
Structure is All You Need
Arnav Wadehra

Charlottesville, USA
txt3kr@virginia.edu

Jeremy Suh
Charlottesville, USA
bes9ub@virginia.edu

ABSTRACT
This paper introduces an approach to integrating Large Lan-
guage Models (LLMs) into application-layer software by lever-
aging structured outputs. We demonstrate that while LLMs ex-
cel in generating rich, natural language responses, traditional
programs struggle to parse these responses due to their lack of
structure. We propose a solution that involves guiding LLMs
to produce structured outputs, such as JSON or TypeScript
types, which are more compatible with existing software. This
approach, which we term "Type Engineering", bridges the gap
between natural language intelligence and application logic,
making LLMs backwards compatible with code. We argue
that this structured approach not only simplifies the integration
of LLMs into applications, but also enhances their utility by
making their outputs more predictable and manageable. This
structured approach to LLM output paves the way for more dy-
namic and interactive user interfaces, enabling LLMs to easily
"plug into" and provide an intelligence layer in the software
systems that already exist today.

INTRODUCTION
In the realm of artificial intelligence, large language models
(LLMs) have emerged as a powerful tool for processing and
understanding vast amounts of natural language data. These
models, built on neural network architectures (specifically
the transformer architecture) are capable of understanding
complex language patterns and reasoning across large amounts
of unstructured data. Despite their potential, LLMs behave
differently from a programming language, which can make
it difficult to use and integrate them effectively into existing
software systems.

To address these challenges, the concept of structured outputs
from LLMs can be used. Structured outputs refer to the use
of specific formats or schemas to organize the data returned
by a program or function. In the context of data-driven pro-
gramming, structured outputs can be the new data structures
created by functions that take in data as input. By having
LLMs generate only structured outputs, we can make LLMs
backwards compatible with existing code, thereby creating a
structured interface between natural language and application
logic. This approach not only simplifies the integration of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

LLMs into applications but also enhances their practicality for
everyday use.

STRUCTURED OUTPUTS IN PROGRAMMING
In traditional software development, structured outputs play
a crucial role in ensuring that data is organized and pre-
dictable. This concept is especially pertinent in the realm
of application-layer software, where data consistency and in-
tegrity are paramount. For instance, JSON (JavaScript Object
Notation) has emerged as a popular data format due to its
lightweight nature and easy readability by humans and ma-
chines alike (Crockford, 2006). Similarly, XML (eXtensible
Markup Language) is widely used for its ability to define cus-
tom data structures, making it a versatile choice for many
applications (Bray et al., 2008). These structured formats en-
able programmers to represent complex data in a way that is
both standardized and flexible, facilitating data interchange
between different software systems.

The importance of structured outputs extends to the concept
of type-hints in programming languages like Python, Type-
Script, and others. Type-hinting involves specifying the ex-
pected data types of function arguments, return values, and
variables within a program. This practice not only improves
code readability but also assists in error detection during the
development process (van Rossum et al., 2021). For example,
TypeScript, a superset of JavaScript, introduces static typing
to a traditionally dynamically-typed language, allowing devel-
opers to catch errors early in the development cycle and ensure
that the types of data being passed around in their applications
are consistent (Bierman et al., 2014).

Moreover, structured outputs and type-hints play a signifi-
cant role in API (Application Programming Interface) design.
APIs act as intermediaries, allowing different software systems
to communicate and exchange data. Structured outputs like
JSON or XML ensure that the data exchanged via APIs ad-
heres to a predefined format, which is critical for the seamless
integration of various software components (Fielding, 2000).
Additionally, RESTful (Representational State Transfer) APIs,
which are a common architectural style for networked applica-
tions, heavily rely on structured data formats for sending and
receiving data across the web (Fielding Taylor, 2002).

In the context of application-layer software, these structured
outputs and type-hints contribute significantly to software
maintainability and scalability. By enforcing data structure
and type consistency, developers can more easily understand,
debug, and extend the software. This aspect is particularly
important in large-scale projects or in enterprise environments
where software systems need to be robust, reliable, and easy

10.1145/1235


to maintain (Gamma et al., 1994). The use of structured
outputs and type-hints thus forms a foundational aspect of
software engineering, enhancing code quality and facilitating
the integration of complex software systems.

TYPE ENGINEERING
The recent wave of integration of Large Language Models
(LLMs) into existing software systems represents a significant
leap in the field of artificial intelligence and its application
in software development. LLMs have shown extraordinary
ability in generating human-like text, making them invaluable
across various applications, from content generation to con-
versational agents (Brown et al., 2020). However, integrating
these models into traditional software poses challenges, pri-
marily due to the unstructured nature of their outputs. This
lack of structure necessitates additional parsing and process-
ing, which can be both resource-intensive and prone to errors.

To mitigate these challenges, we introduce the concept of
"Type Engineering". This involves guiding LLMs to produce
structured outputs, like JSON or TypeScript types, thereby
streamlining their integration into traditional software sys-
tems. This method effectively combines the strengths of con-
ventional programming with advanced AI capabilities. For
example, by generating outputs in JSON format, LLMs can
seamlessly integrate their data within existing software frame-
works, significantly reducing the complexity and overhead
associated with integrating AI-generated content (Huang et al.,
2020).

An essential advancement in Type Engineering is the use of
"function calling" as a means to direct LLMs towards produc-
ing structured outputs. Function calling is a method where
the model is given a set of function parameters to generate
responses in a structured format, akin to the return values of a
function call in programming.

Through function calling, Type Engineering involves the use
of type-hints and schemas to guide the generation of structured
outputs. By defining clear types and structures, developers
can prompt the LLM to produce outputs that are immediately
usable within the application’s logic. This not only simplifies
the integration process but also minimizes the potential for
errors due to misinterpretation or parsing errors of unstructured
text. Robust systems such as TypeScript and Pydantic are ideal
for defining these types and schemas, further enhancing the
utility of LLMs in software applications (Lambert, 2020).

The integration of LLMs into application-layer software
through structured outputs, particularly via function calling,
opens up possibilities for dynamic and interactive user inter-
faces. Enabling LLMs to "plug into" existing systems allows
developers to create applications that leverage the advanced
natural language processing capabilities of LLMs while main-
taining the structural and reliability standards of traditional
software. Such integration heralds a new era in software inter-
action, making applications more intuitive and responsive to
human language (LeCun et al., 2015).

While there other methods of LLM structured output, such as
"guided generations" using grammars or regex, they are be-
yond the scope of this paper. The focus here is on the efficacy

of function calling and Type Engineering in producing struc-
tured outputs that are both efficient and backwards compatible
with existing software paradigms.

STRUCTURED LLM OUTPUTS IN PRACTICE
TypeScript types and Pydantic models, in particular, offer sig-
nificant advantages in guiding LLM responses. TypeScript, an
extension of JavaScript, provides static typing, which brings
clarity and predictability to the data structures used in a pro-
gram (Bierman et al., 2014). This clarity is vital when inte-
grating LLM outputs, as it reduces ambiguity and ensures that
the data conforms to the expected format. Similarly, Pydantic,
a Python library, leverages Python type hints to validate and
manage data structures (Lambert, 2020). By defining types
and schemas, developers can guide LLMs to produce outputs
that are not only structured but also conform to the specific
requirements of the application, thereby reducing the risk of
errors and misinterpretations.

Additionally, developer experience is greatly enhanced by the
use of structured outputs. Tools like TypeScript and Pydantic
offer features like autocomplete and syntax highlighting in
Integrated Development Environments (IDEs), which signifi-
cantly improve and accelerate the coding experience (Pierce,
2002). These features help developers write code more ef-
ficiently by providing real-time feedback and suggestions,
reducing the cognitive load and the likelihood of errors. When
dealing with complex LLM responses, these tools can be in-
strumental in managing and interpreting the data effectively.

Moreover, structured outputs simplify the debugging and main-
tenance of software that integrates LLMs. By having a well-
defined structure, it becomes easier to trace issues and under-
stand the flow of data within the application. This simplicity
is particularly crucial in large-scale or enterprise-level appli-
cations, where the complexity and scale of the software make
maintainability a key concern.

Using structured outputs to guide LLM responses also aligns
with the best practices in software engineering of more modu-
lar and decoupled architectures. By providing a clear interface
between the LLM and the rest of the application, structured
outputs facilitate the development of modular components that
can be independently developed, tested, and deployed. This
modularity is key to building resilient and adaptable software
systems that can rapidly evolve in response to changing re-
quirements or technological advancements (Fielding & Taylor,
2002).

DYNAMIC USER INTERFACES
The transformative potential of integrating structured outputs
from LLMs into application-layer software primarily mani-
fests in dynamic user interfaces (UIs). This approach tran-
scends traditional static data presentation, enabling interfaces
that are interactive, responsive, and tailored to individual user
experiences. By utilizing structured formats like JSON or
TypeScript types, LLMs can output a predictable and stan-
dardized data format that can be intricately mapped to UI
components, fostering a more intuitive and engaging interac-
tion for users (Brown et al., 2020).



Dynamic UIs significantly benefit from the structured data
provided by LLMs in personalizing user experiences. In sec-
tors like e-commerce, LLMs can analyze user interactions to
generate bespoke product suggestions. The structured output
ensures that these recommendations are not only accurately
reflected in the UI but also allow for dynamic updates, enhanc-
ing user engagement significantly compared to static interfaces
(Huang et al., 2020).

Another pivotal aspect is the role of structured outputs in
enabling reasoning engines within UIs. These engines can
interpret the data from LLMs, apply contextual logic or user
preferences, and subsequently generate UI components that
represent this refined information. For example, in financial
applications, LLMs could analyze market data to provide in-
vestment advice, with the structured output then tailored by the
reasoning engine to align with the user’s specific investment
profile (LeCun et al., 2015).

The predictability and consistency offered by structured out-
puts are crucial in maintaining the integrity and reliability of
dynamic UIs. With predefined data formats, UI components
can be designed to anticipate specific data types, thus min-
imizing errors and enhancing the user experience. This is
especially critical in multifaceted applications, like data ana-
lytics dashboards, where the UI must handle diverse data types
and structures efficiently and accurately (Gamma et al., 1994).

The integration of structured outputs from LLMs into dynamic
UIs is synergistic with contemporary web development trends
that prioritize modularity and reusability. A consistent struc-
tured data format permits the design of UI components that
are not only reusable across various application segments but
also across different applications. This approach accelerates
development processes and ensures uniformity in user expe-
rience across diverse interfaces, embodying the principles of
modern, modular web architecture (Fielding & Taylor, 2002).

CONCLUSION
In conclusion, this paper has demonstrated the significant po-
tential of integrating Large Language Models (LLMs) with
application-layer software through the use of structured out-
puts. By guiding LLMs to produce data in formats like JSON
or TypeScript types, a bridge is created between the rich, natu-
ral language capabilities of LLMs and the structured, logical
world of traditional programming. This "Type Engineering"
approach not only simplifies the integration of LLMs into ex-
isting software systems but also enhances their utility and ap-
plicability. The predictability and manageability of structured
outputs ensure that LLMs can be seamlessly incorporated into
various software architectures, improving both developer ex-
perience and application performance. This integration paves
the way for more intelligent, dynamic, and interactive user
interfaces, thereby expanding the capabilities and reach of
modern software applications.

Furthermore, the structured approach advocated in this paper
is not just a technical enhancement; it represents a paradigm
shift in how we perceive and interact with software systems.
By enabling LLMs to communicate effectively with traditional
programming structures, we open up new avenues for inno-

vation in software development. The dynamic user interfaces
that emerge from this integration are not only more engaging
and responsive but also more aligned with the evolving needs
and expectations of users. As we continue to explore and refine
the integration of LLMs into application-layer software, we
stand on the cusp of a new era in software development, where
artificial intelligence and traditional programming converge
to create more powerful, intuitive, and adaptable software
solutions.

ACKNOWLEDGMENTS
We thank Professor Seongkook Heo and his lab for providing
valuable input on this project. We are also grateful to YCombi-
nator for funding us in the upcoming batch to continue pushing
the limits of how we can weave together software and AI.

REFERENCES
[1] D. Crockford, “The application/json Media Type for

JavaScript Object Notation (JSON),” 2006.

[2] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau, “Extensible Markup Language (XML)
1.0,” 2008.

[3] G. van Rossum, B. Warsaw, and N. Coghlan, “PEP 484 –
Type Hints,” 2021.

[4] G. Bierman, M. Abadi, and M. Torgersen,
“Understanding TypeScript,” Microsoft Research, 2014.

[5] R. T. Fielding, “Architectural Styles and the Design of
Network-based Software Architectures,” Ph.D.
dissertation, University of California, Irvine, 2000.

[6] R. T. Fielding and R. N. Taylor, “Principled Design of
the Modern Web Architecture,” ACM Transactions on
Internet Technology (TOIT), vol. 2, no. 2, pp. 115–150,
2002.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Professional, 1994.

[8] T. B. Brown et al., “Language Models are Few-Shot
Learners,” arXiv preprint arXiv:2005.14165, 2020.

[9] C. J. Huang, J. Qiu, and J. T. Huang, “Conversational
Agents in Customer Service Applications,” arXiv
preprint arXiv:2005.05635, 2020.

[10] P. Rajpurkar, R. Jia, and P. Liang, “Know What You
Don’t Know: Unanswerable Questions for SQuAD,”
2018.

[11] B. C. Pierce, Types and Programming Languages, MIT
press, 2002.

[12] S. Lambert, “Pydantic: Data Validation and Settings
Management Using Python Type Annotations,” 2020.

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,”
Nature, vol. 521, no. 7553, pp. 436–444, Nature
Publishing Group, 2015.


	Introduction
	Structured Outputs in Programming
	Type Engineering
	Structured LLM Outputs in Practice
	Dynamic User Interfaces
	Conclusion
	Acknowledgments
	References 

