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ABSTRACT 

As video sources from unmanned autonomous vehicles, surveillance cameras, and other 

platforms have become ubiquitous, robust methods for target detection and tracking are in 

increasing demand. The major challenge of such big data collection is that once the data are 

captured, a cumbersome, if not impossible, task remains for a human analyst to mine the 

collected data for valuable information. Consequently, automated tracking methods are 

required.  

Towards this end, we present several tracking algorithms to tackle a variety of video 

sequences, along with a trackability measure to analyze video sequences for the purpose of 

tracking. We are specifically focused on persistent surveillance applications used to study target 

movements. Accordingly, the first major contribution of this work is that it provides two 

approaches for automated methods to track multiple targets in persistent surveillance video 

sequences. In the first approach, we develop an automated tracker for registered (stationary 

camera) video sequences; in the second approach, we present a new tracker for unregistered 

video sequences based on the morphological filter. The second major contribution is the 

introduction of a novel trackability measure that allows the user to quantify the difficulty of 

tracking in a variety of environments via an assortment of imaging sensors.  

First, we demonstrate a tracking algorithm for registered video sequences: the Snake 

Particle Filter (SPF) tracker. The SPF tracker is applied to two data sets. The first data set is 

composed of 28 targets where the SPF tracker has on average an RMSE error of 7 pixels in the 

horizontal direction and 3.5 in the vertical. The second data set had 7 targets with the mean 

RMSE in the horizontal direction being 4.5 pixels and 4 pixels in the vertical direction.  

Second, we develop a novel algorithm for unregistered video sequences. The algorithm 

is named the Morphological Scale-Space Tracker (MS2T). We compare the MS2T to a SIFT based 
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tracker, the Automated SIFT Tracker (ASIFT2), and also investigate the incorporation of SIFT into 

the MS2T. For all the methods here we utilized 34 targets and 2 measurements, namely the 

percentage of tracking and normalized root mean squared error (RMSE). The tracking results 

show that: a) ASIFT2 has an average of 90% frames tracked and 0.45 (half of target width) 

normalized RMSE; b) MS2T has an average of 96% frames tracked and 0.27 (less than third of 

target width) normalized RMSE, and; c) incorporating SIFT into MS2T results in an improvement 

of 98% frames tracked and 0.28 normalized RMSE. 

Lastly, we establish a novel quality measure for tracking, which we named the 

trackability measure. The trackability measure enables, for the first time, quantification of the 

difficulty of tracking for a given scenario, based on the target appearance, the target motion, 

and the video quality. Previous measures considered only video quality. Overall, tracker 

performance parallels the newly introduced trackability measure in terms of the Spearman 

correlation. 

By developing both automated tracking algorithms and a trackability measure we 

provide a comprehensive approach to tracking. Furthermore, this dissertation introduces a 

broad set of tracking methodologies by tracking not only registered video sequences, but also 

unregistered sequences.  
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CHAPTER 1. 

0BINTRODUCTION 

Visual surveillance of objects from various dynamic imagery data is integral for many applications 

and is commonly utilized in both the private and public sectors. In visual surveillance, the objects 

of interest range from people to vehicles, and uses include everything from personal security to 

police and military operations. The general framework of visual surveillance is comprised, in the 

first instance, of numerous image analysis tasks whose aim is to detect, track, and classify objects 

of interest from image sequences or video. In the second instance, visual surveillance seeks to 

understand and describe these objects’ behavior [2, 3]. 

 Within the framework of visual surveillance, military applications find target tracking to 

play a vital role, specifically in persistent surveillance. The successful tracking of targets in image 

sequences delivers a significant tool to characterize the actions of objects of interest in real-time. 

In persistent surveillance, tens of square miles may be monitored and each vehicle tracked. 

Manually tracking such targets becomes a cumbersome task for the human operator who is prone 

to inter- and intra-observer error. Automated tracking provides the benefit of studying the activity 

of targets over a significant period of time. Moreover, automated tracking provides reproducible 

results which eliminate human observer shortcomings.   

This project seeks to develop an automated method to track multiple targets in persistent 

surveillance video sequences. Particular difficulties that limit target tracking success are 

presented by varying video qualities and complicated scenes. Such obstacles must be studied, in 

terms of frame rate and resolution for instance, in order to determine which imaging methods are 

a best fit for target tracking. Towards this end we identified the following specific objectives: to 

tackle target tracking in registered and unregistered video sequences, and to study video quality 

and tracking scenes for trackability. In more detail, these aims are as follows:  
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Specific Aim 1: To develop an automated tracking algorithm for a single moving target in 

surveillance video sequences by fusing a particle filter with the active contour 

 

Target motion in surveillance sequences is multifaceted and often cannot be addressed with 

classical tracking methods such as the Kalman filter. For example, assuming constant velocity 

(constant speed and direction) is not practical given low temporal sampling and the erratic 

movement of targets. The particle filter (PF) has shown promising results in tracking targets with 

complex, dynamic motion models [4]. Essentially, the multitude of particles computed allows 

multiple hypotheses regarding target state.  

We propose to incorporate the active contour or snake [5] into the PF as the weight 

measure. The active contour will be used to establish a likelihood model for each particle. 

Establishing the weights of the particles in the PF plays a vital role in the success of tracking. Since 

the targets in surveillance sequences often have strong edges, incorporating active contours into 

the weights of the PF utilizes the edge information to improve tracking results.  

 

Specific Aim 2: To accomplish tracking with a morphological scale-space that allows detection 

and tracking of multiple targets in unregistered video sequences  

 

Often, surveillance sequences acquired from aerial vehicles are not registered. Registration, 

moreover, adds not only further time and complexity to the tracking algorithm, but it can often be 

inaccurate. Registration inaccuracies cause the motion model to incorrectly predict where the 

target is moving. Consequently, a method which combines target information with the relative 

frame location of the target must be incorporated into the tracker. We propose to utilize area 

morphology to generate a scale-space for each frame, resulting in a set of connected 
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components. Then, we will employ region specific image features to describe targets and achieve 

tracking in unregistered video sequences. A variety of regional features for each connected 

component are combined to develop a unique identifier for each target which then in turn is used 

for matching the target in the consecutive frames. As registration information is absent, we 

propose to utilize our morphological scale-space to detect targets in each frame without the 

knowledge of the image background. 

 In addition, we propose to investigate an existing scale-space algorithm, Scale Invariant 

Feature Transform (SIFT), through the comparing and contrasting with our morphological scale-

space method.  

 

Specific Aim 3: To develop a measure of tracking difficulty (trackability) for a given target and 

sequence 

 

The success of tracking results can be limited due to the quality of the video sequence. For 

instance, sequences with very low spatial resolution may not provide enough information for 

reliable results. We propose to develop a “trackability” measure that can be used to predict and 

evaluate the success of the tracker in complex imaging scenarios.  

The trackability measure uses a theoretical information approach to evaluating the 

difficulty of matching a template to a target in the presence of clutter. The measure also takes 

into account resolution, noise, frame rate, registration error and motion model prediction error. 

This trackability measure is the first such attempt to quantify the difficulty of a given tracking 

experiment. 
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The remainder of this dissertation presents the theory and methods used to accomplish the 

specific aims stated above. Chapter 2 describes the pertinent background material, including the 

commonly used tracking methodologies, dividing them into two main tracking classes: 

measurement based and dynamic model based trackers. Chapter 3 discusses the approach taken 

to achieve aim 1. This chapter explains the use of the active contours and the particle filter as it is 

used towards our tracking solution. Chapter 4 presents our solution to aim 2 by employing area 

morphology to generate scale-space models for the targets and the video background of interest. 

The area morphology is then utilized to track targets in non-registered data sequences. Next, 

Chapter 5 addresses our solution to aim 3 that incorporates information about the video and the 

tracking circumstances to understand the success of a tracker. Finally, Chapter 6 offers concluding 

reflections and considers possible future research directions. 
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CHAPTER 2.  

1BTRACKING BACKGROUND  

Visual surveillance provides a vital tool for characterizing the actions of targets in real-time from 

video or other imagery. Increasingly, many organizations, predominantly in the public sector, 

utilize video cameras of various wavelengths and frequencies to collect data from around the 

world. Furthermore, with an increase in unmanned aerial vehicle integration into surveillance and 

mission execution, the ability to capture live video feed is unprecedented. For the purpose of this 

research, our application is specifically concerned with visual surveillance of motorized vehicles, 

and their locations and movements in terms of target detection and tracking.  

The ubiquitous and inexpensive nature of video cameras allows for the collection of a vast 

amount of information. In video surveillance, the quantity of collected dynamic imagery grows 

continuously, making it difficult, if not impossible, for manual analysis by human operators. 

Consequently, an automated method is needed to detect and track targets [6]. Furthermore, an 

investigation of suitable video for tracking will guide the selection of hardware and the evaluation 

of particular data collectors for best tracking results.  

Automated tracking provides the benefit of studying the activities of targets over a 

 

Figure 1 – Tracker flow/execution steps block diagram 
This figure outlines the steps that a typical automated tracker might take towards accomplishing 
tracking. These steps are not comprehensive and some steps might be skipped depending on the 
algorithm of a given tracker. 
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significant period of time and alerting the operator when needed. There are several general steps 

performed by an automated tracker as illustrated in Figure 1. The steps outlined in Figure 1 are 

not comprehensive, but rather provide an overview of steps a given tracker might take towards 

accomplishing tracking. Vehicle tracking faces several challenges. In general, the imaging 

environment is often cluttered and the video acquisition process may suffer from insufficient 

temporal resolution. The clutter might include trees, bushes, buildings, other man-made 

stationary objects, etc. Furthermore, video sequences acquired from moving vehicles such as 

airplanes and helicopters with or without stabilizers require registration. Video registration is a 

time consuming method that can result in an inaccurate frame alignment. Consequently, methods 

which rely on video registration will fail to track the targets of interest in poorly registered video 

sequences.  

Surveillance image sequences can vary significantly as shown in Figure 2. Figure 2 

presents two examples of a single frame from (a) a higher resolution stationary camera and (b) a 

  

(a) (b) 

Figure 2 – Example of surveillance images with targets marked with a yellow square.  
Here image (a) illustrates a stationary camera capturing traffic at an intersection on Peachtree Street, 
Atlanta, GA, and (b) shows an image from a surveillance video acquired from a helicopter over Yuma, 
AZ, where the camera is not mounted on a stabilizer. 
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lower resolution camera mounted on a helicopter. This figure also illustrates the targets of 

interest in the example videos. In order to extract all the valuable information from these 

sequences a tracking algorithm must automatically monitor the activities of each target over time.  

This chapter presents background material on existing tracking methods and related 

theory. Two categories of trackers are discussed: a) measurement based trackers which rely on 

image information such as intensity, target boundary, etc. for tracking, and; b) dynamic model 

based tracking which incorporates prior target state information such as location and velocity into 

the tracking model.  

2.1 6BMeasurement Based Tracking 

Measurement based trackers use image information for detection and tracking. Here we discuss 

the literature on several widely used trackers. These trackers rely on the appearance, pixel 

intensities, and edges of the image to accomplish tracking.  

2.1.1 24BCentroid Tracker 

The centroid tracker computes the center of mass in terms of the pixel intensity profile of the 

target in a region of interest (ROI) in each frame. The ROI is initialized in the first frame and target 

location is estimated using the center of mass. The estimated target location from the current 

frame becomes the center of the ROI used to track the target in the following frame and target 

location estimation is repeated. Clusters of pixels can also be used to indicate separate targets 

and thus the centroid tracker can track several targets in an image sequence.  

 The centroid tracker has a low computational expense since only first and second 

moment pixel intensities are used to calculate the center of mass. However, the centroid tracker 

requires a large contrast between the target or targets and the background. Further, this tracker 
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cannot distinguish between targets that are close together, nor can it track complicated targets 

[7] [8]. 

2.1.2  Template Matching 

The template matching or correlation tracker [9] is a tracking technique which utilizes previous 

knowledge of the target. Such a tracker can also detect the similarity or dissimilarity of one frame 

and another [8]. If the target’s location in each frame is desired, the target becomes a template 

which is then used to search the image for a match. The best match of the template to the image 

is then offered as the estimated location of the target. If a target is moving at an angle or the 

viewpoint is changing, the template must be updated for successful matching. 

 Several methods can be used in the matching technique. Commonly, the matching is 

achieved via normalized cross correlation (NCC), but the sum of squared or absolute differences 

and the Hough transform have also been applied. When employing NCC in tracking, an ROI 

window is employed within the image to reduce the search area and speed up the execution of 

the tracker. The NCC coefficient is defined as in [10]:  

 𝑁𝐶𝐶(𝑖, 𝑗) =
∑ [𝐼(𝑥, 𝑦) − 𝐼�̅�,𝑗] ∙ [𝜏(𝑥 − 𝑖, 𝑦 − 𝑗) − �̅�]𝑥,𝑦

√{∑ [𝐼(𝑥, 𝑦) − 𝐼�̅�,𝑗]
2

𝑥,𝑦 ∑ [𝜏(𝑥 − 𝑖, 𝑦 − 𝑗) − �̅�]2
𝑥,𝑦 }

. (1) 

At each point (𝑖, 𝑗) under a window in the image, 𝐼(𝑥, 𝑦), the image is compared to the target 

template, 𝜏. �̅� is the mean of the template, and 𝐼�̅�,𝑗 is the mean of the image in the region under 

the template.  

 Template matching can also be incorporated into a dynamic model such as the Kalman or 

particle filters [4]. Since the template matching method is sensitive to the viewpoint and pose, it 

often fails when the camera is rotated while acquiring the video sequence. Furthermore, a 
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database of templates must be generated to account for the necessary viewpoints and/or poses 

and the algorithm must update the template accordingly. 

2.1.3 26BActive Contour Tracker 

Active contour trackers utilize the active contour or snake [5] to propagate the segmentation of 

the target from frame to frame. A snake is a parametric curve where each point on the curve is 

mapped to a location in the image (discussed further in Chapter 3). Tracking via a snake is 

achieved by determining the minimum cost of an energy functional. This is done, generally, by 

balancing the effects of image features or the external force (e.g. image edges) and the 

smoothness and rigidity of the curve or the internal force in each frame. In addition to locating 

the target in the image, this tracker allows establishing the shape of the target. Leymarie and 

Levine [11] have applied the snake tracker to a deformable cell to capture both the cell location 

and shape. These authors note that the external force in the snake plays a vital role in the ability 

of the snake to capture and track the targets. The active contour tracker is sensitive to 

initialization and noise in the image since noise can disturb the edges of the target and distract 

the snake from capturing the target of interest.  

In order to improve the capture range of the active contours, the generalized gradient 

vector flow (GGVF) [12] has been incorporated into the external force. The GGVF enables tracking 

by improving the identification of the weak target boundaries in images with relative background 

homogeneity. Further, the use of the motion gradient vector flow (MGVF) [13] introduced the 

motion of the target into the external force which guided to the correct target boundaries of the 

moving target. Another active contour based method was employed in [14], which accounted for 

the size, shape, position, and sampling of the contour of the target. Lastly, the vector field 
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convolution (VFC) [15] has more recently been used as a more general form of GGVF and will be 

discussed in the following chapter as it is employed by our proposed method.  

2.1.4 27BGeodesic Tracker 

Geodesic active contours are a level set approach to segmentation. This segmentation method 

deforms contours based on the inherent geometric measures of the image. It unites the Kass 

snake, which is based on energy minimization, with the geometric active contour, which is based 

on the theory of curve evolution [16].  

 Later, the geodesic active contours were incorporated in [17] to be used as a tracker. The 

authors describe their tracker as a “model-free approach” for tracking that can deal with 

topological changes. Here the method utilizes the geodesic active region model to separate the 

target from the background and track it in the following frames. The authors note that the 

geodesic tracker applies a linear motion model, and errors caused by non-linear motion can 

propagate and cause discrepancies in the tracking results.  

2.1.5 28BKernel-Based Object Tracking 

Kernel-based object tracking, proposed by Comaniciu et al. [18], is designed to address 

representation and localization of non-rigid objects or targets. The method selects an ellipsoidal 

area from the image to represent the object. The ellipsoidal region is then normalized to a unit 

circle which is smoothed by an isotropic and monotonically decreasing kernel. Next, the authors 

define a spatially-smoothing similarity function, thus reducing target search to a basin of 

attraction of the similarity function.  

 The kernel-based method can also be incorporated into a dynamic framework, such as the 

Kalman filter. The authors note that this method suffers because the basin of attraction may not 
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lead to the object of interest. Additionally, the kernel-based method does not handle occlusion. 

Consequently, other methods must be incorporated to address the occlusion problem.  

2.2 7BDynamic Model Tracking 

Dynamic models play a vital role in target tracking. As mentioned in the previous section, the 

measurement trackers are often incorporated into a dynamic model for more successful tracking. 

Dynamic models allow incorporating the motion model into the tracker, thus improving the 

tracking accuracy. One of the more common dynamic models is the Bayesian based tracker which 

includes the Kalman filter, the extended Kalman filter, and the particle filter.  

2.2.6 29BKalman Filter  

The Kalman filter (KF) [4] is an optimal filter for a linear system with a Gaussian model for the 

process noise, 𝑤[𝑛], and measurements noise, 𝑣[𝑛]. This filter recursively estimates the state 

from a sequence of noisy measurements. Here the state transition model is:  

 𝑞[𝑛 + 1] = 𝐹𝑛𝑞[𝑛] + 𝑤[𝑛] (2) 

and the observation model is: 

 𝑧[𝑛] = 𝐻𝑛𝑞[𝑛] + 𝑣[𝑛], (3) 

𝑞[𝑛] denotes the state of the target and the measurement is represented by 𝑧[𝑛]. 𝐹𝑛 and 𝐻𝑛 are 

matrices which define the linear mapping of the state and observation models, respectively. The 

goal of the tracker is to utilize the information we have, given all the measurements, 𝑧[1: 𝑛] (up 

to time 𝑛), in order to estimate the state 𝑞[𝑛]. In the KF this is achieved by building the model of 

the posterior density, 𝑝(𝑞[𝑛]|𝑧[1: 𝑛]). 

The KF has been utilized with active contours in the Kalman snake model [19] [20]. In 

Kalman snakes, the dynamic motion of the KF is incorporated into the energy of the snake, thus 

introducing a time varying term in the snake implementation. Other methods incorporated the 
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motion model into the external force, instead of dynamically changing the energy [21]. This allows 

the external force to guide the contour to the new boundary more accurately. Although snakes 

can provide a powerful tool for tracking, they tend to fail in a low temporal resolution. Typically, 

the initialization of the snake is based on the target’s previous location. Therefore, if the target 

moves outside of the boundary of the initialization, it will not be captured. Additionally, if external 

force does not guide the curve to the target correctly, the tracker will typically fail. 

 With the KF, a single motion model (typically a linear model in the sense that the next 

state can be expressed as a matrix product with the previous state) is applied. Although the KF is 

an optimal filter for application with such a model, the surveillance tracking application is more 

complex [22]. In surveillance tracking, targets undergo discontinuities in acceleration and velocity, 

and maneuver. If the temporal resolution is low, this poses an added challenge. Figure 3 

illustrates an example where KF fails due to the distraction presented by other targets around it. 

 
Figure 3 – Example of the Kalman filter failing to track a target.  

The track colored in green represents the ground truth, while the track colored in magenta 
represents the Kalman filter (KF) results. Here the KF gets distracted by the second moving target 
(the truck which turns left and occludes the target) and switches tracks. 
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When the target makes a turn, another target, the truck, crosses in front of it (to the camera), 

causing the tracker to switch and track the truck instead.  

2.2.7 30BExtended Kalman Filter 

The extended Kalman filter (EKF) was developed to address the linearity assumption of the KF, so 

the state and the observation model become: 

 𝑞[𝑛 + 1] = 𝑓𝑛(𝑞[𝑛], 𝑤[𝑛]), and 
(4) 

 𝑧[𝑛] = ℎ𝑛(𝑞[𝑛], 𝜈[𝑛]). 
(5) 

In the case of EKF, both the state transition and observation models do not need to be linear, but 

rather are differentiable functions. The EKF approximates or linearizes the state and observation 

models by using the Taylor series expansion. As in the KF, the EKF assumes that both the process 

and observation noises are white [4]; additionally for maximum a posteriori estimate, the noises 

are Gaussian. Although the EKF addresses the non-linearity of the KF, it still assumes that the 

noise is white. The EKF also fails if the state transition and observation models are not 

differentiable.  

2.2.8 31BParticle Filter 

Gordon et al. developed the idea of the particle filter (PF) or Bayesian bootstrap filter 

where the state density (posterior density) is approximated using measurements from the system 

[23]. The PF provides a method that removes the constraints inherent in conventional methods, 

such as that presented by the KF [8] on the system transition function and the measurement 

function (see more in-depth discussion in Chapter 3). In related applications, other researchers 

have incorporated the PF in video based target tracking. The CONDENSATION algorithm predicts 

the parameterized curve evolution using the PF [24] while [25] describes a method that combines 

the PF into geometric active contours. This method uses geometric active contours and affine 
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parameters of the contour as the particles in the PF and then computes the weights for each 

particle based on minimum energy configuration. 
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CHAPTER 3. 

2BTARGET TRACKING VIA A SNAKE PARTICLE FILTER 

Automated tracking is essential in understanding the behavior of targets. In persistent 

surveillance, target tracking provides an insight into the location of targets at each available point 

in time (frames) and allows the user to identify target origin and routes, which took place prior to 

a particular event. It also allows the user to study general patterns and detect pattern deviations. 

We commence by addressing the tracking problem in registered video sequences. It is beyond the 

purview of this thesis to address the registration problem or algorithms.  

Two important steps must be taken in target tracking. First, the target must be detected 

in the first frame. This initializes the tracking process. Then the target is tracked from frame to 

frame. In this chapter we address aim 1. Here, we describe the theory and methods used for 

initialization techniques and our tracking approach. Initialization is developed using the 

background subtraction method, while tracking is achieved by utilizing the snake particle filter 

(SPF). The SPF builds upon the active contour tracking methods and employs active contour to 

obtain the weights for the particles as the particle filter (PF) is applied to track the targets. This 

chapter also discusses our SPF tracking results and provides a concluding discussion.  

Towards successful tracking with the SPF method, we assume that we have registered 

video and that registration does not introduce new structures to the image (e.g. due to image 

warping). The temporal resolution must be high enough such that there is overlap in target 

location from one frame to the next, while the spatial resolution must be known to initialize and 

evolve the active contour from frame to frame. The target size must be large enough for an active 

contour to capture it.  
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3.1 8BSPF Initialization 

Track initialization is an essential step in tracking applications. Without prior knowledge, the 

tracker cannot know where the targets are located, and no motion model can be applied in the 

initial frame. Consequently, for registered sequences, the initialization is performed by generating 

a background image via a pointwise median computation involving several frames. Here, 

registration plays a vital role because if registration is not performed correctly the median image 

would not be the correct background image and initialization will fail. Although a portion of the 

data used for this work was registered using manual registration, we will not address registration 

in this work. In this application, we assume that registered video data is available for tracking. 

Additionally, we assume that a sufficient number of frames is available to establish the median 

frame such that only stationary objects are present in the median frame.  
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Once the background image is computed, shown in Figure 4 (b), it is subtracted from the 

initial frame to locate the moving targets. Now that the background is eliminated and only the 

moving targets are left, we can generate a logical image where the targets are marked as true and 

background is marked as false. Basic morphological features are used to remove the falsely 

detected pixels. The logical image now contains clusters, where each cluster represents a 

potential moving target, shown in Figure 4 (c). In Figure 4 (c), colors are used to distinguish 

between each target. Once the target areas are established, we employ the connected 

  

(a) Initial frame (b) Median frame 

  

(c) Potential targets, each color 
represents a unique detection 

(d) Final initialization of cars marked by 
red asterisks 

Figure 4 – Track initialization 
Here the process of track initialization is illustrated by first (a) examining the frame, (b) taking the 
median of a set of frames to identify non-moving sections of the image, (c) subtracting the initial frame 
from the median image results in areas of possible targets noted in various colors where each color 
indicates a unique detection and lastly (d) the initialization of targets which have moved over the 
course of the image set which was included in the median calculation. 
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component analysis method which determines the locations and the number of targets [26]. 

Additionally, small clusters (few pixels in size) are removed because they do not represent targets 

of interest. Finally, the (𝑥, 𝑦) coordinates of each target are recorded. Figure 4 (d) illustrates the 

location of each target of interest, marked by a red asterisk.  

3.2 9BSPF Tracking 

We employ the results from the initialization step to set the first state of each target in our 

tracker. The snake is then applied to determine the shape of the target and to establish the 

motion model from the first three frames. Following the snake we utilize the particle filter to track 

the target using the shape result to determine the particle weights. This section describes the 

active contour and the particle filter – the foundation for our method – as well as the process of 

fusing these two methods to develop our tracker. Moreover, we discuss data sets used and 

tracking results.  

3.2.1 32BActive Contour  

The following discussion will focus on grayscale image segmentation, as this is the analysis 

relevant to the present study (it can, however, be extended to color images). In grayscale imaging, 

segmentation is usually based on either similarities or discontinuities in the image. Discontinuities 

are sharp changes in the image intensities or object edges in the image.  

Edges in the image are commonly found using the gradient magnitude or the Laplacian of 

the image. The gradient of the image provides both magnitude and direction.  𝜕 is the partial 

derivative operator, ∇ is the gradient operator, and for an image 𝐼, it is defined as: 

while gradient magnitude can be found as follows:  

 ∇𝐼(𝑥, 𝑦) = [
𝜕𝐼

𝜕𝑥
,

𝜕𝐼

𝜕𝑦
], (6) 
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The |∇𝐼| at a given pixel (𝑥, 𝑦) provides the rate of change in the intensity. The Laplacian of the 

image 𝐼 is defined as 

The Laplacian is the sum of second derivatives (in the x and y directions) of the two-dimensional 

image. From differential equations it is given that the sharpest rate of change of the gradient (first 

derivative) is the zero crossing of the Laplacian indicating an edge [27]. 

Snakes are deformable parametric curves that move through the spatial domain and are 

controlled by a force. This force is an iteratively updated energy functional, which directs the 

evolution of the snake towards a desired boundary. When the snake deforms to the desired 

feature it converges and ceases to evolve. The force controlling the movement of the snake is 

based on internal and external energies. Internal energy (Eint) is the elastic force of the contour 

(tension and rigidity), while the external energy (Eext) is usually based on some image content. Eext 

is typically user defined to be the edge map of the image. More sophisticated methods, such as 

generalized gradient vector flow (GGVF) [27], have been used to guide the snake to the 

appropriate edges. When Eext+Eint is minimized, the snake contour reaches a solution. As described 

in the previous section, active contours or snakes have been extensively used for tracking in 

various applications. Although snakes have shown promise in segmentation, they are not optimal 

to be the sole element used in tracking. If the target moves from one frame to another in an 

amount greater than half the target length, the snake will most likely lose the target because the 

edges will not be able to guide the snake to the boundaries of interest. It follows that we 

incorporate the snake into a dynamic model to improve tracking results.  

 |∇𝐼(𝑥, 𝑦)| = √(
𝜕𝐼

𝜕𝑥
)

2

+ (
𝜕𝐼

𝜕𝑦
)

2

. (7) 

 ∇2𝐼(𝑥, 𝑦) =
𝜕𝐼2

𝜕2𝑥
+

𝜕𝐼2

𝜕2𝑦
. (8) 



 

Automated Tracking and Analysis of Aerial Surveillance Data 20 
 

 

 Snakes are deformable parametric curves that move through the spatial domain and are 

controlled by a force. In order to describe the snake mathematically, we parameterize the 

contour using (𝑋(𝜁), 𝑌(𝜁)), where 𝜁 ∈ [0,1], and describes pixel position in the image. The force 

controlling the snake is derived from an energy functional: 

The energy functional in (9) contains terms that combine both the internal and external 

energies. The internal energy (𝐸𝑖𝑛𝑡) corresponds to the elastic force of the contour (tension and 

rigidity), described by the first integral in (9) and 𝛼 and 𝛽 control the stretching and bending 

energy of the curve. The external energy (𝐸𝑒𝑥𝑡) is usually based on some image content, 

represented by the second (bottom) integral in (9). 𝐸𝑒𝑥𝑡 is typically defined to be the additive 

inverse of edge strength. For an image 𝐼(𝑥, 𝑦), we can represent the edge strength as the squared 

image gradient magnitude,  

When 𝐸𝑒𝑥𝑡 + 𝐸𝑖𝑛𝑡 is minimized locally, the snake reaches convergence. Figure 5 (a) illustrates an 

example of the snake initialization with a closed parametric curve. Figure 5 (b) presents the final 

segmentation result.  

 

𝐸(𝑋, 𝑌) =
1

2
∫ 𝛼 (|

𝑑𝑋

𝑑𝜁
|

2

+ |
𝑑𝑌

𝑑𝜁
|

2

) + 𝛽 (|
𝑑2𝑋

𝑑𝜁2
|

2

+ |
𝑑2𝑌

𝑑𝜁2
|

2

) 𝑑𝜁 

1

0

 

− ∫ 𝑓[𝑋(𝜁), 𝑌(𝜁)]𝑑𝜁.

1

0

 

(9) 

 
𝑓(𝑥, 𝑦) = |∇𝐼(𝑥, 𝑦)| and   

(10) 

 
𝐸𝑑𝑔𝑒 = 𝑓(𝑥, 𝑦)2.  

(11) 
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3.2.2 33BVector Field Convolution 

In order to improve the capture range of the snake we utilize the vector field convolution (VFC) 

[15] to guide the contour to the appropriate edges. The idea behind VFC is to extend the capture 

range of the snake by convolving a fixed vector field, 𝐤(𝑥, 𝑦), with the edge map, 𝑓(𝑥, 𝑦). This 

convolution results in a field of vectors that locally point to the dominant edges. The VFC kernel 𝐤 

is a tensor with vectors pointing to the center and is defined by  

 𝐤(𝑥, 𝑦) = 𝑚(𝑥, 𝑦)𝐧(𝑥, 𝑦) (12) 

where 𝑚(𝑥, 𝑦) is the magnitude of the vector at (𝑥, 𝑦) and 𝐧(𝑥, 𝑦) is a unit vector pointing to the 

center of the kernel. The kernel 𝐤(𝑥, 𝑦) is isotropic and has a magnitude, 𝑚(𝑥, 𝑦), that 

approaches zero at the periphery of the kernel. This magnitude is controlled via 

 𝑚(𝑥, 𝑦) = (𝑟 + 𝜀)−𝛾 , (13) 

where 𝛾 is a positive parameter that controls the rate of decrease in magnitude (𝛾 = 2 in this 

application), and r is the radial distance with respect to the center of the kernel. 𝜀 is a small 

  

(a) (b) 

Figure 5 – Snake example 
Here, (a) presents the snake initialization marked by the blue circle while the gray object is the object of 
interest and (b) shows the final segmentation of object of interest where blue overlaps the gray object of 
interest. 
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positive constant that prevents division by zero at the origin. The continuous kernel 𝐤 is 

approximated using a discrete kernel 𝐤 with a predefined radius, 𝑅. A discrete kernel example is 

shown in Figure 6 (a). Figure 6 (b) demonstrates the capture range of VFC. The red arrows in the 

figure are pointing to the edges of the targets. We have chosen to use VFC over the commonly 

used generalized gradient vector flow [12] because of the improved and more controllable 

capture range, non-iterative and lower computational complexity, and the better performance of 

VFC in low signal to noise ratio scenarios [15]. 

3.2.3 34BParticle Filter 

A tracker that solely relies on snake segmentation can suffer from target loss when the target 

moves more than half the target length from one frame to the next. For such a tracker to succeed, 

a high frame rate is required. By employing a dynamic model such as the particle filter (PF), the 

tracker will be more robust in lower temporal resolutions and will be able to handle occlusions. 

We also chose the PF over the KF because the PF is robust for a variety of state and observation 

models and it allows pursuing multiple hypotheses of the target state. 

 
 

(a) (b) 

Figure 6 – Vector field convolution (VFC) 
Here we present (a) an example of a discrete approximation of the VFC kernel, 𝐤(𝒙, 𝒚), with a radius of 4 
and (b) an example of the VFC result (kernel from (a)) represented by red arrows; for clearer illustration 
purposes arrows are sampled at four pixels apart  
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The PF is a sequential Monte Carlo numerical state estimation method which utilizes a likelihood 

model and a motion model to predict the subsequent state of the target. Unlike the Kalman filter 

family, which assumes a linear system with white noise, the PF is preferred in non-linear, non-

white systems. The PF state is a nonlinear function of the previous state and the i.i.d. process noise, 𝑈, 

with known PDF is defined as: 

𝑄𝑛 = 𝑔(𝑄𝑛−1, 𝑈𝑛−1). (14) 

The noisy observations,  𝑍𝑛, are related to the measurements via the measurement function: 

𝑍𝑛 = ℎ(𝑄𝑛 , 𝜈𝑛),  (15) 

where 𝜈 is the measurement noise with known PDF. Then, the PF is used to estimate the posterior density 

𝑝(𝑄𝑛|𝑍𝑛−1) by a set number of samples or particles. The PF computes the state estimate based on 

random i.i.d. samples, 𝑠𝑖, drawn from the posterior (or importance) density of the previous state 

and the associated sample weights, 𝜔𝑖. The number of samples or particles, 𝑁𝑠, can vary, but as 

𝑁𝑠 is increased, the PF approaches the optimal Bayesian estimate [4], [28].  

Since the posterior density is unknown, the PF utilizes the particles and the weights to 

determine the posterior density of the current state. The discrete approximation of the posterior 

density at time point 𝑛 is then defined as 

 𝑝(Q𝑛|𝑍1:𝑛) ≈ ∑ 𝜔𝑖
𝑛𝛿(𝑄𝑛 − 𝑠𝑖

𝑛)

𝑁𝑠

𝑖=1

, (16) 

where 𝛿 is the Kronecker delta function and the weights are normalized such that they sum to 

one. Thus a region in the posterior density will result in high density if there are many particles in 

the region and/or the particles have high weights. The actual implementation of (16) takes the 

following form: 
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 𝑝(𝑄𝑛|𝑍1:𝑛) = 𝑐𝑡𝑝(𝑍𝑛|𝑄𝑛) ∑ 𝜔𝑖
𝑛−1

𝑁𝑠

𝑖=1

𝑝(𝑄𝑛|𝑄𝑛−1 = 𝑠𝑖
𝑛−1), (17) 

where 𝑐𝑡 is a normalizing factor. The measurement of the final state can be determined via one of 

the following calculations. First is the minimum mean squared error (MMSE) estimate: 

 𝑄𝑛 = ∑ 𝜔𝑖
𝑛𝑠𝑖

𝑛

𝑁𝑠

𝑖=1

, (18) 

and second is the maximum a posteriori estimate:  

 𝑄𝑛 = 𝑠𝑗
𝑛 where 𝑗 = arg max

𝑗
{𝜔1

𝑛 … 𝜔𝑁𝑠

𝑛 }. (19) 

We choose the MMSE estimate from (18) as our preferred method.  

 An integral component to the success of the PF is the weight measurement. Several 

methods have been used to determine the weights of the particles, such as normalized cross-

correlation [10] (NCC). NCC requires the knowledge of the target template, and if the target 

changes direction or the lighting changes it will impact the success of correctly generating high 

weights for particles on the target and low weights for those not on the target. We propose to use 

the contour from the snake segmentation to evaluate the optical flow for each particle for the 

calculation of each weight. 

 Lastly, PF suffers from a degeneracy problem. This problem occurs when after several 

iterations the weights of many particles become negligible. Consequently, we would like to 

remove particles with small weight and focus on those with large weight. In order to deal with this 

degeneracy phenomenon we employ the resampling scheme introduced in [29]. The method in 

[29] starts with a cumulative density function (CDF) of the weights. A starting point is drawn from 
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a uniform distribution 𝕌[0, 𝑁𝑠
−1]. Then we move along the CDF and find a point that is lower than 

the starting point and assign it a higher weight. 

3.3 10BCombined Snake PF (SPF) 

The snake PF (SPF) algorithm commences by automatically initializing the moving targets, 𝑄[0], as 

described in the initialization section. Following the initialization we also generate contours for 

each target using the active contour in the first frame. Consequently, we use the location and the 

contour to initialize the snake for tracking in the subsequent frame.  

Tracking is achieved by evolving the snake with VFC as an external force to track the 

target for the next two frames. Here we assume that the target size is large enough to allow a 

parametric curve to capture the target and that the approximate target size is known, which 

allows for snake initialization to capture the entire target. Below, Figure 7 (a) presents an example 

of the snake tracking results. Since the snake has a higher computational complexity and requires 

higher temporal resolution, we switch to the efficient PF for the remainder of a track. Switching to 

the PF permits us to track targets in lower temporal resolution if necessary. Further, the PF allows 

the tracking and investigation of a multitude of hypotheses regarding the target, whereas the 

snake accommodates only one target state at a given instant. The snake results from the first 

three frames, which establishes the motion model. The motion model is then used to continue 

the tracking with the PF and is updated in each frame.  

While using the PF tracker, we adhere to the following procedures. Let the state be 

represented by the x-y position in the image: 

 𝑄𝑛 = [
𝑥[𝑛]
𝑦[𝑛]

]. (20) 

We generate particles that represent hypothetical positions of the target, �̂�[𝑛]. Here a Gaussian 

distribution is used to draw randomly-distributed samples in our first step of the tracker. Since the 
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motion of the target is established from the first three frames, it is incorporated into the PF 

model. We further utilize the snake result which produces the target contour to generate the 

weights for each particle. The weight is established by investigating the summed optical flow 

magnitude value for the area under the contour for a given particle. Let 𝑐𝑖
𝑛be the contour that 

corresponds to particle 𝑠𝑖
𝑛. Then, the weight is computed by way of a discrete-space approximation of 

 𝜔𝑖
𝑛 = ∮ |∇𝐼|𝑑𝑐𝑖

𝑛

𝑐𝑖
𝑛

. (21) 

The final estimate of the state (target’s location) is then determined by evaluating each 

particle based on the associated weight - finding the weighted average of the particle locations 

and their associated weights. Furthermore, the shape of the contour is also adjusted every 10 

frames to account for any shape changes of the target. 

3.4 11BData Sets 

We applied the SPF algorithm to track 28 targets that were acquired from a video camera 

mounted on a 30 story building located on Peachtree Street, Atlanta, GA. This is a stationary 

dataset with five and ten frames per second, taken at various locations along the street [30]. We 

also investigated the tracker on data that was captured in Yuma, AZ using an array of 2048X2048 

pixel frames, with ground-sampling distance of 10 cm and visible cameras operating at 1 frame 

per second. The array was mounted on a rotary wing aircraft hovering 5000 feet directly above 

the field of regard. The sensors were aligned in a spiral pattern with 10% overlap in each FOV. The 

algorithm was only applied to the output selected FOV and seven targets were tracked with semi-

manual registration.  
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Root mean squared error (RMSE) was used to evaluate the SPF algorithm. We measure 

the RMSE in sequences where the true target locations are not known. Consequently, the error 

measurement is based on the comparison with manually determined locations of the targets 

throughout the video sequence. We evaluated our SPF algorithm and compared it to the PF 

 

 

(a) First three frames SPF track result marked 
with green circles. 

(b) tracked target in a cluttered environment 

 

 

(c) – tracking result for a turning and parking vehicle 
 

 

(d) An example of SPF tracking results, each target is marked with corresponding colored circles. 
Figure 7 – SPF tracking results 

The results first present (a) an example of the first three frames determined using the snake and 
followed by (b-d) examples of tracking results in 4 varying video sequences.  
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results in the given video sequences where the error is based on the manual tracking. 

3.5 12BSPF Results 

We first report the results for the SPF algorithm for the Atlanta dataset. Each target is 

approximately 30x10 pixels in size. Figure 7 (a) demonstrates the SPF tracking results for the first 

three frames. Figure 7 (b) provides an example of a single target tracked in a cluttered 

environment, while Figure 7 (c) illustrates the tracking result for a turning and parking vehicle. 

Furthermore, Figure 7 (d) demonstrates the tracking results for four targets in a 30 frame video 

sequence. Figure 8 (a) demonstrates another example of a tracked target in the Atlanta dataset, 

(a) 

 

(b) 

 

Figure 8 – Example of tracked targets 
In this figure (a) presents another example from a result from the Atlanta dataset and (b) an 
example from a registered sequence from the Yuma, AZ data captured from a rotary wing 
aircraft. The paths the vehicles traveled are marked by the green lines. 
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while Figure 8 (b) illustrates tracking results in the Yuma dataset. 

We compare the performance of the SPF tracker to a PF result with normalized cross 

correlation weighting. The SPF and the PF results are produced in Figure 9 comparing the trackers 

in the horizontal and vertical directions. In most cases the target movement is in the horizontal 

direction. We sought to investigate the difference in the trackers with the movement of the 

targets where there was not significant change in movement. The results demonstrate the 

superior performance of the SPF tracker compared to the PF. For the Atlanta data, the SPF tracker 

has on average an RMSE error of 7.0 pixels in the horizontal direction and 3.5 in the vertical, while 

the PF tracker has errors of 40.0 and 10.0 pixels, horizontally and vertically, respectively. The PF 

suffers from a dependence on image intensities and loses the target when there is clutter in the 

image. It performs poorly if the target nears another target or when the target passes close to a 

stationary object. It can be seen that the SPF method outperforms the PF.  

The SPF algorithm was also used to track seven targets from the Yuma, AZ dataset, where 

the targets are approximately 20x10 pixels in size. In the Yuma, AZ (multi-camera) data set, the 

mean RMSE in the horizontal direction was 4.5 pixels and 4.0 pixels in the vertical direction. 

Figure 8 (b) provides an example of a target tracked in the Yuma, AZ dataset. Figure 10 illustrates 

the RMSE results for the seven targets from the Yuma, AZ dataset. RMSE was measured in both 

the horizontal and vertical directions. It can be noted that overall the RMSE was less than 10 

pixels.  

We used a Windows 7 64-bit home edition PC, with Intel® Pentium® P6100 dual core 

processor, with 3GB RAM. The execution time is on average 1.5 seconds for initialization, where 

calculating the frame median takes half of the total time of 0.7 seconds. Snake evolution for a 

30x10 pixel target requires 0.1 seconds on average per target per frame and computation of 100 

particles per target per frame entails approximately 1.5 seconds.  
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Figure 9 – Tracking RMSE results, where Ns = 100   
These results illustrate the RMSE in the more common direction of movement (horizontal) and 
the vertical direction. It can be seen from the results that overall the SPF tracker outperforms the 
traditional particle filter in both directions. Furthermore, it can be observed that in the direction 
of the target’s movement, the PF has a higher rate of error.  
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The success of the SPF algorithm requires the targets to overlap from frame to frame. If 

the target of interest moves more than one target size away in the next frame, the snake will not 

be able to capture the target. Additionally, the SPF algorithm utilized the expectation that image 

sequences of interest are either captured with a stationary camera or have been registered. While 

there is a significant amount of data from stationary cameras, persistent surveillance is often 

acquired from aircrafts, resulting in unregistered and jittery imagery. There exist many 

registration algorithms [31], but registration introduces another layer of complexity. In addition to 

increasing the overall processing time and complexity, registration tries to align all frames via a 

variety of transformations. These transformations introduce changes to the image that might 

augment the true target from frame to frame. Furthermore, poor registration will cause the SPF 

and other algorithms relying on registration to fail due to lack of a clear background image. 

 

Figure 10 – Yuma, AZ SPF tracking RMSE  
For these results we employed 100 samples (Ns). This figure illustrates results for seven targets with 
RMSE recorded in horizontal and vertical directions. The main motion of the targets was in the 
horizontal direction. The maximum error in the horizontal direction is less than the width or length 
of the target where the target size averages 15 pixels wide and 50 pixels in length.  
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3.6 13BConclusion  

Here we presented a novel tracker for video surveillance applications. This SPF tracker unites the 

snake and the PF. The snake is used to establish the motion model and to determine particle 

weights, while the PF is employed to handle non-linear, non-Gaussian systems. A low RMSE 

between the results of SPF and manual tracked targets was 7 pixels in horizontal and 3.5 pixels in 

vertical directions. As future work, SPF can be extended to include automatic monitoring for 

incoming targets, and the characterization of target-to-target interaction. 

 This chapter addressed tracking in registered video or video collected from stationary 

cameras. We next introduce a new tracking methodology for tracking in unregistered video 

sequences. Chapter 4 addresses detection and tracking in unregistered images. 
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Specific Aim 1: To develop an automated tracking algorithm for a single moving target in 

surveillance video sequences by fusing a particle filter with the active contour.  

This chapter has addressed the development of an automated tracking algorithm for a 

single moving target in surveillance video. The algorithm, the snake particle filter (SPF), utilizes 

both the active contour and the particle filter to achieve tracking. SPF employs the active contours 

to establish the weight for each particle in the PF. We have demonstrated the tracking results 

using our SPF methodology in two datasets. We have shown here that our algorithm outperforms 

the PF where weights are defined by NCC. The SPF algorithm has been published in [32]. 
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CHAPTER 4. 

3BTARGET TRACKING VIA MORPHOLOGICAL SCALE-SPACE 

TRACKERS  

Our first aim of tracking registered images was addressed in Chapter 3. Chapter 3 employed the 

background for target detection and tracking. Additionally, the stationary nature of the video 

camera in Chapter 3 allowed us to establish a motion model, which was incorporated into the 

particle filter. This chapter tackles a more complex problem – the tracking of targets in a non-

registered video sequence, which is addressed in our second aim.  

While registration has been a topic of great interest in the image analysis community, 

video registration is a time consuming process. As spatial and temporal resolutions of the video 

sequences increase, the computational overhead of registration grows. Moreover, registration 

still suffers from inaccurate frame alignments and other inaccuracies, such as drift. Drift can cause 

a tracking method which utilizes motion models to misrepresent target motion resulting in a 

flawed predicted target location. To address this concern, some methods attempt to provide an 

accuracy measure. With automated methods, however, it is challenging to distinguish between 

registration errors and actual changes that occur from one frame to the next [31]. Consequently, 

methods which rely on video registration will fail to track the targets of interest in poorly 

registered or unregistered video sequences.  

Additionally, this work is not just used to address tracking in unregistered sequences, but 

in sequences with large displacement due to jitter. The movement caused by inter-frame jitter 

combined with that of the target, may be multiples of the target in size. For example, the Yuma, 

AZ data we introduced in Chapter 3, when unregistered, illustrates this image sequence behavior. 

In these imaging sequences, the target can move as far as 600 pixels in each direction (total 
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distance of more than 700 pixels) from one frame to the next. This location change includes 

camera movement as well as the movement of the target. From registering these video 

sequences we found that of the 700 pixels, approximately 100 pixels is the actual distance of 

travel and the rest is camera movement. Towards resolving this obstacle, we employ methods 

which try to mimic human detection and recognition of objects in a given scene.  

The algorithm presented here assumes that we have unregistered data sequences with at 

least 150 pixels per target and that there is some contrast between the background and the 

target. The spatial resolution must be known to the algorithm as well as the size of the targets of 

interest. We further assume that if the target leaves the FOV it must re-enter within the next two 

consecutive frames, otherwise the track for that target will be terminated. No assumptions are 

made regarding the motion of the target or the background.  

In David Marr’s Vision, the author describes vision from the perspective of neuroscience, 

as a task of information processing [33]. Furthermore, it has been shown that one can observe 

that objects in the real-world have structures of varying scales [34]. Thus, one way to tackle 

information processing from an image is to decompose it to several scales – often referred to as 

‘scale-space.’ In a nutshell, a scale-space is a collection of signals representing the same scene, 

which vary from fine to coarse. Significant attention in the object recognition and target tracking 

communities has been paid to the subject of scale-space  

A scale-space is typically created by a scale generating filter. The most widely used filter 

for scale generation is the Gaussian filter. The Gaussian has been applied in the scale invariant 

feature transform (SIFT) algorithm [35]. In [36], Zhou et al. utilize SIFT and Mean Shift algorithms 

to track targets from stationary cameras where targets occupy a large number of pixels in the 

frame. This tracker uses a pre-defined area of interest to track and incorporate the color 

histogram into the descriptor for tracking. Furthermore, the tracker assumes the camera is 
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stationary because it uses the location from the previous frame to conduct the search for 

matching key-points in the current frame. The authors demonstrate a successful tracker, which 

encouraged us to investigate SIFT as a target tracker in unregistered video sequences with low 

spatial resolution per target. We seek to track specific targets in each frame and understand each 

target’s unique movement as it changes through time. Towards this end we introduce the 

automated SIFT tracker (ASIFT2).  

This chapter commences by introducing the dataset which is used for the purpose of this 

work. We then describe the high-level theory of SIFT and how it is incorporated into the ASIFT2. 

We then introduce a new scale-space paradigm, built around a connected filter with several 

attractive properties. Following, we discuss our approach to detection and tracking using the 

connected component scale-space, provide tracking results, and discussion. Lastly, we investigate 

incorporating SIFT features into the connected component scale-space tracker and compare and 

contrast the tracking results with the individual methods.  

4.1 14BVideo Sequences of Interest 

Tracking is conducted on datasets captured using an array of 16 2048X2048 pixel sensors, with 

ground-sampling distance of 10 cm and visible cameras operating at 1 frame per second. The 

array was mounted on a rotary wing aircraft hovering 5000 feet directly above the field of regard. 

The sensors were aligned in a spiral pattern with 10% overlap in each FOV. The results for 

algorithms presented here and in Chapter 5 were only applied to the output of a single camera at 

a time. 

4.2 15BInvariant Feature Transform 

Much work has been carried out on methods to extract image features that allow for matching 

similar objects in separate images. The Harris corner detector [37] has been applied to establish 
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features that can be compared in several images to find a match. The authors in [38] first found 

the corners in the image and then correlated a window around the edges to find likely matches. 

As research in this area progressed, researchers noticed that the Harris corner detector is 

sensitive to size and therefore two images of slightly different sizes might not match using this 

method. Belongie et al. [39] introduced shape descriptors that describe every point of the shape 

relative to all other points. Two descriptors are then compared to find the similarities between 

the two shapes. This method is based on the boundaries of the image rather than the intensities 

of the image, thus requiring an extra step of boundary extraction before the matching can be 

done. Consequently, poor boundary detection will lead to poor performance of this method.  

Koenderink observed in [40] that a Gaussian kernel provides a tool to derive a one-

parameter family of images from a single image. Koenderink introduced a scale-space using the 

Gaussian kernel as a foundation of extracting features that are not sensitive to noise, changes in 

illumination, scaling, rotation, or small changes in view point. This scale-space idea was the 

foundation of the method developed by Lowe [35] - the scale invariant feature transform (SIFT). 

SIFT provides a framework for establishing highly distinctive features. These features can be 

matched with high probability against a large dataset of features. 

4.2.1 35BScale Invariant Feature Transform (SIFT) 

This section describes the high-level formulation of SIFT. (Readers can explore the complete 

theory and development steps of SIFT in [35].) The foundation of SIFT is scale-space, where scale-

space is a set of grouped collections of Gaussian smoothed images and differences of Gaussians 

(DoGs). The DoGs are determined from differencing the image which was filtered by the two-

dimensional Gaussian filter with varying standard deviations. Thus, the algorithm commences by 

creating a set of Gaussian filtered images, 𝐿(𝑥, 𝑦, 𝜆𝑖𝜎):  
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 𝐿(𝑥, 𝑦, 𝜆𝑖𝜎) = 𝐺(𝑥, 𝑦, 𝜆𝑖𝜎) ∗ 𝐼(𝑥, 𝑦). (22) 

Here, an image,  𝐼(𝑥, 𝑦), is convolved with a Gaussian point spread function, 𝐺(𝑥, 𝑦, 𝜆𝑖𝜎), for a 

given standard deviation, 𝜎, and a varying scale factor, 𝜆, where  

 𝜆𝑖 = 21/𝑖, 𝑤ℎ𝑒𝑟𝑒 𝑖 = {1, 2, 3. . . 𝑁𝑖}, and (23) 

𝑁𝑖  is the total number of scales in an octave. Also, the two-dimensional Gaussian is 

 𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2
𝑒−(𝑥2+𝑦2)/2𝜎2

. (24) 

Note that the standard deviation is the same for both x and y. 

The next step is to generate the DoGs, 𝐷(𝑥, 𝑦, 𝜆𝑖𝜎). Since the size of the Gaussian 

variance or kernel is directly related to spatial resolution, as we vary 𝜆𝑖, 𝜆𝑖𝜎 becomes the measure 

of spatial scale in the smoothed signal at scale 𝜆𝑖𝜎 [41]. Note that this scale is relative, in the 

sense that increasing values of 𝜆𝑖𝜎 will be increasingly coarser in scale. However, this 

quantification of scale does not provide a direct threshold on scale. For example, one cannot 

eliminate objects below a certain area or radius by specifying 𝜆𝑖𝜎. 

 𝐷(𝑥, 𝑦, 𝜆𝑖𝜎) = 𝐿(𝑥, 𝑦, 𝜆𝑖𝜎) − 𝐿(𝑥, 𝑦, 𝜆𝑖−1𝜎). (25) 

Here we start generating DoGs from the second smoothed image in the stack, 𝐿(𝑥, 𝑦, 𝜆2𝜎). The 

DoGs are then collected into octaves, where each octave doubles the standard deviation. The first 

octave is at the original spatial resolution; the next one is downsampled by two and so on. We 

found that two octaves were sufficient in our application because with increased blurring and 

downsampling the targets blend in with the background, as we discuss later in this chapter. The 

scale-space of two octaves and four DoGs is illustrated in Figure 11. We can observe that as 𝜆 

increases, the Gaussian kernel increases, resulting in increasing smoothing of the image. 

Furthermore, as we downsample the octaves, the smoothing also increases, since the smaller 

features now become smaller in scale relative to the Gaussian kernel. 
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The next step is to find the features, also termed key-points, in this scale-space. Detection 

of key-points is accomplished by locating the minima and maxima in a 27-pixel region in the scale-

space. That is, every pixel in each scale is compared to its 8 neighbors in the same scale and the 9 

neighbors in the scale above and below, as demonstrated in Figure 12. This process generates a 

large number of points, and to make the features less sensitive to changes in the image, some 

key-points must be removed. Consequently, in order to eliminate unstable points, points with bad 

contrast and points that lay on edges in the image are eliminated.  

At this point in the algorithm, the process of generating a descriptor for each key-point 

can commence. Towards this end we explore the gradient of the scale-space. For every scale we 

  

           𝐿(𝑥, 𝑦, 𝜆𝜎)  𝐷(𝑥, 𝑦, 𝜆𝜎) 

Figure 11 – Two octaves of scale-space and difference of Gaussians (DoG)  
The stacks on the left illustrate the blurred images by a Gaussian, while the stacks of images on 
the right illustrate the DoGs as the adjacent sets of blurred images are subtracted. Additionally, 
the two smaller stacks on top are the downsampled versions of the images.  
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determine the gradient magnitude, 𝑓𝑔(𝑥, 𝑦), and the orientation, 𝜃𝑔(𝑥, 𝑦), as follows. First we 

find the gradient for a given scale, 𝜆𝑖𝜎 :  

 [𝑔𝑥 ,  𝑔𝑦] = ∇𝐿(𝑥, 𝑦) (26) 

where 𝑔𝑥 ,  𝑔𝑦 are the gradient components in x and y directions, respectively for the closest scale, 

L, to each key-point. Then 

 

𝑓𝑔(𝑥, 𝑦) = √𝑔𝑥
2 + 𝑔𝑦

2 or in discrete form 

𝑓𝑔(𝑥, 𝑦)  =  √(𝐿(𝑥 +  1, 𝑦)  −  𝐿(𝑥 −  1, 𝑦))2  +  (𝐿(𝑥, 𝑦 +  1)  −  𝐿(𝑥, 𝑦 −  1))2 

(27) 

 and  

 

𝜃𝑔(𝑥, 𝑦) = tan−1 (
𝑔𝑦

𝑔𝑥
) or in discrete form 

𝜃𝑔(𝑥, 𝑦) =  tan−1 (
𝐿(𝑥, 𝑦 +  1) −  𝐿(𝑥, 𝑦 −  1)

𝐿(𝑥 +  1, 𝑦) −  𝐿(𝑥 −  1, 𝑦)
). 

(28) 

 

Figure 12 – Visualization of 3-D neighborhood [35]  
In order to calculate the magnitude and orientation of the key-points, the 3 D neighborhood of 
each key-point is used. In this figure the pixel of interest (the key-point) is marked with an X and 
it shows the 8 neighboring pixels from the same scale, 9 from the scale above and 9 from the scale 
below. 
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The resulting magnitude, 𝑓𝑔(𝑥, 𝑦), and the orientation, 𝜃𝑔(𝑥, 𝑦), are used to construct a 

histogram in an 8x8 window around each key-point, with 10 degrees for each bin of the 

histogram, where each orientation sample added is weighted by its magnitude. The maximum bin 

is used to assign the orientation for the given key-point. 

To match key-points in separate images, a region descriptor is needed. This descriptor is a 

collection of histograms associated with the key-point. A 16x16 window around each key-point is 

used for the region descriptor. The orientation associated with the key-point is used to rotate the 

gradient in order to align the window with the y-axis. The rotation is essential to preserve rotation 

invariance. Then the 16x16 pixel window is divided into 16 square sections. For each section an 8 

bin orientation histogram is recorded; the gradient magnitude is normalized to unit length before 

constructing the histogram to remove illumination changes. 

Finally, the matching is achieved by calculating the Euclidean distance between the key-

point region descriptor histograms in our image of interest to all the key-points and their 

 
Figure 13 – Example of matched key points using SIFT with 10∘ rotation   

An example of matching a rotated target (top right corner) and the current frame is illustrated. The 
target has all the key-points noted, while the current frame only shows matching key-points. Note 
that several points from the road (outside of the target) are matched in this case. This example uses 
the higher spatial resolution data from Atlanta, GA. 
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associated histograms in the image being matched. The minimum distance is the chosen matching 

feature. We have to make sure that there is one-to-one correspondence between all points. SIFT 

allows detecting targets in the image even if they have rotated, scaled, or changed illumination. 

Figure 13 shows an example of a SIFT match. In this figure we illustrate an example of taking the 

same target and rotating it by 10 degrees prior to matching. This example shows the key-points 

on the initialized target (top right corner) and their matches on the frame being tracked. Also, it is 

important to note that since SIFT does not distinguish between the target and the background, 

some key-points from the background (the road) are matched as well. This example uses the 

higher resolution data from Atlanta, GA. 

4.2.2 36BAutomated SIFT Tracker (ASIFT2 ) 

In order to utilize SIFT in vehicle tracking we establish the Automated SIFT Tracker 

(ASIFT2) and we followed the subsequent steps. As SIFT does not offer a way to identify targets, 

  
Figure 14 – Example of SIFT key-points in target initialization 

We illustrate a target with 6 SIFT key-points marked in red. This example was created using a target 
mask to only capture key-points on the target and not the background. This example shows the 
lower resolution data from Yuma, AZ. Compared to the earlier figure, this example shows that the 
lower spatial resolution results in much fewer key-points on the target. 
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we used manual initialization or our Morphological Scale-Space Tracker detection as initialization 

(described later in this chapter). The manual initialization step for ASIFT2 requires the target 

location as well as the target size in order to generate SIFT key-points to match to subsequent 

frames. We segment the target of interest from the image by employing the target’s bounding 

box (the largest box that captures the entire target) and extract key-points from the entire box 

which may include key-points falling on the background as SIFT does not discern between target 

and background. Figure 14 illustrates an example of a target with SIFT key-points marked in red. 

In this figure, 6 SIFT key-points are detected. Figure 14 illustrates an example from the lower 

spatial resolution image compared to Figure 13. It can be observed that the lower spatial 

resolution target has fewer key-points, thus fewer matching opportunities for the SIFT tracker.  

The next step in the tracking process is to calculate SIFT key-points for the consequent 

frames. Following the SIFT key-point detection in the following frame, a SIFT matching algorithm, 

as described earlier, is used to match all SIFT key-points in the image and the initialized target. 

Since we are using unregistered images and do not have a prediction of target location, the entire 

image must be analyzed. As a result this process is time consuming especially with high spatial 

resolution. 

Lastly, one or more key-points are matched to determine where in the image the target is 

located. A match of initialized target and a cropped target (the rest of the image is removed for 

matching demonstration purposes only) from the consecutive frame is illustrated in Figure 15. 

Note here that there are 7 matches, but only 5 lines are shown. With SIFT, 2 key-points can 

overlap from different octaves.  

 Since SIFT does not capture the center of the target, the key-points can only provide an 

approximate center. If the key-points are matched covering the target area, the median of the 

points can give a relatively good center of mass estimate; if the points are skewed to one side of 
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the target as in Figure 15, the median is skewed to that side of the target. We have found that in 

some frames only 1 key-point is matched to the target. Furthermore, we chose to employ the 

median and not the mean to eliminate potential bad matches that matched elsewhere in the 

image.  

4.2.3 37BASIFT2 Tracking Results  

We have applied the SIFT tracker to 34 targets with varying numbers of frames for each 

target, including frames where the target is no longer in the field of view. Here, initialization is 

performed manually, although, given a library of SIFT features, the extension to automated 

initialization would be straightforward. The results are tabulated in Table 1. It is important to note 

that during initialization, great care went into capturing key-points on the target and not on the 

background next to the target. Additionally, since the key-points are scattered on the target, we 

utilized the median location for the horizontal and vertical positions and removed outliers 

assuming that most key-points were on the target.  
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The table demonstrates results for ASIFT2 as described above. The table includes the 

targets, number of frames in each sequence of the tracked target, normalized RMSE results as 

compared to ground truth, the probability of detection – what percentage of the frames’ 

detection falls within the area of the target –, and lastly the normalized RMSE of only the targets 

that were tracked correctly. The normalized RMSE is the distance RMSE between the ground truth 

and the detected location, normalized by the target width. The first RMSE reported is for all 

frames including those that the tracking has missed; in the case of a missed target we use the 

previous location of correctly tracked target in the RMSE calculation.  

There are two scenarios when the tracking was missed in the case of SIFT. In one, the 

target was tracked (matched) to a wrong target (or noise) and thus there is detection, but it is 

incorrect (false positive). In the other, the tracker was unable to find the target, but the target 

does exist in the frame (false negative). In this second case, the target location is recorded as zero 

for both x and y. Consequently, the last column, reporting only the RMSE for successfully tracked 

frames, is important because measuring an RMSE value for missed targets does not reflect the 

tracking error correctly. The error of missing a target is captured by the “% Detection of Frames” 

 
Figure 15 – Example of SIFT target matching  

This figure illustrates a matching example of SIFT key-points. On the left is the originally 
initialized target; on the right is the matched target in the second frame. Here the target is 
zoomed in to illustrate the matching. Note that 7 matches were found, while only 6 lines are 
marked because one set of key-points overlap as they come from two distinct octaves. 
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measure. It is important to note that the tracked RMSE is on average about half target size (0.45) 

off the center of the target. This RMSE indicates that the detected location of the target center 

from tracker can be on the edge of the target and in some cases off the target, which is an 

undesirable result.  

While SIFT has demonstrated positive results in matching large objects with a significant 

number of pixels, it often fails in matching smaller targets and thus in tracking our targets of 

interest because of the lack of spatial resolution. Since there are not enough pixels to describe the 

targets, only a few key-points can be used for matching, reducing the accuracy of SIFT. Often, only 

one key-point will be identified on the target. Furthermore, since the key-points are not 

necessarily in the center of the target, and unless provided in manual initialization, we have no a 

priori knowledge of the location boundaries of the target. Therefore, we cannot tell where the 

points are relative to the target. Accordingly, there is no clear way to combine the location of the 

matched key-points to accurately determine the center location of the target. This is especially 

challenging if two points are matched and are further than a target distance apart. One of the 

matched points could be on the target, but there is no way to tell which one is a false-positive 

match.  

Moreover, SIFT results in a large number of key-points in a given image. The author noted 

that “500x500 pixels will give rise to about 2000 stable features [35].” As a result, since the 

motion of the target cannot be approximated and thus the search area cannot be reduced, we 

must search the entire image for matching points. Sophisticated parallel processing must be 

utilized to improve the execution time of this method. 
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Table 1 - ASIFT2 Tracking Results 

Target index Number of 
frames 

Normalized 
RMSE  

% Frames 
tracked 

Tracked 
normalized 

RMSE  

     

1 13 3.63 83% 0.68 

2 12 22.75 45% 0.37 

3 11 3.14 90% 0.65 

4 11 26.97 10% 0.49 

5 8 0.85 100% 0.85 

6 7 0.38 100% 0.38 

7 10 0.36 100% 0.36 

8 12 8.90 55% 0.31 

9 12 1.52 91% 0.50 

10 7 0.31 100% 0.31 

11 6 0.14 100% 0.14 

12 10 0.31 100% 0.31 

13 18 0.80 100% 0.80 

14 18 2.84 94% 0.40 

15 9 0.38 100% 0.38 

16 9 26.44 75% 0.28 

17 9 0.26 100% 0.27 

18 7 0.18 100% 0.18 

19 6 0.21 100% 0.21 

20 9 4.72 75% 0.57 

21 12 6.75 91% 0.33 

22 12 0.62 100% 0.62 

23 8 0.70 100% 0.70 

24 11 0.52 100% 0.52 

25 10 3.54 90% 0.25 

26 10 0.54 100% 0.54 

27 10 0.36 100% 0.36 

28 13 6.12 67% 0.61 

29 8 0.76 100% 0.76 

30 7 0.57 100% 0.57 

31 9 0.64 100% 0.64 

32 6 10.31 88% 0.39 

33 9 0.41 100% 0.41 

34 8 0.24 100% 0.24 

Average  4.03 90% 0.45 
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In addition, drawbacks of SIFT center around its constituent scale generating filter – the 

Gaussian. Using the Gaussian filter to construct the scale-space, we encounter feature drift 

(movement of edges) as the scale becomes coarser [42]. This distortion of edges across scale 

aggravates the correspondence problem (tracking features from fine to coarse), especially with 

poorer spatial resolution. The distortion also leads to ambiguity in the description of the target 

and to blurring and merging of the target with the background. Furthermore, as noted earlier, the 

Gaussian filter in SIFT uses a spatial scale parameter, 𝜆𝜎, that specifies the standard deviation of 

  

(a) (b) 

 

 

(c) 

Figure 16 – SIFT scale-space example 
The figure illustrates (a) the original image, (b) an example of scale-space level four in octave one, 
and (c) an example of scale-space level four in octave two. It is important to note the small objects 
in the image start to merge with the background, while the sharp edges of the larger objects 
become blurry. Thus it is hard to establish where the object ends and the background begins.  
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the kernel applied. This parameter does not directly specify the area or width and length of 

features that are eliminated by applying a larger scale version of the filter. So, another concern 

with the Gaussian scale-space is the inability to directly specify the scale of features that are 

eliminated in a coarse version of the signal. Figure 16 illustrates an example where image details 

can be blurred by the kernel and even merge with the surrounding objects. Note the small 

rectangle in the top left corner adjacent to another shape. This small rectangle connects to 

another shape in the image in the second octave at a courser scale. 

As noted earlier, SIFT has been successfully employed as a tracker of entire frame tracking 

as well as in initial attempts at tracking large objects from stationary cameras [36]. ASIFT2, on the 

other hand, is a novel approach for employing the SIFT algorithm for tracking small targets in 

unregistered video with low spatial resolution in large frames.  

Whereas in ASIFT2 we can utilize the SIFT algorithm to track targets from frame to frame, 

we cannot use it to detect targets in the initial frame. Since SIFT seeks to match sets of key-points 

without having to know to which objects the key-points belong, when employing SIFT for object 

tracking we must rely on the key-point description of the target in advance. Thus, the ASIFT2 

algorithm and other algorithms that may utilize SIFT for specific target tracking require a preset 

table of targets of interest, manual initialization, or exploitation of another initialization 

algorithm.  

One way we could proceed would be to pre-process all the targets and record all objects 

and their associated key-points and descriptors. If such information is known, a database of 

features can be generated. Still, it is most likely that the user does not have all the possible 

targets of interest cataloged in a database. Such collection will require a considerable amount of 

time and resources. To address the shortcomings of tracking with SIFT, we present our novel 

algorithm, Morphological Scale-Space Tracker (MS2T). MS2T is developed by incorporating 
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connected components. It tackles the aforementioned shortcomings of SIFT, while allowing the 

detection of targets in unregistered video sequences.  

4.3 16BConnected Components 

Employing image analysis at the pixel level can be restrictive due to the large number of pixels in 

an average image. Using connected components introduces an abstraction with a lower number 

of regions of interest and, to the contrary, does not require the utilization of all the pixels. The 

MS2T employs a novel connected filter approach described below, which takes the same basic 

ideology of SIFT – both approaches use a scale-space to recognize invariant features that can be 

identified in various scales, viewpoints, and illumination. Both approaches find these features by 

differencing successive layers of the scale-space. Finally, both approaches allow correspondence 

(matching) of these features to achieve tracking. 

4.3.4 38BMorphological Scale-Space Tracker and the Connected Filter  

Given a binary image, a connected filter operates by keeping or removing connected components 

(connected blocks of ones or zeroes), where connectivity is defined by four-connected or eight-

connected pixels. In a grayscale image, a connected filter operates on each gray level resulting in 

a stack of binary images, one for each grayscale level. Connected filters play a vital role in image 

analysis because they allow for adequate contour preservation.  

In morphological operators, such as open and close, a structuring element is required to 

perform the operation. Using a structuring element introduces a drawback because the shape of 

the structuring element can introduce distortion to the image. The use of connected filters in area 

morphology removes the reliance on proper selection of the structuring element. Connected 

operators also do not introduce artifacts to the output such as new structure.  
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In order to extract targets of interest we employ the connected filter (area open) method 

for bright targets. Conversely, area close can be employed for dark targets. We employ the area 

open method on a grayscale image, 𝐼. The grayscale image is decomposed into a number of binary 

(thresholded) image representations called level sets. Each level set is thresholded based on a 

given area size; connected components for the given area are then retained or deleted based on 

the threshold. This is done by using the number of connected pixels to the current pixel; in two-

dimensional images, and as noted above, there may be either of four or eight-connected pixels. 

Finally, the level sets are collected into one resulting image. 

Our method, the Morphological Scale-Space Tracker (MS2T), utilizes morphological scale-

space to track. To generate the scale-space the area open method is applied to retain bright 

objects that have an area greater than a specified minimum area,  𝐼𝑜1, thus removing small 

undesirable objects such as noise. This area is determined to be less than the area of our target of 

interest, e.g. vehicles. The bright objects that are slightly larger than the target of interest, 𝐼𝑜2, are 

also retained. Consequently, we are able to retain the objects of interest by differencing:  

 𝐷𝐹 = 𝐼𝑜1 − 𝐼𝑜2. (29) 

By subtracting the smaller than target size objects we detect the objects of interest. The next step 

 
 

Figure 17 –Example of a morphological scale-space   
A target of interest is cropped from an image to illustrate a four level morphological scale-space along 
with some debris next to the target. 
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is to generate the scale-space as shown in Figure 17. As with SIFT, this is achieved by selecting 

specific difference magnitude values and generating a scale-space 𝑛𝐼(𝑥, 𝑦, 𝜆). 

  𝑛𝐼(𝑥, 𝑦, 𝜆) = {
0, 𝐷𝐹 < 𝜊𝜆
1, 𝐷𝐹 ≥ 𝜊𝜆

  , (30) 

where 𝜊 is a constant scalar. Each object in the image thus results in a three-dimensional 

structure. So, (30) invokes a lower bound (threshold) on the difference values. Figure 17 

illustrates an example of four levels of the generated scale-space from an image subsection. Here 

the target is the largest structure, with several other structures (debris) around it. We will later 

discuss how we distinguish between the targets and the debris. 

With the aim of target tracking we must be able to describe the target in each frame and 

associate it correctly through time. Towards this end, we utilize the difference to first generate a 

  

  

Figure 18 - One level of the MS2T 
Four selected frames from a video sequence with all objects marked with a number are illustrated. 
The objects are extracted from one scale of the morphological scale-space. Note that the numbers 
marking each object do not track corresponding objects from frame to frame, but rather enumerate 
all the objects in each individual frame.   
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scale-space of each frame in a sequence. Employing connected-component filtering presents us 

with a foundation to apply tracking techniques exclusively to the structures of interest, and not 

the entire image. An example of such structures is presented in Figure 18. This figure illustrates 

four selected frames with components marked with numbers. Note that the numbers are merely 

used to illustrate each distinct object and not to match objects from one frame to the next. Figure 

19 illustrates a target which was extracted and cropped from nine consecutive frames, illustrating 

the first scale (finest scale) in the scale-space.  

It is important to note that traditional connected component implementation is slow and 

increases program execution time significantly. Towards overcoming these stumbling blocks, we 

have employed the region-based representation of the image called Max-Tree. The nodes of the 

Max-Tree describe the binary connected components which are generated by thresholding the 

                 
Figure 19 – Example of a target extracted from nine consecutive frames. 

The target is illustrated in only one scale from the scale-space as it moves from frame to frame. It can 
be observed that while the target undergoes rotation change, the change in shape is minor.  



 

Automated Tracking and Analysis of Aerial Surveillance Data 54 
 

 

original gray-scale image at all possible gray-level values. Since the tree is based on the gray-scale 

values, the leaves of the tree refer to the image maxima, while the root of the tree refers to the 

lowest gray scale level. Furthermore, the flat zones may be merged by following the links 

between the nodes. These relationships can be used to combine nodes based on a given criteria, 

such as flat-zone size [43]. 

The Max-Tree is only generated once per frame and then the processing is done on the 

Max-Tree in our MS2T algorithm. A simple example of a Max-Tree is demonstrated in Figure 20. 

Figure 20 shows an image with only three gray-scale values and the associated tree formation as 

the tree is built. Once we have established the structures in each frame using the Max-Tree 

algorithm, we can describe each target with unique attributes or features. The following section 

describes these features. 
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First gray-level First, the root, node {A}, is the lowest gray-level 

 

 

Second gray-level The children of {A} are the two shapes inside {A} 

 
 

Last gray-level At the next level in the tree, {B} and {D} have split 

Figure 20 – Example of a three gray-level image with associated Max-Tree.  
The development of the Max-Tree algorithm is illustrated. The algorithm starts with lowest gray-
level value of 0 and region A, thus the root of the tree; it then processes the rest of the gray-levels 
growing the tree by adding each consecutive gray scale until all the gray levels have been added to 
the tree resulting in the tree illustrated in the lower right cell. 
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4.3.5 39BMorphological Scale-Space Connected Components Features 

It is vital to describe each three-dimensional structure in the scale-space with unique features to 

allow for feature matching in MS2T. Each target has associated features: volume, number of scales 

where the object is none-zero, orientation, 3D- shape, eccentricity, gray-value histogram, and a 

neighborhood histogram. The volume is given by 

  𝑂𝑣
𝜅 =  ∑ ∑ ∑ 𝐵𝑖,𝑗,𝑙

𝑘
Λ

𝑙=1

𝑀

𝑗=1
.

𝑁

𝑖=1
 (31) 

Here 𝑂 denotes the parameter for each structure in the image, where the subscript (e.g. 𝑣 for 

volume) specifies the parameter type and 𝜅 is the structure index. 𝐵 indicates the 3D structure 

and N and M are the number of pixels in width and length, while Λ is the height or the number of 

scales in the MS2T’s scale-space. We determine the orientation as  

  𝑂𝑜𝑟
𝜅 =  

1

Λ
∑ 𝜃𝑙

𝑘
Λ

𝑙=1
. (32) 

𝜃𝑙 is the orientation of the structure from the horizontal axis to the center line of the target as 

shown in Figure 21(a) for each scale. In order to determine the eccentricity of each object, first an 

ellipse is fit to the filled object. A filled object has the same outline as the original object, but any 

holes or concavities are filled. Then, the major axis, ℵ, and minor axis, ℶ, are estimated, as noted 

in the example in Figure 21(b). Consequently, the eccentricity of the object is defined as:  

  𝑂𝑒𝑐
𝜅 =  

1

𝐿
∑ √1 −

(ℶ𝑙
𝑘)2

(ℵ𝑙
𝑘)2

.
𝐿

𝑙=1
 (33) 

One can notice that if the structure closely resembles a circle the eccentricity will be 

approximately zero, while if it resembles a flat line, eccentricity will approach one. We can utilize 

this information to preserve or remove shapes of interest. 



 

Automated Tracking and Analysis of Aerial Surveillance Data 57 
 

 

 The next parameter is the intensity histogram, 𝑂𝑖ℎ
𝜅 , of the target. In order to calculate the 

intensity histogram, we employ the top scale of the scale-space. Using the top scale allows us to 

isolate the pixels of the target from its surrounding. The histogram is then generated with 52 bins 

for 0-255 gray-scale images. We then normalize the histogram to allow for matching as described 

in the next section. The last feature we utilize in our method is the neighborhood histogram.  

The neighborhood histogram, 𝑂𝑛ℎ
𝜅 , is designed to compensate for lack of registration in 

the image. The histogram is based on the large background structures in the image. The 

neighborhood histogram is a unique way of describing the position of the target with respect to 

large structures in the image. Furthermore, it eliminates potential matches of similar targets that 

are located in different points in the image relative to the large stationary structures.  

 

 
 

(a) object orientation (b) object major and minor axes 

Figure 21 –Illustration to guide feature description 
Where (a) illustrates how object orientation is determined, from the x-axis to the major axis of the 

object marked by 𝜃𝑙, and (b) notes how we establish the major and minor axes marked by ℵ and ℶ, 
respectively. 
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The same process of identifying the connected components of targets is used to identify 

large structures in the image. Those structures are assumed to correspond to stationary 

structures, as their size is ten or more times that of the largest targets (semi-trailer truck for 

example). This allows us to determine the neighborhood of the target in each frame. The 

 
 

(a)  (b) 

 

 

Angle  

(c)  

Figure 22 - Neighborhood histogram illustration 
Here, (a) illustrates the target (car) of interest in the center and the bin distribution is marked 
by red lines with log-polar distance from the target, (b) illustrates three structures around a 
given target from a real image and radii to each pixel from the target in the center and (c) is the 
resulting 2D histogram, where the x-axis is the angle and y-axis is the radius from the center of 
the target to each pixel in the structures, and the cooler colors indicate lower bin values and 
hotter colors indicate higher bin values. 
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neighborhood histogram is then generated based on the method proposed by Belongie and Malik 

to match shapes [44]. While the authors used the histogram to describe and then match shapes, 

we use it to describe the neighborhood. Figure 22 (a) illustrates the way the histogram bins are 

defined – based on the log-polar distance from the target. The angles around the target are 

equally divided into six bins while the bins for the distance or radius from the target grow 

logarithmically. The values in each bin are assigned based on the number of pixels that each 

structure contributes to that bin. Figure 22 (b) shows an example of three large structures 

(buildings) and the radii to each pixel in the structure. These radii are then used to generate the 

two-dimensional histogram as demonstrated in Figure 22 (c), where dark blue (cold colors) 

demonstrates bins with few points and red (hot colors) demonstrates bins with a large number of 

points.  

 Now that we have defined unique features for each object, we can use these features to 

not only track the objects and/or targets, but also to detect targets in each frame. This process is 

described in the following section. 

4.3.6 40BTarget Detection Using the Morphological Scale-Space 

Target detection is a vital step in target tracking. Automatic target detection allows for 

removing human interaction by identifying new targets entering the FOV. Common detection 

methods are based on stationary cameras or registered video sequences. An unchanging 

background permits the algorithm to determine what in the frame is approximately constant and 

what is changing. Thus by establishing the background, moving targets are detected, which is also 

known as temporal differencing [45, 46]. A related method was used in our methodology to 

achieve detection in Aim 1 of this dissertation. Due to lack of registration in our sequences, we do 

not have the background image. Thus we cannot detect targets by background subtraction, and 
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therefore must establish a new method for target detection. We utilize the connected component 

scale-space to do just that.  

Since we know that our targets are vehicles, it allows us to identify shapes in the scale-

space that are elliptical in nature. Furthermore, we can eliminate shapes that are approximately 

linear, which most often are lines from road markings. Thus, we utilize the eccentricity 

measurement, 𝑂𝑒𝑐
𝜅 ,, and constrain it to high values to indicate more elliptical shapes. Also, 

knowing the approximate spatial resolution for each video sequence, we can retain the structures 

that are approximately the target size. This is achieved using our volume measurement, 𝑂𝑣
𝜅. 

Our detection method is applied to all frames in the multi-camera sequences from Yuma, 

AZ and our results are presented in Table 2. The table reports the normalized RMSE values for 

targets of interest as compared to ground truth. It is important to note that the RMSE results do 

not capture false detections. Hence, we note the number of missed detections separately, while 

not penalizing the RMSE for missed detections. This is to avoid arbitrarily setting values for missed 

detection locations in calculating the RMSE as noted in the discussion of Table 1. Overall, the 

normalized RMSE on average was 0.305 of target width with two frames total of missed targets 

among the 34 sequences. 
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Table 2 – MS2T Detection Results 

Target 
index 

Number 
of 

frames 

Detection 
normalized 

RMSE 

# of 
frames 
Missed  

Target 
index 

Number 
of 

frames 

Detection 
normalized 

RMSE 

# of 
frames 
missed  

                

1 13 0.069 1 18 7 0.297 0 

2 12 0.239 0 19 6 0.125 0 

3 11 0.195 0 20 9 0.165 0 

4 11 0.194 0 21 12 0.138 0 

5 8 0.157 0 22 12 0.141 0 

6 7 0.132 0 23 8 0.790 0 

7 10 0.100 0 24 11 0.233 0 

8 12 0.143 0 25 10 0.268 1 

9 12 0.163 0 26 10 0.374 0 

10 7 0.142 0 27 10 0.189 0 

11 6 0.311 0 28 13 0.130 0 

12 10 0.265 0 29 8 0.345 0 

13 18 0.257 0 30 7 0.328 0 

14 18 0.578 0 31 9 0.218 0 

15 9 1.512 0 32 6 0.171 0 

16 9 0.733 0 33 9 0.394 0 

17 9 0.207 0 34 8 0.668 0 

 

In order to address the missed detections, we provide an example of a sequence where 

probability of detection (PD) or true positive rate and false alarm rate (FAR) or false positive rate 

are recorded. PD is defined as the number of correctly detected targets in a frame over the total 

number of actual targets:  

  𝑃𝐷 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (34) 

In (34), TP, true positive, is defined as the number of targets that were correctly detected by our 

method or a given one and FN, false negative, is defined as the number of targets that were not 

detected by our method or a given one. FAR is the number of wrongly detected targets in a frame. 

FAR is defined as: 
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  𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
. (35) 

In (35), FP, false positive, is defined as the number of detections that were wrongly assigned; in 

other words, when our method detected a target that was not present. TN, true negative, is 

defined as the target candidate that was correctly assigned as a non-target. In our case, since 

there are many observations in the frame, if an observation is not a true target and was not 

assigned as a target, we consider it a TN. We compute PD and FAR with respect to ground-truth 

obtained via manual detection.  
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Figure 23 and Figure 24 demonstrate the receiver operating characteristics (ROC) for the 

FAR and PD for one, 13-frame sequence. Both figures provide ROC analysis where we investigate 

varying threshold values for both the minimum and maximum volumes normalized by the target 

size (target volume in scale space) and eccentricity as defined by our detection criteria. Both 

 

 

Figure 23 – Volume ROC Analysis  
Here the threshold values for the minimum and maximum volume are varied. The labels on each 
point indicate the volume threshold value used, normalized by target size in scale-space. It can 
be seen that the minimum of approximately two times the target size and maximum of 
approximately three and a half times the target size defines a point where PD stays high while 
reducing FAR.  
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figures show results obtained by varying one threshold while keeping the other three thresholds 

constant.  

 

 

 

Figure 24 – Eccentricity ROC Analysis  
Here the threshold values for the minimum and maximum eccentricity are varied. The labels on 
each point indicate the threshold value used. It can be observed that there is a clear cut off at the 
minimum between 0.7 and 0.75 eccentricity measures and maximum of 0.92 and 0.96 
eccentricity measures.  
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From Figure 23 we observe that the minimum of approximately two times the target size 

and maximum of approximately three and a half times the target size defines a point where PD 

stays high while reducing FAR. In Figure 24 we observe that there is a clear cut off at the minimum 

between 0.7 and 0.75 eccentricity measures and maximum of 0.92 and 0.96 eccentricity 

measures.  

Now that we have established the methodology for detection of our targets, we proceed 

by explaining our tracking approach.  

4.3.7 41BTarget Tracking via Feature Matching in MS2T 

In order to use the above parameters for tracking in the MS2T, for each frame the structure of 

interest is matched to all structures in the subsequent frames based on the above criteria. We 

determine the minimum absolute difference for the volume, orientation, and number of levels 

where the structure is not zero. Furthermore, we compare the three-dimensional shape of the 

target of interest, 𝐵𝑡, with the structures in a given frame, 𝐵𝑗, with the following comparison 

measurement, 𝐶𝑀: 

  𝐶𝑀 =
(𝐵𝑡 − 𝐵𝑡 ∩ 𝐵𝑗) ∪ (𝐵𝑗 − 𝐵𝑡 ∩ 𝐵𝑗)

𝐵𝑡 ∪ 𝐵𝑗
. (36) 

All shapes are rotated based on the orientation, 𝑂𝑜𝑟
𝜅 , such that they are compared at the same 

orientation. Figure 25 provides a visualization of the comparison algorithm in one level of the 

scale-space. Here one can observe that the target of interest, 𝐵𝑡, is marked in green, and 

structures in a given frame, 𝐵𝑗, are marked in red. It is important to note that we specifically 

chose to illustrate the matched target in the given frame and not any other structure. Here, the 

overlapping pixels determined by performing a pixel-wise AND operation are illustrated in yellow. 

Furthermore, all structures/targets are centered in case of size variation. 
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Other parameters used for matching are the target gray-level histogram and 

neighborhood histogram for each target, discussed in detail in section 4.3.5. We match the 

histograms by determining the minimum sum of the Euclidian distances between each bin of the 

target, Ξ𝑡
𝑛, and the frame structures, Ξ𝑗

𝑛. Histogram match, 𝐻𝑀, is defined as: 

  𝐻𝑀 = √∑(Ξ𝑡
𝑛 − Ξ𝑗

𝑛)2

𝑁𝐵

𝑛=1

, (37) 

where NB indicates the number of bins.  

 In order to combine all these measurements into one, we order each measurement 

individually and assign it a score with the highest match having the highest score. If the highest 

match falls below a set threshold, no score is assigned. Each descriptor contributes to the score, 

and the overall decision is made based on the sum of the scores from all descriptors. We assign a 

match to the structure of interest based on the highest score. If the overall score falls below a set 

threshold, no match is made and we assume that the target left the FOV. A counter is used to 

allow the target to move out of FOV for two frames before the track is terminated. To validate our 

 
Figure 25 – Example of shape comparison for original target with a tracked target.  

This figure illustrates the shape matching process. The initialized target and the current target of 
interest are aligned and the intersection is observed. In this figure the initialized target is marked 
in green, the current frame target is marked in red, and yellow is the overlap. Only one scale is 
illustrated here, but this is done for all scales/levels.  



 

Automated Tracking and Analysis of Aerial Surveillance Data 67 
 

 

method, we have investigated data where the target leaves the FOV for one frame and then 

returns.  

4.3.8 42BMS2T Tracking Results 

We report the results for the MS2T algorithm described in Table 3 and compare it to Table 1. The 

normalized RMSE is reported in pixel distance from ground truth and normalized to target width. 

It can be observed that our method tracks 96% of the frames versus 90% of the frames with the 

ASIFT2. Furthermore, for the successfully tracked frames, MS2T has a tracked normalized RMSE of 

0.27 pixels, compared to 0.45 with ASIFT2. It is important to note that there are two types of 

normalized RMSE values reported. Once again here, as in the case of the ASIFT2, we capture the 

normalized RMSE in the last column to remove the penalty of missed tracking since if a target is 

not detected the value cannot be assigned to its location, and normalized RMSE calculation 

becomes arbitrary (for more discussion see sections 4.1.2 and 4.2.3).  

Table 3 - MS2T Tracking Results 

Target index 
Number of 

frames 
Normalized 

RMSE 
% Frames 
tracked 

Normalized 
tracked RMSE 

     
1 13 2.53 92% 0.06 

2 12 0.20 100% 0.20 

3 11 0.29 90% 0.15 

4 11 4.61 90% 0.61 

5 8 0.19 100% 0.19 

6 7 0.25 100% 0.25 

7 10 0.08 100% 0.08 

8 12 0.09 100% 0.09 

9 12 0.15 100% 0.15 

10 7 0.14 100% 0.14 

11 6 0.32 100% 0.32 

12 10 0.36 100% 0.36 

13 18 3.20 94% 0.10 

14 18 2.57 94% 0.63 

15 9 1.02 100% 1.02 

16 9 0.54 100% 0.54 
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17 9 1.89 88% 0.16 

18 7 0.25 100% 0.25 

19 6 3.64 80% 0.10 

20 9 0.14 100% 0.14 

21 12 0.10 100% 0.10 

22 12 0.14 100% 0.14 

23 8 0.67 100% 0.67 

24 11 14.76 70% 0.23 

25 10 6.64 80% 0.18 

26 10 0.26 100% 0.26 

27 10 0.15 100% 0.15 

28 13 0.11 100% 0.11 

29 8 1.82 86% 0.24 

30 7 0.35 100% 0.35 

31 9 0.30 100% 0.30 

32 6 0.19 100% 0.19 

33 9 0.33 100% 0.33 

34 8 0.55 100% 0.55 

Average 
 

1.44 96% 0.27 

 
 To calculate these results, we utilized a Windows 7 64-bit home edition PC, with Intel® 

Pentium® P6100 dual core processor, with 3GB RAM. MS2T was applied to frames of 2048x2048 

pixels in size. The algorithm takes, on average, 1.2 seconds to generate the scale-space per frame. 

The rest of the algorithm—calculating object features and matching to targets of interest—takes, 

on average, 10 seconds per frame. Note that a parallel implementation of the feature calculation 

and matching will have a significant decrease in execution time.  

MS2T performs well in video where there is contrast between the target and the 

background. The algorithm can be applied to any target motion, whether the target moves 

throughout the FOV or is stationary. As we employ a neighborhood histogram as one of the 

features, the algorithm performs better if there is high frame rate relative to the movement of 

the target. In low frame rate, the neighborhood histogram can be removed from the overall score. 

Next we present a graphical comparison of the results for the ASIFT2 and the MS2T. 



 

Automated Tracking and Analysis of Aerial Surveillance Data 69 
 

 

 

 

 

Figure 26 – Tracking results comparison between MS2T and ASIFT2 
Here we show the tracking results from the Yuma, AZ data for both the normalized RMSE and 
percentage of tracked frames. The results show that overall the MS2T algorithm performs better than 
ASIFT2 in terms of successful tracking through consecutive frames and locating the center of the 
target in tracked frames.  
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 Our results demonstrate that the MS2T outperformed the ASIFT2 both in the percentage 

of tracked frames and the tracking accuracy. We find that since the placement of the key-points in 

the SIFT methodology is not associated with any defined geometrical relationship to the target, it 

is difficult to detect the center of the target with ASIFT2. This behavior can be observed in the 

results, where in the tracked frames ASIFT2 misses the center of the target by approximately half a 

target on average. On the other hand, when the contrast is not significant from the background, 

ASIFT2 demonstrates a higher match rate.  

4.3.9 43BInvestigating Descriptors in MS2T 

As MS2T incorporates several parameters to achieve tracking, we aim to investigate the 

significance of the contribution of each descriptor in the success of tracking. We hypothesize that 

if we can correlate one descriptor with high scores to successfully tracked frames we can utilize it 

in determining which frames are successfully tracked based on that one descriptor.  

 We employed Spearman’s rank correlation coefficient to determine the parameter(s). The 

parameters are related to the normalized RMSE value, where lower normalized RMSE indicates 

best match. In our case some of the relationships were monotonically increasing (correlation of 

one) and others were monotonically decreasing (correlation of negative one). For example, the 

absolute difference between volume and orientation is monotonically increasing because lower 

difference is scored higher. On the other hand, shape matching will have a higher comparison 

measure with matching shapes and a lower one with two targets that are unmatched, thus having 

a monotonically decreasing relationship.  

To simplify our analysis, we seek to keep all correlations positive. Thus, any calculations 

that result in a negative correlation are inverted (multiplied by -1) and then the correlations are 

calculated. Only successfully tracked frames are used towards this analysis. We remove any 
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incorrectly tracked frames as they can skew the correlation to incorrectly favor one parameter or 

another.   

We calculate the Spearman’s rank correlation coefficient, 𝜌, as follows:  

  𝜌 =
∑ (𝑢𝑖 − �̅�)(𝑣𝑖 − �̅�)𝑖

√∑ (𝑢𝑖 − �̅�)2 ∑ (𝑣𝑖 − �̅�)2
𝑖𝑖

, (38) 

where (𝑢, 𝑣) are the ranks for the normalized RMSE and parameter values we are correlating, and 

𝑖 is the index of all the values for each parameter. The calculated correlations for each parameter 

are given in Table 4.  

Table 4 -Spearman's correlation results for parameter analysis, 
correlating each parameter used in the MS2T tracker with the resulting normalized RMSE. 

Parameters Correlations 

Volume: 0.354 

Orientation: 0.151 

Eccentricity: 0.406 

Context histogram: 0.126 

Shape Match: 0.429 

Gray Level Histogram: 0.366 

Volume/Perimeter^2: 0.242 

 

It can be observed from the tabulated correlations in Table 4 that while eccentricity and shape 

match show the highest correlation, none of the parameters demonstrate a strong correlation 

with the normalized RMSE. Since our aim was to determine if any of these parameters can 

determine the success of the tracker, we conclude that due to the low correlation, no one 

parameter or descriptor can clearly indicate that the tracker correctly tracked a target. As a result, 

we cannot use any one of the parameters in isolation to determine the success of the tracker. All 

parameters combined provide tracking success.  
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4.3.10 44BStatistical Significance Analysis 

We further analyzed the results of our MS2T method and ASIFT2 for statistical significance by 

utilizing the one-way analysis of variance (ANOVA) by comparing both the percentage of tracked 

frames and the normalized RMSE. The null hypothesis, 𝐻0, is  

  𝐻0: 𝜇𝑐 = 𝜇𝑠, (39) 

where 𝜇𝑐 is the mean of MS2T, while 𝜇𝑠 is the mean of ASIFT2 for both the percentage of tracked 

frames and the normalized RMSE. Then the alternative hypothesis,  𝐻𝐴, states that the means are 

not equal  

  𝐻𝐴: 𝜇𝑐 ≠ 𝜇𝑠. (40) 

Here we assume a significance level of 0.05. Results are tabulated in Table 5. The table presents 

the degrees of freedom, df, sum of square deviations from the mean, SS, mean squares, MS, F-

value from the F-distribution, F, F-ration which determines the critical value, F-crit, and P-value.  

Table 5 - ANOVA Results to Compare ASIFT2 and MS2T 

One-way ANOVA for Percentage of Tracked Frames 
   

       
SUMMARY  

      
Groups Count Sum Mean, 𝜇 Variance, 𝜎2 

  
% Detection ASIFT2 34 30.54 90% 3.88% 

  
% Detection MS2T 34 32.63 96% 0.56% 

  

       
ANOVA 

      
Source of Variation SS df MS  F P-value F crit 

Between Groups 0.065 1 0.065 2.922 0.092 3.986 

Within Groups 1.465 66 0.022 
   

       
Total 1.815 67         

       
One-way ANOVA for Normalized RMSE 

   

       
SUMMARY 

      
Groups Count Sum Mean, 𝜇 Variance, 𝜎2 
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RMSE Detected ASIFT2 34 288.14 8.47 17.79 
  

RMSE Detected MS2T 34 169.52 4.99 15.70 

       

ANOVA 
      

Source of Variation SS df MS   F   P-value F crit 

Between Groups 206.91 1 206.91 12.357 0.0008 3.986 

Within Groups 1105.1 66 16.74 
   

       
Total 1418.19 67   

   
       

 As the F-value compared to F-critical and P-value demonstrate, there is statistical 

significance for our normalized RMSE results. Conversely, the percentage of tracked frames does 

not show statistical significance for the chosen significance level, but we utilize this measure as an 

alternative metric for our tracker. In the case of percentage of tracked frames, the F-value is 2.92 

while the F-value for RMSE is 12.36. When compared to the F-critical of 3.986, it is clear that the 

RMSE measurements reject the null hypothesis, while the percentage of tracked frames 

measurements accepts the null hypothesis that the means are the same. The same conclusion can 

be achieved from the P-value when compared to our assumed significance level of 0.05. It should 

be noted that if the significance level were chosen to be 0.1, both measurements would reject the 

null hypothesis.  

We can thus conclude that the two methods, ASIFT2 and MS2T, perform equally well when 

it comes to tracking the target, but MS2T outperforms ASIFT2 in locating the correct center of the 

target with statistical significance. The poor performance of ASIFT2 in terms of RMSE is due to the 

fact that SIFT is not concerned with the objects themselves, but rather with specific regions in the 

image.  

From our results we also noted that there were cases where one tracker (ASIFT2 or MS2T) 

did better than the other; in other words, the trackers did not fail in the same sequences. To 

further investigate this behavior, we combined the two trackers to determine if further 
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improvement can be made to our tracking results. The next section discusses our method for 

doing so and the results.  

4.4  Incorporating SIFT into MS2T 

We tackle the SIFT shortcomings noted earlier – the inability to use SIFT for detection, ambiguity 

in target center, and key-points association with the target – by incorporating SIFT key-points as 

one of the descriptors in our MS2T algorithm. As a result, we are able to benefit from SIFT’s 

performance in low contrast targets while successful employing the algorithm for detection, 

target association, and target center understanding.   

We use the MS2T mask of the connected component from the first scale of area open and 

detect the key-points inside only the MS2T mask, thus removing any possible background key-

points. We incorporate the number of matched SIFT points to our tracker as another parameter. 

Lastly, as with MS2T, each descriptor contributes to an overall score including the SIFT match. 

When incorporating SIFT, we utilize the number of key-points that match to the target as well as 

the matching quality provided by SIFT. The key-points and their matching quality allows us to 

determine the score for the SIFT descriptor as it contributes to the overall tracker score. 

Consequently, we found that our percentage of tracked frames has improved by two percent, to 

98%, with a normalized RMSE value of 0.28. The slight increase in the normalized RMSE is due to 

more frames being incorporated into the RMSE calculation.  

Table 6 - Tracking results for MST2 with SIFT 

Target index % Frames tracked 
RMSE normalized 

MST2+SIFT 

   1 92% 0.06 

2 100% 0.20 

3 100% 0.19 

4 90% 0.61 

5 100% 0.19 
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6 100% 0.25 

7 100% 0.08 

8 100% 0.09 

9 100% 0.15 

10 100% 0.14 

11 100% 0.32 

12 100% 0.36 

13 100% 0.17 

14 94% 0.63 

15 100% 1.02 

16 100% 0.54 

17 100% 0.17 

18 100% 0.25 

19 80% 0.10 

20 100% 0.14 

21 100% 0.10 

22 100% 0.14 

23 100% 0.67 

24 100% 0.22 

25 80% 0.18 

26 100% 0.26 

27 100% 0.15 

28 100% 0.11 

29 86% 0.24 

30 100% 0.35 

31 100% 0.30 

32 100% 0.19 

33 100% 0.33 

34 100% 0.55 

Average 98% 0.28 

 

4.5 18BConclusion  

This chapter illustrated three novel ideas towards successful tracking: the automated SIFT tracker, 

the morphological scale-space tracker (MS2T), and the incorporation of SIFT into the 

morphological scale-space tracker. We demonstrated the improvements in tracking as we 
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developed each tracker. Furthermore, this chapter discussed how our morphological scale-space 

is applied towards successfully detecting the target in every frame.  

Future investigation for this work can include incorporating relative key-point location to 

the target center in order to enhance the ASIFT2. This enhancement requires more pre-processing 

of initialized targets, understanding where the target center is in the initialization of the tracker, 

and then establishing the location of SIFT key-points relative to the center. Knowing the location 

of the SIFT key-points will allow the SIFT tracker to track the center of targets more accurately.  

Another idea that can be investigated is to use SIFT as a global tracker from one frame to 

the next. The result would be to acquire registration and establish the global motion of the frame. 

Knowing the motion of the frame will allow extracting the targets that are not moving with the 

general motion.  

Lastly, GPU implementations of both SIFT and the connected filter should be investigated. 

The recent applications of GPU algorithm implementation have demonstrated a significant 

improvement in execution time. Since many aspects of both algorithms could run in parallel, both 

algorithms will have shorter execution time if implemented using GPUs.  
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Specific Aim 2: To accomplish tracking with a morphological scale-space that allows tracking 

multiple targets, in unregistered video sequences  

This chapter has addressed the development of a novel algorithm which utilizes the 

morphological scale-space. The concept of morphological scale-space is introduced as well as its 

utilization in tracking. We illustrate a set of target parameters which are combined to achieve 

successful tracking. Furthermore, we describe how the morphological scale-space is used towards 

successful detection. This work has been submitted for publication [47]. 
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CHAPTER 5. 

4BTRACKING CHARACTERIZATION  

Up to this point we have addressed the issue of tracking targets with several automated tracking 

algorithms. In Chapter 3 we did so for registered video sequences and in Chapter 4 for non-

registered sequences. While our various tracking methodologies demonstrate successful tracking 

in a variety of video sequences, our next aim is to understand how image or video quality impacts 

tracking. Towards this end, the work presented in this chapter seeks to develop a measure that 

quantifies the difficulty of target tracking. As will be reviewed, no such quantitative measure 

exists that judges the difficulty of a given tracking experiment. Such a model needs to consider 

video quality, sampling rates in space and time, clutter, and the motion of the target. 

 Here, we assume that the target template is known. We further assume that any 

transformation of the template (e.g., rotation, scaling) is also known for the ground truth 

sequences. Finally, we assume that there is a motion model for the target and that the SNR is 

either known or can be computed. Under these assumptions, we attempt to define a trackability 

measure – a measure of the difficulty of tracking a target in a given video. 

We combine several image characteristics to determine the ability of the tracker to 

accomplish tracking in a given sequence, defined here as trackability and quantified as bits per 

second. Our trackability model incorporates target matching in a given video frame as well as 

video quality. The combination of these parameters will return a metric that evaluates tracking 

success.  

We commence this chapter by describing the methodology related to understanding how 

well a tracking algorithm will perform in a given video sequence. Next we describe our trackability 

method. As mentioned, currently there is no measure that quantifies trackability. Several 
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parameters do exist to describe the quality of the image or video and the complexity of the 

background in a given image or scene. 

5.1 19BBackground on Image Quality and Tracking Characterization 

Image quality assessment methods seek to determine the degradation of the image after 

the image has undergone some change such as signal loss due to transmission or compression. 

Quality assessment is useful in testing video processing systems and algorithms and can be 

incorporated in the image analysis system to improve the algorithm’s performance. Traditional 

image quality assessment methods compare the original, good quality image to the resulting 

transmitted image. If the original image is available, these methods are referred to as full-

reference and are the practices most commonly used to assess the image quality. Methods that 

have no-reference (NR) images have been presented in literature, but less often. The NR methods 

must rely on information within the given image to determine image quality [48] [49]. 

The structural similarity (SSIM) index [49] is an image or video quality assessment 

method. This method is a full reference technique that was introduced to investigate the 

deterioration in the quality of the image or video due to JPEG compression or transmission. 

Assuming we have an uncompressed, high quality image, we can compare the reference target 

from the high quality image to a target altered in our new image. The compressed or transmitted 

target, which here we refer to as ‘altered target’, can be impacted by such things as noise and 

blurring. The theory of SSIM is founded on the assumption that such degradation in quality can be 

modeled as a combination of changes in contrast, luminance, and structure, in which structure is 

quantified by local changes in correlation (with the undistorted image). In [49], contrast, 𝜂, 

luminance, 𝜓, and structure, 𝜐 comparison measures are defined as: 
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 𝜂(𝐭, 𝐛) =
(2𝜎𝑡𝜎𝑏)

(𝜎𝑡
2 + 𝜎𝑏

2)
, 

(41) 

 𝜓(𝐭, 𝐛) =
2𝜇𝑡𝜇𝑏

𝜇𝑡
2 + 𝜇𝑏

2  and (42) 

 𝜐(𝐭, 𝐛) =
𝜎𝑡𝑏

𝜎𝑡𝜎𝑏
. (43) 

Here, 𝐭 and 𝐛 are discrete pixel indices from the target image and from the altered target image, 

respectively, 𝜎𝑡, 𝜎𝑏 are standard deviations and 𝜇𝑡 , 𝜇𝑏 are means in each region. Setting all 

images to be the same number of pixels, 𝑃, the authors define 𝜎𝑡𝑏 as: 

 𝜎𝑡𝑏 =
1

𝑃 − 1
∑(𝑡𝑖 − 𝜇𝑡)(𝑏𝑖 − 𝜇𝑏),

𝑃

𝑖=1

 (44) 

Where 𝑡𝑖 is a pixel from the original image such that 𝐭 = {𝑡𝑖|𝑖 = 1,2, … 𝑃} and 𝑏𝑖 is a pixel from 

the altered image such that 𝐛 = {𝑏𝑖|𝑖 = 1,2, … 𝑃}. Putting all these measures together, the 

authors introduce SSIM: 

 𝑆𝑆𝐼𝑀(𝐭, 𝐛) =
(2𝜇𝑡𝜇𝑏 + 𝐶1)(2𝜎𝑡𝑏 + 𝐶2)

(𝜇𝑡
2 + 𝜇𝑏

2 + 𝐶1)(𝜎𝑡
2 + 𝜎𝑏

2 + 𝐶2)
, (45) 

where 𝐶1 and 𝐶2 are constants. Refer to [49] for further discussion on the constants. It is 

important to note that the SSIM index is no greater than one and if two images are identical, they 

will result in an SSIM index of one for each pixel. In the algorithm implementation a sliding 8x8 

window is used to calculate the SSIM map, which is a quality measure of how well the two images 

match in the given window. Consequently, the resulting map is ten pixels smaller in height and 

width since only the center of the window is used to calculate the index for each pixel.  

Figure 27 demonstrates an example of the target and possible ways that this target may 

become degraded in video – with additive noise or blurring. The second row illustrates the SSIM 

map with the corresponding mean SSIM index. The blurred image resulted in a higher mean 
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quality measure of 0.72 versus that of the image with noise of 0.62. With the SSIM index, only 

image quality is reported and it requires a full reference image to be known, but such an image is 

unavailable in our tracking application. Furthermore, there exist other factors, such as temporal 

sampling rate and target motion, that are not considered by SSIM or other related structural 

quality measures. 

Alternative assessment methods do address the NR image problem. Wang et al. proposed 

a method that analyzes blocking artifacts and blurring that result from JPEG compression [50]. 

Specifically of interest are the blurring artifacts that were established by determining the zero-

crossing rate in the image. Another NR method introduced by Li in [51] analyzed edge strength in 

the image using step edges to find out how blurry the objects are in the images. A step edge 

defines image edges that result due to large discontinuity in pixel intensity.  

   

(a) original target (b) target altered with 
Gaussian noise 

(c) target altered by blurring 
with a Gaussian filter 

  

  
 

 

 
(d) SSIM map of the original 

image and image (b) with 
mean SSIM index of 0.6155 

(e) SSIM map of the original 
image and image (c) with 

mean SSIM index of 0.7181 

Figure 27 – Structural similarity (SSIM) index 
The figure illustrates the images used to illustrate SSIM. Image (a) shows the original image. Here we 
assume this is the reference image, or the unaltered high quality image. Image (b) is altered by 
Gaussian noise and (c) is blurred by a Gaussian filter. Image (d) presents the resulting SSIM map for 
comparing the original image to the noisy image with the mean SSIM index of 0.6155 compared to (e) 
which illustrates the SSIM map for the blurred image with a mean SSIM index of 0.7181. It should be 
noted that the blurred image has a higher similarity than the noisy image. 
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Whereas image assessment investigates the quality of the image, other obstacles that the 

tracker must face to successfully track the targets in the image are assessed, to a certain degree, 

by image complexity or clutter measures. Complex or cluttered scenes might reduce the 

probability of detecting the targets, thus degrading tracking results. Image complexity has been 

addressed in literature specifically to analyze automatic target recognizers [52]. 

The signal-to-clutter ratio (SCR) that we will now present has been used in our laboratory 

to analyze the success of leukocyte trackers [14], and has been employed by researchers with the 

U.S. Army [53] in military applications. SCR investigates the surrounding area of the target and 

determines the complexity of tracking based on other objects present. A low SCR indicates a 

dense population of objects around the target of interest. SCR is defined as follows. Let 𝑅𝑂𝐼 be 

the region of interest and 𝑇 the target template. A neighborhood around the target is defined as: 

 Ω = {(𝑖, 𝑗): √(𝑖 − 𝑥0)2 + (𝑗 − 𝑦0)2 ≤ 2𝜌}, (46) 

where (𝑖, 𝑗) define the pixel coordinates, (𝑥0, 𝑦0) is the estimated target location, and 𝜌 is the 

target radius. Then SCR is defined as: 

 SCR =
𝑑(𝑇, 𝑅𝑂𝐼0,0)

∑ 𝑎𝑖,𝑗𝑑(𝑇, 𝑅𝑂𝐼𝑖,𝑗)/ ∑ 𝑎𝑖,𝑗𝑖,𝑗∈Ω𝑖,𝑗∈Ω
, (47) 

where 𝑅𝑂𝐼𝑖,𝑗 is an ROI centered at (𝑖, 𝑗), 𝑑(𝑇, 𝑅𝑂𝐼𝑖,𝑗) is a dissimilarity measure between the 

template 𝑇 and 𝑅𝑂𝐼𝑖,𝑗. A dissimilarity measure can be provided by methods such as normalized 

cross-correlation (NCC) or sum of square differences. In (47), 𝑎𝑖,𝑗  is a weighting that depends on 

the distance of the clutter from the target center, e.g. Gaussian weighting. Figure 28 illustrates an 

example of SCR where: figure (a) is the target of interest; (b) is the clutter – including objects that 

are similar to our target; (c) illustrates an example of the target radius that is used in SCR 
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calculation; (d) presents the doubling of the target radius, which in turn is used in (e) to define the 

weighting function – a two-dimensional Gaussian function.  

The SCR has the advantage over the signal-to-noise ratio (SNR) of including the effects of 

clutter; however, the SCR by itself, like the other methods presented above, fails to tell the whole 

story, which would include, in our view, the quality of the video and the predictability of the 

target motion. Furthermore, the SCR is concerned with clutter close to the target of interest, but 

in unregistered video the entire image’s clutter is significant because the target’s track is 

unknown and the whole image has to be considered as the domain in which the tracker can be 

distracted from identifying the target of interest.  
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5.2 20BTrackability Measure 

Up to this point we presented very rudimentary components from literature which could be used 

to measure trackability. It is important to note that, until now, no one has investigated the notion 

of trackability; the measures presented are merely documented ways to investigate image 

quality. We, instead, take an information theoretic approach to calculating trackability. The 

application of mutual information to image processing is not a novel one – consider the 

widespread use of mutual information in registration [54]. Based on this work and other such 

 

 

(a) target of interest (b) clutter 

   

(c) target radius (d) double radius (e) Example of weighting 

Figure 28 – Signal to clutter example 
An example of how the signal to clutter ratio (SCR) is being calculated. We start with (a) the target 
of interest and the image we are investigating with clutter, shown in (b). Note that in (b) there are 
several objects that appear similar to the target in (a). As part of the SCR calculation we define the 
target radius, which is illustrated in (c), and twice the radius, illustrated in (d). Image (d) is the 
area that will be considered in calculating the SCR. Lastly, (e) is an example of the weighting 
function, 𝒂𝒊,𝒋, that weights closer clutter higher than clutter further away.  
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work that utilizes information theory in image processing, we develop a measure for tracking 

difficulty.  

5.2.1 45BTrackability Theory 

The trackability measure is computed in units of bits per second. In this model, there are two 

components: signal-to-template match and the overall video quality. Assuming we can obtain a 

video signal for a given target and that we have a template for that target signal in the given 

viewpoint and orientation, the first term, 𝑄𝑆𝑇, or the signal-to-template quality is computed for a 

given video. If this quality is found for a given frame in terms of information theoretic bits (where 

a bit is the amount of information associated with a binary variable in which both states are 

equally likely), then 𝑄𝑆𝑇 is computed by multiplying the average of frame-wise quality by the 

frame rate (in frames per second) 𝑟𝐹. We consider two formulations for 𝑄𝑆𝑇 and compare them to 

tracker performance. 

The second component of our trackability measure reflects the overall video quality, 𝑄𝑉, 

in bits per second. In considering all the contributing factors to video quality as bandwidth, we 

also take into account the spatial resolution, the temporal resolution, the quality of quantization, 

and the effect of noise. Here, we approach the effect of noise with a traditional measure, the SNR.  

The second contributing factor to the video quality relates to the fidelity of motion of the 

target. Again, we assume that the video can be registered or unregistered. We also assume that a 

motion model for the target exists, even if such a model is trivial (estimating the target to be 

stationary, for example). So, this factor quantifies the uncertainty in the target position after 

registration (or the absence of registration) and prediction. 
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5.2.2 46BQuality of Signal-to-Template Match 

In our trackability model, three important subimages exist. Each subimage is identical in size to an 

MxN grayscale image. The three subimages are the signal S, the template T, and the clutter C. The 

signal S is the representation of the target that actually appears in the video sequence. This signal 

may be partially occluded, lighter, darker, rotated, scaled, distorted, etc. The template T is the 

knowledge of the target appearance by the tracker. We assume that this template has been 

prepared according to the viewpoint and appearance of the actual signal S, so that the scale and 

sampling are identical. The clutter C represents the best matching subimage in the track gate that 

is not overlapping with the signal. We call this best matching subimage the dominant clutter. This 

subimage is chosen by finding a subimage that is non-overlapping with the actual target, which 

maximizes the mutual information with the template. There may be more than one “close match” 

within the gate, but we consider only one such match. The motivation for considering just one 

close match is that the possibility of incorrect identification of a target does not increase with 

multiple possible matches. The clutter subimage C is the exact same size and sampling as the 

signal S in the same gate. 

Consider a single image in a video sequence in which the target appears as signal S. After 

the appropriate adjustment for viewpoint (scale, rotation, etc.), we attempt to match the signal 

with template T. The match between a signal S and a template T can be measured using mutual 

information. This is a measure of the information, 𝑀𝐼(𝑆, 𝑇), shared between S and T, or likewise, 

the mutual dependence between S and T [55]: 

 

𝑀𝐼(𝑆, 𝑇) = 𝐻(𝑆) + 𝐻(𝑇) − 𝐻(𝑆, 𝑇) 

= − ∫ 𝑝(𝑆) log 𝑝(𝑆)𝑑𝑆 − ∫ 𝑝(𝑇) log 𝑝(𝑇)𝑑𝑇 + ∬ 𝑝(𝑆, 𝑇) log 𝑝(𝑆, 𝑇)𝑑𝑆𝑑𝑇  

= ∬ 𝑝(𝑆, 𝑇) log
𝑝(𝑆,𝑇)

𝑝(𝑆)𝑝(𝑇)
𝑑𝑆𝑑𝑇, 

(48) 
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where 𝑝(𝑆) and 𝑝(𝑇) are the probability densities for S and T, respectively. Both probability 

densities are intensity histograms within the template and signal. Empirical intensities are 

counted and normalized to probabilities. The joint probability, 𝑝(𝑆, 𝑇), is a two-dimensional 

histogram of the signal and the template where the frequency of gray-level value is matched from 

signal to template and counted. 

The mutual information is the Kullback-Leibler distance (or relative entropy) between the 

product distribution and the joint distribution. The mutual information between S and T can be 

illustrated by way of a Venn diagram, as shown in Figure 29. Figure 29 presents two circles which 

represent the entropy of S (i.e., 𝐻(𝑆)) and the entropy of T (𝐻(𝑇)). Their mutual information, 

𝑀𝐼(𝑆, 𝑇), lies in the intersecting portion, shown in the center of Figure 29. Also, outside the 

center, we have the conditional entropy of 𝐻(𝑆|𝑇) on the left and of 𝐻(𝑇|𝑆) on the right. 

Mutual information is adequate to describe the similarity between the target signal S and 

the template T. However, multivariate analysis must be pursued if the interaction of the clutter C 

 
Figure 29 – Illustration of mutual information by way of intersecting circles. 

Here, H is the entropy function, MI is mutual information, S is the signal, and T is the template.  
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is to be considered. McGill’s 1954 work [56] and Fano’s 1961 study [57] observe that the 

conditional entropy can be applied to extend the two-variable mutual information definition. We 

seek the mutual information, 𝑀𝐼({𝑆, 𝑇}|𝐶), which gives the mutual information between S and T 

given C. This conditional mutual information can be written as [57] [56]: 

 𝑀𝐼({𝑆, 𝑇}|𝐶) = [𝐻(𝐶, 𝑇) − 𝐻(𝐶)] − [𝐻(𝑆, 𝐶, 𝑇) − 𝐻(𝑆, 𝐶)]. (49) 

𝑀𝐼(𝑆, 𝐶, 𝑇) is what McGill [56] calls the “mutual interaction.” The computation of 

𝑀𝐼({𝑆, 𝑇}|𝐶) subtracts this mutual interaction from the mutual information of S and T. The result, 

in terms of our trackability analysis, is a measure of the match between signal S and template T 

under the effect of clutter C. 

One attractive feature of the formulation of (49) is that the joint entropy terms are 

straightforward to compute:  

 𝐻(𝑋1, 𝑋2, … , 𝑋𝑁) = − ∑ … ∑ 𝑃(

𝑥𝑁𝑥1

𝑥1, 𝑥2, … , 𝑥𝑁)log2[𝑃(𝑥1, 𝑥2, … , 𝑥𝑁)]. (50) 

Now, we will investigate 𝑀𝐼({𝑆, 𝑇}|𝐶)  in assessing the signal-to-template match in a given video 

frame. Figure 30 illustrates how we generate 𝑀𝐼({𝑆, 𝑇}|𝐶), where the mutual information 

between signal,  𝑆, and template, 𝑇, is conditioned on clutter, 𝐶. The three circles represent 

𝐻(𝑆), 𝐻(𝑇), and 𝐻(𝐶), the entropies of the signal, template, and clutter, respectively. The area 

in common to all three entropies is 𝑀𝐼(𝑆, 𝑇, 𝐶). The computation of 𝑀𝐼({𝑆, 𝑇}|𝐶) essentially 

subtracts this mutual interaction from the mutual information of 𝑆 and 𝑇. This measure is in 

information theoretic bits. For overall signal-to-template matching in bits per second, we multiply 

the average value of this mutual information term by the frame rate: 
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 𝑄ST = 𝑀𝐼({ 𝑆, 𝑇} |𝐶)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑟F (51) 

Next, we illustrate 𝑀𝐼({𝑆, 𝑇}|𝐶) in order to demonstrate the mutual information for 

several types of examples. Table 7 provides examples of mutual information analysis from five of 

the tracking sequences. All datasets are from the Yuma, AZ data presented in earlier chapters. The 

template, T, is shown along with the signal, S (taken in the middle frame of the temporal 

sequence). From this same middle frame, we show the clutter, C — that is, the highest mutual 

information match that does not overlap the signal but is located inside the track gate. Mutual 

 
Figure 30 – Illustration of mutual information of signal and template given clutter 

𝑴𝑰({𝑺, 𝑻}|𝑪).   
In this figure the three circles represent 𝐻(𝑆), 𝐻(𝑇), and 𝐻(𝐶), the entropies of the signal, 
template, and clutter, respectively. The top row shows the result for the two equations above 
shaded with green lines. Then we illustrate the resulting mutual information of signal and template 
given clutter on the bottom row. This is our measure of the match between signal, S, and template, 
T, under the effect of clutter, C. 
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information between the signal and template is shown along with the conditional mutual 

information that considers the template. Also given is the difference in mutual information 

between signal-to-template and clutter-to-template. 

Table 7 - Mutual Information calculation for five target examples 

Template T Signal S Clutter C 
MI(S,T) 
(bits) 

MI({S,T}|C) 
(bits) 

MI(S,T)-MI(C,T) 
(bits) 

   

3.1 2.8 0.5 

   

2.3 2.7 0.3 

   

3.6 3.7 0.5 

   

3.3 3.6 2.1 

   

3.1 3.9 1.2 

  

Additionally, Figure 31 illustrates the specific example of the fourth target in the table 

above. The diagram shows that the template and signal are close in appearance but not identical. 

Consequently, 𝑀𝐼({𝑆, 𝑇}|𝐶) results in 3.6 bits.  

5.3 21BQuality of Video 

We investigate four factors to determine video quality: spatial resolution of the target signal, the 

frame rate (temporal resolution), the quality of quantization (bit depth), and the effect of noise. 

For spatial resolution, we count the average number of pixels, N, (in a bounding box) of the target 
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signal. The frame rate is 𝑟𝐹 in units of frames per second, and the bit depth is given as 𝐵𝑃 in bits 

per pixel. Finally, in this work the effect of noise is characterized by the unitless ratio SNR. We 

consider the overall throughput of the noise-free video as a bandwidth, BW:  

 𝐵𝑊 = 𝑁𝑟𝐹𝐵𝑃. (52) 

Then, using the form developed by Shannon Hartley [58], we compute a data rate of 𝐵𝑊𝑙𝑜𝑔2(1 +

𝑆𝑁𝑅). 

Given registration (or the lack of registration) and the motion model, the error in the 

predicted position (the center of the track gate) for frame 𝑘 is given by e𝑘. Here, we assume that 

{e𝑘} is a normal random process with zero mean and standard deviation 𝜎𝑒: 

 
Figure 31 – An illustration of trivariate conditional mutual information.  

In this figure, the fourth example from the results tabulated in Table 7 is illustrated. Here the track 
gate (bottom left), template (top left), and entropy diagram are shown. It can be seen that the 
target and signal are similar but not identical, thus having high mutual information. On the other 
hand, the clutter and the target are dissimilar, resulting in low mutual information.  
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 e𝑘~ℕ(0, 𝜎𝑒
2). (53) 

Lastly, for a frame rate of 𝑟𝐹  and a bit depth of 𝐵𝑃, we compute the uncertainty in 

position (due to motion of the target and/or video frame) in units of bits per second as 𝐵𝑝𝑟𝐹𝜎𝑒 , 

where this contribution to the video quality, 𝑄𝑉, is negative: 

 𝑄𝑉 = 𝐵𝑊𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅) − 𝐵𝑝𝑟𝐹𝜎𝑒 . (54) 

As with 𝑄𝑆𝑇, 𝑄𝑉 has units of bits per second. 

Although we have no rigorous theory with which to combine the two quantities, 𝑄𝑆𝑇 and 

𝑄𝑉, we analyzed the possibility of maximizing the magnitude of anticorrelation of such a 

combination with the tracker performance as described in the results section below. The 

combination yielding an overall trackability measure was implemented as: 

 𝑇𝑀 = 𝑤𝑄𝑆𝑇 + 𝑄𝑉 . (55) 

Here, 𝑤 is a weighting constant.  

5.4 22BResults 

Towards analyzing the trackability measure, we first provide synthetic tests to determine 

robustness of our trackability measure. As no other comparable measure exists, we employ the 

synthetic data and compare it to SSIM and SCR, where each provides one of the elements of our 

trackability measure, but not a comprehensive measure as demonstrated by our work. We then 

demonstrate the results of the trackability measure using the Yuma, AZ data as described in 

Section 3.4. Essentially, our methods assume that registration is not possible, due to low overlap 

between frames and erratic movement of the sensor. Although we demonstrate efficacy on the 

Yuma dataset, the methods described apply to any rigid body tracking in unregistered video. 
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5.4.3 47BSynthetic Tests to Demonstrate Efficacy of Trackability Measure 

To compare our trackability measure to another, similar measure is difficult, given that no such 

equivalent measure exists (one that considers video, motion model, quality of the template, 

presence of clutter, etc.). Therefore, we have constructed four synthetic experiments that use the 

aerial image of a car to test the basic differences of the trackability measure with the measures of 

SSIM and SCR. 

Each experiment starts with the actual image of a vehicle taken from an airborne sensor.  

Then, we test four basic scenarios. 

3.4.5.1 49BThe effect of gradual increase in clutter  

Here, we assume an identical object in the neighborhood of the target we want to track. This 

 
Figure 32 –Trackability Measure versus SSIM and SCR in varying clutter occlusion 

Here we show the trackability measure as it compares to SSIM and SCR when the presence of clutter 
identical to the target is gradually revealed. The clutter starts by being fully hidden (occluded). The 
clutter object then increases in resemblance to the target in the image. It can be seen that SSIM does 
not account for clutter existence in the image, while SCR is significantly impacted by a small amount 
of the clutter’s exposure.    

0.00

0.20

0.40

0.60

0.80

1.00

1.20

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Percent Occlusion of Clutter

Normalized Trackability SSIM Normalized SCR



 

Automated Tracking and Analysis of Aerial Surveillance Data 94 
 

 

clutter object is occluded gradually from 100% (no clutter) to 0% (perfectly matching object to the 

target of interest). Then, we record the trackability measure (normalized, so that it can be 

compared) with SSIM and normalized SCR. Here, we assume a perfect template and no noise. 

SSIM does not consider clutter in its measure and thus fails to show the effect of gradually 

revealing an identical object in the neighborhood of the target of interest, as illustrated in Figure 

32. Note that the y-axis in all figures represents the normalized measures for comparison. 

After approximately 30% of the clutter is revealed (70% still occluded), the SCR has a 

more or less flat response, indicating that an object that matches only a small portion of the 

actual template presents the same tracking challenge as an identical copy of the target in the 

vicinity. Trackability shows a basically linear decrease in difficulty with the linear increase in 

clutter (matching the template). 

 
Figure 33 –Trackability Measure versus SSIM and SCR in varying target occlusion 

Here we show the trackability measure as it compares to SSIM and SCR when the target is not present 
in the current frame (100% occlusion) and then the target is gradually revealed. It can be seen that 
the SSIM, as it solely investigates the target, gradually increases as the target is revealed. On the other 
hand, SCR almost plateaus once 15% of the target is revealed.  
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3.4.5.2 50BThe effect of occlusion of the target 

Here, we start with 100% occlusion of the target (impossible to track) and progress to 0% 

occlusion of the target (easy to track). In this experiment, we assume no clutter, a perfect 

template, and no noise. Next, we record trackability, SSIM, and SCR. Aside from 100% occlusion of 

the target, the response of SCR is fairly flat, as can be seen in Figure 33. For example, 50% 

occlusion of the target and 0% occlusion yield roughly the same SCR. Both SSIM and trackability 

gradually increase as the target is revealed indicating that as more of the target is visible, it 

becomes easier to track.  

3.4.5.3 51BThe effect of noise 

Using normalized intensity values for the image (0 to 1), we increase the variance of Gaussian-

distributed white noise (zero mean) from 0 to 1. Trackability, SSIM, and SCR are recorded. Here, 

 
Figure 34 – Comparison of the Trackability Measure to SSIM and SCR in varying noise levels  

Here we show trackability as it compares to SSIM and SCR when the noise level in the image 
increases. A Gaussian noise is added, increasing the variance from 0 to 1. SCR is only slightly impacted 
by the added noise. While all measures decrease, only the trackability measure follows a linear trend 
with noise increase. 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Variance of Gaussian Noise

Normalized Trackability SSIM Normalized SCR



 

Automated Tracking and Analysis of Aerial Surveillance Data 96 
 

 

all three measures respond in relationship with the noise variance, with only trackability having a 

roughly linear response to noise variance. These results are illustrated in Figure 34. 

3.4.5.4 52BThe effect of error on the motion model 

The formulation of both SSIM and SCR does not account for a motion model. Consequently, from 

the results presented here it can be seen that both SSIM and SCR are unaffected by errors in the 

motion model. SSIM only measures the target as it is impacted by video quality, while SCR 

considers other objects in the vicinity of the target, or clutter. As the motion model error 

increases, only trackability decreases in proportion to the amount of error in the motion model. 

These results are illustrated in Figure 35. 

 
Figure 35 –Trackability versus SSIM and SCR in varying motion model error  

Here we show trackability as it compares to SSIM and SCR when the error of the motion model is 
changed from zero pixels (easy to track) to 20 pixels (harder to track). Note that both SSIM and SCR 
completely overlap at 1. This is due to lack of motion model sensitivity in either measure. Only the 
trackability measure accounts for error increase in the motion model. 
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5.4.4 48BTrackability Results for Yuma, AZ Data 

The results for the trackability measure are given for a sequence of wide area surveillance images 

taken from an airborne platform; the Yuma, AZ data we presented in earlier chapters (see section 

3.4). We compare the performance of our ASIFT2 (automated SIFT tracker) and the MS2T 

(morphological scale-space tracker) to the trackability measures 𝑄𝑆𝑇, and 𝑄𝑉. Table 8 and Table 9 

tabulate this performance. Note that “% frames tracked” refers to the percentage of frames in 

which the tracked position is inside the target. The RMSE measure is the root mean squared error 

in units of pixel width from the ground truth center positions. 

 

Table 8 - The overall tracker performance versus signal-template match metrics.  
The frame rate 𝒓𝑭= 1 Hz, 𝑸𝑺𝑻 =  𝑴𝑰({ 𝑺, 𝑻} |𝑪)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . All mutual information quantities shown below 

are averages and are expressed in units of bits. 

 
MS2T ASIFT2 

  

Sequence # 
% frames 
tracked 

Normalized 
Tracked 
RMSE 

% frames 
tracked 

Normalized 
Tracked 
RMSE 

MI(S,T) 
𝑸𝑺𝑻 =

 MI({S,T}|C) 

1 92% 0.06 83% 0.68 2.9 3.8 

2 100% 0.2 45% 0.37 3.1 2.9 

3 90% 0.15 90% 0.65 3.1 2.8 

4 90% 0.61 10% 0.49 2.3 2.7 

5 100% 0.19 100% 0.85 2.6 3.3 

6 100% 0.25 100% 0.38 3.5 3.1 

7 100% 0.08 100% 0.36 3 2.7 

8 100% 0.09 55% 0.31 3.6 3.7 

9 100% 0.32 100% 0.14 3.3 3.6 

10 100% 0.14 100% 0.31 3.1 3.9 
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Table 9 - The overall tracker performance vs. video quality metrics 
Here, TM is calculated with w =600 to maximize RMSE to TM correlation 
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    𝑟𝐹 𝑁 𝐵𝑝 𝜎𝑒 𝐵𝑊(1 + 𝑆𝑁𝑅) −𝐵𝑝𝑟𝐹𝜎𝑒 𝑇𝑀 

1 0.06 0.68 15.1 1 1000 6.7 453.6 8085.7 -3039.12 7326.61 

2 0.2 0.37 13.9 1 1000 5.6 514.1 6569.8 -2878.96 5430.88 

3 0.15 0.65 9.7 1 1000 6 407 6176.3 -2442.00 5414.30 

4 0.61 0.49 10.7 1 672 5.9 470.1 4235.1 -2773.59 3081.55 

5 0.19 0.85 10.8 1 1000 6.1 751 6538.5 -4581.10 3937.38 

6 0.25 0.38 13.3 1 1232 6 751 8540.2 -4506.00 5894.24 

7 0.08 0.36 8.3 1 918 5.7 423.3 5067.7 -2412.81 4274.87 

8 0.09 0.31 12.1 1 1742 7.1 845.5 13818.6 -6003.05 10035.58 

9 0.32 0.14 9.2 1 900 6 258 5446.4 -1548.00 6058.44 

10 0.14 0.31 12.3 1 1872 7.1 218.8 14937.3 -1553.48 15723.86 

 
In this chapter we presented a novel trackability measure. This measure is a proof of 

concept that can be applied in the future to determine the difficulty of a given tracking scenario in 

a video sequence. Table 9 shows the efficacy of our tracking method, MS2T. MS2T, with an 

average error of 0.209, outperforms ASIFT2, with an average error of 0.454. This performance 

exceeds 200% in error reduction. MS2T also performs well on the sequences that have low 

trackability. In Table 9, TM is calculated using the weighting parameter, w, of 600. The table 

shows that trackability (TM) and MS2T as well as ASIFT2 performances are anticorrelated, as 

expected (Spearman correlation coefficient of -0.41 and -0.54, respectively). Furthermore, we 

illustrate the relationship between the tracking results and the trackability measure in Figure 36.  
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5.5 23BConclusions 

This chapter developed a novel quality measure for tracking – trackability, where the trackability 

measure is computed in units of bits per second. The measure incorporates a comprehensive set 

of parameters that we believe directly impact tracking. These parameters are split into two 

measures – signal to template matching and video quality. In our synthetic results we illustrated 

how the measure is impacted by the signal to template matching by analyzing the results of 

occluding the target. Then we illustrated the impact of video quality on the measure by varying 

the noise level, the motion model, and the clutter in the vicinity of the target. In all synthetic 

results, our trackability measure had a direct relationship with the variance in the above 

parameters.  

Additionally, when compared to our trackers from Chapter 3, the tracker performance 

(for the normalized RMSE of MS2T and ASIFT2) parallels the trackability measure, 𝑇𝑀, with a 

Spearman correlation coefficient of -0.41 and -0.54. The negative correlation or anticorrelation is 

due to the fact that as mutual information increases, the error decreases. Given (55), a maximum-

magnitude anticorrelation of -0.41 (with the RMSE of the MS2T) was achieved with weights w in 

  
(a) (b) 

Figure 36 – Regression Analysis for RMSE of MS2T and ASIFT2 vs. Trackability.  
This figure illustrates the trackability measure as it relates to the RMSE for our trackers: MS2T and 
ASIFT2. Both have an inverse relationship. As the RMSE increases, the trackability measure decreases.    
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the neighborhood of w = 600. In future work, we plan to examine 𝑄ST = 𝑀𝐼( 𝑆, 𝑇) − 𝑀𝐼(𝑇, 𝐶)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑟F 

as an alternative to 𝑄ST = 𝑀𝐼({ 𝑆, 𝑇} |𝐶)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑟F. 

The quality measure provided by the trackability analysis does not take into account or 

balance the negative aspects of increased computational expense. For example, the video quality 

for a temporal sampling of 30 fps is greater (in this trackability measure) than that of the same 

sequence subsampled to 10 fps. In this case, given a slowly moving target, the 10 fps sampling 

rate could be sufficient for tracking, while the 30 fps video costs roughly three times more to 

process. 

We must also note that the trackability measure is only indicating the tracking difficulty 

for a given video and not how well a given tracker will perform. Our aim was to establish a 

methodology to quantify the ability to track targets and a very preliminary investigation was done 

to compare our novel trackability measure to our trackers presented in Chapter 4. A rigorous 

investigation is needed to study a variety of trackers and how their performances correlate to the 

trackability measure.  

This work, for the first time, develops a trackability measure that can quantify the 

difficulty of a given tracking scenario. It considers the difficulty of finding the target in an 

information theoretic approach, which takes clutter into account. Furthermore, it goes beyond 

existing image quality measures by incorporating the effects of video frame rate and target 

motion.  

For future work, additional parameters for the trackability measure should be considered 

and implemented. Firstly, the SSIM index presented in this chapter can be utilized as SNR since it 

provides a measure of the full reference target as it compares to a degraded target. Also, in 

registered video sequences a motion model can be incorporated. In the case of unregistered 
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sequences the lack of a motion model can indicate further difficulty of tracking because one less 

parameter can be identified.  
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Specific Aim 3: To develop a measure of tracking difficulty for a given target and sequence 

Here we presented our methodology to develop a novel “trackability” measure. This measure 

uses a theoretical information approach to evaluate the difficulty of matching a template to a 

target in the presence of clutter. The measure also takes into account resolution, noise, frame 

rate, registration error, and motion model prediction error. This trackability measure is the first 

such attempt to quantify the difficulty of a given tracking experiment [59]. 
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CHAPTER 6. 

5BCONCLUSION 

The increased prevalence of video cameras has led to an elevated volume of video data that 

requires analysis. Employing a human observer to analyze and tag video sequences is expensive, 

limited in capability, and prone to error. Consequently, an automated method is essential for the 

analysis of video sequences. Additionally, all video data are not created equal. Depending on the 

video acquisition mechanism, the resulting data will have varying temporal and/or spatial 

resolution, differing wavelengths, and can be acquired from a variety of platforms, such as 

buildings, helicopters, UAVs, etc. Therefore, we require a methodology to distinguish between the 

varying types of video as they impact trackability.  

The aim of this dissertation was to study tracking obstacles emerging from target tracking 

in surveillance video sequences. To achieve this goal, we developed several novel tracking 

algorithms to tackle a variety of video sequences. We also designed a trackability measure to 

analyze the difficulty of tracking targets in video sequences whose focus relates to persistent 

surveillance applications.  

Consequently, the first major contribution of this work is that it provides two automated 

methods to track multiple targets in persistent surveillance video sequences. In the first approach, 

we develop an automated tracker for registered (stationary camera) video sequences, while in the 

second approach we present three techniques for unregistered video sequences. The 

Morphological Scale-Space Tracker (MS2T) provides unique capabilities to track unregistered video 

sequences with low temporal sampling. The second major contribution is the introduction of a 

novel trackability measure that allows the user to quantify the difficulty of tracking in a variety of 

environments via an assortment of imaging sensors. Each aim of the dissertation was validated by 



 

Automated Tracking and Analysis of Aerial Surveillance Data 104 
 

 

the appropriate set of experimental results as specified for each aim below. We believe that MS2T 

has viable extensions to object recognition, robotic navigation, and scene understanding work. 

 

Aim 1 – Chapter 3 

Our first specific aim was to develop an automated tracking algorithm for a single moving target 

in surveillance video sequences by fusing a particle filter with the active contour. 

To address this aim we established a novel tracker for video surveillance applications presented in 

Chapter 3. The Snake Particle Filter (SPF) tracker unites the snake and the PF. The snake is used to 

establish the motion model and to determine particle weights, while the PF is employed to handle 

non-linear, non-white noise systems. In applying our tracking algorithm to two data sets, a low 

RMSE between the results of SPF and manual tracked targets was less than half a target in the 

horizontal and vertical directions. 

 

Aim 2 – Chapter 4 

Our specific aim was to accomplish tracking with a morphological scale-space that allows tracking 

multiple targets in unregistered video sequences. 

Towards this aim, Chapter 4 illustrated three novel ideas towards successful tracking in 

unregistered video: the automated SIFT tracker, the morphological scale-space tracker (MS2T) and 

the incorporation of SIFT into the morphological scale-space tracker. We demonstrated the 

improvements in tracking as we developed each tracker. Additionally, we utilized our 

morphological scale-space concepts towards successfully detecting the target in every frame of 

unregistered video sequences. In applying our tracking algorithm to unregistered data, we 

demonstrated that by incorporating SIFT into our MS2T, we track 98% of the frames in the video 
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sequences on average with a normalized RMSE value of 0.28 of the tracked frames. It should be 

noted that percentage of tracked frames is a more significant measure than RMSE. 

 

Aim 3 – Chapter 5 

Our specific aim was to develop a measure of tracking difficulty for a given target and sequence. 

To address this aim we presented a novel trackability measure in Chapter 5. The measure is a first 

known proof of concept that can be applied in the future to determine the ‘fit’ of a video 

sequence for tracking. This measure uses a theoretical information approach to evaluating the 

difficulty of matching a template to a target in the presence of clutter. The measure also takes 

into account resolution, noise, frame rate, registration error, and motion model prediction error. 

This trackability measure is the first such attempt to quantify the difficulty of a given tracking 

experiment. In this chapter we illustrated the direct impact of degradation in video quality, 

clutter, and occlusion of the target on the trackability measure.  

 

Our research presented here can be further developed with the following future improvements.  

In our first aim, the SPF can be extended to include automatic monitoring for incoming 

targets, and the characterization of target-to-target interaction. For our second aim, future 

investigation can include incorporating relative key-point locations to the target center to 

enhance the ASIFT2. Knowing the location of the SIFT key-points will improve the SIFT tracker’s 

knowledge of the centers of targets.  

Another idea that can be investigated is to use SIFT as a global tracker from one frame to 

the next. As a result, registration can be achieved and the global motion of the frame can be 

established. Knowing the motion of the frame will allow extracting the targets that are not 

moving with the general motion. Additionally, GPU implementations of both SIFT and the 
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connected filter should be investigated. The recent applications of GPU algorithm implementation 

have demonstrated a significant improvement in execution time. Sinha et al. demonstrated 20 

times improvement over CPU implementation of SIFT key-points tracking in video [60]. Since 

many aspects of both algorithms could run in parallel, both algorithms will have shorter execution 

time if implemented using GPUs. 

 Lastly, our trackability measure is the first step in analyzing trackability of video 

sequences. The next step is to analyze large quantities of video sequences with varying qualities 

to understand the trackability of the various types of video. Additionally, the measure should be 

utilized to compare various tracking methodologies to study how tracking techniques perform 

relative to video sequences and the trackability measures.  
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