
Understanding and Enhancing Neural Network
Verification Performance

A Dissertation
Presented to

the Faculty of the School of Engineering and Applied Science
University of Virginia

In Partial Fulfillment
of the requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Dong Xu

May 2024

Acknowledgements

I want to express my sincere gratitude to my advisor, Matthew B. Dwyer. Thank you so much for

your invaluable advice and direction over these years. You have encouraged me when I am down,

called attention to me when I faltered, and always congrats me for my achievements. I will always

remember that you wanted me to become an independent researcher who is opportunistic and vigilant.

It would be impossible for me to achieve my academic goals without your assistance. Thank you

sincerely, Matt.

I want to thank the most important person in my life, my dearest 王晨璐. We have gone such a

long run being separated for a 12-hour time-zone difference for over 41 months. And now, you have

become my wife. We will live together happily ever after.

I want to thank my parents, for your firm support of my studies abroad for so many years. I

want to thank my grandmother, for thinking of me all the time. I want to thank my grandfather,

although you are in another world now, I hope you are doing well. What’s more, I want to thank my

parents-in-law and grandparents-in-law, thank you for your trust and care, and I will take good care

of her.

I want to thank all my colleagues in the Less Lab, Mitch, David, Carl, Meriel, Will, Fellipe, Trey,

Sonyna, Rory, and Nusrat. Thank you all for your help and making my Ph.D. life more interesting.

I want to also thank my collaborators, David, Nusrat, and Sebastian Elbaum from UVa, Hai

Doung and ThanVu Nguyen from GMU. Thank you so much for your inspiring research ideas that

made all the publications possible. Lastly, I want to thank my committee members for spending

their time reading and providing constructive feedback on this dissertation.

i

Abstract

With the rapid progression of machine learning, large-scale neural network models are being extensively

implemented in safety-critical domains. Researchers have devised various techniques to evaluate

the behaviors of these systems. One widely recognized approach involves using formal methods

to validate or invalidate specifications that express desirable properties of system behaviors. Over

the past six years, the neural network verification (NNV) community has developed more than 50

methods. Nevertheless, the community faces a challenge in generating benchmarks to effectively

assess these approaches. Furthermore, the complexity of neural network models is growing at a much

faster pace than the scalability of neural network verifiers. Therefore, there is a need for research on

scaling NNV to apply them to real-world neural networks.

Understanding the performance characteristics of various NNV tools is crucial for their effective

applications in practical scenarios and for the advancement of current methodologies. This dissertation

focuses on two primary phases: understanding and enhancing the performance of NNV. In the initial

phase, we introduce innovative automated approaches to systematically create diverse benchmarks

for assessing existing verifiers, exploring their performance boundaries, and identifying bottlenecks.

In the second phase, we effectively enhance the scalability of state-of-the-art neural network verifiers

by addressing the recognized bottleneck known as “neuron stability.” This is achieved by guiding

the training process to produce neural networks with fewer unstable neurons; and by improving an

existing verifier to stabilize neurons during the verification process, thereby significantly reducing

the search space. The research conducted in this dissertation has led to the development of six

open-source software artifacts for future research and development in the field.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Background 8

2.1 Neural Networks (NN) . 8

2.2 Neuron Stability . 9

2.3 Neural Network Verification (NNV) . 10

2.4 Neural Network Verification Benchmarks . 11

3 Related Work 13

3.1 Software Verification Benchmarks . 13

3.2 Neural Network Verification Benchmarks . 15

3.3 Neural Network Verification Approaches . 16

3.3.1 DPLL(T)-based NNV . 17

3.4 Neural Network Stabilization Techniques . 18

3.5 Neural Network Pruning Techniques . 19

4 Unraveling Influential Factors in Neural Network Verification 20

4.1 Identifying Factors . 21

iii

4.1.1 Potential Factors . 21

4.1.2 Validating Factors . 22

4.1.3 Factor Findings . 25

4.2 Develop Balanced and Challenging Neural Network Verification Benchmarks 26

4.3 Conclusion . 30

5 Systematic Generation of Diverse Benchmarks for Neural Network Verification 31

5.1 Approach . 33

5.1.1 Factor Diverse Benchmarks . 35

5.1.2 From Factor Covering Arrays to Verification Problems 37

5.1.3 Benchmark Generation . 38

5.1.4 Implementation . 40

5.1.5 The SwarmHost Verification Framework . 41

5.1.6 Scaling Up Neural Networks with Enhanced R4V 42

5.2 Evaluation . 42

5.2.1 Evaluation Setup . 42

5.2.1.1 Selection of Seed Verification Problems 42

5.2.1.2 Selection of Verifiers . 43

5.2.1.3 Selection of Factors and Levels . 43

5.2.2 Selection of Metrics and Resources . 44

5.2.3 Results . 44

5.2.3.1 Comparing verifiers across a range of challenges 44

5.2.3.2 GDVB and benchmark requirements R1-R3 48

5.3 Conclusion . 50

6 Adaptive Benchmark Generation for Neural Network Verification 51

6.1 Approach . 52

6.1.1 Overview . 53

6.1.2 The AdaGDVB Method . 54

iv

6.1.3 Examples . 56

6.1.4 Implementation . 58

6.2 Evaluation . 59

6.2.1 Use Case One: Adaptive benchmarks . 61

6.2.2 Use Case Two: Identifying Neural Network Verification Bottlenecks 62

6.3 Conclusion . 63

7 Increasing Neuron Stability to Scale Neural Network Verification 64

7.1 Approach . 66

7.1.1 Overview . 66

7.1.2 Neuron Stability Estimation . 70

7.1.3 Bias Shaping . 71

7.1.4 Stable Pruning . 73

7.1.5 Implementation . 74

7.2 Evaluation . 74

7.2.1 Study Design . 75

7.2.2 RQ1: Stabilizing Neurons . 77

7.2.3 RQ2: Enhancing Verification . 79

7.2.4 Discussion . 84

7.2.5 Threats to Validity . 84

7.3 Conclusion . 85

8 Harnessing Neuron Stability to Improve Verification 86

8.1 The VeriStable Approach . 89

8.1.1 DPLL(T)-based Neural Network Verification 90

8.1.1.1 Boolean Representation . 90

8.1.1.2 The DPLL search . 91

8.1.1.3 Theory Solver . 92

8.1.2 Improvements in VeriStable . 92

v

8.1.2.1 Neuron Stability . 92

8.1.2.2 Parallelism . 94

8.1.3 Implementation . 95

8.2 Experimental Design . 96

8.2.1 Selection of NNV Benchmarks . 96

8.2.2 Selection of Neural Network Verifiers Baselines 98

8.2.3 Experimental Setup . 98

8.3 Results and Analysis . 99

8.3.1 RQ1: Benefit of Stabilization . 99

8.3.2 RQ2: Optimization Ablation Study . 102

8.3.3 RQ3: Comparison with State-of-the-Art Neural Network Verifiers 103

8.4 Threats to Validity . 105

8.5 Discussion . 105

8.5.1 Property Specifications . 106

8.5.2 Specification Format . 106

8.6 Conclusion . 107

9 Conclusion & Future Work 108

9.1 Conclusion . 108

9.2 Future Work . 110

9.2.1 NNV Benchmark Generation . 110

9.2.2 Training Verifiable Neural Networks . 111

9.2.3 Enhancing the Scalability of the Neural Network Verifiers 111

A Neural Networks Artifacts and Verifiers 113

A.1 Neural Network Datasets . 113

A.2 Neural Network Architectures . 114

A.3 Neural Network Verifiers . 115

vi

List of Figures

2.1 An FNN with ReLU. 11

3.1 NeuralSAT Architecture . 18

4.1 A Set of Nine Factors That Affect Verifier Performance 23

4.2 Verification Problems Solved (Proved/Falsified) and Verification Time vs. Perturbation

Radii of Three Neural Network Verifiers (dashed lines: problems proved; dotted

lines: problems falsified; solid lines: solve time.) 28

5.1 SCR Score for Nine Verifiers on GDVB Benchmarks with MNISTConvBig (left) and

DAVE-2 (right) Seed Problems . 46

5.2 Radar Plot with Maximum(solid) and Median(dotted) Values of the Two Artifacts . 47

5.3 Diversity Explored Across Factor Levels . 49

6.1 Overview of AdaGDVB. 53

6.2 Conceptual Workflow of AdaGDVB (Factors: X1 and X2 with exponential growth;

Dark grey: solvable problems, light grey: unsolvable problems; Circles: step 1,

pentagons: step 2, triangles: step 3; Bold items in exploration: the two pivot points,

Pu and Po, at current iteration. Bold items in refinement: the performance boundary

on the solvable side.) . 57

6.3 AdaGDVB’s Exploration Phase When Applied on α,β-CROWN Over the MNIST

Network . 58

vii

6.4 AdaGDVB Generated Benchmarks (VPBs) for 4 Verifiers 60

6.5 VPBs of α,β-CROWN and NeuralSAT with 4× Granularity 61

6.6 Confirming the neuron stability Bottleneck Using an Instrumented Neurify Verifier 63

7.1 A Small Original Neural Network with Various Stability of Neurons 67

7.2 Applying the Bias Shaping Method on the Original Neural Network 67

7.3 Applying the Stable Pruning Method on the Original Neural Network 68

7.4 Stable Neurons(%) vs. Test Accuracy(%) per Model 78

7.5 Normalized Training Time . 79

7.6 Solved Verification Problems vs. Test Accuracy(%) 81

7.7 Verification Time Speedup vs. Test Accuracy(%) . 83

8.1 The Tree of Activation Patterns Computed by NeuralSAT (left) and VeriStable

(right) at Corresponding Points during a Verification Run 88

8.2 Problems solved of NeuralSAT vs. VeriStable with various optimization settings 100

8.3 Stabilization Cost and Effectiveness during Verification 101

viii

List of Tables

5.1 Mean & Variance of SCR and PAR-2 Scores Across Benchmarks (The darker and

lighter gray boxes indicate the best and second best results) 45

7.1 Experimental Parameter Space . 75

8.1 Benchmark Instances. U: unsat, S: sat, ?: unknown. 96

8.2 Problems Solved and Solving Time of NeuralSAT vs. VeriStable with Various

Optimization Settings . 100

8.3 A Verifier’s Rank (#) is Based on its VNN-COMP Score (S) on a Benchmark. (For

each benchmark, the number of problems verified (V) and falsified (F) are shown) . 103

A.1 The Complete Set of Neural Network Architectures 114

A.2 The Complete Set of Neural Network Verifiers . 115

ix

List of Algorithms

1 The GDVB Algorithm . 38

2 The AdaGDVB Algorithm . 54

3 Training with Stabilizers . 70

4 Bias Shaping . 72

5 Stable Pruning . 73

6 The VeriStable Algorithm. 90

7 The Stabilize Function . 93

x

Chapter 1

Introduction

AI applications using machine learning algorithms are becoming well-known to the public because of

their rapid development and deployment. They have been applied in various domains, ranging from

self-driving vehicles, e.g., OpenPilot [102], online general language assistants, e.g., ChatGPT [98],

recommendation systems [133], etc. While we are benefiting from the convenience of these novel

applications, researchers continue to be concerned about their correctness when applied in safety-

critical areas, such as airplane collision avoidance system [68], nuclear power plant control [125],

healthcare applications [114], etc. To avoid tragedies happening in such areas, we must guarantee

the safety of these AI applications.

One well-studied solution is to use formal methods to verify the neural networks. The process of

verifying neural networks entails determining whether a given specification, known as the property,

is satisfied by the network. An example of such a property is the local (per input) robustness

property [152], which asserts that the network output is stable to small changes of a specific input:

∀ρ ∈ [0, ϵ] : |N (x)−N (x± ρ)| ≤ γ,

where γ is a small value, ϵ represents the maximum perturbation radius, while x is a concrete input

to the network also referred to as, the center-point of the local robustness property.

1

Recent years have witnessed significant development in neural network verification (NNV) to

assure the correctness of machine learning applications. Over thirty NNV methods have been invented

in the last six years. The variety of neural network verifiers covers a diverse range of algorithmic

approaches including: reachability [134, 134, 124, 82, 53, 109, 110, 111, 112], optimization [87, 119,

14, 44, 131, 26, 101, 47, 89], and search [128, 127, 64, 130, 148, 5, 22, 72, 27]. Several falsification

tools also have been developed to disprove the correctness of neural networks [105, 59, 35].

In the software engineering field, the performance of programs is considered a non-functional

requirement. Studies have shown that performance bugs require more effort and resources to detect and

fix than functional bugs [66, 145, 96]. According to Jin et al., [66], “About two-thirds of performance

bugs need inputs with special features to manifest.” The current approaches detect performance

bugs using rule-based checkers: metrics that record the execution of some particular functions

of the target program. This process involves human knowledge to locate and instrument critical

functions. Statistical methods combined with hypothesis-testing, search-based, and performance

profiling techniques have proven effective in detecting bottlenecks in large software [103, 115, 90].

Given the multitude of approaches stemming from different algorithmic families, selecting a

suitable verifier for a specific verification problem is crucial for their effective application in real-world

scenarios. Understanding the performance characteristics of various verifiers across different use cases

is essential. In the latest VNN-COMP, the performance of the participants varies up to more than

9×. For example, Leeson et al. developed a method to use a graph neural network to select the most

appropriate software verification tool for a given instance and can improve the state-of-the-art by

12% [81].

The most comprehensive method to understand NNV algorithmic characteristics involves breaking

down the data structures and algorithmic components within these algorithms, re-implementing all

approaches within a common framework using standardized libraries, and subsequently evaluating

them using consistent benchmarks. This approach is highly effective for comparing the performance

of verification algorithms as it eliminates biases in implementations. However, it necessitates a

deep understanding of software verification and significant time and resources to execute. Liu et al.

conducted a study on a limited subset of basic verifiers [85], successfully identifying performance

2

disparities across various abstract domains. It is worth noting that keeping pace with the rapid

advancements in the field makes such endeavors very costly.

Conversely, another prevalent method for comprehending performance characteristics among

neural network verifiers involves conducting extensive empirical studies. This approach relies on large

sets of benchmarks. The annual NNV competition, VNN-COMP [67, 7, 93, 23], assesses participants

using more than a dozen neural network benchmarks. These benchmarks are updated annually based

on contributions from competition participants, evolving over time through manual decisions.

Limitations of neural network verification benchmarks The limitation of the existing neural

network verification benchmarks is the risk of potentially biased instances and the lack of diversity

in problem difficulty. The majority of NNV benchmarks are created directly or indirectly by the

developers of the verification tools. Typically, when a new verification method is introduced, the

tool is tested on either the benchmarks developed by the tool’s creators [68, 128, 45, 110, 112, 111,

109, 130], or on benchmarks from previously published studies [70, 92, 148, 28]. The VNN-COMP

competitions have introduced a new set of benchmarks, which are sourced from verifier developers,

including: ACAS-XU [68], FNNs from OVAL [28], CNNs from the OVAL benchmark [28], CNNs

from ERAN verifiers [110, 109]. These NNV benchmarks primarily feature a limited number of

network architectures, with most of the diversity stemming from variation in the center-point of

the local robustness property. In general, the NNV community lacks ways to produce diverse and

unbiased benchmarks.

Limitations of neural network verifiers The exponential complexity of the NNV problem has

been demonstrated in previous studies [68]. However, the current neural network verifiers are not

yet practical for proving properties of real-world neural networks [24]. Although the state-of-the-art

verifiers can handle complex neural networks like the VGG architecture [108] from a decade ago,

which consists of 138M parameters, they struggle to cope with the scale of modern large language

model (LLM) neural networks. For instance, GPT models [25] contain a significantly larger number of

parameters, ranging from 175B (v3) to 1.76T (v4). This growing disparity between the advancement

of neural networks and verifiers underscores the urgent need to enhance the scalability of verifiers.

3

Such improvements are crucial to ensure the safe and reliable behavior of neural networks.

To enhance the performance of an existing neural network verifier, developers could take an ad-hoc

manual approach by applying methods like those from the software engineering literature. Identifying

performance bottlenecks in the NNV problem is akin to detecting performance bugs in general software

but requires special treatment that we aim to support. For instance, the verifiers’ performance relates

to the interactions between network structure/behavior, the correctness property, and the algorithm.

Understanding and predicting the interactions that lead to poor performance is nontrivial. This

dissertation primarily concentrates on methodologies that aid in the performance analysis of neural

network verifiers, including benchmark generation and automated empirical evaluations to push

verifiers to their limits, as well as innovative strategies to boost the scalability of cutting-edge neural

network verifiers.

Overview of approach Our strategy for improving the scalability of neural network verification

performance involves two consecutive stages. In the first stage, we conduct thorough performance

analyses to identify the bottlenecks in verifier performance by conducting a series of empirical studies.

In the second stage, we develop innovative methods to address these bottlenecks to enhance the

scalability of the neural network verifier. This includes creating neural networks that are easier to

verify and directly addressing the performance bottlenecks during the verification process.

For starters, we initiated a research study aimed to discover potential factors that could influence

NNV performance. The complexity of the verification problem depends upon several aspects of

the neural network and the correctness property. Through our initial investigation, we successfully

identified nine factors (Def. 4) that have a significant impact on the performance of the verifier

in § 4.1. By manipulating the levels (Def. 5) of these factors, one can introduce variations in the

difficulty of NNV problems. Through our innovative approaches, we have achieved systematic control

over the levels of factors, thereby facilitating the generation of diverse benchmarks. These novel

methods effectively eliminate any potential bias that may arise from the manual creation of verification

instances, while also encompassing instances that exhibit variations in problem difficulty. Additionally,

a new approach was created to regulate the complexity of the verification problems through the

4

manipulation of the epsilon radius factor. This has resulted in more equitable experimental design

in our later research and the establishment of a new benchmark that is capable of showcasing

greater variations in verifier performance compared to the VNN-COMP benchmarks. Consequently,

resulting benchmarks facilitate more meaningful empirical studies, allowing for a comprehensive

analysis of the verifiers’ performance.

In the first stage, we distilled the knowledge from the software performance analysis to propose

approaches with a set of automated frameworks, namely GDVB, AdaGDVB, and SwarmHost,

to assist in reducing the workload of NNV developers when conducting performance analysis. The

detailed workflow of performance analysis for neural network verifiers is described in § 6.2.1 and

§ 6.2.2. Initially, we leverage the automated generation of a space of benchmark instances using

AdaGDVB that identifies the verification performance boundary (VPB, refer to Def. 7) of an NNV

technique. The VPB comprises two sets of verification benchmark problems that exhibit minimal

variation, where one set can be efficiently verified while the other cannot. Subsequently, we instrument

the verifier to collect meta-information about the verification process. Following this, we conduct a

more refined performance analysis by zooming in on the specific area of interest within the verifier’s

VPB, such as executing the instrumented verifier on a more refined subset of the VPB through the

proposed frameworks like GDVB and SwarmHost. Finally, we confirm the performance bottlenecks

by examining the relationships between the outcomes of the verifiers and the instrumented metrics.

In the second stage, we devise novel techniques to eliminate the identified performance limitations.

By adhering to the aforementioned strategy, we effectively validated the presence of the neuron

stability (refer to § 2.2) NNV performance bottleneck. On one hand, this led to the creation of two

innovative methods for generating neural networks with more stable neurons by guiding the training

process to produce fewer unstable neurons (refer to § 7). These stable training methods have the

potential to significantly enhance the number of solved verification problems, up to five times, and

speed up the verification process by a factor of 14, without compromising test accuracy and training

time. On the other hand, this also served as inspiration to develop novel approaches aimed at directly

reducing the number of unstable neurons in the verifiers (refer to § 8). The resulting new verifier

exhibits a performance improvement of up to 12 times compared to the current state-of-the-art NNV

5

verifiers.

Contributions Our approach is beneficial not only to NNV researchers but also to NN developers.

NNV researchers can leverage it to find bottlenecks, enhance verification algorithms, optimize

implementations, etc. Neural network developers can use this approach to design neural networks

that are easier to verify. The contributions of this dissertation include (1) the identification of 9

factors that influence NNV performance; (2) a method to control the difficulty of verification problems

through epsilon radius search; (3) a systematic approach to generating diverse NNV benchmarks;

(4) an automated approach to support identification of verification performance boundaries; (5)

confirmation of the neuron stability performance bottleneck by applying the aforementioned

approaches; (6) two novel methods to guide neural network training process to produce more stable

neural networks to scale their verification; (7) an innovative technique to increase neuron stability

during the verification process directly; and (8) implementations of five open-source tools: GDVB,

AdaGDVB, SwarmHost, OCTOPUS and VeriStable.

The subsequent Chapters contain the following detailed contents. Chapter 2 (§ 2) provides an

overview of all essential background information, definitions, and concepts necessary for the following

chapters. Chapter 3 (§ 3) delves into work within the community related to this dissertation. In

Chapter 4 (§ 4), we have identified 9 factors that impact verification performance and have devised a

method to regulate the complexity of verification problems through epsilon radius search. Chapter 5

(§ 5) presents a new approach to generate diverse NNV benchmarks using the 9 influencing factors.

Chapter 6 (§ 6) expands upon the foundation laid in Chapter 5 and introduces an automated approach

to adaptively generate NNV benchmarks based on performance feedback from a specific verifier.

The case study in this chapter has validated the effectiveness of the neuron stability apb of the

Neurify verifier, indicating that increased neuron stability in the neural network makes solving

a verification property more challenging. Chapter 7 (§ 7) capitalizes on the concept of neuron

stability and introduces two innovative methods to decrease neuron stability in neural networks

during training. Chapter 8 (§ 8) enhances an existing verifier, NeuralSAT, to produce VeriStable,

by directly reducing neuron stability in the verification process to improve its scalability. Finally,

6

Chapter 9 (§ 9) concludes this dissertation and explores potential avenues for future research.

7

Chapter 2

Background

This chapter offers background knowledge of neural networks, neural network validation, and

terminology used throughout the thesis.

2.1 Neural Networks (NN)

Neural networks are designed and trained to closely approximate target functions, f : Rn → Rm. A

network, N : Rn → Rm, is comprised of L ordered hidden layers, l1, . . . , lL, where lin = l0 is the

input layer and lout = lL+1 is the output layer. Hidden layers are comprised of a set of neurons that

accumulate a weighted sum of their inputs. Applying an activation function(σ) determines how to

non-linearly scale that sum to compute the output from the layer. For an input x, the composition

of the hidden layers and the activation operates as,

N (x) = lout ◦ σ(lL ◦ σ(lL−1 . . . ◦ σ(l1 ◦ lin(x)))).

There are numerous types of hidden layers, such as Fully connected (FC), Convolutional (Conv),

Deconvolutional, Recurrent, Normalization, and Pooling layers, etc. Various activation functions

are designed in the literature, e.g., Rectified Linear Units (ReLU), Sigmoid, Tanh, etc. We note

8

that ReLU networks are popular because they tend to be sparsely activated [56] and max(x, 0) is

efficient to compute which leads to efficient training and inference. Moreover, they avoid the vanishing

gradient problem [58] which speeds training convergence, especially in deep networks. Complex

neural network architectures, formed by freely combining different types of layers and activation

functions, are capable of solving intricate real-world problems. However, this flexibility also poses a

challenge in terms of verifying their behaviors.

Given a neural network architecture, N (·), the network is trained to define weight values, denoted

θ, and bias values, denoted b, that are associated with each neuron’s input. A trained network defines

for input x, the output N (x; θ, b); when it is clear from the context we drop θ, b and write N (x).

Let ẑi,j denote the value computed for the input of neuron j in hidden layer i prior to the application

of the activation function – the pre-activation value – and zi,j the post-activation value. For a ReLU

activation function, zi,j = max(ẑi,j , 0). The input to layer i is computed as the weighted sum of the

output of the prior layer, using the learned weights θ, and bias b. The semantics of N (x; θ, b) is

given by the constraints as shown in Equation 2.1

∧
i∈[1,L],j∈[1,M]

(
ẑi,j =

∑
k∈[1,M]

(θi,j,k · zi−1,j) + bi,j ∧ zi,j = max(ẑi,j , 0)
)

(2.1)

with additional constraints relating the zL,j to the output layer, lout, and x = z0,j .

2.2 Neuron Stability

Propagating a single input x through network N (x) results in a pattern of ReLU activation in which

each neuron is either active, zi,j = max(ẑi,j , 0) = ẑi,j , or inactive, zi,j = max(ẑi,j , 0) = 0. However,

when a set of input values, e.g., a mini-batch, propagate through the network, this gives rise to

pre-activation values for which a neuron is both active and inactive. When the set of pre-activation

values spans 0 in this way, we say that neuron i, j is unstable. Otherwise, the neuron is stable, i.e.,

max(ẑi,j) ≤ 0 ∨min(ẑi,j) ≥ 0. The RS Loss work [135] used interval propagation to estimate the

stability of neurons. Note that neuron stability is only meaningful for piecewise linear activation

9

functions. When dealing with non-linear activation functions, one can employ abstraction techniques

to transform them into piecewise linear abstractions [110].

Unstable neurons require verification approaches to reason about the disjunctions present in

Equation 2.1. For each unstable neuron, there is a disjunction of the equation, zi,j = ẑi,j ∨ 0. In the

worst case, if all neurons are unstable, then there are 2L∗M different ways of resolving the disjunctions.

More generally, for a property, ϕ, only a subset of neurons will be unstable, Uϕ ⊆ L×M , and, as we

discuss in § 7 and § 8, controlling the size of this subset is a means of reducing the cost of NNV.

2.3 Neural Network Verification (NNV)

The neural network verification property ϕ composes a set of constraints over the inputs (ϕx) and

another set of constraints associated with the output (ϕy). Verification of N |= ϕ seeks to prove:

∀x ∈ Rn : ϕx(x) ⇒ ϕy(N (x)). Generally, there are three categories of properties for the NNV

problem: local robustness, safety, and consistency [1]. The most commonly studied property is the

local robustness property. It defines a set of L∞ norm perturbations over the input x of size ϵ to

form a set of inputs x′ that is similar to the original input, |x− x′| ≤ ϵ. This property states the

network output remains the same for the classification problem as the original input, N (x′) = N (x).

For regression problems, the local robustness property allows a small amount of deviation(γ) to the

network’s output for given the input perturbations, |N (x′) − N (x)| < γ. Researchers have also

developed other kinds of properties for classification problems. For instance, Toledo et al. introduced

relational properties that establish relationships between classes, that is, if class a has the highest

value for all inputs, then the output values for classes a and b are more similar to each other compared

to the output values for classes a and c [120]. In addition, more complex properties like metamorphic

specifications [30], which involve specific transformations in the input space leading to invariants in

the network’s output, have not been thoroughly investigated yet.

Recent work has demonstrated that a general class of specifications, where ϕx and ϕy are defined

as half-space polytopes, can be reduced to local robustness specifications [105, 104]. This means that

the essential complexity of NNV is present when verifying simpler local robustness specifications,

10

0.4

0.5

0.2

-0.5

-0.8

0.3

-0.3

0.3

0.7

0.2

-0.8

0.5

-0.8

-0.8

0.2

0.9 0.1

-0.8

Fig. 2.1: An FNN with ReLU.

which state that ∀x ∈ c± ϵ : ϕy(N (x)), for some constant input(center-point), c, and radius, ϵ,

around it.

The inherent complexity of the NNV problem arises from the non-linear expressive power of

activation functions in the neural networks – so it is generally unavoidable. Neural network verification

seeks to prove or falsify whether a property specification is preserved by the neural network N |= ϕ.

To prove a property, all inputs need to be considered while falsifying a property only needs one

counter-example that violates the property constraints ϕ. A neural network verifier attempts to find

a counter-example input to N that satisfies ϕx but violates ϕy. If no such counter-example exists, ϕ

is a valid property of N . Otherwise, ϕ is not valid and the counter-example can be used to retrain or

debug the neural network [64].

Example 2.3.1 Fig. 2.1 shows a simple ReLU neural network with two inputs {x0, x1}, four hidden

neurons {n00, n01, n10, n11}, and two outputs {y0, y1}. The weights of a neuron are shown on its

incoming edges, and the bias is shown above or below each neuron. The outputs of the hidden neurons

are computed by the affine transformation and ReLU, e.g., n00 = ReLU(0.4x0−0.5x1−0.8). The output

neuron is computed with just the affine transformation, i.e., y0 = −0.8n10 − 0.8n11 + 0.1. A valid

property for this network is that the output is y0 > y1 for any inputs x0 ∈ [−2.0, 2.0], x1 ∈ [−1.0, 1.0].

2.4 Neural Network Verification Benchmarks

Definition 1 A neural network verification problem comprises a pair of a network and a property:

⟨N , ϕ⟩.

11

The NNV problem evaluates whether the property is satisfied over the neural network. The outcome

of a verification problem for a verifier indicates whether N |= ϕ is valid (unsatisfiable), invalid

(satisfiable), unknown – indicating that the problem cannot be determined to be either valid or

invalid, or out-of-resource (OOR, i.e., out of time or memory limit).

Definition 2 A neural network verification benchmark (B) contains a collection of neural network

verification problems.

To evaluate the performance of a neural network verifier, it is tested against a set of verification

problems, a.k.a., a verification benchmark. As will be discussed in § 3, a good verification benchmark

should contain problems that are diverse in structure and difficulty, represent verifier use cases;

and evolve as verification technology advances. The same principles should also apply to NNV

benchmarks.

12

Chapter 3

Related Work

This chapter examines the existing research in the field relating to neural network verification.

3.1 Software Verification Benchmarks

A key lesson learned by the community is that even though verification emphasizes the develop-

ment of theoretical and algorithmic techniques, advances in verification research often arise from

understanding how different algorithmic and implementation approaches compare – a process that

requires empirical study. Empirical study in verification is common, but unlike many other fields of

computer science, for decades it has organized verification tool competitions that serve as a regular

and long-running form of community-driven empirical study. Researchers tracked the progress of

SMT solvers over 6 years at these community-driven empirical studies and found that repeatedly “a

certain solver presents a key idea that improves the performance in a particular division, and this idea

is implemented by most solvers” in the following year [11]. Enabling the type of comparative studies

that drive such advances requires verification benchmarks – a fact that the verification community

has recognized for at least 25 years, e.g., [117, 75, 100, 16, 12].

Benchmarking in verification has evolved in response to the demands of empirical study within

the field, e.g., [20, 63, 61, 15], to support two objectives: (A1) assessment of the state-of-the-art

13

and (A2) comparison of alternative approaches. In support of these, the verification community has

favored benchmarks that: (R1) are diverse in structure and difficulty; (R2) represent verifier

use cases; and (R3) evolve as verification technology advances.

The verification benchmarking and competition literature suggests that these requirements are

widely accepted. For example, the TPTP benchmark’s stated goals include R1 (“contains problems

varying in difficulty”), R2 (“spans a diversity of subject matters”), and R3 (“is up-to-date”, “provides

a mechanism for adding new problems”)[116]. Moreover, these requirements are promoted, either

explicitly or implicitly, by many of the regularly held verification competitions. To meet R1 and R2

SAT competitions construct benchmarks that include problems from six different domains: software,

hardware, AI, obstruction, combinatorial challenges, and theorem proving[63]. SAT competitions

since 2017 have instituted a bring your own benchmarks policy that requires verifier developers to

submit 20 new benchmarks with at least 10 that are “not too easy” or “too hard” – which helps to

address R1 and R3. SMT competitions have used selection criteria that are biased towards these

same requirements, e.g., “balancing the difficulty of benchmarks”[11].

The risk in letting technique developers choose their benchmark is selection bias – that the

selected problems do not represent a broad or important population of problems. For example, if

an SMT benchmark were selected based on the constraints generated by symbolic execution tools

they would be structurally biased, consisting only of conjunctive formula. As another example, if an

SAT benchmark were generated randomly, likely, a large portion of the benchmark would likely not

represent realistic use cases.

Good benchmarks are expensive to develop, e.g., [21], but they are an invaluable resource for

advancing a research community. When well-designed, they seek to balance requirements R1-R3 and

to support a fair and accurate assessment of the state-of-the-art and comparison between alternative

algorithmic and implementation approaches.

Verification competitions have undoubtedly been a positive force for developing high-quality

verification benchmarks, but before their existence researchers were forced to develop their own

“benchmarks” – a collection of verification problems on which they evaluate their techniques and

perhaps others. This is the situation that the subfield of neural network verification finds itself in.

14

Verification Performance Metrics are standardized measurements, utilized in the verification

community to evaluate the performance of verifiers against a verification benchmark. The community

often discusses the importance of ranking tools fairly. Two commonly used and effective metrics for

this purpose are solution-counting-ranking (SCR)[126] and penalized-average-ranking-2 (PAR-2)[65].

SCR is a simple metric that ranks verifiers based on the number of problems solved (both satisfiable

and unsatisfiable), with tie-breaking determined by cumulative CPU time. On the other hand, PAR-2

is a more sophisticated metric that considers both the number of problems solved and the associated

CPU time cost in its scoring. It equals the cumulative running times of the solved problems plus

twice the time limit of the unsolved problems. In addition to these metrics, the performance of

verifiers can also be assessed based solely on the number of problems solved and the processing time.

3.2 Neural Network Verification Benchmarks

NNV benchmarks are the primary means by which NNV technique performance is assessed. Broadly

speaking, there are two types of benchmarks: first-party and third-party. First-party benchmarks

are created by a neural network verifier developer when evaluating their tool, e.g., the well-known

ACAS-Xu benchmark [68]. Such benchmarks are usually tested with a limited set of competitors

beyond the developer. Third-party benchmarks are created by people other than neural network

verifier developers to assess verifier performance, e.g., VNN-COMP [67, 7, 93, 23]. Such benchmarks

tend to have a larger and more diverse set of problems.

The annual NNV competition VNN-COMP [67, 7, 93, 23] provides an overview of the NNV field

every year. While its main task is to rank the performance of the verifiers, the baseline is that it

has to provide a fair set of benchmarks to examine the participants. Over the last four years, it has

collected over 20 benchmarks from various domains, e.g., image recognition, image generation, image

prediction, aircraft control, power system, vision, etc. The benchmarks vary in, datasets, number of

input dimensions, number of neurons, number of parameters, types of layers, and activation functions.

The strategy it used is similar to SMT/SAT competitions, where VNN-COMP asks participants to

also contribute in creating benchmarks for attending. Though it removes the difficulty of creating

15

fair benchmarks for the competition, the potential risk is that a verifier is biased towards its own

submitted benchmarks. The VNN-COMP rule also allows verifiers to customize their tool for each

benchmark, thereby introducing an additional concern regarding the verifiers’ ability to perform

consistently in the competition compared to real-world scenarios, e.g., α,β-CROWN has over 100

parameters that can be tuned.

Hence, the VNN-COMP benchmarks encompass a variety of initial benchmarks, and their

inherent biases tend to persist over time, making them susceptible to being easily solved by state-

of-the-art NNV techniques. Nevertheless, the rapid advancement of contemporary neural network

verifiers renders many of the benchmarks in VNN-COMP quickly outdated. Our research, as

outlined in § 5, reveals that a modern verifier can successfully tackle 89% of the problems in under

30 seconds. Consequently, there is an urgent requirement for comprehensive NNV benchmarks.

3.3 Neural Network Verification Approaches

Research on NNV is extensive and continuously expanding. This section provides an overview of

established techniques and their accompanying tool implementations.

The NNV algorithm survey[85] is notable for analyzing algorithmic characteristics and compre-

hending the performance of a small set of neural network verifiers. This study summarizes the

algorithms of various NNV techniques, rewrites the algorithm in the same programming language,

and assesses the verifier’s performance. Due to the extensive effort put into the reimplementation

process, it can extract additional intermediate data and analyze the efficiency of each abstract domain.

Nonetheless, the rewrite of verification methods is very costly, and its study primarily concentrates

only on early verifiers and relatively minor verification tasks.

Several approaches have been introduced to verify a neural network behavior in recent years [85].

One class of verifiers, including α,β-CROWN [129], Nnenum [8], ERAN [110], and MN-BaB [51]

overapproximate ReLU behavior which allows them to calculate an overapproximation of the entire

neural network efficiently. When the verification property is satisfiable, some incomplete techniques,

like ERAN, simply return unknown, but others, like Nnenum, α,β-CROWN or MN-BaB, perform

16

a case split on unstable neurons to refine the over-approximation. Another class of verifiers, including

Marabou [70] and Planet [45], explore the space of case-splits to formulate separate constraint

queries that constitute verification conditions. Here again, the number of possible case splits leads to

exponential complexity.

Constraint-based approaches, e.g., ReLuplex [68], and its successor Marabou [70, 69],

DLV [64], Planet [45], and MIPVerify [119] encode the problem as a constraint-solving task. These

techniques transform NNV into a constraint problem, solvable using tools like SMT solvers (Planet,

DLV) or SAT-based approach with custom simplex and MILP solvers (Reluplex, Marabou).

Abstraction-based approaches, e.g., AI2 [53], ERAN [92, 111, 110] (DeepZ, RefineZono,

DeepPoly, K-ReLU), MN-BaB [51], ReluVal [128], Neurify [127], verinet [62], NNV [123],

Nnenum [6, 8], CROWN [148], and CROWN [129], leverage abstract domains to tackle scalability. These

techniques employ various abstract domains, such as in NNV include intervals [128], zonotopes [110],

polytopes [111, 143], and starsets/imagestars [8, 123], to improve scalability. To address spurious

counterexamples due to overapproximations, these methods often iterate to check counterexamples

and refine abstractions.

3.3.1 DPLL(T)-based NNV

NNV is NP-Complete [68] and thus can be formulated as an SAT or SMT checking problem. Direct

application of SMT solvers does not scale to the large and complex formulae encoding real-world,

complex neural networks. While custom solvers, like Planet and ReLuplex, retain the soundness,

completeness, and termination of SMT and improve on the performance of a direct SMT encoding,

they do not scale to handle realistic neural networks [7].

While abstraction is crucial to the performance of NNV techniques, recent work on Neural-

SAT [41] shows that combining it with the DPLL(T) approach of modern SMT solvers [74, 91, 10]

can further improve the scalability of NNV. Fig. 3.1 gives an overview of NeuralSAT, which consists

of a theory solver (Deduce) and standard DPLL components (everything else).

17

Boolean
Abstraction

DNN +
Property

BCP Backtrack

Decide
Analyze-
Conflict

Deduce

Fig. 3.1: NeuralSAT Architecture

NeuralSAT constructs a propositional formula rep-

resenting neuron activation status (Boolean Abstraction)

and searches for satisfying truth assignments while em-

ploying a neural network-specific theory solver to check

feasibility concerning neural network constraints and prop-

erties. The process integrates standard DPLL components,

which include deciding variable assignments, and perform-

ing Boolean constraint propagation (BCP), with neural

network-specific theory solving (Deduce), which uses LP

solving and the polytope abstraction to check the satis-

fiability of assignments with the property of interest. If

satisfiability is confirmed, it continues with new assignments; otherwise, it analyzes and learns conflict

clauses (Analyze Conflict) to backtrack. NeuralSAT continues its search process until it either

proves the property (unsat) or finds a total assignment (sat). In § 8, we describe how these DPLL

components are adapted and incorporated into our new NNV approach.

3.4 Neural Network Stabilization Techniques

A ReLU neuron is stable relative to a given specification when it is in either its active or inactive phase

for all inputs satisfying the specification’s precondition. Researchers have observed that stable neurons

have the potential to improve verifier performance, since they tend to linearize the otherwise highly

non-linear computation encoded in the neural network. These methods typically require modifying

the network specification. In practice, researchers employ heuristics to apply neuron stability to ReLU

during the training of neural networks. For example, the RS Loss approach [135, 139] incorporates

regularization techniques to train more stable weights. The linearity grafting technique [29, 146]

directly replaces ReLU activation functions with strictly linear activation functions to achieve stability.

Both unstructured and structured neural network pruning [151] can also help network stabilization.

RS Loss[135] is a regularization technique that induces neuron stability in the training process.

18

The RS Loss, LR is blended with the regular training loss LT to yield a weighted sum as the

optimization target, L = LT + wR × LR, where wR is the hyperparameter to control the degree of

stabilization. The RS Loss term LR is formulated as LR =
∑n

i=1−Tanh(1 + ẑi × ẑi) where ẑ and ẑ

are the lower and upper bounds of the pre-activation values. NRS Loss [151] is a variant of RS Loss

that regularizes the pre-batch normalization (BN) bounds instead of pre-activation bounds.

3.5 Neural Network Pruning Techniques

Neural network pruning involves optimizing a pre-trained neural network by decreasing the number

of parameters or computational resources it requires, all while maintaining its predictive accuracy.

DropNet[118] is a structured model compression method to generate sparse and reduced neural

networks based on the lottery ticket hypothesis [52]. According to the hypothesis, a dense network

contains a subnetwork that can match the test accuracy of the base network if trained in isolation.

DropNet iteratively prunes a predefined percentage of less important neurons by setting their weights

to zero. Although the iteration process is resource expensive, the flatness of the error landscape at

the end of training limits the fraction of weights that can be pruned, hence sharp pruning at once

reduces the network accuracy[99].

While the initial purpose of pruning was preserving network accuracy only, recent studies

have revealed that pruning can significantly increase a network’s robustness and scale robustness

verification [151]. The removal of non-linearity from the insignificant neurons by converting them

to linear functions has been proposed in literature [29]. However, the existence of linear activation

functions in a network can sometimes result in unnecessary computational costs, as the networks are

supposed to work on complex data and linear functions are incapable of handling the complexity.

Also, special treatments are required to handle these non-standard architectures in network inference

and verification.

19

Chapter 4

Unraveling Influential Factors in

Neural Network Verification

The process of improving the verification of neural networks commences with comprehending the

performance of the verifier. The initial stage of the verifier analysis involves understanding the

attributes of the verification problem itself. This chapter delves into the identification of nine separate

factors that impact the performance of neural network verification. Furthermore, it provides a

comprehensive discussion on how manipulating the parameter epsilon radius has the potential to

modify the complexity of the verification problems and to balance the quantity of unsatisfiable and

satisfiable instances.

The content presented in this chapter establishes groundwork that paves the way for further

exploration and improvement of verifier performance. To illustrate, (1) a variety of influencing factors

are employed to create diverse benchmarks in § 5; (2) an adaptive search algorithm is formulated in

§ 6 to determine the verification performance boundaries of different verification approaches based

on these influencing factors1; and (3) the identification of epsilon radius controlling, which governs

the adherence to ground truth in verification problem instances, is utilized to regulate the level of
1The factor study introduced in this chapter is part of the published in the CAV2020 conference [140].

20

difficulty in § 7.

4.1 Identifying Factors

As mentioned in § 1, the verification community has taken steps to establish policies that encourage

the use of diverse benchmarks. The inclusion of diversity in a benchmark is important for two

reasons: (a) it showcases the range of applicability of a verification technology, and (b) it reveals

performance variations both within and across different verification technologies. For instance, the

selection process for the SMT competition benchmarks aims to incorporate an equal number of

satisfiable and unsatisfiable benchmarks at various levels of difficulty, as stated in [11]. This is because

the SMT community recognizes that the satisfiability or unsatisfiability of a benchmark problem

can significantly impact the performance of verifiers. Determining unsatisfiability typically involves

considering all possible variable assignments, which is generally more computationally expensive

than finding a single satisfiable assignment.

To determine an initial set of factors for neural network verifiers, we began with an analysis of the

literature, which identified several candidate factors, and then conducted a targeted and exploratory

factor study to identify whether manipulating a factor could influence some performance measure

of some neural network verifier. This study only aims to identify such factors and does not seek to

characterize the complex relationship between factors and neural network verifier performance; for

example, we do not aim to capture a comprehensive set of factors, assess the independence of or

relations between factors, or rank factors in terms of their degree of influence.

4.1.1 Potential Factors

Throughout the literature review process, it became apparent that there is a scarcity of published

papers that explicitly delve into the factors affecting performance in the realm of NNV. However, it

is worth noting that almost all of these papers do provide metrics about the verification issues they

have successfully addressed.

Evaluation results for ReLuplex present data on verifier outcome and solve time for local

21

robustness properties that vary in the input center point and radius [68]; most subsequent papers

report similar property variation. Evaluation results for RobustVerifier present a study of varying

the number of layers in neural networks and its impact on verifier performance[84]. Evaluation

results for ERAN and its successor, MN-BaB, present performance variations across a range of

networks varying in the number of layers, layer types, and neurons[53, 111, 110, 112, 51]. Bunel

et al. [28] were the first that we are aware of to explicitly vary factors of NNV problems. They

found that the performance varied with input dimension, number of neurons per layer, and number

of layers across a set of 6 different verifiers. All the other papers published on NNV in recent

years have used verification problems that varied, in an ad-hoc fashion, over a subset of the above

factors [51, 94, 143, 50].

We study factors associated with both the neural network and the properties. Based on the

literature analysis, we identified 4 factors related to the neural network: number of neurons(neuron),

number of layers(layer), the type of layers(layer type), the input dimension(input dimension).

We conjectured that an additional 3 factors might impact verifier performance: the type of acti-

vation function(activation function), the input domain size(input size), and the learned pa-

rameters(parameters). In addition, we identified 2 factors related to the property: perturbation

size(epsilon radius) and input data center point(centerpoint). For robustness properties, scaling

perturbation epsilon radius involves increasing the size of the input domain which will involve more

DNN behaviors in verification. Switching a center point involves moving it to a different location in

the input domain which will involve different DNN behaviors in verification. As a result, we propose

a total number of 9 factors that can potentially influencing verification performance to be studied

next step.

4.1.2 Validating Factors

As in other verification domains, neural network verifier performance is multi-faceted. In this factor

study, we consider both number of problems solved and solve time. We say that the result of a

verification problem is solved if a verifier determines conclusively that the property is UNSAT or

SAT, result as opposed to unknown, error, and out of resources (time and memory).

22

16 64 256

Number of Neurons

100

101

102

103

104

V
er

ifi
ca

ti
on

T
im

e(
s)

(a) neuron (Planet)

1 2 4

Number of Layers

101

102

103

104

V
er

ifi
ca

ti
on

T
im

e(
s)

(b) layer (Planet)

FC Conv

Layer Types

0

2

4

6

8

10

N
um

b
er

of
V

er
ifi

ed
P

ro
p

er
ti

es

(c) layer type (ERANDeepPoly)

ReLU Sigmoid Tanh

Activation Functions

0

2

4

6

8

10

N
um

b
er

of
V

er
ifi

ed
P

ro
p

er
ti

es

(d) activation function
(ERANDeepPoly)

7x7 14x14 28x28

Input Dimensions

0

2

4

6

8

10

N
um

b
er

of
V

er
ifi

ed
P

ro
p

er
ti

es

(e) input dimension (BaB)

.25 .5 1 2 4

Input Domain Size

0

2

4

6

8

10

N
um

b
er

of
V

er
ifi

ed
P

ro
p

er
ti

es
(f) input size (ERANDeepZono)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Epsilon Radii(ε)

0

100

200

300

400

500

600

700

800

V
er

ifi
ca

ti
on

T
im

e(
s)

(g) epsilon radius (ReLuplex)

0 1 2 3 4 5 6 7 8 9

Centerpoints

0

2

4

6

8

10

N
um

b
er

of
V

er
ifi

ed
P

ro
p

er
ti

es

(h) centerpoint (Neurify)

0 1 2 3 4 5 6 7 8 9

Parameter Variants

0

2

4

6

8

10

N
um

b
er

of
V

er
ifi

ed
P

ro
p

er
ti

es

(i) parameters (Planet)

Fig. 4.1: A Set of Nine Factors That Affect Verifier Performance

Our exploratory factor study is opportunistic in that we seek to find a verification problem

for which manipulation of a selected factor exhibits performance variation. Towards this end, we

23

conducted a series of trials where we varied a factor hypothesized to influence verification performance

while holding all other factors constant, and reported the results in Fig. 4.1.

We studied variations of networks for the MNIST (§ A.1) dataset and considered local robustness

properties. We used different verifiers across the study: ReLuplex, Planet, Neurify, BaB,

ERAN with the DeepPoly (DP) and DeepZono (DZ) abstract domains, as a subset of the full verifier

list depicted in § A.3. We briefly describe the trials and then summarize the outcome as follows:

1. neuron: The architecture of the neural network was fixed, with 4 fully connected layers

using ReLU activation functions, and the total number of neurons was varied (16, 64, 256) –

they were spread evenly across layers. Each network is trained 10 times and verified on 100

local robustness properties. Fig. 4.1a plots the number of neurons versus verification time for

Planet.

Finding: Verification time can increase with the number of neurons.

2. layer: We use the same context as for the neuron factor study, except that we fixed the number

of neurons at 256 and varied the number of layers (1,2,4). Fig. 4.1b plots the number of layers

versus verification time for Planet.

Finding: Verification time can increase with the number of layers.

3. layer type: We use a pair of two-layer neural networks, with the same number of neurons,

where one has a fully-connected layer and the other a convolutional layer. Each network is

trained 10 times and verified on 10 local robustness properties. Fig. 4.1c plots layer type versus

the number of solved properties using ERANDP . Finding: Verification problems solved can

vary with layer type.

4. activation function: We use the fully-connected network from the layer types study, we

generated three networks by altering the activation function from ReLU to use Sigmoid and

Tanh. The training setup and properties remain the same as in the previous trial. Fig. 4.1d

plots the activation function versus the number of properties solved using ERANDP .

Finding: Verification problems solved can vary with the activation function.

24

5. input dimension: We use 3 architectures that differ only in their input dimension which is

scaled (1
16 , 1

4 , 1) relative to the original problem. The training setup and properties are from

the layer-type study. Fig. 4.1e plots the input dimension versus the number of properties solved

using BaB.

Finding: Verification problems solved can increase with increasing input dimension.

6. input size: We use 5 architectures that differ only in the range of values of their inputs which

are scaled (1
4 , 1

2 , 1, 2, 4) based on the original problem. The training setup and properties are

from the layer-type study. Fig. 4.1f plots the input size versus the number of solved properties

using ERANDZ .

Finding: Verification problems solved can decrease with increasing input domain size.

7. epsilon radius: We use a single-layer network and reuse the training setup and properties

from the layer type study. We scale the properties (0.01− 0.1) to generate verification problems.

Fig. 4.1g plots property scaling versus the verification time using ReLuplex.

Finding: Verification time can increase with increasing property scale.

8. centerpoint: We replicated the property scale study, but held the scale fixed and translated

the center point of the local robustness property to 10 other locations. Fig. 4.1h plots the

number of DNNs for each of the 10 translated properties solved using Neurify. Finding:

Verification problems solved can vary with property translation.

9. parameters: Building of the property studies, we explore the verification of 10 scaled property

variants across the same network trained 10 times with different initial weights. Fig. 4.1i plots

the number of solved properties using Planet. Finding: Verification problems solved can

vary with the learned weights of the network.

4.1.3 Factor Findings

As a result, the existence of all 9 factor hypotheses are empirically validated based on the above

factor study, such that at least one verifier is sensitive to changes in the level of each factor. Various

25

factors influence the performance of different NNV tools differently – in terms of time or problems

solved. For example, we found that: varying input dimension impacts BaB’s accuracy, but not

ReLuplex’s; varying input domain size impacts ERANDZ ’s accuracy, but not Neurify’s; and

varying property scale impacts ReLuplex’s verification time, but not Neurify’s. Note that the

purpose of this study is to confirm the existence of a set of factors that influence the neural network

verification performance.

This exploratory study provides a starting set of viable factors that impact verification performance.

These factors can be used to parameterize the GDVB approach to produce verification problem

benchmarks in which those factors are systematically varied to parameterize the benchmark(§ 5).

Furthermore, systematically parameterizing and searching the factor space allows one to identify the

verification performance boundary of the given verifier(§ 6).

4.2 Develop Balanced and Challenging Neural Network Veri-

fication Benchmarks

As mentioned in § 2, the NNV problem consists of a network and a property pair denoted as ⟨N , ϕ⟩.

The complexity of the NNV problem is determined by the intricacy of the neural network N and the

expressiveness of the property ϕ. The factor study(refer to § 4.1) identifies 9 factors that can impact

the performance of the verifier. Among these factors, 7 are associated with the neural network, while

2 are related to the property specification. This section specifically focuses on a particular factor:

epsilon radius. This factor defines the permissible range of perturbation in the local robustness

property, which in turn affects the determination of the verification problem as either UNSAT or

SAT.

Controlling the ground truth of the verification problems is crucial to create balanced verification

benchmarks. The SMT solver competition emphasizes the importance of including an equal number

of satisfiable and unsatisfiable benchmarks when designing these benchmarks (Barrett et al., 2013).

As mentioned in § 2.3, the effort and complexity involved in verifying a property as either UNSAT or

SAT can vary significantly. In general, falsifying a property by finding a single counter-example is

26

much easier when compared to proving a property, ensuring a post-condition of a program for all

possible input sets.

We notice that the epsilon radius factor is a unique parameter in the verification problem.

Modifying any factors associated with the neural network requires retraining, which is a costly process.

Altering the centerpoint factor involves selecting a different test input center point, and this factor

is considered “unordered” because the distance from the center point inputs to the neural network’s

decision boundary is unknown.

However, the epsilon radius factor, which represents the size of the epsilon radius, is an “ordered”

factor. When the epsilon radius value is small, the property’s ground truth tends to be UNSAT,

i.e., in extreme cases, the trivial property where epsilon radius = 0 is always unsatisfiable. The

trivial property defines a single input point x, and the output of the neural network is always a

point N (x). Therefore, it can never be on more than one side of the decision boundary, making

the trivial property always unsatisfiable. On the other hand, when the epsilon radius value is

larger, the property’s ground truth tends to be SAT. In the extreme case, the global property where

epsilon radius = 1 is always satisfiable. The global property encompasses the entire possible input

set for the neural network. For any non-trivial neural network, it is always possible to find a point

in the input set, known as a counter-example, that lies on the other side of the decision boundary

compared to the center point.

Based on the aforementioned conjecture, we design a research study aimed at comprehending the

impact of epsilon radius on the ground truths of the verification problems. The study is conducted

on the MNIST2×256, MNIST6×256, and CIFAR2020 (Tab. A.1) architectures. The MNIST2×256

and MNIST6×256 networks are fully connected MNIST ReLU networks comprising two or six hidden

layers, respectively, where each layer consists of 256 neurons. CIFAR2020 is a convolutional network

containing two convolutional layers and one fully connected layer. To assess the benchmark, we

introduce variations in the epsilon radius factor, incrementing it by 2e− 4 from 0.01 to 0.1 for the

MNIST networks, and incrementing it by 2e− 5 from 0.001 to 0.01 for the CIFAR2020 network. For

every epsilon radius, we evaluate 50 center points, resulting in a total of 7.5K verification problems.

The experiment is constrained by a time limit of 300 seconds and a memory limit of 8GB. To evaluate

27

0.00 0.02 0.04 0.06 0.08 0.10
Radii()

0

10

20

30

40

50
Ve

rif
ie

d(
--)

/Fa
lsi

fie
d(

··)

- -CROWN
MN-Bab
NNEnum

0

50

100

150

200

250

300

Ve
rif

ica
tio

n
Ti

m
e(

s,
)

(a) MNIST2×256

0.00 0.02 0.04 0.06 0.08 0.10
Radii()

0

10

20

30

40

50

Ve
rif

ie
d(

--)
/Fa

lsi
fie

d(
··)

- -CROWN
MN-Bab
NNEnum

0

50

100

150

200

250

300

Ve
rif

ica
tio

n
Ti

m
e(

s,
)

(b) MNIST6×256

0.000 0.002 0.004 0.006 0.008 0.010
Radii()

0

10

20

30

40

Ve
rif

ie
d(

--)
/Fa

lsi
fie

d(
··)

- -CROWN 20

30

40

50

60

70

80

Ve
rif

ica
tio

n
Ti

m
e(

s,
)

(c) CIFAR2020

Fig. 4.2: Verification Problems Solved (Proved/Falsified) and Verification Time vs. Perturbation
Radii of Three Neural Network Verifiers (dashed lines: problems proved; dotted lines: problems
falsified; solid lines: solve time.)

the benchmark, we employ three cutting-edge verifiers: α,β-CROWN, MN-BaB, and Nnenum

chosen from Tab. A.2.

The graphs in Fig. 4.2 illustrate the verification problems that were either proven or falsified,

as well as the corresponding verification time for each of the three verifiers over the three network

architectures. The X-axis stands for the incremental epsilon radius selections. The solid lines

are the average verification times of 50 problems. The dashed lines are the number of problems

proved to be UNSAT, and the dotted lines are the number of problems falsified to be SAT. It is

28

evident from 4.2a and 4.2b that for the MNIST architectures, the MN-BaB verifier outperformed

the other two verifiers. MN-BaB was able to prove and falsify a greater number of properties

compared to the other two verifiers, regardless of the epsilon radii, while maintaining a lower overall

time cost. Although all three verifiers demonstrated similar capabilities in proving properties, their

ability to falsify properties differed significantly. MN-BaB is the best verifier at falsification and

α,β-CROWN is the second. Nnenum being the worst of the three in falsification, and even fails

to falsify MNIST6×256 and CIFAR2020 networks due to memory limitation. 4.2c only depicts the

results of α,β-CROWN. This is because Nnenum failed to falsify properties due to the memory

limitation, and MN-BaB’s implementation simply doesn’t support the CIFAR2020 convolutional

architecture.

Interestingly, the graphs in Fig. 4.2 reveal that the epsilon radius factor reaches cross-points

at 0.016 for the MNIST networks and 0.0022 for the CIFAR2020 network, i.e., the number of

unsatisfiable (UNSAT) and satisfiable (SAT) problems becomes equal. Additionally, the verification

times for all three verifiers peak slightly after this cross-point. This suggests that the verification

problems in the vicinity of the cross-point pose a significant challenge. These specific robustness

problems lie on the decision boundary, thus demanding verification methods to spend additional

effort to evaluate their validity, i.e., spend extra SMT calls or more iterations in abstract refinements.

It is worth noting that verification problems of the MNIST networks with an epsilon radius

value less than 0.008 or greater than 0.04 can be easily proven to be UNSAT or falsified to be SAT.

We believe these problems are not valuable to be considered when designing verification benchmarks

for empirical studies. However, it is important to emphasize that this evaluation of the epsilon radii

region is specific to this particular MNIST neural network architecture. The cross-points and the

challenging region may vary for different networks.

The epsilon radius study suggests that manipulating the epsilon radius proves to be a successful

method for managing both the ground truth and the complexity of the verification problems.

Problems with epsilon values that are relatively smaller or larger are deemed too simple to prove or

falsify, and therefore, it is advisable to refrain from incorporating such problems when designing an

NNV benchmark. This benchmark design philosophy significantly impacts the experimental design

29

discussed in § 7. We also envision more future research alone this line of work in § 8.

4.3 Conclusion

This chapter presents an exploratory study that effectively identified nine factors that impact

verification performance. Additionally, it delves into the examination of the epsilon radius,

demonstrating the potential of manipulating NNV benchmark difficulty by controlling the epsilon

radius values. These fundamental findings serve as a foundation for our subsequent research

endeavors. For example, in § 5, a novel approach is proposed to generate diverse benchmarks

by controlling the combination of factors. § 6 focuses on exploring the factor space to determine

verification performance boundaries for a specific verifier. In § 7, the experimental design utilizes the

epsilon radius factor to regulate the difficulty of the benchmarks. Furthermore, § 8 evaluates a

more challenging benchmark using the proposed method from § 5, surpassing the state-of-the-art

benchmarks in VNN-COMP.

30

Chapter 5

Systematic Generation of Diverse

Benchmarks for Neural Network

Verification

Over the last six years, there has been a significant emergence of over 50 neural network verification

approaches (refer to § 3.3). These verification methods exhibit variations in terms of algorithmic

families, performance capabilities, supported architectures, properties, and network formats, among

other factors. Consequently, comprehending the disparities in their performance has become an

imperative and formidable undertaking to effectively utilize them in practical applications.

The NNV community has developed an extensive collection of benchmarks (refer to § 3.2)

that exhibit variations in architectures, datasets, software domains, and more. Many of the NNV

benchmarks are created by the verifier developers [45, 128, 110]. However, the risk in letting

technique developers choose their own benchmark is selection bias – that the selected problems do

not represent a broad or important population of problems. Moreover, the complexity and diversity

of these benchmarks have rapidly become outdated. Notably, approximately 89% of the problems in

VNN-COMP are deemed excessively simple, as they can be efficiently solved within 30 seconds by

31

state-of-the-art verifiers on contemporary hardware [42].

The verification community is committed to finding benchmarks that fulfill specific criteria (see

§ 3.1). The three primary requirements are,

• diversity in difficulty (R1) [116],

• reflecting real-world applications (R2) [24],

• having a reasonable level of difficulty (R3) [11]

This chapter reports a novel approach, GDVB 1, the first framework for systematic Generation of

Diverse neural network Verification Benchmarks, that meets the de-facto requirements for verification

benchmarks, R1-R3, for the rapidly evolving field of NNV. GDVB takes a generative approach

to benchmark development – an approach that has risen in popularity in recent years [78, 2, 144].

Unlike, other generative benchmark approaches GDVB seeks to systematically cover variations in

verification problems that are known to influence verifier performance.

Towards that end, GDVB is parameterized by: (1) a set of factors known to influence the

performance of neural network verifiers; (2) a coverage goal that determines the combination of

factors that should be reflected in the benchmark; and (3) a seed verification problem from which a

set of variant problems are generated. From these parameters, it computes a constrained mixed-level

covering array[32] defining a set of factor-value tuples. Each tuple defines how the seed verification

problem can be transformed to give rise to a verification problem capable of exposing performance

variation in a neural network verifier.

As a benchmark generator GDVB naturally meets requirement R3. By starting from a seed

network representing an NNV use case, GDVB is guaranteed to meet R2. As we discuss in §5.1, the

use of factors allows GDVB to produce systematically diverse verification problems both in terms of

structure and difficulty to meet requirement R1.

Moreover, GDVB offers the potential to reduce selection bias in performing evaluations of NNV

approaches since it assures coverage of a space of performance-related factors. Finally, GDVB is

designed to support the rapidly evolving field of NNV by allowing the generation of benchmarks,
1The GDVB approach introduced in this chapter is published in the CAV2020 conference [140].

32

e.g., from new seeds as verifiers improve, as new performance factors are identified, and to target

challenge problems in different neural network domains, e.g., regression models for autonomous UAV

navigation [88, 113].

The benchmarks produced by GDVB exhibit a significantly greater range of diversity compared

to the benchmarks utilized in published papers of Neurify and ERAN. The extensive analysis

illustrates that the utilization of GDVB benchmarks effectively distinguishes 9 cutting-edge verifiers

in 2020. Our subsequent research conducted four years after the publication has confirmed that the

benchmarks generated by GDVB continue to possess a much higher level of diversity in terms of

network complexity and difficulty when compared to the most recent VNN-COMP benchmarks as

discussed in § 3.2.

The contributions of this chapter are:

1. identification of the need for unbiased and diverse benchmarks for NNV

2. the specification of a verification benchmark as the solution to a constrained mixed-level

covering array problem

3. the GDVB algorithm for computing a benchmark from a verification problem by transforming

the neural network and property specification

4. the evaluation of GDVB on multiple state-of-the-art neural network verifiers in 2020 using

different seed verification problems that demonstrate how GDVB results can support the

evaluation of verifiers;

5. a verification execution and analysis framework named SwarmHost

6. and the open-source framework of GDVB.

5.1 Approach

The goal of GDVB is to meet requirements R1-R3 by producing a factor diverse benchmark that

(a) reflects aspects of the complexity encoded in a real verification problem that acts as a seed for

33

generation ⟨Ns, ϕs⟩, (b) varies aspects of the problem that are related to verifier performance, (c)

accounts for interactions among those factors, and (d) is only comprised of well-defined verification

problems.

Definition 3 Constrained Mixed-level Covering Array (Def. 2.9 from [32])

CMCA(N ; t, k, (|v1|, |v2|, ..., |vk|), C) is an N × k array on |v| symbols, where |v| =
∑k

i=0 |vi|, with

the following properties: 1) Each column i(1 ≤ i ≤ k) contains only elements from a set Si of size

|vi|, 2) the rows of each N × t subarray cover all t-tuples of values from the t columns at least one

time, and 3) all rows are models of C.

A covering array defines a systematic method for testing how combinations of parameter values

influence system performance [33]. A covering array is an N × k array. The k columns represent

factors that may influence performance and cells can take on v levels – defining settings for factors.

The N rows of the array define combinations of factor-levels. Arrays are defined to achieve a strength

of the coverage, t. t = 2 defines pairwise strength, which means that all pairs of levels for all factors

are present in some row of the covering array.

Definition 4 A neural network verification performance factor, f , is a directly modifiable parameter

of the verification problem, that contributes to the verification problem’s difficulty, such that at least

one verifier is sensitive to.

Definition 5 For a given seed verification problem, the level, lf , of a factor, f , is a scaling ratio of

the desired new verification problem when compared to the seed verification problem.

We require a richer form of covering array that permits the number of levels to vary with different

factors, i.e., a mixed-level covering array (MCA), and that can constrain specified factor-level

combinations, e.g., by forbidding their inclusion in the MCA. By modeling each factor as a variable

and its levels as the domain of the variable, one can express constraints as propositional logic formulae

over equality terms; if the levels are ordered then richer underlying theories can be applied. A

constrained-MCA defines an MCA that is consistent with a given constraint, C.

34

Rather than synthesize random verification problems, we seed the generation process to generate

a benchmark that reflects the complexity of the seed problem. This permits benchmarks to be

generated to reflect the challenges present in different neural network problem subdomains. Factors,

like those described in § 4.1, may interact; changes to one factor may mask or amplify neural network

verifier performance changes arising from another. Exploring all combinations of factors is expensive,

but by using covering arrays we can systematically explore interactions among factors. Accounting

for such interactions helps to produce a benchmark that is less biased than one that only covers

individual factor variations. Not all combinations of factors are possible. For example, if one reduces

the number of layers in a network to 0, then it is not possible to preserve the number of neurons in

the original network. Thus, benchmark generation must take into account constraints among factors

to ensure that only well-defined problems are included in a benchmark.

5.1.1 Factor Diverse Benchmarks

Consider a set of factors (Def. 4), F , with a set of levels (Def. 5), Lf , for each factor, f ∈ F ; we

refer to Lf as the level set of f . For a verification problem, p, let l(p) be the set of factor levels

corresponding to the problem. A benchmark, B, is a set of verification problems, and we can denote

the factor levels for the benchmark as l(B) = {l(p) | p ∈ B}.

The simplest form of diversity for a benchmark is requiring that all individual factor levels be

present in at least one verification problem, ∀f ∈ F : ∀l ∈ Lf : ∃p ∈ l(B) : l ∈ p. However, this

diversity fails to account for interactions among factors. The simplest form of interaction-sensitive

diversity considers pairs of factors, but as we discuss below our approach generalizes to any arity of

factor-level coverage.

For a pair of factors, f, f ′ ∈ F , the Cartesian product of their level sets defines the set of all

pairwise combinations of their levels. Across all factors the set of such pairs is

pairs(F) = {(l, l′) | f, f ′ ∈ F ∧ f ̸= f ′ ∧ l ∈ Lf ∧ l′ ∈ Lf ′}

35

A pairwise diverse benchmark is one in which

∀(x, y) ∈ pairs(F) : ∃p ∈ l(B) : (x, y) ∈ {(x′, y′) | x′ ∈ p ∧ y′ ∈ p}

Constraints on allowable combinations of factors serve to restrict a benchmark. A pairwise exclusion

constraint, γ(F) ⊆ pairs(F), requires that

∀(x, y) ∈ γ(F) : ∀p ∈ l(B) : ¬(x ∈ p ∧ y ∈ p)

We write γ when F is understood from the context.

The arity of factor-level coverage and exclusion constraints can vary independently. It is common

for factor-level coverage to be uniform and to generalize it to t-way coverage, i.e., to require coverage

of the elements of the Cartesian product of the level sets of t factors. On the other hand, as observed

in prior work [32], constraints generally involve a mix of arity. To denote this generality we define

Γ ⊆
⋃

i γi where γi defines the set of possible i-way exclusion constraints.

Example 5.1.1 Factor Diversity

Consider the DAVE-2 network which accepts 100 by 100 color images and infers an output indicating

the steering angle [97]. DAVE-2 consists of 5 convolutional layers with 55296, 17424, 3888, 3136, and

1600 neurons, respectively, followed by 4 fully connected layers with 1164, 100, 50, and 10 neurons,

respectively. All 82668 neurons use ReLU activations. One can define a local robustness property for

DAVE-2 as

ϕ = ∀x ∈ i± 0.02 : ∥DAVE-2(x)−DAVE-2(i)∥ ≤ 5

which states that for a given input image, i, all inputs within a distance of 0.02 will result in an

inferred steering angle within 5 degrees of the angle for i. These yield the verification problem

⟨DAVE-2, ϕ⟩.

Consider factors for the number of neurons, number of convolutional layers, and number of

fully connected layers; a tuple (#neuron, #conv, #fc) represents levels for these factors. For each

factor consider two percentage levels: 100% and 50%. A neuron factor level of 50% indicates that

36

a version of DAVE-2 with 41334 neurons is required. In the absence of constraints, an example

pairwise factor diverse benchmark for ⟨DAVE-2, ϕ⟩ consists of the following four verification problems:

(100%, 100%, 100%), (100%, 50%, 50%), (50%, 100%, 50%), and (50%, 50%, 100%). The property ϕ is

constant across the benchmark.

5.1.2 From Factor Covering Arrays to Verification Problems

Given a set of factors, F = {f1, f2, . . . , f|F |}, and levels, Lfi
, a t-way factor diverse benchmark of k

verification problems is specified by

CMCA(|F |; t, k, (|Lf1 |, |Lf2 |, . . . , |Lf|F | |), Γ)

Each element in this mixed-level covering array specifies how to construct a verification problem in

the benchmark from the seed problem.

Levels are operationalized as transformations on verification problems. We assume a sufficient set

of transformations, ∆, such that a verification problem can be transformed into a form that achieves

any level of any factor

∀f ∈ F : ∀lf ∈ Lf : ∃δ ∈ ∆ : lf ∈ l(δ(⟨Ns, ϕs⟩))

The definition of ∆ and Li must be coordinated to achieve this property.

A per-factor transformation δ ∈ ∆ may impact a single component of a verification problem,

e.g., reducing the number of neurons in a neural network does not impact the property, or both

components, e.g., the input dimension impacts the neural network and the property by transforming

the input data domain. The set of all transformations ∆ defines the set of verification problems that

can be produced by the application of a set of per-factor transformations to the seed problem,

∆(⟨Ns, ϕs⟩) = {⟨N , ϕ⟩ | ⟨N , ϕ⟩ = δf1 ◦ δf2 . . . ◦ δf|F |(⟨Ns, ϕs⟩) ∧ δi ∈ ∆}

The set of all possible factor level combinations is Πf∈F Lf , i.e., the product of all of the per-factor

37

Alg. 1: The GDVB Algorithm
Data: A seed verification problem ⟨Ns, ϕs⟩, a set of factors F and constraints Γ, and a

coverage goal t.
Result: A benchmark of NNV problems B

1 C ← genCMCA(F, Γ, t)
2 B ← ∅
3 for c ∈ C do
4 B ← B ∪ transform(⟨Ns, ϕs⟩, c)
5 end

levels. The set of t-way factor level combinations is

ct = {c|a ∈ Πf∈F Lf ∧ c ⊆ a ∧ |c| = t}

allowing for the interpretation of |F |-tuples as sets.

Definition 6 Given a set of factors F , with associated factor levels Lf , a t-way factor diverse

benchmark, B, for a seed problem ⟨Ns, ϕs⟩ with exclusion constraints Γ is defined by the following:

• B ⊆ ∆(⟨Ns, ϕs⟩);

• ∀⟨N , ϕ⟩ ∈ B : ∀γ ∈ Γ : γ ̸⊆ l(⟨N , ϕ⟩); and

• ∀c ∈ ct − Γ : ∃⟨N , ϕ⟩ ∈ B : c ⊆ l(⟨N , ϕ⟩)

5.1.3 Benchmark Generation

GDVB is defined in Alg. 1. We use existing techniques, e.g., Automated Combinatorial Testing for

Software(ACTS) [76], for generating a CMCA for constraints specified as logical formulae where

factors are variables and levels are values for those variables. A CMCA is a set of k-tuples. Each such

tuple defines the target level for each factor for a problem in the generated benchmark. Those levels

are used to transform the given seed verification problem and the resultant problem is accumulated

in the benchmark.

transform uses different approaches to transform the seed neural network and the property.

Neural network transformation builds on an approach called R4V that automates architectural

38

transformations by scaling (1) the number of neurons in a fully connected layer, (2) the number of

kernels in a convolutional layer, (3) the input dimension, or (4) the range of values within an input

dimension [106]. The first 3 of these require changes to the structure of the neural networks and

the last two require changes to the training data, e.g., reshaping, renormalizing. R4V ensures that

the network is well-defined after transformation. transform maps factor-levels to per-layer scale

parameters for R4V.

R4V permits the training of a network using network distillation which we find advantageous for

GDVB because: it accelerates the training process, and it drives training to match the accuracy

of the problem neural network to that of Ns, which reduces variation in accuracy across B. We

adopt R4V so that after each training epoch, the learned parameters and the validation accuracy

are recorded. When training finishes, we select the models associated with the highest validation

accuracy. Training is performed using the training data and hyperparameters for Ns.

Whereas R4V can be used to directly manipulate neural network architecture-related factors,

it can only indirectly affect the learned weights. To address this, we adopt the approach taken

throughout the machine learning literature – train a network on multiple initial seeds and report

performance across seeds. Thus, each neural network in B is trained multiple times, thereby producing

a benchmark comprised of s ∗ |B| verification problems, where is the desired number of seeds.

Example 5.1.2 Neural Network Transformation

Consider this element of the CMCA described above: ⟨(50%, 100%, 50%), ϕ⟩, applied to DAVE-2.

transform would compute that 50% of the fully connected layers should be present in the resultant

neural network and randomly select 2 of the 4 layers to scale by 0. The fully-connected layers are

chosen at random since the layer count factor does not consider layer ordering. If we consider the

case where the layers with 100 and 50 neurons are dropped, this will eliminate 150 neurons. The

other transformation required is to reduce the number of neurons by half. To do that all remaining

layers will be scaled by 82668∗0.5−150
82688 = 0.498.

Property transformation builds on a domain-specific language (DSL) for specifying NNV properties

defined by the deep neural network verification framework (DNNV) [104]. Specifications in this

Python-based DSL are parametric and transform maps factor-levels to those parameters. For

39

example, Listing 5.1 defines the parametric local robustness property ϕ that is centered at the image

stored at “path/to/image”, has radius 0.02, and can be translated and scaled through parameters t

and s, respectively. Restricting factors to levels that are supported by transform and using CMCA

algorithms that meet § 2 Def. 3 ensures that GDVB produces a solution that meets § 2 Def. 6.

1 import numpy as np

2 N = Network ("N")

3 s = Parameter ("s", float , default =1.0)

4 e=0.02 * s

5 x = Image("path/to/image")

6 t = np.load(Parameter ("t", str , "path/to/zeros.npy"))

7 x = x + t

8 Forall (x_ ,

9 Implies (

10 (x - e) < x_ < (x + e),

11 abs(N(x_) - N(x)) <= 5

12)

Listing 5.1: Parametric Property ϕ

5.1.4 Implementation

An instance of GDVB has been developed to accommodate a range of factors that have been

determined based on the findings of the study in § 4.1. These factors are characterized by percentage-

based levels, and are accompanied by a set of constraints that ensure benchmark problems are both

non-trivial and capable of efficient training.

The instantiation of GDVB includes support for the following factors: the total number of

neurons in the neural network (neuron), the number of Fully Connected layers (fully connected

layer), the number of Convolutional layers (convolutional connected layer), the dimension of the

input (input dimension), the size of each input dimension (input size), the perturbation size of

the property (epsilon radius), and the center points of the property (centerpoint). However, it is

40

important to note that the activation function factor is currently not supported due to limitations

within the underlying R4V library. We anticipate addressing this limitation in future iterations of

GDVB.

We note that the implementation of GDVB is flexible in that it permits the customization of

levels, as we demonstrate in the next section, to generate a benchmark that focuses on variation in

a subset of factors. More generally, GDVB can easily be extended to support additional factors

and levels for which an instance of transform can be defined. We expect that GDVB will evolve

in this way as studies of neural network verifiers are performed. The implementation of GDVB is

open-source and can be accessed at the following URL: https://github.com/edwardxu0/GDVB.

5.1.5 The SwarmHost Verification Framework

While the main purpose of GDVB is to generate diverse NNV benchmarks. It also contains a

pipeline that supports verifier executions and result analysis for easier analysis of empirical studies.

It currently supports three verification frameworks: DNNV, DNNF, and the novel SwarmHost

framework.

Due to the fast development of the NNV field, most of the supported verifiers in DNNV

are now outdated. The GDVB coalition is extended with a new verification framework called

SwarmHost. This new framework supports more modern verifiers like α,β-CROWN [129], MN-

BaB [51], Nnenum [8], verinet [62], and NeuralSAT [41]. Additionally, it can generate local

robustness properties in the VNNLIB format [38] supported by these tools. Moreover, it provides APIs

that enable uniform execution and result parsing to aid our later research, such as AdaGDVB and

OCTOPUS. One notable feature of SwarmHost is its modular design, which eases the integration

of new verifiers. To add a new verifier to the pipeline, users only need to implement a Python

interface for verifier execution and result parsing. The implementation of SwarmHost is open-source

and can be accessed at the following URL: https://github.com/edwardxu0/SwarmHost.

41

https://github.com/edwardxu0/GDVB
https://github.com/edwardxu0/SwarmHost

5.1.6 Scaling Up Neural Networks with Enhanced R4V

Note that when the level of a factor is greater than 1, this means that the resulting verification

problem is “larger” than the original seed problem. GDVB supports scaling up of the epsilon

radius, input dimension, input size, and neuron factors natively. However, when dealing with

the number of fully connected layer and the number of convolutional connected layer factors,

additional work is required with the underlying R4V library. We have enhanced the R4V library used

by GDVB to support the addition of both fully connected and convolutional layers to an existing

network. Users can also specify the location, type, size, and activation functions of the added layer.

With this extension, GDVB is not limited by starting with a large and complex neural network.

Instead, users can easily begin with a small network and still generate a challenging benchmark by

scaling up the verification problems. The enhanced implementation of R4V is open-source and can

be accessed at the following URL: https://github.com/edwardxu0/R4V.

5.2 Evaluation

In this section, we showcase the potential uses of GDVB across a series of artifacts and verifiers,

while highlighting the challenges it helps to systematically address.

5.2.1 Evaluation Setup

5.2.1.1 Selection of Seed Verification Problems

The evaluation section examines two GDVB benchmarks through the utilization of two seed verifica-

tion problems: MNISTConvBig and DAVE-2 (Tab. A.1). The MNISTConvBig network comprises 4

Convolutional and 3 Fully Connected layers. It stands as the most extensive MNIST network within

the ERAN (§ 3.2) benchmarks, encompassing 48,074 neurons and 1,974,762 parameters. On the

other hand, the DAVE-2 network is composed of 5 Convolutional and 5 Fully Connected layers,

housing 82,669 neurons and 2,116,983 parameters. Both seed verification problems employ a 0.02

epsilon radius.

42

https://github.com/edwardxu0/R4V

5.2.1.2 Selection of Verifiers

A set of state-of-the-art verifiers in 2020 are selected from Tab. A.2 to be assessed with the 2

GDVB benchmarks, including: ReLuplex, Planet, BaB, Neurify, and ERAN. We use Branch-

and-Bound (BaB), as well as a variation of Branch-and-Bound with Smart-Branching (BaBSB).

Additionally, we evaluate the ERAN verifier with 4 available abstract domains: ERANDeepZono,

ERANDeepPoly, ERANRefineZono, and ERANRefinePoly. The 9 representative verifiers spam across

multiple algorithmic families, including: search, optimization, and reachability (refer to § 3.3.)

5.2.1.3 Selection of Factors and Levels

To ensure consistency, all applicable influencing factors discovered in § 4 are parameterized into

quintile settings, i.e., 5 evenly distributed levels per factor. The activation function factor is

left out to be the same ReLU activation function as the seed problems. The layer and layer type

are combined to form the two new factors: the number of Fully Connected layers and the number

of Convolutional layer factors. The levels of these two factors use exactly the number of the actual

layers, such that the number of layers is always an integer. All the other factors have quintle levels,

i.e., (1
5 , 2

5 , 3
5 , 4

5 , 1) relative to the seed verification problem. For centerpoint, we select a set of five

center points that shift on a different instance of the test data; unlike the above levels, this level is

unordered.

As for the constraints, Γ, is constructed based on whether certain combinations of the factor

levels will permit valid neural network architectures. These constraints were developed iteratively

based on feedback from the R4V tool, which reports when transform has specified an invalid

neural network, and when training failed to closely approximate the accuracy of the seed network.

Example 5.2.1 Our instantiation of GDVB exclusion constraints for DAVE-2 are as follows: (1)

fc = 0∧ conv = 0, (2) conv = 0∧neu ≥ 20, (3) conv = 0∧ idm ≥ 80, and (4) conv = 100∧ idm = 20.

The first of these requires that some layer be present. The second and third are related to the blowup

in the size of fully-connected layers that results from dropping all convolutional layers, which makes

training difficult; limiting the total number of neurons and the reduction of input dimension mitigates

43

this. The fourth constraint ensures that the input dimension reduction results in a meaningful

network; without it, the dimensionality reduction achieved by sequences of convolutional layers yields

an invalid network, i.e., the input to some layer is smaller than the kernel size.

5.2.2 Selection of Metrics and Resources

To evaluate verifier performance, we use the SCR and the PAR-2 (refer to § 3.1) metrics. The SCR

counts solely and number of solved problems and PAR-2 also aggregates to solve time. All training

and verification took place under CentOS Linux 7. R4V transformation and distillation jobs ran on

NVIDIA 1080Ti GPUs. Verification jobs were limited to 4 hours and ran on 2.3GHz and 2.2GHz

Xeon processors with 64GB of memory, for DAVE-2 and MNISTConvBig, respectively.

5.2.3 Results

5.2.3.1 Comparing verifiers across a range of challenges

Consider the use case where a researcher is attempting to compare a new verifier (e.g., a new algorithm,

a revised implementation, or an extension to an existing approach) against existing verifiers. As

shown earlier, for such a comparison to be meaningful, many factors must be considered and properly

explored. Given a seed network, a property, a set of factors, and a coverage goal, GDVB can generate

a benchmark that helps to reduce bias in conducting such an evaluation.

For this use case, we consider seed networks and local robustness properties similar to those from

the ERANDeepZono study [110] for the MNISTConvBig verification problem and local robustness

properties based on those from the Neurify study [127] for the DAVE-2 verification problem.

We run an instance of GDVB using the factors and levels described in Sect. 5.2.1.3, a coverage

strength of 2, and train 5 versions of each network to account for stochastic parameter variation.

The total time to generate and train GDVB (MNISTConvBig, . . .) was 24.3 hours and the resulting

30 verification problems took 401.8 hours to run across all 9 verifiers. For GDVB (DAVE-2, . . .) 44

verification problems were generated with training and verification times of 158.2 hours and 772.4

hours, respectively. CMCA generation took less than a minute for both problems. Each problem in

44

MNISTConvBig DAVE-2
Verifier SCR PAR-2 SCR PAR-2

ERANDeepZono 11.40±0.49 18,126.80±488.27 7.20±1.94 24,496.20±1,176.59
ERANDeepPoly 21.00±0.89 9,206.00±806.70 18.40±2.15 17,443.00±1,344.65

ERANRefineZono 10.20±0.40 19,252.60±343.66 5.80±2.14 25,236.60±1,253.90
ERANRefinePoly 12.60±1.02 16,981.40±930.71 10.20±1.83 22,250.60±1,186.44

Neurify 22.00±1.10 8,636.20±1,008.63 19.20±2.56 17,247.80±1,397.05
Planet 7.00±0.63 23,145.60±468.18 3.40±1.62 27,268.60±775.56

BaB 0.20±0.40 28,689.80±220.40 0.00±0.00 28,800.00±0.00
BaBSB 0.00±0.00 28,800.00±0.00 0.00±0.00 28,800.00±0.00

ReLuplex 3.20±0.40 25,757.80±381.40 4.40±1.02 26,023.60±635.90

Tab. 5.1: Mean & Variance of SCR and PAR-2 Scores Across Benchmarks (The darker and lighter
gray boxes indicate the best and second best results)

the benchmark must be trained and verified in sequence, but across problems, they can be parallelized.

We exploited this to reduce the cost of running the benchmarks to 4.9 hours for MNISTConvBig and

7.9 hours for DAVE-2. We measured the SCR and PAR-2 scores for the nine verifiers across the

benchmarks.

The results are shown in Table 5.1. Since the SCR and PAR-2 score trends are the same we

depict just SCR in Fig. 5.1. Boxplots show the SCR scores for a verifier across all the generated

problems; variation in plots arises from the 5 trained versions of the networks for each problem. For

each box, the middle line represents the median, the box-bounds are the first and third quartiles,

and the whiskers represent minimal and maximal values.

The plot for MNISTConvBig on the left of Fig. 5.1 shows that the GDVB benchmark with

the MNISTConvBig seed can identify considerable performance variation across verifiers,

with ERANDeepPoly and Neurify accurately verifying a median of over 20 properties, the rest of the

ERAN-variants verifying between 10 and 13 properties, and the remaining tools verifying between 0

and 8 properties. The results are consistent when we employ DAVE-2 as the seed network, with

marked differences among groups of verifiers. However, the generated problems turned out

to be more challenging across all verifiers. ERANDeepPoly and Neurify, the top performers, can

verify less than half of the generated problems. Verifiers like BaB were unable to verify any problem

derived from DAVE-2 because of the complexity of the seed problem. This point highlights the need

45

ERAN_DZ

ERAN_DP

ERAN_RZ

ERAN_RP

Neurify

Planet

Bab

BaBSB

Reluplex
Verifier

0

5

10

15

20

25

30

So
lu

tio
n-

Co
un

t R
an

ki
ng

 (S
CR

)

ERAN_DZ

ERAN_DP

ERAN_RZ

ERAN_RP

Neurify

Planet

Bab

BaBSB

Reluplex

Verifier

0

5

10

15

20

25

30

35

40

Fig. 5.1: SCR Score for Nine Verifiers on GDVB Benchmarks with MNISTConvBig (left) and
DAVE-2 (right) Seed Problems

for benchmarks to evolve with networks that incorporate emerging technology, and also GDVB’s

ability to automatically generate a benchmark from different seeds to address that need.

Now, understanding the overall performance of a family of verifiers is useful, but it is likely just

the first step for a researcher to understand under what conditions a verifier excels or struggles. When

such conditions correspond to the factors manipulated by GDVB, then they are readily available for

further analysis. One analysis may consist of simply plotting the data across its multiple dimensions.

We do so in the form of radar charts for DAVE-2 in Fig. 5.2b and for MNISTConvBig in Fig. 5.2a

We do not plot BaBSB as its performance was identical to BaB. Since the observations we can

gather from both networks are similar, we just discuss DAVE-2 in detail. Each chart includes six

axes representing a factor scaled between 0 and 1. The solid lines link the maximum values across

factors that were accurately verified while the dotted lines link the median values across factors.

The shape of the lines in the radar plots clearly shows that the verification problems generated

by GDVB reveal unique patterns across the verifiers. For example, the ReLuplex plot

indicates that it can do well-verifying networks with multiple fully connected (FC) layers but is

challenged by larger networks (Neu) and those with convolutional layers (Conv). Comparing multiple

46

neu

fcconv

idm

ids scl

0 0.2
0.4
0.6
0.8
1 neu

fcconv

idm

ids scl

0 0.2
0.4
0.6
0.8
1 neu

fcconv

idm

ids scl

0 0.2
0.4
0.6
0.8
1 neu

fcconv

idm

ids scl

0 0.2
0.4
0.6
0.8
1

neu

fcconv

idm

ids scl

0 0.2
0.4
0.6
0.8
1 neu

fcconv

idm

ids scl

0 0.2
0.4
0.6
0.8
1 neu

fcconv

idm

ids scl

0 0.2
0.4
0.6
0.8
1 neu

fcconv

idm

ids scl

0 0.2
0.4
0.6
0.8
1

max
median

ERAN_DZ ERAN_DP ERAN_RZ ERAN_RP

Neurify Planet BaB Reluplex

(a) MNISTConvBig Artifact

neu

fcconv

idm

ids scl

0 0.2
0.4
0.6
0.8
1 neu

fcconv

idm

ids scl

0 0.2
0.4
0.6
0.8
1 neu

fcconv

idm

ids scl

0 0.2
0.4
0.6
0.8
1 neu

fcconv

idm

ids scl

0 0.2
0.4
0.6
0.8
1

neu

fcconv

idm

ids scl

0 0.2
0.4
0.6
0.8
1 neu

fcconv

idm

ids scl

0 0.2
0.4
0.6
0.8
1 neu

fcconv

idm

ids scl

0 0.2
0.4
0.6
0.8
1 neu

fcconv

idm

ids scl

0 0.2
0.4
0.6
0.8
1

max
median

ERAN_DZ ERAN_DP ERAN_RZ ERAN_RP

Neurify Planet BaB Reluplex

(b) DAVE-2 Artifact

Fig. 5.2: Radar Plot with Maximum(solid) and Median(dotted) Values of the Two Artifacts

charts also reveals some interesting trade-offs. For example, for smaller networks with just fully

connected layers, the medians seem to indicate that ReLuplex is better than Planet. However,

when a network incorporates convolutional layers or a larger number of neurons, Planet appears to

outperform ReLuplex.

Looking across charts can also pinpoint specific improvements resulting from tool extensions or

47

revisions. For example, the median line of ERANRefineZono indicates that it was not as effective in

handling verification problems with a larger number of layers as its predecessor ERANDeepZono; the

same trend holds for the pair ERANRefinePoly and ERANDeepPoly. We note that a more restrictive

benchmark that is biased towards fewer fully connected layers might not reveal such differences.

GDVB offers the opportunity to investigate such differences even further by generating targeted

verification problems for a subset of factors hypothesized to be culprits of those differences. For

example, GDVB could generate additional verification problems with several fully connected layers

between 60% and 80% of the total, while keeping the other factors constant, to refine the understanding

of the differences between ERANRefineZono and ERANDeepZono.

This study illustrates how GDVB benchmarks support the exploration of verifier performance,

lowering the burden on researchers to manually prepare tens to hundreds of verification problems,

and reducing the opportunities for bias.

5.2.3.2 GDVB and benchmark requirements R1-R3

As explained in Sect. 5, benchmarking in verification seeks to develop benchmarks that are: diverse;

representative of real use cases; and reactive to new technologies. The previous sections have provided

evidence of how, through its generative nature, GDVB is reactive to new advances in technology

included in the seed network. We have also seen the high degree of parameterization GDVB offers

including for setting a seed network from which realistic attributes are inherited in the generated

verification problems. In this section, we want to illustrate how GDVB addresses the diversity

requirement.

To depict diversity we use the parallel coordinate graph in Fig. 5.3. Each vertical line corresponds

to a factor, and the markers in each vertical line correspond to an explored level. Each verification

problem is a polyline that connects the factors’ levels explored by it. The two sets of lines correspond

to the verification problems included in the DAVE-2 benchmark published with Neurify, which is a

downsized version of the full DAVE-2 network, and the benchmark produced by GDVB (DAVE-2,

. . .). Each factor in the plot is normalized by dividing by the maximum value for the factor.

Fig. 5.3 shows that the Neurify’s DAVE-2 has numerous neurons, inputs, and dimensions. Yet,

48

neu fc conv ids idm

0.0

0.2

0.4

0.6

0.8

1.0

Neurify(DAVE-2)
GDVB(DAVE-2)

Fig. 5.3: Diversity Explored Across Factor Levels

it provides very limited coverage of all the factor levels that may affect verification performance.

In contrast, GDVB provides a systematic exploration of the factor levels that can affect verifier

performance making it much less biased – especially to the numbers of layers in the verification

problems and the combination of those factor levels.

The parallel plot for GDVB benchmark with the MNISTConvBig seed (not shown for space rea-

sons), depicts a similar trend in terms of systematic exploration of diversity, but since MNISTConvBig

is simpler than DAVE-2, the generated benchmark is correspondingly simpler. This points to the

need to identify representative and challenging seeds when parameterizing GDVB. GDVB is fully

capable of accommodating factor levels that exceed 100% of a seed network, which is a means of

pushing verifiers to the limits of their abilities.

We note that excluding factors or levels can yield a systematically generated benchmark that is

unable to characterize differences between verifiers, or worse, misleads such a characterization by

emphasizing certain factors while overlooking others. For example, not exploring different network

sizes or exploring network sizes under 1000 neurons will render similar scores across many neural

network verifiers that are differentiated by more comprehensive benchmarks. In applying GDVB, we

suggest selecting as many factors as we know may matter, starting from a challenging seed problem,

and incrementally refining the levels as needed to focus benchmark results to differentiate verifier

49

performance.

5.3 Conclusion

The increasing adoption of neural networks has led to a surge in research on verification techniques.

Benchmarks to assess these emerging techniques, however, are costly to develop, often lack diversity,

and do not represent the population of real evolving networks. To address this challenge, this

chapter introduces GDVB, a framework for systematically generating NNV problems seeded in

complex, real-world networks, ensuring that benchmarks are derived from real problems. GDVB is

parameterizable by the factors that may influence verification performance and thereby supports

scalable benchmarking. A preliminary study, using 9 verifiers, demonstrates how GDVB can support

the assessment of the state-of-the-art.

The innovative method for generating benchmarks presented in this chapter serves as a source of

inspiration for future research endeavors aimed at exploring the boundaries of verification performance

in § 6. Additionally, it paves the way for the development of a sophisticated benchmark that surpasses

the existing state-of-the-art benchmarks in VNN-COMP after four years in § 8.

50

Chapter 6

Adaptive Benchmark Generation

for Neural Network Verification

As in other fields of verification, the comparative evaluation of techniques and tools serves as a

driving force in scaling their performance. (refer to § 3.1) For the last 4 years, the annual neural

network verification competition (VNN-COMP) has called for benchmarks that are “not so hard

that none of the instances can be solved by any participant, but also not so easy that every tool can

solve all of them [24]. Each instance of VNN-COMP [67, 7, 93, 23] has used benchmarks that are

provided by verifier authors and has allowed verifiers to be tuned to benchmarks.

To avoid potential bias in benchmarking neural network verifiers, the GDVB approach (described

in § 5) introduced the idea of systematically synthesizing benchmarks that are (i) diverse in difficulty,

(ii) realistic to real-world use and that can (iii) evolve with advances in neural network verifier

capabilities. GDVB identified 9 factors that could impact the difficulty of the verification problems,

including the number of neurons (neuron), the number of layers (layer), and input dimension

(input dimension), etc. It uses the concept of combinatorial interaction testing (CIT) [31] to

generate the smallest possible benchmark that assures combinations of different scaling levels for

each factor. The resulting benchmarks were used to characterize performance differences among 9

51

state-of-the-art verifiers in 2020, and more recently have been used to develop challenging benchmarks

for state-of-the-art verifiers, as discussed in § 8.

In this chapter, we introduce AdaGDVB, an approach that enhances GDVB-based benchmark

generation. It allows to automatically generate customized benchmarks for a given verifier. This is

achieved by iteratively scaling the size of the verification problem until the verifier can no longer solve

it. This happens across multiple dimensions of scaling and results in a benchmark that characterizes

the verification performance boundary (VPB) of a verifier. Contrasting the VPB for two verifiers

provides a new means of comparing their scalability. Besides, performance analysis focusing on

benchmark problems on either side of the boundary can facilitate performance optimization.

In § 6.2, we illustrate two use cases for applying AdaGDVB. For competition holders, such

as VNN-COMP, AdaGDVB can create adaptive benchmarks to showcase performance differences

between verifiers using the computed VPB instead of just problems solved and solving time. For

verifier developers, AdaGDVB can generate a benchmark that exposes the performance bottlenecks

of their verifier and thereby facilitates algorithmic and implementation optimization.

The contribution of this chapter includes,

1. a novel approach to iteratively search for the VPB for a given verifier;

2. an open-source implementation of the main AdaGDVB framework;

3. and two use cases of the AdaGDVB approach.

6.1 Approach

The AdaGDVB method is based on the GDVB approach. The core concept involves utilizing

the factors outlined in GDVB to create NNV instances that systematically vary in complexity.

Subsequently, it employs an iterative binary search process to determine the given verifier’s verification

performance boundary, also known as VPB, as detailed in Def. 7.

Definition 7 A neural network Verification Performance Boundary (VPB) is an NNV benchmark

that contains a subset of solvable problems and another subset of unsolvable problems.

52

AdaGDVB

GDVB

Generate CMCAGenerate Factor Execute
VerificationInitial Configs Refactor NN

R4V Swarm\
Host

Explore

RefineRefine Configs

Seed Verification
Problem

Decide

Verifier

DNNV

Evolve Configs

Evolution Configs

Fig. 6.1: Overview of AdaGDVB.

The VPB of a given verifier refers to a benchmark that encompasses both solvable and unsolvable

problems. The VPB captures the decision boundary of the verifier’s performance on the given

verification problem. Considering the intricate nature of the NNV, which entails at least 9 factors

that can influence the verifier’s performance, the VPB becomes a non-trivial entity that may exhibit

non-convexity and contain gaps. A trivial VPB consists of only two problems: the simplest and the

most challenging verification problems. Conversely, a meaningful VPB comprises a limited number

of benchmark problems that effectively capture the verifier’s decision boundary, thereby minimizing

the disparities between solvable and unsolvable problems, while delineating the verifier’s behaviors.

6.1.1 Overview

The AdaGDVB framework is outlined in the Fig. 6.1. It builds upon the GDVB framework by

incorporating an improved R4V (refer to § 5.1.6) library and introducing a verification framework,

SwarmHost (refer to § 5.1.5), alongside the existing GDVB approach. The primary objective of

GDVB is to create an NNV benchmark that systematically varies in complexity, execute the neural

network verifier integrated with the verification framework, and evaluate the verification outcomes.

The innovative AdaGDVB methodology consists of two main phases, namely exploration and

53

refinement. AdaGDVB aims to control the factor-level configurations of the next NNV benchmark

based on the verifier’s feedback of the current benchmark to continuously challenge the verifier until

the VPB is identified.

6.1.2 The AdaGDVB Method

Alg. 2: The AdaGDVB Algorithm
Input : a seed verification problem ⟨Ns, ϕs⟩, a set of factors F , a set of initial levels for the

selected factors L0, their lower L− and upper bounds L+, refinement granularity g,
a set of combinatorial constraints Γ, a neural Network verifier v, the maximum
number of steps of the exploration(Se) and refinement(Sr) phases

Output : An approximate verification boundary benchmark B with verification results R

1 t← |F |
2 L← L0
3 Pu ← ∅, Po ← ∅

/* Exploration Phase */
4 i← 0
5 while i > Se do
6 B ← GDVB(⟨Ns, ϕs⟩, F, L, Γ, t)
7 R← Evaluate(B, v)
8 (Pu, Po)← UpdatePivots(R, L)
9 if (Pu ̸= ∅ ∧ Po ̸= ∅) then

10 break
11 else
12 L← ∅
13 forall f ∈ F do
14 L[f]← Explore(L[f], f, Pu, Po, L−, L+, R)

15 i← i + 1
/* Refinement Phase */

16 i← 0
17 while i < Sr do
18 L← ∅
19 forall f ∈ F do
20 L[f]← Refine(L[f], f, Pu, Po, g)
21 B ← GDVB(⟨Ns, ϕs⟩, F, L, Γ, t)
22 R←Evaluate(B, v)
23 i← i + 1
24 return B, R

54

The goal of AdaGDVB is to characterize the boundary between verification problems that can

be solved and those that cannot by a given verifier; we refer to this as the verification performance

boundary (VPB). It has been shown in § 4, that verifiers are sensitive to as many as 9 independent

factors (e.g., number of neurons, number of layers, and input dimensions, etc.), that define a problem

and influence verifier performance. While in principle a VPB in this 9-dimensional space could be

defined, in practice we focus on smaller subspaces. The user can select a subset of GDVB factors,

and AdaGDVB searches the space of scaling levels of those factors. Conceptually, the VPB is a

surface in the selected space of factors, but the AdaGDVB algorithm approximates the VPB with a

benchmark consisting of verification problems on both sides of the boundary.

As shown in Fig. 6.1, AdaGDVB comprises two phases: exploration and refinement – each

of which performs a search of the space of verification problems. The primary objective of the

exploration phase is to swiftly identify the approximate VPB with a minimal number of steps.

Subsequently, the refinement phase is employed to enhance the granularity of the VPB, thereby

facilitating a more comprehensive interpretation.

The exploration phase begins with an initial configuration setting for selected GDVB factors,

describing the scaling levels for those factors(X), and a seed verification problem(s). In addition to

these GDVB parameters, AdaGDVB takes a target verifier and an evolution configuration(e), which

describes how the initial configuration should be scaled as the search proceeds. GDVB computes

a covering array [31] based on the factor level settings. Then it uses the improved version of R4V

to create a verification benchmark with one verification problem per covering array row. GDVB

then uses SwarmHost or DNNV to execute the target DNN verifier and analyze the verification

results (unsat, sat, unknown, error, or out of resource) which are used as feedback that drives the

next round.

The decide step determines whether the performance boundary has been detected based on two

pivot points: Pu and Po. Pu underestimates the VPB as the largest neural network for all selected

factors where all verification problems can be solved; Po overestimates the VPB as the smallest

neural network for all selected factors where no verification problems can be solved. If both pivots are

found or the search boundary is reached, decide will transition to the refinement phase. Otherwise,

55

the decide step continues exploration by scaling the current factor-level bounds up or down based on

the verification feedback and continues with another round. Once the VPB is found, the refinement

phase uses the pivots to establish min/max scaling levels for each factor and generates problems

evenly spaced within those levels to approximate the VPB.

The main algorithm of AdaGDVB is illustrated in Alg. 2, encompassing two distinct phases:

exploration (Lines 1 to 15) and refinement (Lines 16 to 23). In the exploration phase, the

algorithm begins by setting up the necessary variables in Lines 1 to 4. Line 1 determines the strength

of the coverage, which is defined as the number of factors. Line 2 initializes the initial levels of the

factors. Line 3 initializes the two pivots, while Line 4 initializes the iteration counter.

The exploration loop commences by generating a GDVB benchmark B in Line 6, followed by

executing the verifiers and analyzing the results using the Evaluate method in Line 7. Line 8

calculates the two pivot points (Pu and Po) for the current searching space. If both pivots are found

(Line 9) or the maximum number of exploration steps is reached (Line 5), AdaGDVB transitions

from the exploration phase to the refinement phase. Otherwise, the Explore method computes the

factor-level configurations for the next iteration based on the verification results, and the algorithm

continues looping at Line 5.

The refinement phase calculates a factor-level configuration using the Refine method with the

given granularity g, as depicted in Lines 18 to 20. It then proceeds with the generation of the GDVB

benchmark, verifier execution, and results evaluation using the Evaluate method from Line 21 to

22. The refinement phase continues until the maximum number of steps is reached in Line 17. If not,

it loops back from Lines 17 to 23. Ultimately, the AdaGDVB algorithm returns the verification

performance boundary B and the corresponding results of the verifier.

6.1.3 Examples

Example 6.1.1 Fig. 6.2 illustrates a conceptual example workflow of AdaGDVB. The initial

GDVB factor-level settings contain two factors with two/three levels respectively, X1 = {1, 2, 3} and

X2 = {1, 2}. The exploration loop starts with these settings, and the subsequent steps evolve those

levels by doubling them. The initial benchmark generates 6 problems shown in circles in the first

56

Exploration Refinement

(pu, po)

1 2

1

2

0 2 4

2

4

0 2 4

8

4

0

s, X, e

3 6 6

2

1 1

8 12

Evolve Evolve

31 13

8

2

4

6

X1X1X1

X2X2X2 X2

X12 4 6 8

VPB

Fig. 6.2: Conceptual Workflow of AdaGDVB (Factors: X1 and X2 with exponential growth; Dark
grey: solvable problems, light grey: unsolvable problems; Circles: step 1, pentagons: step 2, triangles:
step 3; Bold items in exploration: the two pivot points, Pu and Po, at current iteration. Bold items
in refinement: the performance boundary on the solvable side.)

plane. The newly explored verification problems for iteration 2 and 3 are shown as pentagons and

triangles, respectively. Problems filled with dark gray were solved by the verifier and those with light

gray were not. After three iterations, the verification performance boundary is successfully identified

and the Decide step moves on to the refinement loop. The refinement phase adds more resolution

to the VPB to yield a benchmark that more clearly delineates the boundary.

Example 6.1.2 Fig. 6.3 illustrates the VPB exploration process for the α,β-CROWN verifier on

the MNIST3×1024 artifact(refer to Tab. A.1). The chosen GDVB factors are neuron (X-axis) and

layer (Y-axis). In the exploration phase, AdaGDVB explores 7 steps as shown in the series of

rectangles moving upward and to the right. Each step comprises a GDVB benchmark (rectangle),

with 9 networks (circles) and verification results for 5 verification properties shown as colored wedges

of the circle – green (unsat) and blue (sat) denote solvable verification problems, while the rest are

considered unsolvable. The result of this exploration phase identifies pivots that are the lower-left

and upper-right corners of the refinement region in the Figure. The refinement phase fills in this

region at a specified granularity to reveal the VPB as shown in Fig. 6.4a with a 2x granularity.

57

Fig. 6.3: AdaGDVB’s Exploration Phase When Applied on α,β-CROWN Over the MNIST Network

6.1.4 Implementation

AdaGDVB is written in Python and is open source 1. The tool can easily be extended to support

new verifiers, e.g., a user can simply provide a Python wrapper including several lines of code to

invoke the verifier and parse results. Moreover, it is designed to be run on a local computer or to

distribute training and verification jobs to a cluster via the SLURM scheduler.

Relative to GDVB, AdaGDVB aims to minimize user effort – specifically the problem of choosing

appropriate scaling levels for each factor. While automated, AdaGDVB is also highly configurable,

allowing expert users to adjust multiple aspects of the search space and thereby control cost. For
1GitHub repository of AdaGDVB: https://github.com/edwardxu0/AdaGDVB

58

https://github.com/edwardxu0/AdaGDVB

example, users can control various parameters including: the verification problem factors to be

varied, scaling levels to be applied to those factors, scaling limits that define search space boundary,

the maximum number of exploration iterations, the granularity of the benchmark generated in the

refinement phase, and resource limits on verification jobs, such as timeout and memory limits. This

allows AdaGDVB to be adopted easily and tuned for specific use cases.

6.2 Evaluation

We conducted studies to illustrate a pair of use cases for AdaGDVB. The studies use the same

settings: a seed verification problem with the MNIST3×1024 (Tab. A.1) neural network of 3 fully

connected layers with 1024 neurons each (3,072 neurons in total), and local robustness properties

with an epsilon radius of 0.02 as was used in GDVB’s evaluation. As discussed in § 4.1, the

levels for GDVB factors define how to scale network parameters. We have three levels for scaling

neuron = { 1
3 , 2

3 , 1} and layer = { 1
3 , 2

3 , 1}, with upper bounds of neuron = 42.67 and layer = 24 to

establish a bounded search space for AdaGDVB. Each network is verified on robustness properties

with 5 different center points. For the verifiers, we select four representatives from various algorithmic

families of different years, including Neurify (2018), Marabou (2019), α,β-CROWN (2023), and

NeuralSAT (2024).

Using AdaGDVB to produce a benchmark requires executing numerous training and verification

tasks. For the first use case discussed below, we executed more than 3,400 verification tasks each

with a 600-second timeout – if run sequentially these would take more than 3 weeks of compute time.

To compare VPB across different verifiers it is essential that AdaGDVB use the same hardware.

The scale of this evaluation led us to choose to run verifiers on Intel(R) Xeon(R) Silver 4214 CPU @

2.20GHz CPUs with 16GB RAM using up to 6 cores and a 600-second timeout. While these CPUs

are a few years old, we have access to several of them which allowed us to run verification jobs in

parallel, bringing time for the study to under 1 day per verifier.

This choice does, however, present a concern when it comes to interpreting the computed VPB.

Certain verifiers may be optimized to exploit different hardware resources, e.g., the computing power

59

4.00 8.00 12.00 16.00 20.00 24.00

Factor level scale(×): Neurons

1.33

34.40

9.60

42.67

17.87

26.13

F
a

ct
o

r
le

ve
l

sc
al

e(
×

):
F

C
L

ay
er

s

(a) α,β-CROWN (2023) 2× Granularity

4.00 8.00 12.00 16.00 20.00 24.00

Factor level scale(×): Neurons

1.33

34.40

9.60

42.67

17.87

26.13

F
a

ct
o

r
le

ve
l

sc
al

e(
×

):
F

C
L

ay
er

s

(b) NeuralSAT (2024) 2× Granularity

0.33 3.47 6.60 9.73 12.87 16.00

Factor level scale(×): Neurons

0.33

34.20

8.80

42.67

17.27

25.73

F
a

ct
o

r
le

ve
l

sc
al

e(
×

):
F

C
L

ay
er

s

(c) Neurify (2018) 2× Granularity

0.33 0.67 1.671.00 1.33 2.00

Factor level scale(×): Neurons

0.33

3.47

6.60

9.73

12.87

16.00

F
a

ct
o

r
le

ve
l

sc
al

e(
×

):
F

C
L

ay
er

s

(d) Marabou (2019) 2× Granularity

Fig. 6.4: AdaGDVB Generated Benchmarks (VPBs) for 4 Verifiers

of GPU/CPU and the memory size of RAM/VRAM. A specific choice of hardware may advantage

some verifiers and limit the performance of others. To mitigate this threat, we compared the

performance of two verifiers, α,β-CROWN and NeuralSAT, on the 6-core 16GB RAM CPU-only

node – which we describe below – with the performance reported on a 64-core 128GB RAM node with

a GPU [42]. Despite the hardware differences, the two evaluations found that the relative performance

of these verifiers was very similar. This suggests that VPB computed with resource-constrained

hardware still can provide an accurate relative characterization of verifier scalability.

60

4.00 5.82 7.64 9.45 11.27 13.09 14.91 16.73 18.55 20.36 22.18 24.00

Factor level scale(×): Neurons

1.33

35.15

5.09

38.91

8.85

42.67

12.61

16.36

20.12

23.88

27.64

31.39

F
a

ct
o

r
le

ve
l

sc
al

e(
×

):
F

C
L

ay
er

s

(a) α,β-CROWN (2023) 4× Granularity

4.00 5.82 7.64 9.45 11.27 13.09 14.91 16.73 18.55 20.36 22.18 24.00

Factor level scale(×): Neurons

1.33

35.15

5.09

38.91

8.85

42.67

12.61

16.36

20.12

23.88

27.64

31.39

F
a

ct
o

r
le

ve
l

sc
al

e(
×

):
F

C
L

ay
er

s

(b) NeuralSAT (2024) 4× Granularity

Fig. 6.5: VPBs of α,β-CROWN and NeuralSAT with 4× Granularity

6.2.1 Use Case One: Adaptive benchmarks

Traditional DNN verification benchmarks evaluate verifiers over a fixed number of problems. The

verifiers are ranked by the number of the problems solved and/or time, as in VNN-COMP [67, 7, 93].

AdaGDVB provides a new way to compare verifier performance by estimating the boundary between

solvable and unsolvable problems. This directly measures the scalability of a verifier.

Fig. 6.4 depicts the VPBs of 4 verifiers which vary in the algorithms they use and when they

were developed. The AdaGDVB exploration expands the scale of both layers and neurons based on

a verifier’s ability to solve problems, thereby characterizing their scalability. When a 2× refinement

granularity is applied for α,β-CROWN and NeuralSAT, the resulting VPB for the generated

MNIST benchmark is identical as shown in Fig. 6.4a and Fig. 6.4a. To further differentiate the two

verifiers, we used a finer 4× refinement granularity to produce the benchmarks shown in Fig. 6.5a

and Fig. 6.5b. The refined VPBs reveal that α,β-CROWN is slightly more capable. The differences

are subtle, so we have highlighted them with red circles. The VPBs indicate that across the 720

verification problems in the benchmark, α,β-CROWN can falsify 1 more and prove 5 more than

NeuralSAT, and NeuralSAT can prove 1 more than α,β-CROWN– a difference of less than

61

1%. This is consistent with the results of other published studies [41, 42], which show these verifiers

performing comparably on benchmarks like this.

The VPBs of Neurify and Marabou reveal a different story at a 2× refinement granularity.

Neither scales as well across both factors, which is to be expected since they are older verifiers that

do not incorporate the latest algorithmic techniques. It is interesting to note how the shape of their

VPBs vary. Neurify scales well with layers while holding neurons at a low level, and Marabou

scales well with neurons while holding layers at a very low level. Understanding the relative strengths

and weaknesses of verifiers as depicted by their VPB could help a user select a verifier for a given

problem. For example, a network with 38 layers (3× 12.87) and 29,890 neurons (3, 072× 9.73), lies

on the unsolvable side of the VPB for the older verifiers, but is comfortably on the solvable side of

the VPB for the newer verifiers.

6.2.2 Use Case Two: Identifying Neural Network Verification Bottlenecks

The ability of AdaGDVB to compute per-verifier VPB allows one to identify potential performance

anomalies. For the Neurify instance as shown in Fig. 6.4c, the row located at 25.73 shows

that verification can be solved with either 1,024 or 20,275 neurons, but not with 10,650 neurons.

AdaGDVB allows us to zoom in on that region to develop a finer benchmark that better delineates

this region as shown in Fig. 6.6a. We instrumented a version of Neurify to collect a variety of

different statistics during verification and ran it on this benchmark. We plotted the collected data in

a grid corresponding to the benchmark to look for those that correspond to the boundary.

The heatmap in Fig. 6.6b, shows the number of ReLUs that had to be split during verification –

these are referred to as unstable neurons. This finding concurs with the observation by Xiao et al. [135]

that “the primary speed bottleneck of exact verification is the number of ReLUs the verifier has to

branch on”. This use case demonstrates how empirical studies using AdaGDVB can identify DNN

verification scalability bottlenecks. This approach has allowed us to improve verifier performance

both through training discussed in § 7 [139] and the addition of new optimizations introduced in

§ 8 [42].

62

Factor level scale(×): Neurons

Fa
ct

or
le

ve
ls

ca
le

(×
):

FC
La

ye
rs

(a) Refined VPB Hole

Factor level scale(×): Neurons

Fa
ct

or
le

ve
ls

ca
le

(×
):

FC
La

ye
rs

(b) Number of Unstable Neurons

Fig. 6.6: Confirming the neuron stability Bottleneck Using an Instrumented Neurify Verifier

6.3 Conclusion

This chapter extends the NNV benchmark generation tool GDVB to establish AdaGDVB, to

iteratively generate adaptive benchmarks based on verifier performance to characterize a verifier’s

performance boundary. Findings from two use cases demonstrate that AdaGDVB can benefit

both (i) competition holders – providing a new means to compare verifier performance by analyzing

their performance boundaries; and (ii) DNN verification tool developers – providing a means to

identify performance bottlenecks to drive further tool improvement. The identification of the neuron

stability NNV performance bottleneck in § 6.2.2 has inspired our future research in improving

verification performance by reducing the neuron stability in the training (refer to § 7) and

verification (refer to § 8) processes.

63

Chapter 7

Increasing Neuron Stability to

Scale Neural Network Verification

Neural network verification is challenging due to the high input dimension of models, the ever-growing

complexity of network layers, the inherent non-linearity of learned function approximations, and

the algorithmically complex methods required to formulate the verification problem [71]. Several

approaches [46, 48, 106, 9] have been proposed to address the scalability issue, but as the results of

recent neural network verifier competitions show scalability remains a challenge [67, 7, 93].

In § 6.2.2, it has been established that the number of stable neurons significantly influences the

complexity of the verification problem. A higher number of stable neurons leads to a simpler problem,

whereas a greater number of unstable neurons results in a more challenging problem. This correlation

is logical, as unstable neurons contribute to the non-linear behavior of the neural network. Thus,

there is a possibility to reduce neural network verification costs by reducing the number of unstable

neurons, or in other words, increasing the number of stable neurons.

Several researchers have explored how neural networks can be defined to increase the number of

stable neurons and thereby facilitate verification. For example, one can incorporate a loss term that

uses an estimate of neuron stability to train a network that can be verified more efficiently [135].

64

Another training time approach identifies neurons that are likely to be stable and active and replaces

them with linear functions [29], but this approach requires customization of the verifier to show

performance improvement.

This chapter introduces OCTOPUS 1 a unified framework that trains neural networks with

more stable neurons to reduce the cost of verification. It contains three algorithmic approaches to

increase stability: RS Loss [135] incorporates a stability-oriented loss term, Bias Shaping is a novel

training time method that only modifies bias parameters to increase stability, and Stable Pruning

is a novel approach that adapts structural neural network pruning [118] to increase stability. These

are paired with stability estimation algorithms that operate at training time to guide these methods

towards increasing stability. We develop 4 estimators based on prior work: NIP [135], SIP [128, 127],

ALR [142], and ALRo [143], and 2 novel estimators SDD and SAD.

Neuron instability can be a source of verification complexity for the two primary algorithmic

approaches to neural network verification: abstraction-based methods and constraint-based methods

Abstraction-based verifiers [129, 51, 8, 111, 110] overapproximate neuron behavior, but when the

approximation is too coarse – due to unstable neurons – the approximations must be refined which can

slow down verification. Constraint-based verifiers [68, 70, 45, 119] are challenged by the disjunctive

nature of constraints that encode unstable neurons. Orthogonal to these approaches, branch and

bound techniques [27, 129, 51] are also sensitive to neuron stability since they need to generate

sub-problems for each of the active phases of unstable neurons. In our exploratory study, we evaluate

the performance of verifiers that span several of these algorithmic approaches and that also constitute

the state-of-the-art based on their performance in VNN-COMP 2022 [93]. This allows us to assess

the extent to which increasing neuron stability can improve the state-of-the-art verifiers.

Whereas prior work studied individual methods for increasing neuron stability in combination

with individual verifiers, in this chapter we conduct a broad exploratory study considering 18 different

stabilizers paired with 3 state-of-the-art verifiers across neural networks for different datasets and

comprising different architectures, on numerous challenging property specifications. Our primary

finding is that stable training can significantly increase the number of verifications problem solved –
1The OCTOPUS approach introduced in this chapter is published in the TACAS2024 conference [139].

65

by as much as 5-fold – and significantly speed up verification – by as much as a factor of 14 – without

compromising test accuracy or training time. Moreover, we find that if one is willing to tolerate a

modest loss in test accuracy, then even greater improvement in verifier performance can be achieved.

The contributions of this chapter lie in a comprehensive evaluation of the potential for optimizing

neural network verifier performance by increasing the number of stable neurons. More specifically,

• we adapt RS Loss with different stability estimators and evaluate its performance across

multiple verifiers and benchmarks;

• we propose two novel approaches (Bias Shaping and Stable Pruning) to increase neuron

stability and evaluate their performance across multiple verifiers and benchmarks;

• we integrate these state-of-the-art neuron stabilizers into an open-source framework that

supports experimentation with stability optimization by the neural network verification research

community; and

• we show empirically that the performance of state-of-the-art verifiers can be significantly

enhanced using stable training methods. These contributions set the stage for further work on

training for verification that aims to further characterize the best stable training strategy for a

given verifier and verification problem.

7.1 Approach

7.1.1 Overview

The popularity of the rectified linear unit (ReLU) activation function, z = max(ẑ, 0), which allows

for more efficient training and inference [56, 86], has led verification researchers to target networks

using them. In this section, we illustrate how ReLU leads to exponential verification costs and

how stabilization methods during neural network training can mitigate that cost, such as Stable

Pruning.

66

n1

n2

n3

n4

n5

=2

=3

=1

=-1

=-4

=6

[0.3,0.9]

[0.1,0.7]

=2

=2

=2

=3

=6

=-0.5

ReLU1

ReLU2

ReLU3

Hidden layer

Output layer

Input layer

Target output>0

Target output<0

Fig. 7.1: A Small Original Neural Network with Various Stability of Neurons

n1

n2

n3

n4

n5

=2

=3

=1

=-1

=-4

=6

[0.3,0.9]

[0.1,0.7]

=2

=2

=2

=3

=6

=-0.5

ReLU1

ReLU2

ReLU3

Hidden layer

Output layer

Input layer

Target output>0

Target output<0

Fig. 7.2: Applying the Bias Shaping Method on the Original Neural Network

67

n1

n2

n3

n4

n5

=3

=1

=-4

=6

[0.3,0.9]

[0.1,0.7]
=2

=3

=6

=-0.5

ReLU1

ReLU2

ReLU3

Hidden layer

Output layer

Input layer

Target output>0

Target output<0

Fig. 7.3: Applying the Stable Pruning Method on the Original Neural Network

For a neural network with ReLU activation functions, N : Rn → Rm, comprised of k neurons,

an inference, N (x), results in each neuron being either active, when z = max(ẑ, 0) = ẑ, or inactive,

when z = max(ẑ, 0) = 0. The status of each neuron in a network during inference defines an

activation pattern, ap(x) – a Boolean vector of length k. Verifying a set of inputs, ϕx ⊆ Rn, involves

symbolically reasoning about the set of activation patterns, and the associated neuron outputs, for

each x ∈ ϕx. In the worst case, there are 2k possible activation patterns which lead to the exponential

complexity of ReLU verification [68].

For a given set of inputs, ϕx, a neuron, ni, is stable and active if ∀x ∈ ϕx : ap(x)[i], and stable

and inactive if ∀x ∈ ϕx : ¬ap(x)[i]. A neuron’s stability is dependent on the computation performed

by its cone of influence [18] taking into account both ϕx and the behavior of neurons on which ni

depends on. In Fig. 7.1, consider verification of a local robustness property centered at x = (0.6, 0.4)

with a radius of ϵ = 0.3 – so ϕx = [0.3, 0.9]× [0.1, 0.7]. For such inputs, a single neuron, n2, is stable

– its pre-activation values are all positive, ẑ2 = [2.1, 5.1].

As defined in § 7.1, a set of techniques that aim to estimate which neurons are unstable during

68

training and then bias the training process to stabilize them. Fig. 7.2 and Fig. 7.3 show the application

of one pair of those techniques to the original network and property. More specifically, the NIP

estimator propagates interval approximations of neuron pre-activation values to estimate whether

they are stable, and then the Bias Shaping or Stable Pruning technique stabilizes the neurons

that are stable and inactive. During training this method estimates the pre-activation value for n1

to be ẑ1 = [−0.2, 2.2] which is nearly stable. Both Bias Shaping and Stable Pruning rank the

neurons based on the distance they need to be modified to be stable; for ẑ1 that distance is 0.2.

For Bias Shaping, we designed a novel approach to stabilize the unstable neurons by directly

manipulating the bias term of the unstable neurons. As shown in Fig. 7.2, Bias Shaping adds 0.2 to

the bias term of n1 so that its pre-activation value becomes in the stable active phase of the ReLU

function, and hence n1 becomes a stable neuron. As for Stable Pruning, we adapt the iterative

pruning approach of DropNet [118] to use this ranking. The intuition is that when a neuron is nearly

stable it can be removed and in subsequent training, the parameters of the remaining neurons will

adapt to compensate and preserve accuracy [52]. As illustrated in Fig. 7.3, by setting the weights

and bias of n1 to 0, this neuron is softly “removed” from the network, and hence the neuron becomes

stable. The reduction of unstable neurons will eventually reduce verification costs.

This section presents the two novel neuron stabilization methods: Bias Shaping and Stable

Pruning, as well as six different stability estimators. Alg. 3 shows the general training iterations

for a neural network with stabilizers (pairs of stabilization method, A, and stability estimator, B).

The conventional neural network training process of a mini-batch is shown in Line 2. Stabilizers are

applied at every sth mini-batch (line 3). Line 4 determines each neuron’s stability estimation by

calculating their boundaries, Ẑ, using different estimators described in §7.1.2. Lastly, Line 5 applies

the main stabilization algorithms, e.g. Bias Shaping (Alg. 4) and Stable Pruning (Alg. 5).

69

Alg. 3: Training with Stabilizers
Input : neural network N , data loader D, stabilization method A, stability estimator B,

ratio i, and step s

Output : stabilized network N ′

1 for j, (X, Y) in D do

2 Train Mini-Batch(N , X, Y);

3 if j ≡ 0 (mod s) then

4 Ẑ ← Estimate Stability(B, N);

5 N ′ ← Stablize(A, N , Ẑ, i);

6 return N ′

7.1.2 Neuron Stability Estimation

The neural network training process is performed on the data samples, while the verification process

seeks to prove certain properties on an effectively unbounded set of inputs. Hence, there exists a gap

between the two stages, since a neuron that is stable on the training dataset is not guaranteed to

also be stable based on the set of values described by the precondition of the verification problem.

Guiding the training process to produce neural networks with more stable neurons in the verification

stage requires reducing this gap. This is achieved by estimating neuron stability over a broader set

of values representative of those encountered during the verification process, and then stabilizing the

unstable neurons.

We identify two general categories of neuron stability estimators that can be calculated during

the training phase: Sampled[S] and Reachability[R] estimators. The sampled estimators consider

a finite set of sampled data gathered directly or inferred from the training dataset. The reachability

estimators operate on set propagations that generalize the training dataset. The six neuron stability

70

estimators are defined as follows:

B(D) = {x|x = β(x′) ∧ x′ ∼ D}

where β ∈ {SDD, SAD, NIP, SIP, ALR, ALRo} and D is the network training dataset distribution.

The SDD (Sampled Dataset Distribution[S]) estimator uses the training mini-batch samples

directly and takes advantage of the training process’s forward propagations to determine whether

neurons are stable. The SAD (Sampled Adjacent Distribution[S]) estimator samples from the

robustness radii of the training mini-batch and runs extra forward propagations on the adjacent

examples to determine the stability of neurons. The NIP (Naive Interval Propagation[R]) [135]

estimator generates a set of intervals based on the mini-batch samples and the given robustness radii.

However, instead of propagating exact samples, it propagates the intervals through the network. The

SIP (Symbolic Interval Propagation[R]) [128, 127] extends NIP by using symbolic intervals instead

of concrete intervals when propagating through the network. The symbolic intervals are concretized

whenever neuron stability needs to be evaluated. The ALR and ALRo (Auto LiRPA[R]) [142, 143]

estimators further improve SIP by applying more precise but computationally expensive over-

approximation constraints and parameterizing upper and lower bounds of hidden neurons to optimize

objectives concerning the property of interest. ALRo applies the α optimization [143] when compared

to the base approach. Note that although many of these approaches were developed for other uses,

the integration of them to induce stable neurons during training is novel.

7.1.3 Bias Shaping

To increase the number of stable neurons in the neural network, we adapt training to ensure the

same polarity of lower and upper bounds of neuron pre-activation values. In Equation 2.1, the

pre-activations of the current ReLU function are controlled by the parameters of the neural network

and the post-activations of the previous layer. The weighted-sum term depends on the weights, bias,

and the post-activations of the previous layer. The pre-activation values can be easily manipulated

by changing the bias term. We refer to this as Bias Shaping, as described in Alg. 4.

71

Alg. 4: Bias Shaping
Input : neural network N , stability estimation boundaries Ẑ, ratio i

Output : stabilized network N ′

1 Ẑ, Ẑ ← Get Bounds(Ẑ) ;

2 Nu ← {ni in N where ẑi < 0 ∧ ẑ i > 0} ;

3 Zu ← {Min(−ẑni
, ẑni

) where ni ∈ Nu};

4 γ ← Sort(Zu)[|Ẑ| × i] ;

5 for ni in Nu do

6 if (ẑi < γ) ∧ (ẑi < −ẑi) then

7 ni.b← ni.b− ẑi ;

8 else if −ẑi < γ then

9 ni.b← ni.b− ẑi;

10 N ′ ← Load Parameters(Nu);

11 return N ′

Instead of using just the native pre-activation of the mini-batch samples, the stability estimators

are applied to further close the gap between neuron stability during training and verification. Alg. 4

takes the set of stability estimations for all neurons, Ẑ = [ẑ1, ẑ2, ..., ẑm], the neural network N with

m neurons (n1, n2, ..., nm), and the stabilization ratio i as inputs. Given the stability estimation ẑ

for a neuron, ẑ and ẑ denote the lower and upper bounds respectively. Line 1 calculates the lower(Ẑ)

and upper(Ẑ) bounds of the estimation Ẑ for all neurons. Using those bounds, the algorithm first

finds the unstable neurons of the input network (line 2). Next, those neurons are ranked based on

the distance of their according pre-activation estimations(Min of lower ẑ and upper ẑ bounds) to

zero(lines 5 - 9), and the smallest subset of neurons will be selected for shaping if their distances are

less than an adaptive threshold γ (lines 3, 4) – any unstable neurons with smaller pre-activation

estimation distance below the threshold γ will be stabilized. Note that the number of selections is

controlled by the stabilization ratio parameter i – a percentage of neurons would be shaped at a

72

time. Each neuron’s bias term of the subset is modified by (a) shifting left by the value of the upper

bound if the upper bound is closer to zero (line 7); or (b) shifting right by the absolute value of lower

bound if the lower bound is closer to zero (line 9). As a result, the stabilized network is created by

loading the new parameters at line 10.

7.1.4 Stable Pruning

Inspired by the DropNet [118] approach, we developed a new pruning method to reduce unstable

neurons, named Stable Pruning as shown in Alg. 5. It uses iterative structured pruning to modify

the global weight matrix by selectively masking neurons. Its novel criteria target unstable neurons

for masking. Stable Pruning sets weight and bias to zero to softly “remove” the neuron from the

network, allowing back-propagation to recover accuracy loss in subsequent training.

Alg. 5: Stable Pruning
Input : neural network N , stability estimation boundaries Ẑ, ratio i

Output : stabilized network N ′

1 m = {1}|n|;

2 Ẑ, Ẑ ← Get Bounds(Ẑ) ;

3 m[Ẑ ≤ 0]← 0;

4 Z ′
u = Sort(Ẑ > 0);

5 γ = Zu[|Z ′
u| × i];

6 m[Ẑ < γ]← 0;

7 N ′ ← N
⊙

m;

8 return N ′

When the lower bound ẑ is greater than 0, although the neuron is stable-active, it cannot be

pruned without changing the network’s behavior, as the ReLU function is treated as an identity

function. When ẑ is less than 0, the ReLU function is treated as a zero-function, and this neuron

73

can be removed safely (line 3). To prune unstable neurons with minimal effects on network behavior,

Stable Pruning ranks the unstable neurons by the distance between ẑ and 0, from smallest to

largest (line 4), and a subset of neurons (also controlled by the ratio parameter, i) will be selected

for pruning if their distances are less than an adaptive threshold γ (line 5). Initially, all neurons are

enabled in the mask, m, (line 1) and those that fall below the threshold are updated to be removed

from the network (line 6). Finally, the stabilized network is generated by applying the pruning mask

on the network (line 7).

7.1.5 Implementation

We implemented all of the above techniques, including: SDD, SAD, NIP, SIP, ALR, ALRo,

RS Loss (§3.4), Bias Shaping (§7.1.3), and Stable Pruning (§7.1.4), into the OCTOPUS

framework. OCTOPUS allows training neural networks with stabilizer methods and stability

estimators, including their combinations. It can be easily applied to different datasets and network

architectures and presents a rich hyper-parameter space that can be tuned by hand or algorithmically,

e.g., by search methods. RS Loss [135] is reimplemented to support all the additional neuron

stability estimators. The SIP estimator uses the Symbolic Interval Analysis Library developed

in [127], and the ALR and ALRo estimators integrate the Auto LiRPA Library [143]. OCTOPUS

also allows combinations of various neuron stabilizers and estimators, i.e., training with multiple

stabilizers sequentially or simultaneously. The framework is built for ease of extension to adopt new

techniques and is available at both FigShare [138] and GitHub.2

7.2 Evaluation

We explore two research questions to understand how stabilizers can be beneficial for NNV:

• RQ1. How effective are the stabilizers in increasing the proportion of stable neurons?

• RQ2. How effective are stabilizers in enhancing NNV performance?
2OCTOPUS GitHub link: https://github.com/edwardxu0/octopus

74

https://github.com/edwardxu0/octopus

Tab. 7.1: Experimental Parameter Space

Parameters Choices

Architectures
M2: MNIST2×256 (FC(256)×2),
M6: MNIST6×256 (FC(256)×6),

C3: CIFAR2020 (Conv(32,5,2), Conv(128,4,2), FC(250))
Verifiers α,β-CROWN, MN-BaB, Nnenum

Properties [0,1,. . . ,9]

Epsilon Radii M2 & M6:[12e-3, 14e-3, 16e-3, 18e-3, 20e-3]
C3:[18e-4, 20e-4,22e-4, 24e-4, 26e-4]

Stabilization Methods Baseline, Bias Shaping, RS Loss, Stable Pruning
Stability Estimators SDD, SAD, NIP, SIP, ALR, ALRo

Seeds [0,1,2,3,4]

7.2.1 Study Design

To answer these questions, we design a broad study considering different neural network architectures,

specifications, and verifiers. Tab. 7.1 shows the full experimental parameter space we consider across

the research questions.

The annual VNN-COMP NNV competition [67, 7, 93] provides a range of benchmarks with

standard network and property formats to evaluate state-of-the-art verifiers. These benchmarks

cover a variety of network architectures and activation functions. This architectural variety evaluates

verifiers’ applicability across a range of network graph operations, e.g. ResNets with skip connections,

max-pooling layers, non-linear activation, and domain-specific networks. Benchmarks also vary in

scale with some having large numbers of layers, neurons, and parameters under the assumption that

this will yield challenging benchmarks.

We conducted an exploratory study of the VNN-COMP 2022 benchmarks and found that 1156 of

1288 (89%) could be solved within 30 seconds. Nearly all the solved problems were proven (UNSAT)

with coarse over-approximation or falsified (SAT) with adversarial attacks. Such benchmarks do

not exhibit the exponential complexity that is inherent in NNV [68]. To address this limitation, we

designed a set of benchmarks that are better suited to assessing NNV algorithm performance.

Selecting Networks A retrospective analysis of VNN-COMP benchmarks determined that small

weakly-regularized networks exhibit exponential complexity and medium-sized with large numbers

75

of neurons are hard to scale for precise methods, such as branch and bound [24]. Of course, large

weekly-regularized networks with large numbers of neurons are even harder, but it was found that

these incur significant memory requirements which makes experimentation challenging, e.g., due to

hardware limitations. Based on this analysis, we focus on three small and medium-sized networks

with traditional network architectures, i.e. M2, M6, and C3 as shown in Tab. 7.1, selected from the

VNN-COMP 2022 benchmarks, since these proved capable of forcing verifier algorithms to cope with

exponential complexity.

Selecting Properties Rather than focusing on a variety of structurally distinct property

specifications, we exploit the fact that general reachability properties can be reduced to local

robustness properties [105]. This allows us to vary the verification problem difficulty by controlling

the robustness property’s epsilon-radius. Conceptually, we know that verification problems with

sufficiently small (large) radii will be verified (falsified) – a radius of 0 is trivially verified and

a radius comprising the full input domain requires that a network produce a constant output.

Verifier developers have incorporated techniques, like applying adversarial attacks and using coarse

overapproximations, to quickly handle such cases [8, 129]. To sidestep these verification fast paths

and exercise the core verification algorithms in our study, we select epsilon values for properties as

follows.

As discussed in § 4.2, for each network, we conducted a preliminary study with varying radii to

assess the difficulty of the verification problems. We observe the trend that small epsilon leads to

uniformly verified problems and large epsilon to uniformly falsified problems.

Our strategy for selecting harder verification properties is to choose a sample of radii around

the point where the number of verified and falsified problems crossover, e.g., 0.018 in Fig. 4.2 for

MN-BaB. We choose the crossover point of the best verifier who solved the most problems to design

the radii shown in Tab. 7.1. This leads to a balance in verification ground truth between SAT

and UNSAT answers, and these more challenging problems force the underlying algorithms to more

precisely model network behavior, e.g., splitting unstable neurons into branch and bound cases.

Selecting Verifiers Unlike other research that focuses on improving the performance of a single

verifier with a single customized pruning technique [29, 135, 151], our goal is to explore how the space

76

of stabilization strategies impact a range of verification approaches. Towards this goal, we select the

three best-performing verifiers from VNN-COMP 2022 [93] that were available: α,β-CROWN, MN-

BaB, and Nnenum 3. Improving the performance of these verifiers will extend the state-of-the-art

in scalable NNV.

Network Training Stabilizers are incorporated into training, so we use a baseline (Baseline)

trained without any stabilizers using the Adam optimizer with a 10−3 learning rate and 0.99 decay

for 20 epochs. All stabilizers are customizable with hyperparameters, as described in § 3.4 and

§ 7.1. We use the well-tuned parameter for RS Loss introduced in [135], and perform a binary

search of the parameter space for Bias Shaping and Stable Pruning. To elaborate, RS Loss

uses always-active scheduling with 10−4 weight parameter; Bias Shaping uses interval scheduling

activated every 5/25/50 mini-batches and adjusts 2%/5%/5% of unstable neurons each time it is

applied for the M2/M6/C3 architectures, respectively; Stable Pruning undertakes an interval

scheduling that is activated for every 5/50/50 mini-batches with a pruning ratio of 2%/5%/5%,

respectively. The resulting neural networks with the largest test accuracy of the last five epochs are

selected for verification. To account for stochasticity in training, we train each network 5 times and

report the mean data for each.

These choices for the space of experiments yield a total of 1,215 training tasks and 36,450

verification tasks. Each training task is run with one GTX 1080 Ti GPU with 11G VRAM. Each

verification task is run with 8GB of memory on one core of the Intel Xeon Gold 6130 CPU @ 2.10GHz

with a timeout of 300 seconds. The total CPU time spent on training and verification across our

experiments is 1858 and 1052 hours, respectively.

7.2.2 RQ1: Stabilizing Neurons

Stabilizers aim to linearize a portion of the behavior encoded by ReLU activation across the set of

computations activated for a property precondition. In this experiment, we directly measure this by

recording the percentage of neurons that are stable during verification. We also record model test

accuracy to understand the trade-offs of the stabilization methods and stability estimators. Existing
3Verinet performed well in the competition, but it required a custom solver that is not freely available.

77

95 96 97 98
Test Accuracy(%)

65

70

75

80

85

90

95
St

ab
le

 N
eu

ro
ns

(%
) Estimator

SDD
SAD
NIP
SIP
ALR
ALRo
Baseline
Approach
RS
BS
SP
Baseline

(a) M2

70 80 90 100
Test Accuracy(%)

40

50

60

70

80

90

(b) M6

56 58 60 62
Test Accuracy(%)

97.8

98.0

98.2

98.4

98.6

98.8

99.0

99.2

99.4

(c) C3

Fig. 7.4: Stable Neurons(%) vs. Test Accuracy(%) per Model

verifiers do not record the number of stable neurons, so we modified an open-source neural network

verifier, NeuralSAT [41], to record the number of stable neurons computed during verification.

Fig. 7.4 presents the average test accuracy and the average number of stable neurons computed

across the five training seeds for the three architectures across the stabilizers in the benchmark, as

described in §7.2.1. The black ✚ sign indicates the Baseline (Baseline), the ● sign represents RS

Loss (RS), ✖ means the Bias Shaping (BS) method, and ■ is Stable Pruning (SP). Six different

colors denote the different stability estimators. Across all three architectures, most techniques can

increase the number of stable neurons, but some of the techniques lead to a loss in test accuracy. For

the M2 architecture, RS Loss with NIP can significantly increase the number of stable neurons

by more than 26 percentage points without compromising accuracy. For M6, RS Loss yields an

even greater increase of 55 percentage points but in combination with the SIP estimator. For the

Convolutional C3 network, a very high percentage of neurons are already stable, so only marginal

improvement can be achieved. Here the Stable Pruning method performs best while preserving

accuracy, but it only yields a percentage point increase. For all the architectures, if one is willing to

sacrifice a degree of accuracy, then further increases in stability can be achieved. For example, for

M2 Bias Shaping can achieve an additional 7 percentage point increase in stable neurons at the

cost of just over 1 percentage point in test accuracy.

78

RS BS SP
Approach

0

1

2

3

4

5
No

rm
al

ize
d

Tr
ai

ni
ng

 T
im

e
SDD
SAD
NIP
SIP
ALR
ALRo
Baseline

(a) M2

RS BS SP
Approach

0

5

10

15

20

25

No
rm

al
ize

d
Tr

ai
ni

ng
 T

im
e

(b) M6

RS BS SP
Approach

0

1

2

3

4

5

6

No
rm

al
ize

d
Tr

ai
ni

ng
 T

im
e

(c) C3

Fig. 7.5: Normalized Training Time

Incorporating stabilization in training can increase training time. Fig. 7.5 shows the average

training time of the three models normalized to the Baseline. For all three models, the clear outlier

in terms of cost is the ALRo estimator when used with RS Loss, which incurs up to more than a

25-fold increase in training time. This overhead even prevents RS Loss from practically training

with ALR and ALRo on the C3 architecture. RS Loss also experiences large cost with paired with

SIP on the C3 architecture. The overhead of most of the other estimators is negligible, including

those that yielded significant increases in stable neurons.

RQ1 Findings Across the study there are combinations of stabilization methods and stability

estimators that are capable of increasing the number of stable neurons, in many cases substantially,

without compromising test accuracy or training time.

7.2.3 RQ2: Enhancing Verification

RQ1 demonstrates the ability of stabilizers to increase the number of stable neurons across a space

of verification problems. This question explores whether those increases lead to improvements in

verifier performance. To assess the generalization of the stabilizers to variations of neural network

properties, we verify 50 local robustness properties per trained network, pairing 10 center points with

each of the 5 epsilon radii. We run the three selected state-of-the-art verifiers on each problem.

79

We measure two metrics to assess verification performance: (1) the number of problems, i.e.,

the network, center-point, and radii combination, each verifier can solve, i.e., produce either an

SAT or UNSAT result, and (2) the time taken to solve those problems. Note that our metrics

exclude runs that produce errors, exceed a 300-second timeout, or an 8GB memory bound. These

metrics are standard for assessing verifier performance and while sometimes they are aggregated, as

in PAR2 [140], we keep them separate here to explore them independently.

80

95 96 97 98
Test Accuracy(%)

30

35

40

45

50
Pr

ob
le

m
 S

ol
ve

d

(a) α,β-CROWN on M2

70 80 90 100
Test Accuracy(%)

15

20

25

30

35

40

45

50

Estimator
SDD
SAD
NIP
SIP
ALR
ALRo
Baseline
Approach
RS
BS
SP
Baseline

(b) α,β-CROWN on M6

56 58 60 62
Test Accuracy(%)

40

41

42

43

44

45

46

47

(c) α,β-CROWN on C3

95 96 97 98
Test Accuracy(%)

48.00

48.25

48.50

48.75

49.00

49.25

49.50

49.75

50.00

Pr
ob

le
m

 S
ol

ve
d

(d) MN-BaB on M2

70 80 90 100
Test Accuracy(%)

40

42

44

46

48

50

(e) MN-BaB on M6

95 96 97 98
Test Accuracy(%)

20

25

30

35

40

45

50

(f) Nnenum on M2

70 80 90 100
Test Accuracy(%)

10

20

30

40

50

(g) Nnenum on M6

56 58 60 62
Test Accuracy(%)

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

(h) Nnenum on C3

Fig. 7.6: Solved Verification Problems vs. Test Accuracy(%)

Fig. 7.6 shows eight plots of the number of verification problems solved versus test accuracy across

81

the three architectures using three of the verifiers. The trends in these plots are largely consistent

with the findings of RQ1 - when more neurons are stable the verifiers are more effective in solving

problems. RS Loss, with different estimators, increases the number of problems solved by factors up

to 5.92 for these verifier network combinations without sacrificing test accuracy. As in RQ1, further

performance improvements are possible by sacrificing accuracy. For example, on M2 α,β-CROWN

can improve by a factor of 1.67 using Bias Shaping with a reduction of 1 percentage point in

accuracy.

The trends shown here for α,β-CROWN and Nnenum are similar, but MN-BaB exhibited

different performance. For M2 and M6, the baseline technique was able to solve all 50 problems,

so there is no opportunity for improvement, while almost all the stabilizers can maintain the 50

problems solved. Note that the implementation of MN-BaB doesn’t support the C3 architecture.

While the number of problems does not change for MN-BaB with stabilization as we discuss below

its runtime is reduced.

Fig. 7.7 plots the verification time speedup over Baseline against test accuracy for eight verifier

network pairs. We observe a similar trend to what was observed for the number of neurons stabilized

and the number of verification problems solved – stabilization can speed up verification without

compromising test accuracy. For MN-BaB on M2 while the number of problems solved did not

change, using RS Loss with NIP yielded a factor of 14 speedup. For M6 we see a speedup of up to

a factor of 5 with Nnenum and for C3 more modest speedups for α,β-CROWN. The MN-BaB

plot also shows, as observed above, that further speedups – greater than 30 fold – can be achieved if

one compromises accuracy by about 1 percentage point.

RQ2 Findings Stabilizing neurons during training can substantially increase the number of

problems solved and reduce the time required to solve them by state-of-the-art neural network

verifiers without compromising test accuracy. Further improvement in verifier performance can be

achieved with a small sacrifice in test accuracy.

82

95 96 97 98
Test Accuracy(%)

0

5

10

15

20

25

30

Sp
ee

du
p

(a) α,β-CROWN on M2

70 80 90 100
Test Accuracy(%)

100

101
Estimator
SDD
SAD
NIP
SIP
ALR
ALRo
Baseline
Approach
RS
BS
SP
Baseline

(b) α,β-CROWN on M6

56 58 60 62
Test Accuracy(%)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(c) α,β-CROWN on C3

95 96 97 98
Test Accuracy(%)

0

5

10

15

20

25

30

Sp
ee

du
p

(d) MN-BaB on M2

70 80 90 100
Test Accuracy(%)

0

5

10

15

20

25

30

35

(e) MN-BaB on M6

95 96 97 98
Test Accuracy(%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(f) Nnenum on M2

70 80 90 100
Test Accuracy(%)

100

101

(g) Nnenum on M6

56 58 60 62
Test Accuracy(%)

100

(h) Nnenum on C3

Fig. 7.7: Verification Time Speedup vs. Test Accuracy(%)

83

7.2.4 Discussion

The data show a significant degree of variability in the effectiveness of particular stable training

approaches with verifiers and verification problems. Broadly speaking RS Loss seems to perform

well when one is unwilling to sacrifice test accuracy, but the best estimator varies depending on

the verifier and problem – with SDD, NIP, and SIP yielding the best performance. The main

drawbacks of RS Loss is much more memory intensive and doesn’t scale to larger neural networks

and more precise stability estimators, as shown in Fig. 7.5. For the large Convolutional network,

Stable Pruning also performs well without compromising test accuracy. We believe this to be

consistent with the broader results from the field of structured pruning [52, 118], where it has been

found that large networks tend to be over-parameterized and can thus accommodate significant

pruning without compromising accuracy. While the study shows that many of the methods can

yield benefits, we believe that it also demonstrates that certain stabilization approaches, e.g., RS

Loss with ALRo, are too costly for use in practice. Further study should focus on how to select

the best stable training approach, and its hyper-parameters, to yield the best improvement for a

given verifier and class of verification problems. We believe it will be fruitful to develop such training

for verification approaches in concert with algorithmic and engineering improvements to verification

algorithms.

7.2.5 Threats to Validity

The chief threats to internal validity relate to whether the collection of test accuracy, stable neurons,

verification problems solved, and verification time were accurate. We tested the accuracy of all

stabilizer-trained networks, cross-checked problem solutions across verifiers, and thoroughly tested

our instrumentation of NeuralSAT for recording neuron stability. Regarding external validity, while

our study was scoped to manage experimental costs, it spanned: 3 verifiers, 3 network architectures,

50 property specifications, and 5 seeds. We used fixed sets of training and stabilizer parameters per

neural network architecture, which potentially underestimated the benefit that might be observed by

customizing parameters. While broadening the study further would be a valuable direction for future

84

work, the scope of the study is sufficient to support the finding that stabilizers can enhance NNV

across a breadth of contexts.

7.3 Conclusion

Verifying neural networks is a challenging task due to their high computational complexity. In this

Chapter, we propose two novel approaches Bias Shaping and Stable Pruning, to enhance the

scalability of neural network verifiers by inducing more stable neurons during the training process.

In addition, we designed six neuron stability estimators to drive stability-oriented training. Across a

significant study, we found that focusing on stability yields a viable method to achieve training for

verification that can significantly improve the ability to solve problems and speed up state-of-the-art

verifiers.

85

Chapter 8

Harnessing Neuron Stability to

Improve Verification

During the past six years, researchers have developed a range of techniques for verifying neural

network properties formulated as pre/post-condition specifications that can be rendered in a canonical

form [105]. Many dozens of neural network verifiers have been reported in the literature, and the

yearly VNN-COMP competition has documented advances in the capabilities of such techniques [67,

7, 93, 23, 24].

Despite those advances, as with traditional software verification, NNV suffers from exponential

worst-case complexity [68]. The exponential complexity comes from the non-linearity of the neural

networks, i.e., the activation patterns of the ReLU activation functions regarding the input. While

this complexity seems daunting, history has shown that despite the worst-case exponential growth

of verification problems, like propositional satisfiability (SAT) [34], it is possible to solve very large

problem instances with sophisticated algorithmic techniques [19].

Modern SAT solvers aim to determine if there exists an assignment of truth values to propositional

variables that satisfies a given set of logical constraints. They are based on the classic Davis-Putnam-

Logemann-Loveland (DPLL) algorithm [36] which searches the space of assignments by alternating

86

between deciding how to extend a partial assignment – by choosing a variable and a truth value for it

– and identify additional assignments that are implied by that decision. State-of-the-art solvers also

incorporate a plethora of optimizations like Conflict-Driven Clause Learning (CDCL) to short-circuit

later portions of the search [149], heuristics to restart search with learned clauses [17], and parallel

exploration of variable assignments [79]. Modern satisfiability modulo theory (SMT) solvers combine

DPLL with theory-specific symbolic deduction methods that adapt and integrate with CDCL to

form DPLL(T), where T stands for theory [95].

Most prior work on NNV either used SMT to discharge sub-problems formed by search of the

space of activation patterns [68, 69, 64], applied forms of abstract interpretation to approximate the

disjunctive neuron behavior [110, 111, 112, 127, 6, 109, 129, 143, 53, 119, 62, 22, 51], or combined

these approaches [70, 45].

The success of these methods inspired recent work that adapts DPLL(T) to NNV by incorpo-

rating an abstraction-based theory solver [41] to realize the NeuralSAT verifier. In NeuralSAT,

propositional variables encode whether a neuron is active or inactive, and additional constraints

encode the weighted sums for each neuron input. As illustrated on the left of Fig. 8.1, NeuralSAT

searches the space of activation patterns for a neural network; here vi and vi denote that the ith

neuron is active or inactive, respectively, and a path in the tree is a partial activation pattern. As

we discuss in § 3.3.1, NeuralSAT’s contribution lies in combining DPLL(T) with a custom theory

solver, that uses abstraction, to determine whether a partial activation pattern implies the specified

property or implies conflict clauses that can prune subsequent search through CDCL.

In this chapter, we introduce the VeriStable 1 approach to further extend DPLL(T)-based

NNV in two significant ways: to reduce the number of unstable neurons uncovered in § 6.2.2, and to

adapt parallelism and restart heuristics from traditional SAT solving.

First, we propose a method for computing, from a partial activation pattern, a set of neurons that

must be either active or inactive – such a neuron is said to be stable. Stable neurons eliminate the need

for deciding their activation status later in the search and thereby lead to combinatorial reduction

in the search. Unlike prior work [135, 146, 83, 29] as discussed in § 3.3, which seeks to modify the
1The VeriStable approach introduced in this chapter is published in the FSE2024 conference [42]. This chapter is

joint work with fellow George Mason University(GMU) PhD student Hai Doung.

87

(a) NeuralSAT (b) VeriStable
Fig. 8.1: The Tree of Activation Patterns Computed by NeuralSAT (left) and VeriStable (right)
at Corresponding Points during a Verification Run

network to create neurons that are stable for inputs described by the specification precondition, our

approach (1) does not modify the network being verified and (2) detects neurons that are stable

relative to subsets of the precondition. Our method can be thought of as state-sensitive neuron

stabilization, where the state is a partial activation pattern encoding a subset of the precondition.

Fig. 8.1 depicts how after v1 is decided our method, VeriStable, stabilizes two neurons to be stable

and inactive – shown in yellow – which eliminates the need to search their active branches – shown

in red – as required by NeuralSAT. In this depiction, v1 constitutes the state relative to which v2

and v3 are determined to be stable.

Second, we adapt parallelization techniques and restart heuristics from propositional SAT solvers

to target the problem of NNV. Fig. 8.1 depicts how NeuralSAT’s search frontier is a single state –

shown in blue ({v4,v4 , v5,v5}) – and how VeriStable can expand a broader frontier and do so in

parallel. As depicted, stabilization and parallelization are synergistic in that the former reduces the

tree width, which allows the latter to process a larger percentage of the tree.

While we developed these methods in the context of DPLL(T), these conceptual contributions are

broadly applicable to any NNV approach that performs a search of the space of activation patterns

and splits the search based on the activation status of neurons, such as [129, 6]. We implement

the methods in the VeriStable framework and demonstrate empirically that each of the methods

it incorporates leads it to outperform NeuralSAT, that the combination of all methods leads

88

to a 12-fold increase in the ability to solve verification problems, and that it establishes a new

state-of-the-art in NNV compared with the top performers in the most recent neural network verifier

competition [93].

The key contributions of this chapter lie in:

• a novel approach that computes state-sensitive neuron stability to eliminate the need for neuron

splitting in NNV;

• adaptation of advanced SAT optimizations into a DPLL(T)-based verification algorithm;

• evaluation results using a new challenging NNV benchmark, as well as existing benchmarks,

that demonstrate a 12-fold performance improvement and that VeriStable establishes the

state-of-the-art in neural network verifier performance; and

• release of an open source implementation of VeriStable2 accepting verification problems in

standard formats to promote the application of NNV and comparative evaluation.

8.1 The VeriStable Approach

Alg. 6 shows the VeriStable algorithm, which takes as input the formula α representing the

ReLU-based neural network N and the formulae ϕin ⇒ ϕout representing the property to be proved.

Internally, VeriStable checks the satisfiability of the formula

α ∧ ϕin ∧ ϕout. (8.1)

VeriStable returns unsat if the formula unsatisfiable, indicating that ϕ is a valid property of N ,

and sat if it is satisfiable, indicating the ϕ is not a valid property of N .
2https://github.com/dynaroars/neuralsat

89

https://github.com/dynaroars/neuralsat

Alg. 6: The VeriStable Algorithm.
Input : neural network α, property ϕin ⇒ ϕout, parallel factors n and k
Output : unsat if the property is valid and sat otherwise

1 clauses← BooleanAbstraction(α)
2 while true do
3 assignments← [(∅, ∅)] // initialize empty assignment and igraph
4 while true do // main DPLL loop

// select n assignments (activation patterns) and corresponding igraphs
5 [(σ1, igraph1), ..., (σn, igraphn)]← Select(assignments, n)

// process n assignments in parallel
6 parfor (σi, igraphi) in [(σ1, igraph1), ..., (σn, igraphn)] do
7 is conflict← true
8 if BCP(clauses, σi, igraphi) then
9 if StabilizeCondition() then // stabilize with condition

10 Stabilize(α, ϕin, ϕout, σi, k) // stabilize k neurons

11 if Deduce(σi, α, ϕin, ϕout) then
12 (is sat, vi)← Decide(α, ϕin, ϕout, σi) // decision heuristic
13 if is sat then
14 return sat // consistent and complete assignment

15 assignments← assignments ∪ {(σi ∧ vi, igraphi) ; (σi ∧ vi, igraphi)}
16 is conflict← false // no conflict

17 if is conflict then
18 clauses← clauses ∪ AnalyzeConflict(igraphi) // learn conflict clauses

19 if length(assignments) ≡ 0 then // check unsat
20 return unsat // no more assignment to be processed

21 if Restart() then // check restart heuristic
22 break // restart occurs

8.1.1 DPLL(T)-based Neural Network Verification

VeriStable uses a DPLL(T)-based algorithm to check unsatisfiability. The algorithm consists of a

Boolean abstraction, standard DPLL components, and a theory solver (T-solver) that is specific to

the verification of ReLU neural networks.

8.1.1.1 Boolean Representation

BooleanAbstraction(Alg. 6, line 1) encodes the NNV problem into a Boolean constraint to be

solved. This step creates Boolean variables to represent the activation status of hidden neurons in

the neural network. VeriStable also forms a set of initial clauses, ensuring that each status variable

is either T (active) or F (inactive).

90

8.1.1.2 The DPLL search

VeriStable iteratively searches for an assignment satisfying the clauses. Throughout it maintains

several state variables including: clauses, a set of clauses consisting of the initial activation clauses

and learned conflict clauses; σ, a truth assignment mapping status variables to truth values which

encodes a partial activation pattern; and igraph, an implication graph used for analyzing conflicts.

Decide (Alg. 6, line 12) chooses an unassigned variable and assigns it a random truth value.

Assignments from Decide are essentially guesses that can be wrong, which degrades performance.

The purpose of BCP, Deduce, and Stabilize – which are discussed below – is to eliminate

unassigned variables so that Decide has fewer choices.

BooleanConstraintPropagation or BCP (Alg. 6, line 8) detects unit clauses from constraints

representing the current assignment and clauses and infers values for variables in these clauses. A

unit clause is a clause that has a single unassigned literal. For example, after the decision a 7→ F ,

BCP determines that the clause a ∨ b becomes unit, and infers that b 7→ T . Internally, VeriStable

uses an implication graph [13] to represent the current assignment and the reason for each BCP

implication.

AnalyzeConflict (Alg. 6, line 18) processes an implication graph with a conflict to learn a

new clause that explains the conflict. The algorithm traverses the implication graph backward,

starting from the conflicting node, while constructing a new clause through a series of resolution steps.

AnalyzeConflict aims to obtain an asserting clause, which is a clause that will result a BCP

implication. These are added to clauses so that they can block further searches from encountering an

instance of the conflict.

These are standard components in DPLL-based algorithms including modern SAT/SMT solvers

and NeuralSAT. As shown in Fig. 3.1, DPLL also has backtracking, which allows the algorithm to

go back to an incorrect assignment decision and choose the correct one instead. However, as will be

described in subsubsection 8.1.2.2, the VeriStable parallel DPLL(T) does not require backtracking

because it has optimistically considered both the correct and incorrect assignments simultaneously.

91

8.1.1.3 Theory Solver

VeriStable’s Theory or T-solver (Alg. 6, lines 9-16) consists of two parts: stabilization and

deduction.

Deduce (Alg. 6, line 11) checks the feasibility of the neural network constraints represented

by the current propositional variable assignment. This component is shared with NeuralSAT

and it leverages specific information from the neural network problem, including input and output

properties, for efficient feasibility checking. Specifically, it obtains neuron bounds using the polytope

abstraction[143] and performs infeasibility checking to detect conflicts.

The second part of the theory solver, which is specific to VeriStable, implements stabilization

and is described next.

8.1.2 Improvements in VeriStable

We now describe neuron stability, parallel search, and restart. In §8.3.1 and §7.2.3 we present ablation

studies demonstrating the performance of these ideas individually and in combination.

8.1.2.1 Neuron Stability

The key idea in using neuron stability is that if we can determine that a neuron is stable, we can

assign the exact truth value for the corresponding Boolean variable instead of having to guess. This

has a similar effect as BCP – reducing mistaken assignments by Decide – but it operates at the

theory level not the propositional Boolean level.

Stabilization involves the solution of a mixed integer linear program (MILP) system [119]:

(a) z(i) = W (i)ẑ(i−i) + b(i);

(b) y = z(L); x = ẑ(0);

(c) ẑ
(i)
j ≥ z

(i)
j ; ẑ

(i)
j ≥ 0;

(d) a
(i)
j ∈ {0, 1};

(e) ẑ
(i)
j ≤ a

(i)
j u

(i)
j ; ẑ

(i)
j ≤ z

(i)
j − l

(i)
j (1− a

(i)
j);

(8.2)

92

Alg. 7: The Stabilize Function
Input : neural network α, property ϕin ⇒ ϕout, current assignment σ, number of neurons

for stabilization k
Output : Tighten bounds for variables not in σ (unassigned variables)

1 model← CreateMILP(α, ϕin, ϕout, σ) // create model (Eq. 8.2) with current
assignment

2 [v1, ..., vm]← GetUnassignedVariable(σ) // get all m current unassigned
variables

3 [v′
1, ..., v′

m]← Sort([v1, ..., vm]) // prioritize tightening order
4 [v′

1, ..., v′
k]← Select([v′

1, ..., v′
m], k) // select top-k unassigned variables, k ≤ m

// stabilize k neurons in parallel
5 parfor vi in [v′

1, ..., v′
k] do

6 if (vi.lower + vi.upper) ≥ 0 then // lower is closer to 0 than upper, optimize
lower first

7 Maximize(model, vi.lower) // tighten lower bound of vi

8 if vi.lower < 0 then // still unstable
9 Minimize(model, vi.upper) // tighten upper bound of vi

10 else // upper is closer to 0 than lower, optimize upper first
11 Minimize(model, vi.upper) // tighten upper bound of vi

12 if vi.upper > 0 then // still unstable
13 Maximize(model, vi.lower) // tighten lower bound of vi

where x is input, y is output, and z(i), ẑ(i), W (i), and b(i) are the pre-activation, post-activation,

weight, and bias vectors for layer i. The equations encode the semantics of a neural network as

follows: (a) defines the affine transformation computing the pre-activation value for a neuron in

terms of outputs in the preceding layer; (b) defines the inputs and outputs in terms of the adjacent

hidden layers; (c) asserts that post-activation values are non-negative and no less than pre-activation

values; (d) defines that the neuron activation status indicator variables are either 0 or 1; and (e)

defines constraints on the upper, u
(i)
j , and lower, l

(i)
j , bounds of the pre-activation value of the jth

neuron in the ith layer. Deactivating a neuron, a
(i)
j = 0, simplifies the first of the (e) constraints to

ẑ
(i)
j ≤ 0, and activating a neuron simplifies the second to ẑ

(i)
j ≤ z

(i)
j , which is consistent with the

semantics of ẑ
(i)
j = max(z(i)

j , 0).

Alg. 7 describes Stabilize solves this equation system. First, a MILP problem is created from the

current assignment, the neural network, and the property of interest using formulation in Equation 8.2.

93

Note that the neuron lower (l(i)
j) and upper bounds (u(i)

j) can be quickly computed by polytope

abstraction.

Next, it collects a list of all unassigned variables which are candidates being stabilized (line 2). In

general, there are too many unassigned neurons, so Stabilize restricts consideration to k candidates.

Because each neuron has a different impact on abstraction precision we prioritize the candidates. In

Stabilize, neurons are prioritized based on their interval boundaries (line 3) with a preference for

neurons with either lower or upper bounds that are closer to zero. The intuition is that neurons with

bounds close to zero are more likely to become stable after tightening.

We then select the top-k (line 4) candidates and seek to further tighten their interval bounds.

The order of optimizing bounds of select neurons is decided by its boundaries, e.g., if the lower

bound is closer to zero than the upper bound then the lower bound would be optimized first. These

optimization processes, i.e., Maximize (line 7 or line 13) and Minimize (line 9 or line 11), are

performed by an external LP solver (e.g., Gurobi [60]).

Note that the work in [119] uses the MILP system in Eq. 8.2 to encode the entire verification

problem and thus is limited to the encodings of small networks that can be handled by an LP solver.

In contrast, VeriStable creates this system based on the current assignment, which has significantly

fewer constraints. Moreover, we only use the computed bounds of hidden neurons from this system,

and thus even if it cannot be solved, VeriStable will continue.

8.1.2.2 Parallelism

The DPLL(T) process in VeriStable is designed as a tree-search problem where each internal

node encodes an activation pattern defined by the variable assignments from the root. To parallelize

DPLL(T), we adopt a beam search-like strategy that combines distributed search from Distributed

Tree Search (DTS) algorithm [49] and Divide and Conquer (DNC) [79] paradigms for splitting the

search space into disjoint subspaces that can be solved independently. At every step of the search

algorithm, we select up to n nodes of the DPLL(T) search tree to create a beam of width n. This

splits (like DNC) the search into n subproblems that are independently processed. Each subproblem

extends the tree by a depth of 1.

94

Our approach simplifies the more general DNC scheme, since the n bodies of the parfor on line 6

of Fig. 6 are roughly load balanced. While this is a limited form of parallelism, it sidesteps one of the

major roadblocks to DPLL parallelism – the need to efficiently synchronize across load-imbalanced

subproblems [79, 80].

In addition to raw speedup due to multiprocessing, parallelism accelerates the sharing of informa-

tion across search subspaces, in particular learned clause information for DPLL. In VeriStable,

we only generate independent subproblems which eliminates the need to coordinate their solution.

When all subproblems are complete, their conflicts are accumulated, Fig. 6 line 18, to inform the

next round of search. As we show in §6.2, the engineering of this form of parallelism in DPLL(T)

leads to substantial performance improvement.

As with any stochastic algorithm, VeriStable would perform poorly if it gets into a subspace of

the search that does not quickly lead to a solution, e.g., due to choosing a bad sequence of neurons

to split [51, 129, 37]. This problem, which has been recognized in early SAT solving, motivates the

introduction of restarting the search [57] to avoid being stuck in such a local optima.

VeriStable uses a simple restart heuristic that triggers a restart when either the number of

processed assignments (nodes) exceeds a pre-defined number or the number of remaining assignments

that need to be checked exceeds a pre-defined threshold. After a restart, VeriStable avoids using

the same decision order of previous runs (i.e., it would use a different sequence of neuron splittings).

It also resets all internal information except the learned conflict clauses, which are kept and reused

as these are facts about the given constraint system. This allows a restarted search to quickly prune

parts of the space of assignments. Although restarting may seem like an engineering aspect, it

plays a crucial role in stochastic algorithms like VeriStable and helps reduce verification time for

challenging problems as shown in §8.3.1.

8.1.3 Implementation

VeriStable is written in Python, and uses Gurobi [60] for LP solving and bounds tightening, and

the LiRPA abstraction library [143] for approximation. Currently, VeriStable supports feedforward

(FNN), convolutional (CNN), and Residual Learning Architecture (ResNet) neural networks that use

95

Tab. 8.1: Benchmark Instances. U: unsat, S: sat, ?: unknown.

Benchmarks Networks Per Network Tasks
Type Networks Neurons Parameters Properties Instances (U/S/?)

ACAS Xu FNN 45 300 13305 10 139/47/0

MNISTFC FNN 3 0.5-1.5K 269-532K 90 56/23/11

CIFAR2020 CNN 3 17-62K 2.1-2.5M 203 149/43/11

RESNET A/B CNN+ResNet 2 11K 354K 144 49/23/72

MNIST GDVB FNN 38 0.7-5.1K 0.2-3.0M 16 51/0/39

Total 91 463 444/136/133

ReLU. VeriStable supports the standard specification formats ONNX [4] for neural networks and

VNN-LIB [38] for properties. These formats are standard and are supported by state-of-the-art NNV

tools, which enable comparative evaluation. The VeriStable implementation is open-source and

can be retrieved from https://github.com/dynaroars/neuralsat.

8.2 Experimental Design

Our goals are to understand how incorporating stabilization and other DPLL(T) optimizations allows

for scaling of NNV. We focus our evaluation on three research questions as follows:

• RQ1: How does stabilization impact the performance of DPLL(T)-based NNV?

• RQ2: How do VeriStable optimizations improve performance in isolation and combination?

• RQ3: How does VeriStable compare to state-of-the-art neural network verifiers?

8.2.1 Selection of NNV Benchmarks

To gain insights into the performance improvements of VeriStable we require benchmarks that

force the algorithm to search a non-trivial portion of the space of activation patterns. It is well-known

that SAT problems can be very easy to solve regardless of their size or whether they are satisfiable

or unsatisfiable [55]. The same is true for NNV problems. The organizers of the first three neural

network verifier competitions remark on the need for benchmarks that are “not so easy that every

tool can solve all of them” to assess verifier performance [24].

96

https://github.com/dynaroars/neuralsat

To accomplish this task, we utilize the systematic NNV benchmark generator GDVB, which is

outlined in § 5, and implement the epsilon controlling approach detailed in § 4.2. In this experiment,

we used the MNIST3×1024 (refer to Tab. A.1) network with 3 layers as the seed network, each with

1024 neurons, and generated 38 different neural networks that cover combinations of parameter

variations. We leverage the fact that local robustness properties are a pseudo-canonical form for

pre-post condition specifications [105] and use GDVB to generate 16 properties with varying radii

and center points. Next we run two state-of-the-art verifiers: CROWN and MN-BaB, for each of

the 38 ∗ 16 = 608 combinations of neural network and property with a small timeout of 200 seconds.

Any problem that could be solved within that timeout was removed from the benchmark as “too

easy”. This resulted in 90 verification problems that not only are more computationally challenging

than benchmarks used in other studies, e.g., [93], but also exhibit significant architectural diversity.

We use this MNIST GDVB benchmark for RQ1 and RQ2 to study the variation in performance

on challenging problems.

For RQ3 we use five VNN-COMP standard benchmarks in addition to MNIST GDVB. These

benchmarks, shown in Tab. 8.1, consist of 91 networks, spanning multiple types and architectures of

layers, and 463 safety and robustness properties. The Per Network column gives the size of each

network (neurons are the numbers of hidden neurons and parameters are the numbers of weights

and biases). For example, each FNN in ACAS Xu has 5 inputs, 6 hidden layers (each with 50 neurons),

5 outputs, and thus has 300 neurons (6×50) and 13305 parameters (5×50×50+2×50×5+6×50+5).

In total, we have 713 problem instances (an instance is the verification task of a property of a

network). Among these instances, 444 are known to be unsat (U), 136 are sat (S), and 133 are

unknown (?) because no existing verifiers, in this study or VNN-COMP, can solve them. We exclude

unknown instances from our study because they do not contribute to our evaluation or comparison

to other tools.

The six benchmarks are as follows. ACAS Xu consists of 45 FNNs to issue turn advisories

to aircraft to avoid collisions. Each FNN has 5 inputs (speed, distance, etc). We use all 10 safety

properties as specified in [68] and VNN-COMP, where properties 1–4 are used on 45 networks and

properties 5–10 are used on a single network. MNISTFC consists of 3 FNNs for handwritten digit

97

recognition and 30 robustness properties. Each FNN has 28x28 inputs representing a handwritten

image. CIFAR2020 has 3 CNNs for object detection and 203 robustness properties (each CNN has

a set of different properties). Each network uses 3x32x32 RGB input images. For RESNET A/B,

each benchmark has only one network with the same architecture and 72 robustness properties. Each

network uses 3x32x32 RGB input images.

8.2.2 Selection of Neural Network Verifiers Baselines

For RQ1 we compare VeriStable to NeuralSAT [41] which is the only DPLL(T) neural network

verifier available. NeuralSAT is recent and did not participate in VNN-COMP. However, it

has been shown to have good performance for feedforward networks. RQ2 compares different

configurations of VeriStable to each other. For RQ3, we selected four well-known neural network

verifiers as baselines for comparison in addition to NeuralSAT. CROWN [129, 147] employs

multiple abstractions and algorithms for efficient analysis, e.g., input splitting for networks with

small input dimensions and parallel Branch-and-Bound [27] (BaB) otherwise. MN-BaB [51], the

successor of ERAN [111, 109], uses multiple abstractions and BaB. Marabou [70, 69], the successor

of the Reluplex work, is a simplex-based solver that employs a parallel Split-and-Conquer (SnC) [132]

search and uses polytope abstraction [111] and LP-based bound tightening. Nnenum [8] combines

optimizations such as parallel case splitting and multiple levels of abstractions, e.g., three types of

zonotopes with imagestar/starset [122].

These four tools competed in VNN-COMP [93] and were among the very top performers. For

example, CROWN is the winner for MNISTFC and also the overall winner, MN-BaB ranked 3rd on

MNISTFC and second overall, and Nnenum was the only one that can solve all instances in ACAS

Xu and was 4th overall. Marabou ranked 6th on MNISTFC and 7th overall.

8.2.3 Experimental Setup

Our experiments were run on a Linux machine with an AMD Threadripper 64-core 4.2GHZ CPU,

128GB RAM, and an NVIDIA GeForce RTX 4090 GPU with 24 GB VRAM. All tools use multi-

processing (even external tools/libraries including Gurobi, LiRPA, and Pytorch are multi-thread).

98

CROWN, MN-BaB, NeuralSAT, and VeriStable leverage GPU processing for abstraction.

To conduct a fair evaluation, we reuse the benchmarks and installation/run-scripts available from

VNN-COMP3. These scripts were tailored by the developers of each verifier to maximize performance

on each benchmark. VNN-COMP uses varying runtimes for each problem instance ranging from 30

seconds to more than 20 minutes. The competition also uses several different Amazon AWS instances

with different configurations (e.g., CPU, GPU, RAM) to run the tools. Thus, we experimented with

timeouts on our machine and settled on 900 seconds per instance which allowed the verifiers to

achieve similar scoring performance reported in VNN-COMP’22.

8.3 Results and Analysis

We discuss the metrics for each question, present experimental results, and interpret those results to

answer the research questions.

8.3.1 RQ1: Benefit of Stabilization

We focus here on the benefit of stabilization on DPLL(T)-based NNV as implemented in NeuralSAT.

We use the 51 challenging verification problems in the MNIST GDVB benchmark with a time limit

of 900 seconds to explore performance and measure the number of problems solved and the time to

solve problems as metrics. Tab. 8.2 and Fig. 8.2 shows the performance differences between various

VeriStable optimization settings vs. the original NeuralSAT tool. For example, “N” stands

for the base case (NeuralSAT), “P” enables Parallelism, “R” enables Restarts, and “S” enables

Stabilization.

The first row in Tab. 8.2 and the black dashed line of Fig. 8.2 presents data on NeuralSAT.

The plot shows the problems solved within the 900-second timeout for each technique sorted by

runtime from fastest to slowest; problems that timeout are not shown on the plot. Enabling only

stabilization in VeriStable yields the data indicated with an “S”: the second row and yellow lines,

respectively. We observe a 50% increase in the number of problems solved with stabilization. The
3https://github.com/ChristopherBrix/vnncomp2022_benchmarks

99

https://github.com/ChristopherBrix/vnncomp2022_benchmarks

Tab. 8.2: Problems Solved and Solving Time of NeuralSAT vs. VeriStable with Various
Optimization Settings

Tool Setting #Solved Avg. Time
NeuralSAT - 4 867.35

VeriStable

S 6 833.25
P 14 713.21

P+R 17 741.00
P+S 38 430.60

P+S+R 48 330.46

0 5 10 15 20 25 30 35 40 45 50

solved problems

0

100

200

300

400

500

600

700

800

900

ve
ri

fic
at

io
n

ti
m

es
(s

)

N

S

P

P+R

P+S

P+S+R

Fig. 8.2: Problems solved of NeuralSAT vs. VeriStable with various optimization settings

average times show a modest reduction of about 4%, but since NeuralSAT or “S” solved just a few

benchmarks the average is swamped by the time taken by problems that timeout – at 900 seconds.

Comparing the dashed and yellow lines in Fig. 8.2 shows that for the solved problems “S” reduces

verification time significantly, e.g., on the first problem from just over 300 seconds to just over 200

seconds. Stabilization alone improves performance, but it has a much more significant benefit in

combination with other optimizations.

We collected data to understand how frequently neurons could be stabilized and at what cost.

Fig. 8.3a plots the percentage of neurons that are stabilized across the MNIST GDVB benchmark,

on the left axis, and the percentage of verification time taken up by stabilization, on the right axis.

This aggregated data shows that stabilization can incur a non-trivial share of verification time, but

100

MNIST GDVB
0

20

40

60

80

100

st
ab

ili
ze

d
n

eu
ro

n
s

(%
)

0

20

40

60

80

100

st
ab

ili
za

ti
on

ti
m

e
(%

)

stabilized neurons

stabilization time

(a) Stabilization Rate (per call) and Stabilization Time

0 2 4 6 8 10 12 14
stabilize calls

0

20

40

60

80

100

st
ab

ili
ze

d
n

eu
ro

n
s

(%
)

MNIST GDVB

(b) Stabilization Rate Over Time

Fig. 8.3: Stabilization Cost and Effectiveness during Verification

as the data in Tab. 8.2 and Fig. 8.2 showed despite this overhead the overall verification time is

reduced for solved problems.

We can also observe that while the mean number of stabilized neurons is low, the variance is quite

high which indicates a degree of effectiveness in reducing the combinatorics in subsequent searches.

We dug into the stabilization data further to try to understand this variance. Fig. 8.3b plots the

mean – red line – and standard deviation – shaded region – of the number of stabilized neurons over

time during verification; recall from line 9 of Alg. 6 that stabilization is selectively enabled during

search. Stabilization is effective early in the search and less so as it progresses. This makes sense

since line line 3 in Alg. 7 prioritizes neurons for stabilization. This is desirable because it encourages

stabilization at the beginning of the search which leads to a greater combinatorial reduction in the

search and a consequent improvement in its scalability.

RQ1 Findings: Stabilization improves the number of problems solved and reduces verification

time. It does so by trading overhead to compute stable neurons to linearize parts of the search of

the space of activation patterns. Moreover, it pushes this linearization to the top of the search

tree to yield greater combinatorial reduction.

101

8.3.2 RQ2: Optimization Ablation Study

We used the same benchmark as in RQ1, but here we focus primarily on the benefits and interactions

among the optimizations in VeriStable. We omit the use of restart on its own since it is intended

to function in concert with parallelization. Both “S” and “P” improve the number of problems solved

and reduce cost relative to the NeuralSAT baseline, but parallelism yields greater improvements.

When parallelism is combined with restart we see that the number of problems solved increases, but

the average time increases slightly. The reason for this is that for the 3 additional benchmarks that

could be solved the verification process had conducted a partial search of the space of activation

patterns before restarts and the cost of that search is added to the cost of the successful post-restart

search.

Perhaps most noteworthy is the data on parallelism in combination with stabilization. We see

a significant jump in the number of solved problems relative to both “S” and “P” – a 6.3 fold and

2.7 fold increase, respectively. As illustrated in Fig. 8.1 this combination is synergistic because

stabilization creates a narrower tree within which the parallel beam can make more rapid progress.

Adding in restart yields the best performance in terms of both problems solved – 12 fold increase

NeuralSAT – and solve time – 2.6 fold decrease.

Fig. 8.2 shows the trend in verification solve times for each optimization combination across

the benchmarks. One can observe that adding more optimizations improves performance both by

the fact that the plots are lower and extend further to the right. For example, extending “P” to

“P+S” shows lower solve times for the first 17 problems – the one’s “P” could solve – and that 38 of

the 51 benchmark problems are solved. Extending “P+S” to the full set of optimizations exhibits

what appears to be a degradation in performance for the first 23 problems solved and this is likely

because, as explained above, restart forces some re-exploration of the search. However, the benefit

of restarting shows in the ability to significantly reduce verification time for 25 of the 48 problems

solved by “P+S+R”.

102

Tab. 8.3: A Verifier’s Rank (#) is Based on its VNN-COMP Score (S) on a Benchmark. (For each
benchmark, the number of problems verified (V) and falsified (F) are shown)

Verifier ACAS Xu MNISTFC CIFAR2020 RESNET A/B MNIST GDVB Overall
S V F # S V F # S V F # S V F # S V F # S V F

VeriStable 1 1437 139 47 2 573 55 23 1 1533 149 43 1 513 49 23 1 480 48 0 1 4536 440 136
CROWN 3 1436 139 46 1 582 56 22 2 1522 148 42 1 513 49 23 2 400 40 0 2 4453 432 133

NeuralSAT 5 1417 137 47 4 383 36 23 4 1522 148 42 3 483 46 23 4 40 4 0 3 3845 371 135
MN-BaB 6 1097 105 47 5 370 36 10 3 1486 145 36 4 363 34 23 3 200 20 0 4 3516 340 116
Nnenum 1 1437 139 47 3 403 39 13 5 518 50 18 - - - - - - - - 5 2358 228 78

Marabou 4 1426 138 46 6 370 35 20 - - - - - - - - - - - - 6 1796 173 66

RQ2 Findings: Each of the VeriStable optimizations improves on the performance of the

baseline DPLL(T)-based neural network verifier. Moreover, combinations of the optimizations

appear to operate synergistically to increase performance beyond their additive benefits. When

running VeriStable, enabling all optimizations appears to be the best choice.

8.3.3 RQ3: Comparison with State-of-the-Art Neural Network Verifiers

In this section, we evaluate VeriStable relative to a set of 5 baseline neural network verifiers across

a broader benchmark that reflects the problems used in VNN-COMP [93]. For metrics, we adopt

the scoring system proposed for VNN-COMP 2023 which seeks to balance the relative difficulty

of verifying a problem versus falsifying it and to account for the possibility that verifiers report

erroneous results. More specifically, for each benchmark instance, a verifier scores 10 points if it

correctly verifies an instance, 1 point if it correctly falsifies an instance, 0 points if it cannot solve

(e.g., times out, has errors, or returns unknown), and -150 points if it gives incorrect results4. This

scoring emphasizes a technique’s ability to correctly verify problems5.

Tab. 8.3 shows the results of all six tools. Since the magnitude of the score is not easily interpreted,

since it depends on the size of the benchmark, we report the Rank of each tool using the VNN-COMP

score for each benchmark as well as the overall rank. Tools that do not work on a benchmark are not

shown under that benchmark (e.g., Marabou reports errors for all CIFAR2020 problems, Nnenum

and Marabou cannot solve any instances of MNIST GDVB). The last two columns break down the
4We note that all of the verifiers in our study gave correct results on the considered benchmarks.
5We dropped the extra 2 bonus points for the fastest verifiers in the VNN-COMP’22 scoring system because

VNN-COMP has removed this time bonus as they found it did not make a difference in scoring

103

number of problems each verifier was able to Verify or Falsify.

On 5 of the 6 benchmarks, and overall, VeriStable ranks at the top, tying with other verifiers

on the ACAS Xu and RESNET benchmarks. Recall that these benchmarks vary significantly in

the number of neurons and parameters, with the ACAS Xu models being modestly sized and the

CIFAR models being the largest, and VeriStable is the best on both ends of the scale spectrum.

VeriStable ranks second on the MNISTFC benchmark to CROWN both solve the same number of

problems, but CROWN verifies a problem that VeriStable does not lead to its higher score. The

MNIST GDVB benchmark varies in size from being comparable to the smallest MNISTFC network

to larger than the largest MNISTFC network. Still, a key distinguishing feature of the benchmark

is the filtration of easy problems. Whereas MNISTFC includes 23 problems that can be falsified,

MNIST GDVB has none, yet VeriStable performs better on these harder problems.

While not a factor in our evaluation, we note that several baseline verifiers require hyperparameter

tuning. For example, the run-script of CROWN for VNN-COMP customizes 10 parameters per each

benchmark to optimize its performance6. In contrast, when run with all optimizations enabled, which

we recommend based on RQ2’s findings, VeriStable has two parameters: the degree of parallelism,

n, and the number of neurons to attempt to stabilize, k. In these experiments, we fixed these at

k = 64 and n = 4000 for all benchmarks, which we believe is evidence that developers can more

easily apply VeriStable to new benchmarks while achieving good performance.

RQ3 Findings: VeriStable ranks at the top of a set of baseline neural network verifiers that

were shown to be the best performers in a recent NNV competition [93]. It performs well on smaller

problems like ACAS Xu, where techniques with sophisticated abstract domains like Nnenum

work well. It performs well on larger problems like CIFAR2020, where techniques like Nnenum

fail to solve problems and even highly optimized abstraction-based methods like CROWN fall

short. It performs well on challenging problems like MNIST GDVB, forcing verifiers to analyze

the combinatorially sized space of activation patterns to verify problems.

6For MNIST GDVB, the default configuration of CROWN performed poorly, so we adopted the configuration used
for MNISTFC which gave good results for MNIST GDVB.

104

8.4 Threats to Validity

Regarding threats to internal validity, we built off the existing code base of NeuralSAT, thereby

leveraging that team’s efforts to validate their implementation. We used assertions in almost every

function of our implementation to check the correctness properties flowing from our algorithms, e.g.,

that lower and upper bounds are properly ordered. Those assertions were enabled during our rigorous

testing process that ran all of the VNN-COMP benchmarks through our implementation, where we

confirmed the expected results.

We selected VNN-COMP benchmarks to promote comparability and enhance external validity.

Those benchmarks were developed by other researchers to express verification problems for neural

networks, e.g., ACAS Xu is a collision avoidance prediction network for small aerial drones. Based

on our own experience and the experience of the VNN-COMP organizers, who found that some of

the VNN-COMP benchmarks were too easy, we developed a new benchmark, MNIST GDVB. That

benchmark was developed using an approach that guarantees a form of systematic diversity across

the networks and specifications that comprise the benchmark. We plan to continue to push for the

development of benchmarks that reflect the challenges of NNV, but in this work, we believe our

benchmarks are broader and more challenging than prior work.

Regarding construct validity, we used standard metrics, like number of problems solved and

VNN-COMP score, that have been widely used [140, 93]. This makes comparing our results to prior

work easier and allows researchers familiar with the metrics to interpret our results easily. Moreover,

the metrics lead to a natural interpretation that permits answering the research questions, e.g., a

verifier that solves more problems has better performance.

8.5 Discussion

In addition to scalability, which is the focus of VeriStable, there are two other common challenges

in NNV: identifying valuable correctness properties of neural networks and developing a formal

notation to encode them.

105

8.5.1 Property Specifications

This paper focuses on improving the verification of specifications formulated using sets of half-space

polytopes – each specified as the conjunction of cutting planes – where one set defines the pre-condition,

ϕin, and another the post-condition, ϕout. While it does not address the pragmatics of expressing

meaningful domain-specific specifications, we note that this is an active area of work [121, 54].

For example, the work in [121] allows one to define domain-specific masking and transformation

operations to localize perturbations to a region within an input image and within a range of values

that remain on the data distribution. For example, the color of vehicles in a scene does not impact

the predicted steering angle for an end-to-end driving model. We note, however, that such properties

are amenable to verification with tools like VeriStable.

This paper leverages the fact that an arbitrary half-space polytope specification can be expressed

as a local robustness property [105]. This means that we can evaluate verification scalability

improvements by only considering local robustness specifications and these results will be informative

about the verifier performance on a much broader class of specifications, like those in [121].

8.5.2 Specification Format

As mentioned, half-space polytope allows for a general class of specifications to be checked, but for

high-dimensional input spaces it can be inconvenient to write specifications using notations like the

standard VNN-LIB format [38]. For example, a well-studied class of specifications expresses local

robustness properties of the form: ∀x : ∀p ∈ [0, ϵ] : N(x) = N(x± p). Expressing such a specification

for MNIST requires choosing an input image, x, and a maximum perturbation, p, as defined by

the robustness radius, ϵ. In VNN-LIB such a specification would would be more than 1500 lines

long since each dimension of the 784 input must be constrained from above and below. Moreover, a

separate specification must be produced for each input image and radius.

To address these pragmatic challenges, Shriver et al. developed the DNNV toolkit [104], which

consists of a parametric Python-embedded DSL to express such specifications concisely, e.g., just 10

106

lines of code for the aforementioned MNIST specification7. Moreover, DNNV allows specifications

to be written in a form that is independent of model input dimension, as above, and translated to

VNN-LIB for verification with VeriStable.

8.6 Conclusion

As the need for formal analysis increases when more neural networks are being deployed in safety-

critical areas, the NNV field has received great attention in recent years. In this chapter, we introduce

VeriStable, a ReLU-based NNV tool that integrates an advanced DPLL(T) search technique in

SAT solving with the concept of neuron stability to significantly reduce the search space of NNV.

Our evaluation confirms the effectiveness of VeriStable, which establishes a new state-of-the-art in

NNVs compared to the performances in the recent NNV competition.

7https://github.com/dlshriver/DNNV

107

https://github.com/dlshriver/DNNV

Chapter 9

Conclusion & Future Work

9.1 Conclusion

Due to the increasing deployment of neural network models in various domains, researchers have

become increasingly concerned with ensuring their correct behaviors, particularly in safety-critical

areas. Consequently, the field of neural network verification has experienced significant advancements

over the past six years. However, the emergence of approximately 10 new verifiers annually necessitates

thorough empirical analysis to comprehend the variations in their performance. Regrettably, despite

the diligent efforts of the NNV community, the growth rate of neural networks surpasses that of

the verifiers. Hence, there is an urgent need to enhance the performance of verifiers to effectively

scale up to real-world applications. This dissertation presents two significant contributions to the

field of neural network verification: automated approaches in helping with the investigation into

the performance characteristics of neural network verifiers and the subsequent enhancement of their

scalability.

In the initial phase, we devised innovative methodologies to comprehend the performance char-

acteristics of neural network verifiers through extensive empirical studies. Our first step in NNV

performance analysis involves identifying nine influential factors that impact verification performance.

Additionally, we developed strategies to balance SAT/UNSAT instances and eliminate easy instances,

108

as mentioned in Chapter 4. Chapter 5 introduces a groundbreaking approach that systematically

generates diverse NNV benchmarks by leveraging the concept of combinatorial interaction testing

from traditional software engineering. This approach enables the synthesis of unbiased benchmark

instances that encompass a wide range of neural network architectures and verification property

specifications, that closely represent real-world problems. Expanding upon the ideas presented in

Chapter 5, Chapter 6 extends the approach to iteratively generate benchmarks, aiming to explore

the verification performance boundary for a given verifier. This not only offers a fresh perspective

for comparing the performance disparities between verifiers but also serves as an effective means

to investigate potential bottlenecks. By employing this methodology, we successfully identified the

“neuron stability” bottleneck, which significantly impacts the scalability of the verifier when dealing

with larger models.

In the subsequent phase, we aim to enhance the scalability of the state-of-the-art verifiers

by addressing the performance bottleneck known as “neuron stability” in both the training and

verification procedures. In Chapter 7, we have developed two innovative methods to guide the training

process of neural networks, resulting in networks with fewer unstable neurons. This, in turn, reduces

the necessity for extensive case-splitting in the verifiers, thereby minimizing costs and increasing their

scalability. Our evaluation demonstrates that these methods not only effectively increase the number

of problems solved but also significantly reduce the time required for solving them. In Chapter

8, we further enhance an existing verification method by incorporating an optimizer that reduces

the occurrence of unstable neurons during the verification process. This optimization leads to a

significant reduction in the search space for the verification problem. In conjunction with the restart

and parallelism optimizations, our verifier establishes a new state-of-the-art in the NNV competition

The research conducted in this dissertation has resulted in multiple publications [106, 140, 139,

42], in addition to the creation of six open-source research software artifacts, namely R4V [107],

GDVB [141], SwarmHost [136], AdaGDVB [137], OCTOPUS [138], and VeriStable [40]. The

GDVB and OCTOPUS artifacts have been endorsed by conferences as being available, functional,

and reusable. Our research tools have received 12 stars and are actively under development to be

advocated to help more researchers advance the NNV field.

109

9.2 Future Work

In this section, we elaborate on our vision for a compilation of forthcoming projects stemming from

the research findings presented in this dissertation.

9.2.1 NNV Benchmark Generation

In Chapter 4, it has been demonstrated that 9 factors may impact the performance of the verifier.

Our first opportunity is to continue to explore additional potential factors that can influence the

verification performance. Furthermore, both GDVB and AdaGDVB employ the R4V tool for

synthesizing neural networks, which supports a limited number of network architectures. We plan to

continue enhancing R4V to introduce greater diversity in the network architectures of GDVB and

AdaGDVB, with larger and more complicated networks like Residual networks, VAEs, GANs, or

even large language models (LLM).

In Chapter 4, we formulated a technique to balance between SAT/UNSAT and filtering out “easy”

verification instances. This method was then utilized in Chapter 8 to create the MNIST GDVB

benchmark. Notably, the MNIST GDVB benchmark has proven to be more effective in distinguishing

the state-of-the-art verifiers compared to the most recent benchmarks in VNN-COMP. We intend to

incorporate this as an automated feature within GDVB, enabling the generation of more meaningful

and challenging VNN benchmarks. Additionally, we aim to contribute multiple benchmarks produced

by both GDVB and AdaGDVB to support the forthcoming VNN-COMP, thereby enriching it

with a wider range of diverse and challenging benchmarks.

We envision another use case for AdaGDVB in VNN-COMP. Using a collection of verifiers,

including top performers from the prior year, organizers can compute benchmarks that characterize

the aggregate VPB of that collection. This would, by construction, exclude problems that they could

all solve as well as those that none could solve – meeting the complexity requirement of VNN-COMP

organizers. Moreover, this process could be repeated each year to allow the benchmark to track

progress in the field by becoming progressively more challenging over time. Multiple such benchmarks,

using different seed networks defined perhaps by competition participants, would provide a means of

110

automatically generating a relatively unbiased and evolving benchmark to help drive advances in the

field of NNV.

9.2.2 Training Verifiable Neural Networks

Chapter 7 presents evidence that the implementation of stabilization techniques can result in neural

networks that significantly improve their verification speed while maintaining a high level of model

accuracy. Additionally, we have plans to delve deeper into this area of research. Initially, we have

devised a set of direct optimizations for OCTOPUS, including: (1) extending our methods to

accommodate real-world large neural network architectures; (2) exploring automated approaches

to fine-tune hyper-parameters for improved performance; (3) further enhancing the performance of

stabilizers while minimizing any potential trade-offs in accuracy; (4) investigating the applicability of

combining multiple stabilizers; and finally, (5) studying verification algorithms to gain insights on

how to tailor stabilizers for maximum benefit.

In addition, we anticipate more open opportunities, including training for property-preserving

networks [43]. We believe that for neural networks to preserve certain property specifications, it is

required to integrate them directly as objectives during the training phase. Conversely, we assume

that the verification process inherently involves the analysis of property-preserving sets of data when

analyzing the neural network. Consequently, it is feasible to utilize such data in the network training

procedure to train property-preserving networks.

9.2.3 Enhancing the Scalability of the Neural Network Verifiers

In Chapter 8, we present the VeriStable verifier, which is an enhanced version of the existing

DPLL(T) verifier called NeuralSAT. This enhancement significantly improves the performance of

NeuralSAT, making it a cutting-edge neural network verifier. There are numerous opportunities

available to further enhance the performance of VeriStable. One such opportunity is to extend the

capability of neuron stabilization to other non-DPLL-based NNV techniques. Additionally, we can

explore new decision heuristics based on neuron stabilization specifically designed for DPLL(T)-based

tools. Furthermore, VeriStable benefits from utilizing DPLL with implication graphs, which

111

provides it with a built-in mechanism to verify its results. This is achieved by utilizing these

graphs and conflicting clauses to generate resolution graphs/proofs and UNSAT cores as proofs of

unsatisfiability [3, 74, 150].

Furthermore, we aim to support for broader network architectures. Specifically, we are keen on

expanding the tool towards domain-specific applications (e.g., autonomous driving, medical devices,

etc.) and additional types of neural networks like Graph Neural Networks, Transformers, and LLMs,

etc. Additionally, we are interested in supporting more complex property specifications, including

temporal properties, metamorphic properties, and so forth.

112

Appendix A

Neural Networks Artifacts and

Verifiers

A.1 Neural Network Datasets

This section describes all the neural network training datasets that are used in the thesis.

The MNIST dataset(Modified National Institute of Standards and Technology) [39] is the most

recognized dataset for neural network research. It contains a set of 70K labeled instances. Each

instance contains a handwritten digit image of size 28*28 and a label in the form of an integer number

of 10 classes that describes the ground truth of the image from ‘0’ to ‘9’. The complete set is divided

into 60K training and 10K testing instances.

The CIFAR datasets(Canadian Institute For Advanced Research) [73] is also a popular dataset.

The two variations CIFAR-10 and CIFAR-100 are created from subsets of the 80 million tiny image

dataset. The CIFAR-10 dataset contains 50K training images and 10K test images of 10 classes,

whereas the CIFAR-100 contains 5K training images and 1K test images of 100 classes. The images

in the datasets are randomly selected and evenly distributed among the 10/100 different classes.

The self-driving car projects [77] offered by Udacity encompass various tasks, and one of the

113

Tab. A.1: The Complete Set of Neural Network Architectures

Dataset Structure Neurons Parameters
MNIST2×256 FC(256)× 2 512 268,800
MNIST6×256 FC(256)× 6 1,536 530,944
MNIST3×1024 FC(1, 024)× 3 3,072 2,902,528

CIFAR2020 Conv(32,5,2), Conv(128,4,2), FC(250) 49,412 2,133,736

MNISTConvBig
Conv(32,3,1), Conv(32,4,2), Conv(64,3,1),

Conv(64,4,2), FC(512), FC(512) 48,074 1,974,762

CIFARConvBig

Conv(3,3,1), Conv(32,3,1), Conv(32,4,2),
Conv(64,3,1), Conv(64,4,2),

FC(512), FC(512)
65,546 2,466,870

DAVE-2
Conv(24,5,2), Conv(36,5,2), Conv(48,5,2),

Conv(64,3,1), Conv(64,3,1),
FC(100), FC(50), FC(10)

82,669 2,116,983

prominent challenges involves predicting the steering angle of the autonomous vehicle. Within this

dataset, there are 117K colored images depicting the road ahead, with clearly marked lane lines. Each

image is accompanied by a label indicating the corresponding steering angle of the vehicle in that

particular scenario. The objective is to train neural networks to accurately forecast the appropriate

steering angles based on the visual information provided by the images. The Dave-2 network [97] is

an example of an architecture specifically designed to operate on this dataset.

A.2 Neural Network Architectures

The thesis incorporates seven fundamental neural network architectures, which are detailed in

the Tab. A.1. These include three Fully connected networks designed for the MNIST dataset:

MNIST6×256, MNIST2×256, and MNIST3×1024, and a single Convolutional MNIST network:

MNISTConvBig; two CIFAR neural networks: CIFARConvBig and CIFAR2020, as well as a DAVE-2

network tailored for the Udacity Driving dataset. The neural architectures exhibit a range of neuron

counts, spanning from 512 to over 82K, and parameter quantities varying from 268K to 2B. The

assortment of architectures and their respective sizes offer a diverse array of empirical investigations

within the thesis.

114

Tab. A.2: The Complete Set of Neural Network Verifiers

Verifier Category Key Techniques
ERANDeepZono Reachability Zonotope
ERANDeepPoly Reachability Polytope
ERANRefineZono Reachability Zonotope
ERANRefinePoly Reachability Polytope
Planet Search-Optimization SMT
ReLuplex Search-Optimization SMT
BaB Search-Optimization SMT
BaBSB Search-Optimization SMT
Neurify Optimization Interval
Nnenum Reachability Star Set
Marabou Search-Optimization SMT
α,β-CROWN Optimization LP
MN-BaB Reachability Polytope
NeuralSAT Search-Optimization LP

A.3 Neural Network Verifiers

The thesis includes a comprehensive collection of 14 neural network verifiers, as outlined in Tab. A.2.

These verifiers can be broadly categorized into three groups: reachability, search-optimization, and

optimization. Additionally, the study incorporates six different underlying key techniques, namely

Zonotope, Polytope, Interval, Stat Set abstract domains, SMT solvers, and Linear Programming

(LP). For a more detailed understanding of the verification techniques, please consult § 3.3. This

diverse set of 14 verifiers encompasses a wide range of algorithmic families and underlying techniques,

providing a solid foundation for the experimental evaluations conducted throughout the thesis.

115

Bibliography

[1] A. Albarghouthi. Introduction to neural network verification. arXiv preprint arXiv:2109.10317,

2021.

[2] G. Amendola, F. Ricca, and M. Truszczynski. A generator of hard 2QBF formulas and ASP

programs. In 16th International Conference on Principles of Knowledge Representation and

Reasoning, 2018.

[3] R. Aśın, R. Nieuwenhuis, A. Oliveras, and E. Rodŕıguez-Carbonell. Efficient generation of

unsatisfiability proofs and cores in SAT. In International Conference on Logic for Programming

Artificial Intelligence and Reasoning, pages 16–30. Springer, 2008.

[4] J. Bai, F. Lu, and K. Zhang. ONNX Open neural network exchange, 2023.

[5] S. Bak. Execution-guided overapproximation (ego) for improving scalability of neural network

verification. In Proc. 3rd Int. Workshop on Verification of Neural Networks (VNN), 2020.

[6] S. Bak. nnenum: Verification of relu neural networks with optimized abstraction refinement.

In NASA Formal Methods Symposium, pages 19–36. Springer, 2021.

[7] S. Bak, C. Liu, and T. Johnson. The second international verification of neural networks

competition (vnn-comp 2021): Summary and results. arXiv preprint arXiv:2109.00498, 2021.

[8] S. Bak, H.-D. Tran, K. Hobbs, and T. T. Johnson. Improved geometric path enumeration for

verifying relu neural networks. In International Conference on Computer Aided Verification,

pages 66–96. Springer, 2020.

116

[9] T. Baluta, Z. L. Chua, K. S. Meel, and P. Saxena. Scalable quantitative verification for deep

neural networks. In 2021 IEEE/ACM 43rd International Conference on Software Engineering

(ICSE), pages 312–323. IEEE, 2021.

[10] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and

C. Tinelli. Cvc4. In International Conference on Computer Aided Verification, pages 171–177.

Springer, 2011.

[11] C. Barrett, M. Deters, L. De Moura, A. Oliveras, and A. Stump. 6 years of SMT-COMP.

Journal of Automated Reasoning, 50(3):243–277, 2013.

[12] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard: Version 2.0. Proceedings of

the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh, England), 13:14,

2010.

[13] C. W. Barrett. Decision Procedures: An Algorithmic Point of View. J. Autom. Reason.,

51(4):453–456, 2013.

[14] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Criminisi. Measuring

neural net robustness with constraints. arXiv preprint arXiv:1605.07262, 2016.

[15] D. Beyer. Competition on Software Verification.

[16] D. Beyer, S. Löwe, and P. Wendler. Reliable benchmarking: requirements and solutions.

International Journal on Software Tools for Technology Transfer, 21(1):1–29, 2019.

[17] A. Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation,

4(2-4):75–97, 2008.

[18] A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifying safety properties of a powerpc- micro-

processor using symbolic model checking without bdds. In Computer Aided Verification: 11th

International Conference, CAV’99 Trento, Italy, July 6–10, 1999 Proceedings 11, pages 60–71.

Springer, 1999.

117

[19] A. Biere, M. Heule, and H. van Maaren. Handbook of satisfiability, volume 185. IOS press,

2009.

[20] A. Biere and M. Preiner. Hardware Model Checking Competition.

[21] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur, A. Diwan,

D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,

A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The

DaCapo benchmarks: Java benchmarking development and analysis. In Proceedings of the 21st

annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and

applications, pages 169–190, 2006.

[22] E. Botoeva, P. Kouvaros, J. Kronqvist, A. Lomuscio, and R. Misener. Efficient verification of

relu-based neural networks via dependency analysis. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 34(04), pages 3291–3299, 2020.

[23] C. Brix, S. Bak, C. Liu, and T. T. Johnson. The fourth international verification of neural

networks competition (vnn-comp 2023): Summary and results. arXiv preprint arXiv:2312.16760,

2023.

[24] C. Brix, M. N. Müller, S. Bak, T. T. Johnson, and C. Liu. First three years of the international

verification of neural networks competition (vnn-comp). International Journal on Software

Tools for Technology Transfer, pages 1–11, 2023.

[25] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,

P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in

neural information processing systems, 33:1877–1901, 2020.

[26] R. Bunel, A. De Palma, A. Desmaison, K. Dvijotham, P. Kohli, P. Torr, and M. P. Kumar.

Lagrangian decomposition for neural network verification. In Conference on Uncertainty in

Artificial Intelligence, pages 370–379. PMLR, 2020.

118

[27] R. Bunel, P. Mudigonda, I. Turkaslan, P. Torr, J. Lu, and P. Kohli. Branch and bound for

piecewise linear neural network verification. Journal of Machine Learning Research, 21(2020),

2020.

[28] R. Bunel, I. Turkaslan, P. H. Torr, P. Kohli, and M. P. Kumar. A unified view of piecewise

linear neural network verification. In Proceedings of the 32nd International Conference on

Neural Information Processing Systems, pages 4795–4804, 2018.

[29] T. Chen, H. Zhang, Z. Zhang, S. Chang, S. Liu, P.-Y. Chen, and Z. Wang. Linearity grafting:

Relaxed neuron pruning helps certifiable robustness. In International Conference on Machine

Learning, pages 3760–3772. PMLR, 2022.

[30] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. Tse, and Z. Q. Zhou. Metamorphic

testing: A review of challenges and opportunities. ACM Computing Surveys (CSUR), 51(1):1–27,

2018.

[31] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction testing of highly-configurable systems in

the presence of constraints. In Proceedings of the 2007 international symposium on Software

testing and analysis, pages 129–139, 2007.

[32] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing interaction test suites for highly-

configurable systems in the presence of constraints: A greedy approach. IEEE Transactions on

Software Engineering, 34(5):633–650, Sep 2008.

[33] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn. Constructing test suites

for interaction testing. In 25th International Conference on Software Engineering, pages 38–48,

May 2003.

[34] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third annual

ACM symposium on Theory of computing, pages 151–158, 1971.

[35] M. Das, R. Ray, S. K. Mohalik, and A. Banerjee. Fast falsification of neural networks using

property directed testing. arXiv preprint arXiv:2104.12418, 2021.

119

[36] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Commu-

nications of the ACM, 5(7):394–397, 1962.

[37] A. De Palma, R. Bunel, A. Desmaison, K. Dvijotham, P. Kohli, P. H. Torr, and M. P. Kumar.

Improved branch and bound for neural network verification via lagrangian decomposition.

arXiv preprint arXiv:2104.06718, 2021.

[38] S. Demarchi, D. Guidotti, L. Pulina, and A. Tacchella. Supporting standardization of neural

networks verification with vnn-lib and coconet. In Proceedings of the 6th Workshop on Formal,

volume 16, pages 47–58, 2023.

[39] L. Deng. The mnist database of handwritten digit images for machine learning research. IEEE

Signal Processing Magazine, 29(6):141–142, 2012.

[40] H. Duong, L. Li, D. Xu, T. Nguyen, and M. Dwyer. NeuralSAT: A DPLL(T) framework for

verifying deep neural networks. https://github.com/dynaroars/neuralsat, 2023.

[41] H. Duong, T. Nguyen, and M. Dwyer. A DPLL(T) Framework for Verifying Deep Neural

Networks. arXiv preprint arXiv:2307.10266, 2024.

[42] H. Duong, D. Xu, T. Nguyen, and M. Dwyer. Harnessing Neuron Stability to Improve DNN

Verification. Proceedings of the ACM on Software Engineering (PACMSE), FSE, 2024.

[43] K. Dvijotham, S. Gowal, R. Stanforth, R. Arandjelovic, B. O’Donoghue, J. Uesato, and P. Kohli.

Training verified learners with learned verifiers. arXiv preprint arXiv:1805.10265, 2018.

[44] K. Dvijotham, R. Stanforth, S. Gowal, T. A. Mann, and P. Kohli. A dual approach to scalable

verification of deep networks. In UAI, volume 1(2), page 3, 2018.

[45] R. Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In International

Symposium on Automated Technology for Verification and Analysis, pages 269–286. Springer,

2017.

120

https://github.com/dynaroars/neuralsat

[46] Y. Y. Elboher, J. Gottschlich, and G. Katz. An abstraction-based framework for neural network

verification. In International Conference on Computer Aided Verification, pages 43–65. Springer,

2020.

[47] M. Fazlyab, M. Morari, and G. J. Pappas. Safety verification and robustness analysis of neural

networks via quadratic constraints and semidefinite programming. IEEE Transactions on

Automatic Control, 2020.

[48] C. Feng, Z. Chen, W. Hong, H. Yu, W. Dong, and J. Wang. Boosting the robustness verification

of dnn by identifying the achilles’s heel. arXiv preprint arXiv:1811.07108, 2018.

[49] C. Ferguson and R. E. Korf. Distributed tree search and its application to Alpha-Beta Pruning.

In AAAI, volume 88, pages 128–132, 1988.

[50] J. Ferlez, H. Khedr, and Y. Shoukry. Fast BATLLNN: fast box analysis of two-level lattice

neural networks. In Proceedings of the 25th ACM International Conference on Hybrid Systems:

Computation and Control, pages 1–11, 2022.

[51] C. Ferrari, M. N. Müller, N. Jovanovic, and M. T. Vechev. Complete verification via multi-neuron

relaxation guided branch-and-bound. In The Tenth International Conference on Learning

Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[52] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural

networks. In 7th International Conference on Learning Representations, ICLR 2019, New

Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[53] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev. AI2:

Safety and robustness certification of neural networks with abstract interpretation. In IEEE

Symposium on Security and Privacy, pages 3–18, May 2018.

[54] C. Geng, N. Le, X. Xu, Z. Wang, A. Gurfinkel, and X. Si. Towards reliable neural specifications.

In International Conference on Machine Learning, pages 11196–11212. PMLR, 2023.

121

[55] I. P. Gent and T. Walsh. The SAT phase transition. In ECAI, volume 94, pages 105–109.

PITMAN, 1994.

[56] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In Proceedings of

the fourteenth international conference on artificial intelligence and statistics, pages 315–323.

JMLR Workshop and Conference Proceedings, 2011.

[57] C. P. Gomes, B. Selman, H. Kautz, et al. Boosting combinatorial search through randomization.

AAAI/IAAI, 98:431–437, 1998.

[58] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT press

Cambridge, 2016.

[59] X. Guo, W. Wan, Z. Zhang, M. Zhang, F. Song, and X. Wen. Eager falsification for accelerating

robustness verification of deep neural networks. In 2021 IEEE 32nd International Symposium

on Software Reliability Engineering (ISSRE), pages 345–356. IEEE, 2021.

[60] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.

[61] L. Hadarean, A. Hyvarinen, A. Niemetz, and G. Reger. 14th International Satisfiability Modulo

Theories Competition.

[62] P. Henriksen and A. Lomuscio. Efficient neural network verification via adaptive refinement

and adversarial search. In ECAI 2020, pages 2513–2520. IOS Press, 2020.

[63] M. Heule, M. Järvisalo, M. Suda, M. Iser, and T. Balyo. The International Satisfiability

Competitions.

[64] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verification of deep neural networks.

In International conference on computer aided verification, pages 3–29. Springer, 2017.

[65] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: an automatic algorithm

configuration framework. Journal of Artificial Intelligence Research, 36:267–306, 2009.

122

[66] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and detecting real-world

performance bugs. ACM SIGPLAN Notices, 47(6):77–88, 2012.

[67] T. T. Johnson and C. Liu. VNN-COMP2020 report.

[68] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An efficient SMT

solver for verifying deep neural networks. In International Conference on Computer Aided

Verification, pages 97–117. Springer, 2017.

[69] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: a calculus for

reasoning about deep neural networks. Formal Methods in System Design, 60(1):87–116, 2022.

[70] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor, H. Wu,

A. Zeljić, et al. The Marabou framework for verification and analysis of deep neural networks.

In International Conference on Computer Aided Verification, pages 443–452, 2019.

[71] M. I. Khedher, H. Ibn-Khedher, and M. Hadji. Dynamic and scalable deep neural network

verification algorithm. In ICAART (2), pages 1122–1130, 2021.

[72] H. Khedr, J. Ferlez, and Y. Shoukry. Effective formal verification of neural networks using the

geometry of linear regions. ArXiv, abs/2006.10864, 2020.

[73] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images, 2009.

[74] D. Kroening and O. Strichman. Decision procedures. Springer, 2016.

[75] T. Kropf. Benchmark-circuits for hardware-verification. In International Conference on Theorem

Provers in Circuit Design, pages 1–12, 1994.

[76] R. Kuhn and R. Kacker. Automated Combinatorial Testing for Software.

[77] S. Kulshrestha. Udacity open source self-driving car. https://github.com/udacity/

self-driving-car, 2024.

[78] M. Lauria, J. Elffers, J. Nordström, and M. Vinyals. CNFgen: A generator of crafted benchmarks.

In Theory and Applications of Satisfiability Testing, pages 464–473, 2017.

123

https://github.com/udacity/self-driving-car
https://github.com/udacity/self-driving-car

[79] L. Le Frioux, S. Baarir, J. Sopena, and F. Kordon. PaInleSS: a framework for parallel SAT

solving. In Theory and Applications of Satisfiability Testing–SAT 2017: 20th International

Conference, Melbourne, VIC, Australia, August 28–September 1, 2017, Proceedings 20, pages

233–250. Springer, 2017.

[80] L. Le Frioux, S. Baarir, J. Sopena, and F. Kordon. Modular and efficient divide-and-conquer

SAT solver on top of the painless framework. In Tools and Algorithms for the Construction

and Analysis of Systems: 25th International Conference, TACAS 2019, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech

Republic, April 6–11, 2019, Proceedings, Part I 25, pages 135–151. Springer, 2019.

[81] W. Leeson and M. B. Dwyer. Algorithm selection for software verification using graph neural

networks. ACM Transactions on Software Engineering and Methodology, 2021.

[82] J. Li, J. Liu, P. Yang, L. Chen, X. Huang, and L. Zhang. Analyzing deep neural networks with

symbolic propagation: Towards higher precision and faster verification. In International Static

Analysis Symposium, pages 296–319. Springer, 2019.

[83] Z. Li, T. Chen, L. Li, B. Li, and Z. Wang. Can pruning improve certified robustness of neural

networks? arXiv preprint arXiv:2206.07311, 2022.

[84] W. Lin, Z. Yang, X. Chen, Q. Zhao, X. Li, Z. Liu, and J. He. Robustness verification

of classification deep neural networks via linear programming. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 11418–11427, 2019.

[85] C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, M. J. Kochenderfer, et al. Algorithms

for verifying deep neural networks. Foundations and Trends® in Optimization, 4(3-4):244–404,

2021.

[86] R. Livni, S. Shalev-Shwartz, and O. Shamir. On the computational efficiency of training neural

networks. Advances in neural information processing systems, 27, 2014.

124

[87] A. Lomuscio and L. Maganti. An approach to reachability analysis for feed-forward relu neural

networks. arXiv preprint arXiv:1706.07351, 2017.

[88] A. Loquercio, A. I. Maqueda, C. R. D. Blanco, and D. Scaramuzza. Dronet: Learning to fly by

driving. IEEE Robotics and Automation Letters, 2018.

[89] J. Lu and M. P. Kumar. Neural network branching for neural network verification. arXiv

preprint arXiv:1912.01329, 2019.

[90] S. Malkowski, M. Hedwig, J. Parekh, C. Pu, and A. Sahai. Bottleneck detection using

statistical intervention analysis. In A. Clemm, L. Z. Granville, and R. Stadler, editors,

Managing Virtualization of Networks and Services, pages 122–134, Berlin, Heidelberg, 2007.

Springer Berlin Heidelberg.

[91] L. d. Moura and N. Bjørner. Z3: An efficient SMT solver. In International conference on Tools

and Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer, 2008.

[92] C. Müller, F. Serre, G. Singh, M. Püschel, and M. Vechev. Scaling polyhedral neural network

verification on gpus. Proceedings of Machine Learning and Systems, 3:733–746, 2021.

[93] M. N. Müller, C. Brix, S. Bak, C. Liu, and T. T. Johnson. The third international verification

of neural networks competition (vnn-comp 2022): Summary and results. arXiv preprint

arXiv:2212.10376, 2022.

[94] M. N. Müller, G. Makarchuk, G. Singh, M. Püschel, and M. Vechev. PRIMA: general and

precise neural network certification via scalable convex hull approximations. Proceedings of the

ACM on Programming Languages, 6(POPL):1–33, 2022.

[95] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories: From an

abstract Davis–Putnam–Logemann–Loveland procedure to DPLL (T). Journal of the ACM

(JACM), 53(6):937–977, 2006.

[96] A. Nistor, T. Jiang, and L. Tan. Discovering, reporting, and fixing performance bugs. In 2013

10th working conference on mining software repositories (MSR), pages 237–246. IEEE, 2013.

125

[97] T. Onishi, T. Motoyoshi, Y. Suga, H. Mori, and T. Ogata. End-to-end learning method for

self-driving cars with trajectory recovery using a path-following function. In International Joint

Conference on Neural Networks, IJCNN 2019 Budapest, Hungary, July 14-19, 2019, pages 1–8.

IEEE, 2019.

[98] OpenAI. Introducing ChatGPT.

[99] M. Paul, F. Chen, B. W. Larsen, J. Frankle, S. Ganguli, and G. K. Dziugaite. Unmasking

the lottery ticket hypothesis: What’s encoded in a winning ticket’s mask? In The Eleventh

International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,

2023. OpenReview.net, 2023.

[100] R. Pelánek. BEEM: benchmarks for explicit model checkers. In International SPIN Workshop

on Model Checking of Software, pages 263–267, 2007.

[101] A. Raghunathan, J. Steinhardt, and P. Liang. Certified defenses against adversarial examples.

arXiv preprint arXiv:1801.09344, 2018.

[102] J. Schoenen, M. Lenaerts, and E. Bastings. High-dose riboflavin as a prophylactic treatment of

migraine: Results of an open pilot study. Cephalalgia, 14(5):328–329, 1994.

[103] D. Shen, Q. Luo, D. Poshyvanyk, and M. Grechanik. Automating performance bottleneck

detection using search-based application profiling. In Proceedings of the 2015 International

Symposium on Software Testing and Analysis, pages 270–281, 2015.

[104] D. Shriver, S. Elbaum, and M. B. Dwyer. DNNV: A framework for deep neural network

verification. In A. Silva and K. R. M. Leino, editors, Computer Aided Verification, pages

137–150, Cham, 2021. Springer International Publishing.

[105] D. Shriver, S. Elbaum, and M. B. Dwyer. Reducing DNN properties to enable falsification

with adversarial attacks. In 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE), pages 275–287. IEEE, 2021.

126

[106] D. Shriver, D. Xu, S. Elbaum, and M. B. Dwyer. Refactoring neural networks for verification.

arXiv preprint arXiv:1908.08026, 2019.

[107] D. Shriver, D. Xu, S. Elbaum, and M. B. Dwyer. R4V: Refactoring for verification. https:

//github.com/edwardxu0/r4v, 2019.

[108] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556, 2014.

[109] G. Singh, R. Ganvir, M. Püschel, and M. Vechev. Beyond the single neuron convex barrier for

neural network certification. Advances in Neural Information Processing Systems, 32:15098–

15109, 2019.

[110] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. T. Vechev. Effective robustness certification.

NeurIPS, 1(4):6, 2018.

[111] G. Singh, T. Gehr, M. Püschel, and M. Vechev. An abstract domain for certifying neural

networks. Proceedings of the ACM on Programming Languages, 3(POPL):1–30, 2019.

[112] G. Singh, T. Gehr, M. Püschel, and M. T. Vechev. Boosting robustness certification of neural

networks. In 7th International Conference on Learning Representations, ICLR 2019, New

Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[113] N. Smolyanskiy, A. Kamenev, J. Smith, and S. Birchfield. Toward low-flying autonomous

MAV trail navigation using deep neural networks for environmental awareness. In IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 4241–4247, Sep 2017.

[114] M. Sordo. Introduction to neural networks in healthcare. Open clinical: Knowledge management

for medical care, 2002.

[115] M. Subramaniyan, A. Skoogh, A. S. Muhammad, J. Bokrantz, B. Johansson, and C. Roser. A

generic hierarchical clustering approach for detecting bottlenecks in manufacturing. Journal of

Manufacturing Systems, 55:143–158, 2020.

127

https://github.com/edwardxu0/r4v
https://github.com/edwardxu0/r4v

[116] G. Sutcliffe. The TPTP problem library and associated infrastructure. Journal of Automated

Reasoning, 43(4):337–362, 2009.

[117] G. Sutcliffe and C. Suttner. The TPTP problem library. Journal of Automated Reasoning,

21(2):177–203, 1998.

[118] C. M. J. Tan and M. Motani. Dropnet: Reducing neural network complexity via iterative

pruning. In International Conference on Machine Learning, pages 9356–9366. PMLR, 2020.

[119] V. Tjeng, K. Y. Xiao, and R. Tedrake. Evaluating robustness of neural networks with mixed

integer programming. In International Conference on Learning Representations, 2019.

[120] F. Toledo, D. Shriver, S. Elbaum, and M. B. Dwyer. Distribution models for falsification

and verification of DNNs. In 2021 36th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 317–329. IEEE, 2021.

[121] F. Toledo, D. Shriver, S. Elbaum, and M. B. Dwyer. Deeper notions of correctness in image-

based dnns: Lifting properties from pixel to entities. In Proceedings of the 31st ACM Joint

European Software Engineering Conference and Symposium on the Foundations of Software

Engineering, pages 2122–2126, 2023.

[122] H.-D. Tran, D. Manzanas Lopez, P. Musau, X. Yang, L. V. Nguyen, W. Xiang, and T. T.

Johnson. Star-based reachability analysis of deep neural networks. In International symposium

on formal methods, pages 670–686. Springer, 2019.

[123] H.-D. Tran, N. Pal, P. Musau, D. M. Lopez, N. Hamilton, X. Yang, S. Bak, and T. T. Johnson.

Robustness verification of semantic segmentation neural networks using relaxed reachability.

In International Conference on Computer Aided Verification, pages 263–286. Springer, 2021.

[124] H.-D. Tran, X. Yang, D. M. Lopez, P. Musau, L. V. Nguyen, W. Xiang, S. Bak, and T. T.

Johnson. NNV: The neural network verification tool for deep neural networks and learning-

enabled cyber-physical systems. In International Conference on Computer Aided Verification,

pages 3–17. Springer, 2020.

128

[125] R. E. Uhrig. Use of neural networks in nuclear power plants. ISA Transactions, 32(2):139–145,

1993.

[126] A. Van Gelder. Careful ranking of multiple solvers with timeouts and ties. In K. A. Sakallah

and L. Simon, editors, Theory and Applications of Satisfiability Testing, pages 317–328, 2011.

[127] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Efficient formal safety analysis of neural

networks. In Advances in Neural Information Processing Systems, pages 6367–6377, 2018.

[128] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal security analysis of neural

networks using symbolic intervals. In 27th {USENIX} Security Symposium ({USENIX} Security

18), pages 1599–1614, 2018.

[129] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z. Kolter. Beta-crown: Efficient

bound propagation with per-neuron split constraints for neural network robustness verification.

Advances in Neural Information Processing Systems, 34:29909–29921, 2021.

[130] L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel, D. Boning, and I. Dhillon.

Towards fast computation of certified robustness for relu networks. In International Conference

on Machine Learning, pages 5276–5285. PMLR, 2018.

[131] E. Wong and Z. Kolter. Provable defenses against adversarial examples via the convex outer

adversarial polytope. In International Conference on Machine Learning, pages 5286–5295.

PMLR, 2018.

[132] H. Wu, A. Ozdemir, A. Zeljic, K. Julian, A. Irfan, D. Gopinath, S. Fouladi, G. Katz, C. Pasare-

anu, and C. Barrett. Parallelization techniques for verifying neural networks. In # PLACE-

HOLDER PARENT METADATA VALUE#, volume 1, pages 128–137. TU Wien Academic

Press, 2020.

[133] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui. Graph neural networks in recommender systems:

a survey. ACM Computing Surveys, 55(5):1–37, 2022.

129

[134] W. Xiang, H.-D. Tran, and T. T. Johnson. Output reachable set estimation and verification

for multilayer neural networks. IEEE transactions on neural networks and learning systems,

29(11):5777–5783, 2018.

[135] K. Y. Xiao, V. Tjeng, N. M. Shafiullah, and A. Madry. Training for faster adversarial robustness

verification via inducing relu stability. arXiv preprint arXiv:1809.03008, 2018.

[136] D. Xu. [The SwarmHost Framework] A Unified Framework for Neural Network Verification,

2 2024.

[137] D. Xu, H. Duong, M. B. Dwyer, and T. Nguyen. [The AdaGDVB Framework] Adaptive

Benchmark Generation for DNN Verification, 2 2024.

[138] D. Xu, N. J. Mozumder, H. Duong, and M. B. Dwyer. [The OCTOPUS Framework]

Training for Verification: Increasing Neuron Stability to Scale DNN Verification(cav aec artifact

evaluated[consistent, complete, well documented, easy to reuse]), 1 2024.

[139] D. Xu, N. J. Mozumder, H. Duong, and M. B. Dwyer. Training for verification: Increasing

neuron stability to scale DNN verification. In B. Finkbeiner and L. Kovács, editors, Tools and

Algorithms for the Construction and Analysis of Systems, pages 24–44, Cham, 2024. Springer

Nature Switzerland.

[140] D. Xu, D. Shriver, M. B. Dwyer, and S. Elbaum. Systematic generation of diverse benchmarks

for DNN verification. In International Conference on Computer Aided Verification, pages

97–121. Springer, 2020.

[141] D. Xu, D. Shriver, M. B. Dwyer, and S. Elbaum. [The GDVB Framework] Systematic

Generation of Diverse Benchmarks for DNN Verification, 2 2024.

[142] K. Xu, Z. Shi, H. Zhang, Y. Wang, K.-W. Chang, M. Huang, B. Kailkhura, X. Lin, and C.-J.

Hsieh. Automatic perturbation analysis for scalable certified robustness and beyond. Advances

in Neural Information Processing Systems, 33, 2020.

130

[143] K. Xu, H. Zhang, S. Wang, Y. Wang, S. Jana, X. Lin, and C.-J. Hsieh. Fast and Complete:

Enabling complete neural network verification with rapid and massively parallel incomplete

verifiers. In International Conference on Learning Representations, 2021.

[144] J. You, H. Wu, C. Barrett, R. Ramanujan, and J. Leskovec. G2SAT: Learning to generate SAT

formulas. In Advances in Neural Information Processing Systems, pages 10552–10563, 2019.

[145] S. Zaman, B. Adams, and A. E. Hassan. A qualitative study on performance bugs. In 2012 9th

IEEE working conference on mining software repositories (MSR), pages 199–208. IEEE, 2012.

[146] H. Zhang, H. Chen, C. Xiao, S. Gowal, R. Stanforth, B. Li, D. Boning, and C.-J. Hsieh.

Towards stable and efficient training of verifiably robust neural networks. arXiv preprint

arXiv:1906.06316, 2019.

[147] H. Zhang, S. Wang, K. Xu, L. Li, B. Li, S. Jana, C.-J. Hsieh, and J. Z. Kolter. Gen-

eral cutting planes for bound-propagation-based neural network verification. arXiv preprint

arXiv:2208.05740, 2022.

[148] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel. Efficient neural network

robustness certification with general activation functions. arXiv preprint arXiv:1811.00866,

2018.

[149] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven learning in

a boolean satisfiability solver. In IEEE/ACM International Conference on Computer Aided

Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No. 01CH37281), pages

279–285. IEEE, 2001.

[150] L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-based checker:

Practical implementations and other applications. In 2003 Design, Automation and Test in

Europe Conference and Exhibition, pages 880–885. IEEE, 2003.

[151] L. Zhangheng, T. Chen, L. Li, B. Li, and Z. Wang. Can pruning improve certified robustness

of neural networks? Transactions on Machine Learning Research, 2022.

131

[152] Z. Zhong, Y. Tian, and B. Ray. Understanding local robustness of deep neural networks under

natural variations. In Fundamental Approaches to Software Engineering: 24th International

Conference, FASE 2021, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27–April 1, 2021,

Proceedings 24, pages 313–337. Springer International Publishing, 2021.

132

	Acknowledgements
	Abstract
	Introduction
	Background
	Neural Networks (NN)
	Neuron Stability
	Neural Network Verification (NNV)
	Neural Network Verification Benchmarks

	Related Work
	Software Verification Benchmarks
	Neural Network Verification Benchmarks
	Neural Network Verification Approaches
	DPLL(T)-based NNV

	Neural Network Stabilization Techniques
	Neural Network Pruning Techniques

	Unraveling Influential Factors in Neural Network Verification
	Identifying Factors
	Potential Factors
	Validating Factors
	Factor Findings

	Develop Balanced and Challenging Neural Network Verification Benchmarks
	Conclusion

	Systematic Generation of Diverse Benchmarks for Neural Network Verification
	Approach
	Factor Diverse Benchmarks
	From Factor Covering Arrays to Verification Problems
	Benchmark Generation
	Implementation
	The SwarmHost Verification Framework
	Scaling Up Neural Networks with Enhanced R4V

	Evaluation
	Evaluation Setup
	Selection of Seed Verification Problems
	Selection of Verifiers
	Selection of Factors and Levels

	Selection of Metrics and Resources
	Results
	Comparing verifiers across a range of challenges
	GDVB and benchmark requirements R1-R3

	Conclusion

	Adaptive Benchmark Generation for Neural Network Verification
	Approach
	Overview
	The AdaGDVB Method
	Examples
	Implementation

	Evaluation
	Use Case One: Adaptive benchmarks
	Use Case Two: Identifying Neural Network Verification Bottlenecks

	Conclusion

	Increasing Neuron Stability to Scale Neural Network Verification
	Approach
	Overview
	Neuron Stability Estimation
	Bias Shaping
	Stable Pruning
	Implementation

	Evaluation
	Study Design
	RQ1: Stabilizing Neurons
	RQ2: Enhancing Verification
	Discussion
	Threats to Validity

	Conclusion

	Harnessing Neuron Stability to Improve Verification
	The VeriStable Approach
	DPLL(T)-based Neural Network Verification
	Boolean Representation
	The DPLL search
	Theory Solver

	Improvements in VeriStable
	Neuron Stability
	Parallelism

	Implementation

	Experimental Design
	Selection of NNV Benchmarks
	Selection of Neural Network Verifiers Baselines
	Experimental Setup

	Results and Analysis
	RQ1: Benefit of Stabilization
	RQ2: Optimization Ablation Study
	RQ3: Comparison with State-of-the-Art Neural Network Verifiers

	Threats to Validity
	Discussion
	Property Specifications
	Specification Format

	Conclusion

	Conclusion & Future Work
	Conclusion
	Future Work
	NNV Benchmark Generation
	Training Verifiable Neural Networks
	Enhancing the Scalability of the Neural Network Verifiers

	Neural Networks Artifacts and Verifiers
	Neural Network Datasets
	Neural Network Architectures
	Neural Network Verifiers

