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ABSTRACT 

Head and brain injury risk functions have been proposed over the years in order to 

estimate the probability of brain injury from head impact using kinematic and injury data from 

various sources, such as PMHS and animal testing. Yet, researchers have reiterated the need for 

human head kinematic data for creating and evaluating injury risk functions and risk assessment 

values given that other types of data may lack the physiologic and anthropometric response 

required. 

To this end, this thesis aimed to collect human head kinematics to evaluate existing injury 

risk functions. A literature review revealed what measures of human head motion have been 

previously published, including direct measures of head kinematics (e.g., wearable sensors used 

on-field with contact athletes) and indirect measures of head motion (e.g., computational and 

experimental reconstructions of real-life impacts). Three data sources (n = 443) were selected 

from the literature based on inclusion criteria. Data were evaluated for consistency and used to 

calculate kinematic and strain-based injury risks. 

The injury risk values were used to evaluate the efficacy of each of 16 injury risk 

functions using four separate analytical tools. Correlations between the injury risk functions and 

strain metrics showed that strain- and rotationally-based injury risk functions had the strongest 

correlations. Area under ROC curves assessed each function’s ability to separate injurious and 

non-injurious impacts; all risk functions were better than random guessing. Likelihood estimates 

ranked the injury risk functions on their ability to correctly predict the dataset’s injury outcomes, 

with GAMBIT showing the best predictive capability according to this measure. The number of 

expected injuries was calculated for each risk function; however, most did not correctly estimate 

the number of observed injuries (n = 31). Results from these four assessment tools, however, 

were mixed, with no single risk function performing best.  

The lack of consensus in the assessment tools may be a result of the data used to develop 

the risk functions. Studies have noted unbiased exposure data is needed to estimate the absolute 

injury risk from impact; however, most injury risk functions (and the data in this thesis) were 

based on case-control data. Statistical simulations were conducted to create injury risk functions 

based on several sampling scenarios. These results from these simulations demonstrated that 

researchers should be wary of risk curves derived solely from case-controlled data given that 

these may be over-predictive of injury probabilities compared to the absolute risk of a 

population. Despite the issues with the risk functions, this thesis provides a verified data set that 

is a necessary step for injury risk function evaluation. 



ii 

TABLE OF CONTENTS 

ABSTRACT ............................................................................................................................... i  

TABLE OF FIGURES ................................................................................................................. iv  

TABLE OF TABLES................................................................................................................... vi  

CHAPTER 1: INTRODUCTION ............................................................................................. 1 

1.1. Motivation ............................................................................................................ 1 

1.2. Background .......................................................................................................... 3 

1.3. Aims ................................................................................................................... 14  

CHAPTER 2: HEAD BIOMECHANICS IN HUMANS ...................................................... 16 

2.1. Introduction ........................................................................................................ 16 

2.2. Literature review of human head kinematics ..................................................... 16 

2.3. Data sources in this thesis .................................................................................. 28 

2.4. Summary ............................................................................................................ 34 

CHAPTER 3: ESTABLISHING A CONSISTENT DATASET ........................................... 36 

3.1. Introduction ........................................................................................................ 36 

3.2. Data preparation ................................................................................................. 37 

3.3. Kinematics-based injury risk metrics and injury risk functions ........................ 44 

3.4. Strain-based injury criteria and injury probability predictions .......................... 51 

3.5. Results ................................................................................................................ 53 

3.6. Summary ............................................................................................................ 57 

CHAPTER 4: EVALUATION OF CURRENT INJURY RISK FUNCTIONS .................. 59 

4.1. Introduction ........................................................................................................ 59 

4.2. Correlations with strain metrics ......................................................................... 59 

4.3. Receiver operating characteristic curves ........................................................... 63 

4.4. Log-likelihood estimates .................................................................................... 68 

4.5. Expected injuries ................................................................................................ 73 

4.6. Discussion .......................................................................................................... 77 

4.7. Summary ............................................................................................................ 83 

CHAPTER 5: CASE-CONTROL DATA AND LOGISTIC REGRESSION ..................... 84 

5.1. Introduction ........................................................................................................ 84 

5.2. Methods.............................................................................................................. 85 

5.3. Results ................................................................................................................ 89 



iii 

5.4. Discussion .......................................................................................................... 91 

5.5. Summary ............................................................................................................ 97 

CHAPTER 6: CONCLUSIONS .............................................................................................. 99 

6.1. Concluding remarks ........................................................................................... 99 

6.2. Contributions.................................................................................................... 101  

6.3. Future research directions ................................................................................ 101 

6.4. Limitations ....................................................................................................... 103 

REFERENCES .......................................................................................................................... 105  

APPENDIX A: CONSISTENT AND INCONSISTENT NAP ARRAYS ............................ 126 

APPENDIX B: DISTRIBUTION OF KINEMATIC AND STRAIN-BASED INJURY RISK 
PREDICTIONS .............................................................................................. 128 

 

  



iv 

TABLE OF FIGURES 

Figure 1. Acceleration-duration tolerance curve for forehead impact to a hard, flat surface 
developed by Wayne State (adapted from Patrick et al., 1963). ............................................... 6 

Figure 2. Flowchart of inclusion criteria to assist in the selection of data sources. ...................... 30 

Figure 3. Volunteer sled test configurations for (A) frontal, (B) oblique, and (C) lateral. ........... 32 

Figure 4. Local head anatomic coordinate system with orientations defined according to SAE 
J211. ........................................................................................................................................ 36 

Figure 5. Chronological ordering of reconstructions showed that a common sensor was identified 
as inconsistent in subsets of the test series.............................................................................. 38 

Figure 6. Change in distribution of the resultant head kinematics as a result of the corrections 
made to the professional football reconstruction data. ........................................................... 41 

Figure 7. Linear displacement trajectories for each impact condition in the XY anatomical plane. 
Trajectories are plotted with respect to a coordinate system attached to the seat. The photo 
target indicates the location of the head CG. .......................................................................... 43 

Figure 8. Mid sagittal plane view of the FE human head models used in this thesis. .................. 52 

Figure 9. Distribution of MPS over all elements from the FE model and strain metrics calculated 
from the distribution. .............................................................................................................. 52 

Figure 10. Distribution of maximum resultant kinematic parameters based on the 443 head 
impacts. ................................................................................................................................... 55 

Figure 11. Distributions of the probabilities of injuries calculated from curves in Takhounts et al. 
using SIMon strain metrics as the predictor variable.............................................................. 58 

Figure 12. Distribution of strain metric values calculated via the GHBMC simulations. ............ 58 

Figure 13. Overall correlation between strain metrics from GHBMC and injury risk probabilities 
from kinematic- and strain-based metrics. .............................................................................. 61 

Figure 14. ROC curves (top) and their respective area under the curves (bottom) them of the 
injury risk probabilities estimated for various injury risk metrics .......................................... 65 

Figure 15. Plot of the negative log-likelihood estimates. Injurious cases (red line) that have a low 
probability of injury will have high values. The same is true with non-injurious cases (green 
line) that have a high risk of injury. ........................................................................................ 70 

Figure 16. Negative log-likelihood estimates of all injury risk functions relative to 20 
concussions. ............................................................................................................................ 71 

Figure 17. Expected number of AIS 2+ and concussive injuries predicted using each of the injury 
risk functions calculated using the full dataset (n = 443). The full dataset had 31 observed 
concussions. ............................................................................................................................ 74 



v 

Figure 18. Expected number of injuries predicted for each injury risk function using only the 
most severe tests for each volunteer rather than all 335 HRV sled tests. The full dataset still 
had 31 observed concussions. ................................................................................................. 75 

Figure 19. Injury risk function ranks with respect to each evaluation metric. .............................. 79 

Figure 20. Weibull distribution fitted to the resultant head linear acceleration exposure in 
collegiate football impacts. ..................................................................................................... 85 

Figure 21. Plots of the original injury risk function developed by Funk et al. (2011) using a 
weibull distribution compared with its equivalent developed using logistic regression. 
Regression coefficients were chosen to mimize the difference between the two curves ....... 86 

Figure 22. Exposure distribution used for sample scenarios B and C, in which only significant 
hits (i.e., above 35 g) were considered. The Weibull exposure distribution is defined using 
the same coefficients as in Figure 20. ..................................................................................... 87 

Figure 23. Distribution of the concussive and non-concussive impacts based on 10,000 samples.
................................................................................................................................................. 89 

Figure 24. Injury risk curves determined by the four sampling scenarios, compared to the curve 
defined to represent true injury risk. ....................................................................................... 90 

Figure 25. Two-by-two frequency table used for calculating the odds-ratio. ............................... 92 

Figure 26. Definitions of a, b, c, and d from the frequency table (Figure 25), as they may apply to 
injury and non-injury distributions in football head impacts. ................................................. 93 

  



vi 

TABLE OF TABLES 

Table 1. AIS injury severity descriptions ....................................................................................... 4 

Table 2. Summary of human head kinematic data sources used in this thesis. ............................ 35 

Table 3. Inconsistent sensors in the NAP array and end times for each case. Blank rows under 
player 1 indicate helmet-to-ground impacts. Blank rows in the artefactual impact column 
indicate no secondary impact occurred. .................................................................................. 39 

Table 4. Existing kinematics-based injury risk functions used in this thesis. ............................... 50 

Table 5. Strain-based injury risk functions used in this thesis. ..................................................... 53 

Table 6. Peak non-concussive injury metrics and probabilities and minimum concussive injury 
metrics and risks. .................................................................................................................... 56 

Table 7. Coefficients for the logistic regression models determined from each of the four 
sampling scenarios. Parentheses indicate 95% confidence intervals. ..................................... 90 

 



1 

CHAPTER 1:  INTRODUCTION 

1.1. Motivation 

Significant advances have been made in reducing the number of serious and fatal injuries 

in the United States due to an improved understanding of injury biomechanics in humans. 

Notwithstanding the strides made in injury prevention, traumatic brain injury (TBI) remains a 

major global health problem (Taylor et al., 2017). An estimated 2.8 million emergency 

department visits, hospitalizations, and deaths resulted from TBI in the United States in 2013 

(Taylor et al., 2017); falls (47%), being struck by or against an object (15%), and motor vehicle 

collisions (14%) were the largest contributors (Taylor et al., 2017). In the military, 

approximately 320,000 soldiers have suffered from TBI since 2000 likely due to extended 

deployments and an increased use of improvised explosive devices (Pascrell, 2009). Sports-

related concussions are also a major health concern, with an estimated 3.8 million concussions 

believed to occur annually due to sporting activities, although half of these are believed to be 

unreported (Harmon et al., 2013). When only considering children and adolescents under the age 

of 19, the rate of emergency department visits for sports- and recreation-related concussions 

more than doubled between 2001 and 2009 (J. Gilchrist et al., 2011).  

While head and brain injury related fatalities have decreased from federal regulations and 

protective equipment, the number of survivable TBIs spanning mild to severe type injuries seem 

to be rising (Coronado et al., 2015; Takhounts et al.  2013; Taylor et al., 2017). Several reasons 

have been postulated for this increase, including and increased awareness of concussion, 

improved reporting practices, a broadened definition of mild TBI (concussion) to include more 

symptoms, and better tools for clinical diagnosis (Coronado et al., 2015; Hootman et al., 2007; 

Taylor et al., 2017). Regardless, these trends necessitate better understanding of the relationship 
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between head kinematics, brain biomechanics, and subsequent neuropathology, as well as the 

development of countermeasures and head protective equipment that can better prevent TBI. 

Over the years, researchers have developed countless tools in an attempt to elucidate the 

relationship between head kinematics and brain injury. Tissue level parameters, such as 

intracranial pressure, brain strain, strain energy, and strain rate, von Mises stress, and more have 

been proposed as predictors of injury (Giordano & Kleiven, 2014; Kleiven, 2007; Versace, 1971; 

Zhang et al., 2004), as well as various combinations rotational and translational head kinematics 

(Gadd, 1962; Kimpara et al., 2011; Newman, 1986; Newman et al., 2000a; S. Rowson et al., 

2012). In each of these studies, however, one thing has remained constant: the need for human 

data to develop and validate these assessment tools. 

Ommaya (1985) proposed concussion tolerance criteria, but indicated that these were 

highly speculative as they were based on primate data. This has been reiterated by others who 

have noted that little human data have been used to develop injury assessment and that the 

sample of specimens used may not be representative of the general population (Kimpara & 

Iwamoto, 2012; S. Rowson et al., 2012). Others note that experimental data is currently lacking 

to properly validate these assessment tools, but say that if it becomes available these data should 

be used to revise the injury tools and tolerances (Sanchez et al., 2017a; Takhounts et al., 2011). 

This thesis aims to establish a verified set of human kinematic data and injury outcomes as a 

necessary step to develop and evaluate brain injury assessment tools. Then, the dataset will be 

used to begin to assess various injury risk functions. 
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1.2. Background 

1.2.1. Types of brain injury and the Abbreviated Injury Scale 

The Centers for Disease Control and Prevention defines TBI as a disruption in the brain’s 

normal function caused by a bump, blow, or jolt to the head, or by a penetrating head injury 

(Centers for Disease Control and Prevention, 2015; Marr & Coronado, 2004). More specifically, 

TBI has been defined as an occurrence of head injury with at least one of the following: a 

decreased level of consciousness, amnesia, skull fracture, objective neurological or 

neuropsychological abnormality, a diagnosed intracranial lesion, or as an occurrence of death 

resulting from head trauma (Thurman et al., 1995). 

TBIs can be broadly classified as either focal-type or diffusion type injuries. Focal type 

injuries are associated with localized damage visible to the naked eye. These are typically 

induced when an object penetrates the skull, such as the result of a motor vehicle crash, and 

include cerebral contusion and laceration, and epidural, subdural, and intracerebral hemorrhage 

(LaPlaca et al., 2007). Diffuse brain injuries are associated with more widespread disruption of 

brain tissue and microscopic damage (Adams et al., 1977; Gennarelli, 2005). Diffuse type brain 

injuries form a spectrum of injuries; the most severe form is diffuse axonal injury (DAI). DAI is 

the widespread damage to the brain’s white matter; symptoms include the immediate loss of 

consciousness lasting for days to weeks (Gennarelli et al., 1982). 

The most common type of TBI is mild diffuse brain injury, more commonly known as 

concussion (Centers for Disease Control and Prevention, 2003). The 2012 Zurich Consensus 

statement defines concussion as “a complex pathophysiological process affecting the brain, 

induced by biomechanical forces” (McCrory et al., 2013). Symptoms include headache, feeling 

in a fog, emotional instability, loss of consciousness, amnesia, irritability, slowed reaction times, 
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or insomnia (McCrory et al., 2013). Guidelines were also set forth for diagnosing concussions, 

including the use of signs, symptoms, computer-based neurocognitive testing, and clinical 

judgment (McCrory et al., 2013). 

Head and brain injuries, such as concussion and DAI, can also be classified using the 

Abbreviated Injury Scale (AIS). AIS is an anatomically-based coding system used to classify and 

describe injury severities according to the threat to life associated with the injury (Gennarelli & 

Wodzin, 2008). Injuries are ranked on a scale from 1 to 6, with levels 1 to 5 indicating mild to 

severe injuries and 6 representing a fatal injury (Table 1). Skull fractures can be rated as an AIS 

2, AIS 3, or AIS 4 injury depending on the type and location of fracture; a contusion is generally 

an AIS 3 injury and DAI is classified as AIS 4+ (Gennarelli & Wodzin, 2008). Concussion has 

several associated AIS severities depending on the both brain region, loss of consciousness, and 

other factors; previous research has used a general definition of concussion as an AIS 2+ injury 

(Takhounts et al., 2013) or as an AIS 2-3 injury (Viano, Parenteau, Xu, & Faul, 2017). This 

thesis follows the approach by Takhounts et al., in that concussion is assumed to be an AIS 2+ 

injury for the injury risk functions in later chapters. 

 

Table 1. AIS injury severity descriptions 

AIS 
Code 

Injury 
Severity 

Concussion Symptoms 

AIS 2 Moderate Mild-to-moderate concussion with loss of consciousness <1h 

AIS 3 Serious Severe concussion with loss of consciousness 1-6h  

AIS 4 Severe Diffuse axonal injury with loss of consciousness 6-24h  
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1.2.2. Brain injury criteria 

Brain injury criteria provide a means for assessing brain injury risk during head impact or 

inertial loading. Traditionally, injury criteria were developed for interpreting anthropometric test 

device (ATD) responses in vehicle safety assessments, but their use has since been extended to 

other impact environments such as sport and military. Brain injury criteria consist of two parts: a 

biomechanical metric and an injury risk function. Numerous brain injury metrics have been 

proposed to relate engineering parameters, such as head kinematics or tissue-level strains, to 

head impact severity; the injury risk curve then relates this metric to a likelihood of brain injury 

via a probabilistic function. 

Traditionally, head injury risk metrics have been based on translational kinematics 

(Gadd, 1962; Lissner et al., 1960; Versace, 1971). Maximum resultant linear acceleration was 

found to correlate with skull fracture (Gurdjian et al., 1966; Lissner et al., 1960); this correlation 

led to the development of the Wayne State Tolerance Curve (WSTC), which defines a skull 

fracture threshold based on resultant linear head acceleration and impact duration (Figure 1; 

Patrick et al., 1963). Gadd (1962) fitted data from the WSTC in order to develop the Severity 

Index (SI). Later a time averaging component was added such that SI became the Head Injury 

Criterion (HIC; Versace, 1971). Currently, HIC is the only federally mandated safety standard in 

automobile design (NHTSA, 2000); SI and peak linear acceleration have also been used in 

helmet safety evaluations and regulations (NOCSAE, 2015; S. Rowson & Duma, 2011). 
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Figure 1. Acceleration-duration tolerance curve for forehead impact to a hard, flat surface developed by 
Wayne State (adapted from Patrick et al., 1963). 

Despite the widespread use of translational-based metrics, some have questioned whether 

they can assess brain injury from closed-head impacts (Gabler et al., 2016a; Gennarelli et al., 

1982; Margulies & Thibault, 1992; Takhounts et al., 2013). Holbourn, (1943) proposed 

rotational head motion as a better predictor for brain strains, contending that shear strains are the 

primary mechanism of diffuse type brain injuries and that rotation is the simplest way to generate 

shear strain in the brain. Studies have developed metrics and tolerances based on rotational 

kinematics, such as the Brain Injury Criterion (BrIC), which was developed to serve as a 

complement to HIC in the automotive industry, and the Rotational Injury Criterion (RIC) 

(Kimpara & Iwamoto, 2012; S. Rowson et al., 2012; Takhounts et al., 2013). Combinations of 

translational and rotational kinematics have also been proposed as risk assessment metrics 

(Newman, 1986; Newman et al., 2000a; S. Rowson & Duma, 2013). 

Finite element (FE) models are the current state of the art for studying the mechanical 

response of the brain during head impact. Validated FE models have provided a useful 

alternative for studying brain deformation given that direct measures of tissue-level brain 
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mechanics are challenging to collect (Mao et al., 2013; Takhounts et al., 2008). In literature, FE 

models have been used to simulate real-world events, with results of these simulations assisting 

in the derivation of tissue-based injury metrics to categorize brain tissue injury (Bandak et al., 

2001; Gabler et al., 2016b; Kleiven, 2007; Marjoux et al., 2008; Panzer et al., 2012; Takhounts et 

al., 2003, 2008, 2011, 2013; Zhang et al., 2004). Examples of the tissue-based metrics include 

maximum principal strain (MPS; Kleiven, 2007), von Mises stress (Deck & Willinger, 2008), 

cumulative strain damage measure (CSDM; Takhounts et al., 2003), and tract-oriented strain 

(TOS; Sullivan et al., 2015). 

1.2.3. Injury risk functions 

Regardless of the predictor variable used to assess injury risk, the variables must be able 

to accurately predict injury over a broad range of severities. A single tolerance is often used for 

the purpose of safety standards; for example, a maximum HIC value of 700 is allowed in vehicle 

regulations (Eppinger et al., 1999), while helmet regulations limit the severity index to less than 

1200 (NOCSAE, 2015). While these values are generally chosen based on the probability of 

injury at that threshold, a single value does not account for the variation in human tolerance due 

to factors such as genetic predisposition, age, and gender. Thus enters the necessity for the injury 

risk function, a tool which determines the probability of injury for a given impact rather than a 

simple pass or fail. Kent & Funk (2004) state that a fundamental purpose of the field of injury 

biomechanics is to develop risk curves defining injury probability as a function of known 

predictors. Generally, injury risk functions are expressed as a probabilistic curve given that the 

likelihood of injury is dependent on many factors, such as age, gender, physiologic condition, 

and other factors (Crandall et al., 2011). 
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A common approach for developing injury risk functions is to assume a form of the 

function and optimize the fit of the assumed form such that estimated outcomes match 

observations. Literature has shown four common statistical distributions used to define the 

functional form of the injury risk function: log-normal, logistic, Weibull, and normal 

distributions. Logistic regression is perhaps the most common form for deriving injury risk 

curves from biomechanical data due to the ease of use for modelling binary responses (i.e. 

injured and uninjured), although the other distributions are also capable of modelling binary 

response data (DiDomenico & Nusholtz, 2003; Kent & Funk, 2004) 

1.2.4. Data sources for injury risk functions 

As mentioned above, the purpose of an injury risk function is to relate biomechanical 

variables to a probability of injury in order to better develop and evaluate the protective 

capabilities of equipment and countermeasures. Designers of head safety equipment and 

automotive injury countermeasures use the risk assessment models to drive design, thus they 

require accurate assessment models that can predict brain injury over a wide range of severities. 

However, a paradox arises because while this equipment is designed to protect human subjects, 

human research volunteers cannot be used in laboratory tests that may jeopardize their well-

being. Researchers must therefore conduct experiments on human surrogates and extrapolate the 

results to human subjects in order glean as much information as possible without injuring 

volunteers. 

Early research primarily focused on quantifying risk for open-type head injuries like skull 

fracture. As such, post-mortem human subjects (PMHS) have been used at length to study 

tolerance and injury risk to impacts for skull fracture. Prasad & Mertz (1985) developed the 

injury risk functions for HIC using skull fracture data collected from PMHS head drop tests 
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(helmeted and unhelmeted) and impacts against windshields. These curves were expanded to 

represent the cumulative injury probability at various injury AIS levels by extending the 

relationship between maximum AIS 3 and 4 curves for Thoracic Trauma Index (NHTSA, 1995); 

the resulting curves represent cumulative injury probability at a given HIC level (AIS 1+ to AIS 

5+). For example, a HIC value of 1000 represents a 17% probability of severe head injury (AIS 

4+), a 53% probability of serious injury (AIS 3+) and an 89% probability of moderate head 

injury (AIS 2+; NHTSA, 1995). In automobile design, a maximum HIC value of 700, or a 6% 

probability of AIS 4+ injury, is allowed in automobile design under the provisions of the U.S. 

advanced airbag regulation (NHTSA, 2000). 

HIC and its injury risk curve were designed using skull fracture data; as such, HIC has 

been successful in mitigating severe head injuries, but it does not address mild TBI such as 

concussion. Further, skull fractures can be identified in PMHS experiments, but this type of 

human surrogate lacks the physiologic response needed to diagnose brain injuries. Animals, on 

the other hand, provide a viable surrogate to study physiologic response to injury, and have been 

used at length to determine brain injury tolerances. Early research on rotational brain injury was 

pioneered by Ommaya et al. (1964), who derived injury tolerances from primates. Since then, 

studies have generally used primates and pigs as surrogates for human brain injury response 

(Abel et al., 1978; Margulies et al., 1999; Meaney et al., 1993; Ommaya, 1985; Stalnaker et al., 

1977). Data from these studies have become the basis for modern brain injury criteria; for 

example, Takhounts et al. (2011, 2013) developed injury risk functions for two DAI based strain 

injury metrics (MPS and CSDM) from animal data by applying scaled kinematic loading 

conditions to an FE model and relating the model results to the animal injury outcomes. 



10 

Correlations between these strain metrics and the kinematic metric BrIC were also determined by 

Takhounts et al. (2013) in order to develop injury risk functions for BrIC. 

A more recent approach has been to collect data from sensors worn by contact sport 

athletes so that clinical injury outcomes can be related to engineering parameters to develop 

injury risk functions. Researchers have used various types of sensor-mounted headgear 

(Chamouard et al., 1987; Duma et al., 2005). instrumented mouth guards (Camarillo et al., 2013; 

D. A. King et al., 2015; Siegmund et al., 2014), and skin patches (Press & Rowson, 2017; 

Reynolds et al., 2016; Stucker, 2015) worn by athletes to collect kinematic data during the 

sporting event which can then be related to clinical injury outcomes. The advantage of these 

types of sensors is that they directly measure head kinematics resulting from impact. 

Additionally, wearable sensors collect all impacts above a specified threshold, providing 

information about the exposure various levels of head impacts (Altman, 1990; Bonita et al., 

2006; Duma et al., 2005; Funk et al., 2007). Both the kinematic measures and the exposure data 

have been used to develop injury risk functions; for example, Rowson et al. (2012) and Rowson 

& Duma (2013) employed a helmet-mounted sensor array, known as the Helmet Impact 

Telemetry (HIT) system, to develop injury risk functions from collegiate football impacts for 

several predictor variables. 

Another way to relate head kinematics and clinically diagnosed injuries is by recreating 

head injuries in real-life impacts. In literature, reconstructions have been conducted 

computationally and experimentally using various inputs, such as impact speed found via an 

event data recorder, eye witness account, or video analysis. For example, computational 

simulations have been used to reconstruct head injuries seen from falls, motor vehicle crashes, 

and pedestrian impacts (Auer et al., 2001; O’Riordain et al., 2003; Somers et al., 2011). 
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Laboratory reconstructions, on the other hand, have been used to reconstruct impact events in 

sports in order to glean insight to the head kinematics that may not have been measured via 

wearable sensors (Begeman & Melvin, 2002; Fréchède & McIntosh, 2009; McIntosh et al., 2000; 

Pellman et al., 2003). Newman et al. (2000a, 2005) and Pellman et al. (2003) reconstructed 

professional football, concussive impacts in the late 1990s; the resulting data have been to 

develop injury risk functions for various kinematic metrics (Newman et al., 2000a; Pellman et 

al., 2003). 

1.2.5. Limitations of the data used for injury risk function development 

While the data sources mentioned above are the best available for studying human 

tolerance to brain injury, each is not without limitations. PMHS are an exact representation of 

human anatomical structures, but they lack the tissue properties and physiologic response needed 

to produce comparable injuries and responses to humans (Crandall et al., 2011). This is 

especially true for concussions, which are generally only able to be diagnosed via functional 

symptoms (McCrory et al., 2013). Animal models have been used to study virtually every body 

region, however the interpretation of animal results is complicated by differences in anatomy and 

physiology (Crandall et al., 2011; Kent & Bass, 2007). Clinically-relevant, functional outcomes 

from animal data are contingent upon using appropriate techniques to scale and extrapolate the 

original data to human injury outcomes; this is an area that remains an open research question 

(Crandall et al., 2011; Ommaya, 1985; Panzer et al., 2014). 

Human research volunteers (HRVs) eliminate the scaling question as they are identical to 

the population of interest. At the same time, they have the obvious drawback in that laboratory 

tests must be performed at sub-injurious levels (Belmont Report, 1979; Declaration of Helsinki, 

1996, “The Nuremberg Code,” 1949). As such, injury risk functions cannot be derived solely 
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using data collected from HRVs, but must be developed in conjunction with other, injurious data. 

Research volunteer data can be used, however, to assess whether injury risk functions are over 

predictive, although determining the accuracy of a risk function requires additional assessments 

using higher severity head impact data (Sanchez et al., 2017a). 

Wearable sensors have been deployed to collect potentially injurious human data, but 

technical challenges appear to limit the accuracy of their kinematic measures in certain impact 

conditions. For example, helmet fit and padding in instrumented headgear may affect sensor 

coupling to the human head and cause errors in measurement if there is relative motion between 

the helmet and head (Beckwith et al., 2012; Jadischke et al., 2013; Siegmund et al., 2015). 

Similarly, instrumented mouth guards are dependent on fit and wear, as well as factors such as 

mandible motion, variation is fabrication, and unanticipated impacts in which the jaw is open 

(Camarillo et al., 2013; Wu et al., 2016). Non-rigid skin coupling can lead to incorrect 

predictions of head motion for both skin patches and skull cap sensors, with studies reporting 

kinematic artifacts resulting from soft-tissue dynamics (Lucchetti et al., 1998; Shultz et al., 2011; 

Wu et al., 2016). 

Injury reconstructions allow researchers to relate clinical injury diagnoses to quantifiable 

engineering parameters, but unlike the wearable sensors, they can only provide an indirect 

measure of the engineering parameters. Additionally, a substantial amount of uncertainty exists 

from the reconstruction process. For example, error sources may stem from the methodology 

used to determine reconstruction initial conditions, the use of a human surrogate (ATD or 

computational model), the sensors mounted in an ATD, and the material properties or boundary 

conditions in a computational model (M. D. Gilchrist & Doorly, 2009; Newman et al., 2005; 
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O’Riordain et al., 2003). Computational requirements could also limit the use of computational 

modeling (Doorly et al., 2005a). 

1.2.6. The necessity of human data for risk functions 

Despite the limitations, the underlying need for human biomechanical data for the 

development and validation of injury assessment tools and injury risk functions has been 

reiterated throughout literature (Ommaya, 1985; Sanchez et al., 2017a; Takhounts et al., 2011). 

Additionally, while FE models of the human brain are theoretically well-suited for studying the 

tissue-level response of a head impact due to their capacity of predicting strains based on head 

motion (Gabler et al., 2016a; Takhounts et al., 2013; Zhao et al., 2017), different state-of-the-art 

head and brain models can predict widely different strain responses for the same kinematic 

inputs of the head (Ji et al., 2014). Reliable, biomechanical head response and injury data are 

needed to improve both model validation and predictive capabilities. 

By combining the kinematic and injury data from wearable sensors, reconstructions, and 

HRVs, it may be possible to address some of the limitations associated with each. HRVs have 

reliable biomechanics, but no injury, while wearable sensors have injury outcomes, but 

questionable biomechanics and reconstructions have both injury outcomes and good 

biomechanics, but questionable accuracy. Combining these three sources of human data may 

provide the biomechanical information needed to assess injury risk functions. Accurate brain 

injury risk assessment models can have a significant effect on the development of head safety 

systems including helmets and vehicle restraints; thus, the accuracy of these metrics in terms of 

correctly predicting brain injury over range of severities is of utmost importance.  
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1.3. Aims 

1.3.1. Objectives 

The first goal of this thesis is to establish a consistent database of human head kinematic 

data of concussive and non-concussive impacts. Consistent is be defined such that injuries are 

the same for all cases (i.e., concussions only) and that all kinematic data are valid representations 

of the measured motion and are processed in the same manner. Chapter 2 consists of a literature 

review of previously collected direct and indirect measures of human head kinematics, all of 

which could serve as potential data sources. Datasets were chosen from these sources in order to 

accomplish the second goal of this thesis: to evaluate the capability of injury risk functions to 

predict injury outcomes. 

A primary goal of the field of injury biomechanics is to develop injury risk assessment 

models that can accurately assess injury probabilities using one or more predictor variables. 

Various injury metrics and risk functions have been proposed with little consensus on which 

should be used, therefore evaluation is needed to determine which risk function performs best for 

various loading and impact conditions. The second objective of this thesis is to assess injury risk 

functions according to their ability to correctly predict injuries over the entire dataset. Efforts 

were also made to address the certain limitations of the injury risk functions and their underlying 

data. 

1.3.2. Assumptions 

Diffuse brain injuries, such as concussion and DAI, are believed to be caused by brain 

deformation (Gennarelli et al., 1982). Therefore, in his thesis, strain-based brain injury metrics 

(MPS and CSDM) are assumed to be representative of diffuse brain injuries in closed-head 

impacts. It should be noted, however, that various other mechanical variables have been 
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proposed as predictors of brain injury. Many early studies focused on intracranial pressure as the 

mechanism of brain injury (Nahum et al., 1977); this theory has been revisited in present day 

(Zhao & Ji, 2016). Strain rate, the product of strain and strain rate, and stress have also been 

proposed as mechanisms of brain injury in the literature, although the results of experimental 

studies have been mixed (Cater et al., 2006; Morrison et al., 2003).  
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CHAPTER 2:  HEAD BIOMECHANICS IN HUMANS 

2.1. Introduction 

The research field of injury biomechanics works to identify injury mechanisms and 

define injury tolerances in humans (Viano et al., 1989). Historically, to achieve this endeavor, 

several types of human surrogates and manners of data collection have been used. Laboratory 

studies have recruited human volunteer subjects to participate in various experiments ranging 

from everyday activities to more vigorous events. While laboratory experiments cannot be 

designed to cause harm to the subject, wearable sensors have been employed on contact sport 

athletes to collect head kinematics and relate them with potentially injurious outcomes. 

Researchers have also tried to indirectly measure head kinematics associated with injurious and 

non-injurious impacts by recreating these events in a laboratory environment or using a 

computational model. This chapter provides an overview of the literature that has used these 

methods to capture human head biomechanics resulting from impact. 

2.2. Literature review of human head kinematics 

2.2.1. Laboratory studies of everyday activities 

Several studies have measured head motion during everyday activities in a laboratory 

setting (Allen et al., 1994; Arndt et al., 2004; Bussone & Duma, 2010; Ng et al., 2006; 

Vijayakumar et al., 2006). Activities included hopping, plopping into a chair, a head turn, 

coughing, and more. Generally, these events were characterized as having no direct impact, a 

relatively short time duration, and low accelerations. They also had a small probability of injury 

and results were reported as peak kinematic parameters. For example, studies found that 

passively falling into a chair yielded linear accelerations between 3.7 and 10.1 g and angular 
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accelerations between 129.1 and 169 rad/s2 (Allen et al., 1994; Bussone & Duma, 2010; Funk et 

al., 2011; Vijayakumar et al., 2006). Other results reported that jumping off a step caused linear 

and angular accelerations up to 8.1 g and 206.4 rad/s2, respectively (Allen et al., 1994; Bussone 

& Duma, 2010; Funk et al., 2011; Ng et al., 2006), and pogo stick hopping resulted in a linear 

acceleration of 4.5 g (Arndt et al., 2004). 

Every day activities that involve a direct impact to the head have also been studied. Arndt 

et al. (2004) measured the maximum acceleration from various activities such as a pillow strike. 

They found a maximum linear acceleration from the pillow strike of 28.1 g and a duration of 0.1s 

(Arndt et al., 2004). This acceleration is similar to that found by Funk et al. (2011) due to a 

soccer ball impact at 11.5 m/s (21 ± 4.9 g). Symptoms reported after the soccer ball include 

tightness of neck and stinging of the forehead, but none lasted for longer than one day and 

subjects were considered uninjured. 

2.2.2. Human volunteer sled tests 

Human volunteers have also participated in studies at slightly higher severities than those 

reported by the everyday activities studies. The data gathered in these studies have been used at 

length for the development and validation of test dummies. Weis et al. (1963) studied a number 

of human exposures to a vertical drop, however instrumentation was mounted on the rigid 

vehicle and not the volunteer as was typical in a majority of the pre-1967 human subjects 

research. When volunteers were instrumented, generally the head was restrained or not 

instrumented; in the cases that there were head-mounted sensors, limitations on sensor 

technology (e.g. noise, data spikes) made these results unusable (Ewing & Thomas, 1972; Stapp 

& Taylor, 1964; Stapp, 1951). 
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The Naval Biodynamics Laboratory (NBDL) conducted volunteer subject sled tests in the 

late 1960s to study the effect of head and neck postures, impulse direction, and impulse 

magnitude on the kinematic head and neck response (Ewing et al., 1969, 1975, 1976, 1977, 

1978; Ewing & Thomas, 1972). Subjects were exposed to sled pulses in various configurations at 

1 g increments between 3 g and 16 g. Different studies analyzed the effect of the rate of onset 

(Ewing et al., 1976), impact direction (Ewing et al., 1977, 1969), and initial head and neck 

position (Ewing et al., 1975, 1978). Medical examinations before and after each test reported no 

pathological changes due to the test series, although some subjects reported minor surface 

abrasions due to the restraint system (Ewing & Thomas, 1972). All subjects returned to their 

usual duty and off-duty activities post-series (Ewing & Thomas, 1972). 

A similar study conducted by Hendler et al. (1974) exposed volunteers to increasing sled 

acceleration pulses in order to analyze the kinematic response to a simulated barrier crash impact 

as an consequence of initial positioning and muscle tensing. Other studies have conducted HRV 

sled tests with various acceleration pulses in order to study the effect of various restraints in a 

lateral impact configuration (Kumar et al., 2006; Zaborowski, 1964, 1965) and due to barrier 

crashes (Bohlin, 1964). Studies have also used sled tests to characterize and compare the 

occupant kinematics of volunteers, PMHS, and ATDs by assessing the excursion seen by each 

group (Beeman et al., 2012) and to characterize the effect of bracing on the kinematics (Beeman 

et al., 2011; Olafsdottir et al., 2013). 

Arbogast et al. (2009) conducted a series of non-injurious, frontal sled tests in order to 

quantify and compare the kinematic responses of a child to those of an adult. Pediatric (6-15 

years old) and adult (18-40 years old) volunteers were restrained with a three-point belt and 

exposed to a sled pulse of 4.9 g, similar to a bumper-car impact. The researchers normalized the 
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head trajectory data in order to determine factors governing the differences seen between the two 

groups of HRVs (Arbogast et al., 2009). A later study also conducted by Arbogast et al. (2012) 

used pediatric and adult male subjects in far-side lateral and oblique sled test configurations to 

study the effect of seatbelt pretensioning across age groups. 

The data collected in the studies in this section and the previous section were necessary 

for documenting the head response of ordinary people engaged in everyday and more vigorous 

types of physical activities. The data have been used to establish a range of common head 

loading and kinematics for use with ATD validation (Beeman et al., 2012; Seeman et al., 1986; 

Wismans & Spenny, 1984) as well as presenting kinematic information that presents a minimal 

risk of injury, which can be compared to head kinematics in different loading environments such 

as roller coaster rides (Smith & Meaney, 2002). In terms of injury risk functions, however, these 

data can only be used to develop and assess the lower end of injury risk functions. Higher 

severity impacts as well as injuries are needed for the upper end of the injury risk curves. The 

following sections outline data that fall into this category of higher severity and potentially 

injurious data. 

2.2.3. The use of the HIT system in contact sports 

Contact sport athletes comprise a group of human subjects who voluntarily expose 

themselves to impacts during the course of their sporting events. These impacts have the 

possibility of being injurious, therefore, wearable sensors have been developed to capture the 

head kinematics during such events and relate them to injury outcome. One type of wearable 

sensors is instrumented helmets. Most researchers who have employed instrumented helmets 

have used a six-accelerometer, five degree-of-freedom (DOF) helmet-mounted sensor array 

known as the HIT system (Simbex, Lebanon, NH). Duma et al. (2005) measured head 
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accelerations in collegiate football players using the HIT system during 2003 season, recording 

3312 head impacts over 10 games and 35 practices from thirty-eight different players. The 

average peak head acceleration experienced for all impacts averaged 32 ± 25g (HIC: 26 ± 62; SI: 

36 ± 91), although most impacts (89%) resulted in a peak head acceleration below 60 g (Duma et 

al., 2005). The distribution of peak angular acceleration was also skewed left, and averaged 905 

± 1075 rad/s2 about the X-axis and 2020 ± 2042 rad/s2 about the Y-axis. Only one of these 

measured impacts caused a concussion (81g, 200 HIC, 5600 rad/s2 about the X-axis, 5590 rad/s2 

about the Y-axis). 

The goal of this study focused on describing the exposure to impact as well as 

characterizing peak acceleration, impact direction, and impact duration; other studies had similar 

aims (Brolinson et al., 2006; Duma et al., 2005; S. Rowson et al., 2009). Studies have also 

implemented the HIT system in order to examine differences in head impact exposure and 

magnitude as a result of player position and session type (i.e. practice versus game). Crisco et al. 

(2011) collected data over three seasons from three collegiate football teams and found that 

running backs and quarter backs received the highest magnitude of impacts, while offensive and 

defensive linemen and line backers had a higher frequency of impacts. High school football 

players showed similar trends, namely, defensive linemen and offensive skill players had higher 

head accelerations due to impact whereas the line players received the greatest number of 

impacts (Broglio et al., 2009, 2011a, 2013; Schnebel et al., 2007). More recently, youth football 

players have become the focus of this type of study (Cobb et al., 2013; Daniel et al., 2012; 

Young et al., 2014). 

Given the desire to determine biomechanical thresholds for concussion, studies have also 

attempted to find relationships between head kinematics and clinical diagnoses using the HIT 
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system data. A study of high school football players attempted to identify relationships between 

symptoms and cognitive performance change scores to impact biomechanics measured by the 

HIT system, but was unable to find any significant associations from 20 diagnosed concussions 

(Broglio et al., 2011b). Guskiewicz et al., (2007) conducted a similar study at the University of 

North Carolina at Chapel Hill which attempted to relate impact characteristics (i.e. magnitude 

and location) to changes in symptom severity, postural stability, and neurocognitive function 

compared to baseline values. Thirteen concussive impacts were measured, but no relationship 

was found; the authors concluded that concussive symptoms seemed to be largely independent of 

impact characteristics (Guskiewicz et al., 2007).  

McCaffrey et al. (2007) assessed symptom presence and severity, neuro-cognitive 

performance, and postural stability after low-impact (defined as less than 60 g) and high-impact 

(> 60 g) test sessions. Impact severity was defined via the HIT system, and no deficits were 

found after either impact session when compared to baseline measures (McCaffrey et al., 2007). 

The HIT system has been used to show that repetitive sub-concussive impacts over a single 

season do not correlate with changes to neurologic impairment, nor does concussion history 

relate to changes in neurologic performance (Gysland et al., 2012). Studies employing the HIT 

system have also found that cumulative head impact burden, defined as impact volume and 

intensity, does not relate to concussion threshold (Broglio et al., 2011a; Eckner et al., 2011). 

Beckwith et al. (2013b) found that concussions diagnosed immediately after the impact 

event were generally associated with higher kinematic measures recorded via HITS, whereas 

concussions with a delayed diagnosis were associated with a higher number of impacts; further, 

they showed that players sustained more impacts and impacts of higher severity levels on days 

with a concussion diagnosis than on days without a diagnosis (Beckwith et al., 2013a). 
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Additionally, this study found that impact severity measures derived from peak linear 

acceleration were the best predictors of immediately diagnosed concussions (Beckwith et al., 

2013a). Other studies have also aimed to find kinematic predictors of concussion using data from 

the HIT system. Greenwald et al. (2008) found that weighted combinations of biomechanical 

inputs served as a better predictor of concussion than a single measure. Rowson et al. (2012) 

published injury risk functions for concussion based on almost 310,000 collegiate football 

impacts using maximum resultant head angular acceleration and velocity as predictor variables; 

this study associated a 50% risk of concussion with 6383 rad/s2 and 28.3 rad/s for angular 

acceleration and angular velocity, respectively.  

Clearly, a large amount of real-world kinematic data has been collected from football 

impacts at various levels using the HIT system. Researchers have started to expand use of the 

HIT system to other sports as well. For example, researchers fitted youth ice hockey players with 

instrumented helmets to measure game and practice impacts; they found these athletes regularly 

sustained head impacts with magnitudes of 20 g, values similar in severity to college football 

players (Mihalik et al., 2008). Studies have also used HITS in ice hockey players to describe the 

frequency, magnitude, and direction of impacts as a factor of player positions and found greater 

impact magnitudes in games than practices, but little difference due to position (Mihalik et al., 

2008, 2012). Differences in youth ice hockey impact characteristics have been studied in a 

variety of situations. For example, higher measures of head impact severity have been associated 

with infractions sustained during play when compared with non-infraction collisions, higher head 

liner and angular accelerations were observed in open-ice collisions as opposed those along the 

playing boards, and anticipated collisions tended to result in lower angular accelerations than 

unanticipated impacts (Mihalik et al., 2010a, 2010b). 
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Researchers have also conducted studies using athletes from collegiate men’s and 

women’s ice hockey to characterize the head impact exposure and investigate differences due to 

sex, position, and session type. Wilcox et al. (2014a) found that male and female players 

experienced impacts of similar linear accelerations, but male athletes had higher peak angular 

acceleration values. Men also had a higher frequency of head impacts due to contact with another 

player or with the boards than females did, and the impacts had larger rotational accelerations 

(Wilcox et al., 2014b). Further, male ice hockey players tended to have a higher frequency of 

impacts, despite women having a higher frequency of concussion diagnoses (Brainard et al., 

2012; Wilcox et al., 2014a). 

While the HIT system has been a valuable tool in measuring and characterizing head 

impacts in sports, it has a few important limitations that should be mentioned. Literature has 

noted that the HIT system was evaluated using a medium-sized helmet on a Hybrid III dummy, 

but this is the incorrect size based on the manufacturer’s fitting instructions; the correctly sized 

helmet had measurements errors greater than 15% in most cases (Jadischke et al., 2013). 

Differences is measurement values are likely due to relative motion between the helmet and head 

(Beckwith et al., 2012; Lewis et al., 2001; Manoogian, McNeely, Duma, Brolinson, & 

Greenwald, 2006). Additionally, the HIT system cannot directly measure head angular 

acceleration (Funk et al., 2007). Instead, peak angular acceleration is calculated from the linear 

acceleration measures (Crisco et al., 2011; S. Rowson et al., 2012). Angular velocity is also 

estimated, using the calculated values of peak resultant angular accelerations (S. Rowson et al., 

2012). Some studies did a 12-accelerometer, 6 DOF in helmet accelerometer array which can 

measure rotational head motion. However, both this 6 DOF device and the HIT system only 

record 40ms of head impact data, which may not be enough time for the kinematics, namely 
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angular velocity, to fully develop; angular velocity has been suggested as the best predictor of 

brain strain response (Gabler et al., 2016a; Takhounts et al., 2013). Further, the material 

properties of brain tissue cause the strain response to lag the head velocity (Chatelin et al., 2010; 

Mao et al., 2013; Takhounts et al., 2008), necessitating longer time histories for use in FE 

models. 

2.2.4. Other wearable sensors 

While the HIT system is possibly the most established wearable technology, it is not the 

only one utilized by researchers. Naunheim et al. (2000) mounted a triaxial accelerometer on the 

vertex of a helmet to measure and compare head impacts experienced by high school hockey, 

football, and soccer athletes. Soccer players heading a ball recorded the largest head 

accelerations (54.7 ± 4.1 g, n = 23) when compared to hockey players (35.0 ± 1.7 g, n = 128) and 

football players (29.2 ± 1.1 g, n = 132); distributions of these impacts were also reported 

(Naunheim et al., 2000). Researchers also mounted triaxial accelerometers on custom-made 

headgear fitted to volunteer boxers in order to obtain human head kinematics and physiological 

effects. They found angular accelerations higher than 3500 rad/s2, exceeding proposed tolerance 

thresholds for volunteers; a maximum angular velocity of 48 rad/s and linear accelerations of 159 

g were also reported (Chamouard et al., 1987; Pincemaille et al., 1989). 

A device called the GForceTracker (GForceTracker Inc., Markham, ON) has been 

developed to measure head kinematics in conjunction with helmets, headbands, or goggle straps. 

One study implemented the GForceTracker in men’s collegiate lacrosse to study head impact 

frequency and location; goalies had the highest magnitude of impact whereas face-off players 

had the lowest (Miyashita et al., 2016). Other technologies developed to integrate with 

headbands or skull caps include the Shockbox (Impakt Protective Inc., Kanata, ON), the 
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Checklight (Reebok International, Ltd., Canton, MA and MC10 Inc., Cambridge, MA) and the 

SIM-P and SIM-G (Triax Technologies Inc., Norwalk, CT) (Cummiskey, 2015). The Shockbox 

was implemented in the helmets of 22 youth American football players to monitor head impacts 

(Wong et al., 2014), as well as in other, unpublished studies on American football and ice hockey 

(Patton, 2016). The Checklight has also been used to monitor head impacts in youth and high 

school football players (Harper et al., 2015), as well as in a soccer heading study (Wu et al., 

2016). 

Adhesive patches used to mount accelerometers to the skin, such as the xPatch (X2 

Biosystems, Inc., Seattle, WA), have been employed to measure head response in soccer. Press 

& Rowson (2017) used this sensor system to quantify head impact exposure in collegiate 

women’s soccer over the course of a single season and found that 90% of the impacts per player 

were due to heading the ball. Other studies have similarly aimed to characterize head impact 

frequency and magnitude with the xPatch in collegiate and high school women’s soccer (Lynall 

et al., 2016; McCuen et al., 2015; Stucker, 2015) and other sports (D. A. King et al., 2016; 

O’Sullivan & Fife, 2017; Reynolds et al., 2016, 2017). The xPatch has also been employed in 

studies in order to evaluate the effectiveness of rule changes and education in youth football 

(Kerr et al., 2015; Swartz et al., 2015). Instrumented mouthguards are being developed as 

another means to study head biomechanics resulting from concussion (Camarillo et al., 2013; D. 

A. King et al., 2015; Kuo et al., 2016; Siegmund et al., 2014; Wu et al., 2014), as are 

instrumented earplugs (Knox, 2004; Knox et al., 2009; Self et al., 2004). 

While many of these technologies have been employed in research, it should be noted 

that most were developed for consumer use as opposed to research (Allison, 2015; Patton, 2016). 

As such, some of these devices have limited usefulness (Harper et al., 2015). Further, like the 
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HIT system, all have questions of coupling and error in the kinematic measures as a result of the 

relative motion between the head and head gear, mandible motion or non-rigid skin coupling 

(Camarillo et al., 2013; Kuo et al., 2016; McCuen et al., 2015; Patton, 2016; Siegmund et al., 

2015; Wu et al., 2016). Evaluation of these sensors has reported differences up to 150% in the 

raw data (Allison et al., 2015; Campbell et al., 2016). Reynolds et al. (2016) stated that reported 

values from head impact sensors measured in vivo should be taken with a grain of salt given that 

data from individual hits are noisy, a sentiment reiterated by Siegmund et al. (2015). 

2.2.5. Reconstructions of real-life impact events 

Head biomechanics research has also relied on reconstructions of real-life accidents to 

examine head injury patterns when wearable sensors cannot be used. A number of studies have 

been carried out to computationally investigate real-life accidents. Auer et al. (2001) studied 25 

fatal pedestrian crashes to establish tolerance curves for acute subdural hematoma, subarachnoid 

hematoma, and contusions. Willinger et al. (2000) also studied real-life automotive crashes, this 

time involving motorcycles, by replicating motorcycle helmet damage through drop tests of 

instrumented helmets. The kinematics collected from the drop tests were used as input to FE 

models, which the authors then used to propose injury criteria. Multiple studies have similarly 

studied motorcycle, pedestrian, and car crashes via reconstruction (Dokko et al., 2003; Kang et 

al., 1997; Willinger & Baumgartner, 2003). One in particular reconstructed nine head injuries 

from car crashes and noted that computer simulation tools were mature enough to obtain useful 

biomechanical information through reconstructions (Thomson et al., 2001). This sentiment of 

model utility was echoed by O’Riordain et al. (2003), who used a multibody dynamics program 

to reconstruct real-life falls resulting in head injury in order to compare simulation kinematic 

output with sustained injuries. 
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A number of studies have numerically reconstructed falling accidents. Raul et al. (2006) 

used finite element modelling to distinguish between possible and impossible injury mechanisms 

for the observed lesions. Multibody and FE models of reconstructed falls have also been used to 

compare kinematics and strain results to findings by other researchers and published tolerances 

(Doorly & Gilchrist, 2006, 2009; Doorly et al., 2005a, 2005b). 

Sports injuries and impacts have also served as an input for computational and 

experimental reconstructions. Somers et al. (2011) computationally reconstructed race car 

impacts using an FE model to generate injury risk probabilities for concussion; a similar study 

was conducted by Begeman & Melvin (2002). Multiple studies have reconstructed concussive 

head impacts from unhelmeted Australian football players using a multibody dynamics program 

to evaluate predictors of concussion severity (Fréchède & McIntosh, 2007, 2009; McIntosh et al., 

2014). Videos of unhelmeted Australian football players were studied to determine closing speed 

and other biomechanical characteristics of concussive head impacts, which served as an input to 

the multibody models (McIntosh et al., 2000). 

Video analysis was also used in concussion cases from impacts in professional American 

football to determine the relative impact velocity (Pellman et al., 2003). These closing velocities 

were applied to Hybrid III ATDs to generate head kinematics associated with the concussive and 

non-concussive head impacts (Newman et al., 1999, 2005; Pellman et al., 2003). This set of head 

kinematics has since been applied to various FE models as researchers attempt to reconstruct the 

brain deformation associated with concussion (Ghajari et al., 2017; Giordano & Kleiven, 2014; 

Kimpara & Iwamoto, 2012; A. I. King et al., 2003; Kleiven, 2007; Newman et al., 1999; Viano 

et al., 2005; Willinger & Baumgartner, 2003; Zhang et al., 2004). 
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Post et al. (2017) similarly reconstructed youth head impacts in a laboratory using head 

contact velocities as their input for the reconstructions. The head kinematics were applied to FE 

models to investigate differences related to subjects that had a history of concussion versus those 

who had one concussion. Other studies have reconstructed head impact events in this way to 

investigate brain tissue response related to various forms of head injury (Kendall et al., 2012; 

Oeur et al., 2015; Post, 2013; Post et al., 2015). Head impacts have also been reconstructed using 

data from wearable sensors as the input. A pneumatic impactor matched HIT system kinematic 

data to match impact location and peak resultant linear and angular head accelerations measured 

on field with the reconstructed kinematic parameters (B. Rowson et al., 2017a, 2017b, 2017c). 

The reconstructed kinematics were then used in conjunction with linear regression to quantify 

correlations between various brain injury metrics and kinematic parameters (B. Rowson et al., 

2017a, 2017b, 2017c). 

While injury reconstructions provide a reasonable measure of the head biomechanics 

associated with an injurious impact, this manner of data collected can only provide an indirect 

measure of head response, causing uncertainty in the fidelity of kinematic data (Gilchrist & 

Doorly, 2009). Further, questions surrounding the reconstruction process exist for both 

laboratory and computational reconstructions, such as the correctness of the data used for model 

inputs and initial conditions, fidelity of the human surrogate employed in the reconstruction, 

validity of the sensor data in an ATD, and even material properties of from a computational 

model (Gilchrist & Doorly, 2009; Newman et al., 2005; O’Riordain et al., 2003). 

2.3. Data sources in this thesis 

For this thesis, there were several inclusion criteria that needed to be met in order for the 

data to be considered for use (Figure 2). Six DOF head kinematics, measured via sensors and not 
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photo markers, were required. The kinematics were assessed to verify that peak values did not 

occur at the end of time history to allow sufficient data for calculating injury metrics and 

simulating brain deformations. For injurious impact data, only diffuse type brain injuries were 

included (e.g., concussion, DAI). For non-injurious head responses, symptoms needed to be 

reported in the literature. Non-injurious data sources were chosen based on input pulses so that 

some more vigorous or severe impacts (e.g. sled pulse > 10 g) were included. This threshold was 

chosen based on minimum recording thresholds for wearable sensors, and previous studies have 

also defined a minimum threshold when studying injury as relatively low severity impacts are 

unlikely to cause MTBI (Duma et al, 2005; Funk et al., 2007; Reynolds et al., 2016). Evidence 

has shown that female athletes may be at greater risk for concussion than their male counterparts 

in comparable sports (Davis-Hayes et al., 2017; Dick 2009); and that concussive symptoms and 

neurocognitive function vary between male and female subjects (Broshek et al., 2005; Chiang 

Colvin et al., 2009). Literature has also shown that there are gender-specific risks and responses 

to various forms of brain injury, such as cerebral contusion and stroke (Barrett-Connor & Bush, 

1991; Roof et al., 1993; Cadet et al., 1994; Kannel & Thom, 1994). There are several theories on 

the reason for this, including the vascular effects of estrogen (Mendelsohn & Karas, 1994; Farhat 

et al., 1996) and differences in neuroanatomy (Chiang Colvin et al., 2009; De Courten-Myers, 

1999); it is currently debated whether estrogen has a detrimental or neuroprotective effect in 

regards to concussion, but limited research has been published on estrogen’s role in concussion 

risk (Covassin & Elbin, 2011). Given the uncertainty between concussion tolerance in male and 

female subjects, only adult male subjects aged 18-45 years were considered in order to minimize 

the effect of differences in anthropometry, age, and gender. Finally, the data had to readily 

accessible and available for use. 
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Figure 2. Flowchart of inclusion criteria to assist in the selection of data sources. 

Of the data sources mentioned in section 2.2, three were chosen to use in this thesis using 

guidance from the inclusion criteria: data from of human research volunteer sled tests and 

professional football reconstructions. Datasets are comprised of healthy, male subjects, include 

complete measures of head kinematics, and have details on concussions diagnoses (if injured) 

and symptoms for the non-injurious dataset. Further details on the three data sources are outlined 

in the remainder of this section and a summary of the data can be found at the end of this chapter 

(Table 2). 

2.3.1. Human volunteer sled tests 

Three hundred thirty-five (335) individual, HRV sled tests were obtained from a larger 

database of sled tests performed by NBDL (Ewing et al., 1975, 1976, 1977, 1978, 1969; Ewing 

& Thomas, 1972). Despite the wide variety of volunteer sled test data to choose from, the NBDL 

laboratory tests were the most extensive and included the highest severity sled pulses (16 g). 
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Further, as outlined in the next chapter, the higher severity tests resulted in head kinematic 

values comparable to the football data sources described below. 

A total of 22 individual volunteers were involved in these 335 sled tests. Volunteers were 

all adult males, aged 18 to 25 years, who served as sailors in the United States Navy. Prior to the 

start of testing, volunteers gave consent and underwent a qualification evaluation to ensure that 

all participants were healthy and had no prior deficiencies to put them at an increased risk of 

injury; extensive anthropometric measurements were also taken (Ewing & Thomas, 1972). 

Volunteers were restrained by a four-point belt in a seated posture on a sled buck and 

instrumented with angular rate sensors and accelerometers mounted at the mouth and over the 

posterior-superior aspect of the head (Ewing et al., 1969). The sled buck could be mounted in 

different orientations relative to the direction of the acceleration pulse; in this thesis, frontal (0°), 

oblique (45°), and pure lateral (90°) sled configurations were used (Figure 3). Sled accelerations 

varied in magnitude from 1 to 16 g and resulted in the inertial loading of the volunteer subject’s 

head through the neck and torso. 
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Figure 3. Volunteer sled test configurations for (A) frontal, (B) oblique, and (C) lateral. 

Pre- and post-test medical examinations were conducted on each volunteer after every 

sled run to check for any developing ailments related to testing; generally, a follow up exam was 

performed 24 hours post-test (Ewing & Thomas, 1972). A comprehensive examination was also 

completed at the end of the test series to ensure that no medical conditions existed that could be 

attributed to the sled runs. Medical reports were reviewed specifically looking for symptoms 

related to the current state of concussion and traumatic brain injury. Post-test clinical data from 

the HRVs revealed a history of headache occurring under the head anatomical mount, but was 

not considered neurologically significant (Ewing et al., 1969). Following the higher severity 

runs, some subjects had mild, musculoskeletal symptoms; however, these symptoms were 

transient and not considered clinically significant (Sanchez et al., 2017a). 

2.3.2. Professional football head impact reconstructions 

Video analysis and laboratory reconstructions were used to study concussive and non-

concussive head impacts in professional football (Newman et al., 1999, 2005; Pellman et al., 

2003). Between 1996 and 2001, broadcast footage was collected from 21 football games and 
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analyzed to estimate the location, direction, and speed for significant and concussive impacts. 

Initial impact conditions could be determined for 31 cases, of which 27 were helmet-to-helmet 

impacts and 4 were helmet-to-ground. Using the data from video analysis, a helmeted Hybrid III 

ATD head-neck was guided in freefall and struck a second ATD for helmet-to-helmet impacts or 

a simulated ground surface for helmet-to-ground impacts at the relative impact speed. Bungees 

helped position the moving and stationary ATDs, and rubber stoppers placed at the end of the 

track prevented the moving Hybrid III head-neck from falling off the track. In total, head 

kinematics for 58 players were reconstructed. Complete details on the video analysis and impact 

reconstruction methodology are available in literature (Newman et al., 1999, 2005; Pellman et 

al., 2003). 

Concussive injury outcomes were gathered from team physicians who treated the players 

when injured using the definition introduced by the Committee on MTBI; this definition 

included similar diagnostic and symptomatic criteria to the 2012 Zurich Consensus definition of 

concussion (Pellman et al., 2004a, 2004b). Clinical and somatic symptoms were documented and 

fed into a database maintained to consider the epidemiology of MTBI (Pellman et al., 2004a). 

The cases were also independently verified by two team physicians using the clinical 

information, such as forms from the team physician and athletic trainer, and direct contact with 

medical staff for the injured player (Pellman et al., 2003). Symptoms for all concussions 

observed in professional football over the same time period as the reconstructions were reported 

by Pellman et al. (2004a). The most commonly observed symptoms included headaches, 

dizziness, and blurred visions, whereas the most common signs noted by physicians included 

problems with immediate recall, retrograde amnesia, and information-processing (Pellman et al., 

2004a). In a subset of these data reconstructions consisting of 22 of the 25 concussed players, the 
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most common symptoms included headache, memory problems, and dizziness (Viano et al., 

2005); four of the 25 players also had loss of consciousness (Kleiven, 2007; Pellman et al., 

2005). 

2.3.3. Reconstructions of collegiate football head impacts 

Fifty-five head impacts from were selected from a larger dataset of head impacts 

sustained by collegiate football players instrumented with the HIT system to be reconstructed in 

a laboratory (B. Rowson et al., 2017c). Players from 11 of these impacts resulted in concussion; 

the remaining 44 did not sustain a concussion. Impacts were reconstructed using a pneumatic 

linear impactor which struck a modified NOCSAE head form mounted on a Hybrid III 50 th 

percentile male neck instrumented with 3 linear accelerometers and 3 angular rate sensors. 

Impact locations reported by the HIT system were used as a starting point for each 

reconstruction, and impact speed and location were varied until peak resultant linear and angular 

accelerations fell within 5% of the HIT system kinematic data (B. Rowson et al., 2017c). 

Concussions in this dataset were defined as an alteration in the mental state resulting 

from a blow to the head, but not necessitating loss of consciousness (S. Rowson et al., 2012). 

Trained NCAA medical staff diagnosed all concussions using signs, symptoms, neurocognitive 

testing, and clinical judgment according to the guidelines set forth by the Second International 

Conference on Concussion in Sport in Prague. Symptoms included headache, nausea, vomiting, 

dizziness, fatigue, blurred vision, and difficulty concentrating (S. Rowson et al., 2012). 

2.4. Summary 

Researchers have seen the importance of human head kinematic data, especially in a field 

where the primary goal is to define human tolerance to injury. After outlining the availability of 

head kinematics data in the literature, inclusion criteria were determined to establish data sources 
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to use for further analysis in this thesis. As described in section 2.3, three data sources were 

chosen; a detailed break-down of these data are provided below (Table 2). The remainder of this 

thesis focuses solely on analysis of this data and its application to injury risk functions. 

Table 2. Summary of human head kinematic data sources used in this thesis. 

Impact Type Data Source Test Details 
Sample Size 

(Concussions) 

Volunteer sled 
tests 

Ewing & Thomas 
(1972) 

Volunteer sled acceleration 
pulses up to 16 g at 0˚, 45˚, 
and 90˚ 

335 (0) 

Collegiate 
football 
reconstructions 

Rowson et al. 
(2017c) 

Reconstructions with a 
pneumatic impactor of on-
field impacts measured with 
the HIT system 

55 (11) 

Professional 
football 
reconstructions 

Pellman et al. 
(2003) 

Helmet-to-helmet and helmet-
to-ground dummy 
reconstructions of on field 
football impact 

 

58 (25) 
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CHAPTER 3:  ESTABLISHING A CONSISTENT DATASET 

3.1. Introduction 

The first objective of this thesis was to establish a consistent dataset of concussive and 

non-concussive head impacts to use in evaluating head and brain injury risk functions. By calling 

the dataset consistent, this thesis means that only one injury diagnosis is considered 

(concussion). Further, the consistent definition is applied to the data, such that all data are 

processed in the same manner; this includes evaluating raw sensor measurements according to 

rigid body constraints, confirming head trajectories and/or kinematics via video review and other 

methods, identifying and eliminating secondary or artefactual impacts, and transforming the 6 

DOF kinematics to the local head anatomic coordinate with an origin fixed at the head center-of-

gravity (CG) and orientations defined according to SAE J211 (Figure 4; Comm, 2003). The 

dataset includes complete 6 DOF head kinematic time histories, which encompass a variety of 

magnitudes and durations. In this thesis, this dataset includes nearly 400 (n = 393) concussive 

and non-concussive head impacts taken from dummies and human volunteers; all data were 

obtained from previously published studies, as described in the previous chapter. 

 
Figure 4. Local head anatomic coordinate system with orientations defined according to SAE J211. 
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3.2. Data preparation 

3.2.1. Professional football reconstructions 

The professional football reconstructions were measured using a nine-accelerometer 

array package (NAAP or NAP) in the 3-2-2-2 configuration in order to calculate angular 

accelerations from rigid body constraints (DiMasi, 1995; Padgaonkar et al., 1975). The stability 

of the angular acceleration calculation using the NAP array stemmed from three extra measures 

of linear acceleration; however, it should be noted that these extra measures were also subject to 

rigid body constraints and as such, could be used to verify the consistency of each sensor 

measurement (Takhounts et al., 2009). Using rigid body constraints, Takhounts et al. (2009) 

derived a closed form, analytical solution for each accelerometer trace in the NAP array as a 

function of the array geometry and the other eight sensor measurements. If the analytical 

predictions matched the measured sensor traces, Takhounts et al. (2009) considered the NAP 

array consistent and would calculate rotational kinematics. Otherwise, if the analytical and 

measured traces did not match, the array was considered inconsistent and might have one or 

more sensor errors. One inconsistent accelerometer could be corrected by replacing its measured 

trace with the analytical solution, hereby preserving the required rigid body restraints for 

calculating 6 DOF kinematics (Takhounts et al., 2009). 

The professional football reconstructions were evaluated for NAP consistency using the 

aforementioned method by Takhounts et al. (2009). When a NAP array was identified as 

inconsistent, each measured sensor trace was replaced with its analytical solution and new 

analytical solutions were calculated using the replaced sensor. The sum of squared errors (SSE) 

was calculated between the new analytical traces and the original; the combination that resulted 

in the smallest SSE value (i.e., the analytical solution that best matched the original traces) was 
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identified and used to calculate 6 DOF head kinematics. Plots of consistent and inconsistent NAP 

arrays can be found in Appendix A. 

Results of the sensor consistency check revealed that all the moving dummies and three 

of the stationary dummies had an inconsistent NAP array (Table 3). Minimum SSE was able to 

identify one channel corrections in the moving dummies: the Y-arm, X-direction sensor was 

identified as inconsistent in the first 12 reconstructions when organized chronologically and the 

Z-arm, Y direction accelerometer was identified in the remaining cases (Figure 5). The stationary 

dummy in the final three reconstructions identified the X-arm, Y sensor as erroneous. All 

corrected NAP arrays were reanalyzed for sensor consistency and found to be consistent with the 

exception of one reconstruction. Case 57, Player 2, had a 500 g spike in three NAP sensors 

which did not appear to be a physical response in the laboratory video. Given the three sensor 

error, the sensor traces in this reconstruction could not be corrected. 

 
Figure 5. Chronological ordering of reconstructions showed that a common sensor was identified as 

inconsistent in subsets of the test series.  
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Table 3. Inconsistent sensors in the NAP array and end times for each case. Blank rows under player 1 
indicate helmet-to-ground impacts. Blank rows in the artefactual impact column indicate no secondary 
impact occurred. 

 Player 1 Player 2 

Case End Time Inconsistent Sensor End Time Inconsistent Sensor 

57 * -  × † 

84 * -  40 Y-arm X 

48 * -  44 Y-arm X 

77 * -  36 Y-arm X 

71 * -  66 Y-arm X 

59 * -  * Y-arm X 

39 * -  × Y-arm X 

38 * -  70 Y-arm X 

7 * -  30 Y-arm X 

92 * -  40 Y-arm X 

69 * -  36 Y-arm X 

98 * -  70 Y-arm X 

113 * -  60 Z-arm Y 

124 42 -  42 Z-arm Y 

118 34 -  34 Z-arm Y 

125 48 -  48 Z-arm Y 

135 60 -  60 Z-arm Y 

9 * -  52 Z-arm Y 

67    × Z-arm Y 

133    × Z-arm Y 

123    × Z-arm Y 

142    * Z-arm Y 

148 * -  76 Z-arm Y 

154 * -  64 Z-arm Y 

162 100 -  60 Z-arm Y 

155 * -  36 Z-arm Y 

164 * -  36 Z-arm Y 

157 * -  50 Z-arm Y 

175 40 X-arm Y  40 Z-arm Y 

182 * X-arm Y  40 Z-arm Y 

181 * X-arm Y  42 Z-arm Y 

*full time history can be used; NA: Not applicable; ×secondary impact cannot be separated from 
reconstructed impact, reconstruction should not be used; †reconstruction may have multi-sensor 
error  
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The corrected, calculated head kinematics were compared to the laboratory 

reconstruction videos to verify that the corrected kinematics matched the ATD motion. Euler 

angles were also calculated to match corrected head angles to the helmet motion seen in the 

laboratory reconstructions. In all cases, the corrected 6 DOF head kinematics were more 

consistent with the laboratory video, whereas the original head motions were not always 

representative of the motion seen. The laboratory videos were also reviewed to identify 

secondary impacts due to artefacts of the reconstruction. Artefactual events included impacts 

with the stopper at the end of the track or supporting bungees. Interactions were systematically 

identified and recorded for all reconstructions, as well as any possible impacts that occurred after 

the laboratory reconstruction videos ended. Videos and kinematics were reviewed to determine if 

the secondary impacts had enough temporal separation from the impact of interest. Sufficient 

temporal separation was defined such that the kinematics could develop (i.e., reach kinematic 

peaks and plateau) before the second impact occurred. End times based on the secondary impacts 

were then determined to dictate the region of applicability for each reconstruction. 

Of the 58 reconstructed head kinematics, video analysis showed that 23 cases had no 

observed artefactual impacts and could be used in their entirety. On the other hand, five 

concussive reconstructions had secondary impacts that did not have sufficient temporal 

separation from the impact of interest. The head kinematics were therefore unable to fully 

develop and were not recommended for use in FE models. The remaining reconstructions (n = 

30) had artefactual impacts sufficiently separated from the primary impact. These reconstructions 

impacted the end of the track (n = 14), a supporting bungee (n = 4), or the other ATD (n = 8), or 

kinematics indicated a potential impact after the laboratory video ended (n = 4). Head kinematics 

for these cases should be truncated between 30 and 100 ms (Table 3). 
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The final, corrected dataset of head kinematics from the professional football 

reconstructions showed an overall increase in rotational head kinematics from the NAP 

corrections and the kinematic end times (Figure 6). There was no change in linear accelerations 

of any reconstruction because none of the CG linear accelerometers in the NAP array were 

identified as inconsistent; however, because five concussive reconstructions were eliminated 

from analysis, there was a slight decrease linear acceleration values as an entire distribution 

when comparing the corrected values to what was originally published (Figure 6). 

 

Figure 6. Change in distribution of the resultant head kinematics as a result of the corrections made to 
the professional football reconstruction data.  
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3.2.2. HRV sled tests 

Raw 6 DOF head kinematics from the HRV sled tests were measured in previous studies 

using a head-mounted sensor array and verified via high speed video analysis (Ewing & Thomas, 

1972; Thunnissen et al., 1995; Wismans et al., 1987). The head kinematics were previously 

processed using subject anthropometry to spatially transform the sensor data to a local head 

anatomic coordinate system near the head CG (Wismans et al., 1987). These data were obtained 

from the Netherlands Organization for Applied Scientific Research (TNO; n = 249); head 

kinematics for an additional 86 sled tests were obtained from the publicly available 

biomechanics test database administered by the National Highway Traffic Safety Administration 

(NHTSA; (“NHTSA VSR” n.d.). The processed head kinematics included 3 linear accelerations, 

3 angular accelerations, and 3 angular velocities of the head along the X, Y, and Z-axes. An 

additional spatial transformation was performed to define the data traces in a coordinate system 

with an origin fixed at the head CG with the +Z axis directed inferior (Figure 4). While the tests 

from the NHTSA database specified impact angles, the other 249 tests did not note the relative 

direction of the sled pulse with respect to the buck orientation. Trends in the head kinematics 

were observed, however, that suggested impact directions for these tests. Frontal sled pulses 

were characterized by high angular velocities about the Y-axis of the head, with very little 

rotation about the other two anatomical axes. Similarly, tests in the lateral sled configuration had 

dominant rotations about the X- and Z-axes and little rotation about the Y. Oblique tests showed 

significant angular velocity of similar magnitude in all three directions. Impact angles were 

confirmed by calculating head trajectories relative to the sled pulse (Figure 7). The dataset of 

HRV sled tests in this thesis consists of 132 frontal impacts, 97 lateral, and 106 oblique. 
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Figure 7. Linear displacement trajectories for each impact condition in the XY anatomical plane. 
Trajectories are plotted with respect to a coordinate system attached to the seat. The photo target 

indicates the location of the head CG. 

3.2.3. Collegiate football reconstructions 

Raw 5 DOF kinematics were previously measured during the 2004 to 2015 NCAA 

football season using the HIT system and used as an input for the collegiate football 

reconstructions such that the peak resultant linear and angular accelerations from the 

reconstruction fell within a 5% margin of error from the original HIT system data. The 

kinematics from the reconstructions were then processed in a previous study (B. Rowson et al., 

2017c, 2017a, 2017b). This processing included filtering the data to channel frequency class 

(CFC) 1000 for the linear accelerations and to CFC 155 for the angular rates using a four-pole, 

phase-less Butterworth low pass filter. Angular rate data were differentiated to find angular 

acceleration. For this thesis, processed data in the form of 3 linear accelerations and 3 angular 

accelerations were obtained and oriented with respect to the head anatomic coordinate system at 



44 

the head CG. Angular velocities were calculated by integrating the angular accelerations using a 

backwards trapezoid method. 

Distributions of the peak kinematic parameters were compared using the reconstructed 

data and the HIT system measures and saw that the distributions were closely matched, 

indicating agreement between the on-field and laboratory data (B. Rowson et al., 2017a, 2017b, 

2017c). Further, impact locations were noted for the 11 concussive reconstructions. Head 

kinematics were assessed for agreement with the impact location and found to match. 

3.2.4. Data processing 

Head kinematics from all three data sources were processed using established techniques 

(Gabler et al., 2016a). Linear and angular accelerations were filtered to CFC 1000 (1650 Hz) 

using a zero-phase shift, digital 8 pole Butterworth filter, while angular velocities were filtered to 

CFC 60, or 100 Hz (NHTSA, 2015). Six degree-of-freedom processed head kinematics were 

used to calculate a variety of existing kinematics-based head and brain injury metrics and their 

respective injury probabilities (3.3) and as input for FE models (3.4). 

3.3. Kinematics-based injury risk metrics and injury risk functions 

Processed head kinematics were used to calculate several existing, kinematics-based head 

injury metrics and the associated probabilities of injury based on the injury risk functions. 

Metrics chosen for this thesis included a variety of translation and rotational head kinematic 

parameters based on several kinematic parameters, including linear acceleration (𝒂(𝑡)), angular 

acceleration (𝜶(𝑡)), and angular velocity (𝝎(𝑡)) time histories of the head. Each of the injury 

metrics also had an associated injury risk function published in the literature. All injury risk 

functions were developed using data involving either direct or indirect measures of human head 

kinematics or scaled animal data. Metric and risk function development is described below and is 
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summarized at the end of this section (Table 4). Table 4 also contains values for the injury risk 

function coefficients. 

3.3.1. Peak resultant kinematics 

Injury risk curves predicting concussion were developed by Pellman et al. (2003) and 

Newman et al. (2000a) based on peak resultant linear head acceleration, 𝑎௠௔௫, using 

reconstructed football head impacts. Pellman et al. developed two risk curves, one comprised of 

data only from the struck players and the second developed using data from both striking and 

struck players. Both injury risk functions by Pellman et al. were based on logistic regression 

analysis, taking the form of: 

𝑃(𝑥) =
1

1 + 𝑒ି௚(௫)
 Equation 1 

where 

𝑔(𝑥) = 𝛽଴ + 𝛽ଵ𝑥 Equation 2 

is the basis function and 𝛽௜ are the fitted coefficients based on regression analysis. The curve by 

Newman et al. was digitized from a published plot to the same logistic form. Funk et al. (2007) 

also developed an injury risk curve for 𝑎௠௔௫ from the same reconstruction data, but incorporated 

unbiased exposure data collected from collegiate football head impacts. Their injury risk 

function is based on a Weibull distribution: 

𝑃(𝑥) = 1 − 𝑒
ିቀ

௫ି௕
ఒ

ቁ
ೖ

 Equation 3 

where x is the maximum value of resultant linear acceleration and λ, k, and b are the scale, shape 

and offset parameters determined from survival analysis. 

Rowson et al. (2012) developed concussion-based risk curves for peak resultant angular 

acceleration, 𝛼௠௔௫, and maximum resultant angular velocity, 𝜔௠௔௫, using data from collegiate 
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football head impacts directly measured via the HIT system. The injury risk curves for these 

studies were based on logistic regression analysis (Equations 1 and 2). 

3.3.2. Head Injury Criterion (HIC) 

HIC, the current standard head injury metric for automotive safety and helmet design 

regulations, has been commonly used for evaluating head and brain injury potential. The 

mathematical formulation for HIC was derived by Versace, (1971): 

HIC = max
(௧భ,௧మ)

൞(𝑡ଶ − 𝑡ଵ) ቎
1

𝑡ଶ − 𝑡ଵ
න |𝒂(𝑡)|𝑑𝑡

௧మ

௧భ

቏

ଶ.ହ

ൢ Equation 4 

Resultant head acceleration, |𝒂(𝑡)|, is expressed with units of g. Times 𝑡ଵ and 𝑡ଶ have the 

unit of seconds and should be selected to maximize HIC over the full time history of the impact 

event (Versace, 1971); these values have also been constrained such that 𝑡ଵ - 𝑡ଶ ≤ 15 ms for 

current standards (Prasad & Mertz, 1985). The injury risk curves used for HIC were developed 

from the expanded Prasad-Mertz curves using PMHS skull fracture data where the basis 

function, g(HIC), for Equation 1 was developed as follows: 

𝑔(𝐻𝐼𝐶) = 𝛽଴ + 𝛽ଵ𝐻𝐼𝐶ିଵ + 𝛽ଶ𝐻𝐼𝐶 Equation 5 

3.3.3. Generalized Acceleration Model for Brain Injury Threshold (GAMBIT) 

Newman (1986) saw the value of considering the combined effects of rotational and 

translational head motion when assessing for injury. Thus, he created GAMBIT as one of the 

first injury criterion to use both linear and angular head kinematics in the mathematical 

formulation: 

GAMBIT = max
௧

ቐ൥ቆ
|𝒂(𝑡)|

𝑎௖௥
ቇ

ଶ

+ ቆ
|𝜶(𝑡)|

𝛼௖௥
ቇ

ଶ

൩

ଵ/ଶ

ቑ Equation 6 
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Critical values were defined as 𝑎௖௥ = 250 g and 𝛼௖௥ = 25000 rad/s2 based on injury 

thresholds from literature. An injury risk curve for concussion using GAMBIT as the predictor 

variable was developed from 24 reconstructed football impacts using logistic regression 

(Equations 1 and 2; Newman et al., 2000b) 

3.3.4. Head Impact Power (HIP) 

Newman et al. (2000a) proposed a second injury metric which again combined 

translational and rotational head kinematics. HIP was developed based on a general expression 

for the rate of change of translational and rotational kinetic energy, also known as power. The 

coefficients were set equal to the mass (m) and approximate mass moments of inertia (Iii) of a 

50th percentile human head: 

HIP = max
௧

൜𝑚 ෍ 𝑎௜(𝑡) න 𝑎௜(𝑡)𝑑𝑡 + ෍ 𝐼௜௜𝛼௜(𝑡) න 𝛼௜(𝑡)𝑑𝑡ൠ Equation 7 

The principal moments of inertia of the head about the anatomical axes (Iii) were set to 

0.016, 0.024, and 0.022 N-m-s2 for each direction, respectively, and m is approximately equal to 

head mass (4.5 kg). Concussive and non-concussive football reconstructions were again used as 

the basis for a logistic regression (Equations 1 and 2) injury risk function for HIP (Newman et 

al., 2000a). 

3.3.5. Combined Probability of Concussion (CP) 

Rowson & Duma (2013) introduced a new injury metric based on the values of maximum 

linear and angular acceleration of the head in order to predict the likelihood of sustaining a 

concussion for a given impact. The injury risk function was developed using logistic regression 

(Equation 1) based on instrumented collegiate football player data and used the following basis: 

𝑔(𝑎௠௔௫ , 𝛼௠௔௫) = 𝛽଴ + 𝛽ଵ𝑎௠௔௫ + 𝛽ଶ𝛼௠௔௫ + 𝛽ଷ𝑎௠௔௫𝛼௠௔௫ Equation 8 
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3.3.6. Power Rotational Head Injury Criterion (PRHIC) 

Efforts have been made to modify HIC, which only uses translational kinematic 

measures, with rotational parameters. Kimpara et al. (2011) proposed PRHIC as brain injury 

criterion by replacing the linear acceleration term of HIC with the rotational component of HIP: 

PRHIC = max
(௧భ,௧మ)

൞(𝑡ଶ − 𝑡ଵ) ቎
1

𝑡ଶ − 𝑡ଵ
න HIPୟ୬୥𝑑𝑡

௧మ

௧భ

቏

ଶ.ହ

ൢ Equation 9 

where HIPang is the angular component of HIP: 

HIPୟ୬୥(t) = ෍ 𝐼௜௜𝛼௜(𝑡) න 𝛼௜(𝑡)𝑑𝑡 Equation 10 

Values for the mass moments of inertia (Iii) are reported above. A time duration 

constraint was set such that 𝑡ଵ - 𝑡ଶ ≤ 36 ms based on correlations with football head impact data. 

An injury risk function for PRHIC was developed with logistic regression using kinematic data 

from instrumented collegiate football impacts and professional football reconstructions 

(Equations 1 and 2; Kimpara & Iwamoto, 2012). 

3.3.7. Rotational Injury Criterion (RIC) 

Kimpara & Iwamoto (2012) proposed a second modification to HIC using rotational head 

kinematics. RIC was defined to have the same mathematical formulation as HIC, however, the 

linear acceleration term was replaced with angular acceleration. 

RIC = max
(௧భ,௧మ)

൞(𝑡ଶ − 𝑡ଵ) ቎
1

𝑡ଶ − 𝑡ଵ
න |𝜶(𝑡)|𝑑𝑡

௧మ

௧భ

቏

ଶ.ହ

ൢ Equation 11 

Angular acceleration, |𝜶(𝑡)|, is expressed in rad/s2 and a time constraint of 𝑡ଵ - 𝑡ଶ ≤ 36 

ms was again chosen from football impact data. An injury risk function developed for RIC was 
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proposed by Kimpara & Iwamoto (2012) based on logistic regression using the same dataset as 

the PRHIC risk curve (Equations 1 and 2). 

3.3.8. Brain Injury Criterion (BrIC) 

BrIC was developed to serve as a complement to HIC in the automotive industry in order 

to address HIC’s inability to capture the rotationally induced brain injuries happening in car 

crashes (Takhounts et al., 2013). It was formulated from the maximum magnitudes of head 

angular velocity in three orthogonal components in order to incorporate the directional 

dependence seen in simulations of brain deformation. 

BrIC =  ඨ൬
𝜔௫

𝜔௫௖௥
൰

ଶ

+ ቆ
𝜔௬

𝜔௬௖௥
ቇ

ଶ

+ ൬
𝜔௭

𝜔௭௖௥
൰

ଶ

 Equation 12 

where 𝜔௜௖௥ are critical values as determined by FE simulation of head impacts from crash and 

pendulum tests (𝜔௫௖௥ = 66.25, 𝜔௬௖௥ = 56.45, 𝜔௭௖௥ = 42.87; Takhounts et al., 2013). Takhounts et 

al. (2013) developed injury risk functions for BrIC by correlating BrIC values with two strain 

metrics (MPS and CSDM) calculated from scaled animal data. As a result, BrIC injury risk 

probabilities may be calculated through either the MPS- or CSDM-based injury risk functions; 

this thesis uses both. Injury risk functions took the form of a Weibull distribution (Equation 3), 

where x is BrIC.
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Table 4. Existing kinematics-based injury risk functions used in this thesis. 

Metric 
used 
in IRF 

IRF 
Reference 

Injury 
Assessment 

Type 

Data Source for IRF 
Development 

IRF 
Equations 

IRF 
Coefficients 

𝑎௠௔௫ Newman et 
al., (2000a) 

Concussion Football impact 
reconstructions 

1 and 2 †β0 = -6.15; 
β1 = 7.91E-2 

𝑎௠௔௫ Pellman et 
al., (2003) 

Concussion Football impact 
reconstructions 

1 and 2 β0 = -4.90; 
β1 = 6.06E-2 

𝑎௠௔௫ Pellman et 
al., (2003) 

Concussion Football impact 
reconstructions of 
struck players only 

1 and 2 β0 = -2.92; 
β1 = 5.59E-2 

𝑎௠௔௫ Funk et al., 
(2007) 

Concussion Football impacts 
measured with 
wearable sensors and 
reconstructions 

3 b = 0; 
λ = 397; 
k = 3.53 

𝛼௠௔௫ (S. Rowson 
et al., 
2012) 

Concussion Football impacts 
measured with 
wearable sensors 

1 and 2 β0 = -12.5; 
β1 = 2.00E-3 

𝜔௠௔௫ Rowson et 
al., (2012) 

Concussion Football impacts 
measured with 
wearable sensors 

1 and 2 *β0 = -12.5; 
β1 = 4.42E-1 

HIC NHTSA, 
(1995) 

Skull Fracture, 
TBI 

Human cadavers 1 and 5 β0 = -2.49; 
β1 = -200; 
β2 = 4.83E-3 

GAMBIT Newman et 
al., (2000b) 

Concussion Football impact 
reconstructions 

1 and 2 †β0 = -6.78; 
β1 = 17.3 

HIP Newman et 
al., (2000a) 

Concussion Football impact 
reconstructions 

1 and 2 †β0 = -4.68;  
β1 = 3.66E-4 

CP Rowson & 
Duma, 
(2013) 

Concussion Football impacts 
measured with 
wearable sensors 

1 and 8 β0 = -10.2; 
β1 = 4.33E-2; 
β2 = 8.73E-4; 
β3 = -9.20E-7 

RIC Kimpara & 
Iwamoto, 
(2012) 

Concussion Football impacts 
measured with 
wearable sensors and 
reconstructions 

1 and 2 †β0 = -7.04; 
β1 = 6.79E-7 
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PRHIC Kimpara & 
Iwamoto, 
(2012) 

Concussion Football impacts 
measured with 
wearable sensors and 
reconstructions 

1 and 2 †β0 = -6.67; 
β1 = 7.58E-6 

BrIC 
(MPS) 

Takhounts et 
al., (2013) 

DAI Scaled animal impact 
data 

3 b = 0; 
λ = 0.602; 
k = 2.84 

BrIC 
(CSDM) 

Takhounts et 
al., (2013) 

DAI Scaled animal impact 
data 

3 b = 0.523; 
λ = 0.324; 
k = 1.8 

 *reported to nominal injury risk values; †data digitized from published plot 

 

3.4. Strain-based injury criteria and injury probability predictions 

Two FE models of the human head were used to obtain strain-based injury metrics 

(Figure 8). The Global Human Body Models Consortium-owed (GHBMC) 50th percentile male 

(M50) detailed seated occupant (v4.3) head and brain model was extra extracted from the whole 

body model and simulated independently by turning the dura into a rigid body (Mao et al., 2013). 

The second model, the Simulated Injury Monitor (SIMon v4.0), is a 50th percentile male human 

head model developed and distributed by NHTSA consisting of a brain and skull (Takhounts et 

al., 2008). Both models are comprised of the major brain structures, including the cerebrum, 

cerebellum, and brain stem, modelled as Kelvin-Maxwell viscoelastic materials. The skull was 

modeled as a rigid shell fixed to the head local anatomic coordinate system. The GHBMC brain 

model consists of over 120,000 elements and was validated against intracranial pressure data and 

relative brain-skull motion using PMHS data (Mao et al., 2013). The SIMon model has just 

under 45,000 elements and was similarly validated (Takhounts et al., 2008). Both models have 

been used in numerous computational brain injury. 
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Figure 8. Mid sagittal plane view of the FE human head models used in this thesis. 

The processed 6 DOF head kinematic time histories (3 linear accelerations and 3 angular 

velocities) were prescribed directly to the rigid skull of both FE models to calculate two injury 

criteria: MPS and CSDM. MPS is defined as the maximum strain occurring in all elements of the 

brain, while CSDM is the cumulative ratio of elements exceeding a set strain threshold (Figure 

9). In this thesis, strain thresholds for CSDM of 0.15 and 0.25 were used based on previous work 

(Bandak, 1995; Sanchez et al., 2017b; Takhounts et al., 2003, 2013). A 95th percentile MPS 

value was also calculated to avoid potential numerical instabilities associated with the 100th 

percentile value of MPS (Panzer et al., 2012). Simulations were performed in LS-DYNA (v971 

R7.1.1, double precision; LSTC, Livermore, CA). 

 
Figure 9. Distribution of MPS over all elements from the FE model and strain metrics calculated from the 

distribution.  
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Injury risk functions for MPS100 and CSDM25 were previously developed using the 

SIMon FE model based on survival analysis of scaled animal data (Table 5; Takhounts et al., 

2013). The injury risk functions took the form of a Weibull distribution (Equation 3). Injury risk 

functions have not been developed for the GHBMC strain metrics. As such, injury probabilities 

were only calculated for strain-based injury metrics from SIMon brain model. The GHBMC 

strain values of MPS95 and CSDM15 were chosen as baseline measures of brain deformation 

based on previous work (Gabler et al., 2016b; Takhounts et al., 2008; Sanchez et al., 2017b); 

they were used in later chapters to correlate with injury probability predictions from kinematics-

based and strain-based metrics. GHBMC strain values were also calculated to assess consistency 

between the two FE models. 

Table 5. Strain-based injury risk functions used in this thesis. 

Metric 
used 
in IRF 

IRF Reference 
Injury 
Assessment 
Type 

Data Source for IRF 
Development 

IRF 
Equations 

IRF 
Coefficients 

MPS Takhounts et 
al., (2013) 

DAI Scaled animal impact 
data 

3 b = 0; 
λ = 0.505; 
k = 2.84 

CSDM Takhounts et 
al., (2013) 

DAI Scaled animal impact 
data 

3 b = 0; 
λ = 0.300; 
k = 1.8 

 

3.5. Results 

3.5.1. Head kinematics 

The HRVs were exposed to maximum resultant head linear accelerations up to 40 g (12.6 

± 6.8 g) and peak resultant angular velocities and accelerations of 38 rad/s (18.4 ± 7.7 rad/s) and 

2917 rad/s2 (743 ± 490 rad/s2), respectively, from the sled tests. Compared to the oblique and 
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lateral tests, frontal sled configurations were generally able to achieve high sled acceleration 

pulses. However, lateral sled configurations typically resulted in higher rotational kinematics for 

the same sled pulse magnitude when compared with frontal and oblique impacts. 

The collegiate football reconstructions had slightly more severe impacts, as well as 

incorporating some concussive outcomes. The non-concussed players saw an average linear 

acceleration of 60.1 ± 21.2 g; rotational kinematics measured 2757 ± 1067 rad/s2 and 17.5 ± 7.1 

rad/s for angular acceleration and angular velocity, respectively. As expected, the concussive 

head impacts had higher values of maximum kinematics. These players experienced peak 

resultant linear acceleration of 114.5 ± 37.8 g, maximum resultant angular accelerations of 5430 

± 1956 rad/s2, and peak resultant angular velocities of 27.2 ± 7.9 rad/s.  

In the professional football reconstructions, the non-concussed reconstructions had 

average linear and angular accelerations of 56.3 ± 22.1 g and 3788 ± 1315 rad/s2, respectively, 

while resultant angular velocity averaged around 27.7 ± 8.8 rad/s. The concussed cases generally 

achieved higher kinematic peaks; peak resultant linear acceleration had an average of 93.6 ± 27.6 

g, angular acceleration of 6776 ± 1836 rad/s2, and angular velocity of 42.7 ± 11.3 rad/s. 

Combining and comparing the datasets shows good overlap in the distributions of data. 

That is, the higher severity HRV data are similar and magnitude to the lower severity, non-

concussive football reconstruction kinematics, as are the magnitudes of the higher severity, non-

concussive football impacts and lower severity, concussive reconstructions (Figure 10). 
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Figure 10. Distribution of maximum resultant kinematic parameters based on the 443 head impacts. 

 

3.5.2. Kinematic injury metrics and injury probability predictions 

Distributions for all injury metrics and injury probability predictions showed overlap 

between the concussive and non-concussive data (Table 6; Appendix B). The maximum resultant 

linear head acceleration of all non-concussive data (121.1 g) corresponded to a 2% (Funk), 97% 

(Newman), 92% (Pellman – combined), and 98% (Pellman – struck) risk of concussion, whereas 

the minimum injury probabilities from the concussive dataset indicated risks of <1 %, 7%, 10%, 

and 40% for Funk, Newman, Pellman combined and Pellman struck, respectively. The peak 

angular velocity for non-concussed impact data (47.2 rad/s) indicated 100% risk of concussion 

and peak angular acceleration (6382 rad/s2) showed a risk of 56%; the concussive data had a 

minimum risk of concussion of <1% for angular velocity (12.9 rad/s) angular acceleration (2795 

rad/s2). 
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HIC values did not exceed 455 (32% AIS 2+ injury) for the uninjured cases and had a 

minimum of 79 in the concussed data (1%, AIS 2+). The lowest injury risks for PRHIC, RIC, 

CP, and HIC in concussive cases were all less than 1%, but had injury risk probabilities up to 

92% (PRHIC), 72% (RIC), 24% (CP), and 31% (HIC) for non-concussive cases. HIP and 

GAMBIT had similarly low probabilities of concussion as the smallest value in concussive 

impact data (6% and 4%, respectively); the maximum, non-concussed injury risk predictions 

were 96% for HIP and 85% for GAMBIT. The highest BrIC value in the non-concussive dataset 

was 0.85, or a 93% risk of an AIS 2+ injury using the MPS-based injury risk function and a 64% 

using the CSDM-based risk function. Concussive data had BrIC values as low as 0.24, 

corresponding to injury risk probabilities of approximately 7% according to the MPS-based 

injury risk function and less than 1% for the CSDM-based correlation. 

Table 6. Peak non-concussive injury metrics and probabilities and minimum concussive injury metrics 
and risks. 

 Maximum Non-concussed Case  Minimum Concussed Case 
 Metric Value P(Inj)  Metric Value P(Inj) 

𝒂𝒎𝒂𝒙* 121.1 g 2%; 97%; 92%; 
98% 

 45.1 g <1%; 7%; 10%; 
40% 

𝝎𝒎𝒂𝒙 47.2 rad/s 100%  12.9 rad/s <1% 

𝜶𝒎𝒂𝒙 6382 rad/s2 56%  2795 rad/s2 <1% 
HIC 455 32%  79 <1% 

PRHIC 1.21E6 92%  8960 <1% 
RIC 1.18E7 72%  1.63E6 <1% 
CP - 24%  - <1% 
HIP 21403 96%  5245 6% 

GAMBIT 0.49 85%  0.21 4% 
BrICǂ 0.85 93%; 64%  0.24 7%; <1% 

MPS100 0.72 93%  0.23 10% 
CSDM25 0.26 60%  0.00 <1% 

*Semicolons separate injury probabilities calculated from Funk, Newman, Pellman – combined, 
and Pellman – struck, respectively 
ǂSemicolons separate the MPS-based and CSDM-based probabilities of injury 
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3.5.3. Strain results and injury risks 

Strain-based metrics calculated through simulations using the SIMon FE model spanned 

a range of values. MPS100 varied between 0.10 and 0.72 for the non-concussive impacts, where 

an MPS100 of 0.72 corresponds to a 93% risk of an AIS 2+ injury, and between 0.23 and 1.24 

for concussive impacts. CSDM25 values peaked at 0.26 for non-concussive simulations, or 

approximately a 60% probability of AIS 2+ injury. The concussed data had CSDM25 values 

ranging up to 0.81, spanning injury risk probabilities reaching 99.7%. Distributions of the injury 

probabilities can be seen in Figure 11. 

Compared to the SIMon simulations, the GHBMC model calculated similar results. MPS 

and CSDM values were generally lower in the GHBMC model, but overall correlations between 

the models were reasonable. MPS100 had the lowest correlation (R2 = 0.83), while MPS95, 

CSDM15, and CSDM25 all showed better correlation (R2 > 0.94). GHBMC strain-based metrics 

also spanned a range of values. MPS95 ranged from 0.01 to 0.37 in non-concussive simulations 

and between 0.15 and 0.64 in concussive ones; similarly, CSDM15 had values varied between 

0.05 and 0.87 for concussive impacts and 0 through 0.57 from the non-concussive data (Figure 

12). 

3.6. Summary 

Given that various injury metrics and risk functions have been proposed, it is not always 

clear which injury risk function performs best for specific loading conditions, much less across a 

variety of impact conditions. In this chapter, a dataset was established consisting both injurious 

and non-injurious head impacts with various loading conditions to use in evaluating brain injury 

risk functions. The data contained complete time histories of 6 DOF head kinematics and were 

assessed in terms of the validity of the sensor measurements and likeness to the impacts of the 
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Figure 11. Distributions of the probabilities of injuries calculated from curves in Takhounts et al. (2013) 
using SIMon strain metrics as the predictor variable. 

 

Figure 12. Distribution of strain metric values calculated via the GHBMC simulations. 

 
sled tests or reconstruction impacts. Injury probabilities were calculated using risk functions for 

both kinematic and strain-based injury criteria. In the following section, these injury risk values 

are used in conjunction with their injury outcomes to assess the efficacy of the injury risk 

functions.  
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CHAPTER 4:  EVALUATION OF CURRENT INJURY RISK FUNCTIONS 

4.1. Introduction 

A fundamental goal of the field of injury biomechanics is to develop risk assessment 

models that can accurately assess a probability of injury based on one or more mechanical 

response variables. In chapter 2, a database of head impacts was established to be used to 

evaluate the risk functions outlined in chapter 3. This chapter employs various statistical analysis 

tools to evaluate the efficacy of the aforementioned injury risk functions. Studies have previously 

evaluated injury risk metrics and functions using correlations with strain (Gabler et al., 2016a; 

Kleiven, 2006) and through comparisons with field-based head injury rates. In this thesis, injury 

risk functions are similarly assessed via strain correlations. Their diagnostic capability is also 

evaluated using receiver operating characteristic (ROC) curves, and their ability to correctly 

predict injury outcomes over the whole dataset are assessed using expected injuries and 

calculations of likelihood estimates. The goal is to determine which metric can best distinguish 

between injurious and non-injurious impacts and how well each risk function predicts the 

observed injuries from the database. 

4.2. Correlations with strain metrics 

4.2.1. Background 

Brain injuries from closed-head impacts cover a wide range of mild-to-severe types, 

including concussions and diffuse axonal injuries. Various mechanical variables have been 

proposed as brain injury predictors, such as intracranial pressure (Nahum et al., 1977; Zhao & Ji, 

2016). However, the primary belief is that these injuries are caused by tissue-level strains due to 

the inertial loading of the brain; numerous theoretical, experimental, and computational studies 
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have supported this claim (Gennarelli et al., 1982; Holbourn, 1943). Given this link, researchers 

have strived to assess the correlations between head and brain injury metrics and strain metrics 

determined from FE models (Gabler et al., 2016a; Hernandez et al., 2015). The premise of these 

studies has been that injury metrics capable of predicting strain-based brain injuries should be 

well correlated with strain metrics. This idea also applies to injury risk functions; if injury risk 

functions can predict diffuse type brain injuries caused by brain deformation, they should have a 

relationship (or, be well correlated) with strain metrics. 

4.2.2. Results 

For each set of head kinematics, the injury probability estimated by each injury risk 

function was plotted with respect to the MPS95 and CSDM15 strain metrics calculated via 

GHBMC; correlations between the strain metrics and injury risk functions were determined 

using the entire dataset (Figure 13). The strongest correlates with MPS95 were MPS-based BrIC 

and the MPS100 injury risk function developed for SIMon with R2 values of 0.91 and 0.89, 

respectively. Other injury risk functions that had good correlation with MPS95 include 

maximum angular velocity (R2 = 0.84), HIP (R2 = 0.77), CSDM25 (R2 = 0.76), CSDM-based 

BrIC (R2 = 0.75) and a maximum linear acceleration curve (Pellman struck; R2 = 0.74). Funk et 

al.’s peak linear acceleration curve had the worst correlation with MPS95 (R2 = 0.46), followed 

by CP (R2 = 0.59). The injury risk functions developed for peak angular velocity, MPS95, 

CSDM25, MPS- and CSDM-based BrIC, HIP, all correlated well with CSDM15 (R2 ≥ 0.80). 

Again, the worst correlations were with Funk et al.’s peak linear acceleration injury risk function 

(R2 = 0.51) and the injury risk function developed for CP (R2 = 0.66). 



61 

 

Figure 13. Overall correlation between strain metrics from GHBMC and injury risk probabilities from 
kinematic- and strain-based metrics. 

4.2.3. Discussion and Limitations 

When predicting brain strains as calculated with the GHBMC FE model, the strain-based 

injury probabilities unsurprisingly had some of the best correlations with strains. Although the 

injury risk functions were calculated from the SIMon model, strain metrics were well correlated 

between the two models (Figure 13). Overall correlation between the two models for MPS100 

and CSDM25 were R2 = 0.83 and R2 = 0.94, respectively. Although MPS100 is used to calculate 

injury probabilities, this thesis used the 95th percentile of MPS rather than the hundredth 

percentile value as the strain metric for correlations, as has been previously done (Gabler et al., 

2016b; Takhounts et al., 2008). This made it so that simulation results were not driven by the 

response of a single element. Previous work has shown better model correlation using MPS95 

(Gabler et al., 2016a); this is also the case for this dataset (R2 = 0.93). 
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Of all kinematic-based injury probabilities, the rotationally based risks had the strongest 

correlations with strain metrics; correlation values ranged from R2 = 0.66 to R2 = 0.91, where R2 

values above 0.5 are considered to be moderately correlated while values above 0.7 are strong 

correlations (Rumsey, 2016). These good correlations are not surprising given previous work in 

literature of theoretical, experimental, and computational work to support this outcome (Gabler 

et al., 2016b; Holbourn, 1943; Ommaya & Gennarelli, 1974; Takhounts et al., 2008, 2013). 

Injury risks calculated from translationally-based metrics were moderately correlated (R2 = 0.46 

to R2 = 0.74), while combination metrics (i.e., both linear and angular kinematic parameters) 

performed only slightly better than translational metrics. 

While correlations were determined between injury risk probabilities and strain metrics, 

the correlations are likely more representative of the injury metric rather than the injury risk 

function. Injury risk functions are monotonically increasing and are generally one-to-one 

functions. In other words, every injury risk value corresponds to exactly one value of the injury 

metric or predictor variable, and as the predictor variable increases, so will the injury risk 

prediction. Previously published works have shown that rotational metrics to have better 

correlations with strain (Gabler et al., 2016a); this may support that these correlation values are 

more indicative of the injury metric themselves.  

A limitation of the strain metric correlations is that they do not consider injury outcome. 

While this dataset showed that the concussive impacts generally had higher kinematic and strain 

values (Figure 10 and Figure 11), the actual injury outcomes were never considered in the 

correlations. Correlating the injury probabilities with strains showed that injury risk functions 

may be capable of predicting strain-based brain response, and while this thesis assumed that 

brain strains were indicative of injury, there could be concussive impacts with very little brain 
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deformation and non-concussive impacts with large brain strains. Based on correlations alone, 

and not including observed injury outcomes, there is little way to differentiate between the injury 

risk metrics and the injury risk functions. 

4.3. Receiver operating characteristic curves 

4.3.1. Background 

ROC curves are a means of assessing the performance of a metric for classifying data in 

two groups according to a binary response. Introduced by Egan (1975), the ROC curve illustrates 

the diagnostic capability of a predictor variable at various discrimination thresholds with respect 

to, in this thesis, a concussive or non-concussive outcome. An ROC curve plots the sensitivity of 

a dataset (i.e., true positive rate) versus 1-specificity (i.e., false positive rate) as the cut-off 

thresholds run through the range of all possible values. Different points on the curve correspond 

to the different thresholds used to determine which tests are considered a positive injury outcome 

(1)and which cases’ injury risk values are considered uninjured (0; Rosner, 2015). The injury 

risk function which maximizes the number of true positives while minimizing the number of 

false positives on the ROC curve is identified as the curve closest to the upper left portion of the 

plot. 

ROC curves are commonly compared by calculating the area under the curve (AUC; 

Faraggi & Reiser, 2002). An AUC value of 1 represents a perfect predictor, meaning that there 

exists a threshold that perfectly divides the injured and uninjured data; this is drawn as a perfect 

right angle in the upper left corner of the plot. An AUC score of 0.5 serves as a practical lower 

limit for the AUC value, drawn as a line from the lower left corner (0,0) to the upper right (1,1) 

and indicative of random guessing; the AUC of each injury risk function can then be compared 

to random guessing to assess if the metric is a better indicator of concussion (Hanley & McNeil, 
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1982). Pairwise comparisons of the predictive capability of the injury risk functions can also be 

made to determine if any predictors are significantly different from others (Hanley & McNeil, 

1983). 

ROC curves and their respective AUC values have been previously used to assess brain 

injury metrics. Greenwald et al. (2008) used AUC to determine which biomechanical measure 

was most sensitive to the prediction of concussion injury, defined as minimizing the false 

response rate. The study determined that a principal component score derived from HIC, SI, peak 

resultant linear acceleration, and peak resultant angular acceleration resulted in a lower false 

response rate when compared to each individual metric (Greenwald et al., 2008). ROC curves 

were also used to determine which threshold for CSDM was best used as a predictor of DAI 

(Takhounts et al., 2003); a threshold of 0.15 was chosen as the critical strain level and 

corresponded to experimentally determined strain values. Rowson & Duma (2013) assessed the 

capabilities of linear and angular acceleration using AUC and in response, developed CP as a 

better indicator of concussion. However, while ROC curves and AUC have assessed brain injury 

metrics, they have yet to be used to assess the associated injury risk functions. 

4.3.2. Results 

ROC curves were drawn using the injury risk probabilities from each injury risk function 

(Figure 14). The AUC of each predictor was also computed for all ROC curves to compare the 

predictive capability of the different injury risk functions (Figure 14). As expected, all injury risk 

probabilities were statistically better than random guessing (p < 0.01). The CP and angular 

acceleration injury risk functions by Rowson et al. (2012) and Rowson & Duma (2013) were 

determined as the best predictors, with AUC values of 0.983 and 0.982, respectively. However, 

most injury risk functions had AUC values above 0.90. The exceptions are rusk curves for 
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Figure 14. ROC curves (top) and their respective area under the curves (bottom) them of the injury risk 
probabilities estimated for various injury risk metrics
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MPS100 (0.889), peak angular velocity (0.887), and MPS- and CSDM-based BrIC (0.877 and 

0.834, respectively). Pairwise comparisons of the AUCs using Hanley’s method found 

statistically significant differences between the top 4 of the top AUC values (CP, GAMBIT, 

HIC, RIC) and the three lowest (BrIC MPS, BrIC CSDM, and peak angular velocity) at p < 0.05. 

There were also significant differences between peak angular velocity and peak angular 

acceleration AUC values, PRHIC with both BrIC MPS and BrIC CSDM, and BrIC CSDM with 

the SIMon CSDM AUC. 

4.3.3. Discussion and Limitations 

Using area under the ROC curve, results were quite different from the strain correlations; 

AUC values showed that injury risk values predicted from combination metrics (CP, GAMBIT) 

performed best, while injury risk predictions based on angular velocity values performed worst 

(BrIC MPS, BrIC CSDM, peak angular velocity). Further, FE based injury risk probabilities had 

some of the lower AUC values, although these values were not significantly different from the 

higher AUCs. Compared to the strain correlations, the risk probabilities that had highest AUC 

values generally had the lowest correlation values. The reason for this could be that there was 

significant separation in the predictor variables. ROC curves are plots of how well the data can 

be separated by injurious outcomes; therefore, if the injury risk probabilities for the injurious 

cases are much higher than the non-injurious impacts, it would be easy to distinguish between 

the datasets and the AUC value would be high. Further, if many of the injury risks are near 0, 

this could set the injury risk function up to have good separation between concussive and non-

concussive impacts, but would worsen the correlations. 

Similarly to the strain correlations, it is possible that the AUC values are indicative of the 

metric rather than the injury risk function. As previously mentioned, injury risk functions are 
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monotonically increasing, therefore if, for example, the peak resultant angular acceleration 

values in the concussive impacts were much higher than the non-concussive cases, the injury risk 

values would also be much higher and would cause high AUC values. This also explains why the 

four linear acceleration risk functions have the same AUC. All use the same predictor variable 

(peak resultant linear acceleration) in their injury risk functions. While each point on each of 

these ROC curves may represent a different cutoff threshold, they have the same plot of true 

positive rate and false positive rate. The same could be expected from the two BrIC based injury 

risk curves. However, while both the CSDM- and MPS-based BrIC curves have the same input 

variable, the formulation of the CSDM-based curve assigns all BrIC values less than 0.523 a 0% 

risk of AIS 2+ injury, causing slightly different ROC values. 

It is also important to note that some of the injury risk functions seem to have large 

separation between concussive and non-concussive injury risk probabilities, as seen in the 

boxplots in Appendix B. For example, CP has a median concussive probability of injury of 39% 

and a 25th percentile value of 9%. On the other hand, the 75th percentile injury risk value for the 

non-concussive impacts is a 0% injury probability. The large separation within the data likely 

explains the high AUC value. Several other risk functions have a similar concussive and non-

concussive distribution. Thus, these high AUC values are highly dependent on the underlying 

data being used in this assessment and could explain why some risk functions perform well in 

terms of ROC, but do not represent the mechanism of injury as illustrated by the strain 

correlations (section 4.2). 

One property of ROC curves is their invariance under transformations. In other words, all 

the injury probabilities could be uniformly scaled down such that the maximum probability of 

injury was less than 10% and still maintain the shape of the ROC curve. This is because the 
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shape of the ROC curve is not determined by the injury threshold, but rather by the ratio of true 

positives and false positives at all possible thresholds. Therefore, while an ROC curve can show 

the diagnostic ability and can determine thresholds for separating injury from non-injury, it may 

not be the best tool for evaluating the predictive capability of the injury risk functions as it does 

not assess the how well the injury risk probabilities correspond to injury outcome. 

4.4. Log-likelihood estimates 

4.4.1. Background 

Unlike ROC curves and strain correlations, log-likelihood estimates assess a curve’s 

ability to match a given outcome. The theory driving likelihood estimation is the belief that a 

good estimate of an unknown parameter would be a value that maximizes the probability, or 

likelihood, of getting a result similar to the observed data. For a fixed set of data and statistical 

model, the method of likelihood estimation chooses the model parameters that have the best 

chance of matching the observed outcomes. In terms of injury risk functions with parameters 

defined in literature and injurious outcomes, log-likelihood estimates can be used to assess how 

the predicted injury probabilities from each injury risk function match the injury outcomes. The 

log-likelihood estimates penalize injury risk values that are not indicative of the injury result; 

summing these values then ranks the injury risk functions. The function that maximizes the log-

likelihood estimate, or as calculated below, minimizes the negative log-likelihood estimate, 

indicates a better predictor of injury. 

Log-likelihood estimates were calculated by first performing the logit transformation on 

all calculated injury risk probabilities from each injury risk function. The logit function 

calculated the log-odds (i.e., the log of the probability that an event will happen divided by the 

probability that the event will not happen) and was used to transform data in order to remove the 
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boundary restrictions (i.e. 0 < x < 1). Negative log-likelihood estimates were then calculated 

from each of the transformed injury probabilities: 

ln൫1 + 𝑒ି୪୭୥୧୲(௜௡௝௨௥௬ ௣௥௢௕௔௕௜௟௜௧௬) ∗௜௡௝௨௥௬ ௢௨௧௖௢௠௘൯ Equation 13 

where 

logit(𝑥) = ln ቀ
𝑥

1 − 𝑥
ቁ Equation 14 

and 

𝑖𝑛𝑗𝑢𝑟𝑦 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 =  ൜
1, 𝑖𝑛𝑗𝑢𝑟𝑦

−1, 𝑛𝑜𝑛 − 𝑖𝑛𝑗𝑢𝑟𝑦
 Equation 15 

In calculating the log-likelihood estimates, injurious cases with low injury risk 

probabilities and uninjured cases with high probabilities of injury risk were penalized more than 

uninjured cases that correctly estimated low injury risk values and injured impact data that 

correctly estimated a high injury probability (Figure 15). Log-likelihood estimates were summed 

over all cases for each injury risk function, and the risk curves were ranked by the sum of the 

log-likelihood values. It should be noted that the negative log-likelihood values were calculated, 

therefore lower values indicated better performance than higher values. 



70 

 

Figure 15. Plot of the negative log-likelihood estimates. Injurious cases (red line) that have a low 
probability of injury will have high values. The same is true with non-injurious cases (green line) that 

have a high risk of injury. 

4.4.2. Results 

Ranking the log-likelihood estimates relative to 31 concussions, the GAMBIT risk 

function and two peak resultant linear acceleration curves (Pellman combined and Newman) 

outperformed the other injury risk functions with estimates of 41.1, 52.7, and 52.8, respectively 

(Figure 16). Risk functions for CP, peak angular acceleration, RIC, HIP, HIC, PRHIC, and 

CSDM all had estimates under 100. The Pellman et al. struck and Funk et al. risk curves for peak 

linear acceleration had values of 123.2 and 156.0, respectively. While CSDM25 was ranked in 

the middle, the CSDM-based BrIC curve performed the worst, with a negative log-likelihood 

estimate of 209.2. The MPS-based BrIC (152.1) and MPS100 (161.9) risk functions ranked 

slightly higher than CSDM-based BrIC. Rowson et al.’s curve for peak resultant angular velocity 

had one of the largest negative log-likelihood estimates (177.7) despite being derived from the 

same data as the maximum resultant angular acceleration injury risk function. 
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Figure 16. Negative log-likelihood estimates of all injury risk functions relative to 20 concussions. 

4.4.3. Discussion and Limitations 

Log-likelihood estimates are generally used to estimate the parameters of a statistical 

model given various outcomes by finding the parameter values that maximize the probability of 

the model making the correct observations given the parameters. In other words, maximum 

likelihood estimates help pick model parameter values so that they maximize the agreement of 

the observed data and calculated outcome. In this section, where the model parameters were 

previously determined in the literature, likelihood estimates were used to assess the parameter 

values given the injury observations from the database used in this thesis. The likelihood 

estimates then provided a ranking of how well each injury risk function predicts injuries based 

on the observed outcomes. 

Using likelihood estimates, the risk curve for GAMBIT had the lowest value and was 

best able to predict the observed data outcomes. On the other hand, CSDM-based BrIC was the 
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least capable of estimating outcomes based on the observed injuries. This result may be driven 

by eight of the concussive impacts, which all had BrIC values under 0.5 and an estimated 0% 

risk of AIS 2+ injury using the BrIC CSDM risk curve. Recall that injury probabilities that do 

not relate to their respective outcome are penalized (Figure 16); in this case the injury risk values 

(0%) are the opposite of the injury outcomes (concussion) and greatly increase the likelihood 

estimate. Without these 8 impacts, the BrIC CSDM risk curve would have a likelihood estimate 

closer to 40 as opposed to 209. At the same time, an injury risk function should never predict a 

0% injury risk for a concussive injury outcome. 

When calculating the log-likelihood estimates, the extreme injury probabilities are 

asymptotic when they are not indicative of injury outcomes. That is, when an injurious impact 

has a 0% probability of injury, the likelihood estimate approaches infinity. This is because the 

logit function is undefined at values of 0 and 1 (0% and 100% risk of injury). For all injury risk 

functions, there were cases of estimated 0% and 100% probability of injury. An offset of 10-9 

was added to (or subtracted from) these injury risk values in order to calculate a finite value for 

plotting the likelihood estimates. However, an injury risk function should never predict a 0% 

probability of injury on a concussive case, nor should it predict a 100% probability of injury for a 

non-injurious case. Two injury risk functions, however, did predict a 0% injury risk for 

concussive cases: the BrIC CSDM and the SIMon CSDM risk curves. 

A limitation of log-likelihood estimates is that there is no threshold that defines a good fit 

or a bad fit. Likelihood estimates are used to determine parameters for the best fit of a model, 

where the best fit maximizes the likelihood of correctly estimating the observations and therefore 

has the lowest likelihood estimate. Thus, likelihood estimates are only capable of ranking the 
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injury risk functions in terms of ability to predict the injury functions. It cannot be used by itself 

to determine good or poor model fit. 

4.5. Expected injuries 

4.5.1. Background 

A second method of assessing the ability of an injury risk function to correctly predict 

injury outcomes over a dataset is through expected injuries or the expected value. In statistics, 

the expected value of a random variable is the average result of an experiment after many 

repetitions, or what should be anticipated as the result of many trials. For example, the expected 

value of rolling a die is 3.5. In regression analysis with binary outcomes, the expected value of 

the regression probabilities should be close to the number of observed outcomes, where large the 

differences between observed values and expected values indicate poor the fit of the model to the 

data. The number of expected injuries was calculated using this database to compare the injury 

risk function estimates to the number of observed injuries. Injury probabilities were summed 

over all the tests to obtain the expected number of injuries for each of the 16 injury risk 

assessment tools. The accuracy of each injury risk function was evaluated by comparing the 

expected number of injuries relative to the injury diagnoses in this cohort (n = 31). 

4.5.2. Results 

The injury risk function developed for GAMBIT estimated 35 expected injuries, the 

closest prediction of expected injuries out of all injury risk functions when compared with the 

number of observed injuries (n = 31; Figure 17). Injury risk functions developed for RIC, 

maximum resultant angular acceleration, PRHIC, CSDM25, and BrIC CSDM estimated 18 to 20 

expected injuries, compared to 31 observed injuries. While the CSDM-based BrIC and CSDM25 
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risk functions slightly underestimated the number of injuries, their counterparts of MPS-based 

BrIC and MPS100 overestimated the expected injuries with values of 121 and 131, respectively. 

These were the highest seen for all risk functions. The peak linear acceleration curves showed 

mixed results. The Pellman struck (105), Pellman combined (47), and Newman (45) curves 

overestimated the count of observed injuries, while the curve developed by Funk calculated less 

than 1 expected injury in the entire dataset, severely underestimating the number of injuries. The 

maximum angular velocity curve estimated 87 expected injuries, compared to the 20 predicted 

by the peak angular acceleration risk function developed from the same dataset. HIP also 

overestimated the number of injuries (48), while CP and HIC underestimated them (14 and 10, 

respectively). 

 
Figure 17. Expected number of AIS 2+ and concussive injuries predicted using each of the injury risk 

functions calculated using the full dataset (n = 443). The full dataset had 31 observed concussions. 

Sanchez et al. (2017), in a similar analysis, noted that an assumption of the volunteer sled 

tests is that each test is independent, when in fact, all 335 sled tests were conducted using 22 

subjects. As such, it would be surprising if a volunteer was not injured on the most severe sled 

0

20

40

60

80

100

120

140

E
x

p
ec

te
d

 I
n

ju
ri

e
s

Observed Injuries



75 

pulse but was injured at a lesser exposure. While sled test data were available for all 22 HRVs, 

subject-specific identifiers were only available for the 249 sled tests obtained from TNO (16 

subjects). For each of these volunteers, the most severe sled run, determined by highest injury 

risk, was chosen for each of the injury risk functions examined. In some cases, individuals 

achieved their highest injury risks in different sled tests for different risk functions. For each risk 

function, the injury probability of the most severe runs for each subject was collected and 

summed to obtain the number of expected injuries from the smaller cohort of data. Recalculating 

expected injuries using only the most severe sled runs found that trends were similar to before 

(Figure 18). GAMBIT again had the nearest estimate of expected injuries to observed (34 

expected compared with 31 observed). BrIC-based MPS, MPS100, and the Pellman struck linear 

acceleration curves resulted in the largest expected injuries (54, 58, and 73 expected injuries), 

while Funk’s linear acceleration curve again estimated less than 1 injury. 

Figure 18. Expected number of injuries predicted for each injury risk function using only the most severe 
tests for each volunteer rather than all 335 HRV sled tests. The full dataset still had 31 observed 

concussions. 
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4.5.3. Discussion and Limitations 

Results for the expected number of injuries estimated by all 16 injury risk functions were 

inconsistent; the trends in risk curve performance, however, were similar using the entire dataset 

and using a subset of data based on the most severe volunteer sled data. For example, using the 

linear acceleration risk curve developed by Funk would estimate less than 1 injury out of 31 

observed injuries. On the other hand, the Pellman struck curve estimated 105 expected injuries, 

or 24% of the total dataset, compared to 7% observed injuries in the data (59% of the subset 

using the most severe cases, compared to 25%). The other linear acceleration risk curves 

(Pellman combined and Newman) had closer estimates to the observed number of injuries. The 

Pellman combined curve estimated 11% of injuries over the full dataset and 34% in the smaller 

cohort; the Newman risk function calculated 45 (10%) and 43 (35%) expected injuries from the 

total and smaller datasets, respectively. 

Similarly, the BrIC CSDM risk curve would predict approximately 18 AIS 2+ injuries in 

the entire data (4%; 17 injuries or 13% of the smaller subset of data) while the MPS-based BrIC 

injury risk function had one of the highest numbers of expected injuries (122 or 27% of the full 

dataset and 54 or 13% of the smaller cohort). The large difference between these two curves can 

likely be attributed to the large number of 0% injury risk probabilities estimated by the CSDM-

based BrIC curve; as previously mentioned, this curve associates a 0% probability of injury to 

every BrIC value below 0.523 due to the offset value (b) in its formulation (Equation 3). 

A concern of including the less severe volunteer sled exposures is that these could inflate 

the number of expected injuries by having such a large number of impacts. Further, these less 

severe sled tests are comprised from the same 22 volunteers, therefore, it would be surprising if 

the volunteers were injured on a less severe impact and not on a higher severity sled run. To 
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account for this, expected injuries were calculated using only the most severe sled impacts. As 

mentioned above, the trends using both the full dataset and the smaller subset were similar. 

However, by comparing differences in the expected injuries predictions using the full dataset and 

the most severe runs, the average injury risk probability can be calculated for the less severe 

HRV sled tests. That is, by calculating the difference in the expected number of injuries from 

both methods and dividing the difference by the number of sled tests not used in the smaller data 

cohort, the average injury probability of these sled tests can be found. For most injury risk 

functions, the less severe sled tests had an average injury risk value of around or less than 1%. 

However, injury risks calculated from the Pellman struck maximum linear acceleration and peak 

angular velocity curves averaged 10% for the less severe sled impacts. The MPS-based risk 

curves (MPS100 and BrIC) each had average injury probabilities of 23% and 21%. Given that 

these were volunteer sled tests which must be designed with little to no likelihood of injury, it 

seems likely that an average injury probability of 10% or greater is indicative of an over-

predictive injury risk function. 

4.6. Discussion 

In the previous four sections, the ability of 16 head and brain injury risk functions were 

assessed on their ability to correctly predict injury outcomes over the full dataset using 6 DOF 

head kinematic responses from more than 400 volunteer sled tests and football reconstructions. 

Numerous kinematic- and strain-based injury criteria and their associated risk functions have 

been developed to predict the risk brain injury. Having an accurate injury risk assessment tool 

can have a significant effect in head protection and the development of safety systems such as 

helmets and automobile restraints. Therefore, the accuracy of the risk functions for correctly 

assessing brain injury risks over a wide range of severities is of utmost importance. In this 
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chapter, numerous risk assessment curves were evaluated using several statistical analysis 

techniques with mixed results. 

For example, while CP had the best AUC value, it had the second worst correlation with both MPS95 and 
CSDM15 (

 

Figure 19). Alternatively, while the MPS-based BrIC injury risk function had the 

strongest correlation with the MPS95 strain metric and the second strongest correlation with 

CSDM15, it grossly over-predicted the number of expected injuries with respect to the entire 

dataset and the smaller data subset of only the most severe volunteer sled runs. 
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Figure 19. Injury risk function ranks with respect to each evaluation metric. 

Results in literature also show mixed results. Hernandez et al. (2015) evaluated brain 

injury metrics (not injury risk functions) on their ability to predict mild traumatic brain injuries 

using head impact data from football, boxing, and martial arts. They found that metrics 

comprised of translational and rotational kinematic measures, such as GAMBIT and HIP, were 

among the best kinematic-based predictors of injury, as was maximum resultant angular 

acceleration. Change in peak angular velocity, BrIC, and PRHIC and translation-only metrics 

were less capable of predicting injury outcomes (Hernandez et al., 2015). Gabler et al. (2016a) 

used 660 head impacts from occupant and pedestrian crash tests and pendulum head impacts to 

assess the capability of fifteen kinematic-based injury metrics for predicting strain-based brain 

response. Correlations between the kinematic and strain-based metrics showed that rotationally-

based metrics, particularly those derived from angular velocity, had the highest correlations with 

strain. Specifically, BrIC had one of the highest overall correlations. Metrics derived from linear 
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acceleration were the least correlative with strains (Gabler et al., 2016a). While Hernandez et al. 

(2015) found that metrics incorporating 6 DOF kinematic measures were more capable of 

predicting injury, this study by Gabler et al. (2016a) suggested that rotational head kinematics 

are the most important parameters for brain injury criteria. It is worth noting that these studies 

did not assess the injury risk functions; rather, their results were drawn from analysis of head and 

brain injury risk metrics used as input to the risk functions. 

Studies have also evaluated the efficacy of kinematic-based brain injury criteria using 

field data from motor vehicle crashes. Laituri et al. (2015) assessed brain injury risk functions by 

comparing injury risk probabilities from FE reconstructions to real-world injury rates obtained 

from the National Automotive Sampling System (NASS-CDS). They found that the AIS 2+ 

injury rates based on HIC and CP were more consistent with the real-world injury rates than the 

MPS-based BrIC injury risk function (Laituri et al., 2015). Another study also used the NASS-

CDS database to identify head injury rates in real-world automotive crashes and compared the 

crash configurations, vehicle damage, and occupant patterns to overlap crash tests from the 

Insurance Institute of Highway Safety (Mueller et al., 2015). They found injury probabilities 

estimated from HIC were closer to real-world estimates for AIS 3+ and 4+ injury severity levels 

than those predicted by BrIC (Mueller et al., 2015). Similarly, NHTSA’s oblique frontal crash 

tests were used to predict BrIC injury risks and showed that the BrIC injury probabilities 

estimate higher rates of AIS 3+ head injuries than currently seen in similar real-world crashes 

(Prasad et al., 2014). 

While results are mixed in terms of injury risk function performance, if one risk metric 

and function had to be used, the strain-based injury risk functions are likely the best choice. 

Despite the CSDM risk curve estimating a 0% probability of injury for a concussive case and 
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that the MPS injury risk function over-estimating the number of expected injuries, strain is the 

presumed mechanism of diffuse type brain injury; the strain-based injury risk functions had the 

best correlations with strain metrics (section 4.2). Therefore, the design of injury 

countermeasures and head protective equipment, which aim to reduce the probability of injury, 

should decrease the strain metrics. As mentioned in section 1.2.3, injury risk functions are 

monotonically increasing functions with injury probabilities increasing as the predictor variable 

increases. As such, regardless of the injury risk function used, reducing the strain metrics will 

also reduce the injury probability even if the injury risk function cannot correctly estimate injury 

outcome. Until there is an injury risk function that both matches the underlying injury 

mechanism and is capable of correctly estimating injury outcomes, strain metrics should be 

reduced as a means for reducing injury risk probability. 

The reason for the disagreements seen in this thesis and in literature is likely due to the 

underlying data used in this thesis, as well as the data from which injury risk functions are 

developed. The HIC injury risk function was derived from PMHS data for skull fracture, but 

functional injuries such as concussion cannot be assessed using this type of data and without a 

physiologic response. Data from animal models, such as that used to develop the BrIC and strain 

injury risk functions, must be scaled to apply to humans, making it difficult to relate kinematic 

parameters and injury metrics to injury outcomes (Ommaya, 1985; Panzer et al., 2014). Some 

injury risk functions were derived from indirect measures of human head kinematics in the form 

of football impact reconstructions. However, these reconstructions were of significant hits, and 

these hits are not necessarily representative of the total exposure to head impact seen during the 

course of a football game or season. Rather, the selection bias of these reconstructions towards 

the concussive and significant impacts may cause injury risk curves derived from the data to 
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over-predict the risk of injury (Broglio et al., 2010; Funk et al., 2007, 2012; Schnebel et al., 

2007). 

Several injury risk curves were developed using exposure data, yet were still unable to 

perform well across all evaluation metrics. These risk curves include the linear acceleration 

curve by Funk et al. (2007), Rowson et al.'s (2012) curves for peak angular acceleration and 

angular velocity, and the curve developed using CP by Rowson & Duma (2013). For the linear 

acceleration curve and the CP curve (which includes peak resultant linear acceleration), it is also 

possible that these did not perform well due to their use of translational kinematics. Rotational 

measures of motion have been found to be better indicators of strains given that rotation is the 

simplest way to generate shear strain in the brain (Gabler et al., 2016a; Gennarelli et al., 1982; 

Holbourn, 1943). The peak angular velocity and acceleration curves, on the other hand, should 

be well-suited for predicting concussion according to the previous statement. However, these 

curves were developed using indirect measures of rotational motion. The angular acceleration 

term used as a predictor for the risk function was calculated using an equation with linear 

acceleration as the input; peak angular velocities were then calculated from the estimated angular 

acceleration terms in another linear equation (S. Rowson et al., 2012). 

It should also be noted that the data used in this thesis for the assessment of the injury 

risk functions was also biased. The professional football reconstructions were again of 

significant and concussive hits, with the smallest magnitude at just 32 g. Exposure data measured 

from the HIT system in collegiate football showed that 70% of impacts occur at magnitudes 

below 30 g (Funk et al., 2007). Similar results are found with the collegiate football 

reconstructions, although the magnitudes of these impacts were slightly more representative of 

the overall exposure data. Further, while the dataset in this thesis seems to include too many 
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significant hits, the inclusion of 335 volunteer sled tests may also cause the dataset to over 

exaggerate the number of non-injurious impacts. As such, the overall exposure rate of the data 

may not be representative which could equally affect the assessments on the injury risk 

functions. 

4.7. Summary 

This chapter used several statistical techniques to evaluate injury risk functions, yet there 

was no overall consensus between these techniques that one risk function was more capable at 

predicting injury than the others. Further, literature shows that there is currently no consensus on 

a universally accepted injury metric and risk function. Studies disagree as to whether 

combination metrics or rotationally-based metrics are more capable or predicting the brain strain 

response (Gabler et al., 2016a; Hernandez et al., 2015). Studies also show that some injury risk 

functions may overestimate field-based injury rates (Laituri et al., 2015; Mueller et al., 2015; 

Prasad et al., 2014). 

Reasons for disagreement were explored, especially as it relates to selection bias in both 

the development of the injury risk functions as well as selection bias within the dataset used for 

evaluation in this thesis. The next chapter explores the effects of selection bias and exposure rate 

through simulations in order to better illustrate how these may affect injury risk functions. The 

next chapter explores this idea through simulations to better illustrate the effect of selection bias 

and impact exposure.  
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CHAPTER 5:  CASE-CONTROL DATA AND LOGISTIC REGRESSION 

5.1. Introduction 

When injury risk curves are derived from case-control data, such as the professional 

football reconstructions, they may over-predict the absolute injury risk (Broglio et al., 2010; 

Funk et al., 2007, 2012; Schnebel et al., 2007). However, this type of data may be able to 

correctly estimate some parameters of the injury risk functions (Agresti, 2013). For example, 

logistic regression models derived from retrospective and case-control studies have been shown 

to correctly determine the relationship between an unknown explanatory variable and a known 

outcome (Agresti, 2013; Prentice & Pyke, 1979). In terms of the injury risk functions from 

chapter 3, the coefficients on the predictor variables (β1, β2, and β3 in Equations 2, 5, and 8) 

found using case-controlled may be valid estimates in measuring the odds of having a positive 

outcome for a population. On the other hand, the intercept term (β0 in Equations 2, 5 and 8) is not 

a valid estimate because data have a fixed number of observed outcomes set by the case-control 

design (Agresti, 2013). 

This characteristic of model parameters is only possible using logistic regression and the 

logit transformation (Equation 14; Agresti, 2013). When a logistic regression model is developed 

using the logit transformation, the regression coefficient is called the odds ratio and denotes the 

estimated increase in the log-odds of the outcome of the outcome per unit increase in the 

exposure value (Szumilas, 2010). Odds ratios can be used to compare the relative odds of an 

observed outcome given a predictor variable, and can determine association between a predictor 

variable and an outcome. While literature shows that this is a characteristic of logistic regression 

in case-control studies, it does not list requirements on the data sampling. This chapter explores 
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possible limitations of this property through statistical simulations of data sampling in order to 

determine the necessity of exposure data in creating injury risk functions. 

5.2. Methods 

An overall distribution of head impact exposure in collegiate football impacts was created 

using real-time head acceleration data measured via the HIT. Funk et al. (2007) expressed this 

exposure data as a standard Weibull distribution and fitted the scale and shape parameters to the 

true distribution of impact magnitudes (scale = 24.41, shape = 1.03; Figure 20). For the 

simulations, this Weibull distribution was used to pick a random sample of peak resultant linear 

acceleration values to represent head impacts. 

    

Figure 20. Weibull distribution fitted to the resultant head linear acceleration exposure in collegiate 
football impacts. 

Injury outcomes had to be assigned to each of the sampled head linear accelerations; 

therefore, an injury risk function was defined to serve as a true risk curve. This curve was based 

on the peak resultant linear acceleration curve determined by Funk et al. (2007). The curve by 

Funk et al. was developed using real-time head exposure data measured via the HIT system as 

well as concussive and non-concussive football reconstruction data. Unlike other risk curves 
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developed for peak linear acceleration, this curve includes unbiased estimates of impact exposure 

and is therefore likely to be more representative of absolute risk compared to the other linear 

acceleration curves. The injury risk function by Funk et al. was defined using a Weibull 

distribution, however, as previously mentioned, the ability to correctly approximate coefficients 

on the predictor variables only applies to logistic regression models. Therefore, a new logistic 

regression model was developed by fitting parameters to the Weibull curve that minimize the 

difference between the two models (β0 = -5.31, β1 = .0149; Figure 21). 

 

Figure 21. Plots of the original injury risk function developed by Funk et al. (2011) using a weibull 
distribution compared with its equivalent developed using logistic regression. Regression coefficients 

were chosen to mimize the difference between the two curves 

For each sampled peak resultant linear acceleration value, a probability of injury was 

calculated using the defined true injury risk curve. Injury outcomes were then determined by 

sampling from the probability of injury risk. For example, a 200 g head impact was associated 

with an injury risk of about 10%. Consequently, a vector was defined such that 10% of the 

values had an injurious outcome (i.e., a value of 1) and 90% represented a non-injurious outcome 
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(i.e., a value of 0). A single value was randomly chosen from this vector to represent the 200 g 

head impact injury outcome. 

Several situations were studied using these simulations. First, 1000 samples were taken 

from the distribution to ensure a similar fit to the true risk curve (case A). Next, a random sample 

of 60 significant hits was defined (case B). Significant hits were defined in this thesis as having 

peak resultant acceleration values above 35 g; therefore, samples were randomly chosen from a 

truncated exposure distribution to ensure all values were above this threshold (Figure 22). The 

lower limit of 35 g was chosen based on the lower head acceleration values determined in 

professional football reconstructions (Pellman et al., 2003), as well as from thresholds previously 

used in the literature (Funk et al., 2007). When calculating injury outcomes, one sample had to 

be forced to have a positive injury outcome so that the injury risk curve would have a non-zero 

slope. 

 
Figure 22. Exposure distribution used for sample scenarios B and C, in which only significant hits (i.e., 
above 35 g) were considered. The Weibull exposure distribution is defined using the same coefficients as 

in Figure 20. 
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Third, a sample was created to replicate the professional football dataset in order to create 

a sample of selection bias (case C). The impacts in the professional football reconstruction 

dataset were originally chosen strictly because they were concussive or big hits, not because they 

were representative of the impacts seen over the course of a game or season. Head acceleration 

values were sampled as in case B with a lower limit of 35 g (Figure 22). Unlike case B 

(significant hits), however, the selection bias sample scenario aimed to have a higher percentage 

of concussive injury outcomes. Therefore, rather than sampling injury outcomes, these were 

assigned such that the first 25 samples were given an injurious outcome and the remaining 35 

impacts were assigned a 0 (non-injurious). 

Finally, case D still wanted to have a large number of concussive impacts, but aimed to 

have both the concussive and non-concussive impact distributions be representative of the impact 

exposure. As such, for case D, 10,000 samples were taken from the distribution and their injury 

outcomes were determined. This was split into a concussive subset (injury = 1) and a non-

concussive subset; examples of the distributions of these can be seen in Figure 23. Values were 

then randomly sampled from both of these subsets 25 times so that the final sample set had 25 

concussive impacts and 25 non-concussive impacts with their associated head linear 

accelerations. Samples were made with replacement to account for the fact that there may be less 

than 25 values in the concussive data subset. 
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Figure 23. Distribution of the concussive and non-concussive impacts based on 10,000 samples. 

After each sample in the scenarios described above, the data were fit with a logistic 

regression model in the form of Equations Equation 1 and Equation 2. One thousand samples 

were taken for each scenario in order to determine an average injury risk curve, as well as a 95th 

percentile confidence interval. Both the median slope coefficient (β1) and the intercept value (β0) 

from the 1000 samples in each scenario were compared to the true risk curve to determine 

limitations on using case-control data to create an injury risk function representative of the 

absolute risk of the population. 

5.3. Results 

The injury risk curves (Figure 24) had a range of slope and intercept parameters, as 

described in Table 7. The slope (β1) for case A, the 1000 sample set to ensure similar fit to the 

true risk curve, had a value of 0.0141. This slope value fell within a 5% error margin compared 

to the real slope value of 0.149. The intercepts were also similar (-5.29 vs -5.31 for the true risk 

curve; 0.4% error). Case B created a logistic regression model using significant hits (i.e., head 

accelerations about 35 g) and estimated a slope of 0.0054 (63.5% error). The intercept value (-

0

0.1

0.2

0.3

0.4

0.5

0.6

20 40 60 80 100 120 140 160 180 200 220

F
re

q
u

e
n

c
y 

(%
)

Peak Resultant Linear Acceleration (g)

Concussive

Noninjurious



90 

4.22; 20.5% error) also varied with respect to the true risk curve’s intercept term. The sample set 

in case C had a larger (and therefore steeper) slope value of 0.0437 (194.2% error) and an 

incorrect intercept as well (-2.97; 44.1% error). The case D intercept estimate had the largest 

percent error of all intercept terms (-0.47; 91.1% error), but its β1 value of 0.0157 (5.6% error) 

was much closer to that of the true risk curve’s than cases B and C and was nearly identical in 

percent to the slope estimated by case A. 

Table 7. Coefficients for the logistic regression models determined from each of the four sampling 
scenarios. Parentheses indicate 95% confidence intervals. 

  β0 β1 

True Risk -5.31 0.0149 

Case A -5.29 (-6.55, -4.49) 0.0141 (-0.190, 0.031) 

Case B -4.22 (-12.99, 9.86) 0.0054 (-0.339, 0.101) 

Case C -2.97 (-5.42, -1.36) 0.0437 (0.168, 0.089) 

Case D -0.472 (-1.18, 0.061) 0.0157 (-0.003, 0.042) 

 

 
Figure 24. Injury risk curves determined by the four sampling scenarios, compared to the curve defined 

to represent true injury risk. 
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5.4. Discussion 

Plotting the curves created by these four scenarios shows that only case A recreated the 

predefined true risk curve with some accuracy (Figure 24). The scenario which only included 

significant hits (case B) resulted in a much shallower slope than that of the true risk curve; this 

can be attributed to the data only having 1 positive injury outcome. Even though this situation 

was defined to have head impacts resulting in accelerations above 35 g, samples still had to be 

forced in order for there to be a single positive injury outcome. Further, these impacts still tended 

towards lower severities and were clustered just above the 35 g threshold due to the higher rate 

of exposure at this level of impact. In case C, on the other hand, the assigned injury rates of 25 

concussions versus 31 non-injurious impacts caused the slope to be much steeper than the true 

risk curve. The predefined injury rate (45%) was much higher than that observed in both scenario 

A (about 1%) and B (approximately 2%). It was also higher than incidence rates reported in 

literature; Rowson et al. (2012) reported 0.726 concussions per 1000 impacts when considering 

underreporting of concussive injury and Lincoln et al. (2011) reported an incidence rate of 0.60 

concussions per 1000 exposures in football, where an exposure is defined as one athlete 

participating in one game or practice. 

The slope parameter estimated by case D, however, was very near to the slope of the true 

risk curve; recall that in case D an equal number of concussive and non-concussive impacts were 

sampled from exposure data to create the logistic regression model. This correct slope estimate 

was determined despite having a 50% injury incidence rate. However, because the random 

sampling was representative of the underlying exposure curve, this type of case-control 

simulation could estimate the change in likelihood of concussion per unit change in head 

acceleration (Prentice & Pyke, 1979). 
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Perhaps the simplest explanation for case D being able to correctly estimate the odds ratio 

(β1) when cases B and C could not can be seen with a frequency table (Figure 25). In medical 

studies, the odds ratio is the ratio between the odds of developing a disease given exposure to the 

disease and the odds of developing the disease given non-exposure (Szumilas, 2010). In terms of 

the frequency table, this equates to the ratio between exposed cases and exposed controls (i.e., 

the probability of getting the disease given exposure) divided by the ratio between the number of 

non-exposed cases and the number of non-exposed controls (i.e., the probability of getting the 

disease given non-exposure). In other words, the odds ratio is: 

OR =
𝑎

𝑏ൗ
𝑐

𝑑ൗ
 Equation 16 

or 

OR =
𝑎

𝑐⁄

𝑏
𝑑ൗ

 Equation 17 

 

 Injured Uninjured 

Exposed a b 

Unexposed c d 

Figure 25. Two-by-two frequency table used for calculating the odds-ratio. 

To apply this to head impacts and concussions, a threshold of 100 g is used as an example 

to determine exposure. That is, if the head linear acceleration from impact exceeds 100 g, the 

impact was considered as an exposed impact; if the acceleration falls below 100 g, this case was 

considered unexposed. Therefore, a, b, c, and d were defined as the areas shown in Figure 26. 
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Figure 26. Definitions of a, b, c, and d from the frequency table (Figure 25), as they may apply to injury 
and non-injury distributions in football head impacts. 

For case A, the values of all four areas are at their maximums and equal to the true 

distribution of concussive and non-concussive impacts. On the other hand, in case B the values 

of c and d decreased due to the defined lower threshold of 35 g for significant hits. The area lost 

in d was greater than that lost for c; this, in turn, decreased the odds ratio, or the slope value, by 

increasing the denominator in Equation 17. Similarly, case C decreased the values of c and d due 

to the defined lower threshold; however, by assigning injury risk values rather than randomly 

sampling changed the distributions themselves. In other words, the number of cases 

(concussions) is artificially inflated, causing both a and c to increase. The overall effect on the 

odds ratio is an increase in value. This equated to the increase in slope (β1) seen from the 

simulations. 

In terms of the intercept, the only case capable of adequately estimating the intercept was 

case A, the scenario which randomly sampled 1000 head impact exposures and their associated 

injury outcomes. Case D had one of the closest slope parameter estimate, but also had the largest 

percent error for the intercept term (91.1%). According to Agresti (2013), the intercept term is 
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comprised of the true intercept value plus the log of the ratio of the probabilities of sampling a 

case versus sampling a control: 

𝛽଴
∗ = 𝛽଴ + log ൬

𝜌ଵ

𝜌଴
൰ Equation 18 

where β0 is the true intercept of the population, ρ1 is the probability of sampling a concussion, 

and ρ0 is the probability of sampling a non-injurious case. If the probabilities of sampling a 

concussion (ρ1) and a non-injurious impact (ρ0) are the same, the log term would be 0 and only 

the true intercept term remains. Otherwise, if the sampling rate for cases is greater than that for 

controls, the intercept estimated is larger than the true intercept term. In case D, there were much 

fewer concussive cases to sample from than non-concussive data points; therefore, the 

probability of sampling an injurious case was lower than the probability of sampling a non-

injurious case. This resulted in the intercept in case A to be smaller than the intercept term 

defined for true risk. 

The effects of the various samples on the intercept and slope parameters in the various 

injury risk functions had a drastic effect on injury risk values such that a fifty percent probability 

of injury was associated with a range of head linear accelerations. Case D, with the smallest 

intercept and best estimation of the slope, associated 29.1 g with a 50% risk of injury while case 

B (significant hits), which had relatively poor estimates of the slope and intercept, assigned a 

50% probability of injury to 778.5 g. The true value defined to represent a 50% probability of 

injury was about 357.4 g. 

These injury risk values were drastically different from one another, and showed 

limitations in the methods currently used to develop injury risk functions for concussions and 

other types of diffuse head injuries. Excluding exposure data, while possibly capable of correctly 

estimating the relative change in injury risk per unit increase of predictor variable, could still 
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create curves that express injury risks much too conservative or liberal compared to the true risk 

of a population depending on the sampling frequency of concussive and non-concussive injuries. 

Traffic safety can help illustrate this phenomenon. The risk of fatality in a crash at 30 mph is 

about 10% despite crashes of this magnitude or less accounting for about half of all fatal crashes 

(Evans, 2004; Funk et al., 2007). Selection bias in sampling, such as choosing only significant 

hits, could incorporate too few or too many concussions compared to the true incidence and 

exposure rates, thereby estimating incorrect injury risk curve parameters. 

Sample size may also effect the coefficients of the injury risk curve. In the scenarios 

above, 50-60 simulated head impacts were used in order to generate an injury risk function. 

These were repeated 1000 times so that an average risk function could be determined, however 

in real-life, researchers will not have the ability to create 1000 samples of size 60 to calculate a 

risk curve. Repeating the above process using various sample sizes found that, generally, the risk 

curve coefficients converged to those plotted in Figure 24 using 200 head impacts to for two of 

the sampling scenarios (cases C and D). This was computed using measures of standard error; 

using the original sample size for cases C and D, the standard error of the samples were between 

6% and 8% for both β0 and β1. These standard error values dropped below 2% for both 

coefficients in all three cases when using 200 head impacts to generate an injury risk function 

and fell below 1% using 500 head impacts. For case B, which only included impacts above 35 g 

in peak resultant linear head acceleration, 600 head impacts were needed for similar standard 

errors (below 2%).  

While it may be possible to collect 200 or 600 head impacts via wearable sensors, 

reconstructing this number of head impact events, even with unbiased exposure data, is a large 

task. However, it could be possible to use weight the reconstructions in order to develop injury 
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risk function rather than explicitly using unbiased exposure data. This is similar to the National 

Automotive Sampling System Crashworthiness Data System (NASS-CDS) maintained by 

NHTSA. The NASS-CDS is a comprehensive national traffic crash database that contains data 

weighted to represent all police reported motor vehicle crashes occurring in the United States 

during the year (Zhang & Chen, 2013). Similarly, risk curves could be developed by determining 

weights based on the exposure to impact at various head impact severities. Funk et al. (2007) 

calculated concussion risk curves as a function of impact severity by normalizing the concussion 

incidence data (found via professional football reconstructions) to head impact exposure data 

(via HIT system data). Similarly, concussion incidence rates have been used to weight and 

combine concussive and non-concussive impact datasets in order develop injury risk functions 

(Rowson et al., 2012). This distribution weighting technique does not require a direct estimate of 

impact exposure, but may be create an injury risk curve more representative of the true risk. 

Case D, which randomly sampled impacts from the concussive and non-concussive 

exposure, was able to correctly estimate the slope parameter of the injury risk function. 

However, it should be noted that this is only true if the injury risk function is calculated using 

logistic regression. When a logistic regression model is calculated using the logit transformation, 

the odds ratio can be found and used to compare the relative increase in probability as a result of 

a unit increase in the predictor variable (Szumilas, 2010). Unlike odds ratios, however, the effect 

of the predictor variable on an outcome determined from a different distribution (such as 

Weibull) using case-control data are not necessarily equal to the effect the predictor variable 

would have on the outcome of an entire population (Agresti, 2013). This is an important 

distinction, and a potential advantage of logistic regression models. As mentioned in chapter 1, 

the common procedure in literature for developing an injury risk function was to assign a form 
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for the injury risk function a priori and then determine the parameters to maximize the function’s 

fit to the data (e.g., using least-squares, maximum likelihood). Several statistical models have 

been used to define the form of injury risk functions; when the performance of four such 

distributions (log normal, logistic, normal, and Weibull) were compared, none were found to be 

consistently more appropriate for the datasets considered (Kent & Funk, 2004). Given the 

similarity in performance between the distributions, it may be advantageous for developers of 

future injury risk functions to consider the ability of logistic models to correctly assess the odds 

ratio when weighing their distribution choices. This advantage may be lost if the logistic 

distribution is not appropriate underlying distribution of the population (DiDomenico & 

Nusholtz, 2003), but it is likely that most experimental datasets do not collect sufficient data to 

justify which distribution is most appropriate for the larger population (Kent & Funk, 2004). 

Researchers should also remember, regardless of the form of the injury risk function, that the 

samples of data used to develop the injury risk function will have profound effects on the final 

fit. 

5.5. Summary 

In this chapter, an exposure distribution and injury risk curve were defined to represent 

the true exposure to head impact and risk of concussion from head impact using data from the 

literature (Funk et al., 2007). Various samples of both injurious and non-injurious head impacts 

were taken using this distribution and injury risk function in order to explore how well different 

samples were able to recreate the parameters of logistic regression used to define the true injury 

risk curve. Of the three scenarios tested, two had slope and intercept parameters for the logistic 

regression model that had margins of error between 20% and 200%. These two situations only 

considered significant hits, or in other words, hits with a magnitude of resultant head linear 
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acceleration above 35 g; hits of these magnitudes, however, account for only about 30% of the 

hits defined by the distribution. The third scenario randomly sampled 25 concussive and 25 non-

concussive impacts. This sample set was able to correctly estimate the slope, or the odds ratio, of 

the true injury risk curve. Based on knowledge about case-control studies and the logit 

transformation, this outcome was not surprising. This set was not, however, capable of recreating 

the intercept value of the true injury risk function because there were a controlled number of 

injurious and non-injurious outcomes. 

This capability is a property of logistic regression models, and should be taken under 

consideration when developing injury risk functions. That is, researchers should consider both 

the sample of data they are using to build an injury risk curve as well as the form of the curve 

they are defining. Further, these simulations highlight the importance of exposure data when 

creating injury risk functions from head impacts. The scenario that was able to correctly estimate 

the slope parameter had sample distributions similar to that of the defined exposure distribution. 

The other situations were unable to reproduce any coefficient in the regression model due to their 

lack of ability to have the underlying exposure. At the same time, researchers should be aware 

that injury risk curves generated using case-control data are generally much too conservative 

compared to the real probabilities of injury and should know that without the correct exposure 

data for a given predictor variable, the risk of injury at severity levels where most injuries occur 

likely has a low risk of injury.  
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CHAPTER 6:  CONCLUSIONS 

6.1. Concluding remarks 

The goal of this thesis was to establish a verified set of human head kinematic data and to 

use the data to evaluate a variety of brain injury risk functions. To achieve this goal, a literature 

review of head kinematic data was conducted in chapter 2 in order to illustrate the availability of 

these data as well as outline different manners of directly and indirectly measuring human head 

kinematics. These included laboratory tests using human research volunteers, the use wearable 

sensors on contact sport athletes to collect data from potentially injurious impacts, and 

computational and laboratory reconstructions of injurious head impact events. After 

understanding the types of data available in literature, specific data sources were chosen for use 

in a dataset of head impact kinematics.  

In chapter 3, the head kinematic data collected in chapter 2 were assessed in order to 

establish a consistent dataset. Consistent was defined to mean that all data had valid sensor 

measurements, that the measured kinematics were representative of the motion from the actual 

impact (either sled test or reconstruction), that injury diagnoses only consisted of concussions, 

and that complete 6 DOF data were processed in the same manner and coordinate system. Once 

the data were properly assessed and processed, they were used to calculate various kinematic 

injury metrics and their associated injury risk probabilities. Distributions of both the kinematic 

parameters and all kinematic metrics showed a distribution of values with considerable overlap 

between the concussive and non-concussive injury outcomes. The 6 DOF kinematic data were 

also used as input to two FE models in order to calculate tissue-level brain strains as a result of 

each impact. Strain-based injury metrics were calculated from each FE simulation, as well as 

their associated injury risk values. 
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Following the calculation of each injury risk probability, these values were used in 

chapter 4 to evaluate the efficacy of each of the 16 injury risk functions. Their discriminatory 

capability was assessed through correlations with strains as well as via ROC curves. All risk 

curves showed good diagnostic ability, with AUC values greater than 0.8. Strain correlations 

were also decent, with risk functions based on rotational injury metrics showing better 

correlation values than combination metrics and translational metrics. Each injury risk function 

was also assessed by calculating expected injuries and through maximum likelihood estimates. 

The number of expected injuries was compared to the number of observed injuries in the dataset 

(n = 31) and showed that most injury risk functions were incapable of correctly estimating the 

number of injuries; the lone exception to this was the risk curve developed for GAMBIT. 

Likelihood estimates were also used to rank the injury risk functions based on their ability to 

correctly estimate injury outcomes over the entire database. Results from all four evaluation tools 

were mixed results as to which injury risk function performed best. Reasons for this were 

explored, including the necessity of exposure data for creating injury risk functions. 

Studies have previously noted that in order to properly estimate absolute injury risk, 

unbiased exposure data is required. The need for exposure data, as well as strengths and 

limitations on using case-control studies to generate injury risk functions, was explored in 

chapter 5. It was shown that using case-control data and logistic regression can estimate the slope 

parameter if samples of both cases (concussions) and controls (non-injuries) are representative of 

the true exposure distribution of impacts. Other scenarios, such as only sampling significant hits, 

can result in risk curves drastically different from that of the true risk of the entire population. 

These various situations were demonstrated in order to show researchers to be wary of injury risk 

curves derived without exposure data, as they may over-exaggerate the risk of injury. Despite the 
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issues with the risk functions, this thesis provides a verified data set that is a necessary step for 

injury risk function evaluation. 

6.2. Contributions 

A primary contribution of this thesis is the establishment of a verified dataset of human 

head kinematic data. These data, as shown in the thesis, are a necessary step for evaluating injury 

risk functions. The data can be used to validate current injury risk functions and can also be used 

as a basis for future head injury criteria or to establish injury assessment reference values. Using 

these data in addition with future data as it becomes available can mitigate the need to develop 

thresholds from scaled animal data, which are highly speculative given the need for scaling; from 

ATDs, which have questionable biofidelity in all impact scenarios; and from PMHS, which lack 

a physiologic response needed to diagnose concussion. 

A second contribution is the demonstration of the importance of exposure data in creating 

injury risk functions. As shown in chapter 5, the parameters of the injury risk function were 

largely dependent on the underlying data used for its development. When data are chosen based 

on their injury outcome or due to the presumed magnitude of the hits, the risk function may be 

far too conservative compared to the real risk of the population. As an example, most car crashes 

are low severity impacts, therefore the incidence of injury at this crash magnitude is amplified 

despite there being a relatively low-risk of death or injury at these magnitudes. The same applies 

to head impacts, and future work in the development of head and brain injury risk functions 

needs to take this into account. 

6.3. Future research directions 

Future studies should attempt to gather more data regarding human head kinematics. The 

dataset established in this thesis accounts for 443 head impact scenarios and is a necessary step 
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for risk function evaluation; however these are only football impacts (short duration, high 

acceleration) impacts and low-severity, volunteer sled impacts (long duration, low acceleration). 

Researchers should collect data from other head impact conditions that cover a wider range of 

magnitudes and durations. 

Additionally, future work should look to continue characterizing exposure to head 

impacts. Due to selection bias in case-control studies, absolute injury risk curves derived from 

these data over predict the risk of injury (Broglio et al., 2010; Funk et al., 2007, 2012; Mihalik et 

al., 2007; B. Rowson et al., 2015). Funk et al. (2007) note that the key to obtaining unbiased 

head impact exposure data is to record all head impacts experienced. As wearable sensor 

technology becomes more available and more accurate, this data can be incorporated into the 

development and assessment of injury risk functions, as well as into this dataset of human head 

kinematics such that it better reflects the exposure distribution. 

Researchers could attempt to evaluate other risk functions. Various other injury risk 

functions exist that use both kinematic and strain-based predictor variables (e.g., Funk et al., 

2007; Newman et al., 2000a; Pellman et al., 2003; Zhang et al., 2004). These were not assessed 

in this thesis, however if assessed they may be found to be more capable of predicting injury risk 

than the curves evaluated in this thesis. 

Finally, this thesis acknowledges that logistic regression models can correctly estimate 

the relative increase in injury probability based on a unit increase in the predictor variable. 

However, no work was done to investigate how to change the intercept parameter such that it 

better reflects the full population. Future studies could look into what kind of data is needed in 

order to adjust injury risk curves to represent a true risk curve. 

 



103 

6.4. Limitations 

Sixteen brain injury risk functions were evaluated in this thesis, but others exist. For 

example, Pellman et al. (2003) also published risk curves for HIC, SI, angular acceleration, 

angular velocity, and change in linear velocity and Zhang et al. (2004) developed injury risk 

functions using angular acceleration and shear strain in the brainstem as predictor variables for 

concussion. Such curves were not evaluated in this thesis and could be assessed in the future. 

Understanding both the concept and definition of concussion and mild traumatic brain 

injury was vital in interpreting the results. The volunteer sled tests conducted by NBDL were 

conducted when concussion was defined by a loss of consciousness, and the definition of 

concussion has changed since then. Modern definitions have a wider range of symptoms and do 

not require loss of consciousness. All medical reports from the NBDL indicated that symptoms 

were mild and transient, however little effort was made at the time of the tests to distinguish 

symptoms as being a musculoskeletal or a neurological issue (Sanchez et al., 2017a). The 

diagnoses for the professional football players were more in tune with contemporary definitions 

of concussion, however there were still some variations in symptoms (Pellman et al., 2004b; S. 

Rowson et al., 2012). A secondary issue with injury definition was that not all injury risk 

functions were developed to predict concussion. BrIC, HIC, MPS100, and CSDM25 all had 

injury risk curves developed based on AIS codes. Concussion does not have an exact 

equivalency for concussion, but AIS 2+ curves were used to represent this type of injury. The 

criterion for an AIS 2 concussion is defined as a loss of consciousness less than 1 hour, however 

not all concussions in this dataset saw loss of consciousness. 

Selection bias is always a concern with volunteer test data and can also be an issue with 

contact sport athletes. The subjects used in this analysis were military personnel and collegiate 
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and professional football players; these subjects are not representative of the entire population 

and it is possible that this cohort of volunteers has a higher threshold for concussion than other 

healthy male subjects of a similar age. 

No attempt was made to evaluate the fidelity of the football reconstructions with respect 

to the on-field impacts they were meant to recreate. The researchers of the professional football 

reconstructions aimed to recreate the relative impact velocity, with Newman et al. (2005) 

estimating errors up to 11% for the closing velocity. No attempt was made in the reconstructions 

to mimic the pre-impact motion of any of the players. For the collegiate football reconstructions, 

the criteria was to recreate head peak resultant kinematic parameters within 5% of the measured 

values (B. Rowson et al., 2017a, 2017b, 2017c). The use of ATDs in both of these 

reconstructions also includes inherent assumptions about the biofidelity of the surrogate; neck 

tensing, and post-impact kinematics could not be directly quantified using the game footage for 

the professional football reconstructions; further, the collegiate reconstructions only had 35 ms 

of post impact linear accelerations. No assessment was made for either on the representativeness 

of the reconstructed ATD head motion. 

Brain deformations are believed to be the underlying mechanism for diffuse type injuries 

such as concussions, and as such the assumption is made in this thesis that strain is related with 

injury. This assumption relies heavily on the predictive capacity of the FE models. GHBMC and 

SIMon have both been validated for various intracranial responses including brain deformations, 

but it is possible that the durations and severities of these impacts fall outside the range of 

experimental data used to validate these models. Finally, while FE models are generally well-

suited for studying tissue deformation due to head impact, different head and brain models have 

been shown to predict different strain responses using the same kinematic input (Ji et al., 2014). 
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APPENDIX A: CONSISTENT AND INCONSISTENT NAP ARRAYS 

 

Figure A1. Example of an inconsistent NAP array. The analytical traces were calculated for each sensor 
as a function of the other eight sensor measures using an algorithm developed by Takhounts et al. (2009). 
Clearly, in this case, the analytical solutions do not align with the measured traces, indicating an error 
from one or more accelerometer measures. 
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Figure A2. Example of a corrected (and consistent) NAP array. The analytical solutions align with the 
sensor measures. In this case, the Y-arm X channel was identified as inconsistent sensor from Figure A1; 
therefore its measured trace was replaced with the analytical solution from the previous figure and 
analytical traces were recalculated.  
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APPENDIX B: DISTRIBUTION OF KINEMATIC AND STRAIN-BASED INJURY RISK 

PREDICTIONS 
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