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Abstract

It is a critical challenge to design a highly-e�cient, high-performance, and fair big data

job scheduler, especially in large-scale datacenters consisting of heterogeneous servers under

intensive, complex, and diverse workloads. Hybrid job schedulers, which combine a centralized

job scheduler and multiple distributed job schedulers together, have been considered as

a promising alternative to conventional centralized job schedulers deployed in enterprise

datacenters. However, our literature survey and experimental study show that, (1) the

state-of-the-art hybrid job schedulers fail to ensure low latency for latency-sensitive short

jobs; and (2) the state-of-the-art fair job schedulers for constrained jobs fail to ensure fair

sharing in heterogenous-server environments.

To this end, we first address the high-latency performance issue of short jobs due to the

head-of-line blocking and straggler tasks for hybrid job schedulers. We propose Dice, a new

general performance optimization framework for hybrid job schedulers to alleviate the high job

latency problem of short jobs. Dice is composed of two simple yet e↵ective techniques: Elastic

Sizing and Opportunistic Preemption. Both Elastic Sizing and Opportunistic Preemption

keep track of the task waiting times of short jobs. When the mean task waiting time of short

jobs is high, Elastic Sizing dynamically and adaptively increases the short partition size to

prioritize short jobs over long jobs. On the other hand, Opportunistic Preemption preempts

resources from long tasks running in the general partition on demand, so as to mitigate

the head-of-line blocking problem of short jobs. We then propose Eirene, another new

general performance optimization framework for hybrid job schedulers to improve job latency
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performance of short jobs via two schemes tightly coupled with the general architecture of

hybrid job schedulers. Eirene consists of two schemes. Coordinated Cold Data Migration

leverages high task waiting time of short jobs under heavily-loaded periods and migrates cold

data from disks to local memory for the initial phase of reading input so as to shorten task

runtime and queueing time. On the other hand, Scheduler-Aware Task Cloning exploits spare

computing resources under lightly-loaded periods and performs proactive task cloning for

short jobs to mitigate the straggler problem.

We then address the unfair scheduling of jobs with placement constraints in heterogeneous

environments. We propose Eunomia, a performance-variation-aware fair job scheduler with

placement constraints for heterogeneous datacenters. Eunomia introduces progress share

fairness, which is meant to equalize the progress share of jobs as much as possible. Progress

share of a job is defined as the ratio between the accumulated progress of scheduled tasks of a

job, and the maximum accumulated progress of tasks that can run in the cluster if placement

constraints are removed.

Keywords: big data analytics, resource management, hybrid job scheduler, fair job scheduler.
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Chapter 1

Introduction

1.1 Job Scheduling in Datacenters

Scheduling computing jobs has been an old yet important research topic since the era of time-

sharing mainframe computers in the 1960s. Job schedulers continue to evolve in the domain

of high-performance computing (HPC) to adapt to large-scale computer clusters consisting of

millions of CPU cores [1–4]. Recently with the emergence of Big Data Analytics, the 3V’s of Big

Data, Volume, Velocity and Variety, demand job schedulers to meet challenging requirements

of big data workloads in the environment of geographically-distributed datacenters.

For big data analytics, the main goal of an e↵ective and e�cient big data job scheduler for

datacenter-level clusters is an ability to schedule a large number of tasks of di↵erent jobs on

a massive number of worker nodes in a timely fashion. There are the three main challenges

to address for job schedulers to achieve the goal as below:

• Job Complexity: Di↵erent big data frameworks and applications like Hadoop MapRe-

duce [5], Dremel [6], Impala [7], Storm [8], Spark [9], and Flink [10] result in di↵erent

types of jobs with di↵erent requirements. Batch jobs usually take days or weeks to

complete, while short ad-hoc queries or interactive jobs need to be completed in minutes

even seconds. Big jobs may be composed of thousands of tasks, while small jobs are
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composed of only a few tasks. Most analytical jobs need to manipulate the exactly

whole datasets, while approximate query jobs can operate on a small portion of datasets

to produce results. Some jobs need to use Graphics Processing Units (GPUs) for

fast computations while some jobs do not need. Short latency-sensitive jobs usually

demand job schedulers to make scheduling decisions in milliseconds, while long batch

jobs require job schedulers to e↵ectively utilize resources. Generally, there are two

categories of jobs in enterprise and cloud datacenters: production jobs and best-e↵ort

jobs. Production jobs are usually business-critical jobs, which need to be completed

before the deadline specified in the job submissions. The failure to meet the deadline

could result in serious losses of business operations. Best-e↵ort jobs usually have no

deadline requirements, and their examples include the test run of a production job

with a small dataset, and ad-hoc and exploratory jobs submitted by research and

development teams. The mixture of di↵erent types of jobs with di↵erent requirements

together makes job scheduling extremely hard.

• Server Complexity: Server complexity stems from hardware complexity and software

complexity. On one hand, compute nodes could be heterogeneous, which means that

di↵erent nodes may have di↵erent amounts of CPU cores, memory, number of disks,

etc. Heterogeneity has been recognized in modern-day data centers [11, 12]. It poses a

challenge for job schedulers to track and utilize the resources of heterogeneous nodes.

Moreover, hardware is not reliable and may fail unpredictably. Once node failures occur,

job schedulers must re-schedule and re-execute the aborted tasks on other healthy nodes.

It requires job schedulers to have the ability to reschedule tasks if needed. On the other

hand, with multiple generations of nodes deployed in datacenters at di↵erent points of

time, it is common to see di↵erent versions of operating systems and software packages

installed across di↵erent nodes. The mixture of various nodes with di↵erent hardware

and software configurations together makes job scheduling extremely hard.
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• Multiple Objectives: In order to maximize return on investment, the primary

objective of job schedulers is to obtain high cluster utilization. Due to this reason, the

latest job schedulers tend to support multiplexing various big data analytics frameworks

on computer clusters. In addition to resource utilization, scalability performance, and

fairness are all common objectives. A scalable job scheduler is able to make e↵ective

and e�cient scheduling decisions with the increasing scale of nodes and jobs. Keeping

scheduling latency short is also an important metric to job schedulers, especially for

latency-sensitive short jobs. In the datacenters with production and best-e↵ort mixed

jobs, a job scheduler must be able to achieve stringent SLOs (e.g., predefined deadlines)

of production jobs whiling minimizing turnaround time for best-e↵ort jobs. Finally,

guaranteeing the fairness of job scheduling is critical for the organizations where the

computer clusters are shared by di↵erent departments. It is a conflicting goal to satisfy

multiple objectives simultaneously, and this demands job schedulers to have an ability to

strike a good balance among multiple objectives, without violating strict requirements.

1.2 Research Problems

There is no one-size-fits-all job scheduler that can address all the above challenges. Targeting

di↵erent use scenarios and favoring di↵erent key objectives, the current research from industry

and academia on job schedulers for big data analytics frameworks is diverse and falls into

di↵erent many categories in solving the job scheduling problems from di↵erent perspectives.

For example, in terms of job scheduler architecture, centralized job schedulers usually achieve

high cluster utilization [13–15], while distributed job schedulers excel at ensuring low latency

of short jobs [16]. Very recently a new architecture of job schedulers, hybrid job scheduler, is

proposed [17–20]. Hybrid job schedulers recognize the ubiquitous fact of mixed workloads of

long batch jobs and latency-sensitive short jobs, and thus aim to deliver low latency of short

jobs while maintaining high cluster utilization. In general, a hybrid job scheduler consists of

3



a centralized scheduler for long jobs and multiple distributed job schedulers for scheduling

short jobs in parallel (See Chapter 2 for more detail about big data job schedulers). Although

hybrid job schedulers are shown a very promising alternative of centralized job schedulers

and distributed job schedulers, latest research and our motivation experiments reveal that

the state-of-the-art hybrid job schedulers are still far away from guaranteeing low latency

of short jobs and fair shares of resources due to the below three problems:

• Head-of-Line Blocking. Head-of-Line blocking denotes that tasks staying in the task

queue on a worker node have to spend much time waiting for execution until the task

at the head of the task queue finishes. The impact is amplified in case latency-aware

short jobs are behind long jobs since long task waiting time maybe 10 times longer

than the task runtime of short jobs. To mitigate this problem, hybrid job schedulers

are proposed to reserve a small portion of worker nodes (called “short partition”)

dedicated for running short tasks and let short jobs and long jobs share the remaining

worker nodes (called “general partition”) [17–19]. However, head-of-line blocking is

still unavoidable and severely a↵ect job latency performance of short jobs due to many

reasons. First, workload fluctuation results in sometimes cluster overloading and even

the worker nodes in the short partition build up a long queue of short tasks, and

task waiting time lengthens task runtime and in turn job latency. Second, in this

situation, more small tasks will be executed in general partition and thus likely su↵er

from head-of-line blocking by long tasks.

• Straggler Tasks. As aforementioned, frequent hardware and software failures are

unavoidable and unpredictable in production clusters, which may cause some tasks of a

job to fall behind others or never complete. Such tasks are usually called “stragglers”

or “outliers”. If stragglers are not handled in time, the entire job will risk violating

its SLO (Service-Level Objective, i.e., predefined deadline). For example, more than

15% straggler tasks for 25% phases are observed in a large cluster for the Bing search

engine [21]. As straggler problem is seen widespread, straggler tasks are also considered
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one major cause to lengthening job completion delay. For one example, job latency was

lengthened by stragglers by 29% in Bing clusters [21]. For another example, straggler

tasks could take up to 8⇥ longer than the mean task runtime in Hadoop clusters,

causing the jobs to be slowed down by 47% on average [22].

• Unfair Resource Sharing. Fair job scheduling has been extended to many di↵erent

use scenarios. For example, DRF (Dominant Resource Fairness) [23] is proposed for

allocating multiple resource types. For another example, Choosy [24] is proposed for

allocating resources for jobs with various placement constraints. However, the existing

fair job schedulers do not take performance variation due to server heterogeneity into

considerations and fail to achieve fair shares while server heterogeneity is one salient

characteristic of enterprise datacenters.

In this dissertation, we focus on addressing the above problems in the context of hybrid

job schedulers. The motivation is that, as hybrid job scheduler is a new architecture of

job schedulers and already shows a big potential to replace centralized job schedulers in

production environments. The possibly high job latencies of latency-sensitive short jobs and

unfair job scheduling will definitely hinder its wide deployment in enterprise datacenters.

The goal of our research is to have a way to ensure much better job latency performance of

short jobs and better fair shares for hybrid job schedulers.

1.3 Research Contributions

This dissertation makes the five contributions as in the below:

• A novel latency-aware dynamic and adaptive cluster re-partitioning scheme, called

“Elastic Sizing”, is proposed to adaptively adjust the short partition size according to

the extent of mean task waiting time of short jobs during heavy and overloaded periods.

This scheme is integrated into the centralized scheduler side of hybrid job schedulers;
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• A novel latency-aware on-demand task preemption scheme, called “Opportunistic

Preemption”, is proposed to preempt randomly-chosen running long tasks for waiting

short tasks on the same worker nodes to mitigate long task waiting time of short tasks

during heavy and overloaded periods. This scheme is integrated into the centralized

scheduler side of hybrid job schedulers;

• A novel “Coordinated Cold Data Migration” scheme is proposed to migrate singly-read

input data from disk to memory on worker nodes, so as to shorten the time of reading

input data of map tasks of short jobs by overlapping data migration time with long task

waiting time during heavy and overloaded periods. This scheme is integrated into both

distributed scheduler and worker node sides of hybrid job schedulers;

• A novel “Scheduler-Aware Task Cloning” scheme is proposed to clone every task of

short jobs by exploring and exploiting free compute resources during idle or lightly-

loaded periods, so as to alleviate the straggler problem. This scheme is integrated into

the distributed scheduler side of hybrid job schedulers to leverage its batch sampling

mechanism;

• A novel performance-variation-aware fair share job scheduler, called “Eunomia”, is

proposed to take performance variation of worker nodes into considerations of fair job

schedulers. Eunomia introduces a key metric, called “progress share” and aims to

equalize progress share of jobs as much as possible, so as to achieve the same slowdown

of jobs from di↵erent users due to resource sharing and placement constraints, regardless

of performance variation.

1.4 Dissertation Outline

In Chapter 2, we first introduce the necessary background of job schedulers in the context

of High-Performance Computing (HPC) and Big Data Analytics in large-scale datacenters.
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Then we present a literature survey of existing and state-of-the-art job schedulers, categorize

and compare them in terms of various aspects.

Chapter 3 presents Dice, a new general performance optimization framework for hybrid

job schedulers to alleviate the high job latency problem of short jobs. In Dice, we conduct

trace-driven experiments to study the job latency performance behaviors of two representative

hybrid job schedulers (Hawk and Eagle), and find that short jobs still encounter long latency

issues due to intermittent and bursty nature of workloads. To this end, we propose Dice to

address the job latency performance issue at the centralized scheduler side. Dice is composed

of two simple yet e↵ective techniques: Elastic Sizing and Opportunistic Preemption. Both

Elastic Sizing and Opportunistic Preemption keep track of the task waiting times of short

jobs. When the mean task waiting time of short jobs is high, Elastic Sizing dynamically and

adaptively increases the short partition size to prioritize short jobs over long jobs. On the

other hand, Opportunistic Preemption preempts resources from long tasks running in the

general partition on demand, so as to mitigate the “head-of-line” blocking problem of short

jobs. We enhance the two schedulers with Dice and evaluate Dice performance improvement

in our prototype implementation. Experiment results show that Dice achieves 50.9%, 54.5%,

and 43.5% improvement on 50th-percentile (P50), 75th-percentile (P75), and 90th-percentile

(P90) job completion delays of short jobs in Hawk respectively, as well as 33.2%, 74.1%, and

85.3% improvement on those in Eagle respectively under the Google trace, at low performance

costs to long jobs.

Chapter 4 presents Eirene, another new general performance optimization framework for

hybrid job schedulers to improve job latency performance of short jobs via two schemes tightly

coupled with the general architecture of hybrid job schedulers. Eirene is integrated into both

the distributed scheduler and worker node sides, and consists of two schemes. Coordinated

Cold Data Migration leverages high task waiting time of short jobs under heavily-loaded

periods and migrates cold data from disks to local memory for the initial phase of reading

input so as to shorten task runtime and queueing time. On the other hand, Scheduler-Aware
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Task Cloning exploits spare computing resources under lightly-loaded periods and performs

proactive task cloning for short jobs to mitigate the straggler problem. We implement a

prototype of Eirene based on Eagle, a state-of-the-art hybrid job scheduler. Experimental

results show that, under heavy loads, Eirene is able to improve P50, P75, P90 latency

performance of short jobs by up to 39.2%, 79.1%, 81.3% respectively compared with Eagle

under the Facebook trace with a cluster of 50000 nodes. Under moderate loads, Eirene can

also improve Eagle’s P50, P75, P90 latency performance of short jobs by 9.1%, 11.6%, 15.8%

respectively under the Google trace with a cluster of 15000 nodes.

Chapter 5 presents Eunomia, a performance-variation-aware fair job scheduler, to

address the unfairness issue due to performance variation in heterogeneous clusters. Eunomia

introduces a key metric, called “progress share”, which is defined as the ratio between the

accumulated task progress given the current allocation and the accumulated task progress if

the user can monopolize the cluster. Eunomia aims to equalize progress share of jobs as much

as possible, so as to achieve the same slowdown of jobs from di↵erent users due to resource

sharing and placement constraints, regardless of performance variation. Simulation-based

evaluation results show that Eunomia is able to deliver better share fairness compared with

state-of-the-art schedulers without performance loss.

In Chapter 6 we conclude the dissertation with a summary of contributions and discuss

future research directions.
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Chapter 2

Related Work

2.1 Background

Scheduling computing jobs is an old yet important research topic. Researchers in the domain

of high-performance computing (HPC) have studied job schedulers for a very long time, and

proposed a number of job schedulers including HTCondor [1], Slurm [2], MAUI [3], and

OpenLava [4] for scheduling HPC jobs. HPC jobs are usually long batch jobs with intensive

communication among nodes. As a result, HPC compute nodes are usually interconnected with

10Gbps Ethernet or Infiniband adapters for low latency and high throughput communication.

HPC compute nodes may have disks for scratch space, but datasets of jobs are stored in a

dedicated, distributed file system (e.g., Lustre [25], Global Parallel File System (GPFS) [26],

etc.) atop a storage cluster. To this end, HPC job schedulers are all tailored and optimized

for executing communication-intensive long batch jobs on the clusters consisting of compute

nodes with high-speed network interconnections, attached with a dedicated storage cluster.

Research on job schedulers recently has been reignited by the increasingly prevalent

adoption of emerging big-data analytics frameworks motivated by the Google File Sys-

tem (GFS) [27] and MapReduce computing model [28]. Di↵erent from HPC clusters, the

GFS is built on computer clusters consisting of commodity and cheap compute nodes to
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achieve cost e↵ectiveness, and datasets are replicated and distributed to local storage of

compute nodes for high data availability. In Google, the MapReduce computing model was

developed to execute data analytics jobs like generating web indexes from crawled web pages.

Because the GFS has no dedicated clusters for computing, MapReduce assigns computation

tasks of a job to the nodes where datasets that the tasks need to analyze reside. One main

assumption in this MapReduce model is that there is little data dependency among tasks,

therefore MapReduce can achieve an “embarrassingly” high parallelism [29]. In contrast,

for HPC, tasks usually have strong data dependency and much execution time is spent

on communication and synchronization among nodes. As a result, job schedulers used for

high-performance computing are not suitable for big-data analytics frameworks, and new

job scheduling algorithms (including the job scheduler module in MapReduce) have been

developed to execute a variety of data analytics jobs accordingly.

Although originally designed for batch jobs only, the success of GFS and MapReduce

in Google, inspired Yahoo to develop an open-source clone of GFS and MapReduce, called

Hadoop. Hadoop has since been widely accepted and deployed as the de-facto big-data

analytics infrastructure in industry to execute many kinds of data analytic jobs where

datasets are extremely large, for example, transactions analysis for banks, server log scanning

for Internet companies, claims fraud detection for insurance companies, customer call record

analysis for retailers, etc. With ever-increasing volume, variety, and velocity of big data,

Hadoop-based big data analytics have been extended from the batch processing model like

MapReduce to interactive computing like Dremel [6] and Impala [7], streaming computing

like Storm [8], iterative computing like Spark [9] and Flink [10], and approximate computing

like BlinkDB [30], and so on. As a result, many MapReduce-based or MapReduce-like job

scheduler variants have been developed and adapted to di↵erent preferences of many kinds of

big-data analytics frameworks. For example, job schedulers for streaming computing may

favor low latency, while job schedulers for batch processing may seek for high utilization of

clusters.
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With the further adoption and proliferation of Hadoop, people have recognized issues

with Hadoop’s job schedulers that severely hinder the wider deployment of Hadoop. The

root cause comes from the two component of the original design of job scheduler in Hadoop

(Hadoop 1.0): JobTracker and TaskTracker [5]. JobTracker is responsible not only for

bookkeeping and allocating and reclaiming resources, but also for scheduling and monitoring

all pending/running jobs. Such a holistic model causes JobTracker to become a system

bottleneck to high scalability. Considering scheduling hundreds of thousands of jobs in a

cluster consisting of tens of thousands of nodes, the centralized job scheduler cannot make

scheduling decisions in a timely fashion, causing prohibitively long job queueing time and job

completion time.

To resolve these issues, Mesos [14] and YARN [13], which both separate the job scheduling

functionality from resource management, were proposed for high scalability. Actually, YARN

has since become the key component of Hadoop 2.0. Furthermore, both Mesos and YARN

aim to be unified job schedulers that are able to execute a mix of di↵erent types of jobs (e.g.,

batch processing jobs and streaming computing jobs). These two open-source job schedulers

have been the most commonly-used job schedulers in datacenters worldwide. Based on these

two and other similar job schedulers, researchers from industry and academia propose a large

number of job schedulers for better scalability, fairness, and resource utilization.

2.2 Big Data Job Schedulers

Usually, big data analytics jobs are submitted and executed on a number of computer clusters

in datacenters. Figure 2.1 illustrates an example of a typical computer cluster in a datacenter.

Dozens of servers (or nodes) and one network switch are put together in one rack, and a

number of racks are in turn connected to form a computer cluster. Geographically-distributed

computer clusters are then connected via WAN (Wide Area Network).

A node usually has one or more multi-core CPUs, a certain amount of memory, and
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Figure 2.1: An illustrative example of a typical computer cluster in data centers

local storage like hard disk drives (HDDs) or solid-state drives (SSDs). Some nodes may be

equipped with GPUs (Graphics Processing Units) as well. For analytics jobs, their datasets

are usually distributed (and replicated) into local storage on nodes. Therefore, big data

analytics frameworks tend to distribute and execute computing tasks on the nodes where their

corresponding datasets reside for leveraging data locality. This is a commonly-used design

philosophy for big-data analytics frameworks: “move compute close to data” or “moving

computation is cheaper than moving data” [31]. If all the nodes storing the replicas of the

needed data are busy, a task will be assigned to a node in the same rack because it only

needs to transfer data via the local switch in the rack. This is the so-called “rack locality”.

Otherwise, a task will be assigned to a node in the other rack, but it takes much more costly

network transfer to copy the data before doing computation. Data locality is one important

impacting factor every job scheduler should take into considerations.

On top of the computer clusters, as shown in Figure 2.1, job scheduler is meant to
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Figure 2.2: An illustrative example of YARN job scheduler

be responsible for accepting or rejecting job submissions from clients, assigning tasks of a

job to nodes and monitoring their progress, returning job results to the clients when all

the tasks of a job are complete. Let’s use the YARN job scheduler running on HDFS as

an example shown in Figure 2.2. In HDFS (Hadoop Distributed File System) [31], Name

Node manages the metadata of dataset files while data nodes stores replicas of pieces of

datasets and service read/write requests from users. For YARN (Yet Another Resource

Negotiator) [13], Resource Manager periodically receives the resource utilization information

from Node Manager running on each node in the cluster. A job scheduling workflow starts

when a client of big data analytics frameworks submits a job to YARN (step 1). Usually, a job

defines a number of tasks, where each task includes information about the binary program,

dataset location, CPU and memory requirement, etc. Upon receiving the job, YARN then

launches an Application Master for this job on one node (step 2). After that, Application

Master negotiates the needed resources with Resource Manager (step 3). Then Resource
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Manager checks the resource utilization information, and looks for a su�cient amount of idle

slots for executing tasks of the job. If the requirement of resources can be met, Resource

Manager returns the resource allocation information to Application Master of the job. In

step 4, Application Master in turns talks with Node Manager of the nodes where resources

are allocated, and copies the binaries to the designated nodes. Node Manager launches

Map/Reduce tasks in the containers, and the tasks start to read the data from local storage

of nodes or remote storage in other nodes as well as perform actual analytical computations.

In the meantime, Application Master monitors the progress of tasks until all the tasks are

completed, and finally return the job result to the client (step 5).

There are no “one-size-fits-all” perfect job schedulers. Clusters and nodes could be

heterogeneous. Jobs in production environments could be diverse. Users may have di↵erent

priority preferences and objectives of job scheduling. Each job scheduler must be tailored

and optimized for target user scenarios and meeting user requirements. In the following, we

will elaborate on the four topics about job schedulers that are the most relevant to our work:

(a) job scheduler architectures; (b) head-of-line blocking alleviation; (c) straggler mitigation;

and (d) fair job schedulers.

2.2.1 Job Scheduler Architectures

In general, existing big data job schedulers can be categorized into three architectures:

centralized job schedulers, distributed job schedulers, and hybrid job schedulers. Table 2.1

compiles a list of influential big data job schedulers categorized by scheduler architecture.

Centralized Job Schedulers

Centralized job schedulers mean there is only one single instance of job scheduler in the

cluster. Centralized job schedulers make scheduling decisions for submitted jobs one by one

with the global view of cluster resource state and are able to o↵er strict enforcement of

capacity and fairness. Most of the job schedulers shown in Table 2.1 fall into the category

of centralized job schedulers. The most representative centralized job scheduler is the
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Table 2.1: A summary of influential job schedulers categorized by scheduler architecture

Job Sched-

uler

Venue Lead A�li-

ation

Arch. Key Points

JobTracker [5] O’Reilly Apache Centralized Hadoop 1.0, clone of Google
MapReduce [28]

YARN [13] SoCC’13 Apache Centralized Hadoop 2.0, resource man-
ager/node manager/applica-
tion master model

Mesos [14] NSDI’11 UC Berkeley Centralized two-level scheduling, resource-
o↵ers-based

Kairos [20] SoCC’18 EPFL Centralized centralized scheduler + per-
node scheduler, built on
YARN

Jockey [32] EuroSys’12 Microsoft Centralized embeds a simulator to esti-
mate job runtime

Bistro [33] USENIX’15 Facebook Centralized tree-based scheduling
Quincy [34] SOSP’09 Microsoft Centralized flow-based scheduling
Firmament [35] OSDI’16 U. of Cam-

bridge
Centralized flow-based scheduling

Rayon [36] SoCC’14 Microsoft Centralized reservation-based scheduling,
built on YARN

TetriSched [37] EuroSys’16 CMU Centralized reservation-based scheduling,
MILP solver, built on YARN

3Sigma [38] EuroSys’18 CMU Centralized reservation-based scheduling,
MILP solver, built on YARN

Omega [39] EuroSys’13 Google Distributed state-sharing parallel schedul-
ing

Sparrow [16] SOSP’13 UC Berkeley Distributed probe-based parallel schedul-
ing, no cluster state sharing

Apollo [40] OSDI’14 Microsoft Distributed parallel scheduling, cluster
state sharing with loose coor-
dination

Mercury [41] USENIX’15 Microsoft Hybrid centralized scheduler + dis-
tributed schedulers, built on
YARN

Hawk [17] USENIX’15 EPFL Hybrid centralized scheduler + dis-
tributed schedulers, cluster
partitioning, built on Spark [9]

Eagle [18] SoCC’16 EPFL Hybrid extends Hawk with job aware-
ness, SRTF algorithm on
nodes, built on Spark [9]

Phoenix [19] ICDCS’17 PSU Hybrid extension to Eagle for con-
strained jobs
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JobTracker/TaskTracker framework in Hadoop 1.0 [5]. JobTracker is responsible for not only

managing resources, but also making scheduling decisions and monitoring the progress of

tasks until all the tasks are completed. It is clear that this holistic design has heavy loads

in processing submitted jobs, and is thus not a scalable solution. To address this problem,

YARN (Yet Another Resource Negotiator) [13], still a centralized scheduler, delegates the task

of job tracking and monitoring to Application Manager that is instantiated for every job after

scheduling, and then is able to dedicate itself on resource management and job scheduling

for better scalability, as shown in Figure 2.2. In contrast, Mesos takes a di↵erent approach

for better scalability. As a two-level scheduler, Mesos [14] distributes “resource o↵ers” to

scheduler frameworks to guarantee no conflicts of resource allocations. By doing so, Mesos

can concentrate on resource allocation and negotiation, and free itself from heavy loads of job

scheduling and monitoring. However, Mesos is still a centralized job scheduler. Kairos [20] is

also a two-level scheduler, which is composed of one centralized scheduler and one per-node

scheduler. For a worker node, the node scheduler is responsible for scheduling and executing

tasks received on the node with an approximate implementation of the Least Attained

Service (LAS) policy. The LAS policy ensures that the node executes the task receiving the

least amount of runtime first, and may preempt the running task if its time quota expires,

similar to the process scheduling algorithm in time-sharing operating systems. The centralized

scheduler is responsible for distributing tasks among nodes for load balancing. Jockey [32]

is a centralized job scheduler aiming to guarantee job latency service-level objective (SLO).

Jockey embeds a simulator that simulates job execution and thus it is able to estimate the

remaining runtime of a job with di↵erent resource allocations at di↵erent phases of the job.

By doing so, Jockey dynamically adjusts resource allocations so as to achieve high cluster

utilization while meeting job SLOs.

The problem of task assignment and resource allocation be abstracted into di↵erent forms.

One widely-used form is a queuing model. Many centralized job schedulers are queue-based

schedulers since it is a natural choice to enqueue jobs in the job submission queue and
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enqueue tasks in the task waiting queue for a job scheduler. Due to the existence of job

queue and task queues, centralized job schedulers implement pluggable scheduling algorithms.

A number of well-known scheduling algorithms that have been used in HPC environments,

e.g., FCFS (First Come First Served), RR (Round Robin), SJF (Shortest Job First) and

LJF (Longest Job First) [42], can be applied to big data job schedulers. FCFS executes the

job based on the order of jobs in the queue of job submissions. FCFS is easy to implement,

and meaningful when strict ordering of job execution is required. FCFS is supported in YARN

of Hadoop 2.0. RR assigns every job in the job queue an equal time slot (called “quantum”)

to execute in a cyclical round-robin fashion, and the running job will be preempted when its

quantum expires. RR is a simple and preemptive scheduling algorithm with a starvation-free

guarantee. SJF sorts the jobs in the queue periodically and schedules the job with shortest

completion time to execute. SJF is the best way to minimize the average waiting time of

jobs, but at the cost of long waiting time for long jobs. In contrast, LJF gives preference to

long jobs, which trades job turnaround time for better system utilization.

The problem of task assignment and resource allocation can be also abstracted into a

graph model. For example, Bistro [33], Quincy [34], and Firmament [35] are three schedulers

that use the graph to model and solve the resource allocation/job scheduling problem. As a

tree-based scheduler, Bistro [33] encodes data hosts and their resources into a hierarchical

forest of resource trees, and schedules tasks on leaves that can satisfy the hierarchical resource

requirements of the tasks from the paths to roots. Quincy [34] and Firmament [35] map the

scheduling problem to min-cost flow in a directed graph and encodes the demands like fairness

and data locality into edge weights. Quincy solves the min-cost flow problem and computes

global matches, which substantially outperform greedy scheduling algorithms. Firmament

further outperforms Quincy in terms of scalability while maintaining high placement quality,

using multiple min-cost max-flow (MCMF) algorithms with incremental and problem-specific

optimizations.

Rayon [36], TetriSched [37] and 3Sigma [38] are three job schedulers that convert the
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job scheduling problem into the MILP (Mixed Integer Linear Programming) problem in

the Operations Research area and solve the problem with solvers. Rayon [36] is the first to

introduce reservation-based scheduling, which proposes a declarative reservation definition

language (RDL) to capture time-varying resource needs and completion SLAs, converts the

planning of current and future resources into a MILP problem as well as develops greedy but

scalable heuristics, and proposes adaptive scheduling that dynamically distributes cluster

resources to production jobs and best-e↵ort jobs while adapting to the evolving conditions.

In tandem with Rayon, TetriSched [37] utilizes the completion SLAs and resource needs of

jobs expressed in reservations, makes and optimizes job placement and ordering decisions.

Instead of using single-point estimates of historical job runtimes, 3Sigma makes job scheduling

decisions based on full distributions of job runtimes.

Distributed Job Schedulers

Distributed job schedulers mean that two or more job schedulers can allocate resources

and make scheduling decisions in parallel. Distributed schedulers are a natural way to divide

and distribute job scheduling loads for lower job wait time and better scalability and cluster

utilization e�ciency.

One main challenge to distributed schedulers is how to resolve conflicts of resource

allocations when multiple job schedulers allocate the same piece of resources to di↵erent

jobs. In order to schedule highly parallel short jobs composed of sub-second-runtime tasks,

Sparrow [16] enables scheduling from a number of nodes that operate autonomously without

consulting and maintaining global resource view. In particular, Sparrow first proposes “Batch

Sampling”, which probes a number of randomly-selected nodes and places a batch of probes

on the nodes with shorter task queues. In order to avoid race conditions where multiple

schedulers sample in parallel and contend for the same nodes with short task queues, Sparrow

then uses Late Binding to delay task assignments to the nodes until they are ready to run

the tasks. In contrast, Omega [39] maintains a master copy of a cluster resource state, and

gives each scheduler a private and frequently-update copy. Each scheduler makes scheduling
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decisions by checking this local copy, and tries to update the master copy in an atomic commit.

If the update is not successful due to conflicts, the scheduler can redo the scheduling for the

job. Apollo [40] enables individual schedulers to make independent decisions in an optimistic

and coordinated manner with a synchronized and global view of cluster resources. Di↵erent

from Omega, Apollo employs a unique deferred correction mechanism that optimistically

defers corrections based on the observations in that resource allocation conflicts caused by

independent scheduling decisions are not always harmful, avoiding unnecessary overheads of

eager detection and correction mechanisms.

Hybrid Job Schedulers

Hybrid job schedulers combine centralized schedulers and distributed schedulers together

and aim to maximize the high cluster utilization advantage of centralized schedulers and low

scheduling latency advantage of distributed schedulers.

Mercury [41] is a hybrid scheduler, which augments the centralized scheduler with an

auxiliary set of distributed schedulers for strictly enforced capacity and fairness as well as

high scalability and e�ciency. Mercury defines two kinds of resource allocations: guaranteed

container and queuable container for production jobs and best-e↵ort jobs respectively. Its

centralized scheduler is used to schedule latency-sensitive tasks that require no queueing delay

with guaranteed containers while its distributed schedulers are used to schedule best-e↵ort

tasks with queueable containers.

In contrast, Hawk [17], Eagle [18], and Phoenix [19] are hybrid job schedulers for the

workloads mixed of long jobs and short jobs. In essence, the general architecture of Hawk,

Eagle, and Phoenix divides a cluster into two exclusive partitions: general partition and short

partition, as shown in Figure 2.3. The short partition is dedicated to executing short jobs only

while the general partition is used to execute both long and short jobs. The size of the short

partition is determined by the resources consumed by short jobs, that is, the total task-seconds

of short jobs (the sum of task runtime of tasks for all short jobs) over the total task-seconds of

all jobs. Similar to YARN [13], Mesos [14], Borg [43], Kubernetes [15], and other centralized
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Figure 2.3: A general architecture of hybrid job schedulers

job schedulers, the centralized scheduler in hybrid job schedulers is responsible for enqueueing

and placing only long jobs onto worker nodes in the general partition. On the other hand,

there are multiple distributed schedulers that can independently schedule only short jobs on

any worker nodes in both partitions in parallel. Like Sparrow [16], distributed schedulers

employ the “Batch Sampling” scheme to assign and enqueue a batch of task probes for short

jobs into probe queues of randomly-chosen worker nodes. When a worker node becomes ready,

it fetches one probe from its probe queue and then requests the executable package of one

task from a distributed scheduler in charge of the corresponding job. When the worker node

receives the task, it launches a container and executes the task program. Such immediate

probe placement and late task assignment are also called “Late Binding”.

On top of the general architecture of hybrid job schedulers, Hawk [17] introduces the
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“Randomized Task Stealing” scheme, where idle worker nodes in the general partition steal

task probes of short jobs behind running or waiting long tasks from randomly-chosen busy

worker nodes, to compensate occasional poor scheduling decisions by distributed schedulers.

Eagle [18] treats a probe as a proxy of the entire job instead of a single task and then

proposes the “Sticky Batch Probing (SBP)” scheme. When a task is completed on a worker

node, SBP continues to request and execute the remaining tasks of the job until all the

tasks are executed. Further, Eagle mitigates the “head-of-line” blocking problem with the

“Succinct State Sharing (SSS)” scheme, which shares the information about worker nodes

where long jobs are either executing or waiting among distributed schedulers. Phoenix [19] is

an extension to the Eagle scheduler to take job placement constraints into considerations.

2.2.2 Head-of-Line Blocking Alleviation

Table 2.2: A summary of representative head-of-line blocking alleviation work

Work Cluster

(re)partitioning

Task

(re)distribution

Task re-

ordering

Task

Speedup

Short Partition [16–18] Yes
Batch Sampling + Late
Binding [16–18]

Yes

Randomized Task Steal-
ing [17]

Yes

Succinct State Sharing [18] Yes
SRTF [18] Yes
LAS-MQ [44] Yes
LAS in Node Scheduler [20] Yes
Immediate Preemption,
Graceful Preemption [45]

Yes

HotTub [46] Yes

Elastic Sizing [47] Yes
Opportunistic Preemp-
tion [47]

Yes

Coordinated Cold Data Mi-
gration [48]

Yes
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Understanding the root causes of the head-of-line blocking problem in the context of big

data job schedulers is the first step to alleviate this problem. Bursty workloads could build

up long task queues sometimes on worker nodes. Tasks waiting behind a long task could

su↵er from prohibitively long task waiting time. Imbalanced task distribution could cause

some nodes to serve much more tasks than other nodes. As a result, actions can be taken

to either prevent the head-of-line blocking problem from happening or lower the chances of

its occurrences, or minimize its adverse performance impact on latency-sensitive jobs if it

happens.

We then can categorize the existing head-of-line blocking alleviation schemes into two

groups: architectural designs and optimization schemes. For example, the combination

of Batch Sampling and Late Binding probing scheme deployed in Hawk [17], Eagle [18],

and Phoenix [19] can be considered as an architectural design to prevent happening of the

head-of-line blocking problem since the worker nodes where only the probes return earlier are

dispatched tasks by schedulers and execute tasks (the probes that return late are canceled by

the schedulers). By the same token, a reserved short partition dedicated for small jobs in

hybrid job schedulers [17–19] is also an architectural design to minimize the likelihood that

small tasks are blocked by long tasks running on worker nodes.

Regarding optimization schemes, the first main direction is to dynamically repartition the

cluster. For example, the Succinct State Sharing (SSS) scheme in Eagle [18] aims to avoid

placing the probes of small tasks onto the worker nodes running long tasks, which can be

considered a form of dynamic partitioning. In our proposed Dice [47], the “Elastic Sizing”

scheme dynamically and adaptively adjusts the short partition size according to the task

waiting time of short jobs, so as to improve job-completion-delay performance of short jobs.

Elastic Sizing enforces sizing adjustment of the short partition by converting a number of the

general-partition nodes into the short-partition nodes throughout consecutive time windows.

The second main direction is to distribute and/or redistribute tasks among worker nodes

at runtime to alleviate the head-of-line blocking problem. For example, the randomized task
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stealing scheme in Hawk [17] aims to move probes of small tasks onto idle worker nodes from

busy worker nodes to avoid the head-of-line blocking problem.

The third main direction is to prioritize and reorder latency-sensitive tasks su↵ering from

head-of-line blocking problem on worker nodes and give preference to the tasks with high

priority. A typical example is the Shortest Processing Time First (SRTF) algorithm, where a

worker node tends to prefers to execute the task whose job has the shortest remaining job

completion time rather than the others in the task waiting queue. Eagle deploys the SRTF

algorithm with starvation prevention on worker nodes to alleviate the possible head-of-line

blocking problem of small tasks by long tasks. In addition to prioritization via scheduling, task

preemption is also an alternative option. For example, Big-C [45] implements container-aware

immediate preemption and graceful preemption strategies to make tasks preemptive with

low cost and latency. Based on these two strategies, Big-C develops a preemptive fair share

scheduler to preempt resources from long jobs when short jobs arrive. Inspired by Big-C,

Kairos [20] approximates LAS and implements quota-based time sharing on all worker nodes

through container-based task preemption as aforementioned. Similar prioritization work based

on task preemption includes LAS-MQ [44]. In our proposed Dice [47], the “Opportunistic

Preemption” scheme judiciously preempts resources of long tasks only when the task waiting

time of short jobs is high. Di↵erent from Big-C that always preempts resources from long jobs

when short jobs arrive to enforce share fairness and Kairos that always preempts resources

from running jobs to enforce quota-based time sharing, Opportunistic Preemption aims to

mitigate long task waiting time for short jobs with preemption on demand, while avoiding

high resumption overheads of the above “always-on” preemption schemes.

The fourth main direction is to speed up task execution on worker nodes so as to shorten

long task waiting time due to the head-of-line blocking. For example, as we know that

compute-intensive workloads like Spark queries could take 21 seconds on average on Java

Virtual Machine (JVM) warm-up, while IO-intensive workloads like HDFS reads could also

spend 33% execution time on warm-up [46]. Therefore, a new JVM of HotTub [46] is proposed
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to reuse a pool of already warmed-up JVMs among applications to amortize the warm-up

overhead over the lifetime of a worker node. Although HotTub is not an optimization

dedicated for big data job schedulers, job schedulers can make use of HotTub to accelerate

the task execution of analytics jobs created with many JVM-based analytics frameworks like

Spark [9]. Similarly, in our proposed Eirene [48], the “Coordinated Cold Data Migration”

scheme aims to shorten task runtime and resulting long task waiting time under heavily-loaded

periods by migrating cold data for the initial input read phase of tasks for short jobs from

hard disk to memory before the input data is used.

2.2.3 Straggler Mitigation

In large-scale datacenters, frequent hardware and software failures are unavoidable and

unpredictable in production environments, which may cause some tasks of a job to fall

behind others or never complete. Such tasks are usually called “stragglers” or “outliers”. If

stragglers are not handled in time, the entire job will risk violating its SLO (i.e., predefined

job deadline).

Mantri [21] did a systematic investigation of stragglers in a large MapReduce production

cluster, and found that the root causes to stragglers include run-time contentions for CPU,

memory and other resources, disk failures, varying bandwidth and congestion along network

paths, and load imbalance of tasks. To this end, Mantri uses real-time progress reports to

detect and restart straggler tasks early in their lifetime. Mantri will not restart stragglers

blindly, and it starts the stragglers that lag due to contention for resources and can be sped

up if they are restarted elsewhere. Further, Mantri proposes network-aware task placement to

avoid hotspots and replicates task output for avoiding interim data loss and mitigating costly

re-computations. In addition to restarting misbehaving tasks, another way to mitigate this

straggler issue is speculative execution, that is, duplicating tasks that appear to be stragglers.

The challenges are how to determine which tasks are stragglers during task execution and

when to duplicate the tasks. LATE [49], Longest Approximate Time to End, was proposed
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to speculatively execute the tasks that are predicted to finish farthest into the future. In

particular, LATE estimates the progress rate of each task, and run a speculative copy of

tasks that will finish farthest on fast nodes instead of the straggler nodes.

Di↵erent from LATE, Dolly [22] is designed to cope with stragglers of short jobs. Instead of

waiting, predicting stragglers, and executing speculative tasks, Dolly makes multiple clones of

every task of a job, and only uses the result of the clone that finishes first. The main challenge

resulting from extra clones is not even exacerbated resource contentions but contentions of

reading intermediate data as input. To solve this issue, Dolly uses a cost-benefit model and

thus delays assignment to avoid such contention. GRASS [50] is designed to mitigate the

straggler issue of approximation analytics jobs. GRASS includes two scheduling algorithms:

GS (Greedy Scheduling) and RAS (Resource Aware Speculative). GS greedily picks the task

to schedule next that helps achieve the approximation goal the most at the time of scheduling,

while RAS takes the opportunity cost into account and schedules a speculative copy of tasks

only if it helps save resources and time. GRASS combines these two together by using RAS

at the beginning of job execution and switching to GS when the job becomes close to its

approximation bound.

In our proposed Eirene [48], the “Scheduler-Aware Task Cloning” scheme aims to duplicate

every task of short jobs and use the result of the clones that are completed first under lightly-

loaded periods. It leverages the fact of tiny resource usage of short jobs and the availability

of free computing resources under light loads, and proactively launches extra copies of short

tasks for straggler mitigation.

2.2.4 Fair Job Schedulers

Basically, a fair job scheduler aims to enforce fair sharing of computing resources in the

cluster among the users. Guaranteeing scheduling fairness is important for job schedulers

to support multiple tenancies in cloud datacenters. In general, a fair scheduler must adhere

to the four properties [23]: sharing incentive, strategy proofness, envy freeness, and Pareto
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Table 2.3: A summary of representative fair job schedulers

Fair Scheduler Share fairness

metric

Supports

multiple

resource

types

Supports

placement

constraints

Supports

hetero-

geneous

servers

Performance

variation

aware

FairSharePolicy
in YARN [5]

resource share No No No No

DRF [23] dominant share Yes No No No
H-DRF [51] hierarchical share Yes No No No
DRFH [52] global dominant

share
Yes No Yes No

Choosy [24] resource share No Yes No No
TSF [53] task share Yes Yes Yes No
Eunomia [54] task progress share Yes Yes Yes Yes

e�ciency. Sharing incentive means that a user is better o↵ sharing his/her resources in

the pool, and it is guaranteed that he/she can then run more tasks on the shared resource

pool compared with the number for tasks he/she can run with his/her dedicated resources.

Strategy proofness means that a user cannot obtain more resources by lying about his/her

demands or constraints. Envy freeness means that a user cannot run more tasks if he/she

takes the other’s allocation. Pareto e�ciency means that no user can run more tasks without

decreasing another user’s allocation.

As one example, YARN has two built-in job schedulers: Capacity Scheduler and Fair

Scheduler [5]. Both schedulers are used to share available resources in the cluster among

multiple organizations, with capacity and fairness guarantees respectively. Capacity Scheduler

partitions CPU and memory resources based on the capacity assigned to organizations, and

maintains a job queue for each partition. Fair Scheduler is very similar to Capacity Scheduler,

but it is meant to assign available resources to jobs fairly so that each job has an equal share

of resources. Note that YARN’s Fair Scheduler is a fair scheduler based on the max-min

fairness algorithm. Given each user has enough demand and equal share, it maximizes the

lowest share first, then the second lowest, and then the third lowest, and so on. In such a
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policy, when max-min fairness is reached, increasing the share of a user will result in the

decrease of the share of the others with equal or smaller allocations (Pareto e�ciency) [23].

The attractive feature of the max-min fairness algorithm is to easily support weighted fairness

in resource allocations. By assigning di↵erent weights to di↵erent users in max-min fairness, it

is able to allocate resources to each user according to his/her share (equal share becomes one

special case where every user has the same weight), and ensure a user’s share regardless of the

demand of other users. There has been a large body of literature on improving the existing

fair schedulers to enable them to adapt dynamic and various workloads and environments,

and most of the existing fair schedulers are based on the max-min fairness algorithm.

The original Fair Scheduler in YARN takes only one resource type, CPU, into considera-

tions and uses the number of cores as the metric to determine the quantity of allocations for

each user. Later on, a new fair scheduler, called DRF, is integrated into YARN. In YARN,

the original Fair Scheduler is then denoted “FairSharePolicy” while the new DRF scheduler

is denoted “DominantResourceFairnessPolicy”. DRF (Dominant Resource Fairness) [23] is

a generalization of the classical max-min fairness to multiple resource types. DRF defines

“dominant share” as the maximum share of any resource type a user is allocated, and aims to

maximize the minimum dominant share for all the users. Hierarchical DRF (H-DRF) [51]

extends the core idea of DRF to the hierarchical schedulers to support a hierarchy of organiza-

tions. H-DRF introduces hierarchical share guarantee and ensures each group and each node

in the hierarchical organization get their prescribed fair shares. DRFH [52] is then proposed

to extend the DRF idea to cloud environments with heterogeneous servers. DRFH proposes

global dominant share, which is the maximum ratio of any resources allocated to a user to

the total amount of the corresponding resources in the entire resource pool. Then DRFH

tries to equalize the global dominant share of each user and generalizes DRF to multiple

heterogeneous servers.

Recent studies of big data analytics workloads in enterprise datacenters show that place-

ment constraints are common for jobs and job schedulers must support schedule constrained
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jobs on the nodes that satisfy job constraints [11,12]. Placement constraints impose a big

challenge to fair job schedulers. To this end, Choosy [24] extends the classic max-min fairness

algorithm and proposes the CMMF (Constrained Max-Min Fairness) allocation policy to

support job placement constraints. CMMF incentives users to pool resources and truthfully

report resource requirements. Since CMMF is di�cult to implement as an online scheduler,

Choosy is implemented to closely approximate CMMF as a simple greedy online scheduler.

Then, TSF (Task-Share Fairness) was proposed to extend the idea of Dominant Resource

Fairness to support placement constraints in multiple-resource sharing environments [53].

The key of TSF is the proposed “task share”, which is defined as the ratio of the total

number of scheduled tasks of a job to the maximum number of tasks that can be scheduled if

the job placement constraints are removed and the job monopolizes the entire datacenter.

Then, TSF aims to equalize the task share of each user and maximize the minimal task

share first. In Eunomia [54], we take performance variation due to server heterogeneity into

considerations and define the “task progress share” metric, which is defined as the ratio

between the accumulated task progress given the current allocation and the accumulated task

progress if the user can monopolize the cluster. Eunomia aims to equalize progress share of

jobs as much as possible, so as to achieve the same slowdown of jobs from di↵erent users due

to resource sharing and placement constraints, regardless of performance variation. Table 2.3

summarizes the above-mentioned representative fair job schedulers.

Nowadays, how to enforce fair scheduling in the context of datacenters for Cloud services

providers becomes an emerging hot research topic [55–57]. Cloud datacenters have distinct

di↵erences from enterprise datacenters. For example, Cloud services usually o↵er features like

multi-tenancies and “pay-as-you-use” economic model to end users. The conventional fair

schedulers for enterprise datacenters like DRF [23], Choosy [24] and so on are believed not

suitable for Cloud environments. To this end, LTRF [55] treats these conventional fair job

schedulers as Memory Less Resource Fairness because they allocate resources at an instant

time without considering the accumulated e↵ects of resource allocations in the long term. In
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LTRF a new resource allocation mechanism called Long-Term Resource Fairness is proposed

to incentive users to submit non-trivial jobs and pool resources via group-buying. LTRF

guarantees that over time, a user should receive the amount of resources in terms of the

monetary cost as he/she pays. In order to support multiple-resource fair sharing in Cloud

datacenters, Reciprocal Resource Fairness (RRF) [56] proposes the “inter-tenant resource

trading (IRT)” and “intra-tenant weight adjustment (IWA)” schemes to achieve the economic

fairness of multiple resource types among tenants in a cooperative manner.

In order to enforce strict fairness, sometimes tasks of a job will be preempted by job

schedulers when the quota is used up. The progress tasks made will be lost, and the tasks

must be re-executed. To make things worse, the tasks of another job that be scheduled next

may not be able to be assigned to the nodes containing the input data, which will result

in expensive data transmission and in turn a longer completion time of tasks. Therefore,

how to deliver the best job latency performance under fair sharing or trade fairness for

performance improvement is also an important research topic on fair schedulers. For example,

Delay Scheduling [58] takes a counterintuitive approach, which relaxes fairness slightly and

lets the next job wait for some time for the running tasks of other jobs to finish for better

data locality as the nodes containing the needed data will have available slots during the

waiting time. As Delay Scheduling favors data locality over strict fairness, Cluster Fair

Queueing (CFQ) [59] also relaxes instantaneous fair sharing in DRF [23] and Choosy [24]

and prefers to allocate resources to the jobs that complete the earliest under fair sharing. By

doing so, CFQ approximates the Shortest Processing Time First (SRTF) algorithm under

fair sharing and thus is able to short job completion time with delay guarantees. A similar

work to CFQ is HFSP [60]. HFSP also approximates SRTF for job latency performance

improvement under fair sharing, by estimating job completion time at runtime and scheduling

jobs according to their spent virtual time modeled with a job aging model. Performance-

Aware Fairness PAF [61] discovers that for some data-parallel jobs like Spark MLlib [62],

more resource allocations result in marginal performance improvement. Inspired by this
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observation, PAF leverages the demand elasticity of data-parallel jobs and builds a job latency

prediction model as a function of the number of allocated slots. Then PAF seeks to transfer

slots from a resource-giver job with demand elasticity to a resource-taker job that can obtain

performance gains with more slots. By doing so, PAF is able to improve average job latency

performance under approximative fair sharing.

2.3 Summary

In this chapter, we first introduce the background of big data job schedulers for large-scale

datacenters. We start with the description of job schedulers deployed in high-performance

computing environments, and discuss the evolution of big data job schedulers with the devel-

opment of big data analytics ecosystem. We then elaborate in detail on the 4 important topics

that are the most relevant to our work in this dissertation: (a) job scheduler architectures;

(b) head-of-line blocking alleviation; (c) straggler mitigation; and (d) fair job schedulers.
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Chapter 3

Dice: Improving Short Job Latency

Performance in Hybrid Job

Schedulers with Elastic Sizing and

Opportunistic Preemption

3.1 Introduction

In this chapter, we aim to address the high-latency performance issue of short jobs due

to the head-of-line blocking in the context of hybrid job schedulers. We first recognize a

fact that long batched jobs and latency-sensitive short jobs are usually mixed together in

enterprise datacenters, and recently hybrid job schedulers emerge as attractive alternatives of

conventional centralized job schedulers. Then we explore the interplay between performance

improvement on short job latency and prioritization of short jobs under the head-of-line

blocking problem. In particular, we present a general performance optimization approach

to hybrid job schedulers, called “Dice”, to mitigate the long job-completion-delay issue

of short jobs with two simple yet e↵ective techniques: Elastic Sizing and Opportunistic
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Preemption. Then we describe the performance evaluation methodology and results in detail.

We evaluate the job-completion-delay performance improvement on short jobs by Dice with

three representative traces of enterprise production workloads. Extensive experiment results

show that Dice is able to significantly improve latencies of short jobs, at a relatively low cost

by marginally increasing the latencies of long jobs.

3.2 Background and Motivation

3.2.1 Mixture of Long/Short Jobs and Hybrid Job Schedulers

Big data analytics workloads in large-scale enterprise data centers tend to be more and

more intensive, complex, and diverse, as evident in latest studies of job traces collected

from production environments [11,12,63–65]. We observe a mixture of both long jobs and

latency-sensitive short jobs in enterprise data centers. Although the total number of short

jobs could be 10⇥ greater than that of long jobs, they usually consume disproportionally

fewer resources than long jobs. For example, over 90% of jobs in Google clusters are short

jobs, but short jobs consume only 17% resources [11]. This is because computer clusters in

an enterprise are usually shared by di↵erent departments for high utilization e�ciency. It is

common to see analysts and developers submit short but interactive jobs like ad-hoc queries

or personalized search, while long-running services and batch jobs occupy a large portion of

computing resources in shared clusters.

The latency of short jobs, that is, job completion delay, matters to users because most (if

not all) short jobs are user-facing interactive applications like ad-hoc queries for interactive

data analysis or personalized search. This fact demands modern-day big data jobs schedulers

to be able to schedule large number of di↵erent types of jobs with corresponding resource

and latency requirements from a variety of analytics frameworks like Hadoop MapReduce [5],

Dremel [6], Impala [7], Storm [8], Spark [9], and Flink [10] in timely fashion.
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Centralized job schedulers, like YARN [13], Mesos [14], Kubernetes [15], achieve high

resource e�ciency since they usually have a global view of cluster resource allocations and

demands of batch jobs. However, their job scheduling delay becomes non-trivial when

scheduling a great amount of latency-sensitive short jobs. Distributed job schedulers like

Apollo [40] and Sparrow [16] successfully minimize job scheduling delay with parallel and

independent scheduling decision-making of multiple schedulers but they fail to allocate

resources e�ciently. Recognizing the mixed nature of long batch jobs and latency-sensitive

short jobs, Hawk [17], Eagle [18], Phoenix [19] hybrid job schedulers, which in general consist

of one centralized scheduler for long jobs and multiple distributed schedulers for short jobs,

have emerged as promising alternatives of existing job schedulers for better latencies of short

jobs and cluster utilization.

3.2.2 High Latency of Short Jobs under Hybrid Job Schedulers

As Hawk [17] is shown to improve the P50 and P90 job-completion-delay performance of

short jobs by 80% and 90% respectively compared with Sparrow, and Eagle [18] further

performs up to 80% better than Hawk, our question is raised: is short job-completion-delay

performance good enough under latest hybrid job schedulers?

In order to understand performance behaviors of short jobs under hybrid job schedulers,

we conduct a trace-driven experimental study with the open-source Eagle simulator, which is

able to simulate both Hawk and Eagle schedulers [66]. In our experiments, we try to mimic

the same configuration parameters used in Eagle. In particular, we simulate a cluster of

4000 nodes while 2% of nodes are reserved for the short partition because task-seconds of

short jobs account for 2% overall task-seconds in the Yahoo trace [63]. Then we feed the

Yahoo trace to the simulator as input workload. The Yahoo trace includes 24262 jobs in total

where short jobs account for 90.6% (the jobs with the mean task runtime of smaller than

90.58 seconds are defined as short jobs for the Yahoo trace, that is “cuto↵ task runtime” to

distinguish short and long jobs).
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We are especially interested in understanding the impact of the task waiting time on job

completion delay of short jobs. Therefore, for every 60-second time window in a simulation

run, we first collect and report the ratio of job completion delay to mean task runtime of its

corresponding short job. Considering an example case where there are two short jobs with

50-second and 5-second mean task runtime respectively, the same job completion delay of 100

seconds may result in totally di↵erent user experience. Hence we believe this ratio, instead of

the absolute value of job completion delay, is a better indicator of lags caused by resource

contentions. Figure 3.1 illustrates the ratio of job completion delay to mean task runtime of

short jobs for Hawk and Eagle schedulers under the Yahoo trace.

Second, we also collect and report the mean task waiting time of short jobs until all the

jobs are completed for every 60-second time window. The task waiting time for a given task

is defined as the duration from the time when its corresponding job is submitted to the

time when the task is executed. In general, the task waiting time consists of task scheduling

delay and probe queueing delay on the worker node. With multiple and parallel distributed

schedulers dedicated for scheduling short jobs, task scheduling delay is guaranteed to be

negligible. So the task waiting time of short jobs is actually determined by probe queueing

delay. In case the task waiting time for a job outweighs mean task runtime, the task waiting

time thus dominates job completion delay. Figure 3.2 plots the mean task waiting time of

short jobs under Hawk and Eagle schedulers under the Yahoo trace.

From Figures 3.1 and 3.2, we have two observations: (1) spikes of the mean task waiting

time are correlated and contribute to spikes of job completion delay for short jobs; and (2)

spikes of the mean task waiting time can be as high as more than 3000 seconds, which is

(3000/90.58 = 33.1) times cuto↵ task runtime for short jobs.

The above observations clearly dictate that shortening the task waiting time is key

and imperative to improve job completion delay of short jobs. As we know for hybrid job

schedulers a dedicated short partition is used to ensure low latency of short jobs, our first

idea is to rethink the sizing of the short partition for better latency performance of short
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Figure 3.1: Ratio of job completion delay to mean task runtime for short jobs under the
Yahoo trace

Figure 3.2: Mean task waiting time of short jobs under the Yahoo trace
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jobs. On the other hand, since short tasks could be a↵ected by the head-of-line blocking in

the general partition, our second idea is to explore the task preemption option.

3.3 Elastic Sizing

In this section, we first quantitatively evaluate the impact of the short partition size on job

completion delay as well as cluster utilization. Then we discuss how to strike a good balance

between job-completion-delay performance of short jobs and cluster utilization with Elastic

Sizing.

3.3.1 Impact of Short Partition Size

Intuitively, a straightforward way to shorten the task waiting time and resulting job completion

delay of short jobs is to increase the size of the dedicated short partition. Therefore, we

evaluate job-completion-delay performance and cluster utilization as a function of di↵erent

short partition sizes with the aforementioned simulator. Table 3.1 shows P50, P75, and P90

job completion delays of short and long jobs in both Hawk and Eagle schedulers with the

short partition sizes of 2%, 4%, 6%, and 8% under the Yahoo trace. One can see that for

Hawk, P50, P75, and P90 job completion delays of short jobs can be improved by 57.8%,

70.3%, and 77.9% respectively if the short partition size is increased from 2% to 8%. On the

other hand, a↵ected by fewer worker nodes available for long jobs, P50, P75, and P90 job

completion delays of long jobs for the 8% short partition size are 48.0%, 30.0%, and 19.0%

higher than those for 2% short partition size respectively. It clearly implies that a bigger size

of the dedicated short partition contributes to significant performance improvement on job

completion delay of short jobs, with a non-trivial cost to job completion delay of long jobs.

We observe a similar pattern from experiment results for Eagle as well.

Let’s then take a close look at cluster utilization. Figure 3.3 plots cluster utilization trends

in Eagle under Yahoo trace with 2%, 4%, 6%, and 8% short partition sizes. It is clear that
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Table 3.1: Job completion delays under the Yahoo trace as a function of di↵erent short
partition sizes

Short Job Completion Delay (seconds)
Partition Short Jobs Long Jobs
Hawk P50 P75 P90 P50 P75 P90
2% 327.7 687.1 1226.4 3145.2 6837.4 10089.1
4% 191.2 322.3 457.7 3455.5 7467.1 10754.7
6% 157.0 243.8 331.6 3947.6 8168.3 11447.7
8% 138.2 204.3 270.8 4654.6 8891.4 12010.3

Eagle P50 P75 P90 P50 P75 P90
2% 29.8 59.1 147.3 3160.0 6837.7 10070.3
4% 23.2 42.0 66.0 3455.6 7469.1 10764.3
6% 22.4 40.4 62.9 3943.5 8166.6 11391.0
8% 22.1 39.9 62.1 4650.2 8901.9 12025.4

cluster utilization is inversely proportional to the short partition size within a certain range.

In particular, for the 8% short partition size (that is, 92% general partition size), cluster

utilization ranges from 92% to approximately 94% during most of the time, with sometimes

100% peaks. This is expected considering task-seconds of short jobs account for 2% overall

task-seconds for the Yahoo trace. Therefore, a bigger size of the short partition could result

in lower cluster utilization.

3.3.2 Elastic Sizing

Motivated by the above observations and implications, we propose Elastic Sizing, which

dynamically and adaptively adjusts the short partition size according to the task waiting

time of short jobs, so as to improve job-completion-delay performance of short jobs, while

minimizing adverse impacts on the performance of long jobs and overall cluster utilization.

Elastic Sizing enforces sizing adjustment of the short partition by converting a number of the

general-partition nodes into the short-partition nodes throughout consecutive time windows.

In particular, the basic workflow of Elastic Sizing is as follows:
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Figure 3.3: Cluster utilization in Eagle under the Yahoo trace

• At the start of a time window, the centralized scheduler of hybrid job schedulers collects

the task waiting time of short jobs during last time window from all worker nodes and

computes the mean task waiting time;

• The centralized scheduler then decides the number of nodes in the general partition

should be temporally converted into the short-partition nodes during the current time

window. Implementing node conversion is simple: the centralized scheduler puts the

converted nodes onto a blacklist, and avoids scheduling probes of newly-arrived long

jobs onto the blacklisted nodes during the current time window. Note that Elastic

Sizing requires no changes to distributed schedulers;

• At the end of a time window, the centralized scheduler empties the blacklist.

We then discuss the algorithm to determine the number of nodes to convert. We define the

lower bound of the short partition size as MinShortPartitionSize number of nodes, the upper

bound of the short partition size as MaxShortPartitionSize number of nodes. We also define
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Figure 3.4: An illustrative example of Elastic Sizing

the mean task waiting time during last time window as CurrMeanTaskWaitingTime and the

corresponding maximum mean task waiting time of short jobs as MaxTaskWaitingTime. If

CurrMeanTaskWaitingTime is greater than MaxTaskWaitingTime, (MaxShortPartitionSize �

MinShortPartitionSize) general-partition nodes are converted into the short-partition nodes

by Elastic Sizing. Otherwise, p ⇥ (MaxShortPartitionSize - MinShortPartitionSize) number

of nodes will be converted, where p 2 [0.0, 1.0]. Figure 3.4 illustrates an example case of

Elastic Sizing.

We are interested in the relationship between the rate of node conversions and resulting

performance gain. Therefore, we consider and evaluate the below 3 models to compute p

because they reflect three di↵erent node-conversion strategies: linear conversion, slow-start

conversion, and fast-start conversion respectively. This is achieved by leveraging the di↵erent

responsiveness rate of functions y = x, y = x2, and y =
p
x, where x 2 [0.0, 1.0].

• Linear model: p = CurrMeanTaskWaitingT ime

MaxTaskWaitingT ime

• Square model: p = (CurrMeanTaskWaitingT ime

MaxTaskWaitingT ime

)2

• Square-Root model: p =
q

CurrMeanTaskWaitingT ime

MaxTaskWaitingT ime

In summary, Elastic Sizing aims to prioritize short jobs over long jobs when short jobs

face high task waiting time, by proactively constraining the number of nodes available for

scheduling long jobs and thus allocating more resources to short jobs.
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3.3.3 Searching Key Parameter Space

In this subsection, we first conduct experiments to understand the relationship between

the performance impact and node conversion models. Secondly, we study the performance

improvement by Elastic Sizing with di↵erent upper bounds of the short partition size.

(a) Short jobs in Hawk (b) Long jobs in Hawk

(c) Short jobs in Eagle (d) Long jobs in Eagle

Figure 3.5: Job completion delays for Elastic Sizing with di↵erent models normalized to
Hawk and Eagle

In the first experiment, we configure the upper bound of the short partition size to 10%

and the maximum mean task waiting time of short jobs to 1000 seconds. Then we run the

simulations of Hawk and Eagle schedulers with di↵erent models in Elastic Sizing under the

Yahoo trace. Figure 3.5 depicts the job-completion-delay performance in Hawk and Eagle

schedulers enhanced with the three node-conversion models of Elastic Sizing. We can see from
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Figures 3.5a and 3.5b, Hawk with Elastic Sizing’s Square-Root model is able to shorten P50,

P75, and P90 job completion delays of short jobs by 34.6%, 43.6%, and 53.5% respectively

compared with the original Hawk scheduler. However, this is achieved at the cost of 2.9%

and 2.1% longer P75 and P90 job completion delays of long jobs respectively. It is expected

because Square-Root model opts to aggressively convert the general-partition nodes into

the short-partition nodes. As a counterpart, Square model responds to the increase of the

task waiting time of short jobs so slowly that insu�cient nodes are converted in time, which

is evident in that trivial improvement on job completion delay performance of short jobs

is observed for Square model. In contrast, Elastic Sizing’s Linear model achieves 13.2%,

15.6%, and 24.3% improvement on P50, P75, and P90 job completion delays for short jobs

respectively, with a negligible impact on job completion delay for long jobs. In the meantime,

we observe from Figures 3.5c and 3.5d, Eagle is insensitive to di↵erent node-conversion models

of Elastic Sizing and all the models are able to deliver more than 4% and 23% improvement

on P75 and P90 job completion delays for short jobs.

In the second experiment, we vary the upper bounds of the short partition size from 4%,

6%, 8%, 10%, 12%, 14% to 16% with a step of 2% (Note that the lower bound of the short

partition size is 2% under Yahoo trace by default), and use the Linear model. Figure 3.6

plots the job-completion-delay performance of Hawk and Eagle enhanced with Elastic Sizing

as a function of di↵erent upper bounds of the short partition size. One can observe from

Figures 3.6a and 3.6c: (1) Elastic Sizing with 16% upper bound of the short partition size

improves P50, P75, and P90 job completion delay performance of short jobs by 18.3%, 22.3%,

and 33.3% respectively for Hawk, and improves them by 2.9%, 5.3%, and 26.4% respectively

for Eagle; (2) with the increase of the upper bound of the short partition size, Elastic Sizing

is able to translate higher node conversion into lower job completion delays of short jobs; and

(3) Hawk with Elastic Sizing is more sensitive to the upper bound of the short partition size

than Eagle with Elastic Sizing.
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(a) Short jobs in Hawk (b) Long jobs in Hawk

(c) Short jobs in Eagle (d) Long jobs in Eagle

Figure 3.6: Job completion delays for Elastic Sizing with di↵erent upper bounds of the short
partition size normalized to Hawk and Eagle

3.4 Opportunistic Preemption

In this section, we first introduce the background of task preemption in the context of big

data job scheduling. Then we present the basic idea of Opportunistic Preemption and explore

its key parameter space.

3.4.1 Task Preemption

Process preemption is a commonly-used mechanism to enforce the time-slice quota of running

processes and/or the prioritization of higher-priority processes over lower-priority processes in
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modern operating systems. Recently big data job schedulers have employed task preemption

for fair resource sharing and job prioritization enforcement as well. Killing tasks is a simple

but costly way to implement preemption because made progress of the tasks is lost and

the killed tasks need to be restarted from scratch. On the other hand, job schedulers like

Amoeba [67], Natjam [68], etc. checkpoint tasks’ progress periodically to save intermediate

results to persistent storage. This allows the tasks to be suspended and resumed when needed,

which is usually called “checkpointing-based preemption” [69]. Thus whether to enable

preemption in job scheduling is mainly determined by the e�ciency and overhead of task

suspension and resumption with checkpointing. Via lightweight container-based virtualization,

Big-C [45] implements immediate preemption and graceful preemption strategies to make

tasks preemptive with low cost and latency. Based on these two strategies, Big-C develops

a preemptive fair share scheduler to preempt resources from long jobs when short jobs

arrive. Inspired by Big-C, Kairos [20] implements time sharing on all worker nodes through

container-based task preemption.

Although low latency of suspending and saving task context is achieved with container-

based preemption under general workloads, Big-C’s experiment results show that Spark tasks

with iterative computation are susceptible to high resumption overhead. More importantly,

latest studies [46, 61] show that Java Virtual Machine (JVM) warm-up overheads, e.g. class

loading and byte-code interpretation, play an important role in short job execution while

many popular data analytic frameworks including Hadoop [5] and Spark [9] are built upon

JVM. For example, compute-intensive workloads like Spark queries could take 21 seconds on

average on JVM warm-up, while IO-intensive workloads like HDFS reads could also spend

33% execution time on warm-up [46].

Without careful considerations of resumption and JVM warm-up overheads, blind pre-

emption, even with low-cost container-based preemption scheme like Big-C, may result in

both lengthened job completion delay of short jobs and low cluster utilization.
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3.4.2 Opportunistic Preemption

Keeping benefits and possible overheads of task preemption in mind, we propose Opportunistic

Preemption, which judiciously preempts resources of long tasks only when the task waiting

time of short jobs is high. Di↵erent from Big-C that always preempts resources from long jobs

when short jobs arrive to enforce share fairness and Kairos that always preempts resources

from running jobs to enforce quota-based time sharing, Opportunistic Preemption aims to

mitigate long task waiting time for short jobs with preemption on demand, while avoiding

high resumption overheads of the above “always-on” preemption schemes.

Similar to Elastic Sizing, the centralized scheduler with Opportunistic Preemption enabled

periodically collects and aggregates the task waiting time of short jobs during last time

window from all worker nodes. When the computed mean task waiting time of short jobs

becomes high, Opportunistic Preemption is activated. The question is: how many and what

long tasks should be preempted? Considering a data center consisting of tens of thousands

of worker nodes and the centralized scheduler does not have detailed information about the

running task and the probe queue for every worker node, Opportunistic Preemption computes

the total number of needed preemption candidates according to the extent of the mean task

waiting time of short jobs and then opts to randomly select worker nodes in the general

partition. In particular, the basic workflow of Opportunistic Preemption is as follows:

• At the start of a time window, the centralized scheduler for hybrid job schedulers

collects the task waiting time of short jobs during last time window from all worker

nodes and computes the mean task waiting time;

• The centralized scheduler then computes the number of nodes in the general partition

for preemption candidacy (say n), and sends preemption requests to randomly-chosen

n nodes;

• For a node receiving a preemption request, it will save intermediate results of and then

suspend the running task if the following four conditions are all met: (1) a long task
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is running on the node; (2) no other long tasks are suspended for the node; (3) the

number of suspensions for the running task is less than a predefined maximum number

of suspensions for a task under preemption; and (4) there are probes of short jobs

waiting in the probe queue;

• When the task suspension is completed, the total number of suspensions for the task is

incremented by one. A timer that is used to stop suspension with a predefined timeout

starts ticking. In the meantime, the node will fetch the probe of a short task according

to local scheduling algorithms like SRTF (Shortest Remaining Time First) in Eagle or

FIFO (First In First Out) in Hawk, and execute the chosen short task;

• When the timer expires, the node will resume the suspended task after the currently

running task is completed.

Figure 3.7 gives 5 illustrative exemplary cases of Opportunistic Preemption. On the

figure, the number in the bracket for long tasks denotes the number of preemptions for the

task. The maximum number of allowed preemptions per task is 2 in the example. “E” in the

Suspended column denotes “empty”. A preemption request will be fulfilled in case (a) only

because it meets all 4 conditions aforementioned. A preemption request will not be fulfilled

due to the existence of yet another suspended long task in case (b), no short tasks in probe

queue in case (c), running task being not a long task in case (d), the number of preemptions

for the running long task being already equal to the maximal number of allowed preemptions

per task in case (e).

We then discuss the key parameter space of Opportunistic Preemption. Similar to Elas-

tic Sizing, we define the current short partition size as CurrShortPartitionSize number of

nodes, the mean task waiting time of short jobs during last time window as CurrMean-

TaskWaitingTime and the corresponding maximum mean task waiting time of short jobs as

MaxTaskWaitingTime. If CurrMeanTaskWaitingTime is greater than MaxTaskWaitingTime,

Opportunistic Preemption sends preemption requests to CurrShortPartitionSize ⇥ Multiplier
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Figure 3.7: Illustrative exemplary cases of Opportunistic Preemption

number of randomly-chosen nodes in the general partition. Otherwise, p ⇥ (CurrShortParti-

tionSize ⇥ Multiplier) preemption requests will be sent, where p 2 [0.0, 1.0]. Multiplier is

meant to compensate unfulfilled preemption requests due to the randomization nature of

choosing preemption candidates. We consider the same Linear, Square, Square-Root models

for p as Elastic Sizing.

In summary, Opportunistic Preemption aims to mitigate the head-of-line blocking issues

caused by long tasks to lower long task waiting time of short jobs, with on-demand task

preemption.

3.4.3 Searching Key Parameter Space

In the first experiment, we assume Opportunistic Preemption is also built on lightweight

container-based virtualization, and configure task suspension delay to 3 seconds and task

resumption delay to 10 seconds, as on par with experiment results in [61]. Then we run

the simulations of Hawk and Eagle schedulers with di↵erent Opportunistic Preemption

models under the Yahoo trace. We also configure the suspension duration to 100 seconds

and the maximum number of allowed preemptions per task to 2. Figure 3.8 depicts the

job-completion-delay performance of Hawk and Eagle schedulers with di↵erent Opportunistic

Preemption models.
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(a) Short jobs in Hawk (b) Long jobs in Hawk

(c) Short jobs in Eagle (d) Long jobs in Eagle

Figure 3.8: Job completion delays for Opportunistic Preemption with di↵erent models
normalized to Hawk and Eagle

As shown in Figures 3.8a and 3.8c, Opportunistic Preemption is able to consistently

improve job completion delays of short jobs under Hawk and Eagle schedulers. For example,

Opportunistic Preemption with Square-Root model improves P90 job completion delay of

short jobs under Eagle by up to 41.3% while Square model improves P90 job completion delay

under Hawk by up to 21.3%. Moreover, experiment results also reveal di↵erent characteristics

of Opportunistic Preemption compared with Elastic Sizing. First, Opportunistic Preemption

is able to shorten job completion delay of short jobs under Eagle more significantly than

Elastic Sizing. Second, Square-Root model is not always able to deliver the most performance

gains for short jobs with Hawk (see Figure 3.8a) in spite of its aggressive nature, while it
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(a) Short jobs in Hawk (b) Long jobs in Hawk

(c) Short jobs in Eagle (d) Long jobs in Eagle

Figure 3.9: Job completion delays for Opportunistic Preemption with di↵erent multipliers
normalized to Hawk and Eagle

could cause the most performance loss for long jobs (20% as in Figure 3.8b). Third, Linear

and Square models can achieve similar performance gains but Linear model tends to have

more performance loss for long jobs.

The second experiment is to evaluate the impact of di↵erent multipliers. We vary

the multiplier values from 0.5⇥, 1.0⇥, to 2.0⇥. Figure 3.9 depicts the job-completion-

delay performance of Hawk and Eagle schedulers with di↵erent Opportunistic Preemption

multipliers. As expected, with the increase of multiplier, we can see better improvement on

the job-completion-delay performance of short jobs (especially under Eagle) as well as higher

cost on job completion delay for long jobs (especially for Hawk). It suggests that Eagle needs
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an aggressive interference to alleviate long job completion delay of short jobs as its cluster

resource is heavily utilized compared with Hawk. This implies that 1.0⇥ multiplier strikes a

balance between performance gains on short jobs and performance loss on long jobs.

3.5 Putting It All Together: Dice

A natural idea is to enable both Elastic Sizing and Opportunistic Preemption, which becomes

Dice. Dice leverages the commonality of monitoring the mean task waiting time of short

jobs in both schemes and makes integration simple. Dice adds the logic into the centralized

job scheduler to adjust the short partition size and preempt resources of long jobs when the

mean task waiting time of short jobs is high during a time window. On the other hand, Dice

recognizes the fact of conservative but nearly cost-free nature of Elastic Sizing and aggressive

but potentially costly nature of Opportunistic Preemption, and supplements each other into

one unified approach.

In essence, Dice introduces a feedback loop into a hybrid job scheduler for performance

optimizations. Latency awareness in Dice enables performance monitoring for short jobs,

then actions are taken to activate the two proposed optimizations when performance is below

expectation.

3.6 Performance Evaluations

3.6.1 Experimental Setup

We implement a Dice prototype and evaluate its performance in a trace-driven simulator,

which is also used to evaluate Sparrow [16], Hawk [17], Eagle [18], Phoenix [19], and Kairos [20].

We feed the simulator with three traces representative of enterprise workloads in large data

centers. In particular, we use the Yahoo and Cloudera traces [63, 64], as well as the Google

trace [11, 12]. Table 4.4 shows the key job characteristics of the three traces, where the
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Table 3.2: Trace characteristics

Trace Total jobs Short jobs Task-seconds
of short jobs

Yahoo 24,262 90.6% 2%
Cloudera 21,030 95.0% 9%
Google 506,546 90.0% 17%

percentage of task-seconds of short jobs determines the lower bound of the short partition

size.

In our experiments, we simulate clusters of 3000, 4000, and 5000 worker nodes using

Yahoo trace and 11000, 12000, and 13000 worker nodes using Cloudera and Google traces to

evaluate Dice performance under heavy, medium-heavy, and medium loads respectively. Each

worker node has one single core and maintains one probe queue. Since job arrival timestamps

are constant during trace replay in the simulations, varying the total number of worker nodes

actually varies the workload intensity, and thus directly a↵ects the task waiting time and job

completion time.

We enhance Hawk and Eagle job schedulers with Dice, and compare P50, P75, and P90

job completion delay performance with the original Hawk and Eagle schedulers respectively.

Every 60 seconds, Dice collects and aggregates the task waiting time of short jobs from worker

nodes and computes the mean task waiting time. In Dice’s configuration, Elastic Sizing

employs Linear model and sets the upper bound of the short partition to 10%, 17%, and 25%

for Yahoo, Cloudera, Google traces respectively. This makes room for the short partition

size adjustment be a fixed 8% of the cluster size. Opportunistic Preemption employs Square

model and sets multiplier to 1.0⇥.

3.6.2 Results

Figure 3.10 plots normalized job-completion-delay performance for Hawk and Eagle schedulers

enhanced with Dice under Yahoo trace as a function of varying numbers of nodes. From
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(a) Short jobs in Hawk (b) Long jobs in Hawk

(c) Short jobs in Eagle (d) Long jobs in Eagle

Figure 3.10: Job completion delays for Dice normalized to Hawk and Eagle under Yahoo
trace

Figures 3.10a and 3.10c, we can see that Dice consistently and significantly improves the

latencies of short jobs. First, for the 3,000-node cluster configuration, Dice achieves 91.4%,

83.6%, and 74.4% improvement on P50, P75, and P90 job completion delays of short jobs

in Hawk respectively, as well as 97.4%, 82.3%, and 74.9% improvement on those in Eagle

respectively. The reason for such a surprisingly significant improvement is that, the task

waiting time of short jobs is kept extremely high under saturated load, and thus Dice has

to activate both Elastic Sizing and Opportunistic Preemption during the simulation. In

other words, high latency of short jobs dictates Dice to maximize the short partition size and

proactively preempts resources from long tasks under heavy load to shorten job completion
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delay of short jobs. On the other hand, we can also see that P50 job completion delay of long

jobs is lengthened by 14.3% in Hawk and 8.0% in Eagle. We believe, prioritizing short jobs

over long jobs in Dice is imperative to guarantee responsiveness of short jobs under heavy or

even saturated loads.

Second, under medium-heavy load (4000 nodes), Dice achieves 17.7%, 26.0%, and 38.3%

improvement on P50, P75, and P90 job completion delays of short jobs in Hawk respectively,

as well as 4.1%, 8.7%, and 34.0% improvement on those in Eagle respectively. We can also

see that 8.9%/2.4% longer P90 job completion delay of long jobs in Hawk/Eagle respectively

is traded for such performance improvement for short jobs.

Third, it is clear that performance gains for short jobs decrease with the increase of cluster

size. This is expected that lower workload intensity as a result of the bigger scale of a cluster

reduces the chances of high task waiting time of short jobs, and Dice has fewer chances to

activate Elastic Sizing and Opportunistic Preemption.

We can observe the same patterns from experiment results under the Cloudera and Google

traces, as shown in Figures 3.11 and 3.12. More specifically, for a cluster of 12000 nodes

under the Cloudera trace, Dice achieves 59.1%, 45.0%, and 14.4% improvement on P50, P75,

and P90 job completion delays of short jobs in Hawk respectively, as well as 27.6%, 57.3%,

and 11.5% improvement on those in Eagle respectively, while lengthening P90 job completion

delay of long jobs by 26.8% in Hawk and 24.7% in Eagle respectively. For a cluster of 12000

nodes under the Google trace, Dice achieves 50.9%, 54.5%, and 43.5% improvement on P50,

P75, and P90 job completion delays of short jobs in Hawk respectively, as well as 33.2%,

74.1%, and 85.3% improvement on those in Eagle respectively, while lengthening P50 job

completion delay of long jobs by 4.9% in Hawk and P75 job completion delay of long jobs by

14.6% in Eagle respectively. Overall, we confirm that in Dice performance gains obtained for

short jobs outweigh performance costs on long jobs.

In order to quantitatively evaluate how Elastic Sizing and Opportunistic Preemption

individually and combinatorially contribute to performance gains, we conduct experiments of
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(a) Short jobs in Hawk (b) Long jobs in Hawk

(c) Short jobs in Eagle (d) Long jobs in Eagle

Figure 3.11: Job completion delays for Dice normalized to Hawk and Eagle under Cloudera
trace

Hawk and Eagle schedulers enhanced with Elastic Sizing, Opportunistic Preemption, Dice

under the three traces. Figure 3.13 compares their performance in terms of job completion

delay of short jobs. One can see from Figure 3.13a, in the case of Hawk under the Yahoo trace,

Dice achieves 5.2%, 12.4%, and 18.5% improvement on P50, P75, and P90 job completion

delay of short jobs respectively compared with Elastic Sizing, as well as 12.1%, 13.4%, and

21.5% improvement respectively compared with Opportunistic Preemption. Similarly, we can

also see from Figure 3.13b, in the case of Hawk under the Cloudera trace, Dice achieves 3.5%,

0.7%, and �1.4% improvement on P50, P75, and P90 job completion delays of short jobs

respectively compared with Elastic Sizing, as well as 55.0%, 38.5%, and 15.3% improvement
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(a) Short jobs in Hawk (b) Long jobs in Hawk

(c) Short jobs in Eagle (d) Long jobs in Eagle

Figure 3.12: Job completion delays for Dice normalized to Hawk and Eagle under Google
trace

respectively compared with Opportunistic Preemption. It clearly indicates that using Elastic

Sizing and Opportunistic Preemption combinatorially is able to deliver more performance

gains than using them individually in most cases. We can observe the same pattern from

experiment results for the Eagle scheduler and under the Google trace. Even in some cases,

the combination of Elastic Sizing and Opportunistic Preemption causes performance loss, the

performance loss is negligible (the maximum performance loss we observed from experiment

results is �1.4%). This implies that it is empirically beneficial to deploy both Elastic Sizing

and Opportunistic Preemption in hybrid job schedulers.
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(a) Short jobs in Hawk under
Yahoo

(b) Short jobs in Hawk under
Cloudera

(c) Short jobs in Hawk under
Google

(d) Short jobs in Eagle under
Yahoo

(e) Short jobs in Eagle under
Cloudera

(f) Short jobs in Eagle under
Google

Figure 3.13: Job completion delays for Elastic Sizing, Opportunistic Preemption, and Dice
normalized to Hawk and Eagle

3.7 Novelty of Dice

Elastic Sizing. In the context of resource management and job scheduling, the most similar

work to cluster partitioning in hybrid job schedulers is the node label scheme [70] in YARN [13]

and the floating partition scheme in Slurm [2,71]. Each node in a cluster managed by YARN

can be tagged with a label representing ownership or capacity (e.g., GPU support, memory

size) and a group of nodes with the same label form a sub-cluster. A label can be set as

exclusive or non-exclusive. A sub-cluster labeled as exclusive can run jobs with the same

label only. In a sub-cluster labeled as non-exclusive, resources can be shared with any jobs in

the cluster when idle resources are available. Similarly, a cluster in Slurm can be partitioned

into disjoint sub-clusters as well, and Slurm’s floating partition scheme can be used to share

idle resources across partitions. Node label and floating partition are a static partitioning
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approach, and they are meant to share and leverage idle resources. In contrast, Elastic Sizing

is a dynamic partitioning and node conversion approach, which dynamically and adaptively

adjusts the short and general partition sizes according to the task waiting time of short jobs,

even there are no idle resources. In addition, the basic idea of Elastic Sizing can be easily

extended to YARN and Slurm.

Opportunistic Preemption. Task preemption has been widely used in major job schedulers

and cluster managers like YARN [13], Mesos [14], Kubernetes [15], Slurm [2] for enforcement

of job prioritization. For node label in YARN, a labeled job requesting labeled resources

can preempt non-labeled jobs on labeled nodes. Big-C [45] implements a low-overhead

task preemption mechanism via the container technique and then develops a preemptive

job scheduler to prioritize short jobs over long jobs. Built on top of the container-based

task preemption in Big-C, Kairos [20] proposes a two-layer scheduling framework to address

head-of-line blocking problem of short jobs: one centralized scheduler for coarse-grained load

balancing and local scheduler on every node for achieving Least Attained Service (LAS). In

particular, local scheduler preempts the running task that has the highest LAS time when a

new task arrives. When the time quota of the running task expires, local scheduler suspends

the task and resumes a task with the least LAS time waiting in the task queue. Di↵erent from

the always-on task preemption in Big-C and Kairos, Opportunistic Preemption is activated

on demand, when the mean task waiting time of short jobs is high, to avoid the non-trivial

task suspension and resumption overheads and JVM warmup overhead due to preemption.

3.8 Summary

In this chapter, we propose Dice, a general performance optimization approach for state-

of-the-art hybrid job schedulers to address the high-latency issue of short jobs due to the

bursty nature of workloads in large-scale enterprise data centers. Dice keeps track of the task

waiting time of short jobs, and deploys Elastic Sizing and Opportunistic Preemption schemes
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to optimize job completion delays of short jobs. In particular, Elastic Sizing dynamically

and adaptively increases the short partition size to accommodate long task waiting time of

short jobs due to the shortage of resource reservation for short jobs, while Opportunistic

Preemption preempts resources from long tasks running in the general partition on demand,

so as to mitigate the head-of-line blocking problem. Trace-driven experiments show that Dice

is able to achieve significant performance gains for short jobs with acceptable performance

costs to long jobs.
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Chapter 4

Eirene: Improving Short Job Latency

Performance in Hybrid Job

Schedulers with Coordinated Cold

Data Migration and Scheduler-Aware

Task Cloning

4.1 Introduction

In this chapter, we still tackle with the same high-latency performance issue of short jobs due

to the head-of-line blocking in the context of hybrid job schedulers, but from a di↵erent angle.

In Chapter 3, we explore the centralized-scheduler-side approaches to prioritize short tasks

over long tasks by short-task-performance-aware cluster repartitioning and task preemption.

Here we strive to address the performance issue from both the distributed-scheduler and

worker node sides. Particularly, we first conduct a motivation study and obtain a deep

understanding of workload fluctuation. We observe that short jobs are still facing long job
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latencies under hybrid job schedulers due to workload fluctuation and straggler task problem.

Then we propose Eirene to address the above performance issues of short jobs with two

schemes. On one hand, Coordinated Cold Data Migration aims to migrate cold data for the

initial input read phase of tasks for short jobs from hard disk to memory as so to shorten

task runtime and resulting long task waiting time under heavily-loaded periods. Eirene

overlaps cold data migration for short tasks waiting in the queue on the worker nodes with

the task waiting time, which is achieved by the coordination between distributed schedulers

and worker nodes. On the other hand, Scheduler-Aware Task Cloning aims to duplicate every

task of short jobs and use the result of the clones that are completed first under lightly-loaded

periods. Eirene leverages the fact of tiny resource usage of short jobs and the availability of

free computing resources under light loads, and proactively launches extra copies of short

tasks for straggler mitigation. Then we discuss a prototype implementation of Eirene on top

of Eagle [18], and experimental results demonstrate the e↵ectiveness and e�ciency of Eirene.

4.2 Motivations

In this section, we first present the findings of workload fluctuation from our experiment study

for motivation. Then, we discuss the challenges and opportunities for addressing performance

issues of short jobs in the context of workload fluctuation.

4.2.1 Experiment Study of Workload Fluctuation

To investigate performance behaviors of short jobs under hybrid job schedulers, we conduct a

trace-driven experiment study with the open-sourced Eagle simulator [66]. In the experiment,

we simulate a cluster of 4000, 5000, 6000 worker nodes and then feed the Yahoo trace [63] as

input workload to the simulator. 90.6% of the jobs are short jobs in the Yahoo trace, and

the total task-seconds of short jobs account for 2% of the overall task-seconds. As a result,
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2% of the cluster is reserved for the short partition and the rest of the cluster is allocated for

the general partition.

Figure 4.1 plots the mean task waiting time of short jobs under the Yahoo trace in Eagle.

Task waiting time is defined as the duration between job submission time and the moment a

task of the job begins execution. The reason we are interested in the metric of task waiting

time of short jobs is we believe it is a good indicator of system loads and resource contentions.

One can see from the figure that during most of the time the mean task waiting time of short

jobs is close to 0, which means short tasks are almost immediately executed after their probes

are put on worker nodes. This implies that the cluster is under light or moderate loads. On

the other hand, we can see there are durations of extremely high mean task waiting time.

For example, for the cluster of 4000 nodes, the mean task waiting time reaches a peak of over

3000 seconds. Such a long task waiting time clearly indicates the existence of heavy loads.

Considering the mean task runtime of short jobs is less than 90.58 seconds, job latencies of

short jobs are thus dominantly lagged by task waiting time. Even with the increase of worker

nodes and resulting less intensity of workload, we can still see the lasting peaks of mean task

waiting time. It is critically important to find a workable way to significantly reduce task

waiting time and task runtime so as to lower latencies of short jobs. As workload fluctuation

is evident from our study, we expect a desirable performance optimization approach for short

jobs to be able to address performance issues under both lightly- and heavily-loaded periods.

4.2.2 Input Data Read Stage of Tasks and Cold Data Migration

For big data analytics jobs, the stage of reading input data usually accounts for a non-

negligible portion of job latency. For example, reading map inputs of SQL queries on Hive

takes up to 15% of query duration [72]. For another example, reading inputs from disk causes

the first iteration of logistic regression jobs to run 15⇥ slower than late iterations [9]. Such a

noticeable duration spent on accessing to singly-read data, that is, cold data, results from the

fact that the input stage reads much more data than late stages after filtering and aggregation,
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Figure 4.1: Mean task waiting time of short jobs under the Yahoo trace in Eagle

while existing performance optimization approaches based on caching repeatedly/frequently-

accessed data, like Spark [9], PACman [73], Triple-H [74], do not benefit the input data read

stage of tasks.

To this end, Ignem [75] and DYRS [76] are two systems to migrate cold data from disk to

memory before using them at the input read stage of task execution. Experiment results in

Ignem show that reading input data from memory is 160⇥ faster than reading from hard

disk, and Ignem improves hive queries by up to 34% [75]. The key to e↵ective cold data

migration is whether there is su�cient lead time, which is defined as the duration between

job submission time and the moment the input data is accessed for a task. As we observe

high task waiting time of short jobs under heavily-loaded periods, this becomes the best

opportunity to overlap cold data migration with task waiting time of short jobs, which should

in turn help reduce task runtime and improves latency performance of short jobs. However,

it is very challenging to support cold data migration in the context of hybrid job schedulers

because distributed schedulers themselves do not know which worker nodes will execute
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which tasks when they place probes of jobs onto randomly-chosen worker nodes due to batch

sampling and late binding.

4.2.3 Straggler Problem and Mitigation

Stragglers, where one or more tasks of a job take much longer time to complete than other

tasks, are commonly seen in enterprise production workloads. For example, more than 15%

straggler tasks for 25% phases are observed in a large cluster for the Bing search engine [21].

Moreover, we also analyze 4 representative traces derived from production workloads in

enterprise data centers [11, 12, 63, 64] and use the same definition of straggler tasks in Mantri

research [21]: the tasks that take 1.5⇥ the median task runtime for a job. We find that in

3 out of these 4 traces, over 30% of short jobs have at least 1 straggler task as shown in

Table 4.1. There are many sources contributing to straggler tasks, like transient hardware

errors or resource contentions, oversubscribed and congested networks, data skew in workloads

(e.g., some tasks may take more input data than others due to imbalanced data distribution),

Java just-in-time compilation overhead for the “first task” [21,72, 77,78].

As straggler problem is seen widespread, straggler tasks are also considered one major

cause to lengthening job completion delay. For one example, job latency was lengthened by

stragglers by 29% in Bing clusters [21]. For another example, straggler tasks could take up

to 8⇥ longer than the mean task runtime in Hadoop clusters, causing the jobs to be slowed

down by 47% on average [22]. As a result, a number of straggler mitigation approaches are

proposed to address this issue [21, 22, 49, 50, 72, 77–81], and the common strategy by most

of them is speculative execution. Speculative execution spawns duplicate copies of straggler

tasks when they are detected slow. The fundamental limitation of speculative execution is

its hysteresis in response to straggler tasks. This is because speculative execution needs to

wait to monitor task progress and collect statistically su�cient samples to detect straggler

tasks. More importantly, spawning redundant copies of straggler tasks at this point of time

may be too late to be functional. To this end, Dolly [22] was proposed to completely avoid
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Table 4.1: Stragglers in 4 traces of production workloads

Trace # of short jobs portion of

straggler jobs

# of short tasks portion of

straggler tasks

Yahoo 21, 981 58.8% 514, 583 10.7%
Cloudera 19, 975 52.9% 3, 897, 480 4.4%
Google 455, 891 4.4% 12, 867, 052 7.0%

Facebook 1, 145, 663 34.3% 11, 724, 548 8.2%

waiting and speculation by cloning every task of jobs and using the result of the clones that

are completed first. The key to the e↵ectiveness of task cloning like Dolly is whether there

are su�cient spare computing resources in the cluster so that the duplicate copies of task can

be launched nearly at the same time when the primary copies of tasks are started. Blindly

applying Dolly’s idea to hybrid job schedulers is impractical and could exacerbate job latency

performance because it is resource-intensive to duplicate every task of both long and short

jobs. This inspires us to consider cloning every task of short jobs by leveraging free resources

under lightly-loaded periods, but it remains a challenging question of how to judiciously

integrate task cloning into hybrid job schedulers.

4.3 Design and Implementation

In this section, we first describe the design principals and the basic idea of Eirene. Then we

discuss the design and implementation of Coordinated Cold Data Migration and Scheduler-

Aware Task Cloning schemes in detail respectively.

4.3.1 Design Principals and Basic Idea

We take the below design principals into considerations in Eirene research:

• Focus on performance improvement of short jobs. Due to the user-facing and

interactive nature of short jobs like ad-hoc and exploratory queries, short jobs are

usually more sensitive to job latencies than long jobs. In particular, we aim to improve

tail-latency performance of short jobs, which matters the most to user experience;
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• Best-e↵ort approach. Our strategy is to develop schemes to explore possible oppor-

tunities like workload fluctuation and spare resources to improve latency performance

of short jobs. It is acceptable to make imperfect decisions and miss opportunities for

performance improvement;

• Keep design and implementation simple. The goal of Eirene is not to develop

a new hybrid job scheduler. Instead, we examine common and inherent performance

issues in data centers managed by hybrid job schedulers and propose performance

optimization techniques accordingly. We intend to keep design and implementation

simple and thus applicable to the latest-of-the-art hybrid job schedulers.

Keeping the above design principals in mind, we propose Eirene on top of the state-of-

the-art hybrid job scheduler Eagle [18] to improve latency performance of short jobs while

minimizing adverse performance impact on long jobs in the context of hybrid job schedulers.

The basic idea behind Eirene is simple: when possible, Eirene performs cold data migration

to shorten initial input read phase of tasks, and clones every task of short jobs to mitigate

straggler tasks. Eirene is not simply applying Ignem [75] and Dolly [22] to hybrid job

schedulers. Instead, Eirene leverages the ubiquitous workload fluctuation in enterprise data

centers, and judiciously activates cold data migration for short tasks by leveraging long task

waiting time of those short tasks during heavily-loaded periods, which is called Coordinated

Cold Data Migration. On the other hand, Eirene duplicates every task for short jobs by

exploiting free resources during lightly-loaded periods, which is called Scheduler-Aware Task

Cloning. Eirene tightly couples these two functional modules into distributed schedulers and

worker nodes of hybrid job schedulers, and significantly improve tail-latency performance of

short jobs under fluctuating workloads.
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4.3.2 Coordinated Cold Data Migration

Architecture

Note that due to batch sampling and late binding, a distributed scheduler itself does not know

which worker nodes will execute which tasks when it sends a batch of probes of a short job onto

randomly-chosen worker nodes. This renders distributed schedulers incapable of dictating

cold data migration solely. In Eirene, cold data migration is realized under the coordination

between distributed schedulers and worker nodes. In the proposed Coordinated Cold Data

Migration, worker nodes have delegated autonomy of performing cold data migration in a

distributed and parallel manner, while distributed schedulers are responsible for coordinating

the data migration e↵orts of worker nodes and leveraging migrated data for accelerating

initial input read phase of tasks.

Figure 4.2 depicts an architectural diagram of a worker node with Coordinated Cold

Data Migration support. On the left side of the figure, there are Probe Queue (PQ), Task

I/O Engine, and Task Execution Engine from the original worker node design in the general

architecture of hybrid job schedulers. PQ is used to enqueue received probes from distributed

schedulers. When a worker node becomes ready to execute a task, Task Execution Engine

fetches one probe from PQ and requests a task of the corresponding job from the distributed

scheduler. When it receives the task, Task Execution Engine launches a container and executes

the task program within the container. If the task is involved with data reads or writes, Task

I/O Engine is responsible for reading or writing data on the underlying distributed file system

like HDFS (Hadoop File System). Coordinated Cold Data Migration augments a Migration

Manager module, as shown on the right side of Figure 4.2. Migration Manager is meant

to migrate cold data of short tasks from disks on local or remote nodes to local memory

on the background. It is composed of 4 sub-modules: Per-Job Task Migration Status Table,

Migration Queue, Migration Fast Lane, and RamDisk Virtual File System. In particular,

Per-Job Task Migration Status Table (MST) is used to keep track of data migration progress
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Figure 4.2: An architectural diagram of a worker node with Coordinated Cold Data Migration
support

for all waiting or running jobs on a worker node, including the information about job id, task

number, migration status, whether the migrated data is read, and the location of migrated

task data on RVFS, as one example MST table shown in Table 4.2. Migration Queue (MQ)

enqueues migration requests associated with probes staying in Probe Queue, and its function

is to enforce I/O bandwidth management of data migration to avoid contentions on foreground

task execution. Migration Fast Lane (MFL) is used to accommodate urgent data migration

requests without delays, which is important to allow Coordinated Cold Data Migration to

collaborate with the Sticky Batch Probing (SBP) feature in Eagle [18]. RamDisk Virtual

File System (RVFS) is responsible for storing migrated data in RamDisk and servicing read
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Table 4.2: Per-Job Task Migration Status Table (MST)

job id task no. migration status read by task? location of migrated task

data on RVFS

1 0 Not Migrated N/A N/A
1 1 Migrated Yes /ramdisk/job1 task1 data
1 2 Not Migrated N/A N/A
1 3 Migrating No /ramdisk/job1 task3 data

Table 4.3: Per-Job Task Status Table (TST)

job id task no. task status location of task data on distributed

file systems like hdfs

1 0 Not Started hdfs://namenode:port/data/fileA block0
1 1 Completed hdfs://namenode:port/data/fileA block1
1 2 Running hdfs://namenode:port/data/fileA block2
1 3 Not Started hdfs://namenode:port/data/fileA block3

requests from the initial phase of tasks. Moreover, RVFS leverages the MST information to

evict migrated data and reclaim space for new task data being migrated.

On the other hand, distributed schedulers in Coordinated Cold Data Migration maintain

Per-Job Task Status Table (TST) to track the task progress of jobs as well as the location of

the input data on the underlying distributed file system for all the tasks of every short job,

as one example TST table is shown in Table 4.3. More importantly, distributed schedulers

augment every probe with the TST information upon placing them onto worker nodes.

Workflow

In Coordinated Cold Data Migration, worker nodes have delegated autonomy of decision

making of data migration, that is, a worker node itself decides whether and which tasks

for data migration given a probe in its Probe Queue (PQ). When a worker node receives a

probe of a job containing the TST table and enqueues the probe in PQ, Eirene generates a

predefined number of random task numbers and enqueues migration requests of them into

the MQ queue. On the other hand, when a worker node receives the response from the

distributed scheduler about the next task of a job to execute accompanied with the TST

table, the worker node will examine both TST and MST tables to see if there is any task of
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the same job, which is not started and whose data is not migrated. If yes, the worker node

will put the task number into MFL, and perform data migration immediately. By doing so,

the worker node is able to overlap the execution of the current task with data migration for

the next task to execute, aligned with the “Sticky Batch Probing (SBP)” scheme in Eagle.

At the side of the distributed scheduler, it reads the MST table embedded in the request of

the next task by the worker node and thus knows which tasks have data already migrated to

memory. Then it chooses one random task from the tasks that are not started but whose data

have been migrated to memory, and responds to the worker node with the chosen task number.

If none of such tasks is found, the distributed scheduler just returns any “Not Started” task

number to the worker node. By doing so, the coordination between a distributed scheduler

and a worker node is able to maximize potential performance gains from cold data migration.

Figure 4.3 illustrates an example of the interaction and coordination between a distributed

scheduler and a worker node in Coordinated Cold Data Migration. T0-T3 denote tasks

0 to 3 of job 1 respectively. In TST, “S”, “R”, “C” denote “Scheduled”, “Running”,

and “Completed” respectively. In MST, “M” and “X” denote “Migrated” and “Migrating”

respectively. Figure 4.3(a) shows a point-in-time system snapshot after a distributed scheduler

receives a new job, say Job 1 (J1), and sends one probe containing the TST table to a worker

node. At the time, the worker node is executing one task of Job 0 (J0), as we can see that a

probe of J0 is staying at the head of PQ, followed by the probe of J1. The worker node reads

the TST table and knows none of J1’s tasks is completed or running, so T1 of J1 is randomly

chosen and enqueued into MQ for data migration. Because of no ongoing data migration,

the worker node starts to migrate data for T1 immediately, as T1 is marked “migrating”

in the MST table. Figure 4.3(b) shows a system snapshot before the worker node requests

the next task to execute from the distributed scheduler, while T1 is shown to be migrated

already. Figure 4.3(c) shows that the distributed scheduler returns T1 to the worker node.

The worker node then executes T1 and starts to migrate data for T3 immediately. As shown

in Figure 4.3(d), the worker node finishes the execution of T1 and data migration for T3,
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Figure 4.3: An example of the interaction between distributed scheduler and worker node. J0
and J1 denote jobs 0 and 1 respectively.

and requests the next task from the distributed scheduler again. Figure 4.3(e) shows that

the distributed scheduler responds to the worker node with T3, and the worker node then

starts to execute T3 and performs data migration for T2.

Implementation Issues

We discuss a few key implementation issues in the below:

Listing 4.1: Example code snippet of reading input data in Python

1 import os

2

3 # assume HDFS is used as the underlying distributed file system.

4 # assume hdfsRead () and rvfsRead () are provided APIs to read data
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5 # from HDFS and RVFS respectively.

6 def readInputData(location_on_hdfs):

7 # if environment variable of data location on rvfs exists.

8 if os.environ[’location_on_rvfs ’]:

9 # read data from rvfs

10 dataBuffer = rvfsRead(os.environ[’location_on_rvfs ’])

11 else:

12 # read data from HDFS

13 dataBuffer = hdfsRead(location_on_hdfs)

14

15 return dataBuffer

• How to enforce I/O bandwidth management with MQ? Migration Manager specifies the

maximum number of allowed concurrent migrations (CM) to limit the maximum disk

bandwidth for data migration. Note that experiment results in Ignem [75] show that it

takes 6.42 seconds on average to read an HDFS block of 64MB from hard disk to memory.

Assuming CM is 10, then disk bandwidth used for data migration is 10⇥ 64
6.42 = 99.6

MB/s at the peak, which is lower than sustainable sequential read throughputs of hard

disks on the market. When the current number of concurrent migrations reaches the

CM threshold, the additional migration requests will be enqueued and waiting in MQ.

• How to speed up reading input with migrated data on RVFS? Remember that the

request of the next task to execute sent by the worker node contains the MST table,

which includes the location of migrated data on RVFS. Therefore, the distributed

scheduler leverages such information and passes the location of migrated data to the

task. Moreover, a small modification to the task program is made to read migrated

data from RVFS if available, or otherwise read data from the original location on the

underlying file system. A simplified version of example code snippet to read input data

is shown in Listing 4.1.

• How to minimize unnecessary cold data migration? Note that Eirene generates a

predefined number of task numbers and enqueues them in the MQ queue for future
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data migration when a worker node receives a probe of a job from the distributed

scheduler. It is possible for the migration of cold data for a task being performed later

than the start time of task execution due to concurrent migration bandwidth control,

which renders data migration for the task a waste of time and I/O bandwidth. To this

end, Migration Manager will cancel the migration request of a task if the task already

starts execution, and fetch the next migration request in the MQ queue when migration

bandwidth becomes available.

4.3.3 Scheduler-Aware Task Cloning

In order to e↵ectively mitigate stragglers and improve latencies of short jobs, Scheduler-Aware

Task Cloning in Eirene duplicates every task of short jobs and uses the results of the tasks

that finish first, the same as Dolly [22]. However, Scheduler-Aware Task Cloning distinguishes

itself from the existing approaches like Dolly in two important aspects as below:

• Short Jobs Oriented. Scheduler-Aware Task Cloning is applied to short jobs only. This

is because Eirene recognizes the fact in production environments short jobs consume a

very small portion of resources but they are also latency sensitive. Replicating all tasks

of short jobs will not likely result in resource contentions. More importantly, Scheduler-

Aware Task Cloning leverages the fluctuating nature of workloads and activates task

cloning only under idle or lightly-loaded periods.

• Distributed Scheduler Aware. Scheduler-Aware Task Cloning intentionally minimizes

changes to hybrid job schedulers for simplicity and feasibility. As a result, it is designed

to be tightly coupled with a distributed scheduler to leverage its inherent feature of

“batch sampling”.

In detail, for a given short job consisting of N tasks, the original batch-sampling scheme

sends probes to 2⇥N randomly-chosen worker nodes. After the N tasks are assigned to the

first N probes whose worker nodes request the distributed scheduler of tasks to execute, the
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later N probes are canceled when the corresponding worker nodes request tasks to execute

from the distributed scheduler. Then the worker nodes fetch the next probes and may execute

tasks of other jobs, like the example shown in Figure 4.4(a). Figure 4.4(a) shows the timeline

of task execution of a 4-task job (“J0”) under the original batch sampling scheme. t0 denotes

the time when J0 is submitted to the job scheduler. t1 denotes the completion time of T1,

which is the straggler task. Job latency of J0 is thus t1 � t0. In contrast, Scheduler-Aware

Task Cloning tries to leverage such probes and repurpose them to represent clones of tasks

that have not been completed. In addition to the “task status” column in Per-Job Task Status

Table, Scheduler-Aware Task Cloning adds one new column, called “cloned task status”,

to track the status of cloned tasks. When the distributed scheduler receives a request of a

task to execute from a worker node, it checks if all the primary copies of tasks have been

launched or completed (“Started” and “Completed” status in the “task status” column). If

yes, the distributed scheduler will try to find a running task that has no clone (from the

“cloned task status” column) and return its task number to the worker node. The worker

node does not di↵erentiate a primary copy or a duplicate copy of a task. It just launches

a container and executes the received task program from the distributed scheduler. The

distributed scheduler may receive two task completion messages, but it marks the task as

“Completed” in the table only when the first one arrives and simply ignores the second one.

An example timeline of task scheduling and execution with Scheduler-Aware Task Cloning is

shown in Figure 4.4(b). Figure 4.4(b) shows the timeline of the task execution of J0 with

Scheduler-Aware Task Cloning. Note that the probes on worker nodes E - G are repurposed

to represent and execute cloned tasks. Because of Sticky Batch Probing, the probe on worker

node A is also repurposed to represent and execute the last clone task after T0 is completed.

T1’s clone completes at t2, so job latency of J0 becomes t2 � t0, which is shorter than t1 � t0.

It has to be noted that Scheduler-Aware Task Cloning also cooperates with Coordinated

Cold Data Migration for maximizing the performance potential of data migration. In

determining which task to clone, Scheduler-Aware Task Cloning gives the preference to the
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Figure 4.4: An example with and without Scheduler-Aware Task Cloning

worker nodes that have migrated data of tasks that have no clones yet. However, we expect

the chances of Coordinated Cold Data Migration and Scheduler-Aware Task Cloning being

both activated to be low because they are usually activated under di↵erent load intensity

conditions.
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Table 4.4: Trace characteristics

Trace Total jobs Cuto↵ task runtime Short jobs Task-seconds of short jobs

Yahoo 24,262 90.6 seconds 90.6% 2%
Cloudera 21,030 272.8 seconds 95.0% 9%
Google 506,546 1129.5 seconds 90.0% 17%

Facebook 100,000 76.6 seconds 98.0% 2%

4.4 Performance Evaluations

4.4.1 Experimental Setup

In order to evaluate the e↵ectiveness and e�ciency of the proposed Coordinated Cold Data

Migration and Scheduler-Aware Task Cloning schemes, we implement a prototype of Eirene

on top of the state-of-the-art hybrid job scheduler, Eagle [18] in the open-sourced Hawk/Eagle

simulator [66], which is widely used in research work of Sparrow [16], Hawk [17], Eagle [18],

Phoenix [19], Kairos [20].

We feed the same traces used in Section 4.2.3 as input workload to the simulator, and

the detailed characteristics of traces are shown in Table 4.4. The original Facebook trace is

long, we just use the first 100,000 records in the experiments to reduce simulation time. The

jobs with mean task runtime less than cuto↵ task runtime are short jobs. The ratio of total

task-seconds of short jobs to those of all jobs also dictates the size of the short partition.

Table 4.5 shows configuration parameters of simulations. Note that MPP denotes the

maximum number of randomly-generated task numbers to migrate per probe when a probe is

placed into the PQ queue by the distributed scheduler. Data migration time of 6.42 seconds

and task performance speedup ratio of 15% is cited from the Ignem research [75]. Regarding

the Scheduler-Aware Task Cloning scheme, since the traces do not include task runtime

information for cloned tasks, we use runtime of randomly-chosen primary copies of tasks of

the same job to project runtime of cloned tasks. Table 4.5 also gives the configurations of

cluster size used in our experiments. We vary cluster sizes to study the scalability of Eirene.
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Table 4.5: Configuration parameters of simulations

Description Abbr. Values

Coordinated Cold Data Migration (CCDM)
Max. number of concurrent migrations CM 10
Max. number of migrations per probe MPP 2

Data migration time (seconds) DMT 6.42
Task performance speedup ratio (%) TPS 15

Scheduler-Aware Task Cloning (SATC)
Projected runtime of cloned tasks PRT random

Cluster scale Values

Cluster sizes for the Yahoo trace 3500, 4000, 4500, 5000
Cluster sizes for the Cloudera trace 13000, 13500, 14000, 14500
Cluster sizes for the Google trace 12000, 13000, 14000, 15000

Cluster sizes for the Facebook trace 50000, 55000, 60000, 65000

In particular, the cluster sizes are carefully chosen to demonstrate the performance trend

from the overloaded case to the moderately-loaded case. We run simulations with bigger

cluster sizes but the experiment results are consistent with the trend, so we omit to report

most of their results in the chapter.

Regarding the performance metrics, we consider 50-percentile (P50), 75-percentile (P75),

90-percentile (P90) job latencies as key metrics to evaluate the tail-latency performance of

short jobs. Moreover, we focus on normalized performance numbers, which are the ratio of

P50, P75, P90 latency numbers from Eirene to the ones from the original Eagle respectively.

4.4.2 Results

Performance Analysis

Figure 4.5 depicts the normalized latency performance of Eirene compared with Eagle as a

function of di↵erent cluster sizes, under the four traces. We obtain a few observations from

the figure. First, we clearly see the performance improvement by Eirene across the 4 di↵erent

workloads. Second, significant performance improvement is observed under the overloaded

case. For example, Eirene improves P50, P75, P90 latency performance of short jobs by up
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to 39.2%, 79.1%, 81.3% respectively compared with Eagle, under the Facebook trace with a

cluster of 50000 nodes. Furthermore, we can see that in the overloaded case, Eirene improves

Eagle’s P90 latency performance of short jobs by 66.9%, 70.3%, 67.4%, 81.3% under the

Yahoo, Cloudera, Google, Facebook traces respectively. It is clear that Eirene is able to

drastically improve tail-latency performance of short jobs by shortening task waiting time

and resulting long latencies of jobs. Third, we can observe that the performance improvement

is decreased with the increase of cluster size. In the moderately-loaded case, we can still see

that Eirene is able to deliver non-trivial performance improvement. For example, Eirene

improves Eagle’s P50, P75, P90 latency performance of short jobs by 9.1%, 11.6%, 15.8%

respectively under the Google trace with a cluster of 15000 nodes. In summary, Eirene is

shown to consistently improve tail-latency performance across di↵erent cluster sizes in a

scalable manner.

To understand the contributions to performance improvement by Coordinated Cold

Data Migration (CCDM thereafter) and Scheduler-Aware Task Cloning (SATC thereafter)

individually, we conduct experiments with the two schemes in overloaded and lightly-loaded

cases. Figure 4.6 plots the P50, P75, P90 latency performance of short jobs normalized to

Eagle in the overloaded case with the Eagle, CCDM, SATC, and Eirene schemes. One can

see that in the overloaded case, CCDM is the sole contributor to performance improvement

compared with Eagle across the 4 traces, while SATC does not result in any performance

improvement. This is expected because SATC is not activated if the cluster is kept overloaded,

while the high task waiting time due to overloading is leveraged by CCDM to migrate cold

data for task runtime reduction.

On the other side, Figure 4.7 plots the P50, P75, P90 latency performance of short jobs

normalized to Eagle in the lightly-loaded case with di↵erent schemes. One can see that in

this case, the performance improvement results from the SATC scheme under the Yahoo and

Facebook traces. For example, SATC improves the P50, P75, P90 latency performance of

short jobs of Eagle by 13.1%, 10.0%, and 8.8% respectively under the Facebook trace. This
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(a) Yahoo trace (b) Cloudera trace

(c) Google trace (d) Facebook trace

Figure 4.5: P50, P75, P90 latency performance of short jobs normalized to Eagle with di↵erent
cluster sizes

is expected since abundant computing resources under light loads enables SATC to execute

cloned copies of tasks of short jobs nearly at the same time the primary copies of tasks

are executed. We have two additional observations. First, we can see trivial performance

improvement for the Cloudera trace. It is likely because this trace has only 4.4% straggler

tasks over all of the tasks for short jobs. Second, we notice there is a slight performance

regression (up to �3.1% on P50 latency) under the Google trace for SATC since this trace has

only 4.4% straggler jobs. In addition, short jobs in the Google trace have a relatively large

task cuto↵ runtime (1129.5 seconds), which may cause the task cloning scheme to consume

considerable computing resources.

We add two counters to the simulator to keep track of the total number of short tasks

benefited from CCDM and SATC respectively. The first counter is incremented for every
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(a) Yahoo trace, 3500 nodes (b) Cloudera trace, 13000 nodes

(c) Google trace, 12000 nodes (d) Facebook trace, 50000 nodes

Figure 4.6: P50, P75, P90 latency performance of short jobs normalized to Eagle with di↵erent
schemes in the overloaded case

occurrence when a task reads input data from RVFS rather than the underlying distributed

file system. The second counter is incremented for every occurrence when the cloned copy of

a task completes earlier than the primary copy. To illustrate the trend of contributions to

performance improvement by CCDM and SATC as the increase of cluster size, we plot the

trend of these two counters under the Yahoo trace on a cluster of from 3000 nodes to 6000

nodes. We can see from Figure 4.8, as cluster size increases, the number of tasks benefited

from CCDM decreases linearly with a steep slope and the number of tasks benefited from

SATC increases linearly with a slow slope. In addition to the fact that tail latencies of short

jobs are mainly a↵ected under heavily-loaded periods rather than lightly-loaded periods, this

may be another reason why SATC obtains fewer performance gains than CCDM and we see
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(a) Yahoo trace, 6000 nodes (b) Cloudera trace, 18000 nodes

(c) Google trace, 20000 nodes (d) Facebook trace, 90000 nodes

Figure 4.7: P50, P75, P90 latency performance of short jobs normalized to Eagle with di↵erent
schemes in the lightly-loaded case

decreasing performance improvement as the cluster scale increases in Eirene.

Sensitivity Study

As we witness from the above section that CCDM plays a more important role than SATC

in terms of the latency performance of short jobs, it is desirable to quantitatively evaluate

the impact of tunable parameters of CCDM shown in Table 4.5. In the following, we vary

CCDM configuration parameters and evaluate their performance impacts under the Yahoo

trace as a case study.

Data migration time (DMT). Figure 4.9 plots the latency performance and the number

of tasks benefited from CCDM with the varying DMTs to simulate di↵erent disk/network
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Figure 4.8: Number of short tasks benefited from CCDM or SATC under the Yahoo trace as
the cluster scale increases

speeds. It is reasonable to see the number of tasks benefited from CCDM drops as the increase

of DMT because a longer DMT has a higher chance to miss more opportunities for performing

and benefiting from data migration. However, we find that the latency performance is almost

not a↵ected by DMT. One possible reason is that, under heavy loads, most of the short tasks

are assigned and executed via Sticky Batch Probing. Since CCDM is capable of collaborating

with it and migrates data of the next task when the current task is running, most performance

gains may come from the reduction of runtime of such tasks, and thus the performance

improvement by CCDM is agnostic to disk/network speed when task runtime of short jobs is

typically much greater than DMT.

Task performance speedup ratio (TPS). Figure 4.10 plots the latency performance and

the number of tasks benefited from CCDM with the varying TPSs. Although the number of

tasks benefited from CCDM is decreased by 7.9% with the increase of TPS from 5% to 15%,
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Figure 4.9: Latency performance and num-
ber of tasks benefited from CCDM with
di↵erent DMTs

Figure 4.10: Latency performance and
number of tasks benefited from CCDM
with di↵erent TPSs

P90 latency performance of short jobs is actually improved by 20.4%. This may be because

higher task performance speedup shortens task runtime and queueing time on worker nodes

and thus reduces the chances of performing cold data migration and benefitting from it. In

addition, the result also implies that even with only 5% task performance speedup, CCDM is

still able to achieve non-negligible performance gains for short jobs.

Maximum number of concurrent migrations (CM). Figure 4.11 plots the latency

performance and the number of tasks benefited from CCDM with the varying CMs. We can

see that there are almost no noticeable changes to latency performance and the total number

of tasks benefited from CCDM with the increase of CM from 5 to 20. This indicates that

migration bandwidth is not a performance bottleneck, and we can choose a conservative value

for CM.

Maximum number of migrations per probe (MPP). Figure 4.12 plots the latency

performance and the number of tasks benefited from CCDM with the varying MPPs. One

can see that, with the increase of MPP from 1 to 4, the number of tasks benefited from

CCDM is increased by 33.8% but the P90 latency performance is improved by only 5.2%.

This indicates that a conservative value for MPP like 1 or 2 is preferred to obtain su�cient

performance gains and minimize disk/network bandwidth usage for data migration.
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Figure 4.11: Latency performance and
number of tasks benefited from CCDM
with di↵erent CMs

Figure 4.12: Latency performance and
number of tasks benefited from CCDM
with di↵erent MPPs

4.5 Summary

In this chapter, we propose Eirene to improve tail-latency performance of short jobs hybrid

job schedulers under fluctuating workloads. Eirene consists of two schemes: Coordinated

Cold Data Migration and Scheduler-Aware Task Cloning. Coordinated Cold Data Migration

judiciously leverages high task waiting time of short jobs during heavily-loaded periods and

performs cold data migration under the coordination between distributed schedulers and

worker nodes to shorten the time of reading input data at the initial stage of tasks. On the

other hand, Scheduler-Aware Task Cloning proactively clones every task of short jobs during

lightly-loaded periods to address the straggler problem. Experiment results from a prototype

implementation of Eirene on top of a state-of-the-art hybrid job scheduler demonstrate the

e↵ectiveness and e�ciency of the proposed schemes.
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Chapter 5

Eunomia: A

Performance-Variation-Aware Fair

Job Scheduler With Placement

Constraints For Heterogeneous

Servers

5.1 Introduction

In this chapter, we aim to address the unfair scheduling of jobs with placement constraints in

heterogeneous environments. We first emphasize a widely-known fact of server heterogeneity

and performance variations in enterprise datacenters and point out the unfairness problem of

latest fair schedulers for constrained jobs in heterogeneous environments with an illustrative

example. Then we present Eunomia, a performance-variation-aware fair job scheduler with

placement constraints for heterogeneous datacenters. Eunomia introduces progress share

fairness, which is meant to equalize the progress share of jobs as much as possible. Progress
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share of a job is defined as the ratio between the accumulated progress of scheduled tasks of a

job, and the maximum accumulated progress of tasks that can run in the cluster if placement

constraints are removed. Finally, we evaluate an Eunomia prototype implementation and

conduct quantitative evaluations via trace-driven simulations. Simulation results based on

micro-benchmarks and the Google trace show that, Eunomia is able to deliver better share

fairness compared with two state-of-the-art schedulers: Choosy [24] and TSF [53], without

performance loss.

5.2 Motivations

5.2.1 Server Heterogeneity and Performance Variability

Server heterogeneity has been commonly observed and recognized in production datacenters.

Usually, several generations of machines with di↵erent hardware configurations may co-exist

in the same cluster [11,12]. A subset of machines may even be equipped with GPUs for special

tasks like visualization, high-performance computing, or machine learning. For example,

processors used in Amazon Web Services (AWS) are a variety of Intel Xeon CPUs including

E5-2680v2, E5-2686v4, E5-2670, E7-8880v3, E5-2670v2, E5-2676v3, E5-2686v4 series, and

processors’ clock speeds range from 2.3GHz to up to 3.3GHz [82]. For another example, SSD

storage provided in AWS ranges from 1 ⇥ 4GB SSD to 8 ⇥ 80GB SSDs while its HDD storage

ranges from 3 ⇥ 2TB HDDs to 24 ⇥ 2TB HDDs. Various combinations of computation and

I/O configurations lead to performance variability in heterogeneous clusters.

5.2.2 An Illustrative Example

Simply applying fair schedulers for constrained jobs to heterogeneous clusters cannot reach

actual share fairness without taking performance variation into account. Moreover, it is not

uncommon to witness cases like the scheduling systems were manipulated to gain advantages

by greedy users in large companies.
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(a) User/machine assumption (b) Naive fair allocation

Figure 5.1: An example of naive fair resource sharing/scheduling

We give an example of naive fair schedulers for constrained jobs that do not consider

performance variation in Figure 5.1a. As shown in this figure, we assume there are 3 machines.

Machines 1 and 2 have the same hardware configuration: two 1GHz CPUs and 2GB MEM,

denoted as <2 ⇥ 1GHz CPUs, 2GB MEM>. Machine 3’s configuration is <2 ⇥ 2GHz CPUs,

2GB MEM>. Due to software constraints, Alice’s job can only run on Machines 1 and 2,

while Bob’s job can only run on Machines 2 and 3, as shown in Figure 5.1a where dotted

lines denote placement constraints. The tasks of the two jobs have the same demand: <1

CPU, 1GB MEM>.

As shown in Figure 5.1b, because Alice and Bob have the equal share of the cluster, Alice

can run 3 tasks (2 on Machine 1 and 1 on Machine 2), while Bob also can run 3 tasks (2 on

Machine 3 and 1 on Machine 2). This seems a fair resource allocation since Alice and Bob

run the same number of tasks on the cluster. However, it is clear that 2 of Bob’s 3 tasks are

running on the faster CPU, and none of Alice’s tasks are running on the faster CPU. If both

jobs have the same number of tasks and it is assumed that task execution time is inversely

proportional to CPU clock speed (note it is not always a realistic assumption, we just want

to simplify the assumption in this example), Bob benefits more from the allocation because

his job can be completed much earlier than Alice.
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Server Type Alice’s Task Progress Bob’s Task Progress

<1GHz CPU, 1GB MEM> 1 1
<2GHz CPU, 2GB MEM> 2 2

Table 5.1: CPU task progress matrix as a function of di↵erent server types

5.3 Eunomia

5.3.1 Basic Idea

To this end, we propose Eunomia, a performance-variation-aware fair scheduler, which takes

performance variation due to server heterogeneity into considerations and aims to equalize

the progress share for each user. In Eunomia, progress share is computed as the ratio between

the accumulated task progress given the current allocation and the accumulated task progress

if the user can monopolize the cluster. Accumulated task progress is defined as the sum of

the product of the task progress on a type of servers and the allocated number of the servers

of the same type. Progress share can be treated as work slowdown of a job due to resource

sharing and placement constraints. Assume task execution time on <1 ⇥ 1GHz CPU, 1GB

MEM> is t, and task execution time on <1 ⇥ 2GHz CPU, 2GB MEM> is t/2, Table 5.1

gives the per-CPU task progress as a function of di↵erent types of nodes. If Alice is allocated

with 2 <1 ⇥ 1GHz CPU, 1GB MEM> and 1 <1 ⇥ 2GHz CPU, 2GB MEM>, then the

accumulated task progress of Alice’s job = 2⇥ 1 + 1⇥ 2 = 4.

According to the progress share of a user, Eunomia applies the max-min fair allocation,

that is, maximizes the lowest progress share first, then the second lowest, and then the third

lowest, and so on. Let’s continue to use the example shown in Figure 5.1 to illustrate how

the allocations are undertaken in Eunomia.

As shown in Figure 5.2a, assume Machine 1 is allocated to Alice and Machine 2 is allocated

to Bob respectively. Then, Alice’s progress share is (2⇥ 1)/(2⇥ 1 + 2⇥ 1 + 2⇥ 2) = 2/8,

Bob’s progress share is (2 ⇥ 2)/(2 ⇥ 1 + 2 ⇥ 1 + 2 ⇥ 2) = 4/8. It is clear that Alice has

the lowest progress share. Then 1 <1 ⇥ 1GHz CPU, 1GB MEM> on Machine 2 is further
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(a) After 1st round allocation (b) Final allocation

Figure 5.2: An example of Eunomia performance-variation-aware fair resource sharing

allocated to Alice. Then Alice’s progress share is (3⇥ 1)/(2⇥ 1 + 2⇥ 1 + 2⇥ 2) = 3/8, which

is still the lowest progress share. Then one more <1 ⇥ 1GHz CPU, 1GB MEM> on Machine

2 is allocated to Alice. Then Alice’s progress share is (4⇥ 1)/(2⇥ 1 + 2⇥ 1 + 2⇥ 2) = 4/8,

and both Alice and Bob have the same progress share now, as shown in Figure 5.2b.

5.3.2 O✏ine and Online Eunomia Algorithm

Figures 5.2a and 5.2b give an intuitive example to demonstrate how resources are allocated

by Eunomia with progressive filling. The basic idea of “progressive filling” is to incrementally

reach target fair sharing through multiple rounds, and it is widely used in various max-min fair

job schedulers including Choosy [24] and TSF (Task Share Fairness) [53]. In the first round,

Eunomia computes and equally raises progress shares for all the users based on their resource

allocations until the maximum progress share is achieved. Then the users whose progress

shares cannot be further raised are treated “inactive” users, and their resource allocations

are frozen. In the second round, Eunomia continues to further recompute and equally raise

progress shares of the remaining active users while keeping those of the inactive user(s)

unchanged. Eunomia repeats the process round by round until all the users become inactive.

The progressive filling method is considered an o✏ine algorithm since it is impractical to
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Table 5.2: Terminology in the o✏ine Eunomia algorithm with progressive filling

Term Description

N The total number of users
M The total number of machines in the cluster
R The total types of resources
A Resource amount vector, where A

m,r

is the amount of resource r on machine m
P Normalized performance vector, where P

u,m

is the normalized performance of machine
m for user u

D Resource demand vector, where D
u,r

is the demand of resource r for user u
C User constraint vector, where C

u,m

= 1 if machine m can run tasks of user u.
Otherwise, C

u,m

= 0
W User weight where W

u

is the weight of user u
T Task vector, where T

u,m

is the number of tasks of user u scheduled on machine m
H Task vector, where H

u,m

is the number of tasks of user u scheduled on machine m as
if the cluster is monopolized by user u without any constraints

S Progress share vector, where S
u

is the progress share for user u

implement due to its prohibitively high computation overheads. Table 5.2 and Algorithm 1

give terminology and a formalized algorithmic description of the o✏ine Eunomia algorithm

with progressive filling.

The o✏ine Eunomia with progressive filling needs to recompute and raise progress shares

for the users remaining active in each round. From practice, it is not necessary. Resource

allocations and job scheduling only come into play when (1) a new job arrives and at least

one server meets task resource demands of the job; and (2) a server completes one task and

the resource is freed for re-allocation. Similar to other fair schedulers, we develop a simple

online Eunomia algorithm, that is, whenever resources on a server become available, Eunomia

allocates the resources to the user with the current lowest progress share, whose constraints

can be met by the server. We measure the fairness and performance of the online Eunomia

algorithm in the following.
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Algorithm 1 O✏ine Eunomia Scheduler Using Progressive Filling

1: procedure Eunomia(A,P,D,C,W )
2: t 1 . Current round
3: U t  {1, 2, ..., N} . Initialize active user set
4: for u 2 U t

do

5: T
u

 0 . Initialize task vector T for each user
6: end for

7: while true do

8: (T
u,m

, St) LP(t, U t

, T
u

, A, P, D, C, W)

9: (T
u

,U t+1) SATURATED(t, St

, U t

, A, P, D, C, W)

10: if U t = ; then . All users saturated?
11: return T

u,m

. Return number of tasks scheduled on each node for each user
12: end if

13: end while

14: t t+1

15: end procedure

16: procedure Saturated(t, St, U t, A, P, D, C, W)
17: It  ; . inactive user set after round t
18: for u 2 U t

do

19: for v 2 U t\{u} do

20: T
v

 
P

M

m=1 Tv,m

. Saturate all but v
21: end for

22: (T z

u,m

, Sz) LP(t, v, T
v

, A, P, D, C, W)

23: if Sz == St

then . If progress share cannot be increased
24: It  It [ {u} . User u becomes inactive
25: end if

26: for v 2 U t\{u} do

27: T
v

 0 . Unfreeze number of tasks of active users
28: end for

29: end for

30: for u 2 U t

do

31: T
u

 
P

M

m=1 Tu,m

. Freeze number of tasks of inactive users
32: end for

33: return (T u,U t\It)
34: end procedure

35: procedure LP(t, U t, T
u

, A, P, D, C, W)
36: maximize St subject to:
37:

1

W
u

P
M

m=1Hu,m

P
u,m

MX

m=1

T
u,m

P
u,m

C
u,m

= St, u 2 U t (5.1)

38:
MX

m=1

T
u,m

C
u,m

� T
u

, u /2 U t (5.2)

39:
NX

u=1

T
u,m

D
u,r

 A
m,r

,m 2 [1,M ], r 2 [1, R] (5.3)

40: return ({T
u,m

}, St)
41: end procedure
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Node Configura-
tion

Type-1
nodes

Type-2
nodes

Type-3
nodes

Type-4
nodes

Number of Nodes 5 5 5 5
Normalized Perfor-
mance

1.0 1.5 2.0 3.0

Number of Cores 4 4 4 4
Memory (GB) 4 4 4 4

Table 5.3: Node configuration in micro-benchmark experiments

5.4 Experiment Results

5.4.1 Experimental Setup

We develop an event-driven job scheduler simulator to conduct fairness and performance

evaluations of Eunomia. This simulator takes job traces as input and is able to simulate the

entire process and resulting events of job schedulers, from job arrival, job queueing, dispatching

tasks to nodes, receiving completion from nodes, and job departure. Currently, this simulator

is able to simulate two state-of-art fair schedulers of constrained jobs: Choosy [24] and

TSF [53], as well as our proposed Eunomia. It is also highly configurable, can be easily used

to simulate a cluster consisting of hundreds or thousands of nodes.

5.4.2 Micro-Benchmark Experiment Results

Micro-benchmark experiments are to demonstrate how Eunomia schedules constrained jobs

on heterogeneous nodes with performance variation, and compare the fairness behaviors

of state-of-art fair schedulers like Choosy and TSF with the proposed Eunomia. In micro-

benchmark experiments, we simulate a cluster consisting of 4-types of nodes with di↵erent

normalized performance. There are 20 nodes in total, that is, 5 nodes per type. The detailed

node configuration information is depicted in Table 5.3.

In the first experiment, we simulate 4 di↵erent jobs of 4 users arrive in the cluster. Each

job has a di↵erent number of tasks, a di↵erent mean task execution time, and di↵erent

placement constraints. The detailed job configuration information is depicted in Table 5.4.
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Job configuration Job 1 Job 2 Job 3 Job 4

Start time(in secs) 0 10 150 150
Number of tasks 1000 150 100 100
Demand of cores per
task

1 1 1 1

Demand of Memory per
task

1GB 1GB 1GB 1GB

Mean task execution
time on Type-1 nodes(s)

23.2 18.3 21.3 55.6

Nodes meeting con-
straints

All types of
nodes

Type-2, 3, 4
nodes

Type-3, 4
nodes

Type-4 nodes

Table 5.4: Job configuration in micro-benchmark experiment 1

Figure 5.3: Progress shares for four jobs over time in micro-benchmark experiment 1

Figure 5.3 shows the arrival and completion of those 4 jobs. As shown in the Figure,

when Job 1 arrives, the cluster is idle and then all the nodes are assigned to Job 1. After Job

2 arrives 10 seconds later, Jobs 1 and 2 reach equal progress share (50% per job) in a very

short time. Because Job 2 has less number of tasks and shorter mean task execution time, it

completes in Second 98. After that, Job 1 rapidly takes over the resources released by the

completed Job 2. At about Second 150, Jobs 3 and 4 arrive at the same time. One can see

91



Job configuration Job 1 Job 2 Job 3 Job 4

Start time(in secs) 0 0 0 0
Number of tasks 1000 1000 1000 1000
Demand of cores per
task

1 1 1 1

Demand of memory per
task

1GB 1GB 1GB 1GB

Mean task execution
time on Type-1 nodes(s)

2 2 2 2

Nodes meeting con-
straints

All types of
nodes

All types of
nodes

All types of
nodes

Type-4 nodes

Table 5.5: Job configuration in micro-benchmark experiment 2

from the figure three jobs achieve equal progress share (about 33% per job) in a very short

time until Job 3 is completed in about Second 240. Then Job 4 achieves 40% progress share

while Job 1 obtains 60% progress share shortly. This is because Job 4 can put its tasks on

Type-4 nodes only, so the maximal progress share it can have is 40% when all Type-4 nodes

are assigned to Job 4. Once Job 4 is completed in about Second 365, the rest of Job 1’s tasks

are assigned to all the nodes and completed in about Second 463.

In order to demonstrate the job scheduling fairness di↵erence of di↵erent schedulers, in the

second micro-benchmark evaluation, we simulate 4 jobs with nearly the same configuration

arriving at the same time, except the last job explicitly places constraints on type-4 nodes.

This is to compare how the fair job schedulers allocate resources if a user intentionally

places job constraints on high-performing nodes and wants to take advantage of this false job

constraint. The detailed job configuration information is depicted in Table 5.5.

Figures 5.4 and 5.5 shows that the arrival and completion of 4 jobs under TSF and

Eunomia schedulers respectively (We omit the result of Choosy because it is very similar

to TSF). Figure 5.4 clearly demonstrates for TSF Job 4 is completed much earlier than

other jobs Job 4 obtains the most progress share (40%) until it is completed. This indicates

that TSF fails to achieve fairness without considering performance variation due to server

heterogeneity. Figure 5.5 depicts how Eunomia schedules the same 4 jobs. One can see that

each job obtains equal progress share during their execution time, and all 4 jobs are completed
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Figure 5.4: Progress shares for 4 jobs over
time under the TSF scheduler in simula-
tion 2

Figure 5.5: Progress shares for 4 jobs over
time under the Eunomia scheduler in sim-
ulation 2

(a) Distribution of job size
(b) Distribution of machines meeting job con-
straints

Figure 5.6: Distribution of job size and machines meeting job constraints in the synthesized
trace

nearly at the same time. It is evident that Eunomia is able to deliver better fairness than

TSF under server-heterogeneous environments and resistant to false job placement constraint

requirements from greedy users.

5.4.3 Macro-benchmark experiment results

Macro-benchmark experiments are meant to validate the performance of the proposed

Eunomia job schedulers. Note that the main goal of a fair job scheduler is to deliver the
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(a) Distribution of job queueing delay (b) Distribution of job completion delay

Figure 5.7: Distribution of job queueing and completion delay

guaranteed fairness instead of performance improvement, so the purpose of macro-benchmark

experiments is to show the performance impact of Eunomia compared with other state-of-art

fair job schedulers. To this end, we take publicly available Google cluster traces as input,

synthesize and feed the workload to a simulated cluster consisting of 100 nodes. The original

Google cluster traces cannot be directly used in the simulation because they are a set of

sampled job events, task events, machine events, machine attributes, task constraints, etc.,

and synthesization work needs to be done to sample and extract the job information and

compose the needed job traces including job arrival time, number of tasks, the number of

CPU cores required, and the amount of memory required. The synthesized workload consists

of 63,976 tasks across 2,888 jobs in 5,000 seconds. Figure 5.6a shows the distribution of

job sizes. We also sample and synthesize the needed node information from Google cluster

traces, for example, the number of CPU cores and the amount of memory for each node. We

follow the latest way proposed by Sharma et al. [12] to synthesize job and node constraints.

Figure 5.6b shows the distribution of nodes meeting job constraints. One can see about

18% of jobs can be run at any nodes while 50% of nodes can run 35% of jobs. In addition,

we categorize 100 nodes into 10 types, and each type has di↵erent normalized performance

ranging from 1.0 to 3.25, with a step of 0.25.

Figures 5.7a and 5.7b show the CDF distribution of job queueing delay and job completion
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delay of Choosy, TSF, and Eunomia respectively. Job queueing delay is defined as the

duration between the arrival time of a job and the time when the first task of the job is

scheduled. Job completion delay is defined as the duration between the arrival time of a job

and the time when the last task of the job is completed. Since the cluster is idle when the

simulation starts, we omit the performance results of the first 288 jobs (10% of the total jobs)

and consider it as a “warm-up” period of the cluster. One can see from the figures, Eunomia

achieves nearly the same job queueing delay and job completion delay as Choosy and TSF

do. It implies that Eunomia does not cause any performance loss compared with state-of-art

fair schedulers of constrained jobs.

5.5 Summary

In this chapter, we propose Eunomia, a performance-variation-aware fair job scheduler, to

address the unfairness issue due to performance variation in heterogeneous clusters. Eunomia

introduces a key metric, called “progress share”, which is defined as the ratio between the

accumulated task progress given the current allocation and the accumulated task progress if

the user can monopolize the cluster. Eunomia aims to equalize progress share of jobs as much

as possible, so as to achieve the same slowdown of jobs from di↵erent users due to resource

sharing and placement constraints, regardless of performance variation. Simulation-based

evaluation results show that Eunomia is able to deliver better share fairness compared with

state-of-art schedulers without performance loss.
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Chapter 6

Conclusions and Future Directions

In this dissertation, we address the performance and fairness issues of big data job schedulers

due to the head-of-line blocking problem, straggler problem, and lack of performance variation

awareness in fair scheduling as mentioned in Section 1.2. The remainder of this chapter

summarizes our research contributions in Section 6.1 and points out future research directions

in Section 6.2.

6.1 Contributions

Our dissertation makes the following contributions:

• We propose Dice, a new general performance optimization framework for hybrid

job schedulers to alleviate the high job latency problem of short jobs. In Dice, we

conduct trace-driven experiments to study the job latency performance behaviors of two

representative hybrid job schedulers (Hawk and Eagle), and find that short jobs still

encounter long latency issues due to intermittent and bursty nature of workloads. To

this end, we propose Dice to address the job latency performance issue at the centralized

scheduler side. Dice is composed of two simple yet e↵ective techniques: Elastic Sizing

and Opportunistic Preemption. Both Elastic Sizing and Opportunistic Preemption keep
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track of the task waiting times of short jobs. When the mean task waiting time of short

jobs is high, Elastic Sizing dynamically and adaptively increases the short partition size

to prioritize short jobs over long jobs. On the other hand, Opportunistic Preemption

preempts resources from long tasks running in the general partition on demand, so

as to mitigate the head-of-line blocking problem of short jobs. We enhance the two

schedulers with Dice and evaluate Dice performance improvement in our prototype

implementation. Experiment results show that Dice achieves 50.9%, 54.5%, and 43.5%

improvement on 50th-percentile (P50), 75th-percentile (P75), and 90th-percentile (P90)

job completion delays of short jobs in Hawk respectively, as well as 33.2%, 74.1%,

and 85.3% improvement on those in Eagle respectively under the Google trace, at low

performance costs to long jobs.

• We propose Eirene, another new general performance optimization framework for

hybrid job schedulers to improve job latency performance of short jobs via two schemes

tightly coupled with the general architecture of hybrid job schedulers. Eirene is

integrated into both the distributed scheduler and worker node sides, and consists of

two schemes. Coordinated Cold Data Migration leverages high task waiting time of

short jobs under heavily-loaded periods and migrates cold data from disks to local

memory for the initial phase of reading input so as to shorten task runtime and queueing

time. On the other hand, Scheduler-Aware Task Cloning exploits spare computing

resources under lightly-loaded periods and performs proactive task cloning for short jobs

to mitigate the straggler problem. We implement a prototype of Eirene based on Eagle,

a state-of-the-art hybrid job scheduler. Experimental results show that, under heavy

loads, Eirene is able to improve P50, P75, P90 latency performance of short jobs by up

to 39.2%, 79.1%, 81.3% respectively compared with Eagle under the Facebook trace

with a cluster of 50000 nodes. Under moderate loads, Eirene can also improve Eagle’s

P50, P75, P90 latency performance of short jobs by 9.1%, 11.6%, 15.8% respectively

under the Google trace with a cluster of 15000 nodes.
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• We propose Eunomia, a performance-variation-aware fair job scheduler, to address

the unfairness issue due to performance variation in heterogeneous clusters. Eunomia

introduces a key metric, called progress share, which is defined as the ratio between

the accumulated task progress given the current allocation and the accumulated task

progress if the user can monopolize the cluster. Eunomia aims to equalize progress share

of jobs as much as possible, so as to achieve the same slowdown of jobs from di↵erent

users due to resource sharing and placement constraints, regardless of performance

variation. Simulation-based evaluation results show that Eunomia is able to deliver

better share fairness compared with state-of-the-art schedulers without performance

loss.

6.2 Future Directions

We discuss the limitations of our proposed work and possible future research directions:

• In Dice [47], Eirene [48], and Eunomia [54], we conducted trace-driven simulation-based

performance evaluations. Although the performance evaluation methodology through

simulation experiments is widely accepted and yields trustworthy results, it is still very

valuable to implement their prototypes on top of latest open-source job schedulers

deployed in production environments like YARN [13], Mesos [14], and Kubernates [15],

and evaluate the performance and fairness impacts of them with realistic applications

and workloads. The experiment results from real-world implementations can help

validate the e↵ectiveness and e�ciency of our proposed schemes and uncover potential

issues and opportunities for further improvement;

• Dice and Eirene are proposed to address the same performance issue faced by short jobs

due to the head-of-line blocking problem. In Dice, Elastic Sizing and Opportunistic

Preemption are both optimization schemes at the centralized-scheduler side. In Eirene,

Coordinated Cold Data Migration and Scheduler-Aware Task Cloning are optimizations
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at distributed-scheduler and worker-node sides. An intuitive extension to our Dice and

Eirene work is to combine these two together into a unified framework to maximize

their performance potentials;

• In Dice, Opportunistic Preemption randomly selects a number of worker nodes and

preempts resources of running long tasks. We feel there is much room for improvement

for Opportunistic Preemption. For example, it is worthwhile to explore if there is a

better way to choose long tasks for preemption by estimating the impacts of tasks to

preempt on job completion delay of long jobs. For another example, it is also worthwhile

to evaluate the performance impact of varying suspension and resumption delays by

task preemption;

• In Eirene, the current version of Scheduler-Aware Task Cloning makes only one extra

copy for every task of short jobs. It is valuable to study the impact of making two or

more extra copies of every task on the latency performance of short jobs;

• Data locality plays an important role in the performance and e�ciency of job scheduling.

A special case of data locality is approximation analytics [83], where approximation

analytics jobs need to process only a subset from combinatorially many subsets of

the input data. Extending Dice and Eirene with data locality exploitation under the

application workloads of approximation analytics is one interesting research direction

to explore;

• Our proposed fair scheduler of Eunomia is still a centralized job scheduler, and can be

easily extended to the centralized job scheduler in the general architecture of hybrid

job schedulers. It will be interesting to develop a distributed version of Eunomia to

ensure fair sharing among distributed schedulers in hybrid job schedulers;

• Like many conventional fair schedulers developed and deployed for private enter-

prise datacenters, Eunomia focuses on guaranteeing instantaneous fair sharing in
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heterogeneous-server environments. We face challenges when we port and extend

Eunomia to datacenters for Cloud services providers where the multi-tenancy and

“pay-as-you-use” model di↵erentiates Cloud datacenters from traditional enterprise

datacenters and then long-term fairness becomes more relevant. How to build a new

fairness metric that takes both performance variation and monetary cost into account

will be an interesting research problem to solve.
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