson’s ratio 

Plane stress  Plane strain 
𝐸

1 − 𝜐2
 

𝜐

1 − 𝜐
 

Plane strain  Plane stress 
𝐸(1 + 2𝜐)

(1 + 𝜐)2
 

𝜐

1 + 𝜐
 

FVM Simulation and Comparison 

 The elasticity solution to the cantilever beam in plane stress and strain is compared with 

FVM based simulation. The beam is made of steel (𝐸 = 30,000 𝑘𝑠𝑖, 𝜈 = 0.30) with a length of 

80 inches and a height of 10 inches and subjected to a vertical end load of 8,000 lbs. on its right 

face, parabolically distributed such that it mimics the elasticity solution. This is accomplished by 

assigning parabolic distribution of surface-averaged tractions to the subvolume faces along the 

right boundary. In contrast with the elasticity solution, the vertical and horizontal displacement 

components along the entire left face of the beam are set to zero in a surface-average sense to 

simulate true built-in boundary conditions. The displacement and stress fields were generated 

using 100 × 10  square subvolume discretization of the analyzed rectangular domain, and then 

plotted based on vertex quantities of each subvolume, which were then interpolated inside each 

subvolume using a color map. FVM utilizes an averaging scheme at shared nodes, whereas FEM 

directly enforces nodal continuity. Both methods rely on common grids to determine vertex 
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quantities, enabling a comparison between exact elements in FEM and subvolumes in FVM. 

Unless explicitly stated otherwise, this dissertation will utilize the aforementioned plotting and 

comparison methodology throughout the remaining sections. 

 Figure 2-4 presents comparison of the displacement and stress fields generated by the 

elasticity and FVM solutions under plane stress conditions. The differences in the displacement 

fields are very small throughout the beam’s cross section, including the immediate vicinity of the 

left face where the displacement boundary conditions differ in the two solutions. Further, the 

neutral axis deflections are also comparable. In contrast, the manner of fixing the beam to the wall 

produces more substantial differences in the stress fields generated by the two solutions both in 

the immediate vicinity of the fixed wall and in the beam’s interior.  
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Figure 2-4 Comparison of displacement and stress fields in a cantilever beam with an end load 

obtained from FVM (left) and elasticity (right) plane stress solutions 

This can be barely observed in the axial stress field 𝜎𝑥𝑥(𝑥, 𝑦) upon plotting the differences in the 

two solutions in Figure 2-5 for the three stress components. Whereas the differences in the 

𝜎𝑥𝑦(𝑥, 𝑦) and 𝜎𝑦𝑦(𝑥, 𝑦) stress components are limited to the left face of the beam, and become 

negligible elsewhere, these differences propagate into the beam much further for the axial stress. 

 

 

Figure 2-5 Differences in the stress components in a cantilever beam with an end load obtained 

from FVM and elasticity plane stress solutions 

 The elasticity solution produces the same in-plane stress distributions under both plane 

stress and plane strain boundary conditions. In contrast, the FVM solution produces somewhat 

different stress distributions because of the manner of fixing the left face of the beam. These 

differences in the plane strain situation mimic the differences between the two solutions observed 

in the plane stress situation and hence are not illustrated. Conversely, the displacement fields differ 

under plane stress and plane strain conditions. The differences in the neutral axis deflections 
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predicted by the elasticity and FVM solutions under plane stress and plane strain conditions are 

presented in Figure 2-6, illustrating the effect of boundary conditions. 

 

Figure 2-6 Comparison of neutral axis deflections of a cantilever beam with an end load 

obtained from elasticity and FVM plane stress (left) and plane strain (right) solutions 

2.4.2 Bending of a Multi-layered Beam by an End Load 

 Layered constructions are employed not just in advanced aircraft applications which utilize 

laminated composite plates, but also in structural engineering components. The lamination plate 

theory has been employed in the analysis of the response of laminated plates wherein a specific 

type of a homogenization process based on an assumed deformation field is implemented to 

replace the layered microstructure with equivalent extension, stretching-bending and bending 

stiffness matrices. Herein we employ the developed FVM for plane strain applications to 

investigate the bending of layered constructs accounting for the layered microstructure for 

comparison with the equivalent homogenized construct. The question that we pose is how many 

layers are required to obtained the same deflection response that approaches that of the response 

of an equivalent homogeneous construct with homogenized moduli. Another way of posing this 

question is to ask when homogenization is valid and when actual layered microstructure needs to 

be considered. 

Postma developed an exact elasticity solution for the overall transversely isotropic 

properties of periodically layered structures composed of alternating isotropic layers with different 
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elastic moduli, with the direction of anisotropy orthogonal to the plane of alternating layers. This 

periodic structure consisting of alternating plane, parallel, isotropic, and homogeneous elastic 

layers can be replaced by a homogeneous, transversely isotropic material as far as its gross‐scale 

elastic behavior is concerned. For such laminations stacking along the direction of the 𝑦 axis, exact 

expressions for the homogenized moduli are obtained in the form below, where the five elastic 

moduli of the equivalent transversely isotropic medium are accordingly expressed in terms of the 

elastic properties and the ratio of the thicknesses of the individual isotropic layers. 

 

𝐶11 =
1

𝐷
{(𝑑1 + 𝑑2)

2(𝜆1 + 2𝜇1)(𝜆2 + 2𝜇2)

+ 4𝑑1𝑑2(𝜇1 − 𝜇2)[(𝜆1 + 𝜇1) − (𝜆2 + 𝜇2)]} 

𝐶12 =
1

𝐷
{(𝑑1 + 𝑑2)[𝜆1𝑑1(𝜆2 + 2𝜇2) + 𝜆2𝑑2(𝜆1 + 2𝜇1)]} 

𝐶16 = 0 

𝐶22 =
1

𝐷
{(𝑑1 + 𝑑2)

2(𝜆1 + 2𝜇1)(𝜆2 + 2𝜇2)} 

𝐶26 = 0 

𝐶66 =
(𝑑1 + 𝑑2)𝜇1𝑢2
𝑑1𝜇2 + 𝑑2𝜇1

 

(2. 49) 

where 𝐷 = (𝑑1 + 𝑑2)[𝑑1(𝜆2 + 2𝜇2) + 𝑑2(𝜆1 + 2𝜇1)],  and 𝜇𝑖  are the shear moduli of the 

individual isotropic layers (𝑖 = 1, 2), and 𝑑𝑖 are the respective thickness. 

 A sequence of horizontally layered rectangular cross sections comprised of alternating 

isotropic layers made of glass and epoxy (glass: 𝐸 = 10,000 𝑘𝑠𝑖, 𝜈 = 0.30; epoxy: 𝐸 = 500 𝑘𝑠𝑖, 

𝜈 = 0.30 ) were constructed with progressively finer microstructures for the FVM analysis. 

Specifically, five laminated beams comprised of 2, 4, 8, 16, and 32 alternating glass/epoxy layers 

with an overall length of 80 inches and height of 10 inches were constructed for comparison with 

the response of an equivalent Postma-homogenized beam. The layered and homogenized beams 
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were discretized into 320 × 32  subvolumes for the FVM analysis under the plane strain 

assumption. The beams were cantilevered at the left end and subjected to a vertical end load of 

8,000 lbs. applied on the top right corner of the beam, with the right face traction free. 

The results given in the following figures illustrate the displacement and stress fields in the 

five laminated constructs relative to a homogeneous beam with equivalent homogenized 

transversely isotropic moduli.  The distributions were generated from displacement and stress 

quantities at subvolume vertices and then interpolated inside each subvolume using a colormap. 

Figure 2-7 and Figure 2-8 illustrate the horizontal and vertical displacement fields for the layered 

and homogenized beams, suggesting that 16 layers produce displacement fields that are 

comparable to the homogenized results. 

 

Figure 2-7 Displacement 𝑢 in cases with 2, 4, 8, 16 and 32 layers and homogenized beam 
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Figure 2-8 Displacement 𝑣 in cases with 2, 4, 8, 16 and 32 layers and homogenized beam 

In contrast, 32 layers are required to produce a comparable axial stress field as observed in 

Figure 2-9, where the effect of the layered microstructure is clearly visible for the 16-layer 

configuration. Although not visible at this resolution, this effect is present to a smaller extent in 

the 32-layer configuration because the axial stress is discontinuous across vertical cross sections 

due to the discontinuous elastic moduli variation.  In the case of the shear stress shown in Figure 

2-10, however, 16-layer one is sufficient to approach the stress distribution of the homogenized 

beam because the shear stress is a traction component along the 𝑥  and 𝑦  axes, and hence is 

continuous in both directions regardless of the material discontinuities. This is one of the strengths 

of FVM in handling composite materials consisting of multiple layers, even with asymmetric 

layouts, wherein both displacement and traction continuity is enforced, albeit in a surface-averaged 

sense. 
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Figure 2-9 Stress 𝜎𝑥𝑥 in cases with 2, 4, 8, 16 and 32 layers and homogenized beam 

 

Figure 2-10 Stress 𝜎𝑥𝑦 in cases with 2, 4, 8, 16 and 32 layers and homogenized beam 



 56 

 A more quantitative comparison between the stress distributions of layered and 

homogenized configurations is presented in Figure 2-11, which illustrates cross section graphs of 

axial and shear stresses half-way along the beams’ spans. 

 

Figure 2-11 Cross section distributions of 𝜎𝑥𝑥 (left) and 𝜎𝑥𝑦 (right) stresses for the layered and 

homogenized configurations halfway along the beams’ spans 

2.4.3 Heterogenous Cantilever Beams with Inclusions and Porosities 

 Many composite problems are generalized plane strain in nature because of the 

reinforcement presence. They are often solved using three-dimensional finite element analyses. 

The FVM technique may be implemented to solve these problems using the developed generalized 

plane strain formulation, which is achieved by introducing an out-of-plane strain into the two-

dimensional finite volume analysis, reducing the computational effort. This strain may be either 

specified or determined as part of the solution for a given out-of-plane force or average stress. 

 Herein, the generalized plane strain feature of FVM is illustrated by analyzing the bending 

of a fiber reinforced and porosity wakened beams subjected to end loads and compared with the 

plane strain results. These problems mimic the previously analyzed cantilever beam problems. The 

beams are reinforced by boron fibers in an aluminum matrix containing a 0.3 fiber volume fraction. 

Aluminum beams weakened by porosities are obtained by removing the fibers, yielding a 0.3 void 

volume fraction. Unlike the previous studies, in this section, we employ a disordered mesh 

generated by a commercial software (ANSYS) and adopted for FVM analysis to efficiently model 
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the circular boundaries of both boron fibers and porosities. At present, ANSYS does not provide 

support for the generalized plane strain condition. As a result, the plane strain condition is chosen 

as an alternative in FEM simulations. The stress fields for the boron/aluminum beams with a single 

row of fibers obtained under plane strain modeled in FEM and generalized plane strain modeled 

in FVM conditions are compared in Figure 2-12, with the corresponding comparison for the voided 

beams in Figure 2-13. 

 

Figure 2-12 Stress components in composite beams in plane strain (FEM results, left) and 

generalized plane strain (FVM results, right) 
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Figure 2-13 Stress components in porous beams in plane strain (FEM results, left) and 

generalized plane strain (FVM results, right) 

2.5 Shear Characterization of Unidirectional Composites  

 Tensile, compressive, and shear properties of traditional structural materials are most often 

determined by materials testing and not from complex theoretical analysis. Current test methods 

are largely based upon technology developed for wood, metals, and adhesives. Yet, composite 

material test techniques are limited due to their heterogeneity and anisotropy. While the 

conventional test techniques may be applicable to tensile and compressive tests of composites, it 

does not appear that a test method which induces a state of pure shear in metals or adhesives will 

induce a state of pure shear in a composite material. Coupling effects and laminate geometry make 

the process of determining the shear modulus even more difficult. Accurate characterization of 

unidirectional composites requires analysis of stress distribution in the test section, proper 

specimen selection and optimization as well as fixture, and reliable analysis of measurement 

techniques and associated errors. 

 Unidirectional lamina with fibers oriented along a specific direction are the basic building 

blocks of laminated composites. Unidirectional lamina are typically transversely isotropic and are 

characterized by five elastic constants relative to the principal material coordinate system formed 

by the intersection of planes of material symmetry. However, at least four of them are required for 

in-plane stress analysis (𝐸11, 𝐸22, 𝜈12, 𝐺12). The first three elastic moduli (𝐸11, 𝐸22, 𝜈12) are easily 

and accurately obtained from tensile tests on 0o and 90o specimens with fibers oriented along and 

transverse to the specimen test axis, respectively. For these specimens, the perturbation in the stress 

state produced by grips decays relatively rapidly and a uniform state of stress in the specimen’s 

test section is obtained. Specimens with aspect ratios of 5 are sufficiently long to obtain uniform 

strain and stress fields in the test section, enabling accurate measurement of local strains using a 

strain gage and calculation of the axial stress from applied load and knowledge of specimen’s 

cross-sectional area, yielding 𝐸11, 𝐸22, 𝜈12. 

 Determining the axial shear modulus 𝐺12 for an anisotropic composite material is the last 

and also most challenging step in the characterization of in-plane shear response of unidirectional 
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composites, and several different test methods for 𝐺12 have been proposed since 1960s. Among 

them, torsion of thin-walled tubes and rail shear tests are well suited for metals but are expensive 

to conduct. Lee and Munro (1986) have reviewed and evaluated the existing test methods for shear 

characterization and they found that the most promising test methods are the 10° off-axis tensile 

test, the ±45° laminate test, and the Iosipescu test, based on a set of eleven criteria ranging from 

accuracy of stiffness and strength parameter determination to ease of specimen preparation and 

testing. Symmetric +45° and −45° alternating laminates have also been used in shear testing but 

those samples require expertise in manufacturing. The shear-coupling factors cannot be directly 

observed in off-angle tension for alternating laminates, and the boundary layer effects near the free 

edges do not have exact analytical description of the experiments. As a result, the off-axis tension 

test and Iosipescu shear test are the most common methods utilized to characterize composite 

materials. 

 However, a number of problems need to be resolved before these two methods can be used 

for accurate shear characterization of unidirectional composites, because of discrepancies between 

the actual stress state and the apparently measured quantities in the respective specimens’ test 

sections. With the correct interpretation of the experiment results, different test methods can yield 

the same in-plane shear modulus. Herein, FVM serves as a simulation tool to characterize 

displacement, strain, and stress fields in the test sections of off-axis tension and Iosipescu shear 

test specimens with the aim of further improving correction procedures for accurate 

characterization of the axial shear modulus. 

2.5.1 Off-axis Tension Test 

 One of the common test methods for the determination of axial shear modulus of 

unidirectional composites is the off-axis tension test conducted on specimens whose fiber 

orientation is neither parallel nor perpendicular to the direction of the applied tensile force. The 

simplicity of employing the off-axis geometry to characterize the shear response of a unidirectional 

lamina has resulted in a proposal to employ the 10° off-axis configuration, Chamis (1977). This 

configuration was chosen because it yields a high value of the shear strain at failure with the 

corresponding shear stress being the major stress contribution to fracture as determined from a 

combined-stress failure criterion. However, the off-axis fiber orientation produces a monoclinic 
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material in the coordinate system of the test specimen that also results in shearing in addition to 

axial and transverse deformations. If the shearing is prevented by the specimen grips, then a highly 

nonuniform deformation occurs in the test section of the off-axis specimen, Figure 2-14, 

introducing errors in the measured quantities based on the assumption of uniform states of stress 

and strain at the gage location. The extent of the introduced error depends not only on the off-axis 

angle, specimen geometry, end constraint and degree of material anisotropy, but is also different 

for material parameters. 

 

Figure 2-14 Illustrations of influence of end constraints in testing of anisotropic bodies (left: 

uniform state of stress, right: effect of clamped ends) – Pagano & Halpin (1968) 

In practice, the ideal uniform states of stress and strain are extremely hard to achieve due 

to the end-constraint effect in off-axis specimens. The end-constraint effect produces an additional 

shear stress, besides axial stress, that leads to inaccurate shear stress evaluation at the strain gage 

location. To estimate the extent of the stress nonuniformity in off-axis test specimens caused by 

the end constraints, Pagano and Halpin (1968) developed an approximate stress-based analytical 

solution for an off-axis specimen with length of 𝑙 and width of 2ℎ that yields the following stresses, 
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𝜎𝑥𝑥(𝑥, 𝑦) = −2𝐶0𝑥𝑦 − 2
𝑆16
𝑆11

𝐶0𝑦
2 + 𝐶1𝑦 + 𝐶2 

𝜎𝑦𝑦(𝑥, 𝑦) = 0 

𝜏𝑥𝑦(𝑦) = 𝐶0(𝑦
2 − ℎ2) 

(2. 50) 

where  𝐶0 =
6𝑆16𝜖0

6ℎ2(𝑆11𝑆66−𝑆16
2 )+𝑆11

2 𝑙2
 , 𝐶1 = 𝐶0𝑙 , 𝐶2 =

𝐶0

6𝑆16
(6𝑆66ℎ

2 + 𝑆11𝑙
2)  and 𝜖0  is the applied 

longitudinal strain. They then calculated errors in the measurement of the off-axis Young’s 

modulus based on the assumption that the axial stress in the test section is uniform and assumed 

equal to the average axial stress calculated by dividing the applied load by the cross-sectional area 

of the specimen. These errors were small for off-axis specimens with different orientations and 

aspect ratios above 6. To eliminate this error in determining the axial Young’s modulus, a 

correction factor 𝜂 was introduced to compensate for the end-constraint effect.  

 Pindera and Herakovich (1986) subsequently employed the above analytical solution to 

estimate errors in the calculation of both the axial shear modulus and the Poisson’s ratio as a 

function of off-axis orientation and geometric and material parameters. In particular, the authors 

derived correction factors that relate the apparent and true axial shear moduli when the end 

constraint effects are neglected,  

 
𝐺12

𝐺12
∗ =

𝜎12

𝜎12
∗  → 𝐺12

∗ = 𝐺12
𝜎12
∗

𝜎12
 (2. 51) 

and have shown that the error in the calculation of the apparent axial shear modulus 𝐺12
∗  may be 

substantially larger than the error in the apparent off-axis Young’s modulus obtained from the 

Pagano and Halpin’s model. 

 The solution by Halpin and Pagano is based on the application of boundary conditions on 

the specimen’s end faces at one point on opposite faces. These boundary conditions prevent 

rotation of the end faces in the middle, eliminate rigid body displacement by pinning the central 
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axis on one face, and subjecting it to the axial strain 𝜖0 at the opposite face. This approximation of 

the actual boundary conditions mimics the action of rigid grips which prevent rotation of the 

opposite faces and displace one face relative to another by a uniform amount. Herein, we employ 

the extended FVM methodology to simulate the response of off-axis specimens with different 

boundary conditions to determine the accuracy of the Halpin-Pagano approximate solution. 

 The FVM simulations were performed on two 10° off-axis specimen configurations with 

the dimensions of 80 × 8 inches discretized into 200 × 20 square subvolumes, and 40 × 8 inches 

discretized into 100 × 20 square subvolumes. These specimen configurations yield aspect ratios 

of 10 and 5, respectively, for which the end constraint effect is substantial. The material is 

graphite/polyimide with the following elastic moduli in the principal material coordinate system: 

𝐸11 = 19.81 𝑘𝑠𝑖 , 𝐸22 = 1.42 𝑘𝑠𝑖 , 𝜈12 = 0.35 ,𝐺12 = 0.725 𝑘𝑠𝑖 . The action of rigid grips is 

simulated by assigning zero transverse displacement on both faces. The center of one face is set to 

zero, whereas the center of the opposite face is assigned 𝜖𝑥𝑥
𝑜 = 0.01 . In the present study, we 

investigate the effect of end-face rotation on the resulting stress fields and the ensuing calculation 

of the apparent axial shear modulus based on the assumption of uniform strain field unaffected by 

the rigid grips. The investigated end-face rotation cases are described below. 

Fully rotating clamped ends 

The rotation of the specimens’ end faces is simulated by assigning axial displacements that produce 

uniform rotation which would be obtained by subjecting an off-axis specimen to a uniform axial 

stress without constraining the ends. The strains produced by uniaxial stress loading are obtained 

from Hooke’s law in the rotated coordinate system that reads, 

 [

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

] = [

𝑆1̅1 𝑆1̅2 𝑆1̅6
𝑆2̅1 𝑆2̅2 𝑆2̅6
𝑆1̅6 𝑆2̅6 𝑆6̅6

] [

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

] = [

𝑆1̅1 𝑆1̅2 𝑆1̅6
𝑆2̅1 𝑆2̅2 𝑆2̅6
𝑆1̅6 𝑆2̅6 𝑆6̅6

] [
𝜎𝑥𝑥
𝑜

0
0
] (2. 52) 

Therefore, the strain components are expressed in terms of the applied axial tensile stress, 
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𝜖𝑥𝑥
𝑜 = 𝑆1̅1𝜎𝑥𝑥

𝑜  

𝜖𝑦𝑦
𝑜 = 𝑆1̅2𝜎𝑥𝑥

𝑜  

𝛾𝑥𝑦
𝑜 = 𝑆1̅6𝜎𝑥𝑥

𝑜 = 𝑆1̅6𝜖𝑥𝑥
𝑜 /𝑆1̅1 

(2. 53) 

From the strain-displacement relation for the in-plane shear strain, we have 

 
𝛾𝑥𝑦
𝑜 =

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
=
𝜕𝑢

𝜕𝑦
 

(2. 54) 

Integrating with respect to 𝑦, the axial displacement reads, 

 𝑢(𝑥, 𝑦) = 𝛾𝑥𝑦
𝑜 𝑦 + 𝑓(𝑥) (2. 55) 

Therefore 𝑓(𝑥) is obtained by evaluating the axial displacement at y = 0, 𝑢(𝑥, 𝑦 = 0) = 𝑓(𝑥) =

𝜖𝑥𝑥
𝑜 𝑥. Hence the horizontal displacement 𝑢(𝑥, 𝑦) at x = l, which is the exact displacement boundary 

condition in the presence of unconstrained rotation, becomes, 

 
𝑢(𝑥 = 𝑙, 𝑦) = 𝛾𝑥𝑦

𝑜 𝑦 + 𝜖𝑥𝑥
𝑜 𝑙 =

𝑆1̅6𝜖𝑥𝑥
𝑜 𝑦

𝑆1̅1
+ 𝜖𝑥𝑥

𝑜 𝑙 = (
𝑆1̅6𝑦

𝑆1̅1
+ 𝑙)𝜖𝑥𝑥

𝑜  
(2. 56) 

whereas at the left end we have, 

 
𝑢(𝑥 = 0, 𝑦) = 𝛾𝑥𝑦

𝑜 𝑦 =
𝑆1̅6𝑦

𝑆1̅1
𝜖𝑥𝑥
𝑜  

(2. 57) 

Partially rotating clamped ends (positive half rotation) 
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In this simulation, the rigidly clamped ends are allowed to rotate in the same direction half as much 

as the specimen would shear in the absence of rigid clamps. The corresponding displacement 

boundary conditions at the left and right ends of the specimen are, 

 
𝑢(𝑥 = 0, 𝑦) =

𝛾𝑥𝑦
𝑜 𝑦

2
=
𝑆1̅6𝑦

2𝑆1̅1
𝜖𝑥𝑥
𝑜  

(2. 58) 

 
𝑢(𝑥 = 𝑙, 𝑦) = (

𝑆1̅6𝑦

2𝑆1̅1
+ 𝑙)𝜖𝑥𝑥

𝑜  
(2. 59) 

Partially rotating clamped ends (negative half rotation) 

In this simulation, the rigidly clamped ends are allowed to rotate in the opposite direction half as 

much as the specimen would shear in the absence of rigid clamps. The corresponding displacement 

boundary conditions at the left and right ends of the specimen are, 

 
𝑢(𝑥 = 0, 𝑦) = −

𝛾𝑥𝑦
𝑜 𝑦

2
= −

𝑆1̅6𝑦

2𝑆1̅1
𝜖𝑥𝑥
𝑜  

(2. 60) 

 
𝑢(𝑥 = 𝑙, 𝑦) = (−

𝑆1̅6𝑦

2𝑆1̅1
+ 𝑙)𝜖𝑥𝑥

𝑜  
(2. 61) 

In the sequel, we first compare the stress fields generated under fully clamped displacement 

boundary conditions with the Halpin-Pagano model predictions for the 10°  off-axis specimen 

proposed by Chamis for the determination of the axial shear modulus. Subsequently, we employed 

the FVM solutions for the response of a sequence of off-axis specimens with increasing off-axis 

angles, and calculated the error in the determination of the axial shear modulus if the effect of end 

constraints is neglected. The following cases are considered, 

(1) Halpin-Pagano solution: end mid points fixed without rotation as elasticity assumptions 
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(2) FVM simulation #1: with both ends fully fixed 

(3) FVM simulation #2: with both ends point fixed but fully free to rotate 

(4) FVM simulation #3: with both ends point fixed but half free to rotate 

(5) FVM simulation #4: with both ends point fixed but half free to rotate in opposite 

Figure 2-15 and Figure 2-16 present comparison of the stress fields generated by the Halpin-

Pagano model and FVM simulations #1 (both ends fully fixed) for the specimens with 5 and 10 

aspect rations, respectively. The left column of figures are the stress field plots from Halpin-Pagano 

mode, and the right column of figures are the stress field plots generated from FVM simulations 

#1. 

 

Figure 2-15 Stress fields generated by the Halpin-Pagano model and FVM simulations for the 

specimens with aspect ratio of 5 
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Figure 2-16 Stress fields generated by the Halpin-Pagano model and FVM simulations for the 

specimens with aspect ratio of 10 

Figure 2-17 illustrates the error introduced into the calculation of the axial shear modulus as a 

function of the off-axis angle predicted by the Halpin-Pagano model and FVM simulations based 

on the four displacement boundary conditions discussed in the foregoing. Figure 2-17 (right) 

includes the experimental results generated by Pindera and Herakovich (1986) using a special test 

fixture that employs rigid clamps but allows some rotation of the specimen ends. All predicted or 

tested samples that have off-axis angles greater than 30 degrees have nearly prefect agreements 

with the apparent shear modulus. With experimental results available for some off-axis samples 

with an aspect ratio of 10, FVM simulations with different end conditions can be compared to 

Pagano-Halpin’s solutions both against the experimental data. The FVM simulation with fixed end 

exhibits an accurate prediction against the corrected experimental results, and the apparent 

experimental shear modulus curve lies in between those from FVM simulations with fixed ends 

and half free rotation ends. This might provide insight into understanding the mechanism of how 
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the grips work in off-axis tension tests and reevaluating the correctness factor for experimental 

data obtained. 

 

Figure 2-17 The shear modulus obtained from different approaches in a series of off-axis angles 

for samples with aspect ratios of 5 (left) and 10 (right) 

2.5.2 Iosipescu Shear Test 

 An attractive alternative to the off-axis tension test for the determination of both the initial 

shear modulus and ultimate shear strength is the Iosipescu test. The Iosipescu shear test was 

originally designed for measuring shear properties of isotropic and homogenous materials such as 

metals. The Iosipescu shear test is designed to characterize a material’s response under shear 

loading based on ASTM D5379 (Standard Test Method for Shear Properties of Composite 

Materials by the V-Notched Beam Method).  A rectangular specimen with opposing “v” shaped 

notches is placed in the test fixture. One side of the specimen is constrained while the other side is 

displaced down during this test. Deformation is concentrated along a thin line connecting the 

opposing “v” notches, thereby producing a predominantly shear state of deformation. The shear 

load controlled by the hydraulic force system is applied forcing the right part to displace, and the 

displacement of the right part are measured as well until specimen failure. Pindera et al. (1987) 

adopted Iosipescu specimens with ASTM-specify overall dimensions but with wider “v” notches 

as actually measured from their aramid/epoxy and graphite/polyimide testing samples, shown in 

Figure 2-18. The specimens were cut into 0.08-inch-thick ones in the experiments conducted by 
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Pindera et al. (1987) and He. et al. (2002) for both 0° and 90° specimens before test performing at 

a nominal strain rate of 1% per minute. 

 

          

Figure 2-18 Configuration with its boundary conditions for a Iosipescu specimen (top) and its 

model in FVM with meshing and applied boundary condition (bottom) 

 Iosipescu shear test can be used for evaluating the in-plane shear modulus 𝐺12 for 0° and 

90°  specimens and out-of-plane shear modulus 𝐺23  for specimens with fibers perpendicular to 

specimen’s plane. Compared with other test methods, such as the thin-walled tube test and the rail 

shear test, the Iosipescu shear test uses a flat specimen that is easier to fabricate while achieving a 

nearly pure and uniform shear strain-stress state over the test region. Consequently, more reliable 

results can be obtained, and the test has become well-accepted among researchers in the field. 

Therefore, it is investigated theoretically as a mean for determining the in-plane shear modulus 

and strength of unidirectional composites. However, when employing this test method, care needs 

to be taken in interpreting the experimental results, because the shear stress distribution along the 

test section of highly anisotropic Iosipescu specimens is not uniform. Consequently, the average 

shear stress, commonly calculated by dividing the applied load by the cross-sectional area, is in 
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general not the same as the shear stress at the point where the strain gage is located. FVM 

simulation is employed herein to analyze the stress distribution in an Iosipescu specimen to 

determine errors in the calculation of the shear modulus based on shear stress uniformity. 

 Figure 2-19 and Figure 2-20 compare the in-plane stress fields in the 0o and 90o Iosipescu 

specimens subjected to the same displacements applied on the top and bottom surfaces of the right-

hand side of the specimens.  

 

Figure 2-19 Stress fields in 0° aramid/epoxy Iosipescu specimens 

 

Figure 2-20 Stress fields in 90° aramid/epoxy Iosipescu specimens 

As observed, in addition to shear stress across the specimens’ test section spanning the V-notches, 

not insignificant axial and transverse normal stresses are also present. These do not influence the 

axial shear modulus determination for orthotropic or transversely isotropic materials, as is the case 

of the aramid/epoxy composite analyzed here. Differences in the two normal and one shear stress 

fields between the “v” notches are observed in the two specimen configurations whose detailed 

distributions are illustrated in Figure 2-21. The 0° aramid/epoxy Iosipescu specimen has a large 

variation in stress 𝜎𝑥𝑥 through the middle cut in the test section than 90° aramid/epoxy Iosipescu 

specimen does, but both with relatively small variation in the stress 𝜎𝑦𝑦. Except near the very top 

and bottom of the middle cut in each test section, 0° aramid/epoxy Iosipescu specimen has a right-

facing curve plotting the normalized shear stress along the middle cut of test section, and 90° 

aramid/epoxy Iosipescu specimen in the opposite possesses a left-facing normalized shear stress 
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curve, both of which match with the tendency reflected in the normalized shear stress distribution 

plots for aramid/epoxy samples. 

 

Figure 2-21 Stress distributions across test sections of 0° (left three) and 90° (right three) 

aramid/epoxy Iosipescu specimens 

These differences introduce errors in the determination of the axial shear modulus based on the 

uniform shear stress assumption. Because the 0o configuration produces a lower magnitude of the 

shear stress in the middle of the test section, where the strain gage is placed, relative to the uniform 

shear stress, a higher apparent shear modulus will be calculated. The converse is true for the 90o 

configuration, thereby underestimating the actual shear modulus. These discrepancies are observed 

in the experimental data generated by Pindera et al. (1987) on the aramid/epoxy composite.  

 Similar results are observed in Iosipescu specimens made of graphite/polyimide with 

different moduli ratios, Figure 2-22 and Figure 2-23, as well as the normalized shear stress 

distributions in the middle of the test section, Figure 2-24. 

 

Figure 2-22 Stress fields in 0° graphite/polyimide Iosipescu specimens 
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Figure 2-23 Stress fields in 90° graphite/polyimide Iosipescu specimens 

 

Figure 2-24 Stress distributions across test sections of 0° (left) and 90° (right) 

graphite/polyimide Iosipescu specimens 

2.6 Summary 

 Plane problems, including plane stress, plane strain, and generalized plane strain conditions 

have been formulated within the finite-volume framework for numerical solution implementation. 

The method has been extended to accommodate the analysis of structural components composed 

of monoclinic and orthotropic materials with one and three planes of symmetry. The extended 

framework has been verified using elasticity solutions, and subsequently employed to investigate 

technologically significant problems as well as problems of fundamental interest. These include 

questions regarding the applicability of homogenization when analyzing the response of 

multilayered beam or plate-like structures, and analysis errors in the common test methods 

employed for the determination of the axial shear modulus of advanced unidirectional composites 

such as off-axis tension tests and Iosipescu shear tests. By visualizing the stress distribution and 
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identifying the effects of end conditions, FVM demonstrates its ability to perform full-field 

analysis and highlight any differences from Pagano-Halpin’s analytical solution. Comparing FVM 

results and Pagano-Halpin's solutions against experimental data for off-axis samples with an aspect 

ratio of 10, reveals that the FVM simulation with fixed end accurately predicted the corrected 

experimental results. FVM also provides an alternative to analyze the full-field behavior of 

Iosipescu test specimens by validating the correction of the shear stress distribution at the location 

of the strain gauges for the purpose of minimizing the error in the intralaminar shear modulus. 
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Chapter 3  

Saint Venant’s Torsion Problems 

 

3.1 Introduction 

 Twisting of prismatic bars due to pure torsion along the bar’s axis is a fundamental 

deformation mode in structural analysis and hence plays an important role in the design of 

structural members of various cross sections, e.g., beams subjected to transverse loading, shafts in 

power trains, cf., Timoshenko and Goodier (1970), Boresi et al. (1985), Ugural and Fenster (2003), 

Sadd (2009). This deformation mode is also one of the earliest elasticity problems studied by 

several scientists, most notably Saint Venant who had proposed the first successful solution to this 

class of problems using what is now called the Saint Venant’s semi‐inverse method since 1855. In 

his approach, the functional form of two of the three displacement components is obtained from 

the deformation analysis of a bar’s cross section perpendicular to the generator axis. The remaining 

displacement component is then determined such that the governing differential equations of 

elasticity and boundary conditions are satisfied. 

 The developed semi-inverse method to the elasticity theory of bars with general cross 

sections subjected to torsion yields solutions formulated either in terms of displacements or 

stresses. Analytical solutions to torsion problems are obtained only for a small class of cross 

sections bounded by surfaces that can be expressed by simple equations, Fourier series expansions, 

or that can be generated by conformal mapping. Even fewer are available for cross sections that 

are orthotropic. Moreover, analytical solutions for complicated cross sections do not generally 

exist, especially cross sections made of heterogeneous materials. Hence numerical solutions are 

typically employed, as discussed by Chen et al. (2020), with FEM most prevalent due to their 

ability to efficiently capture arbitrarily shaped cross sections. An attractive alternative to the 

solution of the Saint Venant’s torsion problem is offered by the FVM. Chen et al. (2020) were the 

first to employ FVM in the solution of Saint Venant’s torsion problems of prismatic homogeneous 
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and heterogeneous bars of cross sections made up of rectangular elements, including I, T, box and 

channel beams. The solution was carried out using the Saint Venant’s semi-inverse method within 

the finite-volume framework developed by Bansal and Pindera (2003) based on the discretization 

of the analyzed domain into rectangular subvolumes. This framework was developed explicitly for 

the analysis of heterogeneous materials and enforces continuity of both surface averaged tractions 

and displacements across adjacent subvolumes. However, the discretization of a prismatic bar’s 

cross section into rectangular subvolumes limits its applicability to domains with linear interfaces 

and boundaries aligned with the coordinate system in which the analysis takes place. This 

limitation was overcome by parametric mapping introduced into the finite-volume framework of 

Bansal and Pindera (2003) in a sequence of contributions dealing with functionally graded and 

periodic materials by Cavalcante et al. (2007), Gattu et al. (2008), Khatam and Pindera (2009), 

Cavalcante and Pindera (2012, 2016). In this approach, the analysis domain is discretized into 

quadrilateral subvolumes using a parametric mapping of a square subvolume from a reference 

plane to the physical plane that facilitates simulation of curved boundaries and interfaces between 

subdomains of a cross section containing distinct materials. 

 In this chapter, parametric mapping is incorporated into the previously developed finite-

volume based solution approach to torsion problems. It is then applied to several structural 

problems involving composite cross sections of non-rectangular shape. 

3.2 Saint Venant’s Torsion 

 Within the class of elasticity problems called torsion, a prismatic bar of arbitrary cross 

section in the 𝑥 –  𝑦 plane is shown in Figure 3-1. The bar is loaded by a distribution of forces 

tangent to the plane transverse to the cylinder's axis that produce a zero net force resultant but is 

statically equivalent to a moment (0,0,𝑀𝑧) directed along the z axis. For such bars, the problem 

reduces to that of pure torsion named after Saint Venant.  



 75 

 

Figure 3-1 Saint Venant’s torsion problem showing the deformation of planes passing through 

the prismatic bar’s centroidal axis due to twisting moment applied to the end faces 

 The solution to torsion problems occupies a vital place in the theory of elasticity as it 

demonstrates an important solution technique that reduces a seemingly three-dimensional 

elasticity problem involving three unknown displacements to a two-dimensional one involving just 

one displacement. In this approach, known as the Saint Venant's semi-inverse method, explicit 

expressions for the two in-plane displacements in the bar's cross section are obtained from 

geometric considerations of the deformation of a prismatic bar subjected to pure torsion by twisting 

moments directed along the bar's axis applied to the end faces. The remaining out-of-plane 

displacement, proportional to the so-called warping function, is assumed to depend on the in-plane 

coordinates. The above displacement field satisfies two of the three equilibrium equations of 

elasticity and produces only shear stresses acting on the bar's cross section that generates the 

applied twisting moment. Chen et al. (2020, 2021) addressed this problem using the finite-volume 

technique and provided a summary of methods employed by others. The most recent contribution 

to the development of new methods for the Saint Venant's torsion problem includes a radial basis 

meshless method that may also be used for orthotropic and functionally graded cross sections. 

 It is noted that the Saint-Venant semi-inverse method is valid for regions away from fixed 

ends according to the Saint-Venant's principle. Consider a long beam whose one end is fixed to a 

rigid wall, while the other is acted upon by a distribution of forces that produce a resultant force 𝐹 

and/or a couple moment 𝑀. While the distributions of strains and stresses near the region of force 

application may differ, the difference in the local force distribution will have no significant effect 

on the stress state far enough from the region of application, as long as the systems of applied 
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forces and moments are statically equivalent. In this chapter, it is assumed that the analyzed cross 

section is sufficiently far away from both ends thus eliminating the end effects.  

 The torsion problem will be formulated in terms of in-plane displacements or the warping 

function, then re-formulated in terms of the Prandtl stress function in the preceding sections. The 

stress formulation facilitates the development of closed-form solutions to several important cross 

sections of homogeneous bars. 

3.2.1 Displacement Formulation and Warping Function 

 Analysis of the deformation of a prismatic bar subjected to pure twisting moments along 

the 𝑧 axis in the 𝑥 − 𝑦 plane situated at an arbitrary elevation in 𝑧 direction from the face relative 

to which the rotation angle of the cross section is measured, Figure 3-2 based on the kinematic 

assumptions produces the in-plane displacements in the 𝑥 and 𝑦 direction, 𝑢 and 𝑣 of the form, 

 

Figure 3-2 Saint Venant’s torsion problem with u and v displacement components from 

kinematic assumptions 

where 𝜃 is the angle of twist of the cross section per unit length along the bar's axis. The out-of-

plane displacement 𝑤 in the 𝑧 direction is then assumed to depend only on the in-plane coordinates 

 𝑢(𝑦, 𝑧) = −𝜃𝑦𝑧 , 𝑣(𝑥, 𝑧) = 𝜃𝑥𝑧 (3. 1) 
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(𝑥, 𝑦) because the twisting moment does not vary along the bar's axis. It is expressed in terms of 

the warping function 𝜓(𝑥, 𝑦) as follows  

 𝑤(𝑥, 𝑦) = 𝜃𝜓(𝑥, 𝑦) (3. 2) 

for consistency with the in-plane displacement field. 

 The above displacement fields produce vanishing normal strains, and engineering shear 

strains only in the planes that contain the 𝑧 axis, namely 𝑥 − 𝑧 plane and 𝑦 − 𝑧 plane.  

 𝜖𝑥𝑥 = 𝜖𝑦𝑦 = 𝜖𝑧𝑧 = 𝛾𝑥𝑦 = 0 

𝛾𝑧𝑥 =
𝜕𝑤

𝜕𝑥
− 𝑦𝜃 

γ𝑧𝑦 =
∂𝑤

∂𝑦
+ 𝑥𝜃 

(3. 3) 

Consequently, the only stresses that result are the shear stresses in the above two planes,  

 𝜎𝑧𝑥 = 𝐺𝑧𝑥𝜃 (
𝜕𝜓

𝜕𝑥
− 𝑦) , 𝜎𝑧𝑦 = 𝐺𝑧𝑦𝜃 (

𝜕𝜓

𝜕𝑦
+ 𝑥) (3. 4) 

This stress field satisfied exactly the first two equilibrium equations with the third equation  

 
𝜕𝜎𝑧𝑥
𝜕𝑥

+
𝜕𝜎𝑧𝑦

𝜕𝑦
= 0 (3. 5) 

producing a condition on 𝜓(𝑥, 𝑦)  
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 𝐺𝑧𝑥
𝜕2𝜓

𝜕𝑥2
+ 𝐺𝑧𝑦

𝜕2𝜓

𝜕𝑦2
= 0 (3. 6) 

 The above equation is solved subject to the traction-free boundary condition on the 

prismatic bar's lateral surface  

 𝑡𝑧 = 𝜎𝑧𝑥𝑐𝑜𝑠(𝑛, 𝑥) + 𝜎𝑧𝑦𝑐𝑜𝑠(𝑛, 𝑦) = 0 (3. 7) 

which becomes 

 𝐺𝑧𝑥
𝜕𝜓

𝜕𝑥

𝑑𝑥

𝑑𝑛
+ 𝐺𝑧𝑦

𝜕𝜓

𝜕𝑦

𝑑𝑦

𝑑𝑛
= 𝐺𝑧𝑥𝑦

𝑑𝑥

𝑑𝑛
− 𝐺𝑧𝑦𝑥

𝑑𝑦

𝑑𝑛
 (3. 8) 

3.2.2 Stress Formulation and Prandtl Potential Function 

 The torsion problem may be re-formulated in terms of stresses by noting that the surviving 

third equilibrium equation is satisfied by the potential function 𝜙(𝑥, 𝑦)  called Prandtl stress 

function such that  

 𝜎𝑧𝑥 =
𝜕𝜙

𝜕𝑦
,  𝜎𝑧𝑦 = −

𝜕𝜙

𝜕𝑥
 (3. 9) 

Using these definitions in the expressions for the two stress components given in terms of 𝜓(𝑥, 𝑦), 

differentiating appropriately and adding the two equations give the governing differential equation 

for 𝜙(𝑥, 𝑦)  

 
1

𝐺𝑧𝑦

𝜕2𝜙

𝜕𝑥2
+

1

𝐺𝑧𝑥

𝜕2𝜙

𝜕𝑦2
= −2𝜃 (3. 10) 
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The traction-free boundary condition on the prismatic bar's lateral surface then becomes,  

 𝑡𝑧 = 𝜎𝑧𝑥
𝑑𝑥

𝑑𝑛
+ 𝜎𝑧𝑦

𝑑𝑦

𝑑𝑛
=
𝜕𝜙

𝜕𝑦

𝑑𝑦

𝑑𝑠
+
𝜕𝜙

𝜕𝑥

𝑑𝑥

𝑑𝑠
=
𝑑𝜙

𝑑𝑠
= 0 (3. 11) 

with the corresponding traction-free boundary condition on 𝜙  

 𝜙(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑥, 𝑦 ∈ 𝑆) (3. 12) 

Because the shear stress resultant is tangent to the family of lines 𝜙 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, the traction-free 

boundary condition may be used to construct the potential function 𝜙(𝑥, 𝑦)  for certain cross 

sections through appropriate choice of the constant that defines the boundary. 

 Once the solution for either 𝜓(𝑥, 𝑦) or 𝜙(𝑥, 𝑦) is obtained for a given cross section, the 

angle of twist per unit length 𝜃 may be related to the resulting torque produced by the shear stresses 

𝜎𝑥𝑧 and 𝜎𝑦𝑧 through the torsional rigidity 𝐷.  

 𝑀 =∬(𝑥𝜎𝑧𝑦 − 𝑦𝜎𝑧𝑥)
𝑅

𝑑𝑥𝑑𝑦 = 𝜃𝐷 (3. 13) 

3.3 Finite Volume Method for Saint-Venant’s Torsion Problems 

 The finite volume method employs the displacement formulation in the solution of Saint 

Venant’s torsion problems involving arbitrary cross sections that may be homogeneous or 

heterogeneous. These features motivate partition of the cross section into quadrilateral subvolumes 

that are assigned material properties which mimic the cross-section’s microstructure and shape. 

The subvolumes may be isotropic or orthotropic as only two shear moduli participate in the 

problem formulation. These quadrilateral subvolumes are the elementary units in the finite volume 

analysis wherein the local displacement fields are approximated using simple polynomial 

expressions. Using the displacement formulation ensures that the compatibility equations in each 
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subvolume are identically satisfied, and the use of strain-displacement and constitutive equations 

leads to direct calculation of the local stress fields through simple differentiation. The use of simple 

polynomials precludes point-wise satisfaction of the displacement and traction components across 

common faces of adjacent subvolumes. Hence a compromise is employed that involves the 

imposition of interfacial displacement and traction continuity in a surface-average sense. The 

equilibrium equations are satisfied in a surface-average sense as well. Hence the solution strategy 

employed in FVM follows the elasticity-based solution strategy, albeit in a surface-average as 

opposed to point-wise sense. Thus, it differs fundamentally from the variational-based solution 

strategies based on energy minimization. Whereas the subvolume equilibrium is always satisfied 

in a surface-average sense, the point-wise accuracy of the method increases with partition 

refinement. 

 The above overview of the method again clearly suggests that the finite volume method 

was originally developed as a semi-analytical tool to account for material heterogeneity with 

arbitrary geometric shapes and distributions, and to avoid intricate mathematical derivations in the 

presence of complex microstructural details in the solution of Saint Venant’s torsion problems 

beyond isotropic materials. 

 The partitioning of the analyzed domain using (𝑖) quadrilateral subvolumes to 

accommodate cross sections of arbitrary shapes is accomplished using parametric mapping of the 

reference square domain in the reference plane onto the actual quadrilateral subvolume in the 

physical plane. The displacement field approximation is also made in the reference plane, and thus 

the FVM analysis which entails the development of relations between displacement and traction 

quantities is conducted in both planes. The establishment of these relations enables the construction 

of the local stiffness matrix for each quadrilateral subvolume in the physical plane that relates the 

surface‐averaged in-plane displacements to the corresponding tractions. The local stiffness matrix 

is constructed such that the quadrilateral subvolume’s equilibrium is satisfied in the physical plane, 

and the assembly of all the local stiffness matrices ensures that traction and displacement 

continuity and prescribed boundary conditions are also satisfied. 

 This section first describes the parametric mapping employed in the theory’s construction, 

followed by subvolume discretization into quadrilateral partitions, displacement field construction, 
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and the solution for these in‐plane displacements using the parametric FVM. Towards this end, 

local coordinate systems  (�̅�, �̅�)(𝑖) are set up at the subvolumes’ centroids, where the coordinates 

(𝑥, 𝑦)(𝑖)of an arbitrary point within the subvolume (𝑖) are referred in the global coordinate system. 

The global coordinates are employed in the parametric mapping described in the following 

subsection, whereas the local coordinates transferred in the reference system are employed in the 

in-plane displacement, strain and stress field representation in each subvolume. 

3.3.1 Transfinite Interpolation  

 Numerical grid generation arose from the need to compute solutions to partial differential 

equations in fluid dynamics on physical regions with complex geometry. The accuracy of the 

solution to partial differential equations depends on how fine and sensitive the grid is for the 

problem domain. Transfinite interpolation (TFI) is a means to construct functions over a planar 

domain in such a way that they match a given function on the boundary. The transfinite 

interpolation method, first introduced by Gordon and Hall (1973), receives its name due to how a 

function belonging to this class is able to match the primitive function at a nondenumerable number 

of points. Unlike rectangular discretization which may not conform well to physical regions even 

with a great number of partitions, the present parametric mapping employs transfinite grid 

generation that defines the subvolume vertices in the physical domain, introduced by Gordon and 

Thiel (1982) for constructing meshes originally developed for grid construction in finite-difference 

and finite-element solutions of boundary-value problems. 

 All of the subvolume vertex coordinates (𝑥𝑝, 𝑦𝑝)
(𝑖)

, where 𝑝 is the numbering index of the 

vertices, are generated in the physical domain using transfinite mapping. By transforming a 

physical region to a simpler region, one removes the complication of the shape of the physical 

region from the problem. An advantage of this technique is that the boundary conditions become 

easier to approximate accurately, albeit at the cost of an increase in the complexity of the 

transformed equations. 

 To determine the subvolume vertex coordinates, one first maps the physical boundary of 

the analyzed cross section onto a unit square in the 𝑠 − 𝑡  plane. This mapping is defined by 

equations of the form, 
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𝑿𝑏(𝑠), 𝑿𝑡(𝑠) for 0 ≤ 𝑠 ≤ 1 

𝑿𝑡(𝑠), 𝑿𝑟(𝑠) for 0 ≤ 𝑡 ≤ 1 

(3. 14) 

where, for instance, the arbitrary boundary point 𝑿𝑏(𝑠) = (𝑥𝑏(𝑠), 𝑦𝑏(𝑠)) describes parametrically 

the portion of the boundary in the physical plane that maps onto the bottom unit square in the 

reference plane. As an example, the identity map that maps a unit square in the physical plane onto 

unit square in the reference plane is given by, 

 

𝑿𝑏(𝑠) = (𝑠, 0), 𝑿𝑡(𝑠) = (𝑠, 1) for 0 ≤ 𝑠 ≤ 1 

𝑿𝑡(𝑠) = (0, 𝑡), 𝑿𝑟(𝑠) = (1, 𝑡) for 0 ≤ 𝑡 ≤ 1 

(3. 15) 

The first-degree Lagrange polynomials 1 − 𝑠, 𝑠, 1 −  𝑡 and 𝑡 are used as blending functions in the 

basic transfinite interpolation formula to generate the point 𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡) in the interior of the 

cross section, 

 

𝑥(𝑠, 𝑡) = (1 − 𝑡)𝑥𝑏(𝑠) + 𝑡𝑥𝑡(𝑠) + (1 − 𝑠)𝑥𝑙(𝑡) + 𝑠𝑥𝑟(𝑡) − [𝑠𝑡𝑥𝑡(1) + 𝑠(1

− 𝑡)𝑥𝑏(1) + 𝑡(1 − 𝑠)𝑥𝑡(0) + (1 − 𝑠)(1 − 𝑡)𝑥𝑏(0)] 

𝑦(𝑠, 𝑡) = (1 − 𝑡)𝑦𝑏(𝑠) + 𝑡𝑦𝑡(𝑠) + (1 − 𝑠)𝑦𝑙(𝑡) + 𝑠𝑦𝑟(𝑡) − [𝑠𝑡𝑦𝑡(1) + 𝑠(1

− 𝑡)𝑦𝑏(1) + 𝑡(1 − 𝑠)𝑦𝑡(0) + (1 − 𝑠)(1 − 𝑡)𝑦𝑏(0)] 

(3. 16) 

 Herein, it is natural to divide the entire square domain in the reference plane into the same 

number of equally spaced horizontal and vertical lines whose intersections determined from the 

above linear interpolation equations for the given cross section define the subvolume vertex 

coordinates. Hence a single parameter is required in the parametric boundary representation and 

the linear interpolation equations for the interior points. 
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 This grid generation using transfinite interpolation is the most widely used algebraic grid 

generation procedure and also has many possible variations. It is the most often-used procedure to 

start a structured grid generation project. The advantage of using TFI is that it is an interpolation 

procedure that can generate grids conforming to specified boundaries. Grid spacing is under direct 

control. Therefore, TFI is easily programmed and is very computationally efficient. These 

advantages are offset by the fact that interpolation methods may not generate smooth grids, in 

particular, when the problem domain has steep curves or bends. In these cases, the grid becomes 

folded across the bends of the domain. The grid generation procedure will be illustrated using the 

cross sections in the sequel, which are employed in the verification and assessment of the FVM in 

Section 3.4.1. 

3.3.2 Parametric Mapping 

 The reference subvolume is a square in the 𝜂 –  𝜉 plane bounded by −1 ≤ 𝜂 ≤ 1, 1 ≤ 𝜉 ≤

1. The vertices are numbered such that the first set of coordinates is at the lower left corner and 

the numbering convention increases in a counterclockwise fashion. The faces are numbered 

similarly such that the face 𝐹𝑝 lies between the vertices (�̅�𝑝, �̅�𝑝)
(𝑖)

and (�̅�𝑝+1, �̅�𝑝+1)
(𝑖)

 with 𝑝 + 1 

going to 1 when 𝑝 = 4. Thus, the components of the unit normal vector 𝒏𝒑
(𝒊) = [𝑛𝑥, 𝑛𝑦]𝑝

(𝑖)
 to the 

face 𝐹𝑝 in each subvolume (𝑖) are given by 

 

𝑛𝑥|𝑝 =
�̅�𝑝+1
(𝑖)

− �̅�𝑝
(𝑖)

𝑙𝑝
,  𝑛𝑦|𝑝 =

�̅�𝑝+1
(𝑖)

− �̅�𝑝
(𝑖)

𝑙𝑝
 

(3. 17) 

where 𝑙𝑝 = √(�̅�𝑝+1
(𝑖) − �̅�𝑝

(𝑖))
2

+ (�̅�𝑝+1
(𝑖) − �̅�𝑝

(𝑖))
2

. The mapping if the point (𝜂, 𝜉) in the reference 

subvolume to the corresponding point (�̅�, �̅�)(𝑖) in the subvolume of the actual discretized cross 

section follows that of Cavalcante et al. (2007). 

 �̅�(𝑖)(𝜂, 𝜉) = 𝑁1(𝜂, 𝜉)�̅�1
(𝑖) + 𝑁2(𝜂, 𝜉)�̅�2

(𝑖) +𝑁3(𝜂, 𝜉)�̅�3
(𝑖) +𝑁4(𝜂, 𝜉)�̅�4

(𝑖) (3. 18) 
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�̅�(𝑖)(𝜂, 𝜉) = 𝑁1(𝜂, 𝜉)�̅�1
(𝑖) + 𝑁2(𝜂, 𝜉)�̅�2

(𝑖) +𝑁3(𝜂, 𝜉)�̅�3
(𝑖) +𝑁4(𝜂, 𝜉)�̅�4

(𝑖)
 

where 𝑁1(𝜂, 𝜉) =
1

4
(1 − 𝜂)(1 − 𝜉)   𝑁2(𝜂, 𝜉) =

1

4
(1 + 𝜂)(1 − 𝜉)   𝑁3(𝜂, 𝜉) =

1

4
(1 + 𝜂)(1 + 𝜉)   

𝑁4(𝜂, 𝜉) =
1

4
(1 − 𝜂)(1 + 𝜉). 

 The determination of strains and stresses within quadrilateral subvolumes requires the 

relationship between first partial derivatives of the warping function 𝜓 in the two planes 𝜂 −  𝜉 

and 𝑥 −  𝑦. These are related through the Jacobian 𝑱 and its inverse 𝑱−1, 

 

[
 
 
 
 
𝜕𝜓

𝜕𝜂
𝜕𝜑

𝜕𝜉 ]
 
 
 
 
(𝑖)

= 𝑱

[
 
 
 
𝜕𝜓

𝜕𝑥
𝜕𝜑

𝜕𝑦]
 
 
 
(𝑖)

↔

[
 
 
 
𝜕𝜓

𝜕𝑥
𝜕𝜑

𝜕𝑦]
 
 
 
(𝑖)

= 𝑱−1

[
 
 
 
 
𝜕𝜓

𝜕𝜂
𝜕𝜑

𝜕𝜉 ]
 
 
 
 
(𝑖)

 (3. 19) 

where the Jacobian 𝑱 is obtained from the transformation equations in the form 

 𝑱 =

[
 
 
 
 
𝜕�̅�(𝑖)

𝜕𝜂

𝜕�̅�(𝑖)

𝜕𝜂

𝜕�̅�(𝑖)

𝜕𝜉

𝜕�̅�(𝑖)

𝜕𝜉 ]
 
 
 
 

= [
𝐴1
(𝑖) + 𝐴2

(𝑖)𝜉 𝐴4
(𝑖) + 𝐴5

(𝑖)𝜉

𝐴3
(𝑖)
+ 𝐴2

(𝑖)
𝜂 𝐴6

(𝑖)
+ 𝐴5

(𝑖)
𝜂
] (3. 20) 

with 𝐴1, … , 𝐴6 are given in terms of the vertex coordinates (�̅�𝑝, �̅�𝑝)
(𝑖)

 

𝐴1
(𝑖) =

1

4
(−�̅�1 + �̅�2 + �̅�3 − �̅�4)

(𝑖), 𝐴2
(𝑖) =

1

4
(�̅�1 − �̅�2 + �̅�3 − �̅�4)

(𝑖) 

𝐴3
(𝑖) =

1

4
(−�̅�1 − �̅�2 + �̅�3 + �̅�4)

(𝑖), 𝐴4
(𝑖) =

1

4
(−�̅�1 + �̅�2 + �̅�3 − �̅�4)

(𝑖) 

𝐴5
(𝑖) =

1

4
(�̅�1 −  𝑦2 + �̅�3 − �̅�4)

(𝑖), 𝐴6
(𝑖) =

1

4
(−�̅�1 −  𝑦2 + �̅�3 + �̅�4)

(𝑖) 
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For consistency with the surface‐averaging framework of the finite‐volume theory, the two sets 

of partial derivatives are connected through the volume‐averaged Jacobian �̅�, 

 �̅� =
1

4
∫ ∫ 𝑱𝑑𝜂𝑑𝜉

+1

−1

= [
𝐴1 𝐴4
𝐴3 𝐴6

]
(𝑖)+1

−1

 (3. 21) 

with the inverse �̅�−1 

 �̅�−1 =
1

|�̅�|
[
𝐴6 −𝐴4
−𝐴3 𝐴1

]
(𝑖)

=
1

𝐴1
(𝑖)𝐴6

(𝑖) − 𝐴3
(𝑖)𝐴4

(𝑖)
[
𝐴6
(𝑖) −𝐴4

(𝑖)

−𝐴3
(𝑖) 𝐴1

(𝑖)
] (3. 22) 

 In constructing the local stiffness matrix for each subvolume in terms of the surface‐

averaged displacements and tractions, 𝑱−1 is replaced by �̅�−1 in order to generate the elements of 

the stiffness matrix in closed form. This replacement avoids costly numerical integrations. For 

each subvolume (𝑖), 

 

[
 
 
 
 
𝜕𝜓

𝜕𝑥

̂

𝜕𝜓

𝜕𝑦

̂

]
 
 
 
 

𝜉=∓1

(𝑖)

= �̅�−1
(𝑖)

[
 
 
 
 
𝜕𝜓

𝜕𝜂

̂

𝜕𝜓

𝜕𝜉

̂

]
 
 
 
 

𝜉=∓1

(𝑖)

=
1

|�̅�|(𝑖)
[
𝐴6 −𝐴4 0 ±3𝐴4
−𝐴3 𝐴1 0 ∓3𝐴1

]
(𝑖)

[
 
 
 
 
𝑊𝜓(10)

𝑊𝜓(01)

𝑊𝜓(20)

𝑊𝜓(02)]
 
 
 
 
(𝑖)

 

[
 
 
 
 
𝜕𝜓

𝜕𝑥

̂

𝜕𝜓

𝜕𝑦

̂

]
 
 
 
 

𝜂=±1

(𝑖)

= �̅�−1
(𝑖)

[
 
 
 
 
𝜕𝜓

𝜕𝜂

̂

𝜕𝜓

𝜕𝜉

̂

]
 
 
 
 

𝜂=±1

(𝑖)

=
1

|�̅�|(𝑖)
[
𝐴6 −𝐴4 ±3𝐴6 0
−𝐴3 𝐴1 ∓3𝐴3 0

]
(𝑖)

[
 
 
 
 
𝑊𝜓(10)

𝑊𝜓(01)

𝑊𝜓(20)

𝑊𝜓(02)]
 
 
 
 
(𝑖)

 

(3. 23) 

The following concise vector notation is introduced in the expressions above for notational 

convenience,  
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𝒂1,3
(𝑖) =

1

|�̅�|(𝑖)
[𝐴6 −𝐴4 0 ±3𝐴4]

(𝑖), 𝒂2,4
(𝑖) =

1

|�̅�|(𝑖)
[𝐴6 −𝐴4 ±3𝐴6 0](𝑖), 

𝒃1,3
(𝑖) =

1

|�̅�|(𝑖)
[−𝐴3 𝐴1 0 ∓3𝐴1]

(𝑖), 𝒃2,4
(𝑖) =

1

|�̅�|(𝑖)
[−𝐴3 𝐴1 ∓3𝐴3 0](𝑖) 

Moreover, the symbol 𝑊𝜓
(𝑖)

  is used to denote the vector of coefficients in the second‐order 

expansion of 𝜓(𝑥, 𝑦), which will be explained in detail in the following section. 

𝑾𝜓
(𝑖) =

[
 
 
 
 
𝑊𝜓(10)

𝑊𝜓(01)

𝑊𝜓(20)

𝑊𝜓(02)]
 
 
 
 
(𝑖)

 

3.3.3 Warping Functions and Stress Fields 

 The out-of-plane warping function is approximated in each subvolume using a second‐order 

expansion in the local coordinates as follows, 

 

𝜓 
(𝑖) = 𝑊𝜓(00)

(𝑖) + 𝜂𝑊𝜓(01)
(𝑖) + 𝜉𝑊𝜓(10)

(𝑖) +
1

2
(3𝜂2 − 1)𝑊𝜓(20)

(𝑖)

+
1

2
(3𝜉2 − 1)𝑊𝜓(02)

(𝑖)
 

(3. 24) 

where 𝑊𝜓(𝑚𝑛)
(𝑖)

 are unknown coefficients subsequently redefined in terms of the surface‐averaged 

warping functions (proportional to the corresponding out-of-plane displacements 𝑤) along the four 

subvolume faces (𝑝 = 1, 2, 3, 4)  following the subvolume-face order convention described in 

Chapter 2. The above displacement field representations produce the shear strains 

 𝛾𝑥𝑧|𝑝
(𝑖) =

𝜕𝑢

𝜕𝑧

̂

𝑝

(𝑖)

+
𝜕𝑤

𝜕𝑥

̂

𝑝

(𝑖)

= −𝜃�̂� + 𝜃𝒂𝑝
(𝑖)𝑾𝜓

(𝑖) (3. 25) 
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𝛾𝑦𝑧|𝑝
(𝑖)

=
𝜕𝑣

𝜕𝑧

̂

𝑝

(𝑖)

+
𝜕𝑤

𝜕𝑦

̂

𝑝

(𝑖)

= 𝜃𝑥 + 𝜃𝒃𝑝
(𝑖)
𝑾𝜓
(𝑖)

 

The subvolumes may be occupied by monoclinic materials whose stiffness matrix elements in the 

case of unidirectional composites are obtained by rotational transformation about the 𝑧 axis from 

the principal material coordinate system wherein they are orthotropic. The reduced constitutive 

equations contain stiffness matrix elements dependent on the torsion case considered, and these 

elements may vary from subvolume to subvolume as is the case in functionally graded materials 

within the framework of the specific plane case. The corresponding shear stress components in 

these planes in each subvolume are given, respectively, below after substituting the surface-

averaged expressions in Eq. (3. 25): 

 [
�̂�𝑦𝑧
�̂�𝑥𝑧

]
𝑝

(𝑖)

= [
𝐶44 𝐶45
𝐶45 𝐶55

]
(𝑖)

[
𝜃𝑥 + 𝜃𝒃𝑝

(𝑖)𝑾𝜓
(𝑖)

−𝜃�̂� + 𝜃𝒂𝑝
(𝑖)𝑾𝜓

(𝑖)
] (3. 26) 

3.3.4 Local Stiffness Matrix Construction 

 In order to reduce the number of unknown coefficients in the out-of-plane displacement 

approximation when cross sections are discretized into a large number of subvolumes, one shall 

reformulate the torsion problem in terms of surface‐averaged out-of-plane displacements on the 

four faces of each subvolume as the primary solution variables. Then one constructs a local 

stiffness matrix for each subvolume by relating the surface‐average out-of-plane displacements to 

the corresponding surface‐average tractions. It is common to start by defining the surface‐average 

warping functions, which are the out-of-plane displacements divided by the angle of twist per unit 

length 𝜃, 

 �̂�(𝑖)|1,3 =
1

2
∫ �̂�(𝑖)(𝜂, 𝜉 = ∓1)
1

−1

 𝑑𝜂 = 𝑊𝜓(00)
(𝑖) ∓𝑊𝜓(01)

(𝑖) +𝑊𝜓(02)
(𝑖)  (3. 27) 
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�̂�(𝑖)|2,4 =
1

2
∫ �̂�(𝑖)(𝜂 = ±1, 𝜉)
1

−1

 𝑑𝜉 = 𝑊𝜓(00)
(𝑖) ∓𝑊𝜓(10)

(𝑖) +𝑊𝜓(20)
(𝑖)  

 Hence, the first and second‐order coefficients 𝑊𝜓(𝑚𝑛)
(𝑖)

  may be expressed in terms of the 

surface‐averaged warping functions and the zero‐order coefficient 𝑊𝜓(00)
(𝑖)

  

 𝑾𝜓
(𝑖)
=

[
 
 
 
 
𝑊𝜓(10)

𝑊𝜓(01)

𝑊𝜓(20)

𝑊𝜓(02)]
 
 
 
 
(𝑖)

=
1

2
[

0 1
−1 0

0 −1
1 0

0 1
1 0

0 1
1 0

]

[
 
 
 
 
�̂�1
�̂�2
�̂�3
�̂�4]
 
 
 
 
(𝑖)

− [

0
0
1
1

]𝑊𝜓(00)
(𝑖)

 (3. 28) 

or 

𝑾𝜓
(𝑖) =

1

2
𝜶�̂�(𝑖) − 𝜷𝑊𝜓(00)

(𝑖)  

Similarly, the corresponding surface‐averaged interfacial tractions are defined as follows, 

 

�̂�𝑧
(𝑖)|1,3 =

1

2
∫ �̂�(𝑖)(𝜂, 𝜉 = ∓1)
1

−1

 𝑑𝜂 

�̂�𝑧
(𝑖)|2,4 =

1

2
∫ �̂�(𝑖)(𝜂 = ±1, 𝜉)
1

−1

 𝑑𝜉 

(3. 29) 

where the traction vector associated with the face 𝑝 characterized by the unit normal vector 𝒏𝑝 is 

𝑡𝑧
(𝑖)|𝑝 = 𝜎𝑖𝑧

(𝑖)
𝑛𝑖
(𝑖)|𝑝 (𝑖 = 𝑥, 𝑦). Hence the traction vector components on any of the four subvolume 

faces become, in terms of the two shear stress components, 

 �̂�𝑧|𝑝
(𝑖) = [�̂�𝑥𝑧

(𝑖)𝑛𝑥
(𝑖) + �̂�𝑦𝑧

(𝑖)𝑛𝑦
(𝑖)
]
𝑝

 (3. 30) 
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which are expressed in terms of the corresponding surface‐averaged shear strains respectively for 

general anisotropic materials, 

 �̂�𝑧|𝑝
(𝑖)
= ([𝐶45 𝐶55]

(𝑖)𝑛𝑥|𝑝
(𝑖)

+ [𝐶44 𝐶45]
(𝑖)𝑛𝑦|𝑝

(𝑖)
) [
−𝜃�̂� + 𝜃𝒂𝑝

(𝑖)𝑾𝜓
(𝑖)

𝜃𝑥 + 𝜃𝒃𝑝
(𝑖)
𝑾𝜓
(𝑖)
] (3. 31) 

or more specifically for orthotropic materials, 

 �̂�𝑧|𝑝
(𝑖) = ([0 𝐺𝑧𝑥]

(𝑖)𝑛𝑥|𝑝
(𝑖) + [𝐺𝑧𝑦 0](𝑖)𝑛𝑦|𝑝

(𝑖) ) [
−𝜃�̂� + 𝜃𝒂𝑝

(𝑖)
𝑾𝜓
(𝑖)

𝜃𝑥 + 𝜃𝒃𝑝
(𝑖)𝑾𝜓

(𝑖)
] (3. 32) 

i.e., 

�̂�𝑧|1,3
(𝑖) = 𝐺𝑧𝑥𝜃(𝒂1,3

(𝑖)𝑾𝜓
(𝑖) −

1

2
∫ 𝑦|𝜂,𝜉=∓1

(𝑖)
1

−1

 𝑑𝜂)𝑛𝑥|1,3
(𝑖) + 𝐺𝑧𝑦𝜃(𝒃1,3

(𝑖)𝑾𝜓
(𝑖) +

1

2
∫ 𝑥|𝜂,𝜉=∓1

(𝑖)
1

−1

 𝑑𝜂)𝑛𝑦|1,3
(𝑖)  

�̂�𝑧|2,4
(𝑖) = 𝐺𝑧𝑥𝜃(𝒂2,4

(𝑖)𝑾𝜓
(𝑖) −

1

2
∫ 𝑦|𝜂=±1,𝜉

(𝑖)
1

−1

 𝑑𝜉)𝑛𝑥|2,4
(𝑖) + 𝐺𝑧𝑦𝜃(𝒃2,4

(𝑖)𝑾𝜓
(𝑖) +

1

2
∫ 𝑥|𝜂=±1,𝜉

(𝑖)
1

−1

 𝑑𝜉)𝑛𝑦|2,4
(𝑖)  

 The last step in the construction of the local stiffness matrix is to express the zero-order 

coefficients 𝑊𝜓(00)
(𝑖)

  in terms of the surface-averaged warping functions. This is achieved by 

satisfying the third equilibrium equation in the surface-averaged sense. The surface tractions 

associated with each face of the (𝑖) subvolume are related to each other through the equilibrium 

equation satisfied in a volume-average sense. Using Gauss Theorem, the equilibrium equation is 

expressed in terms of surface-averaged traction components, 

 ∮𝜎𝑗𝑧
(𝑖)𝑛𝑗

(𝑖)𝑑𝑠
𝑠

= ∮𝑡𝑧
(𝑖)

𝑠

 𝑑𝑠 = ∑ �̂�𝑧|𝑝
(𝑖) 𝑙𝑝

(𝑖)

4

𝑝=1

= 0 (3. 33) 
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where 𝑠 is the contour of subvolume (𝑖) boundary. 

 Expanding the summation equations Eq. (3. 33) for the surface-averaged tractions 

multiplied by the corresponding length over each subvolume contour, the following relation is 

obtained between the surface-averaged warping functions on each of the four subvolume faces and 

the zero-order coefficient 𝑊𝜓(00)
(𝑖)

, 

 𝑊𝜓(00)
(𝑖)

=
𝑨ℎ
(𝑖)
𝜶�̂�(𝑖)

2𝐴ℎ
(𝑖)
𝜷

 (3. 34) 

where 𝑨ℎ
(𝑖) = ∑ 𝐺𝑧𝑥

4
𝑝=1 𝑙𝑝

(𝑖)𝑛𝑥|𝑝
(𝑖) 𝒂𝑝

(𝑖) + ∑ 𝐺𝑧𝑦
4
𝑝=1 𝑙𝑝

(𝑖)𝑛𝑦|𝑝
(𝑖) 𝒃𝑝

(𝑖)
 

Substituting the first and second-order coefficient expressions Eq. (3. 28) into the surface-averaged 

traction components in the z direction acting on the four edges of the subvolume Eq. (3. 31) or (3. 

32), the surface-averaged traction components are obtained solely in terms of the corresponding 

surface-averaged displacements, related through the local stiffness matrix, 

 

[
 
 
 
 
�̂�𝑧|1

�̂�𝑧|2

�̂�𝑧|3

�̂�𝑧|4]
 
 
 
 
(𝑖)

�̂�𝑧|1 = [

𝐿11 𝐿12
𝐿21 𝐿22

𝐿13 𝐿14
𝐿23 𝐿24

𝐿31 𝐿32
𝐿41 𝐿42

𝐿33 𝐿34
𝐿43 𝐿44

]

(𝑖)

[
 
 
 
 
�̂�1
�̂�2
�̂�3
�̂�4]
 
 
 
 
(𝑖)

+ [

𝐶𝑇1
𝐶𝑇2
𝐶𝑇3
𝐶𝑇4

]

(𝑖)

 (3. 35) 

where 

𝑳𝑝: =
𝜃

2
(𝐺𝑧𝑥𝒂𝒑𝑛𝑥|𝑝 + 𝐺𝑧𝑦𝒃𝒑𝑛𝑦|𝑝) (𝜶 −

𝜷𝑨ℎ𝜶

𝑨ℎ𝛽
), (𝑳𝑝: stands for the 𝑝th row vector in [𝑳]) 

and 𝐶𝑇𝑝 = −𝐺𝑧𝑥𝜃𝐼𝑇2𝑝𝑛𝑥|𝑝 + 𝐺𝑧𝑦𝜃𝐼𝑇1𝑝𝑛𝑦|𝑝 

𝐼𝑇11
(𝑖) =

1

2
∫ 𝑥|𝜂,𝜉=−1

(𝑖)1

−1
 𝑑𝜂 =

𝑥1+𝑥2

2
  𝐼𝑇21
(𝑖) =

1

2
∫ 𝑦|𝜂,𝜉=−1

(𝑖)1

−1
 𝑑𝜂 =

𝑦1+𝑦2

2
 



 91 

𝐼𝑇12
(𝑖) =

1

2
∫ 𝑥|𝜂=1,𝜉

(𝑖)1

−1
 𝑑𝜉 =

𝑥2+𝑥3

2
  𝐼𝑇22
(𝑖) =

1

2
∫ 𝑦|𝜂=1,𝜉

(𝑖)1

−1
 𝑑𝜉 =

𝑦2+𝑦3

2
 

𝐼𝑇13
(𝑖) =

1

2
∫ 𝑥|𝜂,𝜉=1

(𝑖)1

−1
 𝑑𝜂 =

𝑥3+𝑥4

2
  𝐼𝑇23
(𝑖) =

1

2
∫ 𝑦|𝜂,𝜉=1

(𝑖)1

−1
 𝑑𝜂 =

𝑦3+𝑦4

2
 

𝐼𝑇14
(𝑖) =

1

2
∫ 𝑥|𝜂=−1,𝜉

(𝑖)1

−1
 𝑑𝜉 =

𝑥1+𝑥4

2
  𝐼𝑇24
(𝑖) =

1

2
∫ 𝑦|𝜂=−1,𝜉

(𝑖)1

−1
 𝑑𝜉 =

𝑦1+𝑦4

2
 

3.3.5 Global Stiffness Matrix Assembly 

 The solution for the unknown surface-averaged displacements is obtained by constructing 

a system of equations such that the interfacial displacement and traction continuity conditions are 

satisfied together with the traction and/or displacement boundary condition. To maintain the order 

of the subvolume edges for a general unstructured mesh, each subvolume has four identical 

surface-averaged displacements and tractions allocated in the system of equations. The system of 

equations for the solution of the unknown surface-averaged displacements, which is comprised of 

displacement and traction continuity, boundary and constraint conditions, is called the global 

system. 

 First, it is necessary to denote the number of connected edges by 𝑁𝑐𝑜𝑛 and the number of 

unconnected edges by 𝑁𝑢𝑛𝑐𝑜𝑛 from the discretized grid. To solve the global system of equations 

for the surface-averaged displacements, the global stiffness matrix is allocated 2𝑁𝑐𝑜𝑛 + 𝑁𝑢𝑛𝑐𝑜𝑛 

columns and 2𝑁𝑐𝑜𝑛 + 𝑁𝑢𝑛𝑐𝑜𝑛 + 1 rows. Each subvolume has four edges with the corresponding 

number of 𝑧 displacements and contributes four equations to the global system. Each pair of two 

connected edges has the same surface-averaged displacements and equal and opposite tractions, 

which results in 2𝑁𝑐𝑜𝑛  equations for traction and displacement continuity conditions in 𝑧 

directions, whereas the unconnected edges only need to satisfy the boundary conditions also in 𝑧 

directions, producing 𝑁𝑢𝑛𝑐𝑜𝑛 equations. The breakdown of the 2𝑁𝑐𝑜𝑛 + 𝑁𝑢𝑛𝑐𝑜𝑛 + 1 rows in the 

global system is given below: 
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Displacement continuity condition equations 

For a pair of connected edges from adjacent subvolumes, the displacement continuity conditions 

contribute one equation in the 𝑧 direction each to the global stiffness matrix. 𝑝 is the edge index 

from the first subvolume and 𝑝′ is the edge index from the second subvolume. 

 �̂�𝑝
(𝑖)
− �̂�

𝑝′
(𝑖′)

= 0 (3. 36) 

Traction continuity condition equations 

For a pair of connected edges from adjacent subvolumes, the traction continuity conditions 

contribute one equation each in the 𝑧 direction to the global stiffness matrix. 𝑝 is the edge index 

from the first subvolume and 𝑝′ is the edge index from the second subvolume. 

 𝑡𝑧|𝑝
(𝑖)
+ 𝑡

𝑧|𝑝′
(𝑖′)

= 0 (3. 37) 

𝑡𝑧|𝑝
(𝑖)

 are expressed as linear combinations of surface-averaged displacements in the global system. 

Boundary condition equations 

For a pair of connected edges from adjacent subvolumes, the traction-free conditions contribute 

one equation each in the 𝑧 direction to the global stiffness matrix.  

 �̂�𝑧|𝑝
(𝑖)
= 0 (3. 38) 

Constraint condition equations 

The global system of equations is singular with the rank of 2𝑁𝑐𝑜𝑛 + 𝑁𝑢𝑛𝑐𝑜𝑛, thereby requiring an 

additional constraint that eliminates rigid body motion along the prismatic bar’s axis. One 
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approach is to constrain the out-of-plane displacement 𝜓(𝑥, 𝑦) by requiring that 𝜓(𝑥, 𝑦) = 0 at 

the cross section’s centroid where the in-plane displacements 𝑢(𝑥, 𝑦)  and 𝑣(𝑥, 𝑦)  vanish. This 

constraint cannot be employed, however, for hollow cross sections with the centroid located 

outside the cross section itself. A more general and rigorous fixation condition specifically for the 

torsion problem requires the integral of the out-of-plane displacement along the contour of the 

cross section to vanish, 

 ∮𝜓(𝑥, 𝑦)𝑑𝑠 =∑𝑠(𝑖,𝑝)�̂�𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦|𝑝
(𝑖)

= 0  (3. 39) 

where the 𝑠(𝑖,𝑝) is the length of the 𝑝 th edge in subvolume 𝑖. Solution of the above augmented 

global system of equations yields the unknown interfacial surface-averaged displacements which, 

in turn, yield the corresponding surface‐averaged tractions as well as pointwise displacements, 

strains and stresses in each subvolume. 

3.4 Verification and Assessment 

 The thus-far developed finite-volume based method for the solution of torsion problems is 

assessed and verified in this section for torsion of homogeneous and heterogeneous bars of 

different cross sections. The convergence and accuracy of the developed FVM are assessed and 

verified upon comparison with solutions for cross sections with different boundaries and material 

properties. This section is divided into two categories based on the cross-section’s make-up, 

namely homogeneous and heterogeneous bars. The finite-volume solution is verified by 

comparison with the exact analytical solution of the torsion of an isotropic homogeneous bar, and 

its performance assessed relative to the solutions obtained using FDM and FEM of the same 

problem based on the displacement formulation. The two formulations of the torsion problem, 

namely displacement and stress formulation, may be employed in solutions based on FDM and 

FEM approaches. However, as FVM has not been formulated using the Prandtl’s stress function 

approach at this stage, only displacement-based FDM and FEM are employed in the chapter for 

comparison purposes. 



 94 

 TFI cross-line grid and 4-node elements are selected for FDM and FEM solutions 

respectively, preserving the consistency with quadrilateral subvolumes of FVM. The mesh grid in 

FDM is generated based on the centers of these elements or subvolumes in FEM or FVM, the 

corners of the cross sections, as well as the midpoints on the outermost edges for boundary 

elements or subvolumes. As the only unknown in the torsion problem formulation, the warping 

function generated from these three numerical methods has been compared with the elasticity 

solution over the entire cross-sectional area. Convergence studies based on these types of cross 

sections are conducted with different mesh discretizations. This is accomplished by first examining 

the FVM global convergence with mesh refinement to the elasticity solution, and then comparing 

FVM local convergence of the displacement and stress fields to the elasticity solution at a large 

number of grid points throughout the analyzed cross section. Numerical results obtained from 

finite-difference and finite-element solutions are employed to explore the convergency rate as well. 

 Rectangular cross sections, high order boundary polynomial (star-shaped) cross sections 

and circular cross sections with a circular slot (apple-with-a-bite) are homogenous isotropic cross 

sections for which elasticity solutions are available. These cross sections are selected and tested in 

Section 3.4.1. Special heterogenous cross sections for which elasticity solutions are available are 

also modeled numerically. Cross sections composed of two homogenous isotropic parts, as well as 

elliptic layered cross sections that are designed with specific materials to eliminate warping, are 

selected and tested as well. 

3.4.1 Finite Difference Method (displacement-based) 

The displacement-based FDM requires the determination of nodal displacement values at 

each node of the mesh grid, which can be achieved by solving a set of equations obtained from the 

discretized differential equation and boundary conditions. The resultant shear stress for the given 

angle of twist can then be determined using warping functions. The Laplace equation that the 

warping function 𝜓(𝑠, 𝑡)  must satisfy, Eq. (3. 6) is discretized by approximating the partial 

derivatives of the warping functions by their values at the given and adjacent nodes. With the 

implementation of the TFI meshing technique, structured grids are generated with the nodal index 

of (𝛼, 𝛽) for the nodes on the centers of each subvolumes or elements in FVM or FEM. 𝑁𝛼 and 

𝑁𝛽  are the row and column numbers of subvolumes or elements in FVM or FEM. FDM has 
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additional nodes settled on the four boundaries denoted as (0, 𝛽), (𝑁𝛼 + 1, 𝛽), (𝛼, 0), (𝛼, 𝑁𝛽 + 1) 

for the left, right, top and bottom boundary respectively. Using the Taylor series expansions along 

the 𝑥 direction at the (𝛼 − 1, 𝛽) and (𝛼 + 1, 𝛽) nodes in an example of equal-spaced orthogonal 

grid for an isotropic material media, the second partial derivative of 𝜓(𝑠, 𝑡) with respect to 𝑠 at the 

(𝛼, 𝛽) node in the finite difference form is obtained in terms of the nodal values of the warping 

function at the three horizontally adjacent nodes, 

 
𝜕2𝜓

𝜕𝑠2
=
𝜓(𝛼+1,𝛽) − 2𝜓(𝛼,𝛽) + 𝜓(𝛼−1,𝛽)

𝑑2
 (3. 40) 

where 𝑑 is the distance between adjacent nodes. Similarly, the first partial derivative with respect 

to 𝑠 employed in the calculation of the shear stress component is 

 
𝜕𝜓

𝜕𝑠
=
𝜓(𝛼+1,𝛽) − 𝜓(𝛼,𝛽)

𝑑
 (3. 41) 

Performing the same Taylor series expansions along the 𝑡  direction, the following results are 

obtained for the second and first partial derivatives of 𝜓(𝑠, 𝑡) with respect to 𝑡 

 
𝜕2𝜓

𝜕𝑡2
=
𝜓(𝛼,𝛽+1) − 2𝜓(𝛼,𝛽) + 𝜓(𝛼,𝛽−1)

𝑑2
 (3. 42) 

 
𝜕𝜓

𝜕𝑡
=
𝜓(𝛼,𝛽+1) − 𝜓(𝛼,𝛽)

𝑑
 (3. 43) 

Combining Eqs. (3. 42) and (3. 43), the finite difference approximation of the Laplace equation 

for the warping function involving five inner nodes becomes, 
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 𝜓(𝛼+1,𝛽) + 𝜓(𝛼−1,𝛽) +𝜓(𝛼,𝛽+1) + 𝜓(𝛼,𝛽−1) − 4𝜓(𝛼,𝛽) = 0 (3. 44) 

Special treatment is needed for the boundary nodes owing to the lack of four adjacent nodes 

required for the satisfaction of both the equilibrium and traction-free conditions on the lateral 

surface. One way to accomplish this is to use forward or backward differencing at each boundary 

node to satisfy the above two conditions. Another way is to use the central difference scheme since 

it produces a second-order error, while forward/backward difference yields a first-order error. 

However, to accomplish this, imaginary nodes outside of the cross-section’s domain are introduced. 

Using the imaginary boundary nodes, the Laplace’s equation for boundary nodes is formulated 

using the central difference in FDM for better accuracy.  

Parametric mapping is a useful tool also for creating a finite difference grid that accurately 

captures the geometry of any arbitrary cross section. Creating a parametric mapping of any part of 

a cross section from a cylindrical bar can be done by mapping a unit square to a quadrilateral 

partition. This mapping process again involves the Jacobian which relates the first partial 

derivatives of the warping function ψ in the physical system and those in the reference system 

shown in Eq. (3. 19). The second partial derivatives of the warping function 𝜓 with respect to 𝑥 

and 𝑦 can be expressed as 

 

𝜕2𝜓

𝜕𝑥2
=
𝜕

𝜕𝑥
(
𝜕𝜓

𝜕𝑥
) = (𝑱11

−1)2
𝜕2𝜓

𝜕𝑠2
+ 2𝑱11

−1𝐽12
−1
𝜕2𝜓

𝜕𝑠𝜕𝑡
+ (𝑱12

−1)2
𝜕2𝜓

𝜕𝑡2
 

𝜕2𝜓

𝜕𝑦2
=
𝜕

𝜕𝑦
(
𝜕𝜓

𝜕𝑦
) = (𝑱21

−1)2
𝜕2𝜓

𝜕𝑠2
+ 2𝑱21

−1𝐽22
−1
𝜕2𝜓

𝜕𝑠𝜕𝑡
+ (𝑱22

−1)2
𝜕2𝜓

𝜕𝑡2
 

(3. 45) 

in terms of the second partial derivatives with respect to 𝑠  and 𝑡  in the reference system, and 

therefore the Laplace equation Eq. (3. 6) for homogenous isotropic materials becomes 
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 [(𝑱11
−1)2 + (𝑱21

−1)2]
𝜕2𝜓

𝜕𝑠2
+ 2(𝑱11

−1𝐽12
−1 + 𝑱21

−1𝑱22
−1)

𝜕2𝜓

𝜕𝑠𝜕𝑡
+ [(𝑱12

−1)2 + (𝑱22
−1)2]

𝜕2𝜓

𝜕𝑡2
= 0 (3. 46) 

The traction-free boundary condition with respect to 𝑠 and 𝑡 in the reference system are obtained 

by mapping the first partial derivatives of the warping function 𝜓 from that in the physical system 

Eq. (3. 8), 

 (𝑱11
−1𝑛𝑥 + 𝑱21

−1𝑛𝑦)
𝜕𝜓

𝜕𝑠
+ (𝑱12

−1𝑛𝑥 + 𝑱22
−1𝑛𝑦)

𝜕𝜓

𝜕𝑡
= 𝑦𝑛𝑥 − 𝑥𝑛𝑦 (3. 47) 

where 𝑛𝑥 and 𝑛𝑦 are the components of the normal of each boundary section curve. The governing 

differential equation Eq. (3. 46) with its boundary condition Eq. (3. 47) is reduced to a system of 

equations in finite difference form and subsequently solved, omitting the details. The shear stress 

components are then obtained from the finite difference form of the expressions below, 

 

𝜎𝑧𝑥 = 𝜇𝜃 (
𝜕𝜓

𝜕𝑥
− 𝑦) = 𝜇𝜃 (𝑱11

−1
𝜕𝜓

𝜕𝑠
+ 𝑱12

−1
𝜕𝜓

𝜕𝑡
− 𝑦) 

𝜎𝑧𝑦 = 𝜇𝜃 (
𝜕𝜓

𝜕𝑥
+ 𝑥) = 𝜇𝜃 (𝑱21

−1
𝜕𝜓

𝜕𝑠
+ 𝑱22

−1
𝜕𝜓

𝜕𝑡
+ 𝑥) 

(3. 48) 

3.4.2 Finite Element Method (displacement-based) 

 By discretizing a slice of a bar into a finite number of small elements, the torsion problem 

can also be solved by finding the out-of-plane displacement field that satisfies the governing 

equations and the boundary conditions via variational principles. Four-node elements, also known 

as Q4 elements in the finite element analysis, are employed for the convenience of comparing 

point-to-point quantities in FEM with those in FVM. Several studies, including Cavalcante et al. 

(2008), Cavalcante and Marques (2014), Cavalcante and Pindera (2016), and Filho and Cavalcante 

(2023), have highlighted that the Q4 element demonstrates inferior performance in terms of stress 

distribution when compared to FVM and FEM employing the Q8 element. The Q8 or Q9 element 



 98 

offers a higher level of displacement field detail in comparison to Q4; however, Q4 produces the 

same size stiffness matrix as the FVM subvolume, thus remaining computational equivalent. It is 

undeniable that incorporating Q8 or Q9 elements can produce more accurate results than FVM, 

albeit at the expense of increased computational demands. Therefore, the utilization of the Q4 

element is preferred, considering its reasonable computational requirements, even though it may 

result in slightly less accurate stress distribution. When formulating the torsion problem for any 

homogenous cylindrical bar in FEM, the displacement field within each element is approximated 

using linear shape functions [𝑵] , which satisfy continuity conditions at the nodes. The 

displacement approach employed in the FEM solution is briefly described in the sequel for 

comparison purposes. 

  The assumed displacement function is approximated by the matrix of element shape 

function [𝑵] = [𝑁1 𝑁2 𝑁3 𝑁4] , post-multiplied by the vector of displacement function 

values at the nodes [𝒒𝜓] = [𝜓1 𝜓2 𝜓3 𝜓4]𝑇 . The gradient of the assumed displacement 

function is  

 [∇𝜓] = [𝑩][𝒒𝜓] (3. 49) 

where [𝑩] = [

𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑥

𝜕𝑁3

𝜕𝑥

𝜕𝑁4

𝜕𝑥

𝜕𝑁1

𝜕𝑦

𝜕𝑁2

𝜕𝑦

𝜕𝑁3

𝜕𝑦

𝜕𝑁4

𝜕𝑦

] is known as the strain-displacement transformation matrix. 

This can be computed for each element by the mapping to a unit square through the parametric 

mapping based on Eq. (3. 19) as [𝑩] = 𝑱−1 [

𝜕𝑁1

𝜕𝜂

𝜕𝑁2

𝜕𝜂

𝜕𝑁3

𝜕𝜂

𝜕𝑁4

𝜕𝜂

𝜕𝑁1

𝜕𝜉

𝜕𝑁2

𝜕𝜉

𝜕𝑁3

𝜕𝜉

𝜕𝑁4

𝜕𝜉

]. 

From elasticity, the shear stress components are expressed in terms of the warping displacement 

Eq. (3. 4). Substituting the strain-displacement transformation matrix [𝐵] into Eq. (3. 4) yields, 

 [
𝜎𝑧𝑥
𝜎𝑧𝑦

] = 𝜃[𝑩][𝒒𝜓] + 𝜃 [
0 −1
1 0

] [
𝑥
𝑦] (3. 50) 
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The total potential energy of the bar subjected to torsion can be written as 

 Π =
𝑧

2
∬[

𝜎𝑧𝑥
𝜎𝑧𝑦

]
𝑇

[
𝐶44 𝐶45
𝐶45 𝐶55

] [
𝜎𝑧𝑥
𝜎𝑧𝑦

]

 

𝐴

𝑑𝐴 (3. 51) 

Employing the Rayleigh-Ritz method, the displacement and load are related through each stiffness 

matrix [𝑲𝜓] of each element, 

 ∬[𝑩]𝑇 [
𝐶44 𝐶45
𝐶45 𝐶55

]

 

𝐴

[𝑩]𝑑𝐴 [𝒒𝜓] = ∬[𝐵]𝑇 [
𝐶44 𝐶45
𝐶45 𝐶55

]

 

𝐴

[
𝑦
−𝑥
]𝑑𝐴  (3. 52) 

In concise notation, this equation is [𝑲𝜓][𝒒𝜓] = [𝑸𝜓]. Due to the complexity of the analytical 

integral calculations, the FEM used for this comparison incorporates the Gaussian quadrature 

method as the numerical integration for the quantities over each elemental area. Both 1 × 1 and 

2 × 2 Gaussian quadrature are implemented and tested. Notice that 𝑑𝐴 is the area of each small 

quadrilateral element, and equals 4𝑑𝑒𝑡([𝑱]) as the area of mapping unit square is 2 × 2 = 4.   

 The finite-element solution of the torsion problem involves the assembly of the element 

stiffness matrices according to global nodal indices, which represent the contribution of each 

element to the overall stiffness of the analyzed bar. The global stiffness matrix assembly for both 

FVM and FEM follows the same principles based on the kinematics and static compatibilities. The 

global stiffness matrix is then formed by combining the element stiffness matrices, and the solution 

is obtained by solving the resulting system of linear equations. However, there is a fundamental 

difference in the way compatibilities are enforced in FVM and FEM. While FVM ensures 

compatibilities between common faces, FEM ensures compatibilities between common nodes. It 

is crucial to emphasize that FVM achieves local satisfaction of equilibrium conditions at the 

subvolume level, whereas FEM satisfies equilibrium conditions at the nodal level. The shear stress 

in each element is then generated from the corresponding warping displacement field, 
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 [
𝜎𝑧𝑥
𝜎𝑧𝑦

] = 𝜃 ([
𝐶44 𝐶45
𝐶45 𝐶55

] [𝑩]{𝑞𝜓} + [
𝐶44 𝐶45
𝐶45 𝐶55

] [
0 −1
1 0

] [𝑵] [

𝑥1 𝑦1
𝑥2 𝑦2
𝑥3
𝑥4

𝑦3
𝑦4

]) (3. 53) 

where [

𝑥1 𝑦1
𝑥2 𝑦2
𝑥3
𝑥4

𝑦3
𝑦4

] is matrix containing physical coordinates of four vertices in each element. 

3.4.3 Homogenous Isotropic Cross Section 

The developed finite-volume solution is verified by comparison with exact elasticity 

solutions of the torsion of an isotropic homogeneous bar with rectangular, concave boundaries, 

and a cross section with boundaries formed by two circles with different radii and horizontally 

offset centers, Figure 3-3, using the terminology rectangular, star-shaped and apple-with-a-bite for 

the three cross sections, respectively.  

 

Figure 3-3 Rectangular(left), Star-shaped (middle) and Apple-with-a-bite (right) cross sections 

Least-square error difference of the warping function 𝜓  and shear stress resultant 𝜏  are 

calculated at all the mesh grid nodes following the equations below, 
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∆𝜓𝑒𝑟𝑟𝑜𝑟 = √
∑ ∑ [𝜓𝐹𝑉𝑀/𝐹𝐷𝑀/𝐹𝐸𝑀(𝑥𝑖, 𝑦𝑖) − 𝜓

𝑒𝑙𝑎𝑠𝑡(𝑥𝑖, 𝑦𝑖)]
2𝑁𝛼

𝑖=1

𝑁𝛽
𝑗=1

∑ ∑ [𝜓𝑒𝑙𝑎𝑠𝑡(𝑥𝑖, 𝑦𝑖)]
2𝑁𝛼

𝑖=1

𝑁𝛽
𝑗=1

 

∆𝜏𝑒𝑟𝑟𝑜𝑟 = √
∑ ∑ [𝜏𝐹𝑉𝑀/𝐹𝐷𝑀/𝐹𝐸𝑀(𝑥𝑖, 𝑦𝑖) − 𝜏

𝑒𝑙𝑎𝑠𝑡(𝑥𝑖, 𝑦𝑖)]
2𝑁𝛼

𝑖=1

𝑁𝛽
𝑗=1

∑ ∑ [𝜏𝑒𝑙𝑎𝑠𝑡(𝑥𝑖, 𝑦𝑖)]
2𝑁𝛼

𝑖=1

𝑁𝛽
𝑗=1

 

(3. 54) 

Rectangular cross section 

 FVM is verified by comparison with exact elasticity, finite-difference and finite-element 

solutions of the torsion problem of an isotropic homogeneous bar with rectangular 2𝑎 ×  2𝑏 cross 

sections producing aspect ratios of 1, 5 and 10. Square grids with uniform-size subvolumes or 

elements are employed to generate solutions. The results shown in Figure 3-4 provide a global 

picture of the finite-volume, finite-difference and finite-element methods’ convergence behavior 

with mesh refinement to the elasticity solution for the square cross section (𝑎/𝑏 =  1). The full-

field convergence rates for both the warping function and the shear stress distributions are 

quadratic, as indicated in Figure 3-4. The three numerical methods (FVM, FDM and FEM) exhibit 

the same global convergence rates, with slight differences in the local convergence rates in the 

cross section’s corner regions due to the large stress gradients. Similar results are obtained for the 

remaining cross sections with increasingly greater aspect ratios. 

 The least-square difference data are log-log plotted versus the mesh discretization in this 

convergence study. Based on the least square difference data obtained by these three numerical 

methods, the convergence rate for the warping function 𝜓  and the shear stress resultant 𝜏  are 

shown. Figure 3-4 illustrates the second-order accuracy exhibited by all three solution methods. It 

is worth noting that FEM employs efficient computation techniques, including 1 × 1 and 2 × 2 

Gaussian quadrature integration, for warping and shear stress analysis. The implementation of 2 ×

2  Gaussian quadrature integration in FEM is particularly notable, as it offers computational 

efficiency comparable to that of FVM in terms of the assembly time (includes the construction of 

the local stiffness matrix for each subvolume and subsequent insertion into the global stiffness 
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matrix), which agrees the corresponding results presented by Cavalcante et al. (2008). FDM has 

larger error in warping and shear stress resultant in the least square sense. FEM and FVM are 

comparable in the accuracy of warping function, yet FVM outperforms FEM in the evaluation of 

the shear stress resultant. 

 

Figure 3-4 Second-order accuracy for all FDM, FVM and FEM with 1 ×  1 and 2 ×  2 

Gaussian quadrature integration regarding the warping function (left) and shear stress resultant 

(right) of square cross sections (𝑎/𝑏 =  1) 

Star-shaped cross section 

 FVM is also verified by comparison with exact elasticity, 

finite-difference and finite-element solutions of the torsion 

problem of an isotropic homogeneous bar with specific concave 

boundaries that produce a star-shaped cross section. Parametric 

mapping was employed to generate the grid employed in the 

cross-section’s discretization. The TFI grid for that cross section 

is shown in the figure to the right of the boundary parametrization. 

Bottom boundary: 𝑥𝑏(𝑠) =
(2𝑠−1)𝑎

√1−𝑐
  𝑦𝑏(𝑠) = −√𝑎

2 +
𝑐(2𝑠−1)2𝑎2

1−𝑐
 

Top boundary: 𝑥𝑡(𝑠) =
(2𝑠−1)𝑎

√1−𝑐
  𝑦𝑡(𝑠) = √𝑎

2 +
𝑐(2𝑠−1)2𝑎2

1−𝑐
 



 103 

Left boundary: 𝑥𝑙(𝑠) = −√𝑎
2 +

𝑐(2𝑠−1)2𝑎2

1−𝑐
  𝑦𝑙(𝑠) =

(2𝑠−1)𝑎

√1−𝑐
 

Right boundary: 𝑥𝑟(𝑠) = √𝑎
2 +

𝑐(2𝑠−1)2𝑎2

1−𝑐
  𝑦𝑟(𝑠) =

(2𝑠−1)𝑎

√1−𝑐
 

 The analytical solution for the Prandtl stress function 𝜙(𝑥, 𝑦) of an isotropic bar with these 

concave boundaries is obtained in closed form in terms of the product of two quadratic polynomials 

of the form, 

 𝜙(𝑥, 𝑦) = 𝐾(𝑎2 − 𝑥2 + 𝑐𝑦2)(𝑎2 + 𝑐𝑥2 − 𝑦2) (3. 55) 

where the vertical and horizontal boundaries are defined by the pairs of curves 𝑥 = ±√𝑎2 + 𝑐𝑦2, 

𝑦 = ±√𝑎2 + 𝑐𝑥2 Hence the stress function vanishes on the boundary, and moreover satisfies the 

Poisson’s equation if 𝑐 = 3 − √8  and 𝐾 = −
𝜇𝜃

[4𝑎2(1−√2)]
 , where 𝜇 = 𝐺𝑧𝑥 = 𝐺𝑧𝑦 . The shear 

stresses 𝜎𝑥𝑧 and 𝜎𝑦𝑧 are obtained from 

 

𝜎𝑧𝑥(𝑥, 𝑦) =
𝜕𝜙

𝜕𝑦
= 2𝐾𝑦[(𝑎2(𝑐 − 1) + (𝑐2 + 1)𝑥 − 2𝑐𝑦2) 

𝜎𝑧𝑦(𝑥, 𝑦) = −
𝜕𝜙

𝜕𝑥
= −2𝐾𝑥[(𝑎2(𝑐 − 1) + (𝑐2 + 1)𝑦 − 2𝑐𝑥2) 

(3. 56) 

and the shear stress resultant field is calculated according to 𝜏(𝑥, 𝑦) = √𝜎𝑧𝑥2 + 𝜎𝑧𝑦2 . The warping 

function is then determined by integrating Eq. (3. 4) using the above equations. This yields, 

 𝜓(𝑥, 𝑦) =
−2

4𝑎2(1 − √2)
𝑦[𝑎2(𝑐 − 1)𝑥 +

(𝑐2 + 1)𝑥3

3
− 2𝑐𝑥𝑦2] (3. 57) 

 Figure 3-5 presents the analytical full-field distributions of the warping function 𝜓(𝑥, 𝑦) 

and shear stress resultant 𝜏(𝑥, 𝑦) obtained from Eqs. (3. 56) and (3. 57) respectively, that were 
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employed in the verification and assessment of the FVM solution for the investigated cross section. 

The shear stress resultant distribution has been normalized by the product 𝜇𝜃. 

 

Figure 3-5 Exact elasticity results for the warping function 𝜓(𝑥, 𝑦) and shear stress resultant 

𝜏(𝑥, 𝑦) = √𝜎𝑧𝑥2 + 𝜎𝑧𝑦2  distributions employed in the verification and assessment of the 

parametric FVM predictions for the star-shaped cross section 

Since the 2 × 2  Gaussian quadrature integration exhibits better performance than 1 × 1 

Gaussian quadrature integration, it was selected for comparison and the latter abandoned to avoid 

greater errors. Figure 3-6 illustrates comparison of the global convergence with mesh refinement 

of the full-field finite-volume, finite-difference and finite-element solutions for the warping and 

stress distributions to the elasticity solution in the least-squared sense graphed on a log-log scale. 

Quadratic convergence is observed for the finite-volume and finite-element solutions with slower 

convergence exhibited by the finite-difference solution. 
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Figure 3-6 Second-order accuracy for all FDM, FVM and FEM (2 × 2 Gaussian quadrature 

integration) regarding the warping function (left) and shear stress resultant (right) of the specific 

star-shape cross sections (curvature constant: 𝑐 = 3 − √8) 

 Figure 3-6 demonstrate a roughly first-order accuracy of FDM.  Specifically, the slope of 

the FDM in the left figure is 0.7139, and that in the right figure is 0.6502. On the other hand, the 

second-order accuracy of FVM and FEM with 2 × 2 Gaussian quadrature integration is evident in 

the slopes from both figures that are close to 2. 

Apple-with-a-bite cross section 

 FVM is additionally verified by comparison with exact 

elasticity and finite-element solutions of the torsion problem of 

an isotropic homogeneous bar with cross-sectional boundaries 

formed by two circles with different radii and horizontally offset 

centers that produce an apple-with-a-bite cross section. The TFI 

grid for that cross section is shown in the figure to the right of 

the boundary parametrization. 

 Bottom boundary: 

𝑥𝑏(𝑠) = −𝑎 𝑐𝑜𝑠 [𝜋𝑠 + (1 − 2𝑠)𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑏√4𝑎2 − 𝑏2

2𝑎2 − 𝑏2
)] 
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𝑦𝑏(𝑠) = −𝑎 𝑠𝑖𝑛 [𝜋𝑠 + (1 − 2𝑠)𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑏√4𝑎2 − 𝑏2

2𝑎2 − 𝑏2
)] 

 Top boundary: 

𝑥𝑡(𝑠) = −𝑎 𝑐𝑜𝑠 [𝜋𝑠 + (1 − 2𝑠)𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑏√4𝑎2 − 𝑏2

2𝑎2 − 𝑏2
)] 

𝑦𝑡(𝑠) = 𝑎 𝑠𝑖𝑛 [𝜋𝑠 + (1 − 2𝑠)𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑏√4𝑎2 − 𝑏2

2𝑎2 − 𝑏2
)] 

 Left boundary:  

𝑥𝑙(𝑠) = 𝑏 𝑐𝑜𝑠 [(2𝑠 − 1)𝑎𝑟𝑐𝑡𝑎𝑛 (
√4𝑎2 − 𝑏2

𝑏
)] − 𝑎 

𝑦𝑙(𝑠) =  𝑏 𝑠𝑖𝑛 [(2𝑠 − 1)𝑎𝑟𝑐𝑡𝑎𝑛 (
√4𝑎2 − 𝑏2

𝑏
)] 

 Right boundary: 

𝑥𝑟(𝑠) = 𝑎 𝑐𝑜𝑠 [(2𝑠 − 1) 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑏√4𝑎2 − 𝑏2

2𝑎2 − 𝑏2
)] 

𝑦𝑟(𝑠) = 𝑎 𝑠𝑖𝑛 [(2𝑠 − 1) 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑏√4𝑎2 − 𝑏2

2𝑎2 − 𝑏2
)] 

 The elasticity solution to the problem of the cross section with the boundary formed by 

these two circles of different radii horizontally offset from each other, is given in terms of the 

complex potential 𝛹(𝑧), 𝑧 = 𝑥 + 𝑦𝑖, cf., Sokolnikoff (1946), 

 𝛹(𝑧) = 𝛹(𝑥, 𝑦) + 𝑖�̅�(𝑥, 𝑦) = −𝑖𝑎 (𝑧 −
𝑏2

𝑧
) −

𝑖𝑏2

2
 (3. 58) 

where 𝛹 , �̅�  are related through the Cauchy-Riemann conditions, and 𝑎 , 𝑏  are the radii of the 

larger and smaller circles, respectively. Separating the real and imaginary parts of 𝛹(𝑧), one can 

obtain the warping function 𝛹(𝑥, 𝑦) in the form, 
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 𝛹(𝑥, 𝑦) = −
𝑎𝑏2𝑦

𝑥2 + 𝑦2
 (3. 59) 

which yields the shear stress components, 

 

𝜎𝑧𝑥(𝑥, 𝑦) = 𝜇𝜃 (
𝜕𝛹

𝜕𝑥
− 𝑦) = 𝜇𝜃(2𝑎𝑏2

𝑥𝑦

(𝑥2 + 𝑦2)2
− 𝑦) 

𝜎𝑧𝑦(𝑥, 𝑦) = 𝜇𝜃 (−
𝜕𝛹

𝜕𝑦
+ 𝑥) = 𝜇𝜃(−𝑎 − 𝑎𝑏2

𝑥𝑦

(𝑥2 + 𝑦2)2
+ 𝑥) 

(3. 60) 

 Figure 3-7 illustrates the warping function and shear stress resultant fields normalized by 

the product 𝜇𝜃 based on the above equations that were employed in the assessment and verification 

of the FVM solution to the above problem.  

 

Figure 3-7 Exact elasticity results for the warping function 𝜓(𝑥, 𝑦) and shear stress resultant 

𝜏(𝑥, 𝑦) = √𝜎𝑧𝑥2 + 𝜎𝑧𝑦2  distributions employed in the verification and assessment of the 

parametric FVM predictions for the apple-with-a-bite cross section 

 It is noted that warping of the cross section only occurs in the vicinity of the concave 

boundary where the deviation of the shear stress resultant from the linear variation is also 

pronounced. The maximum shear stress resultant occurs at the bottom of the concave boundary 
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and approaches twice that of the maximum shear stress resultant at the outer boundary of the 

circular cross section removed from the cutout as the radius of the smaller circle, becomes very 

small. These distributions were used to calculate the global rates of convergence for the warping 

function and shear stress resultant fields as a function of the mesh refinement based on the least-

squared differences. Figure 3-8 illustrates that the second-order global convergence to the elasticity 

solution with mesh refinement is also exhibited by the finite-volume and finite-element solutions 

for this cross section, with small deviations in the local convergence rates in the vicinity of corners. 

In particular, the FVM global convergence rates are comparable to those of the preceding problem, 

namely 1.992 and 2.006 for the warping function and the shear stress resultant, respectively, with 

2 × 2 Gaussian quadrature integration.  

 

Figure 3-8 Second-order accuracy for FVM and FEM (2 × 2 Gaussian quadrature integration) 

regarding the warping function (left) or shear stress of the apple-with-a-bite cross section (right) 

with the radius ratio of 2 

 This section ends by pointing out several advantages of the FVM solution strategy relative 

to the FDM-based or FEM-based one. First, mapping of this particular cross section onto a unit 

square in the reference plane introduces artificial corners along an otherwise smooth portion of the 

larger circle’s boundary in the physical plane. It is at these corners that the domain discretization 

becomes distorted as observed. These concentrations increase with mesh refinement due to 

increasingly grid distortion in the affected regions. In contrast, the FVM approach does not suffer 

from this problem. However, it must be mentioned that at sufficiently high mesh discretization 

based on the chosen transfinite mapping, the concomitant subvolumes’ distortion becomes high 
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enough to produce an ill-conditioned global system of equations for the determination of the 

surface‐averaged out-of-plane displacements. This can be circumvented through mapping that 

avoids highly localized subvolume distortions. Nonetheless, the FVM-based solution strategy for 

the torsion problem is much less sensitive to these localized distortions than FDM or FEM and 

exhibit higher accuracy as well. This relative insensitivity was also observed in previous studies 

conducted by the author involving in-plane and anti-plane loading of functionally graded and 

periodic materials and structures. 

3.4.4 Heterogenous Isotropic Cross Section 

 Heterogenous cross sections are commonly analyzed in torsion due to a great range of 

engineering applications. FVM has been demonstrated to have the capability to naturally deal with 

heterogenous cross sections by satisfying continuity of both displacements and tractions across 

subvolumes’ interfaces in a surface-average sense. In contrast, FEM and FDM require dense 

meshing to account for material differences using material transition zones. Herein, two torsion 

problems involving heterogeneous cross sections for which exact elasticity solutions are available 

are selected for comparison with the corresponding FVM results. 

Two isotropic rectangular bars with different elastic moduli 

 The feature of the developed version of the finite-volume theory which makes it especially 

suitable for torsion problems involving composite cross sections is the explicit satisfaction of both 

displacement and traction continuity at interfaces that separate regions with different elastic moduli. 

Comparison is made for the convergence behavior of the FVM with the increasing number of 

subvolumes relative to the exact elasticity solution of Muskhelishvili (1953) for the torsion 

problem of a composite cross section comprised of two isotropic rectangular bars with different 

elastic moduli. 

 For composite cross sections with the overall aspect ratio of five or less, the following 

closed-form formula for torsional rigidity may be obtained from the Fourier series solution by 

approximating the sums accordingly for the above aspect ratio range, 
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 𝐷 = 𝑇/𝜃 =
8

3
(𝐺1 + 𝐺2)𝑎𝑏

3 − 3.361𝑏4 (
𝐺1
2 + 𝐺2

2

𝐺1 + 𝐺2
) (3. 61) 

where 𝐺1 and 𝐺2 are the shear moduli of the different rectangular regions in Figure 3-9. 

 

Figure 3-9 Composite cross section comprised of two homogeneous isotropic materials with 

different shear moduli 

 For the convergence study, a composite cross section with the overall aspect ratio 𝑎/𝑏 =

5 (𝑎 = 5 𝑚, 𝑏 = 1 𝑚)  and shear moduli 𝐺1 = 5862.07 𝑀𝑃𝑎  and 𝐺2 =  279.33 𝑀𝑃𝑎   was 

analyzed. Using these numbers, the torsional rigidity from the elasticity solution was calculated as 

63036.3 𝑀𝑃𝑎.𝑚4. Figure 3-10 illustrates convergence of the finite-volume results as a function 

of the normalized subvolume average width for the torsional rigidity relative to the elasticity 

solution based on square as well as rectangular subvolumes with aspect ratios (horizontal over 

vertical dimension) of 0.2, 0.5, 2, 5. The results have been graphed using log-log scales. The 

convergence of the torsional rigidity with subvolume discretization refinement of a composite 

cross section comprised of two homogeneous isotropic materials with different shear moduli to the 

elasticity solution is also quadratic in a large range of subvolume dimensions shown in Figure 3-10. 
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Figure 3-10 Convergence of the composite bar’s torsional rigidity with subvolume discretization 

refinement normalized by the elasticity solution (ℎ̅𝛼 is the edge length of square subvolumes) 

3.5 Structural Applications 

 In this section, FVM’s utility is illustrated by analyzing stress fields and resultant torsional 

rigidity of prismatic bio-inspired constructs with homogeneous and graded cross sections, and then 

demonstrated how warping of an elliptical cross section may be reduced, and ultimately eliminated, 

through an appropriate choice of shear modulus orthotropy. Orthotropic shear moduli may be 

realized through the use of composite materials with directionally dependent elastic moduli, such 

as fiber reinforced unidirectional composites. By tailoring the fiber and matrix properties in 

conjunction with the fiber volume fraction, different combinations of shear moduli may be 

achieved. Hence in the second application, elliptical cross sections made up of homogeneous 

orthotropic materials with different shear modulus ratios are considered and the results illustrate 

that no warping occurs with the proper choice of those ratios consistent with theoretical elasticity 

predictions reported in the literature. They also show that graded cross sections may produce the 

same result if the orthotropy ratio is preserved at every point of the cross section, also consistent 

with the elasticity results.  

 Different shear modulus orthotropy ratios at the homogenized level may also be realized 

using alternating isotropic layers with different shear moduli. In the third application, based on an 
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exact solution to the layered plane problem, the isotropic shear moduli of the individual layers that 

produce orthotropy shear modulus ratio at the homogenized level, which yields no warping of 

elliptical cross sections, are first determined.  Then the effect of microstructural refinement on 

warping of laminated cross sections is investigated as the layer thickness decreases. For other 

choices of isotropic layer shear moduli ratios, the warping function converges to that of the 

homogeneous cross section with equivalent orthotropic homogenized moduli ratio with increasing 

microstructural refinement, which we also demonstrate. 

3.5.1 Star-shaped cross sections 

 The homogeneous star-shaped cross section shown in Figure 3-3 (middle) with increasing 

values of the parameter 𝑐 which controls the curvature of the cross section’s bounding surfaces 

has been analyzed. As stated in Section 3.4, exact elasticity solution is available only when 𝑐 =

3 − √8 . As 𝑐  increases, the cross section begins to acquire a pointed star shape. The effect of 

increasing 𝑐 on the local stress fields and resulting torsional rigidity is demonstrated using the 

50 × 50 subvolume discretization previously implemented that produces sufficiently converged 

displacement and stress fields. 

 Figure 3-11 illustrates the normalized shear stress resultant fields for three homogeneous 

star‐fish cross sections with 𝑐 =  0.5, 0.7, 0.9 . As observed, as the cross section’s bounding 

surfaces become more concave, with concomitant shrinkage of the interior region, the regions 

characterized by the elongated spikes become ineffective in carrying shear stresses. This leads to 

torsional rigidity reduction. The torsional rigidity of the cross sections, Eq. (3. 13), normalized by 

the product 𝜇𝐴 is presented in Table 3-1 for the baseline value 𝑐 = 3 − √8 and five values of 𝑐 in 

the interval 0.5 ≤  𝑐 ≤  0.9, illustrates that as the bounding surfaces become increasing concave 

the relative torsional rigidity decreases. This decrease may be mitigated to an extent by grading 

the cross section in the vicinity of the bounding surfaces. We note that there are just a handful of 

analytical solutions for the Saint Venant’s torsion of graded cross sections that are limited to 

circular and elliptical boundaries, cf., Horgan and Chan (1999), Horgan (2007). 

Table 3-1 Torsional rigidity of the star-shaped cross sections with different curvatures 

normalized by the shear modulus and corresponding area 
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𝐷

𝜇𝐴
 (𝑚2/𝑟𝑎𝑑) 𝑐 = 0.17 𝑐 = 0.5 𝑐 = 0.6 𝑐 = 0.7 𝑐 = 0.8 𝑐 = 0.9 

Homogeneous 5.613 5.398 5.251 5.038 4.722 4.196 

Graded 7.469 7.199 6.999 6.709 6.276 5.559 

The prevailing approach for arbitrarily shaped orthotropic or graded structural components 

subjected to torsion is the finite-element method, cf., Darılmaz et al. (2018). Herein the shear 

modulus, from the value in the isotropic cross section’s interior to the bounding surfaces, is graded 

in increments of 25% within the outermost 4 subvolume layers. That is, the subvolume layer 

directly adjacent to the bounding surface has the shear modulus of 2.0𝜇 , and the remaining 3 

adjacent layers have moduli of 1.75𝜇, 1.50𝜇 and 1.25𝜇. The resulting shear stress resultant fields 

are included in Figure 3-11, as are the corresponding torsional rigidity enhancements in Table 3-1. 

 

Figure 3-11 Normalized shear stress resultant 𝜏(𝑥, 𝑦) fields in start-shaped cross sections with 

increasing curvatures defined by the parameter 𝑐 =  0.5, 0.7, 0.9 (top, middle, bottom). 

Comparison of the effect of grading the shear modulus in a thin region adjacent to the boundary 

Normalized shear stress resultant 

𝑎 = 1,  𝑐 = 0.5 

𝑎 = 1,  𝑐 = 0.7 

𝑎 = 1,  𝑐 = 0.9 

Homogeneous Graded 

Material distribution 

o 

o 

o 
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 As observed in the shear stress resultant fields, grading only affects the interior region of 

the star-shaped cross section where the shear stress resultant is substantially enhanced in the 

progressively stiffer region adjacent to the bounding surface, with little effect in the pointed spike 

regions. As the thickness of the pointed spikes decreases with increasing curvature, the shear stress 

component that contributes to the torsional rigidity of the construct decreases accordingly as it 

must vanish along the boundary to satisfy the traction-free boundary condition. Comparison with 

the corresponding FDM-based results (not included) reveals that when the parameter 𝑐 becomes 

sufficiently large (𝑐 = 0.9) the FDM shear stress fields become inaccurate in the regions of the 

cross section’s pointed spikes. 

 In summary, analysis of a sequence of star-shaped cross sections with increasingly greater 

concave boundaries illustrates continuously smooth shear stress fields, and correct behavior at the 

tips of the elongated spikes. The results also shown that by grading a thin region of the cross section 

in the immediate vicinity of the bounding surfaces with increasingly larger shear modulus, the 

loading-bearing capacity of the interior, but not spike, regions may be rendered more effective, 

thereby enhancing the relative torsional rigidity of the star-shaped construct. 

3.5.2 Homogeneous and graded elliptical cross sections 

 An elliptic cross section is an attractive alternative to traditional cross-sectional shapes, yet 

it can experience warping and other undesirable effects under torsion. However, the elliptic cross 

section can be designed without warping, which makes it an even more useful shape for beams 

subject to torsion in engineering. Thus, in the second illustration of the parametric FVM’s extended 

capability, a prismatic orthotropic bar of an elliptical cross section characterized by distinct shear 

moduli 𝐺𝑧𝑥 and 𝐺𝑧𝑦 is considered. When the orthotropic bar is homogeneous, the warping function 

for this cross section has been provided by Lekhnitskii (1964) in the form, 

 𝜓 =
𝐺𝑧𝑥𝑏

2 − 𝐺𝑧𝑦𝑎
2

𝐺𝑧𝑥𝑏
2 + 𝐺𝑧𝑦𝑎

2
𝑥𝑦 (3. 62) 
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Hence no warping will occur if the shear moduli are related to the minor and major axes of the 

ellipse, 𝑏 and 𝑎, as follows 

 √
𝐺𝑧𝑥
𝐺𝑧𝑦

=
𝑎

𝑏
 (3. 63) 

as also derived more recently by Chen (2004) and Chen and Wei (2005). 

 The above result has been generalized by Ecsedi (2004), and later by Horgan (2007), to 

encompass prismatic bars with functionally graded cross sections. In particular, for orthotropic 

materials with the shear moduli variation in the 𝑥 −  𝑦 plane of the form, 

 

𝐺𝑧𝑦 = 𝛼𝑓(𝑥, 𝑦) 

𝐺𝑧𝑥 = 𝛾𝑓(𝑥, 𝑦) 

(3. 64) 

elliptical cross sections bounded by 

 𝛼𝑥2 + 𝛾𝑦2 = 𝑘2 (3. 65) 

will not warp, leading to the relation √𝛾/𝛼 = 𝑎/𝑏  that corresponds to Eq. (3. 63) for the 

homogeneous cross section. 

 Herein, it is worth investigating the effect of varying the shear moduli ratio 𝐺𝑧𝑥 𝐺𝑧𝑦⁄  for an 

ellipse with the aspect ratio 𝑎 𝑏⁄ =  2 on the cross section’s warping for both homogeneous and 

graded orthotropic cross sections. For the considered 𝑎 𝑏⁄  ratio, the results below indicate that the 

ellipse will not warp when 𝐺𝑧𝑥 𝐺𝑧𝑦⁄ = 4 and 𝛼/𝛾 = 4 for homogeneous and graded cross sections, 

respectively. The corresponding functional forms of the orthotropic shear moduli of the graded 

cross sections are: 𝐺𝑧𝑥 = 𝛼(𝑥
2 + 4𝑦2) and 𝐺𝑧𝑦 = 𝛾(𝑥2 + 4𝑦2). The extent of warping predicted 
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by the FVM analysis is illustrated for the three ratios 𝐺𝑧𝑥 𝐺𝑧𝑦⁄ = 1, 2 and 4 in Figure 3-12 where 

decreasing magnitudes of warping are observed with increasing 𝐺𝑧𝑥 𝐺𝑧𝑦⁄  ratio.  

 

 

 

Figure 3-12 Shear modulus 𝐺𝑥𝑧 distribution (left) and warping (right) of functional graded 

elliptical cross sections with 𝑎: 𝑏 = 2: 1 and different ratios of orthotropic shear moduli: 

𝐺𝑧𝑥 𝐺𝑧𝑦⁄ = 1 (top); 𝐺𝑧𝑥 𝐺𝑧𝑦⁄ = 2 (middle); and 𝐺𝑧𝑥 𝐺𝑧𝑦⁄ = 4 (bottom) 

The warping functions are identical for homogeneous and graded cross sections with the 

same shear modulus orthotropy ratio. When the condition 𝐺𝑧𝑥 𝐺𝑧𝑦⁄ = 4 is satisfied for the chosen 

𝑎 𝑏⁄  ratio, the FVM solution does indeed yield the theoretical outcomes for both homogeneous 
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and graded cross sections. There are increasing applications of elliptical cross sections with graded 

elliptical porosities in the aeronautical industry and structural engineering, which exhibit distinct 

geometrical features and advanced design. One can also verify that the cross section bounded by 

two confocal ellipses 𝛼𝑥2 + 𝛾𝑦2 = 𝑘𝑖
2  (where 𝑘 = 1, 2) does not warp either, Ecsedi (2004). 

Using functionally-graded orthotropic cross sections with 𝐺𝑧𝑦 = 𝛼𝑓(𝛼𝑥2 + 𝛾𝑦2) , 𝐺𝑧𝑥 =

𝛾𝑓(𝛼𝑥2 + 𝛾𝑦2), 𝛼 = 1/9, 𝛾 = 1/4,  𝑓(𝑝) = 𝑝, the extent of warping can also be seen in the FVM 

results in Figure 3-13 relative to solid elliptic cross section bounded by the ellipse 𝛼𝑥2 + 𝛾𝑦2 =

𝑘2. By combining FVM analysis with an optimization algorithm, other shear moduli orthotropy 

ratios may be identified for cross sections other than elliptical wherein warping is minimized and 

perhaps eliminated. 

 

 

Figure 3-13 Summary of warping distribution of solid elliptic cross section (top) and cross 

section bounded by two confocal ellipses (bottom); homogenous isotropic (left) and functionally 

graded orthotropic (right) cross sections. 
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Figure 3-14 Warping (top) and normalized (bottom) shear stress resultant for porous elliptic 

cross section with 1, 3 and 5 porosities from left to right 

Another approach to warping mitigation is through porosity grading. This is illustrated 

herein for elliptic cross sections with the same overall dimensions (major axis = 3, 1.5 m; minor 

axis = 2, 1 m), fixed porosity volume fraction, and increasing number of internal elliptical 

porosities of decreasing size with the aspect ratio of 2 arranged symmetrically about the minor 

axis. Figure 3-14 shows the average warping magnitude (∑|𝜓𝑖|𝐴𝑖 𝐴⁄ ) and normalized shear stress 

(𝜏/𝜇𝜃) distributions in the porous elliptic cross sections with 1, 3 and 5 porosities. These results 

indicate that porosity grading can be effective in reducing warping in materials subjected to torsion. 

Higher porosity in the warping-prone regions can act as a stress-relief mechanism and allow the 

cross section to deform more easily in the vicinity of those areas. This can result in a more uniform 

stress distribution throughout the material, reducing the likelihood of warping.   

3.5.3 Horizontally laminated elliptical cross sections 

 It has been demonstrated in the literature that elliptical cross sections that are homogeneous 

and orthotropic with a certain orthotropy ratio of the shear moduli do not warp. An alternative, and 
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perhaps more realistic, approach to tailoring the orthotropic shear modulus ratio is through 

laminated constructs. Postma (1955) developed an exact elasticity solution for the overall 

transversely isotropic properties of periodically layered structures consisting of alternating 

isotropic layers with different elastic moduli, with the direction of anisotropy orthogonal to the 

plane of alternating layers. For such laminations, exact expressions for the homogenized shear 

moduli in the 𝑦 −  𝑧 and 𝑥 −  𝑧 planes are obtained in the form, 

 

𝐺𝑦𝑧 = (ℎ1 + ℎ2)𝜇1𝜇2/(ℎ1𝜇2 + ℎ2𝜇1) 

𝐺𝑥𝑧 = (𝜇1ℎ1 + 𝜇2ℎ2)/(ℎ1 + ℎ2) 

(3. 66) 

where 𝜇𝑖 are the shear moduli of the individual isotropic layers 𝑖 = 1, 2, and ℎ𝑖 are the respective 

thicknesses. For equal layer thickness, and the ellipse aspect ratio 𝑎/𝑏 = 2, the isotropic layer 

ratio 𝜇1/𝜇2 required to yield 𝐺𝑥𝑧/𝐺𝑦𝑧 = 4 that produces no warping at the homogenized level is 

around 14, which is not practical. Reducing the ellipse aspect ratio to 𝑎/𝑏 = 1.5  yields the 

homogenized shear modulus ratio 𝐺𝑥𝑧/𝐺𝑦𝑧 = 2.25  for no warping. This ratio, in turn, leads to the 

more realistic isotropic layer shear modulus ratio 𝜇1/𝜇2 = 6.854. 

 A sequence of horizontally layered elliptical cross sections comprised of alternating 

isotropic layers with shear moduli that produce the homogenized shear modulus with the required 

ratio that eliminates warping has been constructed with progressively finer microstructures. Figure 

3-15 illustrates the warping functions for three symmetrically laminated constructs comprised of 

11, 31 and 61 layers. In contrast with homogeneous isotropic or orthotropic cross sections, warping 

occurs symmetrically about the major and minor axes of the laminated ellipses, producing an 

average value of zero in each quadrant of the elliptical cross sections. As the number of alternating 

stiff and soft layers increases for the same ellipse dimensions, the magnitude of local warping 

decreases accordingly. The elliptical cross section with the finest microstructure made up of 61 

layers appears nearly flat relative to the coarsest layered ellipse comprised of 11 layers. 
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Figure 3-15 Warping functions of horizontally laminated elliptical cross sections with 𝑎/𝑏 =

1.5 and increasingly finer layered microstructures comprised of isotropic layers with the shear 

moduli ratio of 6.854 

  

 

Figure 3-16 Warping functions of horizontally laminated elliptical cross sections with 𝑎/𝑏 =

1.5 and increasingly finer layered microstructures comprised of isotropic layers with the shear 
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moduli ratio 𝜇𝑠𝑡𝑖𝑓𝑓/𝜇𝑠𝑜𝑓𝑡 = 3.427. Comparison with homogeneous cross section with equivalent 

orthotropic shear moduli obtained from the Postma elasticity-based model 

 When a different 𝜇1/𝜇2 ratio is chosen, yielding a different homogenized shear modulus 

ratio, warping of the cross section approaches that obtained using the homogenized shear modulus 

ratio as the number of alternating layers increases. This is illustrated in Figure 3-16 for the isotropic 

layer shear modulus ratio 𝜇1/𝜇2 = 3.427 , or half of the preceding ratio, for the three 

symmetrically laminated configurations with increasingly finer microstructures. In this case, the 

homogenized shear modulus ratio obtained from the Postma model is 𝐺𝑥𝑧/𝐺𝑦𝑧 = 1.43, and the 

warping function for this ratio for a homogeneous and orthotropic cross section is included in 

Figure 3-16 for comparison. As observed, the warping in each quadrant of the finely layered 

elliptical cross section mimics that of the homogeneous ellipse. 

The above results illustrate the FVM’s capability to pursue novel approaches in the analysis 

of elliptical cross sections made up of homogeneous orthotropic materials with different shear 

modulus ratios which illustrate that no warping occurs with the proper choice of those ratios 

consistent with theoretical elasticity predictions reported in the literature. By laminating an 

elliptical cross section with alternating stiff and soft isotropic layers in a manner that mimics 

orthotropic shear moduli in the proper ratio at the homogenized level, warping can be practically 

eliminated with sufficient microstructural refinement. It is also shown that graded cross sections 

may produce the same result if the orthotropy ratio is preserved at every point of the cross section, 

consistent with the elasticity results as well. 

3.5.4 Bamboo cross sections 

 Bamboo is a plant that has been used as a building material for centuries, and its unique 

cross-sectional shape has inspired structural designers to incorporate its principles into their work. 

The bamboo cross section has two main features that make it an effective and efficient structural 

element. First, the hollow shape of the bamboo cross section reduces its weight without 

compromising its strength. For example, subjected to the wind load with twisting deformation, 

bamboo has its shear stress distributed mainly around the perimeter of the cross section to 
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maximize the torsional rigidity. Second, the arrangement of the fibers in the bamboo cross section 

provides it with excellent resistance to bending and compression as fibers vary in size and are 

arranged in a radially graded pattern, with fibers becoming more crowded closer to the perimeter 

of the cross section. A cross section of bamboo culm showing this exact radial distribution of fibers 

through the thickness in Figure 3-17 has been provided by Silva (2006). 

 

Figure 3-17 A cross section of bamboo culm with radial distribution of fibers through its 

thickness - Silva (2006). 

By mimicking the cross-sectional shape of bamboo with its functionally graded 

microstructure that resists wind-induced torsional loads, structural designers can create typhoon-

resistant structures that are lightweight, strong, and efficient. However, bamboo generally has very 

complicated microstructural shapes and material distribution for its fiber and matrix, and its culms 

are long with diaphragms which have complex structures as well. Nogata et al. (1995) used a 

combination of experimental testing and numerical simulations to study the properties of bamboo. 

By using the rule-of-mixture formula to estimate material properties of bamboo in its cross section, 

and experimental investigation of the radial variation of fiber volume fraction, Nogata et al. (1995) 

found that the properties of bamboo varied depending on the species and the location within the 

bamboo. Specifically, the rule-of-mixtures model based on the fiber and matrix with Young’s 

moduli of 55 𝐺𝑃𝑎 and 2 𝐺𝑃𝑎, respectively, yielded the homogenized Young’s modulus variation 

throughout the cross section that was approximated by the equation 𝐸(𝑟) = 3.75𝑒(2.2𝑟/𝑡) as shown 

in Figure 3-18, 
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Figure 3-18 Homogenized Young’s modulus variation throughout the bamboo cross section 

Herein, comparison between the warping and shear stress resultant fields with continuous 

homogenization material properties and those following the actual radially varying fiber volume 

fraction is conducted for a bamboo slice with the inner radius of 0.028 𝑚  and outer radius of 

0.04 𝑚. To save computational cost, a slice of the cross-sectional area was analyzed because of 

the bamboo cross section’s symmetry about its centroid. This was accomplished by introducing 

periodic boundary conditions along the radial boundaries of the analyzed slice. The warping 

functions on the two straight edges of selected slice were set equal at each point along the radial 

direction, and the tractions were also set equal in magnitude but opposite in the 𝑧 direction. The 

slice analysis only employs a portion of the whole region resulting in much quick computation 

while rendering the same local results as the analysis involving the entire cross-sectional area. The 

FVM analysis validates the results of warping absence in the bamboo cross section with 

continuously homogenized material properties, and linearly increasing shear stress in the radial 

direction (not shown). In contrast, the bamboo model based on the actual fiber and matrix 

distribution captures local microstructure-induced variations in the warping function and shear 

stress fields shown in  Figure 3-19, confirming that the magnitude of the warping function is 

negligible. 
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Figure 3-19 The distribution of warping function (left) and the shear stress resultant (right) of a 

30-degree slice of a bamboo cross section 

In contrast, for an applied angle of twist of 0.01 radians per unit length, the maximum shear 

stress resultant predicted by the FVM simulation based on the homogenized material properties is 

7.03 𝑀𝑃𝑎 and that based on the actual fiber and matrix microstructure is 8.63 𝑀𝑃𝑎. In addition, 

the torsional rigidity of the former model is 199.87 𝐺𝑁.𝑚2  while that of the latter is 246.96 

𝐺𝑁.𝑚2. Both the maximum shear stress resultant and torsional rigidity are underestimated with 

the homogenized material properties, illustrating that the consideration of actual microstructural 

details versus homogenization is important in the torsional analysis of natural heterogeneous cross 

sections for conservative design purposes. 

3.6 Summary 

 The finite-volume based approach to the solution of Saint Venant’s torsion problems of 

bars and beams comprised of rectangular sections previously developed by the author has been 

extended to enable an analysis of arbitrary cross sections characterized by curved boundaries. This 

is accomplished by incorporating parametric mapping based on transfinite grid generation to 

enable discretization of the bar cross section by quadrilateral rather than rectangular subvolumes 

employed in the original version. The construction of the local stiffness matrix that relates the 

surface-averaged subvolume warping functions to the corresponding tractions is carried out in the 

reference plane such that the subvolume equilibrium in the physical plane is satisfied in a surface-
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averaged sense. This produces explicit expressions for the stiffness matrix elements that may be 

readily coded. Orthotropic subvolumes are intrinsic in the method’s construction so that bars with 

heterogeneous and composite microstructures may be analyzed. The convergence and accuracy of 

the parametric FVM are assessed and verified upon comparison with exact elasticity solutions for 

cross sections with convex and concave boundaries. 

Examples involving structural applications of prismatic bars with curved boundaries 

illustrate the utility of the developed methodology. These include cross sections that resemble 

biological constructs with homogeneous and graded regions aimed at enhancing torsional rigidities, 

as well as homogeneous and graded elliptical cross sections with orthotropic shear moduli aimed 

at reducing and eliminating warping. Multi-phase and multi-porosity cross sections have also been 

analyzed. It was demonstrated that warping of solid cross sections can be mitigated through 

layering, and warping of porous cross sections may be mitigated through porosity grading. Finally, 

concluded from the torsional analysis of a bamboo’s functionally graded cross section, the result 

implies that consideration of actual microstructural details versus homogenization is important in 

mimicking the torsional response of natural heterogeneous cross sections. 
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Chapter 4  

Torsion-Flexure Problems 

 

4.1 Introduction 

 Beams are slender structures with longitudinal dimensions much longer than transverse 

ones. With the rapid development of composites technology, materials employed in beams can be 

tailored and assembled to achieve the required beam stiffness and strength. Composite beams are 

widely used in civil, mechanical and aerospace engineering for modeling bridge structures, 

construction elements, aircraft wings, wind turbine blades, and so on. 

 One technically important class of problems in the theory of elasticity concerns the study 

of elastic beams bounded by a cylindrical surface and by a pair of planes normal to the lateral 

surface with loading applied only on its end faces. When warping is not present, the two most 

common beam theories are the Euler-Bernoulli theory and the Timoshenko theory. Beyond the 

Euler-Bernoulli theory, the Timoshenko theory additionally allows transverse shear deformation. 

Many finite-element formulations have been developed using these two theories without including 

the effect of warping. Three-dimensional (3D) analysis of beams is capable of capturing the 

warping in the deformation of beams, but it is a cumbersome task requiring elaborate modeling 

and significant computational cost.  

 To simplify the modeling of 3D beams, the analysis is generally decomposed into a local 

cross section level and a global longitudinal axis level. A beam with homogeneous isotropic 

material properties subjected to specific resultant force and/or resultant moment will yield specific 

analytical solutions if it has a simple geometric cross section provided in some elasticity textbooks 

e.g., Love (1906) and Timoshenko (1951). Muskhelishvili (1953) outlined an elegant method for 

the solution of beam problems that accounts for the warping displacement in the axial direction of 

the beam. The complete problem of equilibrium of an elastic beam with a free lateral surface can 

be solved by utilizing the principle of superposition because it can be decomposed into four 

elementary problems: extension, bending, torsion, and flexure. This consists of making certain 

assumptions about the components of stress, strain, or displacement, yet leaving enough freedom 
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in the quantities involved to satisfy the equilibrium and compatibility conditions. The extension of 

homogeneous isotropic beams by longitudinal forces has a straight-forward solution where the 

non-zero stress is the only normal stress in the direction of extension based on uniform stretch 

assumption. The stress in a bent beam that gives rise to the bending moment is a longitudinal stress 

varying linearly, assuming uniform curvature of the beam. With the only non-zero stress as the 

normal stress along the longitudinal direction involving the end moment and the moment of inertia, 

the pure bending problem has a closed-form solution for homogeneous isotropic beams of any 

cross-sectional shape. The in-plane displacements are explicitly expressed in the torsion problem 

from kinematics; therefore, the stresses are solved via Saint-Venant’s semi-inverse method based 

on the equilibrium condition with no traction transversely on the beam but equal and opposite 

moments applied at both ends. The flexure problem can be modeled as a cantilever beam of the 

uniform cross section having one end (𝑧 = 0) fixed and the other end (𝑧 = 𝑙) loaded by some 

distribution of force (𝑊𝑥,𝑊𝑦, 0) lying in the plane (𝑧 = 𝑙), Figure 4-1. 

 

Figure 4-1 Prismatic bar problem under flexure with the z-axis taken along the central line of the 

beam while the 𝑥 and 𝑦 axes are any orthogonal axes intersecting at the centroid 

  The resultant force is assumed to act at the load point (𝑥0, 𝑦0, 𝑙). The statically equivalent 

force is equal but opposite at fixed end if the beam is in equilibrium. The 𝑧 axis is taken along the 

central line of the beam, while the 𝑥 and 𝑦 axes are any orthogonal axes intersecting at the centroid 

of the end 𝑧 = 0. The lateral surface of the beam is free from external forces, and the body forces 

are assumed to vanish as well. The end-face forces usually produce both torsional and flexural 

coupling effects, therefore the flexure problem will be termed the “torsion-flexure” problem, 
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consistent with the common terminology employed in structural engineering in the remainder of 

this chapter. 

4.2 Literature review 

 Substantial effort has been made in the analysis of straight and prismatic beams subjected 

to end-face forces. Nonetheless, torsion-flexure problems have closed-form solutions only for 

specific cross section shapes made of linear homogeneous isotropic materials. Stevenson (1938) 

reduced the torsion-flexure problem to the determination of six canonical flexure functions, but a 

general process for obtaining these was lacking. Milne (1959) presented a general method based 

on the complex potential theory where the flexure function is mapped onto a unit circle in a manner 

that depends on a special formulation of the boundary conditions. Using conformal mapping, 

solutions to circular, cardioid, one-loop Bernoulli’s lemniscate, and one-axis symmetric cross 

sections are obtained using this approach. Sokolnikoff (1956) explicitly demonstrated the general 

solution to flexure of cantilever beams by terminal loads, which applies to homogeneous isotropic 

beams of any uniform cross section. Using stress formulation, the flexure problem is reduced to 

the task of finding three harmonic functions involving the solution to two simpler problems: pure 

flexure problem and pure torsion problem. Stress-based solutions were provided to flexure 

problems of singly connected cross sections (e.g. circular and elliptical, rectangular, cardioid) as 

well as doubly-connected cross sections (e.g. circular pipes), including stress functions that yield 

solutions to elliptical, equilateral triangular and semicircular cross sections along with an 

interesting physical interpretation. Libenson (1947) used a similar method to obtain an 

approximate solution to this problem for a semi-circular tube of small thickness; Uflyand (1965) 

solved the problem of beams whose cross section is a circular segment in bipolar coordinates with 

the aid of Fourier integrals. Batra et al. (2005) used the method of Signorini’s expansion to analyze 

the Saint-Venant problem for an isotropic and homogeneous second-order elastic prismatic bar in 

flexure.  

 FEM was first used by Mason and Herrmann (1968) in the solution of the torsion-flexure 

problem of isotropic beams of arbitrary cross sections following the Saint-Venant semi-inverse 

method. These semi-analytical methods have been extended to beams made of orthotropic 

materials by Tolf (1985), monoclinic materials by Woerndle (1981), and materials with rectilinear 

anisotropy by Kosmatka and Dong (1991). To achieve acceptable accuracy with the finite-element 
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approach, a complicated cross section requires many elements. Moreover, finite-element based 

methods are limited by the shape of the elements that prevent elemental distortion, thereby 

introducing complications in the meshing process.  

 The power series approach, as one of the approximate techniques, was initially applied by 

Mindlin (1975) to the Saint-Venant’s torsion problem using a double series expansion in powers 

of in-plane coordinates. A power series solution for the out-of-plane warping induced by torsion-

flexure was obtained by Kosmatka (1993) to identify homogeneous isotropic section properties 

from torsion-flexure behavior. The power series coefficients were determined by FEM. The Ritz 

method was employed to aid in the numerical integration on the cross-sectional area, but this 

required many integration points because of the high order power series. 

 Friedman and Kosmatka (2000) employed a three-node isoparametric boundary element 

method (BEM) to improve efficiency and accuracy for homogeneous isotropic arbitrarily shaped 

cross sections. Petrolo and Casciaro (2004) derived stiffness matrices for beam elements with 

general homogeneous isotropic cross sections investigated by comparing different boundary 

element methods with FEM strategies. Gaspari and Aristodemo (2005) extended the BEM to 

orthotropic beams having polygonal cross sections. The Line Element-less Method (LEM) 

developed by Santoro (2011) was employed to provide approximate solutions to coupled torsion-

flexure problems of orthotropic beams without the need for boundary discretization. Since the 

complex potential function is analytic in the whole cross-sectional area, LEM takes full advantage 

of the double-ended Laurent series involving harmonic polynomials, which can fully represent any 

analytic function in the complex domain.  

 The solutions mentioned above are not applicable in cases involving beam cross sections 

composed of heterogeneous materials. Solving flexure problems involving beams with 

heterogeneous anisotropic material properties remains a challenge because the basic assumptions 

employed in the solution approach based on Saint-Venant semi-inverse method are not satisfied. 

Nonetheless, some progress has been made in dealing with heterogeneous materials in terms of 

solving this general flexure problem analytically. Muskhelishvili (1953) analyzed the deformation 

of compound beams under end loads by adding boundary conditions at the interfaces of materials 

with different elastic properties but uniform Poisson’s ratio. This approach was extended by Vekua 

and Rukhadze (1933) to include non-uniform Poisson’s ratio. Lekhnitskii (1964) introduced radial 
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isotropic property variation for circular cylinders and obtained a solution for materials with angular 

property variations. Rooney and Ferrari (1995) provided analytic solutions to the torsion and 

flexure of bars with heterogeneous shear modulus but under specific assumptions on the geometry 

and modulus.  

 The demand for accurate and efficient modeling and analysis of composite beams has led 

to the development of various more sophisticated theories. The finite-element based approach has 

been followed by relatively a few researchers. The work of Giavotto et al. (1983) laid the 

foundation for the linear finite-element cross-sectional analysis based on the anisotropic beam 

theory. They modeled the in-plane and the out-of-plane warping displacements for anisotropic and 

non-homogeneous materials. They also proposed the concept of far-from-end solutions to 

determine the cross-sectional uniform warping field while the end effects were represented through 

eigenmodes in the terminal zones. These eigenmodes are obtained by solving a homogeneous 

equation where an exponential decay is assumed along the beam axis. Yet, there was still a need 

for the development of transition elements that allows an efficient and accurate connection 

between different elements. Cesnik and Hodges (1997) introduced a new approach to finite-

element analysis, known as Variational Asymptotic Beam Sectional analysis (VABS). This method 

uses a strain field to reduce the three-dimensional strain energy via the variational asymptotic 

method. The approach enables the analysis of thin-walled composite beams with both open and 

closed cross-sections. The strain energy is minimized by finding a sectional displacement field that 

satisfies the boundary conditions of the beam. Jung et al. (2002) refined VABS's displacement 

approximations systematically, providing a more accurate analysis of composite beams' behavior. 

They developed an efficient approach that involves refining the displacement approximation to 

achieve a more precise result. Yu et al. (2002) then validated VABS's accuracy and flexibility using 

finite-element tools. They compared VABS with other FEM and found that it provided an accurate 

solution with increased flexibility. Fatmi and Zenzri (2004) further simplified the numerical 

implementation of FEM for the exact elastic beam theory. The proposed numerical method uses 

three-dimensional finite elements and classical elasticity formulation, providing three-dimensional 

Saint Venant solutions for computing local effects. They demonstrated the efficiency and accuracy 

of the exact beam theory in the study of arbitrary elastic multi-material cross-sections, providing 

a more accurate solution to the behavior of beams under load. Their approach has the advantage 
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of accurately predicting the behavior of beams under load with a lower computational cost 

compared to other methods. 

 FVM has been widely used in solving plane problems in structural mechanics and has 

gained popularity in solving torsion problems. However, there is a gap in the literature regarding 

the use of FVM in solving the torsion-flexure problem. This chapter aims to bridge this gap by 

providing a powerful alternative to the widely used variational techniques for this class of 

problems. The chapter focuses specifically on the development of a finite-volume based analysis 

of homogeneous orthotropic beams under end-face loading. This provides a valuable contribution 

to the field of structural mechanics and expands the scope of semi-analytical and numerical 

methods for the solution of torsion-flexure problems. 

4.3 Torsion-Flexure Problems 

 Figure 4-1 illustrates the manner of applied loading characteristic of the torsion-flexure 

problem, which requires a statically equivalent force equal but opposite at the fixed end in order 

to satisfy overall beam equilibrium. The lateral surface of the beam is free from external forces, 

and the body forces are assumed to vanish simplifying the problem formulation. Though there is 

no applied or resultant moment 𝑀𝑧 about the centroid of the cross section considered in the torsion-

flexure problem, the deformation of the beam can involve both the flexure component and the 

additional torsion component when the statically equivalent force is not applied at a specific 

location on the free end face. 

 The local disturbances in the stress distribution near the end of the beam fixed rigidly to 

the wall will also be neglected following Saint-Venant’s principle. If the bending force is inclined 

to the principal axes of the cross section of the beam, it can always be resolved into two 

components acting in the direction of the principal axes. Thus, bending in each of the two principal 

planes can be analyzed separately. The total stresses and displacement are then obtained using the 

principle of superposition. 

 Consider the case when the beam is homogeneous but orthotropic. Following the semi-

inverse method of Saint-Venant involving assumptions on the stress fields as the starting point,  

 𝜎𝑥𝑥 = 𝜎𝑥𝑦 = 𝜎𝑦𝑦 = 0 (4. 1) 
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the remaining stress fields 𝜎𝑧𝑥, 𝜎𝑧𝑦 and 𝜎𝑧𝑧 are then chosen such that the equations of equilibrium 

and compatibility, as well as the boundary conditions, are satisfied. The bending moment 𝑀𝑦 that 

would be produced by the load 𝑊𝑥 acting alone, in any cross section 𝑧 unit distant from the fixed 

end, is 𝑀𝑦 = 𝑊𝑥(𝑙 − 𝑧). The stress distribution in this cross section is statically equivalent to the 

moment 𝑀𝑦 and 𝑊𝑥. The normal stress in the direction of the beam's axis is then 𝜎𝑧𝑧 = −
𝑀𝑦

𝐼𝑦𝑦
𝑥 due 

to the 𝑀𝑦 bending moment. Similar conclusion is obtained when considering the axial stress due 

to the 𝑀𝑥 bending moment produced by the force resultant 𝑊𝑥. Thus, in the presence of bending 

about the two transverse axes by both 𝑊𝑥 and 𝑊𝑦, the normal stress along the longitudinal direction 

is assumed to be, 

 𝜎𝑧𝑧 = −𝐸𝑧𝑧(𝑙 − 𝑧)(𝐾𝑥𝑥 + 𝐾𝑦𝑦) (4. 2) 

where the constants 𝐾𝑥 , 𝐾𝑦  are determined from the conditions of cross-sectional force 

equilibrium.  

 

∬𝜎𝑧𝑥
𝐴

 𝑑𝑥 𝑑𝑦 = 𝑊𝑥 

 ∬𝜎𝑧𝑦  𝑑𝑥 𝑑𝑦 = 𝑊𝑦
𝐴

 

(4. 3) 

 Using the above assumptions on the stress field, the equations of equilibrium are reduced 

to, 

 

𝜕𝜎𝑧𝑥
𝜕𝑧

= 0 → 𝜎𝑧𝑥 = 𝜎𝑧𝑥(𝑥, 𝑦) 

𝜕𝜎𝑧𝑦

𝜕𝑧
= 0 → 𝜎𝑧𝑦 = 𝜎𝑧𝑦(𝑥, 𝑦) 

𝜕𝜎𝑧𝑥
𝜕𝑥

+
𝜕𝜎𝑧𝑦

𝜕𝑦
+ 𝐸𝑧𝑧(𝐾𝑥𝑥 + 𝐾𝑦𝑦) = 0 

(4. 4) 

It follows from the first two of equilibrium equations that the shear stress components 𝜎𝑧𝑥 and 𝜎𝑧𝑦 

have the same distributions in all transverse cross sections throughout the beam, while the third 

equation can be rearranged as  
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𝜕

𝜕𝑥
(𝜎𝑧𝑥 +

1

2
𝐸𝑧𝑧𝐾𝑥𝑥

2) +
𝜕

𝜕𝑦
(𝜎𝑧𝑦 +

1

2
𝐸𝑧𝑧𝐾𝑦𝑦

2) = 0 (4. 5) 

A potential function denoted by 𝐹  is then introduced because the equation above has the 

components of the partial derivatives in terms of both 𝑥 and 𝑦. The expressions in the parentheses 

are replaced by 
∂𝐹

∂𝑦
 and −

∂𝐹

∂𝑥
 respectively, and the equation is identically satisfied.  

 
∂

∂𝑥
(
∂𝐹

∂𝑦
) +

∂

∂𝑦
(−

∂𝐹

∂𝑥
) = 0 (4. 6) 

If the function 𝐹 exists, the non-zero shear stresses are, 

 

𝜎𝑧𝑥 =
𝜕𝐹

𝜕𝑦
−
1

2
𝐸𝑧𝑧𝐾𝑥𝑥

2 

𝜎𝑧𝑦 = −
𝜕𝐹

𝜕𝑥
−
1

2
𝐸𝑧𝑧𝐾𝑦𝑦

2 

(4. 7) 

Based on the constitutive equation for orthotropic materials, the strain components generated by 

the assumed stress fields are  

 

𝜖𝑥𝑥 = −
𝜈𝑧𝑥
𝐸𝑧𝑧

𝜎𝑧𝑧 = 𝜈𝑧𝑥(𝑙 − 𝑧)(𝐾𝑥𝑥 + 𝐾𝑦𝑦) 

𝜖𝑦𝑦 = −
𝜈𝑧𝑦

𝐸𝑧𝑧
𝜎𝑧𝑧 = 𝜈𝑧𝑦(𝑙 − 𝑧)(𝐾𝑥𝑥 + 𝐾𝑦𝑦) 

𝜖𝑧𝑧 =
1

𝐸𝑧𝑧
𝜎𝑧𝑧 = −(𝑙 − 𝑧)(𝐾𝑥𝑥 + 𝐾𝑦𝑦) 

𝜖𝑧𝑦 =
1

2𝐺𝑧𝑦
𝜎𝑧𝑦 = −

1

2𝐺𝑧𝑦

𝜕𝐹

𝜕𝑥
−
𝐸𝑧𝑧
4𝐺𝑧𝑦

𝐾𝑦𝑦
2 

𝜖𝑧𝑥 =
1

2𝐺𝑧𝑥
𝜎𝑧𝑥 =

1

2𝐺𝑧𝑥

𝜕𝐹

𝜕𝑦
−
𝐸𝑧𝑧
4𝐺𝑧𝑥

𝐾𝑥𝑥
2 

𝜖𝑥𝑦 = 0 

(4. 8) 

 The condition to be satisfied by the function 𝐹(𝑥, 𝑦) can be determined from the strain 

compatibility equations. Substituting the shear stresses expressed in terms of the function 𝐹, the 

compatibility equations reduce to a set of two equations, 
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∂

∂𝑥
(
1

2𝐺𝑧𝑦

∂2𝐹

∂𝑥2
+

1

2𝐺𝑧𝑥

∂2𝐹

∂𝑦2
) = −𝜈𝑧𝑥𝐾𝑦 

∂

∂𝑦
(
1

2𝐺𝑧𝑦

∂2𝐹

∂𝑥2
+

1

2𝐺𝑧𝑥

∂2𝐹

∂𝑦2
) = 𝜈𝑧𝑦𝐾𝑥 

(4. 9) 

Integrating the above equations, and using the notation 

 ∇′
2
𝐹 =

1

2𝐺𝑧𝑦

∂2𝐹

∂𝑥2
+

1

2𝐺𝑧𝑥

∂2𝐹

∂𝑦2
 (4. 10) 

for the weighted Laplacian operator, one can obtain the following differential equation that governs 

the potential function 𝐹,  

 ∇′
2
𝐹 = −𝜈𝑧𝑥𝐾𝑦𝑥 + 𝜈𝑧𝑦𝐾𝑥𝑦 + 𝐶 (4. 11) 

 The partial derivative of the in-plane rotation component 𝜔𝑥𝑦 =
1

2
(
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
) with respect 

to the axial coordinate, which produces local twist at a point (𝑥, 𝑦) of the cross section, is then 

related to the strains 𝜖𝑧𝑦 and 𝜖𝑧𝑥,  

 
𝜕𝜔𝑥𝑦

𝜕𝑧
=
𝜕𝜖𝑧𝑦

𝜕𝑥
−
𝜕𝜖𝑧𝑥
𝜕𝑦

 (4. 12) 

This relationship is re-written in terms of the 𝐹 function, 

 
𝜕𝜔𝑥𝑦

𝜕𝑧
= (

1

2𝐺𝑧𝑦

𝜕𝜎𝑧𝑦

𝜕𝑥
−

1

2𝐺𝑧𝑥

𝜕𝜎𝑧𝑥
𝜕𝑦

) = −∇′
2
𝐹 (4. 13) 

or equivalently, using the previously obtained expression for ∇′
2
𝐹,  

 
𝜕𝜔𝑥𝑦

𝜕𝑧
= 𝜈𝑧𝑥𝐾𝑦𝑥 − 𝜈𝑧𝑦𝐾𝑥𝑦 − 𝐶 (4. 14) 

The constant 𝐶 is determined in terms of the mean of the local twist 𝜃 over the entire cross section. 

Consequently, 𝐶 must be equal to −𝜃. Therefore,  
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 𝛻′2𝐹 = −𝜈𝑧𝑥𝐾𝑦𝑥 + 𝜈𝑧𝑦𝐾𝑥𝑦 − 𝜃 (4. 15) 

 The particular solution to the partial differential equation above is obtained as  

 𝐹𝑝(𝑥, 𝑦) = −
ν𝑧𝑥𝐺𝑧𝑦

3
𝐾𝑦𝑥

3 +
ν𝑧𝑦𝐺𝑧𝑥

3
𝐾𝑥𝑦

3 −
θ

2
(𝐺𝑧𝑦𝑥

2 + 𝐺𝑧𝑥𝑦
2) (4. 16) 

and the homogeneous solution is 𝑓(𝑥, 𝑦), which is a weighted harmonic function satisfying, 

 ∇′
2
𝑓 =

1

2𝐺𝑧𝑦

∂2𝑓

∂𝑥2
+

1

2𝐺𝑧𝑥

∂2𝑓

∂𝑦2
= 0 (4. 17) 

Thus, the complete solution for 𝐹 reads, 

 𝐹(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) −
ν𝑧𝑥𝐺𝑧𝑦

3
𝐾𝑦𝑥

3 +
ν𝑧𝑦𝐺𝑧𝑥

3
𝐾𝑥𝑦

3 −
𝜃

2
(𝐺𝑧𝑦𝑥

2 + 𝐺𝑧𝑥𝑦
2) (4. 18) 

Further simplification is achieved by re-writing the stresses 𝜎𝑧𝑥 and 𝜎𝑧𝑦 in terms of the 

weighted conjugate 𝑔(𝑥, 𝑦) of 𝑓(𝑥, 𝑦),  where 
𝜕𝑔

𝜕𝑥
=

1

𝐺𝑧𝑥

𝜕𝑓

𝜕𝑦
 and 

∂𝑔

∂𝑦
= −

1

𝐺𝑧𝑦

∂𝑓

∂𝑥
,  that satisfies, 

 ∇′
2
𝑔 =

1

2𝐺𝑧𝑦

∂2𝑔

∂𝑥2
+

1

2𝐺𝑧𝑥

∂2𝑔

∂𝑦2
= 0 (4. 19) 

Using the weighted conjugate 𝑔(𝑥, 𝑦) the shear stresses are then expressed as,  

 

𝜎𝑧𝑥 = 𝐺𝑧𝑥 (
𝜕𝑔

𝜕𝑥
− 𝜃𝑦) + 𝐺𝑧𝑥𝜈𝑧𝑦𝐾𝑥𝑦

2 − 𝐾𝑥
𝐸𝑧𝑧𝑥

2

2
 

𝜎𝑧𝑦 = 𝐺𝑧𝑦 (
𝜕𝑔

𝜕𝑦
+ 𝜃𝑥) + 𝐺𝑧𝑦𝜈𝑧𝑥𝐾𝑦𝑥

2 − 𝐾𝑦
𝐸𝑧𝑧𝑦

2

2
 

(4. 20) 

Noting that the shear stress fields for the pure torsion problem for orthotropic materials are, 

 

𝜎𝑧𝑥 = 𝐺𝑧𝑥𝜃 (
𝜕𝜔1
𝜕𝑥

− 𝑦) 

𝜎𝑧𝑦 = 𝐺𝑧𝑦𝜃 (
𝜕𝜔1
𝜕𝑦

+ 𝑥) 

(4. 21) 
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where 𝜔1  is the out-of-plane warping function from the pure torsion problem, the weighted 

conjugate function 𝑔(𝑥, 𝑦) may be expressed in terms of three weighted harmonic functions 𝜔1, 

𝜔2, 𝜔3 ( ∇′
2
𝜔𝑖 =

1

2𝐺𝑧𝑦

𝜕2𝜔𝑖

𝜕𝑥2
+

1

2𝐺𝑧𝑥

𝜕2𝜔𝑖

𝜕𝑦2
= 0, 𝑖 = 1,2,3), 

 𝑔(𝑥, 𝑦) = 𝜃𝜔1 + 𝐾𝑥𝜔2 +𝐾𝑦𝜔3 (4. 22) 

This leads to the shear stresses expressed in terms of these three functions as follows,  

 𝜎𝑧𝑥 = 𝜃𝐺𝑧𝑥 (
𝜕𝜔1
𝜕𝑥

− 𝑦) + 𝐾𝑥 (𝐺𝑧𝑥
𝜕𝜔2
𝜕𝑥

−
𝐸𝑧𝑧𝑥

2

2
+ 𝐺𝑧𝑥𝜈𝑧𝑦𝑦

2) + 𝐾𝑦𝐺𝑧𝑥
𝜕𝜔3
𝜕𝑥

 (4. 23) 

 𝜎𝑧𝑦 = 𝜃𝐺𝑧𝑦 (
𝜕𝜔1
𝜕𝑦

+ 𝑥) + 𝐾𝑦 (𝐺𝑧𝑦
𝜕𝜔3
𝜕𝑦

−
𝐸𝑧𝑧𝑦

2

2
+ 𝐺𝑧𝑦𝜈𝑧𝑥𝑥

2) + 𝐾𝑥𝐺𝑧𝑦
𝜕𝜔2
𝜕𝑦

 (4. 24) 

The above shear stresses must satisfy the traction-free boundary conditions on the lateral surface,  

 𝜎𝑧𝑥
𝑑𝑥

𝑑𝑛
+ 𝜎𝑧𝑦

𝑑𝑦

𝑑𝑛
= 0 (4. 25) 

Substituting the shear stress expressions into the equation above, one obtains, 

 

𝜃 (𝐺𝑧𝑥
𝜕𝜔1
𝜕𝑥

𝑑𝑥

𝑑𝑛
− 𝐺𝑧𝑥𝑦

𝑑𝑥

𝑑𝑛
+ 𝐺𝑧𝑦

𝜕𝜔1
𝜕𝑦

𝑑𝑦

𝑑𝑛
+ 𝐺𝑧𝑦𝑥

𝑑𝑦

𝑑𝑛
) 

+𝐾𝑥 (𝐺𝑧𝑥
𝜕𝜔2
𝜕𝑥

𝑑𝑥

𝑑𝑛
+ 𝐺𝑧𝑦

𝜕𝜔2
𝜕𝑦

𝑑𝑦

𝑑𝑛
) + 𝐾𝑥 (𝜈𝑧𝑦𝐺𝑧𝑥𝑦

2 −
𝐸𝑧𝑧
2
𝑥2)

𝑑𝑥

𝑑𝑛
 

+𝐾𝑦 (𝐺𝑧𝑥
𝜕𝜔3
𝜕𝑥

𝑑𝑥

𝑑𝑛
+ 𝐺𝑧𝑦

𝜕𝜔2
𝜕𝑦

𝑑𝑦

𝑑𝑛
) + 𝐾𝑦 (𝜈𝑧𝑥𝐺𝑧𝑦𝑥

2 −
𝐸𝑧𝑧
2
𝑦2)

𝑑𝑦

𝑑𝑛
= 0 

(4. 26) 

Since the pure torsion contribution vanishes, the above equation is satisfied if the functions 𝜔2 and 

𝜔3 are subject to the conditions, 

 
𝐺𝑧𝑥

𝜕𝜔2
𝜕𝑥

𝑑𝑥

𝑑𝑛
+ 𝐺𝑧𝑦

𝜕𝜔2
𝜕𝑦

𝑑𝑦

𝑑𝑛
+ (−

𝐸𝑧𝑧
2
𝑥2 + 𝜈𝑧𝑦𝐺𝑧𝑥𝑦

2)
𝑑𝑥

𝑑𝑛
= 0 𝑜𝑛 𝐶 

 

(4. 27) 

 𝐺𝑧𝑥
𝜕𝜔3
𝜕𝑥

𝑑𝑥

𝑑𝑛
+ 𝐺𝑧𝑦

𝜕𝜔3
𝜕𝑦

𝑑𝑦

𝑑𝑛
+ (−

𝐸𝑧𝑧
2
𝑦2 + 𝜈𝑧𝑥𝐺𝑧𝑦𝑥

2)
𝑑𝑦

𝑑𝑛
= 0 𝑜𝑛 𝐶 (4. 28) 
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 The flexure problem is then reduced to the task of finding three harmonic potential 

functions subject to Neumann boundary conditions. The three weighted harmonic functions must 

satisfy the weighted Laplace's equation. Laplace's equation subject to Neumann boundary 

conditions must satisfy a compatibility condition for a solution to exist. A general boundary value 

problem involving Laplace's equation with Neumann boundary conditions is given by,  

 𝛻2𝜔 = 0 𝑖𝑛 𝐴 (4. 29) 

 
𝑑𝜔

𝑑𝑛
= 𝑔 𝑜𝑛 𝐶 (4. 30) 

Integrating the governing Laplace equation over the bar's cross section and applying the divergence 

theorem in conjunction with the boundary condition yields  

 ∬𝛻2

𝐴

𝜔 𝑑𝐴 =∬𝛻

𝐴

⋅ 𝛻𝜔 𝑑𝐴 = ∫
𝑑𝜔

𝑑𝑛𝐶

 𝑑𝑠 = ∫𝑔
𝐶

 𝑑𝑠 = 0 (4. 31) 

In order to verify that the condition for the existence of a solution for this problem is fulfilled, 

application of the Green's theorem yields the result, 

 
∫ (𝐺𝑧𝑥

𝜕𝜔1
𝜕𝑥

𝑑𝑥

𝑑𝑛
+ 𝐺𝑧𝑦

𝜕𝜔1
𝜕𝑦

𝑑𝑦

𝑑𝑛
)𝑑𝑠

𝐶

= ∫(𝐺𝑧𝑥𝑦𝑑𝑦 − 𝐺𝑧𝑦𝑥𝑑𝑥)
𝐶

=∬(0 − 0)𝑑𝑥𝑑𝑦

𝐴

≡ 0 

(4. 32) 

 

∫ (𝐺𝑧𝑥
𝜕𝜔2
𝜕𝑥

𝑑𝑥

𝑑𝑛
+ 𝐺𝑧𝑦

𝜕𝜔2
𝜕𝑦

𝑑𝑦

𝑑𝑛
)𝑑𝑠

𝐶

= ∫ (
𝐸𝑧𝑧
2
𝑥2 − 𝜈𝑧𝑦𝐺𝑧𝑥𝑦

2)𝑑𝑦
𝐶

= 𝐸𝑧𝑧∬𝑥

𝐴

 𝑑𝑥 𝑑𝑦 ≡ 0 

(4. 33) 

 

∫ (𝐺𝑧𝑥
𝜕𝜔3
𝜕𝑥

𝑑𝑥

𝑑𝑛
+ 𝐺𝑧𝑦

𝜕𝜔3
𝜕𝑦

𝑑𝑦

𝑑𝑛
)𝑑𝑠

𝐶

= −∫ (
𝐸𝑧𝑧
2
𝑦2 − 𝜈𝑧𝑥𝐺𝑧𝑦𝑥

2)𝑑𝑥
𝐶

= 𝐸𝑧𝑧∬𝑦

𝐴

 𝑑𝑥 𝑑𝑦 ≡ 0 

(4. 34) 

since the origin is at the centroid of the cross section. 
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 In order to determine the constants 𝐾𝑥 and 𝐾𝑦, it is necessary to recall the definition of the 

moments of inertia in the chosen coordinate system,  

 𝐼𝑥𝑥 = ∬ 𝑦2
𝐴

 𝑑𝑥 𝑑𝑦,    𝐼𝑦𝑦 = ∬ 𝑥2
𝐴

 𝑑𝑥 𝑑𝑦,       𝐼𝑥𝑦 = ∬ 𝑥𝑦
𝐴

 𝑑𝑥 𝑑𝑦 (4. 35) 

Since the resultant of the stress 𝜎𝑧𝑥 acting on the bar's cross section must equal 𝑊𝒙, applying the 

Green's theorem to the area integrals involving 𝜔2, 𝜔3, produces the expression for 𝑊𝒙, 

 𝑊𝑥 = 𝐾𝑥𝐸𝑧𝑧𝐼𝑦𝑦 + 𝐾𝑦𝐸𝑧𝑧𝐼𝑥𝑦 (4. 36) 

Similar to the component 𝑊𝑥 of the applied load, one also obtains the expression for 𝑊𝑦, 

 𝑊𝑦 = 𝐾𝑦𝐸𝑧𝑧𝐼𝑥𝑥 + 𝐾𝑥𝐸𝑧𝑧𝐼𝑥𝑦 (4. 37) 

Solving the system of equation Eq. (4. 36) and Eq. (4. 37) yields the solution  

 

{
 
 

 
 𝐸𝑧𝑧𝐾𝑥 =

𝑊𝑥𝐼𝑥𝑥 −𝑊𝑦𝐼𝑥𝑦

𝐼𝑥𝑥𝐼𝑦𝑦 − 𝐼𝑥𝑦
2

𝐸𝑧𝑧𝐾𝑦 =
𝑊𝑦𝐼𝑦𝑦 −𝑊𝑥𝐼𝑥𝑦

𝐼𝑥𝑥𝐼𝑦𝑦 − 𝐼𝑥𝑦
2

 (4. 38) 

 The knowledge of the stress field enables the determination of the displacement field that 

generates it using the strain-displacement relations and the Hooke's law. In the absence of in-plane 

normal and shear stresses, 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎𝑥𝑦 = 0, the constitutive equations become, 

 

[
 
 
 
 
 
𝜖𝑥𝑥
𝜖𝑦𝑦
𝜖𝑧𝑧
𝜖𝑧𝑦
𝜖𝑧𝑥

𝜖𝑥𝑦(0)]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
1

𝐸𝑥𝑥
−
𝜈𝑦𝑥

𝐸𝑦𝑦
−
𝜈𝑧𝑥
𝐸𝑧𝑧

−
𝜈𝑥𝑦

𝐸𝑥𝑥

1

𝐸𝑦𝑦
−
𝜈𝑧𝑦

𝐸𝑧𝑧

−
𝜈𝑥𝑧
𝐸𝑥𝑥

−
𝜈𝑦𝑧

𝐸𝑦𝑦

1

𝐸𝑧𝑧

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1

2𝐺𝑧𝑦
0 0

0
1

2𝐺𝑧𝑥
0

0 0
1

2𝐺𝑥𝑦]
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝜎𝑥𝑥(0)
𝜎𝑦𝑦(0)
𝜎𝑧𝑧
𝜎𝑧𝑦
𝜎𝑧𝑥

𝜎𝑥𝑦(0)]
 
 
 
 
 

 (4. 39) 
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Writing the normal strains in terms of partial derivatives of the displacements, and using the above 

constitutive equations, yields,  

 
𝜕𝑢

𝜕𝑥
= 𝜖𝑥𝑥 = −𝜈𝑧𝑥(𝑧 − 𝑙)(𝐾𝑥𝑥 + 𝐾𝑦𝑦) (4. 40) 

 
𝜕𝑣

𝜕𝑦
= 𝜖𝑦𝑦 = −𝜈𝑧𝑦(𝑧 − 𝑙)(𝐾𝑥𝑥 + 𝐾𝑦𝑦) (4. 41) 

 
𝜕𝑤

𝜕𝑧
= 𝜖𝑧𝑧 = (𝑧 − 𝑙)(𝐾𝑥𝑥 + 𝐾𝑦𝑦) (4. 42) 

whose integrals yield expressions for the displacement components,  

 𝑢 = 𝜈𝑧𝑥(𝑙 − 𝑧) (
𝐾𝑥𝑥

2

2
+ 𝐾𝑦𝑥𝑦) + 𝐴(𝑦, 𝑧) (4. 43) 

 𝑣 = 𝜈𝑧𝑦(𝑙 − 𝑧) (𝐾𝑥𝑥𝑦 +
𝐾𝑦𝑦

2

2
) + 𝐵(𝑥, 𝑧) (4. 44) 

 𝑤 = (
𝑧2

2
− 𝑙𝑧) (𝐾𝑥𝑥 + 𝐾𝑦𝑦) + 𝐶(𝑥, 𝑦) (4. 45) 

where the integration functions 𝐴(𝑦, 𝑧), 𝐵(𝑥, 𝑧), 𝐶(𝑦, 𝑧) need to be determined. 

 Since the in-plane shear strain is zero, i.e., 𝜖𝑥𝑦 = 0, the corresponding strain-displacement 

relation yields expressions for the functions 𝐴(𝑦, 𝑧), 𝐵(𝑥, 𝑧) in terms of the additional integration 

functions 𝐷1(𝑧), 𝐷2(𝑧) and a constant λ  

 𝐴(𝑦, 𝑧) = −
1

2
𝜈𝑧𝑦(𝑙 − 𝑧)𝐾𝑥𝑦

2 + 𝐷1(𝑧) − 𝜆𝑦 (4. 46) 

 𝐵(𝑥, 𝑧) = −
1

2
𝜈𝑧𝑥(𝑙 − 𝑧)𝐾𝑦𝑥

2 + 𝐷2(𝑧) + 𝜆𝑥 (4. 47) 

In order to make the displacement applicable to pure torsion case, 𝜆 has to be equal to 𝛼𝑧. 

 Using the strain-displacement relations for the out-of-plane shear strains, together with the 

corresponding shear stresses, yields the solution for the functions 𝐷1(𝑧), 𝐷2(𝑧) and expressions 

for the partial derivatives of the function 𝐶(𝑥, 𝑦) with respect to 𝑥 and 𝑦.  
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 𝐷1(𝑧) = (
𝑙𝑧2

2
−
𝑧3

6
)𝐾𝑥 + 𝑐1 (4. 48) 

 𝐷2(𝑧) = (
𝑙𝑧2

2
−
𝑧3

6
)𝐾𝑦 + 𝑐2 (4. 49) 

where 𝑐1, 𝑐2 are constants and  

 
∂𝐶

∂𝑥
= ν𝑧𝑥 (

𝐾𝑥𝑥
2

2
+ 𝐾𝑦𝑥𝑦) −

𝜈𝑧𝑦𝐾𝑥𝑦
2

2
+
𝜎𝑧𝑥
𝐺𝑧𝑥

+ 𝜃𝑦 (4. 50) 

 
∂𝐶

∂𝑦
= 𝜈𝑧𝑦 (𝐾𝑥𝑥𝑦 +

𝐾𝑦𝑦
2

2
) −

𝜈𝑧𝑥𝐾𝑦𝑥
2

2
+
𝜎𝑧𝑦

𝐺𝑧𝑦
− 𝜃𝑥 (4. 51) 

Once the function 𝐶(𝑥, 𝑦) is determined and the origin is fixed to produce zero displacements, the 

three displacement components are obtained in the form,  

  𝑢(𝑥, 𝑦, 𝑧) = −𝜃𝑦𝑧 + (𝑙 − 𝑧) (𝜈𝑧𝑥
𝐾𝑥𝑥

2

2
+ 𝜈𝑧𝑥𝐾𝑦𝑥𝑦 − 𝜈𝑧𝑦

𝐾𝑥𝑦
2

2
) + 𝐾𝑥 (

𝑙

2
−
𝑧

6
) 𝑧2 (4. 52) 

  𝑣(𝑥, 𝑦, 𝑧) = 𝜃𝑥𝑧 + (𝑙 − 𝑧) (𝜈𝑧𝑦
𝐾𝑦𝑦

2

2
+ 𝜈𝑧𝑦𝐾𝑥𝑥𝑦 − 𝜈𝑧𝑥

𝐾𝑦𝑥
2

2
) + 𝐾𝑦 (

𝑙

2
−
𝑧

6
) 𝑧2 (4. 53) 

 

 𝑤(𝑥, 𝑦, 𝑧) = 𝜃𝜔1 + (
𝑧2

2
− 𝑙𝑧) (𝐾𝑥𝑥 + 𝐾𝑦𝑦) + 𝐾𝑥 (𝜔2 + 𝜈𝑧𝑥

𝑥3

6
−
𝐸𝑧𝑧𝑥

3

6𝐺𝑧𝑥
+

𝜈𝑧𝑦
𝑥𝑦2

2
) + 𝐾𝑦 (𝜔3 + 𝜈𝑧𝑦

𝑦3

6
−
𝐸𝑧𝑧𝑦

3

6𝐺𝑧𝑦
+ 𝜈𝑧𝑥

𝑥2𝑦

2
) 

(4. 54) 

 The stress expressions derived in this section for homogeneous orthotropic materials 

correctly reduce to those of homogeneous isotropic materials upon setting 𝐺𝑧𝑥 = 𝐺𝑧𝑦 = 𝜇  and 

𝜈𝑧𝑥 = 𝜈𝑧𝑦 = 𝜈, 

 𝜎𝑧𝑥 = 𝜇𝜃 (
𝜕𝜔1
𝜕𝑥

− 𝑦) + 𝜇𝐾𝑥 (
𝜕𝜔2
𝜕𝑥

+ 𝜈𝑦2 −
𝐸𝑥2

2𝜇
) + 𝜇𝐾𝑦

𝜕𝜔3
𝜕𝑥

 (4. 55) 

 𝜎𝑧𝑦 = 𝜇𝜃 (
𝜕𝜔1
𝜕𝑦

+ 𝑥) + 𝜇𝐾𝑦 (
𝜕𝜔3
𝜕𝑦

+ 𝜈𝑥2 −
𝐸𝑦2

2𝜇
) + 𝜇𝐾𝑥

𝜕𝜔2
𝜕𝑦

 (4. 56) 

and the displacement in this section for homogeneous orthotropic materials reduce to 
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  𝑢(𝑥, 𝑦, 𝑧) = 𝜈(𝑙 − 𝑧) (
𝐾𝑥𝑥

2

2
+ 𝐾𝑦𝑥𝑦 −

𝐾𝑥𝑦
2

2
) + 𝐾𝑥 (

𝑙

2
−
𝑧

6
) 𝑧2 − 𝜃𝑦𝑧 (4. 57) 

  𝑣(𝑥, 𝑦, 𝑧) = 𝜈(𝑙 − 𝑧) (
𝐾𝑦𝑦

2

2
+ 𝐾𝑥𝑥𝑦 −

𝐾𝑦𝑥
2

2
) + 𝐾𝑦 (

𝑙

2
−
𝑧

6
) 𝑧2 + 𝜃𝑥𝑧 (4. 58) 

 

 𝑤(𝑥, 𝑦, 𝑧) = 𝜃𝜔1 + (
𝑧2

2
− 𝑙𝑧) (𝐾𝑥𝑥 + 𝐾𝑦𝑦) + 𝐾𝑥 [𝜔2 +

𝑥𝑦2𝜈

2
−
𝑥3(𝜈+2)

6
] +

𝐾𝑦 [𝜔3 +
𝑥2𝑦𝜈

2
−
𝑦3(𝜈+2)

6
] 

(4. 59) 

4.4 Finite Volume Method for Torsion-Flexure Problems 

 As observed in the preceding section, a solution to the torsion-flexure problem requires the 

determination of the three displacement-like functions 𝜔𝑖. This section describes the finite-volume 

approach in the determination of these functions for flexural loading of arbitrarily shaped 

homogeneous cross sections. This motivates partitioning of isotropic or orthotropic cross sections 

into quadrilateral subvolumes that mimic the cross-section’s shape. The quadrilateral subvolumes 

are the elementary units in the finite volume analysis wherein the local harmonic potential function 

fields (𝜔1 , 𝜔2 , 𝜔3 ) are approximated using simple polynomial expressions. The employed 

polynomials satisfy Beltrami-Michelle compatibility equations, and the use of constitutive 

equations leads to the direct calculation of the local stress fields through simple differentiation. 

The use of simple polynomials precludes point-wise satisfaction of the potential functions 𝜔1, 𝜔2, 

𝜔3, and traction component continuity across common faces of adjacent subvolumes. Hence a 

compromise is employed that involves the imposition of interfacial potential function and traction 

continuity in a surface-average sense. The equilibrium equations are satisfied in a surface-average 

sense as well. Hence the solution strategy employed in FVM follows the elasticity-based solution 

strategy, albeit in a surface-average as opposed to point-wise sense. Thus, it differs fundamentally 

from the variational-based solution strategies based on energy minimization. Whereas the 

subvolume equilibrium is always satisfied in a surface-average sense, the point-wise accuracy of 

the method increases with partition refinement. 

 The above overview of the method again clearly suggests that the finite volume method 

was originally developed as a semi-analytical tool for efficiently solving structural problems to 

avoid intricate mathematical derivations in the solution of torsion-flexure problems for 

homogenous cross sections with various boundary shapes. 



 142 

 The partitioning of the analyzed domain using (𝑖) quadrilateral subvolumes to 

accommodate cross sections of arbitrary shapes is accomplished using parametric mapping of the 

reference square domain in the reference plane onto the actual quadrilateral subvolume in the 

physical plane. The three harmonic potential function field approximations are also made in the 

reference plane, and thus the FVM analysis, which entails the development of relations between 

potential functions and traction quantities is conducted in both planes. The establishment of these 

relations enables the construction of the local stiffness matrix for each quadrilateral subvolume in 

the physical plane that relates the surface‐averaged potential functions to the corresponding 

tractions. The local stiffness matrix is constructed such that the quadrilateral subvolume’s 

equilibrium is satisfied in the physical plane, and the assembly of all the local stiffness matrices 

ensures that traction and potential function continuity and prescribed boundary conditions are 

satisfied as well. 

 This section first describes the parametric mapping employed in the theory’s construction, 

followed by subvolume discretization into quadrilateral partitions, displacement field construction, 

and the solution for these harmonic potential functions using the parametric FVM. Towards this 

end, local coordinate systems (�̅�, �̅�)(𝑖)  are set up at the subvolumes’ centroids, where the 

coordinates (𝑥, 𝑦)(𝑖) of an arbitrary point within the subvolume (𝑖)  are referred in the global 

coordinate system. The global coordinates are employed in the parametric mapping described in 

the following subsection, whereas the local coordinates transferred in the reference system are 

employed in each subvolume's harmonic potential functions, strain, and stress field representation. 

4.4.1 Parametric Mapping 

 The reference subvolume is a square in the 𝜂 –  𝜉 plane bounded by −1 ≤ 𝜂 ≤ 1, 1 ≤ 𝜉 ≤

1. The vertices are numbered such that the first set of coordinates is at the lower left corner and 

the numbering convention increases in a counterclockwise fashion. The faces are numbered 

similarly such that the face 𝐹𝑝 lies between the vertices (�̅�𝑝, �̅�𝑝)
(𝑖)

and (�̅�𝑝+1, �̅�𝑝+1)
(𝑖)

 with 𝑝 + 1 

going to 1 when 𝑝 = 4. Thus, the components of the unit normal vector 𝒏𝑝
(𝑖) = [𝑛𝑥, 𝑛𝑦]𝑝

(𝑖)
 to the 

face 𝐹𝑝 in each subvolume (𝑖) are given by 
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 𝑛𝑥|𝑝 =
�̅�𝑝+1
(𝑖) − �̅�𝑝

(𝑖)

𝑙𝑝
,  𝑛𝑦|𝑝 =

�̅�𝑝+1
(𝑖) − �̅�𝑝

(𝑖)

𝑙𝑝
 (4. 60) 

where 𝑙𝑝 = √(�̅�𝑝+1
(𝑖) − �̅�𝑝

(𝑖))
2

+ (�̅�𝑝+1
(𝑖) − �̅�𝑝

(𝑖))
2

. The mapping if the point (𝜂, 𝜉) in the reference 

subvolume to the corresponding point (�̅�, �̅�)(𝑖) in the subvolume of the actual discretized cross 

section is given by Cavalcante et al. (2007). 

 

�̅�(𝑖)(𝜂, 𝜉) = 𝑁1(𝜂, 𝜉)�̅�1
(𝑖)
+ 𝑁2(𝜂, 𝜉)�̅�2

(𝑖)
+𝑁3(𝜂, 𝜉)�̅�3

(𝑖)
+𝑁4(𝜂, 𝜉)�̅�4

(𝑖)
 

�̅�(𝑖)(𝜂, 𝜉) = 𝑁1(𝜂, 𝜉)�̅�1
(𝑖)
+ 𝑁2(𝜂, 𝜉)�̅�2

(𝑖)
+𝑁3(𝜂, 𝜉)�̅�3

(𝑖)
+𝑁4(𝜂, 𝜉)�̅�4

(𝑖)
 

(4. 61) 

where 𝑁1(𝜂, 𝜉) =
1

4
(1 − 𝜂)(1 − 𝜉)   𝑁2(𝜂, 𝜉) =

1

4
(1 + 𝜂)(1 − 𝜉)   𝑁3(𝜂, 𝜉) =

1

4
(1 + 𝜂)(1 + 𝜉)   

𝑁4(𝜂, 𝜉) =
1

4
(1 − 𝜂)(1 + 𝜉). 

 The determination of the strains and stresses within quadrilateral subvolumes requires the 

relationship between first partial derivatives of the subvolume harmonic potential functions 

(general expression:𝜔 ) in the two planes 𝜂 −  𝜉  and 𝑥 −  𝑦 . These are related through the 

Jacobian 𝑱 and its inverse 𝑱−1, 

 

[
 
 
 
 
𝜕𝜔

𝜕𝜂
𝜕𝜔

𝜕𝜉 ]
 
 
 
 
(𝑖)

= 𝑱

[
 
 
 
𝜕𝜔

𝜕𝑥
𝜕𝜔

𝜕𝑦]
 
 
 
(𝑖)

↔

[
 
 
 
𝜕𝜔

𝜕𝑥
𝜕𝜔

𝜕𝑦]
 
 
 
(𝑖)

= 𝑱−1

[
 
 
 
 
𝜕𝜔

𝜕𝜂
𝜕𝜔

𝜕𝜉 ]
 
 
 
 
(𝑖)

 (4. 62) 

 

where the Jacobian 𝑱 is obtained from the transformation equations in the form 

 𝑱 =

[
 
 
 
 
𝜕�̅�(𝑖)

𝜕𝜂

𝜕�̅�(𝑖)

𝜕𝜂

𝜕�̅�(𝑖)

𝜕𝜉

𝜕�̅�(𝑖)

𝜕𝜉 ]
 
 
 
 

= [
𝐴1
(𝑖) + 𝐴2

(𝑖)𝜉 𝐴4
(𝑖) + 𝐴5

(𝑖)𝜉

𝐴3
(𝑖) + 𝐴2

(𝑖)𝜂 𝐴6
(𝑖) + 𝐴5

(𝑖)𝜂
] (4. 63)  

with 𝐴1, … , 𝐴6 are given in terms of the vertex coordinates (�̅�𝑝, �̅�𝑝)
(𝑖)

 

𝐴1
(𝑖) =

1

4
(−�̅�1 + �̅�2 + �̅�3 − �̅�4)

(𝑖), 𝐴2
(𝑖) =

1

4
(�̅�1 − �̅�2 + �̅�3 − �̅�4)

(𝑖) 

𝐴3
(𝑖) =

1

4
(−�̅�1 − �̅�2 + �̅�3 + �̅�4)

(𝑖), 𝐴4
(𝑖) =

1

4
(−�̅�1 + �̅�2 + �̅�3 − �̅�4)

(𝑖) 
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𝐴5
(𝑖) =

1

4
(�̅�1 −  𝑦2 + �̅�3 − �̅�4)

(𝑖), 𝐴6
(𝑖) =

1

4
(−�̅�1 −  𝑦2 + �̅�3 + �̅�4)

(𝑖) 

For consistency with the surface‐averaging framework of the finite‐volume theory, the two sets 

of partial derivatives are connected through the volume‐averaged Jacobian �̅�, 

 �̅� =
1

4
∫ ∫ 𝑱𝑑𝜂𝑑𝜉

+1

−1

=
+1

−1

[
𝐴1 𝐴4
𝐴3 𝐴6

]
(𝑖)

 (4. 64)  

with the inverse �̅�−1 

 �̅�−1 =
1

|�̅�|
[
𝐴6 −𝐴4
−𝐴3 𝐴1

]
(𝑖)

=
1

𝐴1
(𝑖)𝐴6

(𝑖) − 𝐴3
(𝑖)𝐴4

(𝑖)
[
𝐴6
(𝑖)

−𝐴4
(𝑖)

−𝐴3
(𝑖)

𝐴1
(𝑖)
] (4. 65)  

 In constructing the local stiffness matrix for each subvolume in terms of the surface-

averaged displacements and tractions, 𝑱−1 is replaced by �̅�−1 in order to generate the elements of 

the stiffness matrix in closed form. This replacement avoids costly numerical integrations. For 

each subvolume (𝑖), 

 

[
 
 
 
 
𝜕𝜔

𝜕𝑥

̂

𝜕𝜔

𝜕𝑦

̂

]
 
 
 
 

𝜉=∓1

(𝑖)

= �̅�−1
(𝑖)

[
 
 
 
 
𝜕𝜔

𝜕𝜂

̂

𝜕𝜔

𝜕𝜉

̂

]
 
 
 
 

𝜉=∓1

(𝑖)

=
1

|�̅�|(𝑖)
[
𝐴6 −𝐴4 0 ±3𝐴4
−𝐴3 𝐴1 0 ∓3𝐴1

]
(𝑖)

[
 
 
 
𝑊𝜔(10)

𝑊𝜔(01)

𝑊𝜔(20)

𝑊𝜔(02)]
 
 
 
(𝑖)

 

[
 
 
 
 
𝜕𝜔

𝜕𝑥

̂

𝜕𝜔

𝜕𝑦

̂

]
 
 
 
 

𝜂=±1

(𝑖)

= �̅�−1
(𝑖)

[
 
 
 
 
𝜕𝜔

𝜕𝜂

̂

𝜕𝜔

𝜕𝜉

̂

]
 
 
 
 

𝜂=±1

(𝑖)

=
1

|�̅�|(𝑖)
[
𝐴6 −𝐴4 ±3𝐴6 0
−𝐴3 𝐴1 ∓3𝐴3 0

]
(𝑖)

[
 
 
 
𝑊𝜔(10)

𝑊𝜔(01)

𝑊𝜔(20)

𝑊𝜔(02)]
 
 
 
(𝑖)

 

(4. 66)  

In the above relations, 𝜔(𝑥, 𝑦) may be any of the selected field quantities. 

The following concise vector notation is introduced in the sequel in the expressions above 

for notational convenience, 

𝒂1,3
(𝑖) =

1

|�̅�|(𝑖)
[𝐴6 −𝐴4 0 ±3𝐴4]

(𝑖), 𝒂2,4
(𝑖) =

1

|�̅�|(𝑖)
[𝐴6 −𝐴4 ±3𝐴6 0](𝑖),  

𝒃1,3
(𝑖) =

1

|�̅�|(𝑖)
[−𝐴3 𝐴1 0 ∓3𝐴1]

(𝑖), 𝒃2,4
(𝑖) =

1

|�̅�|(𝑖)
[−𝐴3 𝐴1 ∓3𝐴3 0](𝑖) 
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and, 

𝑾𝜔
(𝑖)
=

[
 
 
 
𝑊𝜔(10)

𝑊𝜔(01)

𝑊𝜔(20)

𝑊𝜔(02)]
 
 
 
(𝑖)

 

where 𝑾𝜔
(𝑖)

  denotes the vector of coefficients in the second‐order expansion of 𝜔(𝑥, 𝑦)  as 

explained in detail in the following section. 

4.4.2 Potential Function and Stress Fields 

 The three stress components have the following the elasticity-based forms, 

 𝜎𝑧𝑥 = 𝜃𝐺𝑧𝑥 (
𝜕𝜔1
𝜕𝑥

− 𝑦) + 𝐾𝑥 (𝐺𝑧𝑥
𝜕𝜔2
𝜕𝑥

−
𝐸𝑧𝑧𝑥

2

2
+ 𝐺𝑧𝑥𝜈𝑧𝑦𝑦

2) + 𝐾𝑦𝐺𝑧𝑥
𝜕𝜔3
𝜕𝑥

 (4. 67) 

 𝜎𝑧𝑦 = 𝜃𝐺𝑧𝑦 (
𝜕𝜔1
𝜕𝑦

+ 𝑥) + 𝐾𝑦 (𝐺𝑧𝑦
𝜕𝜔3
𝜕𝑦

−
𝐸𝑧𝑧𝑦

2

2
+ 𝐺𝑧𝑦𝜈𝑧𝑥𝑥

2) + 𝐾𝑥𝐺𝑧𝑦
𝜕𝜔2
𝜕𝑦

 (4. 68) 

 𝜎𝑧𝑧 = −𝐸𝑧𝑧(𝑙 − 𝑧)(𝐾𝑥𝑥 + 𝐾𝑦𝑦) (4. 69) 

The three harmonic potential functions are approximated in each subvolume using a second-order 

expansion in the local coordinates as follows, 

 

𝜔𝑟
(𝑖)
= 𝑊𝜔𝑟(00)

(𝑖)
+ 𝜂𝑊𝜔𝑟(01)

(𝑖)
+ 𝜉𝑊𝜔𝑟(10)

(𝑖)
+
1

2
(3𝜂2 − 1)𝑊𝜔𝑟(20)

(𝑖)

+
1

2
(3𝜉2 − 1)𝑊𝜔𝑟(02)

(𝑖)
 

(4. 70) 

where 𝑟 = 1, 2, 3 and 𝑊𝜔𝑟(𝑚𝑛)
(𝑖)

 are unknown coefficients subsequently redefined in terms of the 

surface‐averaged warping functions along the four subvolume faces (𝑝 = 1, 2, 3, 4) following the 

subvolume faces order convention described in Chapter 2. The subvolumes may be occupied by 

(transversely) isotropic or orthotropic materials. The surface-averaged shear stress components in 

the two planes in each subvolume are given below after substituting the surface-averaged 

expressions in Eq. (4. 66): 
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�̂�𝑥𝑧|𝑝
(𝑖)

= 𝜃𝐺𝑧𝑥 (
𝜕𝜔1
𝜕𝑥

̂
− 𝑦) + 𝐾𝑥 (𝐺𝑧𝑥

𝜕𝜔2
𝜕𝑥

̂
−
𝐸𝑧𝑧𝑥

2

2
+ 𝐺𝑧𝑥𝜈𝑧𝑦𝑦

2) + 𝐾𝑦𝐺𝑧𝑥
𝜕𝜔3
𝜕𝑥

̂
 

�̂�𝑦𝑧|𝑝
(𝑖)

= 𝜃𝐺𝑧𝑦 (
𝜕𝜔1
𝜕𝑦

̂
+ 𝑥) + 𝐾𝑦 (𝐺𝑧𝑦

𝜕𝜔3
𝜕𝑦

̂
−
𝐸𝑧𝑧𝑦

2

2
+ 𝐺𝑧𝑦𝜈𝑧𝑥𝑥

2) + 𝐾𝑥𝐺𝑧𝑦
𝜕𝜔2
𝜕𝑥

̂
 

�̂�𝑧𝑧|𝑝
(𝑖)

= −𝐸𝑧𝑧(𝑙 − 𝑧)(𝐾𝑥�̂� + 𝐾𝑦�̂�) 

(4. 71) 

4.4.3 Local Stiffness Matrix Construction 

 In order to reduce the number of unknown coefficients in the out-of-plane stress 

approximation when cross sections are discretized into a large number of subvolumes, the torsion-

flexure problem is reformulated in terms of surface‐averaged potential functions on the four faces 

of each subvolume as the primary solution variables. Then one constructs a local stiffness matrix 

for each subvolume by relating the surface‐average potential functions to the corresponding 

surface‐average tractions. We start by defining the surface‐average potential functions, 

 

�̂�𝑟
(𝑖)
|1,3 =

1

2
∫ �̂�𝑟

(𝑖)
(𝜂, 𝜉 = ∓1)

1

−1

 𝑑𝜂 = 𝑊𝑟(00)
(𝑖) ∓𝑊𝑟(01)

(𝑖) +𝑊𝑟(02)
(𝑖)

 

�̂�𝑟
(𝑖)
|2,4 =

1

2
∫ �̂�𝑟

(𝑖)(𝜂 = ±1, 𝜉)
1

−1

 𝑑𝜉 = 𝑊𝑟(00)
(𝑖)

∓𝑊𝑟(10)
(𝑖)

+𝑊𝑟(20)
(𝑖)

 

(4. 72) 

where 𝑟 = 1, 2, 3 . Hence, the first and second‐order coefficients 𝑊𝑟(𝑚𝑛)
(𝑖)

  may be expressed in 

terms of the surface-averaged potential functions and the zero-order coefficient 𝑾𝒓(𝟎𝟎)
(𝜶,𝜷)

 where 𝑟 =

1, 2, 3. 

 𝑾𝑟
(𝑖)
=

[
 
 
 
 
𝑊𝑟(10)

𝑊𝑟(01)

𝑊𝑟(20)

𝑊𝑟(02)]
 
 
 
 
(𝑖)

=
1

2
[

0 1
−1 0

0 −1
1 0

0 1
1 0

0 1
1 0

]

[
 
 
 
 
�̂�𝑟|1
�̂�𝑟|2
�̂�𝑟|3
�̂�𝑟|4]

 
 
 
 
(𝑖)

− [

0
0
1
1

]𝑊𝑟(00)
(𝑖)

 (4. 73) 

or 

𝑾𝑟
(𝑖) =

1

2
𝜶�̂�𝑟

(𝑖) − 𝜷𝑊𝑟(00)
(𝑖)

 

Similarly, the corresponding surface-averaged interfacial tractions are defined as follows, 
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𝑡𝑧|1,3
(𝑖)

=
1

2
∫ 𝑡𝑧

(𝑖)
(𝜂, 𝜉 = ∓1)

1

−1

 𝑑𝜂 

𝑡𝑧|2,4
(𝑖)

=
1

2
∫ 𝑡𝑧

(𝑖)
(𝜂 = ±1, 𝜉)

1

−1

 𝑑𝜉 

(4. 74) 

where the traction vector associated with the face 𝑝 characterized by the unit normal vector 𝒏𝑝 is 

𝑡𝑧|𝑝
(𝑖)
= 𝜎𝑜𝑧

(𝑖)
𝑛𝑜|𝑝
(𝑖)
 (𝑜 = 𝑥, 𝑦, 𝑧). Hence the traction vector components on any of the four subvolume 

faces become, in terms of the three shear stress components, 

 �̂�𝑧|𝑝
(𝑖)
= [�̂�𝑥𝑧

(𝑖)
𝑛𝑥
(𝑖)
+ �̂�𝑦𝑧

(𝑖)
𝑛𝑦
(𝑖)
+ �̂�𝑧𝑧

(𝑖)
𝑛𝑧
(𝑖)
]
𝑝
 (4. 75) 

which are expressed in terms of the corresponding surface‐averaged shear strains for orthotropic 

materials, 

 

�̂�𝑧|1,3
(𝑖) = {𝐺𝑧𝑥𝜃(𝒂1,3

(𝑖)𝑾1
(𝑖) −

1

2
∫ 𝑦|𝜂,𝜉=∓1

(𝑖)
1

−1

 𝑑𝜂)

+ 𝐾𝑥 (𝐺𝑧𝑥𝒂1,3
(𝑖)𝑾2

(𝑖) −
1

2
∫ (

𝐸𝑧𝑧𝑥
2

2
− 𝐺𝑧𝑥𝜈𝑧𝑦𝑦

2)
𝜂,𝜉=∓1

(𝑖)1

−1

 𝑑𝜂)

+ 𝐾𝑦𝐺𝑧𝑥𝒂1,3
(𝑖)𝑾3

(𝑖)
} 𝑛𝑥|1,3

(𝑖)

+ {𝐺𝑧𝑦𝜃(𝒃1,3
(𝑖)
𝑾1
(𝑖)
+
1

2
∫ 𝑥|𝜂,𝜉=∓1

(𝑖)
1

−1

 𝑑𝜂)

+ 𝐾𝑦 (𝐺𝑧𝑦𝑏1,3
(𝑖)𝑾3

(𝛼,𝛽)
−
1

2
∫ (

𝐸𝑧𝑧𝑦
2

2
− 𝐺𝑧𝑦𝜈𝑧𝑥𝑥

2)
𝜂,𝜉=∓1

(𝑖)1

−1

 𝑑𝜂)

+ 𝐾𝑥𝐺𝑧𝑦𝒃1,3
(𝛼,𝛽)

𝑾2
(𝛼,𝛽)

} 𝑛𝑦|1,3
(𝑖)

 

(4. 76) 
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�̂�𝑧|2,4
(𝑖)

= {𝐺𝑧𝑥𝜃(𝒂𝟐,4
(𝑖)
𝑾1
(𝑖)
−
1

2
∫ 𝑦|𝜂=±1,𝜉

(𝑖)
1

−1

 𝑑𝜉)

+ 𝐾𝑥 (𝐺𝑧𝑥𝒂2,4
(𝑖)
𝑾2
(𝑖)
−
1

2
∫ (

𝐸𝑧𝑧𝑥
2

2
− 𝐺𝑧𝑥𝜈𝑧𝑦𝑦

2)
𝜂=±1,𝜉

(𝑖)1

−1

 𝑑𝜉)

+ 𝐾𝑦𝐺𝑧𝑥𝒂1,3
(𝑖)
𝑾3
(𝑖)
} 𝑛𝑥|2,4

(𝑖)

+ {𝐺𝑧𝑦𝜃(𝒃𝟐,4
(𝑖)
𝑾1
(𝑖)
+
1

2
∫ 𝑥|𝜂=±1,𝜉

(𝑖)
1

−1

 𝑑𝜉)

+ 𝐾𝑦 (𝐺𝑧𝑦𝑏2,4
(𝑖)
𝑾3
(𝛼,𝛽)

−
1

2
∫ (

𝐸𝑧𝑧𝑦
2

2
− 𝐺𝑧𝑦𝜈𝑧𝑥𝑥

2)
𝜂=±1,𝜉

(𝑖)1

−1

 𝑑𝜉)

+ 𝐾𝑥𝐺𝑧𝑦𝒃2,4
(𝛼,𝛽)

𝑾2
(𝛼,𝛽)

} 𝑛𝑦|2,4
(𝑖)

 

(4. 77) 

 Since the traction is decomposed into three parts factorized by 𝜃, 𝐾𝑥 and 𝐾𝑦 respectively, 

the traction decomposition can be illustrated as follows (𝑝 = 1, 2, 3, 4): 

Torsion mode: 

 �̂�𝑧|𝑝
(𝑇)(𝑖)

= 𝐺𝑧𝑥𝜃 (𝒂𝑝
(𝑖)𝑾1

(𝑖) − 𝐼𝑇2𝑝)𝑛𝑥|𝑝
(𝑖) + 𝐺𝑧𝑦𝜃 (𝒃𝑝

(𝑖)𝑾1
(𝑖) + 𝐼𝑇1𝑝)𝑛𝑦|𝑝

(𝑖)
 (4. 78) 

Flexure mode (1): 

 �̂�𝑧|𝑝
(𝐹1)(𝑖)

= 𝐾𝑥 (𝐺𝑧𝑥𝒂𝑝
(𝑖)𝑾2

(𝑖) − 𝐼𝐹1𝑝) 𝑛𝑥|𝑝
(𝑖) +𝐾𝑥𝐺𝑧𝑦𝒃𝑝

(𝑖)𝑾2
(𝑖)𝑛𝑦|𝑝

(𝑖)
 (4. 79) 

Flexure mode (2): 

 �̂�𝑧|𝑝
(𝐹2)(𝑖)

= 𝐾𝑦𝐺𝑧𝑥𝒂𝑝
(𝑖)𝑾3

(𝑖)𝑛𝑥|𝑝
(𝑖) +𝐾𝑦 (𝐺𝑧𝑦𝒃𝑝

(𝑖)𝑾3
(𝑖) − 𝐼𝐹2𝑝)𝑛𝑦|𝑝

(𝑖)
 (4. 80) 

where  

𝐼𝑇11
(𝑖)

=
1

2
∫ 𝑥|𝜂,𝜉=−1

(𝑖)
1

−1

 𝑑𝜂 =
𝑥1 + 𝑥2
2

, 𝐼𝑇21
(𝑖)

=
1

2
∫ 𝑦|𝜂,𝜉=−1

(𝑖)
1

−1

 𝑑𝜂 =
𝑦1 + 𝑦2
2

 

𝐼𝑇12
(𝑖)

=
1

2
∫ 𝑥|𝜂=1,𝜉

(𝑖)
1

−1

 𝑑𝜉 =
𝑥2 + 𝑥3
2

, 𝐼𝑇22
(𝑖)

=
1

2
∫ 𝑦|𝜂=1,𝜉

(𝑖)
1

−1

 𝑑𝜉 =
𝑦2 + 𝑦3
2

 

𝐼𝑇13
(𝑖)

=
1

2
∫ 𝑥|𝜂,𝜉=1

(𝑖)
1

−1

 𝑑𝜂 =
𝑥3 + 𝑥4
2

, 𝐼𝑇23
(𝑖)

=
1

2
∫ 𝑦|𝜂,𝜉=1

(𝑖)
1

−1

 𝑑𝜂 =
𝑦3 + 𝑦4
2
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𝐼𝑇14
(𝑖)

=
1

2
∫ 𝑥|𝜂=−1,𝜉

(𝑖)
1

−1

 𝑑𝜉 =
𝑥1 + 𝑥4
2

, 𝐼𝑇24
(𝑖)

=
1

2
∫ 𝑦|𝜂=−1,𝜉

(𝑖)
1

−1

 𝑑𝜉 =
𝑦1 + 𝑦4
2

 

𝐼𝐹11
(𝑖)

=
1

2
∫ (

𝐸𝑧𝑧𝑥
2

2
− 𝐺𝑧𝑥𝜈𝑧𝑦𝑦

2)
𝜂,𝜉=−1

(𝑖)1

−1

 𝑑𝜂 =
𝐸𝑧𝑧
8
(𝑥1 + 𝑥2)

2 −
𝐺𝑧𝑥𝜈𝑧𝑦

4
(𝑦1 + 𝑦2)

2 +
𝐸𝑧𝑧
24

(𝑥1 − 𝑥2)
2 −

𝐺𝑧𝑥𝜈𝑧𝑦

12
(𝑦1 − 𝑦2)

2 

𝐼𝐹21
(𝑖)

=
1

2
∫ (

𝐸𝑧𝑧𝑦
2

2
− 𝐺𝑧𝑦𝜈𝑧𝑥𝑥

2)
𝜂,𝜉=−1

(𝑖)1

−1

 𝑑𝜂 =
𝐸𝑧𝑧
8
(𝑦1 + 𝑦2)

2 −
𝐺𝑧𝑦𝜈𝑧𝑥

4
(𝑥1 + 𝑥2)

2 +
𝐸𝑧𝑧
24

(𝑦1 − 𝑦2)
2 −

𝐺𝑧𝑦𝜈𝑧𝑥

12
(𝑥1 − 𝑥2)

2 

𝐼𝐹12
(𝑖)

=
1

2
∫ (

𝐸𝑧𝑧𝑥
2

2
− 𝐺𝑧𝑥𝜈𝑧𝑦𝑦

2)
𝜂=1,𝜉

(𝑖)1

−1

 𝑑𝜉 =
𝐸𝑧𝑧
8
(𝑥2 + 𝑥3)

2 −
𝐺𝑧𝑥𝜈𝑧𝑦

4
(𝑦2 + 𝑦3)

2 +
𝐸𝑧𝑧
24

(𝑥2 − 𝑥3)
2 −

𝐺𝑧𝑥𝜈𝑧𝑦

12
(𝑦2 − 𝑦3)

2 

𝐼𝐹22
(𝑖)

=
1

2
∫ (

𝐸𝑧𝑧𝑦
2

2
− 𝐺𝑧𝑦𝜈𝑧𝑥𝑥

2)
𝜂=1,𝜉

(𝑖)1

−1

 𝑑𝜉 =
𝐸𝑧𝑧
8
(𝑦2 + 𝑦3)

2 −
𝐺𝑧𝑦𝜈𝑧𝑥

4
(𝑥2 + 𝑥3)

2 +
𝐸𝑧𝑧
24

(𝑦2 − 𝑦2)
3 −

𝐺𝑧𝑦𝜈𝑧𝑥

12
(𝑥2 − 𝑥3)

2 

𝐼𝐹13
(𝑖)

=
1

2
∫ (

𝐸𝑧𝑧𝑥
2

2
− 𝐺𝑧𝑥𝜈𝑧𝑦𝑦

2)
𝜂,𝜉=1

(𝑖)1

−1

 𝑑𝜂 =
𝐸𝑧𝑧
8
(𝑥3 + 𝑥4)

2 −
𝐺𝑧𝑥𝜈𝑧𝑦

4
(𝑦3 + 𝑦4)

2 +
𝐸𝑧𝑧
24

(𝑥3 − 𝑥4)
2 −

𝐺𝑧𝑥𝜈𝑧𝑦

12
(𝑦3 − 𝑦4)

2 

𝐼𝐹23
(𝑖)

=
1

2
∫ (

𝐸𝑧𝑧𝑦
2

2
− 𝐺𝑧𝑦𝜈𝑧𝑥𝑥

2)
𝜂,𝜉=1

(𝑖)1

−1

 𝑑𝜂 =
𝐸𝑧𝑧
8
(𝑦3 + 𝑦4)

2 −
𝐺𝑧𝑦𝜈𝑧𝑥

4
(𝑥3 + 𝑥4)

2 +
𝐸𝑧𝑧
24

(𝑦3 − 𝑦4)
2 −

𝐺𝑧𝑦𝜈𝑧𝑥

12
(𝑥3 − 𝑥4)

2 

𝐼𝐹14
(𝑖)

=
1

2
∫ (

𝐸𝑧𝑧𝑥
2

2
− 𝐺𝑧𝑥𝜈𝑧𝑦𝑦

2)
𝜂=−1,𝜉

(𝑖)1

−1

 𝑑𝜉 =
𝐸𝑧𝑧
8
(𝑥4 + 𝑥1)

2 −
𝐺𝑧𝑥𝜈𝑧𝑦

4
(𝑦4 + 𝑦1)

2 +
𝐸𝑧𝑧
24

(𝑥4 − 𝑥1)
2 −

𝐺𝑧𝑥𝜈𝑧𝑦

12
(𝑦4 − 𝑦1)

2 

𝐼𝐹24
(𝑖)

=
1

2
∫ (

𝐸𝑧𝑧𝑦
2

2
− 𝐺𝑧𝑦𝜈𝑧𝑥𝑥

2)
𝜂=−1,𝜉

(𝑖)1

−1

 𝑑𝜉 =
𝐸𝑧𝑧
8
(𝑦4 + 𝑦1)

2 −
𝐺𝑧𝑦𝜈𝑧𝑥

4
(𝑥4 + 𝑥1)

2 +
𝐸𝑧𝑧
24

(𝑦4 − 𝑦1)
3 −

𝐺𝑧𝑦𝜈𝑧𝑥

12
(𝑥4 − 𝑥1)

2 

The last step in the construction of the local stiffness matrix is to express the zero-order 

coefficients 𝑊𝑟(00)
(𝑖)

  in terms of the surface-averaged warping functions. This is achieved by 

satisfying the third equilibrium equation in the surface-averaged sense. The surface tractions 

associated with each face of the (𝑖) subvolume are related to each other through the equilibrium 

equation satisfied in a volume-average sense. Using Gauss Theorem, the equilibrium equation is 

expressed in terms of surface-averaged traction components, 

 ∮𝜎𝑗𝑧
(𝑇)(𝑖)

𝑛𝑗
(𝑖)𝑑𝑠

𝑠

= ∮𝑡𝑧
(𝑇)(𝑖)

𝑠

 𝑑𝑠 = ∑ �̂�𝑧|𝑝
(𝑇)(𝑖)

𝑙𝑝
(𝑖)

4

𝑝=1

= 0 (4. 81) 

 

∮𝜎𝑗𝑧
(𝐹1)(𝑖)

𝑛𝑗
(𝑖)𝑑𝑠

𝑠

= ∮𝑡𝑧
(𝐹1)(𝑖)

𝑠

 𝑑𝑠 = ∑ �̂�𝑧|𝑝
(𝐹1)(𝑖)

𝑙𝑝
(𝑖) = −∬𝐾𝑥𝐸𝑧𝑧𝑥 𝑑𝑥 𝑑𝑦

 

(𝑖)

4

𝑝=1

 
(4. 82) 
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∮𝜎𝑗𝑧
(𝐹2)(𝑖)

𝑛𝑗
(𝑖)
𝑑𝑠

𝑠

= ∮𝑡𝑧
(𝐹2)(𝑖)

𝑠

 𝑑𝑠 = ∑ �̂�𝑧|𝑝
(𝐹2)(𝑖)

𝑙𝑝
(𝑖)

4

𝑝=1

= −∬𝐾𝑦𝐸𝑧𝑧𝑦 𝑑𝑥 𝑑𝑦

 

(𝑖)

 
(4. 83) 

where 𝑠 is the contour of subvolume (𝑖) boundary. 

 Expanding the summation equations Eqs. (4. 81), (4. 82), (4. 83),  for the surface-averaged 

tractions multiplied by the corresponding length over each subvolume contour, the following 

relations are obtained between the surface-averaged potential functions on each of the four 

subvolume faces and the zero-order coefficient 𝑊𝑟(00)
(𝑖)

, in terms of the surface-averaged potential 

functions for each mode, 

Torsion mode: 

 𝑊1(00)
(𝑖)

=
𝑨ℎ
(𝑖)
𝜶𝜔1

(𝑖)

2𝐴ℎ
(𝑖)
𝜷

 (4. 84) 

where 𝑨ℎ
(𝑖) = ∑ 𝐺𝑧𝑥

4
𝑝=1 𝑙𝑝

(𝑖)𝑛𝑥|𝑝
(𝑖) 𝒂𝑝

(𝑖) + ∑ 𝐺𝑧𝑦
4
𝑝=1 𝑙𝑝

(𝑖)𝑛𝑦|𝑝
(𝑖) 𝒃𝑝

(𝑖)
. 

Flexure mode (1): 

 𝑊2(00)
(𝑖)

=
𝑨ℎ
(𝑖)
𝜶𝜔2

(𝑖)
− 𝜆1

2𝐴ℎ
(𝑖)
𝜷

 (4. 85) 

where 𝜆1 = ∑ 𝑙𝑝
(𝑖)4

𝑝=1 𝐼𝐹1𝑝
(𝑖) 𝑛𝑥|𝑝

(𝑖) −∬ 𝐸𝑧𝑧(𝑖)
𝑥 𝑑𝑥 𝑑𝑦. 

Flexure mode (2): 

 𝑊3(00)
(𝑖)

=
𝑨ℎ
(𝑖)
𝜶𝜔3

(𝑖)
− 𝜆2

2𝐴ℎ
(𝑖)
𝜷

 (4. 86) 

where 𝜆2 = ∑ 𝑙𝑝
(𝑖)4

𝑝=1 𝐼𝐹2𝑝
(𝑖) 𝑛𝑦|𝑝

(𝑖) −∬ 𝐸𝑧𝑧(𝑖)
𝑦 𝑑𝑥 𝑑𝑦. 

 Substituting the first and second-order coefficient expressions Eq. (4. 73) into the surface-

averaged traction components in the z direction acting on the four edges of the subvolume Eqs. (4. 

78), (4. 79), (4. 80), the surface-averaged traction components are obtained solely in terms of the 

corresponding surface-averaged potential functions, related through the local stiffness matrix, 



 151 

Torsion mode: 

 

[
 
 
 
 
 �̂�𝑧|1
(𝑇)

�̂�𝑧|1
(𝑇)

�̂�𝑧|1
(𝑇)

�̂�𝑧|1
(𝑇)
]
 
 
 
 
 
(𝑖)

= [

𝐿11 𝐿12
𝐿21 𝐿22

𝐿13 𝐿14
𝐿23 𝐿24

𝐿31 𝐿32
𝐿41 𝐿42

𝐿33 𝐿34
𝐿43 𝐿44

]

(𝑖)

[
 
 
 
 
�̂�1|1
�̂�1|2
�̂�1|3
�̂�1|4]

 
 
 
 
(𝑖)

+

[
 
 
 
 
𝐶𝑇|1
𝐶𝑇|2
𝐶𝑇|3
𝐶𝑇|4]

 
 
 
 
(𝑖)

 (4. 87) 

where 𝐿𝑝: =
𝜃

2
(𝐺𝑧𝑥𝒂𝒑𝑛𝑥|𝑝 + 𝐺𝑧𝑦𝒃𝒑𝑛𝑦|𝑝) (𝜶 −

𝜷𝑨ℎ𝜶

𝑨ℎ𝜷
) (𝑳𝑝: stands for the 𝑝th row vector in [𝑳]) 

and 𝐶𝑇|𝑝 = −𝐺𝑧𝑥𝜃𝐼𝑇2𝑝𝑛𝑥|𝑝 + 𝐺𝑧𝑦𝜃𝐼𝑇1𝑝𝑛𝑦|𝑝. 

Flexure mode (1): 

 

[
 
 
 
 
 �̂�𝑧|1
(𝐹1)

�̂�𝑧|1
(𝐹1)

�̂�𝑧|1
(𝐹1)

�̂�𝑧|1
(𝐹1)

]
 
 
 
 
 
(𝑖)

= [

𝑀11 𝑀12
𝑀21 𝑀22

𝑀13 𝑀14
𝑀23 𝑀24

𝑀31 𝑀32
𝑀41 𝑀42

𝑀33 𝑀34
𝑀43 𝑀44

]

(𝑖)

[
 
 
 
 
�̂�2|1
�̂�2|2
�̂�2|3
�̂�2|4]

 
 
 
 
(𝑖)

+

[
 
 
 
 
𝐶𝐹1|1
𝐶𝐹1|2
𝐶𝐹1|3
𝐶𝐹1|4]

 
 
 
 
(𝑖)

 (4. 88) 

where 𝑀𝑝: =
𝐾𝑥

2
(𝐺𝑧𝑥𝒂𝒑𝑛𝑥|𝑝 + 𝐺𝑧𝑦𝒃𝒑𝑛𝑦|𝑝) (𝜶 −

𝜷𝑨ℎ𝜶

𝑨ℎ𝜷
) (𝑴𝑝: stands for the 𝑝th row vector in [𝑴]) 

and𝐶𝐹1|𝑝 = 𝐾𝑥(𝐺𝑧𝑥𝒂𝒑𝑛𝑥|𝑝 + 𝐺𝑧𝑦𝒃𝒑𝑛𝑦|𝑝)
𝜷𝜆1

𝑨ℎ𝜷
− 𝐾𝑥𝐼𝑇1𝑝𝑛𝑥|𝑝. 

Flexure mode (2): 

 

[
 
 
 
 
 �̂�𝑧|1
(𝐹2)

�̂�𝑧|2
(𝐹2)

�̂�𝑧|3
(𝐹2)

�̂�𝑧|4
(𝐹2)

]
 
 
 
 
 
(𝑖)

= [

𝑁11 𝑁12
𝑁21 𝑁22

𝑁13 𝑁14
𝑁23 𝑁24

𝑁31 𝑁32
𝑁41 𝑁42

𝑁33 𝑁34
𝑁43 𝑁44

]

(𝑖)

[
 
 
 
 
�̂�3|1
�̂�3|2
�̂�3|3
�̂�3|4]

 
 
 
 
(𝑖)

+

[
 
 
 
 
𝐶𝐹2|1
𝐶𝐹2|2
𝐶𝐹2|3
𝐶𝐹2|4]

 
 
 
 
(𝑖)

 (4. 89) 

where 𝑵𝑝: =
𝐾𝑦

2
(𝐺𝑧𝑥𝒂𝒑𝑛𝑥|𝑝 + 𝐺𝑧𝑦𝒃𝒑𝑛𝑦|𝑝) (𝜶 −

𝜷𝑨ℎ𝜶

𝑨ℎ𝜷
) (𝑵𝑝: stands for the 𝑝th row vector in [𝑵]) 

and 𝐶𝐹2|𝑝 = 𝐾𝑦(𝐺𝑧𝑥𝒂𝒑𝑛𝑥|𝑝 + 𝐺𝑧𝑦𝒃𝒑𝑛𝑦|𝑝)
𝜷𝜆2

𝑨ℎ𝜷
− 𝐾𝑦𝐼𝑇2𝑝𝑛𝑦|𝑝. 
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4.4.3 Global Stiffness Matrix Assembly 

 The solution for the unknown surface-averaged potential functions is obtained by 

constructing three systems of equations such that the interfacial potential function and traction 

continuity conditions are satisfied together with the traction boundary conditions. To maintain the 

order of the subvolume edges for a general unstructured mesh, each subvolume has four identical 

surface-averaged potential functions and tractions allocated in the system of equations. The system 

of equations for the solution of the unknown surface-averaged potential functions, which is 

comprised of potential function and traction continuity, boundary and constraint conditions, is 

called the global system. 

 Similar to the assembly process of the global system described in Chapter 3, the number 

of connected edges is denoted by 𝑁𝑐𝑜𝑛 and the number of unconnected edges is denoted by 𝑁𝑢𝑛𝑐𝑜𝑛 

from the discretized grid. To solve each global system of equations for the surface-averaged 

potential functions, the global stiffness matrix is allocated 2𝑁𝑐𝑜𝑛 + 𝑁𝑢𝑛𝑐𝑜𝑛 columns and 2𝑁𝑐𝑜𝑛 +

𝑁𝑢𝑛𝑐𝑜𝑛 + 1  rows. Each subvolume has four edges with the corresponding number of potential 

functions and contributes four equations to each global system. Each pair of two connected edges 

has the same surface-averaged potential functions and equal and opposite tractions, which results 

in 2𝑁𝑐𝑜𝑛  equations for traction and potential function continuity conditions, whereas the 

unconnected edges only need to satisfy the boundary conditions also in 𝑧 directions, producing 

𝑁𝑢𝑛𝑐𝑜𝑛 equations. The breakdown of the 2𝑁𝑐𝑜𝑛 + 𝑁𝑢𝑛𝑐𝑜𝑛 + 1 rows in each global system is given 

below: 

Displacement continuity condition equations 

For a pair of connected edges from adjacent subvolumes, the potential function continuity 

conditions contribute one equation to each global stiffness matrix. 𝑝 is the edge index from the 

first subvolume and 𝑝′ is the edge index from the second subvolume. 

 �̂�𝑝
(𝑖)
− �̂�

𝑝′
(𝑖′)

= 0 (4. 90) 
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Traction continuity condition equations 

For a pair of connected edges from adjacent subvolumes, the traction continuity conditions 

contribute one equation each in the 𝑧 direction to each global stiffness matrix. 𝑝 is the edge index 

from the first subvolume and 𝑝′ is the edge index from the second subvolume. 

 𝑡𝑧|𝑝
(𝑖)
+ 𝑡

𝑧|𝑝′
(𝑖′)

= 0 (4. 91) 

𝑡𝑧|𝑝
(𝑖)

 are expressed as linear combinations of surface-averaged displacements in each global system. 

Boundary condition equations 

For a pair of connected edges from adjacent subvolumes, the traction-free boundary conditions 

contribute one equation each in the 𝑧 direction to the global stiffness matrix.  

 �̂�𝑧|𝑝
(𝑖)
= 0 (4. 92) 

Constraint condition equations 

Each global system of equations is singular with the rank of 2𝑁𝑐𝑜𝑛 + 𝑁𝑢𝑛𝑐𝑜𝑛, thereby requiring an 

additional constraint that eliminates rigid body motion along the prismatic bar’s axis. One 

approach is to constrain the potential function 𝜔(𝑥, 𝑦) by requiring that 𝜔(𝑥, 𝑦) = 0 at the cross 

section’s centroid where the in-plane displacements 𝑢(𝑥, 𝑦)  and 𝑣(𝑥, 𝑦)  vanish. This constraint 

cannot be employed, however, for hollow cross sections with the centroid located outside the cross 

section itself. A more general and rigorous fixation condition specifically for the torsion-flexure 

problem requires the integral of the potential function along the contour of the cross section to 

vanish, 

 ∮𝜔(𝑥, 𝑦)𝑑𝑠 =∑𝑠(𝑖,𝑝)�̂�𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦|𝑝
(𝑖)

= 0  (4. 93) 

where the 𝑠(𝑖,𝑝) is the length of the 𝑝 th edge in subvolume 𝑖. Solution of each above augmented 

global system of equations yields the unknown interfacial surface-averaged displacements which, 

in turn, yield the corresponding surface-averaged tractions as well as pointwise displacements, 

strains and stresses in each subvolume. 
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 Solving the three global systems to obtain the three potential functions, one can evaluate the 

three displacement components in a surface-averaged sense from Eqs. (4. 52), (4. 53), (4. 54) for 

orthotropic materials or Eqs. (4. 57), (4. 58), (4. 59) for isotropic materials. 

4.5 Verification and Assessment 

 The developed FVM has been verified by comparison with exact elasticity solutions of the 

flexure of isotropic homogeneous bars with circular, elliptic, and rectangular cross sections, shown 

in Figure 4-2, with Young's modulus 𝐸, Poisson's ratio 𝜐 and shear modulus 𝜇. If the cross sections 

are subjected to the end loading (𝑃𝑥, 𝑃𝑦) that passes through the homogeneous bars' centroids, no 

torsion occurs and hence 𝜔1 = 0. The following moduli are employed in the flexure analysis of 

the three cross sections: 𝐸 = 30,000 𝑘𝑠𝑖  and 𝜈 = 0.3 , with 𝐺  obtained from the relation 𝐺 =

𝐸

2(1+ν)
 and loading by 𝑃𝑦 = 10 𝑘𝑖𝑝𝑠 applied vertically through the centroid. 

 

Figure 4-2 Circular (a), elliptic (b) and rectangular (c) cross section beams subjected to load 𝑃𝑦 

at the free end centroids. 
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Homogeneous Circular Beams 

 The boundary of the cross section of the circular bar shown in Figure 4-2 is given by 𝑥2 +

𝑦2 = 𝑎2. The radius is taken to be 𝑎 = 2 𝑖𝑛 and the length 𝑙 = 40 𝑖𝑛 which produce the aspect 

ratio 𝑙/(2𝑎) = 10. Solving this elasticity problem in the polar coordinate system with a vertical 

loading force of a magnitude of 𝑃 applied at the free end by setting 𝑃𝑦 = 𝑃, the two existing shear 

stresses are found to be, 

 𝜎𝑧𝑥 = −
(1 + 2𝜈)𝑃

𝜋𝑎4(1 + 𝜈)
𝑥𝑦 (4. 94) 

 
𝜎𝑧𝑦 =

(3 + 2𝜈)𝑃

2𝜋𝑎4(1 + 𝜈)
(𝑎2 − 𝑦2 −

1 − 2𝜈

3 + 2𝜈
𝑥2) 

(4. 95) 

with the normal axial stress, 

 𝜎𝑧𝑧 = −
4𝑃

𝜋𝑎4
(𝑙 − 𝑧)𝑦 (4. 96) 

The three stress distributions obtained from the elasticity solutions are illustrated in Figure 4-3 at 

𝑧 = 20 𝑖𝑛 , or halfway along the bar's axis, with the corresponding distributions generated using 

the developed FVM shown in Figure 4-4. The full-field stress distributions generated by FVM are 

then compared with the corresponding elasticity results at the same locations. The differences 

between FVM and elasticity point-wise stress values calculated in the middle of each subvolume, 

and normalized by the maximum value of the elasticity results, are plotted in Figure 4-5, 

demonstrating excellent accuracy of FVM. 

 

Figure 4-3 The distribution of stress for the circular beam at half-cut calculated by elasticity 

formulae with point load applied at the center of free end 
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Figure 4-4 The distribution of stress for the circular beam at half-cut calculated by FVM (684 

subvolumes) with point load applied at the center of free end 

 

Figure 4-5 The difference of stress distribution for the circular beam at half-cut with point load 

applied at the center of free end between FVM and elasticity method 

Homogeneous Elliptic Beams 

Similarly, for a bar whose cross section is given by the equation 
𝑥2

𝑎2
+
𝑦2

𝑏2
= 1, the shear stresses 

obtained from the elasticity solution are obtained in the form given below with a vertical loading 

force of a magnitude of 𝑃 applied at the free end by setting 𝑃𝑦 = 𝑃, 

 𝜎𝑧𝑥 = −
4𝑃

𝜋𝑏3𝑎

(1 + 𝜈)𝑏2 + 𝜈𝑎2

(1 + 𝜈)(3𝑏3 + 𝑎2)𝑥𝑦
 (4. 97) 

 
𝜎𝑧𝑦 =

2𝑃

𝜋𝑏3𝑎

2(1 + 𝜈)𝑏2 + 𝑎2

(1 + 𝜈)(3𝑏3 + 𝑎2)
[𝑏2 − 𝑦2 −

(1 − 2𝜈)𝑏2

2(1 + 𝜈)𝑏2 + 𝑎2
𝑥2] 

(4. 98) 

with the normal axial stress, 
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 𝜎𝑧𝑧 = −
4𝑃

𝜋𝑏3𝑎
(𝑙 − 𝑧)𝑦 (4. 99) 

This solution reduces to the circular case if 𝑎 = 𝑏. One can take 𝑎 = 1 𝑖𝑛, 𝑏 = 2 𝑖𝑛, and 𝑙 = 40 𝑖𝑛 

and generate full-field stress distributions at 𝑧 = 20 𝑚 shown in Figure 4-6. The corresponding 

full-field stress distributions generated by FVM are illustrated in Figure 4-7 for comparison with 

the elasticity results at the same locations. The differences between FVM and elasticity results 

calculated in the middle of each subvolume, and normalized by the maximum value in the elasticity 

results, are plotted in Figure 4-8, again demonstrating FVM's excellent predictive capability. 

 

Figure 4-6 The distribution of stress for the elliptic beam at half-cut calculated by elasticity 

formulae with point load applied at the center of free end 

 

Figure 4-7 The distribution of stress for the elliptic beam at half-cut calculated by FVM (526 

subvolumes) with point load applied at the center of free end 
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Figure 4-8 The difference of stress distribution for the elliptic beam at half-cut with point load 

applied at the center of free end between FVM and elasticity method 

Homogeneous Rectangular Beams 

The last comparison between elasticity and FVM results in this chapter is presented for a 

rectangular beam with 2𝑎 × 2𝑏 cross section. The elasticity solution to this problem is obtained 

in the form of Fourier series for the out-of-plane shear stress components when the applied load is 

a vertical loading force of a magnitude of 𝑃 applied at the free end, i.e., 𝑃𝑦 = 𝑃. 

 𝜎𝑥𝑧 =
2𝜈𝑎2𝑃

(1 + 𝜈)𝜋2𝐼𝑥𝑥
∑

(−1)𝑛

𝑛2

𝑠𝑖𝑛 (
𝑛𝜋𝑥
𝑎
) 𝑠𝑖𝑛ℎ (

𝑛𝜋𝑦
𝑎
)

𝑐𝑜𝑠ℎ (
𝑛𝜋𝑏
𝑎
)

∞

𝑛=1

 (4. 100) 

 

𝜎𝑦𝑧 =
𝑃

2𝐼𝑥𝑥
(𝑏2 − 𝑦2) +

𝜈𝑃

6(1 + 𝜈)𝐼𝑥𝑥
[3𝑥2 − 𝑎2 −

12𝑎2

𝜋2
∑

(−1)𝑛

𝑛2

𝑐𝑜𝑠 (
𝑛𝜋𝑥
𝑎
) 𝑐𝑜𝑠ℎ (

𝑛𝜋𝑦
𝑎
)

𝑐𝑜𝑠ℎ (
𝑛𝜋𝑏
𝑎
)

∞

𝑛=1

] 

(4. 101) 

with the normal stress the same as before, 

 𝜎𝑧𝑧 = −
𝑃

𝐼𝑥𝑥
𝑦(𝑙 − 𝑧) (4. 102) 

where 𝐼𝑥𝑥 is the area moment of inertia of each cross section, 𝐼𝑥𝑥 =
(2𝑏)3(2𝑎)

12
. The displacement 

components are obtained by integrating the strain-displacement equations in the form below upon 

fixing the centroid of left face of the beam, 
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 𝑢 =
ν𝑃𝑦(𝑙 − 𝑧)𝑥

𝐸𝐼𝑥𝑥
 (4. 103) 

 
𝑣 =

ν𝑃(𝑙 − 𝑧)(𝑦2 − 𝑥2)

2𝐸𝐼𝑥𝑥
−
𝑃 (𝑙 −

𝑧
3
) 𝑧2

2𝐸𝐼𝑥𝑥
 

(4. 104) 

 

𝑤 =
𝑃𝑦 (

𝑧2

2
− 𝑙𝑧 + 𝜈

𝑥2

2
+ 𝜈

𝑦2

6
− 𝜈

𝑎2

3
)

𝐼𝑥𝑥𝐸
+
𝑃 (𝑏2𝑦 −

𝑦3

3
)

2𝐼𝑥𝑥𝜇

+
2𝜈𝑎2𝑃

(1 + 𝜈)𝜋2𝐼𝑥𝑥𝜇
∑

(−1)𝑛+1

𝑛2

𝑎𝑐𝑜𝑠 (
𝑛𝜋𝑥
𝑎
) 𝑠𝑖𝑛ℎ (

𝑛𝜋𝑦
𝑎
)

𝑛𝜋𝑐𝑜𝑠ℎ (
𝑛𝜋𝑏
𝑎
)

∞

𝑛=1

 

(4. 105) 

 Using a 50-term series, distributions of shear stresses and displacements have been 

calculated for a rectangular beam with the dimensions 𝑎 = 1 𝑖𝑛, 𝑏 = 2 𝑖𝑛, and 𝑙 = 40 𝑖𝑛 at 𝑧 =

20 𝑖𝑛. The stress and displacement fields obtained from the elasticity solutions are illustrated in 

Figure 4-9 and Figure 4-10, respectively. The corresponding finite-volume results generated using 

a square grid with 512 subvolumes are shown in Figure 4-11 and Figure 4-12. The full-field stress 

and displacement fields generated by FVM may be then compared against those evaluated at the 

same locations by the elasticity expressions.  

 

Figure 4-9 The distribution of stress for the rectangular beam at half-cut calculated by elasticity 

formulae with point load applied at the center of free end 
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Figure 4-10 The distribution of displacement for the rectangular beam at half-cut calculated by 

elasticity formulae with point load applied at the center of free end 

 

Figure 4-11 The distribution of stress for the rectangular beam at half-cut calculated by FVM with 

point load applied at the center of free end 
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Figure 4-12 The distribution of displacement for the rectangular beam at half-cut calculated by 

FVM with point load applied at the center of free end 

The differences in the point-wise stress and displacement values calculated in the middle of each 

subvolume, and normalized by the maximum value in the elasticity results, are plotted in Figure 

4-13 and Figure 4-14, respectively. As observed, the differences in the displacement and stress 

fields are generally minimal, with 𝜎𝑥𝑧 and 𝑤 exhibiting greater deviations than the other stress or 

displacement components. 

 

Figure 4-13 The difference of stress distribution for the rectangular beam at half-cut with point 

load applied at the center of free end between FVM and elasticity method 
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Figure 4-14 The difference of displacement distribution for the rectangular beam at half-cut with 

point load applied at the center of free end between FVM and elasticity method 

4.6 Summary 

 The analysis of the elastic beam resulting from the intersection of a cylindrical surface with 

a pair of planes normal to the axis of the cylinder and loaded forces on its end face is a well-known 

problem in engineering. The Saint-Venant semi-inverse method provides a framework for 

assuming stress distributions that lead to solutions satisfying the equilibrium and compatibility 

conditions for this problem. The loading may involve pure bending, or a combination of bending 

and torsion typically known as torsion-flexure problems. In order to decouple the torsion-flexure 

problem into pure torsion and bending problems, a point must be found through which a prismatic 

bar, fixed at one end and loaded at the other, may be loaded to produce pure bending. This point is 

known as the shear center and plays a crucial role in designing cantilever beams. Chapter 5 will 

illustrate how the proposed FVM will be employed to determine the shear center location of beam 

cross sections of technological interest.  

 Analytical solutions have been developed for torsion-flexure problems, but they are limited 

to simple cross sections that are typically not of wide-ranging structural engineering interest. Beam 

cross sections that appear in structural designs are not easily amenable to analytical techniques and 

require either thin-wall approximations when applicable or numerical solutions. Of the several 

available numerical approaches, FEM has become the dominant solution technique for torsion-

flexure problems because of its generality in handling structural components with arbitrary cross 

sections. In this chapter, FVM has been developed to formulate the solution of the full torsion-
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flexure problem as an alternative to the finite-element analysis. Validation of the FVM includes 

specialized comparison with pure bending results obtained by analytical methods for homogeneous 

beam problems. The full potential of the FVM will be further demonstrated through applications 

to structural engineering problems wherein shear center identification plays an important design 

role, critical analysis of errors involving thin-wall assumptions, and finally three-dimensional 

effects that arise due to fixity constraints in Chapter 6. 
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Chapter 5  

Shear Center Determination 

 

5.1 Introduction 

  One of the key tasks in structural engineering is the determination of the location of twist 

and shear centers in a structural member. The twist center and shear center are two crucial 

properties that play essential roles in the behavior and performance of a structural member, 

especially for the one subjected to both torsional and flexural loading. The twist center of a 

structural member is defined as the point about which the member twists or rotates when it is 

subjected to torsion. The location of the twist center depends on the member’s cross-sectional 

geometry and material properties. The shear center of a structural member, on the other hand, is 

the point through which the applied flexural load can be transferred without inducing any torsional 

moments. The location of the shear center also depends on the member’s cross-sectional geometry 

and material properties. Flexural loadings not applied through the shear center of a structural 

member may cause issues in stability and strength due to the induced twisting behavior. 

 Therefore, accurate determination of twist and shear centers is always very critical for the 

reliable design of structural systems as they may significantly affect the decision of the locations 

of external loadings applied on structural members. Accurately predicting these centers can be 

challenging; however, different methods have been proposed in the literature. 

 Several researchers have investigated the concept of twist and shear centers in structural 

engineering. In the 20th century, Timoshenko and Gere (1961) proposed a method for determining 

the location of the shear center of thin-walled open sections based on the principle of virtual work. 

A set of equations that determine the shear center location for sections with arbitrary shapes have 

been derived. Later, Chen and Atsuta (1972) proposed a method for determining the shear center 

location of doubly symmetric sections of arbitrary shapes. They introduced the concept of the 

auxiliary torsion constant, which could be used to determine the shear center location for sections 

with curved or asymmetrical shapes. 
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 In recent years, there has been some progress in the determination of the shear center of 

structural systems. Researchers have proposed numerical methods and techniques to achieve more 

accurate and efficient determination of the shear center location. Friedman and Kosmatka (1998) 

employed the Boundary Element Method (BEM) to analyze the torsion and flexure behavior of a 

prismatic isotropic beam. Their study demonstrates the effectiveness of the BEM approach in 

accurately predicting stress and deformation of the beam as well as its shear center location, by 

developing a Fortran-based computer program for designing and optimizing beam structures. 

Dhadwal and Jung (2015) introduced a refined sectional analysis method to predict the shear center 

of nonhomogeneous anisotropic beams with nonuniform warping. Their proposed method, which 

exhibits good agreement with experimental data and accounts for material heterogeneity and 

warping, was applied to helicopter and wind turbine blade analysis. The refined sectional analysis 

method is a two-dimensional finite element method which offers an efficient alternative to the 

high-cost 3D finite element analysis. 

 This chapter aims to investigate the concept of the shear center in detail using the 

previously developed FVM, including its definition, determination, and practical applications. In 

particular, it will focus on the development of accurate and efficient methods for determining the 

location of shear centers for various types of long structural members by analyzing their cross-

sectional behavior. In the previous chapter, FVM has been applied to the solution of torsion-flexure 

elasticity problems, which also includes the technologically important determination of the shear 

center of any structural member with arbitrarily shaped cross section. The FVM will be validated 

through numerical simulation tests in identifying the locations of shear centers, thereby 

contributing to the development of a more reliable and efficient design tool by providing data on 

shear centers of various structural systems subjected to torsional and flexural loading. 

5.2 Twist Center  

 In Chapter 3, no assumptions were made regarding the location of the origin 𝑂  of the 

cylindrical coordinate system or the orientation of the 𝑥  and 𝑦  axes. A different choice of the 

location of the axis of rotation parallel to the 𝑧 axis may yield a different displacement solution, 

but not a different solution for stresses, see Sokolnikoff (1956). In a homogenous orthotropic 

material cross section, if the 𝑧′ axis is chosen parallel to the 𝑧-axis which intersects the 𝑥 − 𝑦 plane 

at some point (𝑥1, 𝑦1), then the displacements will be, 
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 𝑢1 = −𝜃𝑧(𝑦 − 𝑦1) (5. 1) 

 𝑣1 = 𝜃𝑧(𝑥 − 𝑥1) (5. 2) 

 𝑤1 = 𝜃𝜓1(𝑥, 𝑦) (5. 3) 

 Calculating stresses that correspond to displacements above yields 

 𝜎𝑧𝑦 = 𝐺𝑧𝑦𝜃(
𝜕𝜓1
𝜕𝑦

+ 𝑥 − 𝑥1) (5. 4) 

 𝜎𝑧𝑥 = 𝐺𝑧𝑥𝜃 (
𝜕𝜓1
𝜕𝑥

− 𝑦 + 𝑦1) (5. 5) 

 𝜎𝑥𝑦 = 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎𝑧𝑧 = 0 (5. 6) 

and the substitution of these values in the equations of equilibrium, Eq. (3. 5), shows that the 

function 𝜓1 likewise satisfies the equation 

 𝐺𝑧𝑥
𝜕2𝜓1
𝜕𝑥2

+ 𝐺𝑧𝑦
𝜕2𝜓1
𝜕𝑦2

= 0 (5. 7) 

Moreover, the traction-free boundary condition demands that 

 𝐺𝑧𝑥(
𝜕𝜓1
𝜕𝑥

+ 𝑦1)
𝑑𝑥

𝑑𝑛
+ 𝐺𝑧𝑦(

𝜕𝜓1
𝜕𝑦

− 𝑥1)
𝑑𝑦

𝑑𝑛
= 𝐺𝑧𝑥𝑦

𝑑𝑥

𝑑𝑛
− 𝐺𝑧𝑦𝑥

𝑑𝑦

𝑑𝑛
 (5. 8) 

or 

 𝐺𝑧𝑥
𝜕𝜓1
𝜕𝑥

𝑑𝑥

𝑑𝑛
+ 𝐺𝑧𝑦

𝜕𝜓1
𝜕𝑦

𝑑𝑦

𝑑𝑛
+ 𝐺𝑧𝑥𝑦1

𝑑𝑥

𝑑𝑛
− 𝐺𝑧𝑦𝑥1

𝑑𝑦

𝑑𝑛
= 𝐺𝑧𝑥𝑦

𝑑𝑥

𝑑𝑛
− 𝐺𝑧𝑦𝑥

𝑑𝑦

𝑑𝑛
 (5. 9) 

The function 𝜓1 + 𝑦1𝑥 − 𝑥1𝑦  is weighted harmonic, and since it satisfies the same boundary 

condition as Eq. (3. 8), it follows from the uniqueness of the Neumann problem, Eq. (4. 32), that 

the two can differ only by a constant. Thus, 

 𝜓1 = 𝜓 − 𝑦1𝑥 + 𝑥1𝑦 + 𝑐𝑜𝑛𝑠𝑡 (5. 10) 
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A simple calculation making use of Eqs. (5. 4), (5. 5), and (5. 6), shows that the system of stresses 

obtained by using the function 𝜓1 is identical with that obtained by using the function 𝜓. It also 

indicates that the displacements in the two cases only differ by a rigid body motion. Therefore, the 

choice of the location of the rotating axis may be taken arbitrarily without altering stress fields in 

torsion problems, and we call the point about which the bar rotates the twist center. 

 Though the coordinate system can be set up with any origin yielding consistent stresses, 

one thing which needs additional attention is that the torsional analysis performed in Chapter 3 

was always based on the rotation about the cross-section’s centroid. The reason for locating the 

axis of rotation coincident with the centroid is to minimize the torsional rigidity apart from 

consideration of the warping effect. The smaller the torsional rigidity of a cross section, the greater 

its torsional deformation which typically is the focus of minimization. Equation (3. 13) exhibits a 

linear relationship between the torque 𝑀 and the torsional rigidity 𝐷 with the angle of twist per 

unit length 𝜃 as the proportionality constant. The torque 𝑀 is produced by the shear stresses 𝜎𝑧𝑦 

and 𝜎𝑧𝑥, 

 𝑀 =∬(𝑥𝜎𝑧𝑦 − 𝑦𝜎𝑧𝑥)
𝑅

𝑑𝑥𝑑𝑦 = 𝜃𝐷 = 𝜃∬ [𝐺𝑧𝑦𝑥(
𝜕𝜓1
𝜕𝑦

+ 𝑥) − 𝐺𝑧𝑥𝑦 (
𝜕𝜓1
𝜕𝑥

− 𝑦)]
𝑅

𝑑𝑥𝑑𝑦 (5. 11) 

Since the warping effect is usually not as significant as the rotational effect, the warping 

contribution to the torque may be neglected, yielding the reduced torque 𝑀′, 

 𝑀′ = 𝜃𝐷′ = 𝜃∬(𝐺𝑧𝑦𝑥
2 + 𝐺𝑧𝑥𝑦

2)
𝑅

𝑑𝑥𝑑𝑦 = 𝜃𝐺𝑧𝑦𝐼𝑥𝑥  + 𝜃𝐺𝑧𝑥 𝐼𝑦𝑦 (5. 12) 

which is always at its minimum when the homogeneous bar is rotating about its centroid axis 

(𝐼𝑥𝑥 and 𝐼𝑦𝑦 are also at their minimum) with a given angle of twist per unit length. For symmetric 

cross sections, the warping contribution to the torque sums to zero, so the torque equals the reduced 

torque, i.e., 𝑀 = 𝑀′. Thus, the twist center of any symmetric cross section that minimizes torsional 

rigidity is exactly at its centroid. 

  For heterogeneous cross sections that are not symmetric, the twist center may be 

determined by minimizing the reduced torque (𝑀′ = ∬ (𝐺𝑧𝑦𝑥
2

𝑅
+ 𝐺𝑧𝑥𝑦

2)𝑑𝑥𝑑𝑦) where the shear 

moduli are included inside the integrals. In this way, the concept of the weighted moment of inertia 

would need to be considered. However, the twist center is again assumed to coincide with the 
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centroid for heterogeneous cross sections also for convenience instead of optimizing 𝑀′ based on 

the specific material distribution. This practice only affects the calculation of resultant torque 

(commonly just insignificant differences observed), and the stress results remain unchanged. 

 The torsion-flexure problem in Chapter 4 was separated into three boundary-value 

problems, two of which deal with flexure deformation and require an exact placement of the cross 

section in the coordinate system to ensure the existence of solutions. For flexure boundary-value 

problems of homogenous cross sections, the centroid of the cross section coincides with the 

coordinate system origin, which presents no issues as it happens to be its twist center to suit the 

torsion boundary value problems if there is any induced moment about the shear center. The torsion 

boundary-value problem reflects the pure torsion deformation, whose stress fields do not depend 

on the location of the twist center even if the cross section is heterogenous. The flexibility of 

selecting the twist center location, as discussed by Sokolnikoff (1956), validates the approach of 

splitting the stress expressions into three parts each with a distinct potential function in the stress 

formulation of the torsion-flexure problem in the same coordinate system, because any selection 

of twist center preserves stresses due to torsion and only requires rigid body translation in adjusting 

the torsional displacements based on the actual fixation condition in the overall torsion-flexure 

problem. Therefore, one may notice that the displacement component expressions in Eqs. (4. 52) 

– (4. 54) and (4. 57) – (4. 59) may be modified as a result of rigid body translation if the fixed 

point at the end of the beam does not coincide with the shear center or twist center. 

 In conclusion, the separation of the torsion-flexure problem into three modes allows to 

assign the twist center to any point without changing stress results. If the centroid happens to serve 

as the fixation point at the end of the beam, the twist center can be readily set to coincide with the 

centroid as well as the origin, and thus Eqs. (4. 52) – (4. 54) and (4. 57) – (4. 59) are still valid 

without any modification. The approach of solving the torsion-flexure problem with the centers 

chosen in the manner described above will be extended to the analysis of heterogenous bars with 

uniform Poisson’s ratio in the following section, with their twist and shear centers verified to 

coincide with the centroids. 

5.3 Torsion-Flexure of Heterogenous Bars with Uniform Poisson’s Ratio 

 Chapter 4 describes the solution to the flexure problem of homogenous orthotropic and 

isotropic beams. In this section, that solution will be extended to composite bars with different 
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materials but with a uniform Poisson’s ratio. These composite bars consist of a number of 

homogenous, isotropic, cylindrical bodies. Each cross section can have parts with different 

Young’s moduli 𝐸𝑗 and shear moduli 𝜇𝑗, yet the Poisson’s ratio is the same over the entire area, 

which has the expression in each material region with the index 𝑗: 

 𝜇𝑗 =
𝐸𝑗

2(1 + 𝜈)
 (5. 13) 

5.3.1 Weighted Centroid 

 The “weighted centroid” of the cross section can be understood as a special center which 

is obtained by associating various parts of the cross-section surface densities with the 

corresponding moduli of elasticity 𝐸𝑗; thus, if the origin of the coordinate system is placed at the 

weighted centroid, we have, 

 ∬𝐸𝑥
𝐴

𝑑𝑥𝑑𝑦 =∬𝐸𝑦
𝐴

𝑑𝑥𝑑𝑦 = 0 (5. 14) 

The weighted centroid will now be defined as the moment of inertia, calculated under the same 

supposition with regard to the Young’s moduli of the different parts of the cross-section in a 

piecewise sense. The weighted moment of inertia 𝐼𝑦𝑦𝐸 about the 𝑦 axis in the plane of the cross 

section is given by, 

 𝐼𝑦𝑦𝐸 =∬𝐸𝑥2

𝐴

𝑑𝑥𝑑𝑦 =∑𝐸𝑗
𝑗

𝐼𝑦𝑦𝑗 (5. 15) 

where 𝑗 is the index of the enclosed parts with different Young’s moduli and 𝐼𝑦𝑗 is the moment of 

inertia about the 𝑦 axis. The weighted moment of inertia 𝐼𝑥𝑥𝐸 about the 𝑥 axis in the plane of the 

cross section is given in a similar manner, 

 
𝐼𝑥𝑥𝐸 =∬𝐸𝑦2

𝐴

𝑑𝑥𝑑𝑦 =∑𝐸𝑗
𝑗

𝐼𝑥𝑥𝑗 
(5. 16) 

Lastly, the weighted moment of inertia 𝐼𝑥𝑦𝐸 in the plane of the cross section is given as 
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 𝐼𝑥𝑦𝐸 =∬𝐸𝑥𝑦
𝐴

𝑑𝑥𝑑𝑦 =∑𝐸𝑗
𝑗

𝐼𝑥𝑦𝑗 (5. 17) 

5.3.2 Modified Approach for Heterogeneous Regions 

 We follow the same manner of applied loading characteristic of the torsion-flexure problem 

as in Chapter 4, which requires a statically equivalent force equal but opposite at the fixed end in 

order to satisfy overall beam equilibrium. The lateral surface of the beam is free from external 

forces, and the body forces are assumed to vanish to simplify the problem formulation. However, 

this time the origin is placed at the weighted centroid of the left end of the beam, and the 𝑥 and 𝑦 

axes are orthogonal to each other. 

 Now consider the case when the beam is heterogeneous with individual components 

isotropic. Following the semi-inverse method of Saint-Venant involving assumptions on the stress 

fields as the starting point,  

 𝜎𝑥𝑥 = 𝜎𝑥𝑦 = 𝜎𝑦𝑦 = 0 (5. 18) 

the remaining stress fields 𝜎𝑧𝑥, 𝜎𝑧𝑦 and 𝜎𝑧𝑧 are then chosen such that the equations of equilibrium 

and compatibility, as well as the boundary conditions, are satisfied. The bending moment 𝑀𝑦 that 

would be produced by the load 𝑊𝑥 acting alone, in any cross section 𝑧 unit distant from the fixed 

end, is 𝑀𝑦 = 𝑊𝑥(𝑙 − 𝑧). The stress distribution in this cross section is statically equivalent to the 

moment 𝑀𝑦 and 𝑊𝑥. The normal stress in the direction of the beam's axis is then 𝜎𝑧𝑧 = −
𝑀𝑦𝐸𝑗

𝐼𝑦𝑦𝐸
𝑥 

due to the 𝑀𝑦  bending moment and different Young’s moduli of longitudinal fibers or strips, 

𝐸𝑧𝑧(𝑥, 𝑦). A similar conclusion is obtained when considering the axial stress due to the 𝑀𝑥 bending 

moment produced by the force resultant 𝑊𝑥 . Thus, in the presence of bending about the two 

transverse axes by both 𝑊𝑥 and 𝑊𝑦, the normal stress along the longitudinal direction is assumed 

to be, 

 𝜎𝑧𝑧 = −𝐸𝑧𝑧(𝑥, 𝑦)(𝑙 − 𝑧)(𝐾𝑥𝑥 + 𝐾𝑦𝑦) (5. 19) 
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The derivation follows Eqs. (4. 5) - (4. 31) except 𝐸𝑧𝑧(𝑥, 𝑦)  replaces constant 𝐸𝑧𝑧  for 

homogeneous materials. Upon verifying that the condition for the existence of a solution for this 

problem is fulfilled, application of the Green's theorem yields the result, 

 

∑∫ 𝜇𝑗 (
𝜕𝜔1
𝜕𝑥

𝑑𝑥

𝑑𝑛
+
𝜕𝜔1
𝜕𝑦

𝑑𝑦

𝑑𝑛
)𝑑𝑠

𝐶𝑗

=∑∫𝜇𝑗(𝑦𝑑𝑦 − 𝑥𝑑𝑥)
𝐶𝑗

=∑𝜇𝑗∬(0 − 0)𝑑𝑥𝑑𝑦

𝐴

≡ 0

𝑗

 

(5. 20) 

 

∑∫ 𝜇𝑗 (
𝜕𝜔2
𝜕𝑥

𝑑𝑥

𝑑𝑛
+
𝜕𝜔2
𝜕𝑦

𝑑𝑦

𝑑𝑛
)𝑑𝑠

𝐶𝑗

=∑∫ 𝐸𝑗 [
𝑥2

2
−

𝜈𝑦2

2(1 + 𝜈)
] 𝑑𝑦

𝐶𝑗

=∑𝐸𝑗∬𝑥𝑑𝑥𝑑𝑦

𝐴𝑗

≡ 0 

(5. 21) 

 

∑∫ 𝜇𝑗 (
𝜕𝜔2
𝜕𝑥

𝑑𝑥

𝑑𝑛
+
𝜕𝜔2
𝜕𝑦

𝑑𝑦

𝑑𝑛
)𝑑𝑠

𝐶𝑗

= −∑∫ 𝐸𝑗 [
𝑦2

2
−

𝜈𝑥2

2(1 + 𝜈)
] 𝑑𝑥

𝐶𝑗

=∑𝐸𝑗∬𝑦𝑑𝑥𝑑𝑦

𝐴𝑗

≡ 0 

(5. 22) 

since the origin is at the weighted centroid of the cross section. 

 The resultant of the stress 𝜎𝑧𝑥 acting on the bar's cross section must equal 𝑊𝒙. Applying 

the Green's theorem to the area integrals involving 𝜔2, 𝜔3, produces the expression for 𝑊𝒙, 

 𝑊𝑥 = 𝐾𝑥𝐼𝑦𝑦𝐸 + 𝐾𝑦𝐼𝑥𝑦𝐸 (5. 23) 

Similar to the component 𝑊𝑥 of the applied load, one also obtains the expression for 𝑊𝑦, 

 𝑊𝑦 = 𝐾𝑦𝐼𝑥𝑥𝐸 +𝐾𝑥𝐼𝑥𝑦𝐸 (5. 24) 

Solving the system of equation Eq. (5. 23) and Eq. (5. 24) yields the solution,  

 

{
 
 

 
 𝐾𝑥 =

𝑊𝑥𝐼𝑥𝑥𝐸 −𝑊𝑦𝐼𝑥𝑦𝐸

𝐼𝑥𝑥𝐸𝐼𝑦𝑦𝐸 − 𝐼𝑥𝑦𝐸
2

𝐾𝑦 =
𝑊𝑦𝐼𝑦𝑦𝐸 −𝑊𝑥𝐼𝑥𝑦𝐸

𝐼𝑥𝑥𝐸𝐼𝑦𝑦𝐸 − 𝐼𝑥𝑦𝐸
2

 (5. 25) 
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Following the derivation of displacements for homogeneous cross sections, Eqs. (4. 39) - (4. 51) 

based on the fact that the 𝑥, 𝑦 and 𝑧 displacements of the origin are fully fixed, the expressions for 

displacements for piece-wise isotropic heterogeneous cross sections with constant Poisson’s ratio 

are the same as those for homogeneous isotropic cross sections, Eqs. (4. 57) - (4. 59). 

5.3.3 Flexure of Concentric Compound Bars 

 Muskhelishvili (1953) derived the solution for the flexure of a compound circular tube by 

a transverse force applied to one of its ends. The cross section of this tube consists of two 

concentric circular rings 𝑆1 and 𝑆2, the first of which surrounds that second one, as shown in Figure 

5-1 below. 

 

Figure 5-1 Compound circular tube made up with two homogeneous isotropic rings 

The inner, middle and outer radii will be denoted by 𝑅2, 𝑅1, 𝑅0, and Young’s moduli 

corresponding to 𝑆1 and 𝑆2 by 𝐸1 and 𝐸2, respectively. 

 If the transverse force acts through the center of the circles in the positive direction of the 

𝑥 axis, then no torsion takes place as the shear center is at the origin (because the cross section is 

symmetric about 𝑥 and 𝑦 axes. Guided by the form of the stress and displacement expressions for 

the homogenous bar bending about 𝑦  axis, the displacements of this flexure problem may be 

assumed to be satisfied by the following expressions, 

 𝑢 = −𝜃𝑦𝑧 +
𝑊𝑥
𝐼𝑦𝑦𝐸

[
𝜈

2
(𝑙 − 𝑧)(𝑥2 − 𝑦2) +

𝑙𝑧2

2
−
𝑧3

6
] (5. 26) 

 
𝑣 = 𝜃𝑥𝑧 +

𝑊𝑥
𝐼𝑦𝑦𝐸

𝜈(𝑙 − 𝑧)𝑥𝑦 
(5. 27) 
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𝑤 = −𝜃𝜓 −

𝑊𝑥
𝐼𝑦𝑦𝐸

[𝑥 (𝑙𝑧 −
𝑧2

2
) + 𝜒 + 𝑥𝑦2] 

(5. 28) 

where 𝜒 = 𝜒(𝑥, 𝑦) represents some functions that can be found, denoted in regions 𝑆1 and 𝑆2 by 

𝜒1 and 𝜒2, respectively). 

 Since the region is circular in the 𝑥 − 𝑦 plane, let 𝑟 and 𝜗 denote polar coordinates. The 

governing equation is the same as that of a single layer tube, which is, 

 [
𝜈𝑥2

2
+ (1 −

𝜈

2
)𝑦2] cos 𝜗 + (2 + 𝜈)𝑥𝑦 sin𝜗 = −

3

4
𝑟2 cos 3𝜗 + (

3

4
+
𝜈

2
) cos𝜗 (5. 29) 

and the boundary conditions are, 

 for 𝑟 = 𝑅0:  
𝜕𝜒1

𝜕𝑟
= (

3

4
+
𝜈

2
)𝑅0

2 cos 𝜗 +
3

4
𝑅0
2 cos3𝜗  (5. 30) 

 
for 𝑟 = 𝑅1:  {

𝜒1 = 𝜒2

𝐸1
𝜕𝜒1

𝜕𝑟
− 𝐸2

𝜕𝜒2

𝜕𝑟
= (𝐸1 − 𝐸1)[−(

3

4
+
𝜈

2
)𝑅1

2 cos𝜗 +
3

4
𝑅1
2 cos 3𝜗]

 
(5. 31) 

 for 𝑟 = 𝑅2:  
𝜕𝜒2

𝜕𝑟
= −(

3

4
+
𝜈

2
)𝑅2

2 cos 𝜗 +
3

4
𝑅2
2 cos 3𝜗  (5. 32) 

Expanding the harmonic functions 𝜒1  and 𝜒2  into series, and substituting in the preceding 

formulae which satisfy the solution for the hollow homogeneous circular cylinder, these functions 

are determined in the form, 

 𝜒1 = (𝑎1𝑟 +
𝑎1
′

𝑟
) cos 𝜗 +

𝑟3

4
cos 3𝜗        (𝑅1 ≤ 𝑟 ≤ 𝑅0) (5. 33) 

 𝜒2 = (𝑎2𝑟 +
𝑎2
′

𝑟
) cos 𝜗 +

𝑟3

4
cos3𝜗        (𝑅2 ≤ 𝑟 ≤ 𝑅1) (5. 34) 

 Substituting these 𝜒1 and 𝜒2 expressions in the boundary conditions, all the constants may 

be obtained. They are listed below, 

 𝑎1 = −(
3

4
+
𝜈

2
)
𝐸1(𝑅0

4 − 𝑅1
4)(𝑅1

2 + 𝑅2
2) + 𝐸2(𝑅1

2 − 𝑅2
2)[(𝑅1

2 + 𝑅2
2)2 + 𝑅0

4 − 𝑅2
4]

𝐸1(𝑅1
2 + 𝑅2

2)(𝑅0
2 − 𝑅1

2) + 𝐸2(𝑅0
2 + 𝑅1

2)(𝑅1
2 − 𝑅2

2)
 (5. 35) 
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𝑎2 = −(

3

4
+
𝜈

2
)
𝐸1(𝑅0

2 − 𝑅1
2)[(𝑅0

2 + 𝑅1
2)2 − 𝑅0

4 + 𝑅2
4] + 𝐸2(𝑅1

4 − 𝑅2
4)(𝑅0

2 + 𝑅1
2)

𝐸1(𝑅1
2 + 𝑅2

2)(𝑅0
2 − 𝑅1

2) + 𝐸2(𝑅0
2 + 𝑅1

2)(𝑅1
2 − 𝑅2

2)
 

(5. 36) 

 𝑎1
′ = 𝑎1𝑅0

2 + 𝑘𝑅0
4 (5. 37) 

 𝑎2
′ = 𝑎2𝑅2

2 + 𝑘𝑅2
4 (5. 38) 

These steps complete the solution of flexure of a compound two-layer concentric tube. 

 The developed FVM has been verified by comparison with the above exact elasticity 

solutions of the flexure of composite bars made of two isotropic materials, with the ratio of Young's 

modulus of 2, i.e., 𝐸1: 𝐸2 = 2. If the cross sections are subjected to the end loading (𝑃𝑥, 0) that 

passes through the bars' centroids, no torsion occurs and hence 𝜔1 = 0 and 𝜔2 = 0. The following 

moduli are employed in the flexure analysis of the three cross sections: 𝐸1 = 20,000 𝑘𝑠𝑖, 𝐸1 =

10,000 𝑘𝑠𝑖 , and 𝜈 = 0.3 , with the shear moduli 𝐺  obtained from the relation 𝐺𝑗 =
𝐸𝑗

2(1+𝜈)
  and 

loading by 𝑃𝑥 = 10 𝑘𝑖𝑝𝑠 applied horizontally through the centroid along the positive direction of 

the 𝑥 axis. 

  To solve the flexure problem for this concentric tube numerically via FVM, 6552 

subvolumes are employed with the meshing pattern shown in Figure 5-2, where the inner layer as 

well as the vicinity of material interface has much higher meshing density than the outer layer. 
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Figure 5-2 Meshing discretization of a concentric tube 

 The in-plane displacement 𝑢, 𝑣 and 𝑤 expressed in Eqs. (5. 26), (5. 27), and (5. 28) from 

Muskhelishvili’s analytical approach as well as FVM are shown in Figure 5-3, Figure 5-4, and 

Figure 5-5. 

 

Figure 5-3 u displacement field in the compound concentric tube (left: FVM solution; middle: 

analytical solution; right: difference in percentage) 
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Figure 5-4 v displacement field in the compound concentric tube (left: FVM solution; middle: 

analytical solution; right: difference in percentage) 

 

Figure 5-5 w displacement field in the compound concentric tube (left: FVM solution; middle: 

analytical solution; right: difference in percentage) 

All three displacement components exhibit very small differences between FVM and analytical 

solutions, as shown in the third (rightmost) sub-figure in each subsequent set, which is normalized 

by the maximum value from the analytical solutions. 

 Substituting 𝜒1  and 𝜒2  from Eqs. (5. 33) and (5. 34) respectively to 𝜒  in the following 

stress component expressions, one can compute the stress field analytically for both material 

regions. 

 𝜎𝑧𝑥 = 𝜇𝑗𝜃 (
𝜕𝜔1
𝜕𝑥

− 𝑦) −
𝑊𝑥𝐸𝑗

2𝐼𝑦𝑦𝐸(1 + 𝜈)
[
𝜕𝜒

𝜕𝑥
+
𝜈

2
𝑥2 + (1 −

𝜈

2
)𝑦2] (5. 39) 

 
𝜎𝑧𝑦 = 𝜇𝑗𝜃 (

𝜕𝜔1
𝜕𝑦

+ 𝑥) −
𝑊𝑥𝐸𝑗

2𝐼𝑦𝑦𝐸(1 + 𝜈)
[
𝜕𝜒

𝜕𝑦
+ (2 + 𝜈)𝑥𝑦] 

(5. 40) 

 
𝜎𝑧𝑧 = −

𝑊𝑥𝐸𝑗

𝐼𝑦𝑦𝐸
(𝑙 − 𝑧)𝑥 

(5. 41) 
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The FVM solution also renders the stress field results. Therefore, shear stresses 𝜎𝑥𝑧 and 𝜎𝑦𝑧, as 

well as the normal stress or so-called the bending stress 𝜎𝑧𝑧, obtained from FVM and analytical 

solutions can also be compared. In general, all of the stress components exhibit small differences 

between FVM and analytical solutions, as shown Figure 5-6, Figure 5-7, and Figure 5-8. The 

difference for each stress component is also normalized by the maximum value from the analytical 

solutions.  

 

Figure 5-6 Stress fields in the compound concentric tube (left: FVM solution; middle: analytical 

solution; right: difference in percentage) 

 

Figure 5-7 Stress fields in the compound concentric tube (left: FVM solution; middle: analytical 

solution; right: difference in percentage) 
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Figure 5-8 Stress fields in the compound concentric tube (left: FVM solution; middle: analytical 

solution; right: difference in percentage) 

The difference between FVM and analytical solution for the bending stress 𝜎𝑧𝑧  is consistently 

small over the entire cross section. While the differences between FVM solutions and analytical 

solutions for the shear stress 𝜎𝑥𝑧 and 𝜎𝑦𝑧 are also small in most regions, greater differences occur 

at the material interfaces and the inner radius faces. These differences may be further reduced 

through selective mesh refinement in the outer layer region. 

5.4 Shear Center Determination 

 The derived expressions for shear stresses suggest a resolution of the general flexure 

problem into the following simpler problems: pure flexure problem with zero local twist and pure 

torsion problem due to a twisting moment. To bend a beam without twisting, the plane of loads 

must contain the axis of bending; that is the plane of loads must pass through the shear center of 

every cross section of the beam. Shear center is identified as the location in each cross section 

where the applied load cannot produce any local twist. Shear center is also known as the center of 

flexure in some books. It is a point in a beam or structure where the application of a transverse 

load does not cause any twisting or torsion. In other words, it is the point on a beam where the 

bending and twisting due to transverse loads are separated, and only the bending moment acts. 

 The determination of shear centers of structural components plays a key role in their design, 

and accurate determination of the shear center location is crucial for practical application of beams. 

Kosmatka and Dong (1991) presented a Saint-Venant semi-inverse based Ritz method predicting 

the location of shear center for homogeneous anisotropic beams. Yu et al. (2002) used the shear 

coupling stiffness coefficients from the stiffness matrix in the finite-element cross-sectional 

analysis VABS to predict the shear center location for beams of arbitrary cross-section geometry 

with specific material distribution. 

 The concept of a shear center is particularly important for thin-walled structures like beams, 

plates, and shells. In such structures, shear forces and bending moments are coupled, and the 

location of the shear center affects the distribution of stresses and deformations. For example, in 

an airplane wing, the location of the shear center affects the stability of the aircraft during flight. 

If the shear center is not located at the desired position, the wing may twist under load, causing 

loss of stability. The shear center is also critical in designing of thin-walled structures subject to 
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torsion, such as hollow drive shafts, where the location of the shear center determines the amount 

of torque that can be transmitted without causing excessive deformation or failure. Conventionally, 

the concept of shear flow is employed with proper structural mechanics assumptions for estimating 

the shear center based on equilibrium considerations. However, in this section, the determination 

of the shear center will take advantage of the separation of deformation modes in the torsion-

flexure problem. 

5.4.1 Shear Center for Homogeneous Cross Sections 

 For a homogeneous beam with a cross section that possesses two axes of symmetry or anti-

symmetry, the shear center lies at the intersection of the two axes, whereas in the case of a single 

plane of symmetry the shear center lies along its axis. Without the local twist (𝜃 = 0), the shear 

stress components come solely from flexural deformation modes. The resultant moment caused by 

these shear stresses equals the twisting moment generated by the end resultant forces 𝑊𝑥 and 𝑊𝑦, 

 ∬(𝑥𝜎𝑧𝑦 − 𝑦𝜎𝑧𝑥)

𝐴

𝑑𝑥𝑑𝑦 = 𝑥𝑠𝑊𝑦 − 𝑦𝑠𝑊𝑥 (5. 42) 

So, for homogeneous orthotropic beams, the shear center location is (𝑥𝑠, 𝑦𝑠), where 

 𝑥𝑠 = 𝐽(𝐼𝑦𝑦𝑆2 − 𝐼𝑥𝑦𝑆1) (5. 43) 

 𝑦𝑠 = 𝐽(𝐼𝑥𝑦𝑆2 − 𝐼𝑥𝑥𝑆1) (5. 44) 

and  

 𝑆1 =∬[𝐺𝑧𝑦𝑥
𝜕𝜔2
𝜕𝑦

− 𝐺𝑧𝑥𝑦
𝜕𝜔2
𝜕𝑥

+
𝐸𝑧𝑧
2
𝑥2𝑦 − 𝐺𝑧𝑥𝜈𝑧𝑦𝑦

3]

𝐴

 𝑑𝑥 𝑑𝑦 (5. 45) 

 𝑆2 =∬[𝐺𝑧𝑦𝑥
𝜕𝜔3
𝜕𝑦

− 𝐺𝑧𝑥𝑦
𝜕𝜔3
𝜕𝑥

−
𝐸𝑧𝑧
2
𝑥𝑦2 + 𝐺𝑧𝑦𝜈𝑧𝑥𝑥

3]

𝐴

 𝑑𝑥 𝑑𝑦 
(5. 46) 

 

 𝐽 =
1

𝐸𝑧𝑧(𝐼𝑥𝑥𝐼𝑦𝑦 − 𝐼𝑥𝑦
2 )

 (5. 47) 
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 𝐼𝑥𝑥 =∬𝑦2

𝐴

 𝑑𝑥 𝑑𝑦, 𝐼𝑦𝑦 =∬𝑥2

𝐴

 𝑑𝑥 𝑑𝑦, 𝐼𝑥𝑦 =∬𝑥

𝐴

𝑦 𝑑𝑥 𝑑𝑦 (5. 48) 

 The shear center locations calculated in this section for homogeneous orthotropic materials 

also reduce to those of homogeneous isotropic materials upon setting 𝐺𝑧𝑥 = 𝐺𝑧𝑦 = 𝜇 and 𝜈𝑧𝑥 =

𝜈𝑧𝑦 = 𝜈, 

 𝑆1 =∬𝜇 [𝑥
𝜕𝜔2
𝜕𝑦

− 𝑦
𝜕𝜔2
𝜕𝑥

+ (1 + 𝜈)𝑥2𝑦 − 𝜈𝑦3]

𝐴

 𝑑𝑥 𝑑𝑦 (5. 49) 

 𝑆2 =∬𝜇 [𝑥
𝜕𝜔3
𝜕𝑦

− 𝑦
𝜕𝜔3
𝜕𝑥

− (1 + 𝜈)𝑥𝑦2 + 𝜈𝑥3]

𝐴

 𝑑𝑥 𝑑𝑦 
(5. 50) 

 

 𝐽 =
1

𝐸(𝐼𝑥𝑥𝐼𝑦𝑦 − 𝐼𝑥𝑦
2 )

 (5. 51) 

 𝐼𝑥𝑥 =∬𝑦2

𝐴

 𝑑𝑥 𝑑𝑦, 𝐼𝑦𝑦 =∬𝑥2

𝐴

 𝑑𝑥 𝑑𝑦, 𝐼𝑥𝑦 =∬𝑥

𝐴

𝑦 𝑑𝑥 𝑑𝑦 (5. 52) 

For cross sections with two planes of symmetry, the shear center lies at the intersection of the two 

planes, whereas in the case of a single plane of symmetry the shear center lies along the plane of 

symmetry. The shear center of an arbitrary homogeneous isotropic or orthotropic cross section may 

be precisely determined using Eqs. (5. 43) and (5. 44) once the functions 𝜔2 and 𝜔3 due to flexure 

loading are obtained from the developed finite-volume solution strategy. These equations apply to 

any homogeneous cross section, including open and closed cross sections with thin or thick walls.  

Homogeneous Equilateral Triangular Beams 

 The torsion-flexure problem was previously treated as a boundary-value problem with the 

introduction of the potential function 𝐹(𝑥, 𝑦)  from which the out-of-plane shear stresses were 

derived to satisfy the third equilibrium equation, see Eq. (4. 5) or (4. 6) in Chapter 4. The function 

𝐹(𝑥, 𝑦) can be determined by satisfying the Beltrami-Michell equations, Eq. (4. 9).  Sokolnikoff 

(1956) presented another solution approach for the torsion-flexure problem with a new stress 

function 𝑇(𝑥, 𝑦) = 𝐹(𝑥, 𝑦) − ∫𝑅(𝑥)𝑑𝑥 −∫𝑆(𝑦)𝑑𝑦 , where the functions 𝑅(𝑥)  and 𝑆(𝑦)  are 

chosen such that the stress expressions with respect to 𝑇(𝑥, 𝑦) satisfy either a simple boundary 
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condition or a simple differential equation, e.g. 𝑅(𝑥) = −
1

2
𝐸𝐾𝑦𝑦

2  and 𝑆(𝑦) =
1

2
𝐸𝐾𝑥𝑥

2  on the 

boundary. The introduction of the additional functions 𝑅(𝑥)  and 𝑆(𝑦)  enables satisfaction of a 

constant 𝑇 value along the boundary contour (
𝑑𝑇

𝑑𝑠
= 0 on 𝐶), which is analogous to the deflection 

of a stretched elastic membrane. This step simplifies the solution process by reducing the number 

of boundary conditions that need to be satisfied, and leads to a more efficient solution method for 

the torsion-flexure problem. As one of the results, the location of the shear center can also be 

related to the function 𝑇(𝑥, 𝑦) from the stress components in Eq. (5. 42) by substituting 𝑅(𝑥) with 

−
1

2
𝐸𝐾𝑦𝑦

2 and 𝑆(𝑦) with 
1

2
𝐸𝐾𝑥𝑥

2. 

 𝑥𝑠𝑊𝑦 − 𝑦𝑠𝑊𝑥 = 2∬𝑇(𝑥, 𝑦)𝑑𝑥𝑑𝑦

 

𝐴

−
1

3
𝐸 (𝐾𝑦∫𝑥𝑦

3𝑑𝑥

 

𝐶

+ 𝐾𝑥∫𝑥
3𝑦𝑑𝑦

 

𝐶

) (5. 53) 

The coordinates (𝑥𝑠, 𝑦𝑠) of the shear center are then found by comparing the coefficients of 𝑊𝑥 

and 𝑊𝑦. For the special case of bending by a load 𝑊𝑥 along the 𝑥 axis (one of the principal axes), 

the 𝑦 coordinate of the shear center becomes 

 𝑦𝑠 = −
2

𝑊𝑥
∬𝑇(𝑥, 𝑦)𝑑𝑥𝑑𝑦

 

𝐴

+
1

3𝐼𝑦𝑦
∫𝑥3𝑦𝑑𝑦

 

𝐶

 (5. 54) 

For the case of a 𝑊𝑥-loaded beam whose cross section is an equilateral triangle, the stress function 

𝑇(𝑥, 𝑦)  could be used to solve the torsion-flexure problem. The boundary of an equilateral 

triangular section with a side length of 2√3𝑎 can be written as 

 (𝑦 − 𝑎) (𝑥 +
2𝑎 + 𝑦

√3
) (𝑥 −

2𝑎 + 𝑦

√3
) = 0 (5. 55) 

where the origin is taken at the centroid of the cross section shown in Figure 5-9. 



 182 

 

Figure 5-9 The configuration of an equilateral triangular cross section 

Straight-forward calculations for several components in Eq. (5. 53) give 

 𝐼𝑦𝑦 =
3√3𝑎4

2
 (5. 56) 

 
∬𝑇(𝑥, 𝑦)𝑑𝑥𝑑𝑦

 

𝐴

=
3√3𝑊𝑥𝑎

5

10𝐼𝑦𝑦
=
𝑎𝑊𝑥
5

 
(5. 57) 

 
∫𝑥3𝑦𝑑𝑦

 

𝐶

= 2∫ 𝑥3(√3𝑥 − 2𝑎)√3
𝑎√3

0

𝑑𝑥 =
9√3𝑎5

5
 

(5. 58) 

and thus they yield 𝑦 coordinate of the shear center as zero by substituting into Eq. (5. 54). Since 

the equilateral triangle is symmetric about the 𝑦 axis, the shear center lies on the symmetric 𝑦 axis. 

Therefore, its shear center is exactly at the origin in the coordinate system, which is also the 

centroid for this equilateral triangle. 

To assess the accuracy of FVM in predicting the shear center location, a sequence of 

equilateral triangles of the same dimensions with continuously refined meshes was employed to 

demonstrate solution convergence with the number of subvolumes, which is illustrated in Figure 

5-10. The side length of the equilateral triangle is 3√3  inches, which is used to normalize the 

difference in the 𝑦 coordinate of the shear center between the FVM and analytical solutions. The 

FVM error against the exact analytical solution decreases roughly exponentially with increasing 

number of subvolumes employed in the FVM analysis.  
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Figure 5-10 The convergence of FVM error in determining the location of an equilateral 

triangular cross section 

Homogeneous Semi-circular Beams 

 As observed in the previous example, the shear center location of a homogeneous beam 

with an equilateral triangle coincides with its centroid. As a further illustration of the usefulness of 

the function 𝑇(𝑥, 𝑦), the solution of the torsion-flexure problem for a semicircular beam shown in 

Figure 5-11 becomes available, which highlights the case where the shear center and its centroid 

are not at the same location. 

 

Figure 5-11 The configuration of a semi-circular cross section 

 If the load is only applied along the 𝑥 axis direction and the origin 𝑂 of the coordinate 

system is chosen at the centroid of each cross section of the semicircular beam, the function 𝑇(𝑥, 𝑦) 
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satisfies its governing differential equation and vanishes on its boundary. The solution of this 

problem is given by the uniformly and absolutely convergent series for 𝑇(𝑥, 𝑦) expressed in the 

polar coordinate system (𝑟, 𝜃) set up at the middle point of its bottom diameter. The solution for 

𝑇(𝑟, 𝜃) is represented by an infinite series below, 

 𝑇(𝑟, 𝜃) = 𝐴𝑟3 cos 𝜃 + 𝐵𝑟2(1 + cos 2𝜃) +∑𝐴2𝑛+1𝑟
2𝑛+1 cos(2𝑛 + 1)𝜃

∞

𝑛=0

 (5. 59) 

where, 

 𝐴 =
1

8

𝑊𝑥
𝐼𝑦𝑦

1 + 2𝜈

1 + 𝜈
 (5. 60) 

 
𝐵 = −

1

4
[
𝑊𝑥
𝐼𝑦𝑦

𝜈

1 + 𝜈
(𝑦 +

4𝑎

3𝜋
) + 2𝜇𝑎] 

(5. 61) 

 

{
 

 𝐴1 = −
16𝑎

3𝜋
𝐵 − 𝑎2𝐴,

𝐴2𝑚+1 =
𝑎−2𝑚−116𝑎2(−1)𝑚𝐵

𝜋(2𝑚 + 1)[(2𝑚 + 1)2 − 4]
, 𝑚 = 1, 2, 3, …

 

(5. 62) 

 Thus, by substituting Eq. (5. 59) into Eq. (5. 53), the shear center lies on the 𝑦 axis due to 

its symmetry, and the 𝑦 coordinate may be expressed in the following approximate form 

 𝑦𝑠 =
8𝑎

15(1 + 𝜐)𝜋
[3 + 𝜐(

40

𝜋2
− 1)] +

4𝑎

3𝜋
 (5. 63) 

To assess the accuracy of FVM in predicting the shear center location, a sequence of continuously 

refined meshes of a semi-circle was used to demonstrate the solution convergence with the number 

of subvolumes, Figure 5-12. 
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Figure 5-12 The convergence of FVM error in determining the location of a semi-circular cross 

section 

The diameter of the semi-circle is 2 inches, which is used to normalize the difference in the 𝑦 

coordinate of the shear center between the FVM and analytical solutions. The FVM error relative 

to the exact analytical solution also decreases roughly exponentially as more subvolumes are 

employed in the FVM analysis. 

Thin-walled Cross Section Family 

 For thin-walled structures, the so-called thin-wall assumption employed in structural 

engineering enables the derivation of closed-form expressions for the shear center of many cross 

sections of structural components used in the construction industry. This assumption states that the 

shear flow is uniform if the wall is thin enough compared to the length of the web or flanges for a 

homogeneous isotropic beam. The average shear stress at each point in the beam's cross section is 

thus assumed to have a direction tangent to the wall. Shear centers of typical structural components 

are provided in standard advanced mechanics books that are used for design purposes, cf. Boresi 

et al. (1985). Five typical cross sections are shown in Figure 5-13, and the formulae for their shear 

centers given in terms of the eccentricity ratios are provided for each cross section (A - E) in the 

following. 
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Figure 5-13 Thin-walled cross section profile (A - E) 

One may notice the absence of wall thickness in the formulae for some thin-walled cross sections. 

This is because the thin-wall assumption is only valid when the thickness is much smaller than the 

overall dimension of the cross section. 

Cross section A: 
𝑒

𝑏
=

1 +
2𝑏1
𝑏
(1 −

4𝑏1
2

3ℎ2
)

2 +
ℎ
3𝑏
+
2𝑏1
𝑏
(1 +

2𝑏1
ℎ
+
4𝑏1

2

3ℎ2
)

 (5. 64) 

Cross section B: 
𝑒

𝑏
=

1 +
2𝑏1
𝑏
(1 −

4𝑏1
2

3ℎ2
)

2 +
ℎ
3𝑏
+
2𝑏1
𝑏
(1 −

2𝑏1
ℎ
+
4𝑏1

2

3ℎ2
)

 (5. 65) 

Cross section C: 
𝑒

𝑏
=

1 −
1 − 𝑏1

2

𝑏

2 +
2𝑏1
𝑏
+
𝑡𝑤ℎ
3𝑡𝑓𝑏

 (5. 66) 

Cross section D: 
𝑒

𝑏
=

𝑏1
√2𝑏2

(3 −
𝑏1
𝑏
)

1 +
3𝑏1
𝑏
−
3𝑏1

2

𝑏2
+
𝑏1
3

𝑏3

 (5. 67) 

Cross section E: 
𝑒

𝑅
=
2(𝑠𝑖𝑛𝜃 − 𝜃𝑐𝑜𝑠𝜃)

𝜃 − 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃
 (5. 68) 
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The above formulae are assessed by comparison with the results of finite-volume based 

calculations to determine their limits of applicability. Towards this end, the five cross sections with 

increasingly thicker walls are analyzed to establish the wall thickness dimensions for which the 

thin-wall assumption produces unacceptably large errors. In the following analysis, the parameters 

or the dimensions of those five cross sections are listed below for reference (unit: inch): 

Cross section A: 𝑏1 = 1, 𝑏 = 1, ℎ = 2 

Cross section B: 𝑏1 = 1, 𝑏 = 1, ℎ = 4 

Cross section C: 𝑏1 = 0.5, 𝑏 = 1, ℎ = 4, 𝑡 = 𝑡𝑤 

Cross section D: 𝑏1 = 1, 𝑏 = 2 

Cross section E: 𝑅 = 2, 𝜃 = 𝜋/2 

Plots of eccentricity differences versus wall thickness normalized by a fixed dimension have been 

generated for each cross section using regular (left) and log-log (right) scales. They are shown in 

Figure 5-14 – Figure 5-18 for the five cross sections. 

 

Figure 5-14 The normalized error of the eccentricity for cross section A and that in log-log scale 
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Figure 5-15 The normalized error of the eccentricity for cross section B and that in log-log scale 

 

Figure 5-16 The normalized error of the eccentricity for cross section C and that in log-log scale 

 

Figure 5-17 The normalized error of the eccentricity for cross section D and that in log-log scale 
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Figure 5-18 The normalized error of the eccentricity for cross section E (𝜃 = 𝜋 4⁄ ) and that in log-

log scale 

 For all these five types of thin-walled cross sections, the difference in eccentricity between 

the FVM-predicted and the estimated one based on the thin-wall assumption increases as the wall 

becomes thicker. The relationship between the difference in eccentricity versus the wall thickness 

ratio exhibits concave upward curves except for the unsymmetric I-beam cross section (cross 

section C). However, all these types of cross sections exhibit an approximately linear relationship 

between the eccentricity difference versus the wall thickness ratio in the log-log scale. This 

assessment provides a detailed and insightful answer to the question of how thin the structure 

should be for the thin-walled formulae to be applicable in structural design. Finding the shear 

center location accurately is of importance for some thin-walled structural elements because the 

torsion effects due to the eccentrically applied forces may be devastating. 

5.4.2 Shear Center for Heterogeneous Cross Sections 

 In composite structures, the shear center may not be located at the centroid of the cross-

section due to the different material properties of the constituent layers or regions. For 

heterogeneous cross-sections, the computation of the shear center becomes even more complicated 

than homogenous ones due to the variation of material properties across the cross-section. Various 

analytical and numerical methods have been developed to determine the shear center of such cross-

sections. Merely following the scheme of separating deformation modes and assuming the absence 

of 𝜎𝑥𝑥 , 𝜎𝑦𝑦  and 𝜎𝑥𝑦  over the entire homogeneous cross section, the shear center locations 

identified in a cross section made of heterogeneous isotropic materials require the following 

components for Eq. (5. 42), 
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 𝑆1 =∑𝜇𝑗
𝑗

∬[𝑥
𝜕𝜔2
𝜕𝑦

− 𝑦
𝜕𝜔2
𝜕𝑥

+ (1 + 𝜈)𝑥2𝑦 − 𝜈𝑦3]

𝐴

 𝑑𝑥 𝑑𝑦 (5. 69) 

 𝑆2 =∑𝜇𝑗
𝑗

∬[𝑥
𝜕𝜔3
𝜕𝑦

− 𝑦
𝜕𝜔3
𝜕𝑥

− (1 + 𝜈)𝑥𝑦2 + 𝜈𝑥3]

𝐴

 𝑑𝑥 𝑑𝑦 
(5. 70) 

 

 𝐽 =
1

(𝐼𝑥𝑥𝐸𝐼𝑦𝑦𝐸 − 𝐼𝑥𝑦𝐸
2 )

 (5. 71) 

if the heterogeneous isotropic cross section has a uniform Poisson’s ratio. This has been verified 

in the case of flexure of concentric compound bars in Section 5.3.3 by FVM predicting the location 

of the shear center extremely close to the centroid. However, one must always keep in mind that 

the solution to the flexure of concentric compound bars in Section 5.3.3 follows the Saint-Venant 

semi-inverse method assumptions, which requires the absence of all in-plane stresses. Therefore, 

unlike torsion of the heterogenous cross section which initiates from the displacement formulation, 

the in-plane stresses induced by flexure may not always properly guarantee their absence between 

material interfaces in heterogeneous cross sections. 

 Structural components subjected to combined torsion-flexure loading are employed with 

increasing frequency in aerospace and civil engineering applications, including composite rotor 

blades and pultruded I, T and channel beams, amongst others. Cross sections of such structural 

elements may be laminated with homogeneous layers possessing different isotropic moduli yet 

exhibiting overall homogenized orthotropic moduli, such as in the previous example of an elliptical 

cross section subjected to pure torsion (Chapter Section 3. 5: Horizontally laminated elliptical 

cross sections), or I or T beams constructed of differently-oriented composite plies characteristic 

of pultruded elements. We have shown that an elliptical cross section laminated with alternating 

plies of two different elastic moduli could be treated as a homogeneous cross section possessing 

equivalent homogenized moduli 𝐺𝑥𝑧 and 𝐺𝑦𝑧 with sufficient microstructural refinement. 

 The same approach could be employed to analyze composite cross sections made up of 

different laminations with isotropic or transversely isotropic composite plies. We note that the 

outlined semi-inverse solution strategy for the combined torsion-flexure problem is based on the 

assumption that the in-plane normal and shear stresses 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜎𝑥𝑦 are zeroes over the entire 
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plane. This is no longer true for laminated cross sections subjected to flexure loading. Nonetheless, 

the layer microstructure may be replaced by an equivalent homogeneous one with orthotropic 

homogenized elastic moduli under certain circumstances. This is the approach employed in the 

proposed combined torsion-flexure analysis of composite structural components. In the case of 

laminations involving isotropic layers, the Postma model will be employed to determine equivalent 

homogenized moduli. In the case of cross sections laminated with differently oriented composite 

plies, symmetrically laminated cross sections will be considered for which the concept of 

homogenized laminate moduli applies in the absence of bending-stretching coupling. Hence the 

lamination plate theory will be employed to determine the equivalent laminate moduli from the 

laminate extensional stiffness matrix. This approach will be assessed and validated upon 

comparison with the results of the three-dimensional finite-element analysis of the combined 

torsion-flexure problem for homogenous and heterogenous beams in the next chapter. Upon 

validation, structural elements with laminated cross sections that are employed in the construction 

industry will be analyzed to determine shear center and effective torsional and flexural stiffness. 

The assessment will address the question of the extent of microstructural refinement required for 

the overall torsion-flexural response based on the equivalent homogenized moduli to approach the 

response of an actual heterogeneous cross section. 

5.5 Summary 

 When a long cylindrical beam is subjected to loadings at one end, if those loads can be 

considered as being applied at its shear center in the form of a resultant force, the beam would 

experience no twisting and its deformation would be dominated by pure flexure. To identify the 

shear center for a homogenous cross section, the torsion-flexure problem can be decomposed into 

three deformation modes. This decomposition approach has been programmed using FVM and 

validated through convergence studies using equilateral triangular and semi-circular cross sections. 

The assessment of this decomposition methodology will be conducted against the 3D FEM 

simulation in Chapter 6. In addition, this decomposition approach will further be assessed in 

different cross sections along the beam’s span at various distances from the ends. The so-far 

validated FVM method can also be employed to assess the thin-walled structure assumptions 

commonly used in structural engineering practice for thin-walled cylindrical members. To 

determine the flexure and shear center for heterogeneous beams, the solution for homogeneous 

beams can be extended in a piecewise integral manner. However, the proposed semi-inverse 
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solution strategy for the torsion-flexure problem is based on the assumption that may be violated 

at material interfaces. Therefore, replacing the equivalent heterogeneous beam with homogenized 

elastic moduli could be an alternative approach to the analysis of composite structural components 

with combined torsion and flexure loadings. 
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Chapter 6  

Flexure Response of Beams: FVM vs 3D FEM Comparison 

 

6.1 Introduction 

 When analyzing a long and slender beam that is primarily designed to resist loads through 

bending and shearing, the beam theory is used to examine its behavior under different loading 

conditions. The behavior of beams can be analyzed using various beam theory models, which are 

based on certain assumptions about their geometries, material properties, loading conditions, and 

boundary conditions. The most commonly used theoretical models are the Euler-Bernoulli beam 

theory and the Timoshenko beam theory. 

 The Euler-Bernoulli beam theory, also known as the classical beam theory, assumes that a 

beam is a one-dimensional homogeneous linearly elastic isotropic object, and that the deformation 

of the beam is only caused by bending. It neglects the effects of shear deformation, axial 

deformation, as well as rotary inertia. This theory provides a simple and elegant way to analyze 

the behavior of slender beams that are relatively long and thin (usually with aspect ratio more than 

10). The Timoshenko beam theory, on the other hand, is still limited to homogeneous linearly 

elastic isotropic material beam, yet it takes into account the effects of shear deformation and rotary 

inertia, which are neglected in the Euler-Bernoulli beam theory. The Timoshenko beam theory is 

more appropriate for beams that are relatively short and thick, or for beams that are subjected to 

significant shear stresses. Both of these beam theories provide handy tools for analyzing the 

behavior of beams, and can be used to estimate the deflections, stresses, and reactions of a beam 

under various loading conditions. Accurate prediction of the behavior of beams under different end 

loading conditions plays an important role in designing cantilever beams or supported girders. 

Although the Timoshenko beam theory takes into account various factors like bending, shearing, 

axial deformation and even rotation of cross-sections, it does not incorporate torsional deformation 

into its formulation. 
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 When addressing the problem of torsion-flexure as a fundamental problem in structural 

engineering, analysis taking into consideration the displacement and stress distribution across each 

cross section of the beam is always required. However, traditional beam theories may not provide 

the level of detail required as they only consider the beam as a whole, rather than the specific 

geometry of each cross section. Finding a solution to this challenge can prove difficult without the 

help of comprehensive three-dimensional structural analysis, but a thorough cross-sectional 

analysis can lead to a rapid and accurate understanding of the beam deformation problem where 

the loadings and constraints are applied at the ends. Barretta (2014) developed an exact solution 

for Saint-Venant’s beams under flexure by relating the torsion-flexure to Kirchoff plates. A semi-

analytical finite-element approach was used for analyzing the torsion-flexure response of beams 

by Dong et al. (2001) and Kosmatka et al. (2001). A quasi-3D FEM with a low computational cost 

is presented for coupled bending and torsional-warping analysis of thin-walled beams by Lezgy-

Nazargah et al. (2021) through conversion of the 3D problem into separated 2D cross-sectional 

and 1D modeling. However, fully three-dimensional beam modeling using FEM is 

computationally intensive and time-consuming, which makes it challenging to use in the design of 

real-world structures. As an alternative to 3D FEM, FVM has been proposed herein as a 

computationally efficient approach for beam modeling with end loads and constraints for those 

cross section away from the ends. Its capability of accurately analyzing either the pure torsion or 

pure flexure structural responses and predicting the shear center of beams has been demonstrated 

in Chapters 3, 4 and 5, respectively. Nonetheless, the application of FVM is still at an early stage 

and requires more validation through comparison with the combined torsion-flexure responses 

obtained from established methods like 3D FEM which the analytical solutions are not competent 

of generating. 

 The FVM is a semi-analytical approach that takes into account both the flexure and torsion 

effects on any specific beam cross section incorporated with the Saint-Venant’s semi-inverse 

method, making it a computationally efficient approach compared to 3D FEM. Therefore, this 

chapter starts with the review of previous studies that have investigated the accuracy of the pure 

flexure response of homogenous isotropic beams against analytical solutions. This chapter then 

focuses on the comparison of the torsion-flexure response of beams obtained using the 3D FEM 

and FVM when both of the flexure and torsion modes exist. The potential of FVM as an alternative 
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to FEM is additionally highlighted, and the need for further research to validate its application to 

a broader range of beams including thin-walled structures emphasized. The aim of this chapter is 

to contribute to the field of structural engineering by providing a comparison of the accuracy and 

efficiency of FVM designed for torsion-flexure problem versus 3D FEM in predicting the torsion-

flexure response of homogenous isotropic beams. 

6.2 Three-dimensional Finite Element Analysis (ANSYS) 

 ANSYS is a widely used software for fluid, thermal and structural analysis and simulation 

in engineering. It provides a range of tools and capabilities for modeling and analyzing structures. 

In this chapter, ANSYS static structure tool is implemented for modeling of cantilever beams using 

Solid-186 elements to validate the FVM in solving torsion-flexure problems. Solid-186 elements 

are higher order 3D 20-node elements that exhibit quadratic displacement behavior. This type of 

element is defined by 20 nodes each having three degrees of freedom (translation in 𝑥, 𝑦 and 𝑧 

directions) shown in Figure 6-1. The default form of Solid-186, “homogeneous structural solid” is 

set, as all the analyzed beams in this chapter are homogeneous isotropic. 

 

Figure 6-1 Solid 186 Homogeneous structural solid element illustration 

 The full integration method is applied to each Solid-186 element, and all its integration 

points are used to evaluate the stiffness matrix for accurate element stiffness matrix components. 

By using the full integration method, the stress distribution within the element is evaluated exactly 

at each integration point using displacements, which leads to more accurate stress predictions. This 

is especially helpful for elements with irregular geometries or where stress concentrations may 

occur. Each Solid-186 element has a 60 × 60 stiffness matrix which is significantly larger than 
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those employed in FVM analysis whose size is 4 × 4 for basic deformation mode, as the basic 

quadrilateral unit in FVM (known as “subvolume”) relates four surface-averaged traction and 

displacement components in the longitudinal direction. To balance this intrinsic difference between 

the settings of elements in 3D FEM and subvolumes in FVM in order to compare results at levels 

as close as possible, the nodal values of 20 nodes in each Solid-186 together with those on the 

centers of six surfaces plus the entire body (27 nodal values in total) are exported from each 

element in 3D FEM. These nodal quantities are re-generated in FVM by employing a similar but 

finer meshing grid with four times of the total number of elements in each cross section, through 

splitting of each Solid-186 element into eight subvolumes with each taking over one the vertices 

of the Solid-186 element. For any cross section, nodal values exported from 3D FEM analysis and 

FVM analysis are point-to-point compared at the vertices of each subvolume, and the results in the 

remaining cross-sectional area are obtained by linear interpolation. 

 Generating a finite mesh in ANSYS is an important task as well since its quality affects the 

results of both 3D FEM and FVM. The elemental or subvolume shapes implemented can also 

greatly impact the behavior of the model as well as the stresses and displacements. Meshing with 

quadrilateral shape units is necessary for successful implementations of the FVM based on the 

same cross-sectional meshing grid, as FVM is currently capable of dealing with four-side units. 

Since the cross-sectional area of each analyzed beam in this chapter is simple, the default meshing 

methods “automatic method control” in ANSYS is selected, which attempts to sweep a hexahedral 

mesh for solid models prior to turning to the tetrahedron method. A sweeping mesh generates a 

mesh on one surface of a body and sweeps along the length of the body up to another surface. As 

a result, the mesh pattern is identical along the length of the body, which ensures consistent cross-

sectional mesh through the longitudinal direction for 3D FEM and FVM analysis. Using this 

meshing scheme, each meshed unit cubic with uniform size length of 0.1 inch is generated. 

 The structural model in ANSYS is the cantilever cylindrical beam with one face fully 

attached to a rigid surface (known as “fixed support” face). Different types of loading conditions 

may be applied to the other end face of the cylindrical beam which will be discussed in the next 

section in detail. The structural models for the cantilever cylindrical beams are solved in 

“Mechanical APDL” under linear elastic analysis. The solution information contains the 

distribution of three stress components (𝜎𝑥𝑧 , 𝜎𝑦𝑧 , 𝜎𝑧𝑧) and three displacement components (𝑢, 𝑣, 𝑤) 
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on specific cross sections. Upon completion of generating the solution, stress components 

(𝜎𝑥𝑧 , 𝜎𝑦𝑧 , 𝜎𝑧𝑧) and displacement components (𝑢, 𝑣, 𝑤) are exported to corresponding six datasets 

with each row in any of those datasets containing the information of a node’s properties. Those 

datasets do not only specify the nodal quantities for 𝜎𝑥𝑧, 𝜎𝑦𝑧, 𝜎𝑧𝑧 , 𝑢, 𝑣, 𝑤, but also provide sufficient 

data for setting up the meshing grid of FVM analysis, since each row processes information about 

the nodal index, nodal coordinates, as well as the index of the element that the node belongs to. 

6.3 Performance Comparison in Cross Sections Away from the Ends 

 The cross-sectional performance of beams is a critical factor in structural engineering 

design. The Saint Venant’s principle states that the behavior of any cross section of a beam only 

depends on the away-from-end forces and/or moments in the resultant sense as long as the cross 

section is not close to them. For the torsion-flexure problem of any cantilever beam, the majority 

of the beam cross sections are away from the ends, thus three cross sections at each quarter of the 

beam length (25%, 50%, 75%) will be selected first and then analyzed for the validation of the 

Saint Venant’s semi-inverse approach, which is intrinsic to the FVM approach. The cross section 

at 50% of the beam length is the furthest one to either end, and the cross sections at 25% and 75% 

of the beam length are also checked in case of any unexpected significant variation exists in the 

interval. 

 Solutions of the torsion-flexure problem by 3D FEM and FVM are compared in this section 

for each of the cases in the sequel, with the analytical solution also included for the rectangular 

cross section with the end subjected to either a transverse force or a twisting moment, i.e., the 

rectangular beam either deforms by pure bending about one specific direction or by pure twisting 

about its centroid (also serving as the shear center for the rectangle). If the free end of a rectangular 

beam were subjected to a resultant force not directed through the shear center, no analytical 

solution would be available without decomposing the loading into two flexure force components 

and a torque about the centroid and treating the entire problem as three separate sub-problems. 

Since comparisons are conducted in a point-to-point fashion, 3D FEM and FVM will be verified 

with the analytical solution if it is available, and the error is normalized by the maximum value 

among all the nodal values in the analytical solution. This error is evaluated for any quantity of 

interest 𝑄𝑘 at every refined mesh grid point (node 𝑖) when there is an analytical solution available. 
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 𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝐹𝑉𝑀 @ 𝑛𝑜𝑑𝑒 𝑖 =
𝑄𝑘𝑖
𝐹𝑉𝑀 − 𝑄𝑘𝑖

𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙
  

max (𝑄𝑘1
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

, 𝑄𝑘2
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

, … , 𝑄𝑘𝑚
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

)
 (6. 72) 

 
𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 3𝐷 𝐹𝐸𝑀 @ 𝑛𝑜𝑑𝑒 𝑖 =

𝑄𝑘𝑖
3𝐷 𝐹𝐸𝑀 − 𝑄𝑘𝑖

𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙
  

max (𝑄𝑘1
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

, 𝑄𝑘2
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

, … , 𝑄𝑘𝑚
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

)
 (6. 73) 

If an analytical solution is not available because of complex geometries of the cross sections or 

complicated loading conditions, comparison between FVM and 3D FEM predictions will solely 

employ the normalized difference using the maximum value among all the nodal values obtained 

from the rectangular mesh grid points in the 3D FEM simulations. This error or difference is 

evaluated for any quantity of interest 𝑄𝑘 at every refined mesh grid point (node 𝑖) only when these 

is no analytical solution available. 

 𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝐹𝑉𝑀 @ 𝑛𝑜𝑑𝑒 𝑖 =
𝑄𝑘𝑖
𝐹𝑉𝑀 − 𝑄𝑘𝑖

3𝐷 𝐹𝐸𝑀  

max (𝑄𝑘1
3𝐷 𝐹𝐸𝑀, 𝑄𝑘2

3𝐷 𝐹𝐸𝑀, … , 𝑄𝑘𝑚
3𝐷 𝐹𝐸𝑀)

 (6. 74) 

 A rectangular beam with 2 inches (width) × 4 inches (height) cross section and the length 

of 40 inches is taken from Section 4.5 for more detailed comparisons. If the longitudinal coordinate 

𝑧 starts from the fixed end face along the beam, the 𝑧 coordinates for 25%, 50%, 75% of the beam 

length are 𝑧 = 10, 20, 30 inches respectively denoted cross sections A, B and C. The following 

moduli are employed uniformly in the homogenous isotropic beam analysis: Young’s modulus 

𝐸 = 30,000 𝑘𝑠𝑖, and Poisson’s ratio 𝜈 = 0.3, with the shear modulus obtained from the relation 

𝐺 =
𝐸

2(1+ν)
= 11,538 𝑘𝑠𝑖. 

6.3.1 Pure Flexure of Beams 

Flexure about one principal direction (one flexure mode in FVM): 
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 The performance comparison of the three methods (FVM, 3D FEM, analytical) is based on 

the flexure response of beams about the principal 𝑦  axis produced by the resultant force 𝐹𝑦 =

10 𝑘𝑖𝑝𝑠 located in the center of the free end illustrated in Figure 6-2. 

 

Figure 6-2 Homogeneous isotropic rectangular cantilever beam with vertical loading at the end 

(left) and the ANSYS mesh of each cross section with 800 elements (right) 

For this loading condition, the shear stress 𝜎𝑥𝑧 distributions exhibit little difference in the cross 

sections A, B, C shown in Figure 6-3: 
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Figure 6-3 Shear stress 𝜎𝑥𝑧 distribution for the rectangular beam with 𝐹𝑦 = 10 𝑘𝑖𝑝𝑠 

The errors of FVM and 3D FEM with respect to the analytical solutions are generally unnoticeable 

for 𝜎𝑥𝑧, except around the boundary in FVM results, as shown in Figure 6-4: 



 201 

 

 

Figure 6-4 Shear stress 𝜎𝑥𝑧 distribution error for the rectangular beam with 𝐹𝑦 = 10 𝑘𝑖𝑝𝑠 

The shear stress 𝜎𝑦𝑧 distributons also exhibit little difference in the cross sections A, B, C which 

are shown in Figure 6-5: 
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Figure 6-5 Shear stress 𝜎𝑦𝑧 distribution for the rectangular beam with 𝐹𝑦 = 10 𝑘𝑖𝑝𝑠 

The errors in FVM and 3D FEM results with respect to the analytical solution are also very small 

for 𝜎𝑦𝑧, as shown in Figure 6-6: 
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Figure 6-6 Shear stress 𝜎𝑦𝑧 distribution error for the rectangular beam with 𝐹𝑦 = 10 𝑘𝑖𝑝𝑠 

The normal stress 𝜎𝑧𝑧 distributions in the cross sections A, B, C are plotted using different scales 

due to their decreasing magnitude away from the fixed end, however, the variation along the 

vertical direction is similar in the three cross sections shown in Figure 6-7. 
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Figure 6-7 Normal stress 𝜎𝑧𝑧 distribution for the rectangular beam with 𝐹𝑦 = 10 𝑘𝑖𝑝𝑠 

The errors in FVM and 3D FEM results with respect to the analytical solutions are also trivial for 

𝜎𝑧𝑧, as shown in Figure 6-8: 
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Figure 6-8 Normal stress 𝜎𝑧𝑧 distribution error for the rectangular beam with 𝐹𝑦 = 10 𝑘𝑖𝑝𝑠 

The 𝑥 displacement component 𝑢 has close distribution at cross section A, B, C shown in Figure 

6-9: 

 

 

Figure 6-9 Displacement 𝑢 distribution for the rectangular beam with 𝐹𝑦 = 10 𝑘𝑖𝑝𝑠 
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The errors in FVM and 3D FEM results with respect to the analytical solutions are insignificant 

for 𝑢, as shown in Figure 6-10: 

 

Figure 6-10 Displacement 𝑢 distribution error for the rectangular beam with 𝐹𝑦 = 10 𝑘𝑖𝑝𝑠 

The 𝑦 displacement component 𝑣 has similar distributions in the cross sections A, B, C which is 

shown in Figure 6-11.  
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Figure 6-11 Displacement 𝑣 distribution for the rectangular beam with 𝐹𝑦 = 10 𝑘𝑖𝑝𝑠 

One can easily observe that the 3D FEM does not have smooth pattern for cross sections closer to 

the free end (those with larger deflection) while FVM and analytical solutions do. It appears that 

3D FEM has lower resolution than FVM for a comparable number of nodes relative to the number 

of subvolume surfaces in FVM analysis in some cross sections. 
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 The errors in FVM and 3D FEM results with respect to the analytical solutions are small 

and uniform in terms of 𝑣 over each cross section, and the errors in 𝑣 decrease as the cross section 

moves away from the fixed end shown in Figure 6-12. 

 

 

Figure 6-12 Displacement 𝑣 distribution error for the rectangular beam with 𝐹𝑦 = 10 𝑘𝑖𝑝𝑠 

The 𝑧 displacement component 𝑤 distributions are plotted in different scales in the cross sections 

A, B, C due to increasing magnitudes away from the fixed end, however, the variation along the 

vertical direction is still similar in the three cross sections shown in Figure 6-13: 
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Figure 6-13 Displacement 𝑤 distribution for the rectangular beam with 𝐹𝑦 = 10 𝑘𝑖𝑝𝑠 

The errors in FVM and 3D FEM results with respect to the analytical solutions are small for 𝑤, 

and the errors in 𝑤 decrease as the cross section moves away from the fixed end shown in Figure 

6-14. 
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Figure 6-14 Displacement 𝑤 distribution error for the rectangular beam with 𝐹𝑦 = 10 𝑘𝑖𝑝𝑠 

 In summary, for the rectangular beam loaded with only 𝐹𝑦 = 10 𝑘𝑖𝑝𝑠 at the center of free 

end, the shear stresses 𝜎𝑥𝑧  and 𝜎𝑦𝑧  as well as the displacements 𝑢  and 𝑣  exhibit very similar 

magnitudes and distributions in the cross sections A, B, and C, while the normal stress 𝜎𝑧𝑧 and 

displacement 𝑤  have similar distributions but different magnitudes corresponding to the 

assumptions in the elasticity solution. All the errors in FVM or 3D FEM results relative to the 

analytical solution are relatively small. Though 3D FEM has a slightly smaller average and 

maximum error than FVM over the entire rectangular cross sections A, B and C in stress fields, 

FVM outperforms 3D FEM in predicting the displacements. For this validation case, all stresses 

and displacements except the normal longitudinal stress and displacement exhibit close 

performance in the cross sections A, B, C. Therefore, only stress and displacement fields in the 

middle cross section B, serving as the representative of any cross section away from the beam ends, 

will be illustrated in the following cases for conciseness. 
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6.3.2 Pure Torsion of Beams 

Torsion about longitudinal direction (only torsion mode in FVM): 

 The performance comparison of the three methods (FVM, 3D FEM, analytical) is based on 

the torsional response of beams along the 𝑧 direction produced by the resultant twisting moment 

𝑀𝑧 = 30 𝑘𝑖𝑝𝑠. 𝑖𝑛 about the center of the free end illustrated in Figure 6-15. 

 

Figure 6-15 Homogeneous isotropic rectangular cantilever beam with a moment in the end plane 

(left) and the ANSYS mesh of each cross section with 800 elements (right) 

The normal stress is everywhere zero in the solutions of the three methods, while the shear stresses 

𝜎𝑥𝑧 and 𝜎𝑦𝑧 have distributions in the cross section B shown in Figure 6-16. 
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Figure 6-16 Shear stresses 𝜎𝑥𝑧 (top) and 𝜎𝑦𝑧 (bottom) distribution for the rectangular beam with 

𝑀𝑧 = 30 𝑘𝑖𝑝𝑠. 𝑖𝑛 

The errors in FVM and 3D FEM results with respect to the analytical solutions are very small 

throughout most of the cross section for 𝜎𝑦𝑧, as shown in Figure 6-17.  

 

Figure 6-17 Shear stresses 𝜎𝑥𝑧 (left two) and 𝜎𝑦𝑧 (right two) distribution errors for the 

rectangular beam with 𝑀𝑧 = 30 𝑘𝑖𝑝𝑠. 𝑖𝑛 

The errors in FVM results are noticeable along the boundary, and the errors for 𝜎𝑥𝑧 are slightly 

larger than 𝜎𝑦𝑧 for both FVM and 3D FEM solutions. 

 Each of the 𝑥, 𝑦, 𝑧 displacement components 𝑢, 𝑣, 𝑤 predicted by the three methods have 

very similar distributions in the cross sections A, B, C, with the distribution in the cross section B 



 213 

selected for conciseness. The 𝑥, 𝑦  displacement components 𝑢, 𝑣  increase linearly with the 

distance from the fixed end, however the distribution pattern is not affected by the cross section 

location and hence only displacements in the cross section B are shown in Figure 6-18: 

 

 

 

Figure 6-18 Displacements 𝑢, 𝑣, 𝑤 distribution for the rectangular beam with 𝑀𝑧 = 30 𝑘𝑖𝑝𝑠. 𝑖𝑛 
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The errors in 3D FEM results with respect to the analytical solutions are within 5% for 𝑢 and 𝑣, 

and are within 1% for 𝑤 shown in Figure 6-19. FVM solutions do exhibit any noticeable difference 

relative to the analytical solutions. 

 

 

Figure 6-19 Displacements 𝑢, 𝑣, 𝑤 distribution errors for the rectangular beam with 𝑀𝑧 =

30 𝑘𝑖𝑝𝑠. 𝑖𝑛 

 In summary, for the rectangular beam loaded by only 𝑀𝑧 = 30 𝑘𝑖𝑝𝑠. 𝑖𝑛 about the center of 

free end, the shear stresses 𝜎𝑥𝑧  and 𝜎𝑦𝑧  as well as the displacement 𝑤  exhibit very similar 

magnitudes and distributions in the cross sections A, B, and C, while the displacement 𝑢 and 𝑣 

have similar distributions but different magnitudes according to the assumptions employed in the 

elasticity solutions. All the errors in FVM or 3D FEM results relative to the analytical solution are 

relatively small. Though 3D FEM has slightly smaller average and maximum errors than FVM 
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over the entire rectangular cross sections A, B and C in the stress fields, FVM outperforms 3D 

FEM in predicting the displacements. 

6.3.2 Torsion-Flexure of Beams 

 The numerical methods employed in previous cases could be validated with the analytical 

approach because of the specific applied loading. For general torsion-flexure problem when more 

than one deformation mode appears, or problems involving complex beam geometry shape are 

encountered, no analytical solution is available. Therefore, FVM will only be compared with 3D 

FEM for mutual verification. A rectangular beam and a C-shape channel beam with an end force 

applied at the corner, as well as a C-shape channel beam with an end force applied at its shear 

center will be analyzed in the sequel. 

Torsion-flexure about any of principal direction (torsion mode and one flexure mode in FVM): 

 The performance comparison of the two methods (FVM, 3D FEM) is based on the torsion-

flexure response of beams that experience bending about a principal direction as well as rotation 

produced by the resultant force component 𝐹𝑥 = 10 𝑘𝑖𝑝𝑠 and a twisting moment 𝑀𝑧 = 10 𝑘𝑖𝑝𝑠. 𝑖𝑛 

about the centroid illustrated in Figure 6-20. This is an equivalent treatment of a force situated at 

the corner of the free end face of the rectangular beam. Unlike the previous cases where the beam 

either bends about just one principal axis or rotates about the center line, the beam in this case 

deforms both by twisting and bending due to the eccentric load. 

 

Figure 6-20 Homogeneous isotropic rectangular cantilever beam with a force at the corner (left) 

and the ANSYS mesh of each cross section with 800 elements (right) 
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The stresses 𝜎𝑥𝑧 , 𝜎𝑦𝑧 and  𝜎𝑧𝑧 have distributions in the middle cross section B shown in Figure 

6-21.  

 

 

 

Figure 6-21 Stresses 𝜎𝑥𝑧, 𝜎𝑦𝑧 , 𝜎𝑧𝑧 distribution errors for the rectangular beam with 𝐹𝑦 =

10 𝑘𝑖𝑝𝑠 at the corner 
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Differences in the two shear stress components 𝜎𝑥𝑧 and 𝜎𝑦𝑧 are limited to very small regions along 

the right and left, and upper and lower, boundaries of the cross section and vanish within. 

 The displacements 𝑢, 𝑣 and 𝑤 have distributions in the middle cross section B also shown 

in Figure 6-22.  
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Figure 6-22 Displacements 𝑢, 𝑣, 𝑤 distribution errors for the rectangular beam with 𝐹𝑦 =

10 𝑘𝑖𝑝𝑠 at the corner 

Differences in the 𝑢 displacement distributions are observed along the vertical direction, whereas 

the 𝑣 displacement has a consistent error of about 0.5% over the entire cross section B. Differences 

in the 𝑤 displacement distributions are also observed along the vertical direction, albeit to a much 

smaller extent than those of 𝑢. 

Torsion-flexure for C-shape channel beam (one flexure mode in FVM): 

 The performance comparison of the two methods (FVM, 3D FEM) is based on the torsion-

flexure response of beams about a principal direction produced by the resultant force component 

𝐹𝑦 = 10 𝑘𝑖𝑝𝑠 located in the shear center of the free end illustrated in Figure 6-23. As the force is 

directed through the shear center, the beam only bends only about the 𝑥 axis without twisting. 

 

Figure 6-23 Homogeneous isotropic C-shape channel cantilever beam with a force at the shear 

center (left) and the ANSYS mesh of each cross section with 600 elements (right) 

The shear center, where 𝐹𝑦  resides, is computed by FVM based on the geometry of the cross 

section using the approach described in Chapter 5. All the stresses 𝜎𝑥𝑧 , 𝜎𝑦𝑧 and  𝜎𝑧𝑧 have close 

distributions in the middle cross section B shown in Figure 6-24.  



 219 

 

 

Figure 6-24 Stresses 𝜎𝑥𝑧, 𝜎𝑦𝑧 , 𝜎𝑧𝑧 distribution errors for the C-shape channel beam with 𝐹𝑦 =

10 𝑘𝑖𝑝𝑠 at the shear center 

Major differences are observed concentrating at the re-entrant corners of the C-shape cross section 

for 𝜎𝑥𝑧 and 𝜎𝑦𝑧. The field plots for the displacements 𝑢, 𝑣, 𝑤 are not shown here for conciseness 

as FVM and 3D FEM generate close results. However, it is worth noting that the horizontal 
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displacement varies from −0.0006  to 0.0006   inch in both FVM and 3D FEM predictions, 

indicating absence of twisting movement in the C-shape channel beam for loading applied through 

its shear center. 

Torsion-flexure for C-shape channel beam (torsion mode and one flexure mode in FVM): 

 The performance comparison of the two methods (FVM, 3D FEM) is based on the torsion-

flexure response of beams experiencing bending about a principal direction as well as rotation both 

produced by the resultant force component 𝐹𝑦 = 10 𝑘𝑖𝑝𝑠  located at the corner of the free end 

illustrated in Figure 6-25, which generates an additional moment about the shear center.  

 

Figure 6-25 Homogeneous isotropic C-shape channel cantilever beam with a force at the corner 

(left) and the ANSYS mesh of each cross section with 600 elements (right) 

The stresses 𝜎𝑥𝑧 ,  𝜎𝑦𝑧  and  𝜎𝑧𝑧  have close distributions in the middle cross section B shown in 

Figure 6-26:  
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Figure 6-26 Stresses 𝜎𝑥𝑧, 𝜎𝑦𝑧 , 𝜎𝑧𝑧 distribution errors for the C-shape channel beam with 𝐹𝑦 =

10 𝑘𝑖𝑝𝑠 at the corner 

The shear stresses 𝜎𝑥𝑧  and 𝜎𝑦𝑧  become more intense as torsion greatly contributes to shear 

deformation, while the normal stress 𝜎𝑧𝑧  remains unchanged from the previous case. Major 

differences still concentrate at the re-entrant corners of the C-shape cross section for 𝜎𝑥𝑧 and 𝜎𝑦𝑧. 

6.4 Variation of Cross-Sectional Performance Along the Longitudinal Axis 

 The torsion-flexure problem involves analysis of deformation and stress distributions in a 

structural member subjected to both torsional and flexural loads. Understanding the behavior of 

structural members under these loads is critical for designing safe and efficient structures. One of 

the key assumptions behind the solution of the torsion-flexure problem is the Saint-Venant's 

principle, which states that the actual boundary conditions and their statical equivalent will 

produce the same stress field at a sufficient distance from the boundary. This principle allows 
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engineers to simplify the analysis of complex structures by focusing on a smaller region rather 

than analyzing the entire structure. 

 To validate the Saint-Venant's principle, cross section analysis at different distances from 

the end of the structural member can be conducted using numerical methods such as the proposed 

FVM and 3D FEM. Both methods provide detailed information about the stress distribution and 

deformation within the structural member, allowing one to compare the results with the Saint-

Venant's principle. This section aims to perform a comprehensive validation of the Saint-Venant's 

principle by analyzing the torsion-flexure problem using FVM and 3D FEM on multiple cross 

sections along the beam’s span. The stress distribution and deformation in the structural member 

at different distances from the end will be investigated to determine how far from the fixed end the 

Saint-Venant's principle becomes valid. This section may have significant implications in 

designing more efficient and safer structures and providing insights into design limitations near 

the ends of a beam. 

Torsion-flexure for rectangular beam (torsion mode and both flexure modes in FVM): 

 

Figure 6-27 Homogeneous isotropic rectangular cantilever beam with combined forces at the 

corner 

 The meshing rectangular units in both 3D FEM and FVM are uniform 0.05 × 0.05 inch, 

and the cross section has the dimension of 2 × 4  inches. The average errors for quantities of 
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interest among all the vertices of the meshing units are plotted versus the longitudinal coordinates 

of each cross section in Figure 6-28. 

 

Figure 6-28 The error variation of stresses and displacements along the length of a homogeneous 

isotropic rectangular cantilever beam with combined forces at the corner 

The stresses 𝜎𝑥𝑧, 𝜎𝑦𝑧, and 𝜎𝑧𝑧 all have less than 0.05% averaged errors in interior cross sections 

ranging from 𝑧 = 6 to 𝑧 = 35 inches. In the immediate vicinity of the fixed end or the end where 

load is applied, the FVM shear stress predictions differ substantially from the 3D FEM results, 

with the differences vanishing at distances approximately one and a half times the beam height as 

expected from the Saint Venant’s principle. In contrast, the averaged errors in the displacements 

𝑢 , 𝑣  and 𝑤  are much smaller than the shear stress errors and decrease at a faster rate with 

increasing distance from the fixed end. Beyond 𝑧 = 3  inches from the fixed end the averaged 

errors in the displacements are below 1.2%. 

Torsion-flexure for I shape beam (torsion mode and both flexure modes in FVM): 
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Figure 6-29 Homogeneous isotropic I-shape cantilever beam with combined forces at the corner 

 With the same meshing unit size as previous (uniformly 0.05 × 0.05 inch), this I-shape 

beam cross section has the overall dimension of 2 × 4 inches. Both the web and flanges are 1 inch 

thick. The average errors for quantities of interest among all the vertices of the meshing units are 

plotted versus the longitudinal coordinates of each cross section in Figure 6-30. 

 

Figure 6-30 The error variation of stresses and displacements along the length of a homogeneous 

isotropic I-shape cantilever beam with combined forces at the corner 

The stresses 𝜎𝑥𝑧, 𝜎𝑦𝑧, and 𝜎𝑧𝑧 all have less than 1% averaged errors in cross sections ranging from 

𝑧 = 7 to 𝑧 = 35 inches, which indicates error attenuation similar to that of the rectangular beam. 

This points to the importance of the overall cross section dimensions rather than cross sectional 

details as one would expect from Saint Venant’s principle. Apparently, the cross-sectional 
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geometry influences the magnitude of the differences at the fixation point, producing smaller errors 

for the I beam relative to the rectangular beam. The averaged errors in the displacements 𝑢, 𝑣 and 

𝑤 die down as the cross-section’s distance increases from the fixed end to the free end, with all 

the averaged displacement errors below 2% beyond 𝑧 = 10 inches. 

Torsion-flexure for C-shape beam (torsion mode and both flexure modes in FVM): 

 

Figure 6-31 Homogeneous isotropic C-shape cantilever beam with combined forces at the corner 

 With the same meshing unit size as previous (uniformly 0.05 × 0.05 inch), this C-shape 

channel beam cross section has the overall dimension of 2 × 4 inches. Both its web and flanges 

are 1 inch thick. The average errors among all the vertices of the meshing units are plotted versus 

the longitudinal coordinates of each cross section in Figure 6-32. 
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Figure 6-32 The error variation of stresses and displacements along the length of a homogeneous 

isotropic C-shape channel cantilever beam with combined forces at the corner 

The stresses 𝜎𝑥𝑧, 𝜎𝑦𝑧, and 𝜎𝑧𝑧 all have less than 1% averaged errors in cross sections ranging from 

𝑧 = 6 to 𝑧 = 34 inches, which again confirms the error attenuation rate similar to those observed 

for the rectangular and I-shape beams, further supporting the validity of Saint Venant’s principle 

in structural engineering applications. The averaged errors of displacements 𝑢, 𝑣 and 𝑤 decrease 

as the cross section moves from the fixed end to the free end as predicted. The averaged errors of 

the 𝑢 and 𝑤 displacements are below 2% beyond 𝑧 = 10 inches, while the averaged errors of the 

𝑣 displacements are above 6.2% for all the cross sections analyzed. 

6.5 Summary 

 Two structural modeling approaches are compared for torsion-flexure of beams: 3D FEM 

and FVM. The FEM approach is a well-established numerical method for analyzing the torsion-

flexure response of structures. The FVM is a relatively new and emerging approach that exhibits 

the potential to address certain limitations of 3D FEM. FVM offers improved computational 

efficiency, demonstrating a speed advantage of five to six times faster compared to 3D FEM. 

Moreover, FVM outperforms 3D FEM in displacement field predictions, albeit at the expense of 

small degradation in the stress fields, under pure flexure of a rectangular cross section. The 

comparison of the two methods’ performance in torsion-flexure can contribute to the field of 

structural engineering by providing reliable insights into the strengths and weaknesses of different 

numerical methods for analyzing the torsion-flexure response of beams. The results of this chapter 

also demonstrate the suitability of FVM modeling approaches for different types of beam problems 

and their future applications in the design of real-world structures. The Saint Venant’s principle is 

verified in solving the torsion-flexure problem which validates the FVM’s capability in analyzing 

cross sections away from the ends where the manner of applying boundary conditions matters. 

 This chapter helps bridge the gap between the existing numerical approaches, such as 3D 

FEM and FVM as well as the analytical approaches, thereby broadening the scope of beam 

modeling approaches available to engineers. Ultimately, this study could aid in the design and 

development of safer and more efficient structures in various fields of engineering.  
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Chapter 7  

Summary and Conclusions 

 

7.1 Summary of Accomplishments 

  The theory of elasticity provides a mathematical framework for studying elastic 

deformation and stress distribution of solid materials subjected to external loads. When applied to 

general three-dimensional deformation problems, the theory of elasticity can become complex and 

computationally intensive. Reducing a three-dimensional problem in elasticity to a quasi-three-

dimensional one greatly simplifies the analysis by making assumptions for a body or structure 

under specific considerations. Therefore, categories of elasticity problems are made based on 

geometry and the manner of boundary condition application that gives rise to specific functional 

forms of displacements, strains and stresses arising within the elastic body or structure. This 

dissertation develops two novel implementations of finite-volume based solutions for three 

technically important classes of problems in the theory of elasticity: plane problems, torsion 

problems and flexure problems. Plane problems form a large category applicable to solid materials 

subjected to loads that act only in the plane of the structure. Plane condition assumptions help 

establish two-dimensional models for analyzing the behaviors of plates, shells or thick structures 

under different loading conditions. By understanding the stresses and strains in structures under 

plane loading conditions, structural engineers are able to design structures that are optimized to 

withstand different types of force and displacement loadings. The other technically important class 

of problems in the theory of elasticity concerns the study of prismatic bars of arbitrary cross section 

bounded by a cylindrical surface and by a pair of planes normal to the traction-free surface with 

loadings applied only on its end faces. When the applied loading produces twisting only, this class 

of problems is called torsion and often treated as a separate class of problems. The complete 

problem of equilibrium of an elastic bar can be solved by utilizing the principle of superposition 

because loading applied to the end faces can be decomposed into four elementary loadings that 

produce: extension, bending, torsion, and flexure. Analyzing the behavior of beams under these 



 228 

four fundamental modes of deformation provides structural engineers with insights into the design 

of beam-like structures that can resist these loads with greater efficiency and safety. 

 Numerical methods in mechanics based on variational principles can provide solutions to 

the above classes of elasticity problems even for which analytical solutions do not exist. An 

attractive alternative to the solution of those problems is offered by the finite-volume method 

(FVM) which has gained popularity because of its explicit form and ability to deal with composite 

structures. The FVM specifically suited to the above classes of elasticity problems was developed 

by leveraging the classical finite-volume direct averaging micromechanics (FVDAM), Bansal and 

Pindera (2003, 2005). 

 In the context of plane problems, plane stress, plane strain and generalized plane strain 

conditions have been formulated within the parametric finite-volume framework for numerical 

solution implementation. Moreover, FVM has been extended to accommodate the analysis of 

structural components composed of orthotropic and monoclinic materials. The FVM solution for 

plane problems has been verified using elasticity solutions for rectangular cantilever beams 

subjected to bending loads under plane strain and plane stress conditions, and subsequently 

employed to investigate technologically significant problems of multi-layered beams and 

heterogenous beams with inclusions and porosities under transverse bending loads. The generated 

solutions were subsequently used to address questions regarding the applicability of 

homogenization when analyzing the response of multilayered beam or plate-like structures, as well 

as simulated response of composite beams under generalized plane strain. The FVM has also been 

applied to assist in the shear characterization of advanced unidirectional composites in off-axis 

tension tests and Iosipescu shear tests, and to evaluate analysis errors in these two common test 

methods employed for the determination of the axial shear modulus. 

 As one fundamental deformation problem, the Saint Venant’s torsion of bars comprised of 

rectangular orthotropic sections previously developed by the author has been extended to enable 

analysis of arbitrary cross sections characterized by curved boundaries in a similar parametric 

manner as in the FVM solution of plane problems. A comprehensive assessment and verification 

of the convergence and accuracy of the parametric finite-volume method was first presented by 

comparing it with elasticity solutions for cross sections with both convex and concave boundaries. 
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The FVM was subsequently applied to various structural applications of prismatic bars with curved 

boundaries, including star-shaped cross sections with homogeneous and graded regions designed 

to enhance torsional rigidities, and elliptical cross sections with orthotropic shear moduli designed 

to reduce and eliminate warping. The analysis also included multi-phase and multi-porosity cross 

sections. The results demonstrate that warping of solid cross sections can be mitigated through 

layering, and warping of porous cross sections may be mitigated through porosity grading. 

Additionally, torsional analysis of natural materials highlights the importance of considering actual 

microstructural details in the torsional response of natural heterogeneous cross sections, as 

demonstrated by the analysis of a bamboo's functionally graded cross section. The developed FVM 

and its findings provide valuable insights for the torsional design and analysis of a wide range of 

complex structural systems. 

 Flexure is another basic but non-trivial deformation mode as the flexure response of beams 

can produce significant shear stresses which are often overshadowed by larger magnitudes of 

bending stresses. The Saint-Venant’s semi-inverse method provides a framework for this class of 

problems based on assumed stress distributions that lead to solutions satisfying conditions of 

equilibrium and compatibility rather than assumed in-plane displacements based on kinematics in 

the torsion problem formulation. Analytical solutions have been developed for flexure problems, 

but they are limited to simple homogenous cross sections that are typically not of wide-ranging 

structural engineering interest. Beam cross sections that appear in structural designs are not easily 

amenable to analytical techniques and require either structural approximations or numerical 

solutions. FVM then has been developed to formulate the solution of the flexure problem as an 

alternative to FEM. Validation of the accuracy of FVM includes specialized comparison with pure 

bending results obtained by analytical methods for homogeneous circular, elliptic and rectangular 

beam problems. 

 Flexure without twisting only occurs when a cylindrical beam is subjected to loadings at 

one end whose resultant passes through the beam’s shear center. Once the shear center is identified 

for a beam’s cross section, the torsion-flexure problem can be decomposed into three deformation 

modes: two flexure modes in the two principal in-plane direction and the torsion mode about the 

longitudinal direction. The determination of the shear center as well as the decomposition approach 

for composite beams with uniform Poisson’s ratios has been programmed using FVM and 
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validated through convergence studies using equilateral triangular and semi-circular cross sections. 

FVM was also employed to assess the thin-wall structure assumptions commonly used in structural 

engineering practice for thin-walled cylindrical members. To check the programmed approach to 

determine the shear center via FVM, as well as to examine the flexure response of heterogeneous 

beams, a two-phase concentric beam was analyzed and the FVM predictions compared with the 

analytical solution, demonstrating high agreement. 

 A comprehensive assessment of the decomposition methodology intrinsic to FVM is 

conducted against the 3D FEM simulation. FVM approach demonstrated its potential in 

overcoming some of the limitations of 3D FEM, such as increased computational efficiency. 

Moreover, FVM outperformed 3D FEM in displacement field predictions, albeit at the expense of 

small degradation in the stress fields, under pure flexure of a rectangular cross section. The 

comparison of the two methods’ performance in torsion-flexure of various beams contributes to 

the field of structural engineering by providing reliable insights into the strengths and weaknesses 

of different numerical methods for analyzing the torsion-flexure response of beams. The 

decomposition approach of the torsion-flexure behavior into separate deformation modes has been 

successfully assessed in rectangular, I-shape and C-shape cross sections along the beam’s span at 

various distances from the ends. Hence, Saint Venant’s principle was verified in solving the 

torsion-flexure problem which validated FVM’s capability in analyzing cross sections away from 

the ends where the manner of applying boundary conditions matters. The gap between the existing 

numerical approaches, such as 3D FEM and FVM as well as the analytical approaches was filled, 

and the scope of beam modeling approaches available to engineers was broadened with more 

design confidence.  

 This dissertation demonstrated the application of the finite-volume method developed at 

the University of Virginia during the past twenty years to structural engineering problems 

involving torsion, flexure and plane problems of elasticity theory, thereby building a bridge 

between the two fields that are often treated separately. This involves the extension of the finite-

volume theory to enable solutions to the three classes of elasticity problems, and subsequent 

application to the solution of specific problems of importance in the design of structural 

engineering components as well as advanced material testing. Traditional and emerging structural 

components were considered, including components made up of laminated cross sections, and 
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cross sections reinforced or weakened by cylindrical inclusions or cavities. Application to the 

testing of orthotropic and monoclinic materials was also provided through appropriate extension 

of the finite-volume theory to accommodate orthotropic and monoclinic materials. 

 The completed work fills the gap between structural engineering and mechanics on the one 

hand and elasticity theory formulation and limited solutions of the related problems when they 

cannot be treated using the analytical approach. It also provides a powerful alternative to the 

widespread use of variational techniques for the considered classes of structural engineering 

problems. Ultimately, this dissertation has the potential to aid in the design and development of 

safer and more efficient structures in various fields of engineering from the accurate analysis 

conducted by FVM. 

7.2 Summary of Contributions 

 While the finite-volume theory has been used extensively in the solution of plane problems 

with isotropic materials, including contact and crack problems, there appear to be no reported 

results that address the use of the FVM in the solution of plane problems with materials more 

complicated than orthotropic, such as monoclinic materials with a single plane of material 

symmetry. Materials with monoclinic elastic moduli in the coordinate system in which analysis is 

conducted are obtained by rotating a unidirectional composite through an angle about the out-of-

plane axis. Multi-directional laminated plates made up of a number of such plies are employed in 

numerous structural engineering applications, including the aircraft industry. Off-axis plies are also 

employed in the determination of the axial shear modulus of advanced unidirectional composites 

based on the off-axis tension test because of its simplicity. The extended finite-volume theory 

enables re-examination of the effects of various parameters on the accuracy of the results obtained 

from this test method. 

 Selected problems involving laminated constructs with rectangular cross sections within 

the plane strain elasticity framework are also revisited in the context of microstructural effects 

introduced by the individual layers. Explicit treatment of such microstructures based on the finite-

element method is challenging due to the need for extensive discretization when the elastic moduli 
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contrast between the layers is large in the presence of large number of layers. Such problems are 

illustrated to be readily solved using the finite-volume method.  

 The major contributions of this dissertation include the extension of the finite-volume 

theory to the Saint-Venant’s torsion problem involving arbitrarily shaped cross sections enabled 

by newly implemented parametric mapping, and the implementation of stress-based formulation 

of the general torsion-flexure problem based on the Saint-Venant’s semi-inverse method as well. 

The parametric mapping capability is implemented within any structured or non-structured mesh 

framework. This is complemented by a novel incorporation of arbitrary discretization capability 

and the corresponding assembly algorithm for the global system of equations that enables efficient 

modeling of cross sections reinforced or weakened by inclusions or porosities, illustrated through 

examples from the traditional industry and natural plant world. 

 In addition, there is a need for a series of accurate, efficient and easy-to-use computational 

tools that automatically generate results and provide quick answers to the pure torsion problems 

or even the more general torsion-flexure problems in the analysis and design of structural elements. 

One of the byproducts of this dissertation research is a computer program that enables pure torsion 

analysis of homogeneous and composite structures with the output given in terms of displacement, 

strain, and stress fields, as well as the torsion rigidity, based on solid elasticity foundations. Figure 

7-1 shows a screenshot of a developed GUI for the torsional analysis of typical structural 

engineering beams. The cross sections include rectangular, I, T, channel and box beams, and will 

be expanded to a wide range of beams used in aerospace engineering. A practicing engineer will 

choose a specific cross section, define the dimensions, specify either isotropic or orthotropic 

moduli and load locations to generate the torsional response. 
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Figure 7-1 MATLAB GUI screenshot: solving the torsion problem for an I-beam 

 At present, this may only be achieved by a detailed finite-element analysis based on a 

variational principle that requires detailed meshing, as well as substantial training on using 

commercially available software. A series of MATLAB-based or Python-based computational 

tools executed through user-friendly graphical user interfaces based on the developed finite-

volume solution strategy will democratize structural engineering analysis in this area, increasing 

accessibility, and accelerating the development of novel structural designs. 

7.3 Present Limitations and Future Work 

 The construction of the FVM-based solutions of plane problems, torsion problems and 

torsion-flexure problems was based on certain elasticity assumptions which can limit the range of 

applications in structural engineering. Despite this constraint, FVM exhibits potential to overcome 

some of the limitations of FEM for torsion and torsion-flexure analyses, such as the requirement 

of sufficiently fine mesh in the vicinity of material changes. However, FVM is currently limited to 

certain types of stress or displacement field assumptions and boundary conditions and requires 
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further research to be applied to a broader range of beam problems, e.g., the torsion-flexure of 

composite beams with isotropic or more complex material properties. 

 The reduction of a three-dimensional torsion-flexure problem to three two-dimensional 

ones in the spirit of computational efficiency comes at the cost of sacrificing the possibility of 

obtaining results generated from full three-dimensional modeling in the immediate vicinity of 

fixation points and/or load application. The results in Chapter 6 confirm the error attenuation for 

the three types of beams away from the beam ends, supporting the validity of Saint Venant’s 

principle in structural engineering applications. While the FVM has been shown to be effective in 

analyzing problems (plane problems, torsion problems, and torsion-flexure problems) in two-

dimensional domains, many engineering applications involve structures with complex 3D 

geometries. Therefore, a natural extension of the completed FVM framework for the above classes 

of problems work would be to extend it to three-dimensional elasticity problems. 

 One of the potential applications of the three-dimensional finite-volume method (3D FVM) 

includes the analysis of composite materials with complex microstructures. The ability to 

accurately predict the mechanical response of such materials is critical for their design and 

optimization in the industry that needs high-accuracy results. This could include analysis of 

laminates with curved or twisted fibers, as well as incorporation of voids and inclusions into the 

model. The 3D FVM with periodic boundary conditions has been formulated and tested by Chen 

et al. (2016, 2018) with cubic subvolumes and parametric hexahedron subvolumes. The 3D FVM 

could also possibly involve the challenging use of unstructured meshes, adaptive subvolume 

geometry, and even higher-order theory for three-dimensional finite-volume schemes, and more 

importantly, its compatibility to deal with structural boundary conditions in modeling real 3D 

structural problems. 

  



 235 

References 

 

Aboudi, J., Pindera, M.-J., & Arnold, S. M. (1999). Higher-order theory for functionally graded 

materials. Composites Part B: Engineering, 30(8), 777-832.  

Aboudi, J., Pindera, M.-J., & Arnold, S. M. (2003). Higher-order theory for periodic multiphase 

materials with inelastic phases. International Journal of Plasticity, 19(6), 805-847.  

Bansal, Y., & Pindera, M.-J. (2003). Efficient reformulation of the thermoelastic higher-order 

theory for functionally graded materials. Journal of Thermal Stresses, 26(11-12), 1055-

1092.  

Bansal, Y., & Pindera, M.-J. (2005). A second look at the higher-order theory for periodic 

multiphase materials. J. Appl. Mech., 72(2), 177-195.  

Bansal, Y., & Pindera, M.-J. (2006). Finite-volume direct averaging micromechanics of 

heterogeneous materials with elastic–plastic phases. International Journal of Plasticity, 

22(5), 775-825.  

Barretta, R. (2014). Analogies between Kirchhoff plates and Saint-Venant beams under flexure. 

Acta Mechanica, 225(7), 2075-2083.  

Birman, V., & Byrd, L. W. (2007). Modeling and analysis of functionally graded materials and 

structures.  

Boresi, A. P., & Schmidt, R. (1985). Sidebottom. Advanced mechanics of materials, 4.  

Bufler, H. (1971). Theory of elasticity of a multilayered medium. Journal of Elasticity, 1(2), 125-

143.  

Buryachenko, V. (2007). Micromechanics of heterogeneous materials. Springer Science & 

Business Media.  

Cardiff, P., & Demirdžić, I. (2021). Thirty years of the finite volume method for solid mechanics. 

Archives of Computational Methods in Engineering, 28(5), 3721-3780.  

Cavalcante, M. A., & Marques, S. P. (2014). Homogenization of periodic materials with 

viscoelastic phases using the generalized FVDAM theory. Computational Materials 

Science, 87, 43-53. 

Cavalcante, M. A., & Pindera, M. -J. (2016). Generalized FVDAM theory for elastic–plastic 

periodic materials. International Journal of Plasticity, 77, 90-117. 



 236 

Cavalcante, M. A., Marques, S. P., & Pindera, M. J. (2008). Computational aspects of the 

parametric finite-volume theory for functionally graded materials. Computational 

Materials Science, 44(2), 422-438. 

Cavalcante, M. A., Marques, S. P., & Pindera, M.-J. (2007). Parametric formulation of the finite-

volume theory for functionally graded materials—part I: analysis.  

Cavalcante, M. A., Marques, S. P., & Pindera, M.-J. (2007). Parametric formulation of the finite-

volume theory for functionally graded materials—Part II: numerical results.  

Cavalcante, M. A., Pindera, M.-J., & Khatam, H. (2012). Finite-volume micromechanics of 

periodic materials: past, present and future. Composites Part B: Engineering, 43(6), 2521-

2543.  

Charalambakis, N., & Murat, F. (2006). Homogenization of stratified thermoviscoplastic 

materials. Quarterly of applied mathematics, 64(2), 359-399.  

Chatzigeorgiou, G., Charalambakis, N., & Murat, F. (2008). Homogenization problems of a 

hollow cylinder made of elastic materials with discontinuous properties. International 

Journal of Solids and Structures, 45(18-19), 5165-5180.  

Chen, H., Gomez, J., & Pindera, M.-J. (2020). Saint Venant’s torsion of homogeneous and 

composite bars by the finite volume method. Composite Structures, 242, 112128.  

Chen, H., Gomez, J., & Pindera, M.-J. (2021). Parametric finite-volume method for Saint 

Venant’s torsion of arbitrarily shaped cross sections. Composite Structures, 256, 113052.  

Chen, T. (2004). A homogeneous elliptical shaft may not warp under torsion. Acta Mechanica, 

169(1-4), 221-224.  

Chen, T., & Wei, C.-J. (2005). Saint-Venant torsion of anisotropic shafts: theoretical frameworks, 

extremal bounds and affine transformations. Quarterly Journal of Mechanics and Applied 

Mathematics, 58(2), 269-287.  

Chen, Q., Chen, X., Zhai, Z., & Yang, Z. (2016). A new and general formulation of three-

dimensional finite-volume micromechanics for particulate reinforced composites with 

viscoplastic phases. Composites Part B: Engineering, 85, 216-232. 

Chen, Q., Wang, G., & Chen, X. (2018). Three-dimensional parametric finite-volume 

homogenization of periodic materials with multi-scale structural applications. 

International Journal of Applied Mechanics, 10(04), 1850045. 



 237 

Darılmaz, K., Orakdöğen, E., & Girgin, K. (2018). Saint-Venant torsion of arbitrarily shaped 

orthotropic composite or FGM sections by a hybrid finite element approach. Acta 

Mechanica, 229, 1387-1398.  

Dong, S., Kosmatka, J., & Lin, H. (2001). On Saint-Venant’s problem for an inhomogeneous, 

anisotropic cylinder—Part I: Methodology for Saint-Venant solutions. J. Appl. Mech., 

68(3), 376-381.  

Ecsedi, I. (2004). Elliptic cross section without warping under torsion. Mechanics Research 

Communications, 31(2), 147-150.  

Galerkin, B. G. (1915). Series solution of some problems of elastic equilibrium of rods and 

plates. Vestnik inzhenerov i tekhnikov, 19(7), 897-908.  

Gattu, M., Khatam, H., Drago, A. S., & Pindera, M.-J. (2008). Parametric finite-volume 

micromechanics of uniaxial continuously-reinforced periodic materials with elastic 

phases. Journal of Engineering Materials and Technology, 130(3).  

Gordon, W. J., & Hall, C. A. (1973). Transfinite element methods: blending-function 

interpolation over arbitrary curved element domains. Numerische Mathematik, 21(2), 

109-129.  

Gordon, W. J., & Thiel, L. C. (1982). Transfinite mappings and their application to grid 

generation. Applied Mathematics and Computation, 10, 171-233.  

He, J., Chiang, M. Y., McDonough, W., & Hunston, D. L. (2002). Experimental and theoretical 

evaluations of the Iosipescu shear test for hybrid fiber composites. International SAMPE 

Symposium and Exhibition,  

Hellinger, E. (1907). Die allgemeinen ansätze der mechanik der kontinua. Springer.  

Horgan, C., & Chan, A. (1999). The pressurized hollow cylinder or disk problem for functionally 

graded isotropic linearly elastic materials. Journal of Elasticity, 55, 43-59.  

Horgan, C. O. (2007). On the torsion of functionally graded anisotropic linearly elastic bars. 

IMA Journal of Applied Mathematics, 72(5), 556-562.  

Hu, H.-C. (1955). On some variational principles in the theory of elasticity and plasticity. Sci. 

Sin., 4, 33-54.  

Jung, S. N., Dhadwal, M. K., Kim, Y. W., Kim, J. H., & Riemenschneider, J. (2015). Cross-

sectional constants of composite blades using computed tomography technique and finite 

element analysis. Composite Structures, 129, 132-142.  



 238 

Khatam, H., & Pindera, M.-J. (2009). Parametric finite-volume micromechanics of periodic 

materials with elastoplastic phases. International Journal of Plasticity, 25(7), 1386-1411.  

Khatam, H., & Pindera, M.-J. (2009). Thermo-elastic moduli of periodic multilayers with wavy 

architectures. Composites Part B: Engineering, 40(1), 50-64.  

Kolosov, G. (1909). On the Application of the Theory of Functions of a Complex Variable to a 

Plane problem in the Mathematical Theory of Elasticity. Yur'ev.  

Kosmatka, J., Lin, H., & Dong, S. (2001). On saint-venant’s problem for an inhomogeneous, 

anisotropic cylinder—part ii: Cross-sectional properties. J. Appl. Mech., 68(3), 382-391.  

Lekhnitskii, S. G., Fern, P., Brandstatter, J. J., & Dill, E. (1964). Theory of elasticity of an 

anisotropic elastic body. Physics Today, 17(1), 84.  

LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems (Vol. 31). Cambridge 

university press.  

Lezgy-Nazargah, M., Vidal, P., & Polit, O. (2021). A quasi-3D finite element model for the 

analysis of thin-walled beams under axial–flexural–torsional loads. Thin-Walled 

Structures, 164, 107811.  

Muskhelishvili, N. I. (1953). Some basic problems of the mathematical theory of elasticity (Vol. 

15). Noordhoff Groningen.  

Nogata, F., & Takahashi, H. (1995). Intelligent functionally graded material: bamboo. 

Composites Engineering, 5(7), 743-751.  

Pagano, N. J., & Halpin, J. (1968). Influence of end constraint in the testing of anisotropic 

bodies. Journal of Composite Materials, 2(1), 18-31.  

Paulino, G., Fannjiang, A., & Chan, Y.-S. (2003). Gradient elasticity theory for mode III fracture 

in functionally graded materials—part I: crack perpendicular to the material gradation. J. 

Appl. Mech., 70(4), 531-542.  

Pindera, M.-J. (1991). Local/global stiffness matrix formulation for composite materials and 

structures. Composites Engineering, 1(2), 69-83.  

Pindera, M.-J. (1991). Local/global stiffness matrix formulation for anisotropic multilayered 

structures. Advanced Composites Materials in Civil Engineering Structures,  

Pindera, M.-J., Choksi, G., Hidde, J. S., & Herakovich, C. T. (1987). A methodology for accurate 

shear characterization of unidirectional composites. Journal of Composite Materials, 

21(12), 1164-1184.  



 239 

Pindera, M.-J., & Herakovich, C. (1986). Shear characterization of unidirectional composites 

with the off-axis tension test. Experimental Mechanics, 26, 103-112.  

Postma, G. (1955). Wave propagation in a stratified medium. Geophysics, 20(4), 780-806.  

Rayleigh, J. W. S. B. (1896). The theory of sound (Vol. 2). Macmillan.  

Reissner, E. (1950). On a variational theorem in elasticity. Journal of Mathematics and Physics, 

29(1-4), 90-95.  

Reissner, E. (1965). A note on variational principles in elasticity. International Journal of Solids 

and Structures, 1(1), 93-95.  

Reissner, E. (1985). On mixed variational formulations in finite elasticity. Acta Mechanica, 56(3-

4), 117-125.  

Ritz, W. (1909). Über eine neue Methode zur Lösung gewisser Variationsprobleme der 

mathematischen Physik.  

Rooney, F. J., & Ferrari, M. (1995). Torsion and flexure of inhomogeneous elements. Composites 

Engineering, 5(7), 901-911.  

Rukhadze, A., & Vekua, I. y. N. (1933). Sur la torsion d'un cylindre armé d'une tige. Izvestiya 
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Appendix 

 

I. Reduced compliance matrix for monoclinic materials (𝒙 − 𝒚 plane symmetry) under 

plane stress condition 

 For an orthotropic material whose principal material coordinate system 1 − 2 − 3  is 

aligned with 𝑥 − 𝑦 − 𝑧  coordinate system, the plane stress problem is derived from the 

constitutive equation for the in-plane stress and strain. Based on those plane stress restrictions, 

the reduced stiffness matrix for an orthotropic material is 

[𝑸] =

[
 
 
 
 

𝐸11
1 − 𝜈12𝑉21

𝜈21𝐸11
1 − 𝜈12𝜈21

0

𝜈21𝐸11
1 − 𝜈12𝜈21

𝐸22
1 − 𝜈12𝜈21

0

0 0 𝐺12]
 
 
 
 

 

A specific type of monoclinic material comes from the rotation by angle 𝜃 about the 𝑧 axis, has 

the compliance matrix of the following: 

[�̅�] = [
𝑚2 𝑛2 −2𝑚𝑛
𝑛2 𝑚2 2𝑚𝑛
𝑚𝑛 −𝑚𝑛 𝑚2 − 𝑛2

]

−1

[𝑸] [
𝑚2 𝑛2 −𝑚𝑛
𝑛2 𝑚2 𝑚𝑛
2𝑚𝑛 −2𝑚𝑛 𝑚2 − 𝑛2

] 

where 𝑚 = cos 𝜃, 𝑛 = sin 𝜃, which satisfied 

[

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

] = [�̅�] [

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

] =

[
 
 
 
 𝐶1̅1 𝐶1̅2 𝐶1̅6

𝐶1̅2 𝐶2̅2 𝐶2̅6

𝐶1̅6 𝐶2̅6 𝐶6̅6 ]
 
 
 
 

[

𝜖𝑥𝑥
𝜖𝑦𝑦
𝛾𝑥𝑦

] 

 

II. Reduced compliance matrix for monoclinic materials (𝒙 − 𝒚 plane symmetry) under 

plane strain condition 

 For an orthotropic material whose principal material coordinate system 1 − 2 − 3 is 

aligned with 𝑥 − 𝑦 − 𝑧 coordinate system, the plane strain problem is derived from the 

constitutive equation for the in-plane stress and strain. The compliance matrix for an orthotropic 

material is 
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[𝑺] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
1

𝐸11
−
𝜐21
𝐸22

−
𝜐21
𝐸22

−
𝜐12
𝐸11

1

𝐸22

𝜐23
𝐸22

−
𝜐12
𝐸11

−
𝜐23
𝐸22

1

𝐸22

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 + 𝜐23
2𝐸22

0 0

0
1

𝐺12
0

0 0
1

𝐺12]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A specific type of monoclinic material comes from the rotation by angle 𝜃 about the 𝑧 axis, has 

the compliance matrix of the following: 

[𝑺] =

[
 
 
 
 
 

𝑚2 𝑛2 0
𝑛2 𝑚2 0
0 0 1

0 0 𝑚𝑛
0 0 −𝑚𝑛
0 0 0

0 0 0
0 0 0

−2𝑚𝑛 2𝑚𝑛 0

𝑚 −𝑛 0
𝑛 𝑚 0
0 0 𝑚2 − 𝑛2]

 
 
 
 
 
−1

[𝑺]

[
 
 
 
 
 
𝑚2 𝑛2 0
𝑛2 𝑚2 0
0 0 1

0 0 2𝑚𝑛
0 0 −2𝑚𝑛
0 0 0

0 0 0
0 0 0

−𝑚𝑛 𝑚𝑛 0

𝑚 −𝑛 0
𝑛 𝑚 0
0 0 𝑚2 − 𝑛2]

 
 
 
 
 

 

where 𝑚 = cos 𝜃, 𝑛 = sin 𝜃 , which satisfied 

[
 
 
 
 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦]

 
 
 
 
 

= [𝑺]−𝟏

[
 
 
 
 
 
𝜖𝑥𝑥
𝜖𝑦𝑦
𝜖𝑧𝑧
𝜖𝑦𝑧
𝜖𝑥𝑧
𝜖𝑥𝑦]

 
 
 
 
 

=

[
 
 
 
 
 
 𝐶11 𝐶12 𝐶13

𝐶12 𝐶22 𝐶23
𝐶13 𝐶23 𝐶33

𝐶14 𝐶15 𝐶16

𝐶24 𝐶25 𝐶26
𝐶34 𝐶35 𝐶36

𝐶14 𝐶24 𝐶34
𝐶15 𝐶25 𝐶35
𝐶16 𝐶26 𝐶36

𝐶44 𝐶45 𝐶46
𝐶45 𝐶55 𝐶56
𝐶46 𝐶56 𝐶66 ]

 
 
 
 
 
 

[
 
 
 
 
 
𝜖𝑥𝑥
𝜖𝑦𝑦
𝜖𝑧𝑧
𝜖𝑦𝑧
𝜖𝑥𝑧
𝜖𝑥𝑦]

 
 
 
 
 

 

 

III. Stiffness matrix components in plane stress problem 

 When 𝑟 = 1, 3, 5, 7 which corresponds to 𝑝 = 1, 2, 3, 4, half of components of the 

stiffness matrix in FVM solving for the plane stress problem are listed below: 

𝑘𝑟1 = (𝐶1̅1
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶1̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℰ(:,1)
(𝑖)

+ (�̅�12
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) 𝒃𝑝

(𝑖)
ℋ(:,1)

(𝑖)
+ (𝐶1̅6

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶6̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℰ(:,1)
(𝑖)

+ 𝒂𝑝
(𝑖)
ℋ(:,1)

(𝑖)
), 

𝑘𝑟2 = (𝐶1̅1
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶1̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℱ(:,1)
(𝑖)

+ (�̅�12
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
𝒢(:,1)
(𝑖)

+ (𝐶1̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶6̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℱ(:,1)
(𝑖)

+ 𝒂𝑝
(𝑖)
𝒢(:,1)
(𝑖)
), 

𝑘𝑟3 = (𝐶1̅1
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶1̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℰ(:,2)
(𝑖)

+ (�̅�12
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) 𝒃𝑝

(𝑖)
ℋ(:,2)

(𝑖)
+ (𝐶1̅6

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶6̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℰ(:,2)
(𝑖)

+ 𝒂𝑝
(𝑖)
ℋ(:,2)

(𝑖)
), 

𝑘𝑟4 = (𝐶1̅1
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶1̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℱ(:,2)
(𝑖)

+ (�̅�12
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
𝒢(:,2)
(𝑖)

+ (𝐶1̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶6̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℱ(:,2)
(𝑖)

+ 𝒂𝑝
(𝑖)
𝒢(:,2)
(𝑖)
), 

𝑘𝑟5 = (𝐶1̅1
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶1̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℰ(:,3)
(𝑖)

+ (�̅�12
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) 𝒃𝑝

(𝑖)
ℋ(:,3)

(𝑖)
+ (𝐶1̅6

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶6̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℰ(:,3)
(𝑖)

+ 𝒂𝑝
(𝑖)
ℋ(:,3)

(𝑖)
), 
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𝑘𝑟6 = (𝐶1̅1
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶1̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℱ(:,3)
(𝑖)

+ (�̅�12
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
𝒢(:,3)
(𝑖)

+ (𝐶1̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶6̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℱ(:,3)
(𝑖)

+ 𝒂𝑝
(𝑖)
𝒢(:,3)
(𝑖)
), 

𝑘𝑟7 = (𝐶1̅1
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶1̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℰ(:,4)
(𝑖)

+ (�̅�12
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) 𝒃𝑝

(𝑖)
ℋ(:,4)

(𝑖)
+ (𝐶1̅6

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶6̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℰ(:,4)
(𝑖)

+ 𝒂𝑝
(𝑖)
ℋ(:,4)

(𝑖)
), 

𝑘𝑝8 = (𝐶1̅1
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶1̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℱ(:,4)
(𝑖)

+ (�̅�12
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
𝒢(:,4)
(𝑖)

+ (𝐶1̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶6̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℱ(:,4)
(𝑖)

+ 𝒂𝑝
(𝑖)
𝒢(:,4)
(𝑖)
), 

𝑘𝑟
𝑒𝑧𝑧 = 0 

 

 When 𝑟 = 2, 4, 6, 8 which corresponds to 𝑝 = 1, 2, 3, 4, the rest half of components of the 

stiffness matrix in FVM solving for the plane stress problem are listed below: 

𝑘𝑟1 = (𝐶1̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶1̅2
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℰ(:,1)
(𝑖)

+ (𝐶2̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅2
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
ℋ(:,1)

(𝑖)
+ (𝐶6̅6

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℰ(:,1)
(𝑖)

+ 𝒂𝑝
(𝑖)
ℋ(:,1)

(𝑖)
), 

𝑘𝑟2 = (𝐶1̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶1̅2
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℱ(:,1)
(𝑖)

+ (𝐶2̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅2
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
𝒢(:,1)
(𝑖)

+ (𝐶6̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℱ(:,1)
(𝑖)

+ 𝒂𝑝
(𝑖)
𝒢(:,1)
(𝑖)
), 

𝑘𝑟3 = (𝐶1̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶1̅2
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℰ(:,2)
(𝑖)

+ (𝐶2̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅2
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
ℋ(:,2)

(𝑖)
+ (𝐶6̅6

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℰ(:,2)
(𝑖)

+ 𝒂𝑝
(𝑖)
ℋ(:,2)

(𝑖)
) 

𝑘𝑟4 = (𝐶1̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶1̅2
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℱ(:,2)
(𝑖)

+ (𝐶2̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅2
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
𝒢(:,2)
(𝑖)

+ (𝐶6̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℱ(:,2)
(𝑖)

+ 𝒂𝑝
(𝑖)
𝒢(:,2)
(𝑖)
), 

𝑘𝑟5 = (𝐶1̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶1̅2
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℰ(:,3)
(𝑖)

+ (𝐶2̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅2
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
ℋ(:,3)

(𝑖)
+ (𝐶6̅6

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℰ(:,3)
(𝑖)

+ 𝒂𝑝
(𝑖)
ℋ(:,3)

(𝑖)
), 

𝑘𝑟6 = (𝐶1̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶1̅2
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℱ(:,3)
(𝑖)

+ (𝐶2̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅2
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
𝒢(:,3)
(𝑖)

+ (𝐶6̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℱ(:,3)
(𝑖)

+ 𝒂𝑝
(𝑖)
𝒢(:,3)
(𝑖)
), 

𝑘𝑟7 = (𝐶1̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶1̅2
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℰ(:,4)
(𝑖)

+ (𝐶2̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅2
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
ℋ(:,4)

(𝑖)
+ (𝐶6̅6

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℰ(:,4)
(𝑖)

+ 𝒂𝑝
(𝑖)
ℋ(:,4)

(𝑖)
), 

𝑘𝑟8 = (𝐶1̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶1̅2
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℱ(:,4)
(𝑖)

+ (𝐶2̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅2
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
𝒢(:,4)
(𝑖)

+ (𝐶6̅6
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶2̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℱ(:,4)
(𝑖)

+ 𝒂𝑝
(𝑖)
𝒢(:,4)
(𝑖)
), 

𝑘𝑟
𝑒𝑧𝑧 = 0 

 

IV. Stiffness matrix components in plane strain problem and generalized plane strain 

 When 𝑟 = 1, 3, 5, 7 which corresponds to 𝑝 = 1, 2, 3, 4, half of components of the 

stiffness matrix in FVM solving for the plane strain problem are listed below: 

𝑘𝑟1 = (𝐶11
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶16
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℰ(:,1)
(𝑖)

+ (𝐶12
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
ℋ(:,1)

(𝑖)
+ (𝐶16

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶66
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℰ(:,1)
(𝑖)

+ 𝒂𝑝
(𝑖)
ℋ(:,1)

(𝑖)
), 

𝑘𝑟2 = (𝐶11
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶16
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℱ(:,1)
(𝑖)

+ (𝐶12
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
𝒢(:,1)
(𝑖)

+ (𝐶16
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶6̅6
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℱ(:,1)
(𝑖)

+ 𝒂𝑝
(𝑖)
𝒢(:,1)
(𝑖)
), 

𝑘𝑟3 = (𝐶11
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶16
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℰ(:,2)
(𝑖)

+ (𝐶12
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
ℋ(:,2)

(𝑖)
+ (𝐶16

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶66
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℰ(:,2)
(𝑖)

+ 𝒂𝑝
(𝑖)
ℋ(:,2)

(𝑖)
), 

𝑘𝑟4 = (𝐶11
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶16
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℱ(:,2)
(𝑖)

+ (𝐶12
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
𝒢(:,2)
(𝑖)

+ (𝐶16
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶66
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℱ(:,2)
(𝑖)

+ 𝒂𝑝
(𝑖)
𝒢(:,2)
(𝑖)
), 

𝑘𝑟5 = (𝐶11
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶16
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℰ(:,3)
(𝑖)

+ (𝐶12
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
ℋ(:,3)

(𝑖)
+ (𝐶16

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶66
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℰ(:,3)
(𝑖)

+ 𝒂𝑝
(𝑖)
ℋ(:,3)

(𝑖)
), 

𝑘𝑟6 = (𝐶11
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶16
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℱ(:,3)
(𝑖)

+ (𝐶12
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
𝒢(:,3)
(𝑖)

+ (𝐶16
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶66
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℱ(:,3)
(𝑖)

+ 𝒂𝑝
(𝑖)
𝒢(:,3)
(𝑖)
), 

𝑘𝑟7 = (𝐶11
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶16
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℰ(:,4)
(𝑖)

+ (𝐶12
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
ℋ(:,4)

(𝑖)
+ (𝐶16

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶66
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℰ(:,4)
(𝑖)

+ 𝒂𝑝
(𝑖)
ℋ(:,4)

(𝑖)
), 

𝑘𝑟8 = (𝐶11
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶16
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℱ(:,4)
(𝑖)

+ (𝐶12
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
𝒢(:,4)
(𝑖)

+ (𝐶16
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶66
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℱ(:,4)
(𝑖)

+ 𝒂𝑝
(𝑖)
𝒢(:,4)
(𝑖)
), 

𝑘𝑟
𝑒𝑧𝑧 = [(𝐶11

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶16
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
∁⃗ ℰℱ + (𝐶12

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
∁⃗ 𝒢ℋ + (𝐶13𝑛𝑥|𝑝

(𝑖)
+ 𝐶36

(𝑖)
𝑛𝑦|𝑝
(𝑖)
) + (𝐶16

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶66
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
∁⃗ ℰℱ

+ 𝒂𝑝
(𝑖)
∁⃗ 𝒢ℋ)]𝜖�̅�𝑧 
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 When 𝑟 = 2, 4, 6, 8 which corresponds to 𝑝 = 1, 2, 3, 4, the rest half of components of the 

stiffness matrix in FVM solving for the plane strain problem are listed below: 

𝑘𝑟1 = (𝐶16
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶12
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℰ(:,1)
(𝑖)

+ (𝐶26
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶22
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
ℋ(:,1)

(𝑖)
+ (𝐶66

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℰ(:,1)
(𝑖)

+ 𝒂𝑝
(𝑖)
ℋ(:,1)

(𝑖)
), 

𝑘𝑟2 = (𝐶16
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶12
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℱ(:,1)
(𝑖)

+ (𝐶26
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶22
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
𝒢(:,1)
(𝑖)

+ (𝐶66
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℱ(:,1)
(𝑖)

+ 𝒂𝑝
(𝑖)
𝒢(:,1)
(𝑖)
), 

𝑘𝑟3 = (𝐶16
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶12
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℰ(:,2)
(𝑖)

+ (𝐶26
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶22
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
ℋ(:,2)

(𝑖)
+ (𝐶66

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℰ(:,2)
(𝑖)

+ 𝒂𝑝
(𝑖)
ℋ(:,2)

(𝑖)
), 

𝑘𝑟4 = (𝐶16
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶12
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℱ(:,2)
(𝑖)

+ (𝐶26
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶22
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
𝒢(:,2)
(𝑖)

+ (𝐶66
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℱ(:,2)
(𝑖)

+ 𝒂𝑝
(𝑖)
𝒢(:,2)
(𝑖)
), 

𝑘𝑟5 = (𝐶16
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶12
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℰ(:,3)
(𝑖)

+ (𝐶26
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶22
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
ℋ(:,3)

(𝑖)
+ (𝐶66

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℰ(:,3)
(𝑖)

+ 𝒂𝑝
(𝑖)
ℋ(:,3)

(𝑖)
), 

𝑘𝑟6 = (𝐶16
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶12
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℱ(:,3)
(𝑖)

+ (𝐶26
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶22
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
𝒢(:,3)
(𝑖)

+ (𝐶66
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℱ(:,3)
(𝑖)

+ 𝒂𝑝
(𝑖)
𝒢(:,3)
(𝑖)
), 

𝑘𝑟7 = (𝐶16
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶12
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℰ(:,4)
(𝑖)

+ (𝐶26
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶22
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
ℋ(:,4)

(𝑖)
+ (𝐶66

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℰ(:,4)
(𝑖)

+ 𝒂𝑝
(𝑖)
ℋ(:,4)

(𝑖)
), 

𝑘𝑟8 = (𝐶16
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶12
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
ℱ(:,4)
(𝑖)

+ (𝐶26
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶22
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
𝒢(:,4)
(𝑖)

+ (𝐶66
(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
ℱ(:,4)
(𝑖)

+ 𝒂𝑝
(𝑖)
𝒢(:,4)
(𝑖)
), 

𝑘𝑟
𝑒𝑧𝑧 = [(𝐶16

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶12
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒂𝑝

(𝑖)
∁⃗ ℰℱ + (𝐶26

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶22
(𝑖)
𝑛𝑦|𝑝
(𝑖)
)𝒃𝑝

(𝑖)
∁⃗ 𝒢ℋ + (𝐶36𝑛𝑥|𝑝

(𝑖)
+ 𝐶23

(𝑖)
𝑛𝑦|𝑝
(𝑖)
) + (𝐶66

(𝑖)
𝑛𝑥|𝑝
(𝑖)

+ 𝐶26
(𝑖)
𝑛𝑦|𝑝
(𝑖)
) (𝒃𝑝

(𝑖)
∁⃗ ℰℱ

+ 𝒂𝑝
(𝑖)
∁⃗ 𝒢ℋ)]𝜖�̅�𝑧 

 


	1_Chen_Heze_2023_PHD
	page2_3
	1_Chen_Heze_2023_PHD

