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Abstract 

Our sense of touch provides an intuitive means of expressing social and emotional sentiment. For 

example, one might shake the hand of a coworker to show gratitude, or stroke the arm of a romantic 

partner to express love. When a “toucher” expresses a sentiment by using their hands to physically 

contact the forearm of a touch “receiver,” populations of thousands of sensory neural afferents in the 

skin of the receiver respond to this contact in a way that encodes the emotion. However, several steps in 

this pathway are not yet well understood. In prior efforts, the contact interactions that underlie social 

touch—i.e., how quickly someone moves their hands, or how they stretch the skin of the touch recipient—

have been studied in only a qualitative fashion. Moreover, although certain sensory afferent types are 

thought to be involved in social touch—such as C-tactile afferents which respond to light, stroking touch—

it is not yet clear how these afferents work alongside other mechanosensitive and muscle spindle 

afferents in encoding emotional percepts.  In this work, our goal was to determine how social touch 

gestures are represented at the outermost level of tactile perception—or, more specifically, how physical 

contact resulting from emotive human touches might evoke a peripheral response. Towards this end, we 

employed methods such as motion tracking, psychophysics, and microneurography. First, we ran human-

subjects experiments to determine how people naturally perform a set of 6 touch expressions, by 

employing external motion tracking systems to measure skin-to-skin contact “primitives” such as contact 

area and velocity of stroking across the arm. We found that the people were naturally good at expressing 

the touch expressions, with high recognition rates. We also noted several different strategies used to 

express each emotional word (between 2 and 5), with some being more immediately recognizable. Next, 

we developed algorithms to measure physical contact in microneurography experiments with 

simultaneous neural recordings, finding differences in the responses to C-tactile and fast-adapting type II 

(FA-II) afferents to basic touch gestures. Finally, we measured how a set of A-beta and C-tactile afferents 
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responded to this measured physical contact via microneurography and motion tracking experiments 

performed with collaborators at Linköping University. We found that the six touch expressions could be 

differentiated by the firing patterns of a single afferent, namely a hair follicle afferent (HFA) or slowly-

adapting type II afferent (SA-II), even amidst significant variability in how the touch gestures were 

performed. A better understanding of the social and emotional touch pathway could allow us to help 

those with social deficits to perform proper touch expressions, or create augmented means of 

communicating or recognizing them. 
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Background 

Human-to-human social touch. Hertenstein and Keltner were some of the first to examine social and 

emotional touch between pairs of people [1], [2]. In their first efforts, they considered three groups of 

emotions: “Ekman’s emotions,” such as anger, fear, and happiness; “self-focused emotions” of 

embarrassment, envy, and pride, as well as “prosocial emotions” of love, gratitude, and sympathy. After 

asking pairs of participants to convey these emotions through touch, and having the touch receiver guess 

which emotion was being conveyed, qualitative analysis was performed to break each emotion down into 

its most component “tactile behaviors”—e.g., stroking, squeezing, and shaking—as well as the duration 

and intensity (related to force) of each expression. They found that accuracy of recognizing the 

expressions ranged from 48% to 83%, demonstrating that all of the emotions were well conveyed through 

touch, as well as finding key differences in how the expressions were performed [1]. In subsequent efforts, 

a greater variety of tactile behaviors were considered, including the location of where touches were 

performed on the receiver’s body as well as gender differences [2]. Another group examined cultural 

differences and participant pairs with different emotional bonds, finding that higher emotional bonds and 

certain cultures afforded more areas of the body responding pleasantly to touch [3]. These studies form 

a valuable foundation for studying social touch, but the lack of quantitative measurement makes it difficult 

to connect these expressions to peripheral nervous system responses. For instance, what specifically 

distinguishes a “tap” from a “poke,” and how might these differentially activate muscle-spindle fibers, 

which respond only to large forces? 
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Figure B.1) Recognition rates of various emotions conveyed through touch. From Hertenstein and 

Keltner 2009 [2]. The touch expressions in these experiments were almost completely unrestricted in terms of what 
gestures to perform and where to make contact on the receiver’s body, and had high recognition rates. 

 

Microneurography. Microneurography is a long-standing procedure for measuring single-unit responses 

of peripheral neurons in awake, conscious humans [4]. It is used to measure both motor control neurons, 

such as in the diagnosis of some pathologies, as well as measuring sensory responses. The technique 

requires a skilled researcher to insert a microelectrode (usually tungsten, 1-5 microns in diameter at the 

tip) into a large nerve, and circuitry to amplify its impulses electronically. The technique does not cause 

pain and therefore does not require sedation or anesthesia. With the electrode inserted, trains of action 

potentials (rapid changes in cell membrane potential) in the nerve can be recorded and analyzed. Due to 

the conduction velocities of some nerves, especially unmyelinated afferents such as the C-tactile 

afferents, delay in the conduction of these potentials down the arm must be considered when examining 

the results. 
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Neural encoding of social touch. There are thousands of afferents of various types in the skin, with distinct 

densities and response properties; for example, some respond to heat or cold, some respond to vibration, 

and some respond to movement of hairs on the skin. Among these afferents, there are several subtypes 

are likely to be involved in encoding social touch information. A-beta fibers are myelinated afferents 

discovered over a hundred years ago, and have three main subtypes relevant to social touch: SAI afferents, 

which are known for encoding fine spatial detail related to stress distributions within the skin, SAII 

afferents, which respond to stretching of the skin, and RA afferents, which respond to the onset and offset 

of stimulation. Another class of afferents, C-tactile fibers, were discovered much more recently, and are 

possibly the most intriguing type with respect to social touch [5]. These afferents project to the insular 

cortex, close to where emotional processing occurs, and are unmyelinated, thus slower and evolutionarily 

older. C-tactile afferents respond maximally to light, stroking touches at specific velocities [6], in the range 

of human body temperature [7], and additionally are associated with pleasant or hedonic sensations [8]. 

For this reason, many attempts to create mechanical stimulation replicating social touch have focused on 

stimulating C-tactile afferents [9]. Finally, although not typically associated with sensation, muscle spindle 

fibers have been found to respond to high-force expressions that might be associated with poking or 

tapping. So far, studies aiming to characterize these afferents have employed tightly controlled, 

mechanical stimuli [5], [10]; to further explore their role in social touch, it is imperative to study their 

responses to naturalistic stimulation from a human hand. 
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Figure B.2) C-tactile afferents encode stroking touch at particular velocities. From Loken et al., 2009 

[8]. A) shows the specificity of CTs for 1-10 cm/s stroking, and a correlation with pleasantness (C). 

 

Human-to-robot social touch. In addition to studies of human-to-human touch, prior efforts have worked 

on training robots (typically humanoid or zoomorphic) with sensor arrays to recognize different kinds of 

tactile behaviors, such as poking, tapping, and stroking [11]–[15]. Unlike the human-to-human studies, 

these experiments have allowed for measurement of physical quantities such as contact area and contact 

force, as well as determining how people naturally interact with robotic animals or sensor pads. Often the 

end goal of such works is to train a machine learning algorithm to recognize the expressions, which has 

been generally successful [11]. These experiments demonstrate that there are in fact quantitative 

differences between social touch expressions; as such, there is likely utility in performing such 

measurements to study human-to-human touch as well. 
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Motivation and Significance 

Social touch is an important part of our everyday interactions with others and provides an intuitive and 

personal means of conveying information. This work seeks to better understand the physical and neural 

basis of social touch. One application of these results is in building devices to artificially stimulate the skin, 

which might be used for remote or augmented social touch communication. Another application is in 

social robotics, designing robots that can interpret human social touch for use in communication or 

therapy. Finally, such information can be used to help those with social deficits, in instructing them how 

to properly perform or interpret social touch gestures. 

 

Gap in the knowledge base 

Our current understanding of how physical touch is able to communicate social or emotional information 

is very limited. At a qualitative level, we know that to convey specific emotions, humans generally use 

certain hand movements (i.e., poking or squeezing) on certain parts of the receiver’s body (i.e., the arm 

or the shoulder) [1], [2]. These hand movements press into the receiver’s skin and muscle, stimulating 

diverse and numerous populations of sensory neural afferents, such as C-tactile fibers and muscle 

spindles. However, exactly which of these afferents are important, and how their firing properties might 

differentiate human touches, is unknown. This brings us to a research question: how do the physical 

quantities related to human-to-human social touch evoke sensory afferents to form an emotional 

percept? Our central hypothesis is as follows: Amidst superficial variability in how individuals perform a 

set of emotional touch gestures, underlying physical contact interactions at the level of skin and tissues 

can distinguish them. Together, five classes of sensory afferents encode these social ideas through distinct 

patterns of spatial and temporal firing. 
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Overview of aims 

Our sense of touch provides an intuitive means of expressing social and emotional sentiment. For 

example, one might shake the hand of a coworker to show gratitude, or stroke the arm of a romantic 

partner to express love. However, little is understood about how a person naturally performs such 

expressions; i.e., what is the speed with which the hand moves, or what patterns of force are applied? 

Likewise, we do not understand how physical contact with the recipient stimulates sensory afferents in 

their skin, and how this triggers an emotional response. The work proposed herein seeks to address these 

gaps by 1) measuring and characterizing the physical contact resulting from naturalistic social touch 

expressions between people, and 2) measuring how such physical contact elicits and encodes responses 

from neural afferents in the skin. Ultimately, we seek to decipher precise contact interaction cues that 

readily communicate a set of common emotive words. A better understanding of how touch expressions 

are performed and encoded is critical in building haptic devices for remote or augmented social touch 

communication, or in helping those with social deficits learn to properly perform or interpret social touch 

expressions. 
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Figure O.1) Outline of dissertation. Aim 1 is concerned with the translation of social touch gestures, i.e., 

“calming” and “attention” into physical quantities such as “displacement” and “stroking velocity.” Aim 2 focuses on 

then determining how these resultant physical quantities stimulate neural responses. Finally, Aim 3 attempts to 

examine how a set of peripheral afferents can encode these quantities differentially. 
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Aim 1: Decipher the physical contact “primitives” that differentiate six emotive 

touch expressions as performed by naïve individuals. 

Although studies on human-to-robot touch have quantified physical contact interactions underlying social 

expressions through the use of sensor mats—i.e., contact area, pressure, etc.—the study of human-to-

human touch thus far has been based on qualitative observation. We addressed this gap with a set of 

lightly constrained human-to-human touch experiments in which we employed external tracking systems 

to quantify skin-to-skin contact. Psychophysical experiments were conducted with ten pairs of romantic 

couples, in which one participant was asked to touch their partner’s forearm and attempt to convey one 

of six emotional words.  During the experiments, behavioral data was collected using motion tracking 

equipment, which consisted of a stereo infrared camera system to measure the movement of the 

toucher’s hands and an electromagnetic tracking system to measure the position of the touch recipient’s 

forearm. The resultant data was analyzed to determine physical contact “primitives” per each touch 

expression such as position on the arm, total contact area, tangential and normal velocities relative to the 

arm, and mean duration of contact. As an end result, we constructed a system for the measurement of 

these physical primitives, and gleaned a general idea of how each of the six expressions are performed 

naturally by naïve participants. We further identified component expressions associated with each 

expression that were most readily recognizable and intuitive. 

 

Aim 2: Create equipment and algorithms to extract physical quantities of touch 

gestures simultaneously with microneurography recordings. 

Traditionally, the characterization of neural afferents relies on the use of carefully controlled, mechanical 

stimuli; however, to study human-to-human touch, we need to understand how sensory afferents of the 
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forearm respond to naturalistic, and therefore less controlled, touches of the human hand. In a set of 

microneurography and behavioral experiments conducted with collaborators at Linköping University, we 

measured neuronal firing simultaneously with physical contact primitives (as in Aim 1) as “expert 

touchers” performed basic touch gestures on the receptive field of single fibers. Here we used a new 

tracking methodology combining 3-D hand tracking (via Leap Motion) with 2-D finger tip tracking in HD 

video, along with a basic contact model similar to that in Aim 1. Afterwards, we determined basic 

relationships between our contact primitives and the output firing frequency of two types of afferents: a 

C-tactile afferent and an FA-II (Pacinian) afferent. We found the C-tactile afferent to respond at high 

frequency to stroking gestures, while the FA-II was able to respond synchronously to tapping gestures. 

The results indicated that this method holds promise in determining the roles of unique afferent types in 

encoding social and emotional touch attributes in their naturalistic delivery. 

 

Aim 3: Determine how systems of Aβ and C-tactile afferents encode touch 

expressions and their underlying component gestures. 

Our final aim was to investigate the neural encoding of social touch expressions. One primary goal was to 

determine which afferent subtypes are most likely to be involved in human touch. A secondary goal was 

to investigate at which level in the nervous system might human touches expressions be differentiated 

(i.e., single units, spinal cord, or the brain). In novel human-to-human touch microneurography 

experiments, we investigated the neural responses of single unit neural afferents to our six touch 

expressions. The motion tracking system from Aim 2 was used to further quantify and characterize the 

touches along with the neural recordings which were performed by Linköping University. Via machine 

learning and statistical methods, we found that particular subtypes of neural afferents (namely, the HFA 

and SA-II afferents) were capable of encoding the touch expressions via responses of just a single unit. 
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Through further study, we determined that this was due in part to their robust encoding of the component 

gestures of each expression, i.e., tapping, patting, holding, and stroking. When further looking at the 

perceived pleasantness of the six expressions, we found a positive correlation with the C-tactile response, 

confirming 1) that it is activated well by human touch stimuli and 2) that it seems to be signaling pleasant, 

innocuous touch, as previously hypothesized. Further study is required to place these responses in a 

population-level context, but it seems that the mechanisms may be in place to decode emotive touch 

expressions via a single first-order neuron. Indeed, human affective touch gestures may be encoded very 

distally in the periphery. 
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Aim 1. Decipher the physical contact “primitives” that 

differentiate six emotive touch expressions as performed by 

naïve individuals. 

 

Abstract—Couples often communicate their emotions, e.g., love or sadness, through physical expressions 

of touch. Prior efforts have used visual observation to distinguish emotional touch communications by 

certain expressions tied to one’s hand contact, velocity and position. The work herein describes an 

automated approach to eliciting the essential features of these expressions. First, a tracking system 

records the timing and location of contact interactions in 3-D between a toucher’s hand and a receiver’s 

forearm. Second, data post-processing algorithms extract dependent measures, derived from prior visual 

observation, tied to the intensity and velocity of the toucher’s hand, as well as areas, durations and parts 

of the hand in contact. Third, behavioral data were obtained from five couples who sought to convey a 

variety of emotional word cues. We found that certain combinations of six dependent measures well 

distinguish the touch communications. For example, a typical sadness expression invokes more contact, 

evolves more slowly, and impresses less deeply into the forearm than a typical attention expression. 

Furthermore, cluster analysis indicates 2-5 distinct expression strategies are common per word being 

communicated. Specifying the essential features of touch communications can guide haptic devices in 

reproducing naturalistic interactions. 

Introduction 

Touch is an effective medium for conveying emotion, such as expressing gratitude to a friend or 

comforting a grieving relative. Indeed, naturalistic expressions of emotion are a part of daily life and 

fundamental to human development, communication, and survival [16]. Unraveling how our nervous 
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system encodes emotion is an emerging topic. Recent works indicate that emotion is encoded, at least in 

part, by unmyelinated C tactile (CT) afferents that project to the insular cortex [17]. This pathway is distinct 

from, yet somewhat redundant with, that of discriminative touch whereby low-threshold 

mechanosensitive afferents convey information to the somatosensory cortex. On-going endeavors are 

attempting to understand relationships between stimulus inputs and sensory percepts, at levels of single-

unit microneurography, cortical fMRI, and behavioral psychophysics [6], [18], [19]. 

We currently know little about the rich, naturalistic details that underlie what is communicated in human-

to-human touch, whereby individuals convey emotions through unrestricted, intuitive touch. It is thought 

that certain contact interactions underlie how one seeks to convey an emotional message such as love or 

gratitude [1], [2]. In this setting, the stimulus is often found at the physical contact of the toucher’s hand 

with the receiver’s forearm. Indeed, qualitative observation has told us of the importance of hand 

intensity, velocity and position. In particular, Hertenstein and Keltner examined “Ekman’s emotions,” of 

anger, fear and happiness, “self-focused emotions” of embarrassment, envy, and pride, as well as 

“prosocial emotions” of love, gratitude, and sympathy. Each emotion was broken down into its most 

component tactile behaviors – e.g., stroking, squeezing, and shaking – as well as the duration and intensity 

of each expression. They found that accuracy of recognizing the expressions ranged from 48% to 83%, 

demonstrating the emotions were well conveyed through touch, and finding key differences in how the 

expressions were performed.  

While the study of emotional expressions has mostly been limited to qualitative observation, other works 

have begun to quantify and classify expressions using, for example, pressure data derived from touch-

sensitive surfaces [11]. From an engineering perspective, such efforts can help identify and quantify the 

essential features underlying the interactions – amidst very rich yet variable physical contact – so as to 

replicate these emotions with haptic actuators [9], [20].  Quantitative descriptions may also help more 

precisely understand how such interactions are encoded by the nervous system. For example, CT afferents 
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respond maximally to velocities from about 1 to 10 cm/s [8] and A-beta afferents to both indentation and 

velocity [21]. Thus, a system to characterize details underlying these expressions – e.g., contact area, 

velocity, and position – is necessary to better understand the communication of affective touch.  However, 

the use of pressure mats, in particular, can be problematic in that they can change the psychological and 

physical nature of how one person delivers the expressions to another, and attenuate their response. In 

particular, mechanosensitive afferents respond to forces at 0.08 mN (i.e., less than the weight of such a 

mat), to light shear force at the skin’s surface, and human body temperature [7], [22]. 

Towards the goal of quantifying emotional expressions, this work describes the customization, 

combination and validation of infrared video and electromagnetic tracking systems to measure contact 

between a toucher’s hand and a receiver’s forearm. In human-subjects experiments, we examine how 

these metrics differ when the toucher is asked to convey distinct sets of emotionally-charged words. The 

overall goal is to identify “primitive” attributes that underlie these contact metrics and tie those with the 

most salient perceptual responses.  

Methods 

By analyzing hand and forearm movements with a motion tracking system, we 1) quantify how romantic 

couples touch one another when attempting to convey a variety of emotions, and 2) determine which 

characteristics of the contact interaction might encode each emotion. First, we built a tracking system to 

measure the “toucher’s” hand (who performed the expression) and the “receiver’s” forearm (who 

responded to the expression). We then conducted behavioral experiments with five romantic couples, in 

which one participant attempted to convey one of six words to the other using only touch, “attention”, 

“calming”, “gratitude”, “happiness”, “love”, and “sadness.” Four of these words were chosen as a 

representative subset from prior work [2], with “happiness” and “sadness” as two of “Ekman’s emotions,” 

and “love” and “gratitude” as two prosocial emotions. We also chose two other words, “attention” and 



21 
 

“calming.” The participants were naïve to the task such that they would perform intuitive, naturalistic 

expressions. In post-processing the data, we sought to identify contact characteristics underlying 

expressions used to convey each emotion. We further broke down each expression into subgroups of 

expression strategies. 

Behavioral experiments. Behavioral experiments with human subjects were performed as approved by 

the Institutional Review Board. In particular, five male-female romantic couples were enrolled, for a total 

of ten participants (mean age = 23.8 years, SD = 1.7, all right-handed) from the east coast of the United 

States of America. Each couple had been together at least three months (mean duration = 1.7 years). All 

enrollees granted consent to participate and continued to completion. 

The couples were asked to perform expressions conveying one of six emotions to one another: 

“attention,” “happiness,” “calming,” “love,” “gratitude,” or “sadness.” Before each experiment for 

approximately five minutes, the touchers and receivers individually were given the list of the six words 

and asked to think about how they might perform expressions for each emotion. During each experiment, 

one participant of the couple would be chosen randomly to first be either the “toucher” or the “receiver.” 

Afterwards, the couple would switch roles, such that each one would act as the “toucher” and the 

“receiver” once. Both toucher and receiver were seated and separated by a curtain, such that the toucher 

could see the receiver’s forearm, as it rested on the armrest of a chair, with no other visual contact. 

The receiver was given a laptop computer, which was used to record an individual response and queue 

the next question to the toucher, while the toucher was given a set of headphones over which the next 

emotion word was stated. For each trial, the toucher was instructed through the headphones to convey 

one of the six words to the receiver. The toucher was asked to touch only the forearm of the receiver, and 

to continue to perform the touch expression for a full ten seconds, until instructed to stop through the 

headphones. Afterwards, the receiver was given seven seconds to choose which on-screen word they 
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thought the toucher was trying to convey. Each of the six words was repeated five times during each 

experiment for a total of thirty expressions per participant. The tracking system was used over this 

duration to continuously measure the relative motions of the receiver’s hand and toucher’s forearm. 

 

 

 

 

 

 
 

Fig 1.1) Hardware setup.  (Top) Contact between the toucher’s hand and receiver’s forearm was measured using 

motion tracking equipment, consisting of a stereo infrared camera device to measure the toucher’s hand and an 

electromagnetic tracking system to measure the receiver’s arm, as well as orient the toucher’s hand. (Bottom) A 

virtual representation of the hand and forearm illustrate the data captured along with the measured contact 

between them. 
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Tracking system. We customized off-the-shelf equipment to track a toucher’s hands in contact with a 

receiver’s forearm (Figure 1.1), consisting of electromagnetic tracking devices (Trakstar and Model 800 

sensors, Ascension, Shelburne, VT) and infrared cameras and LEDs (Leap Motion, San Francisco, CA). These 

simultaneously enabled high accuracy while minimizing the physical attachment of the tracking 

equipment to the participants. Data were collected at approximately 30 Hz. To measure and track the 

forearm of the receiver, two Flock of Birds sensors were attached to the dorsal side of the forearm via 

double-sided tape, at the wrist and elbow. Each sensor tracked six dimensions of translation and rotation 

to an accuracy of 10 microns. The circumference at both locations was measured via tape measure. A 3-

D conic section was fit to these measurements to represent the virtual forearm. 

 

 

Fig 1.2) Measuring contact characteristics. Screenshots of the custom-built tracking software demonstrating 

some of the contact metrics at a single time point as the toucher conveyed “sadness.” (Top) A series of lines form a 

cylinder representing the forearm of the receiver, and other lines crossing those represent the fingers and digits of 

the toucher’s hand. Red dots are intersections between the two delineate contact being made. (Bottom) The same 

forearm of the receiver is represented, but this time the series of lines is unwrapped onto a flat 2-D surface.  Red 

areas denote contact. 



24 
 

To measure and track the hand of the toucher, the Leap Motion controller was used in conjunction with 

one Flock of Birds sensor. The controller was mounted onto a 3-D printed housing, with the Flock of Birds 

sensor at a distance of 10 cm to avoid electrical noise from the Leap Motion controller. By fixing the 

position of this sensor and the Leap Motion controller together, hand coordinates could be transformed 

using the sensor pose into the same reference frame as the forearm coordinates. An additional Flock of 

Birds sensor was securely taped to the back of the toucher’s dominant hand for increased precision – the 

hand position was relocated based on this sensor position if it did not match properly in the recording. 

Extracting contact characteristics. Data from the Leap Motion controller resulted in poses, widths and 

lengths for each bone of the hand. In custom-built software, these were translated into cylinders made 

up of 3-D line segments. Each intersection between a line segment and the forearm cone was treated as 

a contact point (Figure 1.2). 

Contact characteristics. We examined six contact characteristics for each expression, which were captured 

at each recording frame of the tracking system. All values were only considered when contact was made 

between toucher and receiver. For example, if the hand was picked up from the arm and moved rapidly 

to another point on the arm, this velocity would not be included in the calculations. The six contact 

characteristics were as follows. 1) Normal velocity was measured by the forward divided difference to the 

next measured position for palm or finger tips in contact with the arm, projected onto the surface normal 

of the closest point on the arm. This quantity related to the indentation-rate of each expression; i.e., we 

found that expressions with high normal velocity tended to also have high force, but the measurement of 

normal velocity was more robust from a noise perceptive. 2) Tangential velocity was measured by the 

forward divided difference to the next measured position of the palm, projected onto the plane tangent 

to the closest point on the arm (orthogonal to the surface normal). 3) Contact area was determined by 

the area of the convex hull enveloping the contact points for each bone in the hands (as is illustrated in 

Figure 1.2). 4) Mean duration of contact was measured as the mean continuous duration of contact made 
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with the arm during a expression. 5) The number of fingers contacting was determined by averaging the 

sum of binary “in contact” values per finger over the expression. 6) The time with palm in contact was 

measured as the proportion of time in which the palm was in contact with the arm out of the total contact 

time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.3) System validation.  Tests of the hardware setup were conducted to evaluate the means of estimating 

the: A) velocity of index fingertip and palm, B) contact area. Contact area was compared to actual measurements 

using an ink-based technique [23], [24]s. 

A B C
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System validation. An experiment was performed with a single participant to examine the accuracy of the 

tracking system in measuring velocity and contact area (Figure 1.3). To command velocity, two marks were 

made on the receiver’s arm 4 cm apart, and the toucher moved their palm (or fingertip) between the 

marks according to a metronome commanding the desired velocity. To measure contact area, the 

toucher’s hand was covered in washable ink and pressed against the receiver’s forearm [23]. Ink prints 

were later compared to output from the tracking system.  

Data analysis and statistics. The final cleaned dataset consisted of 227 of the 300 performed expressions, 

as some expressions were not properly recorded due to inconsistencies in the Leap Motion’s output [25]. 

A research assistant viewed each the motion tracking recording to remove any cases where the hand 

position was erratic or not picked up at all. In post-processing, only the toucher’s right hand was 

considered to simplify the comparisons across expressions (or the left hand if the right hand was not used). 

For each expression, the six contact characteristics were averaged for all frames in the expression, given 

contact was made in that frame. 

Next, statistics were performed on the raw dataset (scikit-posthoc library and Scipy statistics packages, 

Python 2.7) using a conservative, non-parametric approach. A Kruskal-Wallis test was performed for each 

of the six contact characteristics across the expressions to determine significant differences. Afterwards, 

a post-hoc Conover’s test was performed to identify differences between expressions using the Holm-

Bonferroni method for p-value correction. 

Finally, clustering analysis was performed to determine the most common expression strategy for each 

expression. Values were scaled from 0 to 1 based on the full range of values of each of the six contact 

characteristics. K-means clustering was performed (scikit-learn library, Python 2.7). The sum-squared 

errors were scored for values of k from 0 to 10 and a suitable value for k was chosen via the elbow method. 

Representative expressions were chosen from the dataset as those closest to the centroid of each 
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identified cluster. Within each expression, a representative snapshot was drawn to represent the 

expression. 

Results 

Raw data for the expressions are detailed in Figure 1.4. At first glance, most of the metrics exhibit a high 

level of variability across the ten participants, but there were several noteworthy trends. Summarizing 

these trends, Figure 1.5 shows the median expression characteristics from the dataset. Attention and 

happiness, for example, had especially high normal velocity, suggesting that these were comparatively 

high force expressions. Happiness and calming were particularly high in tangential velocity, with love and 

sadness especially low, as often these expressions were motionless. Contact for calming, love, sadness, 

and happiness was usually maintained for the full duration of the trial, while gratitude, happiness and 

attention had noticeably shorter durations. Attention in particular stands out in terms of palm contact 

being rarely made, the low number of fingers in contact, and the total area of contact being low. 
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Fig 1.4) Distributions of contact characteristics for the raw dataset. All measurements were taken from 

the toucher’s right hand. A) shows the mean velocity of contacting fingertips and palm in the direction towards the 

surface normal of the arm, relating to indentation-rate or intensity of the expression. B) shows the tangential velocity 

of the contact, or the velocity vector projected onto the tangent plane of the closest point on the arm. C) plots the 

total contact area for each expression, summed for the palm and fingers. D) plots the mean duration of contact 

made between toucher and receiver within each trial. E) depicts the mean number of fingers contacting the arm 

throughout each expression. F) displays the proportion of total contact time in which the palm was touching the 

receiver. * p <= .05, ** p <= .01, *** p <= .001.  A = attention, H = happiness, C = calming, L = love, G = gratitude, S = 

sadness. 
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Fig 1.5) Comparing median contact characteristics per expression. Each contact characteristic is 

normalized based on the average IQR across each expression. Normal and tangential velocities in particular well 

separate the 6 expressions. 

 



30 
 

 

Fig 1.6) Common strategies for each expression. Via k-means clustering analysis, multiple “expression 

strategies” were determined. For each expression, the strategies are listed, along with 1) the percent of the 

expressions that were clustered into each strategy, 2) the number of unique participants which used each 

expression (out of 10), 3) a description along with a representative “snapshot” of each expression, 4) the relative 

quantities of our six contact characteristics, and 5) the percent of the time that the receiver correctly identified the 

strategy. % total values are floored to the nearest whole percent. 
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Further work was done to determine common expression strategies of each expression via clustering 

analysis (Figure 1.6). Attention was the most variable expression, with five strategies identified. Most 

common were short, high-intensity pokes with a small number of fingers. However, faster pulling on the 

arm with the whole hand was also seen with somewhat high frequency. A few participants used low 

intensity, high duration expressions to signal attention. The next most variable expression was happiness, 

with three primary strategies identified. Most common were whole-hand expressions, although tapping 

with the fingers was also fairly common. All of the happiness strategies were relatively high with respect 

to tangential velocity. The most consistent expressions were calming, sadness, and love, with 

approximately 75% of these expressions being performed in a similar manner. For calming, either a low 

intensity, slow hold with the hand was used or a faster stroking expression with the fingers. For gratitude, 

a slower grabbing motion or a faster shaking motion was used. For sadness, either a whole hand 

expression or holding with a few fingers was used. Notably, both sadness strategies were always held for 

the whole trial.  

 

 
 

Fig 1.7) Human expression recognition accuracy. The confusion matrix from the human-subjects behavioral 

experiments. Overall classification accuracy was 57%. 
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Behavioral experiments analysis. We also examined how receivers perceived the expressions (Figure 1.7). 

Participants were especially accurate in recognizing “attention” and “happiness” (93% and 74% correct, 

respectively). The worst performance was in recognizing “love” (28% correct), which was most often 

misrecognized as calming (45% responded). Recognition accuracy across all six expressions was 57%. 

Discussion 

We frequently communicate emotion with others through touch cues. Rich spatio-temporal details 

underlie how a toucher’s fingers and palm make contact in interactions with a receiver’s forearm. Prior 

efforts have used mostly qualitative, human visual observation to distinguish an emotion by certain 

expressions tied to one’s hand contact, velocity and position. The work herein describes an automated 

approach to quantitatively eliciting the essential features of these expressions that convey an emotion’s 

meaning. We developed six quantitative contact characteristics that were capable of describing and 

differentiating the expressions used to communicate our word cues that varied in emotional content. 

Furthermore, clustering analysis revealed that there are typically 2-5 expression strategies per expression 

and that some lead to more successful communication of an emotion. Abstracting emotive touch 

expressions into quantitative contact characteristics, or primitives, may help in specifying design 

requirements to be implemented with haptic actuators. 

Among our sample of ten participants, we found that certain expression strategies, i.e., combinations of 

the six contact characteristics, seemed to better convey certain emotions. One interesting finding came 

with regards to expressions of calming, love, and sadness. These expressions tended to be performed 

using strategies that are very similar to each other with respect to our six contact characteristics (see 

Figure 1.6, calming 1, love 1, and sadness 1). When touchers used those strategies, the receiver’s 

recognition dropped significantly, as one might expect. However, when using alternate expression 

strategies that varied from one another more significantly, recognition accuracy was much greater (see 
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Figure 1.6, calming 2, sadness 2). This suggests that our quantitative analysis captures similar features to 

what the receivers use in their judgments, or at least that we have avoided capturing discriminative 

features to which the receivers are insensitive.  

Tied to this are questions of whether the expressions used are innate or are learned on the fly to solve 

the particular tasks of this study, and of whether one’s ethnic or cultural background and norms influence 

one’s expressions. Such questions could be the topic of further study. A larger study size is also needed to 

confirm the trends found herein – the uniqueness of the six contact characteristics – as our focus was to 

introduce a new approach to automate the tracking of features. Indeed, while the six characteristics are 

promising and tied to prior research, their number may need to be reduced or expanded. For one, the 

time duration to perform a expression was held constant but might be an important variable.  

Moreover, another next step is to determine the precise ranges and timescales for each of the six contact 

characteristics. For instance, perhaps contact area must be 1.0 cm and not 1.5 cm, rate must be 3 cm/sec, 

delay between subsequent touches 100 ms not 300 ms, etc. With the setup described herein, it is possible 

to investigate such questions. Some of their ranges may relate to receptive field size and density 

organization, integration of mechanosensitive afferent responses, as well as other perceptual 

mechanisms.  

At a deeper level, deciphering the specific input-output relationships that tie contact on the forearm to 

populations of neural afferents in the skin (and further on to perception) is critical to our understanding 

of how these emotions are encoded [26]. The engagement of the CT afferents is particularly interesting, 

as these are associated with pleasant or hedonic touch [8] – in fact, we do note similarities in the range 

of tangential velocity of our expressions to the maximal activation range of these afferents (1-10 cm/s).  

More broadly, a better understanding of these input-output relationships can greatly assist in generating 

design requirements for tactile communication devices and sensory prosthetics. Ideal devices should 
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evoke the same behavioral responses as real human touch, although a device that falls short of this ideal 

may still be successful if it engages physiological systems sufficiently well. Some groups have worked to 

create such devices capable of creating stroking sensations on the arm [9], [20] which could be used for 

such a purpose. Measurements from our system should serve as a basis for the design specifications of 

these devices, providing critical information such as the contact areas and indentation velocities that need 

to be replicated.  

Finally, in addition to machine-to-human touch, our results also have implications in facilitating human-

to-robot interactions. Prior efforts have worked on training robots (typically humanoid or zoomorphic) 

with sensor arrays to recognize different kinds of social touch expressions [11], [12], [15]. Our study 

complements these efforts by first uncovering quantitative data for naturalistic human-to-human touch, 

among people with established relationships. Via our tracking system we can obtain metrics that are not 

readily available from pressure sensor arrays, such as the number of fingers making contact and 3-D 

positioning of the hand and contact.  
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Aim 2:  Create equipment and algorithms to extract physical 

quantities of touch gestures simultaneously with 

microneurography recordings. 

Abstract—Human-to-human touch conveys rich, meaningful social and emotional sentiment. At present, 

however, we understand neither the physical attributes that underlie such touch, nor how the attributes 

evoke responses in unique types of peripheral afferents. Indeed, nearly all electrophysiological studies 

use well-controlled but non-ecological stimuli. Here, we develop motion tracking and algorithms to 

quantify physical attributes – indentation depth, shear velocity, contact area, and distance to the 

cutaneous sensory space (receptive field) of the afferent – underlying human-to-human touch. In 

particular, 2-D video of the scene is combined with 3-D stereo infrared video of the toucher’s hand to 

measure contact interactions local to the receptive field of the receiver’s afferent. The combined and 

algorithmically corrected measurements improve accuracy, especially of occluded and misidentified 

fingers. Human subjects experiments track a toucher performing four gestures – single finger tapping, 

multi-finger tapping, multi-finger stroking and whole hand holding – while action potentials are recorded 

from a first-order afferent of the receiver. A case study with one rapidly-adapting (Pacinian) and one C-

tactile afferent examines temporal ties between gestures and elicited action potentials. The results 

indicate this method holds promise in determining the roles of unique afferent types in encoding social 

and emotional touch attributes in their naturalistic delivery.  

Introduction 

People often touch one another to convey social thought and communicate emotion. For example, one 

might tap the shoulder of another to get their attention, or lightly grasp and stroke their arm to 

congratulate them. From prior work we know that many of these gestures can be readily understood [1], 
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[2], suggesting the possibility that underlying neural codes, originating from the periphery, are elicited 

from the physical attributes delivered by another person. Various subtypes of neural afferents in the skin 

are thought to be involved, such as C-tactile afferents which respond to light stroking at particular 

velocities and at the temperature of human skin [6]. However, it is currently unknown how naturalistic 

human touch decomposes into low-level physical quantities that serve as direct input to neural afferents 

– indentation depth, shear velocity, contact area, distance to receptive field center – nor how they might 

be differentially parsed by the rich diversity of subtypes. 

Nearly all prior efforts to characterize the response functions of human afferents to touch quantities have 

employed precisely-controlled mechanical stimuli, such as rigid indenters and rotating brushes [5], [6], 

[27], [28]. Such stimuli vary only one attribute at a time. When stroked by a brush at a range of velocities, 

C-tactile afferents, for example, have been found to preferentially fire between 1 and 10 cm/s, which is 

perceived as being pleasant [8]. By contact with a rigid probe, rapidly-adapting (RA) and Pacinian corpuscle 

(PC) afferents have been found to detect small amounts of contact, and encode the onset and offset of 

held stimuli as well as periodic vibration frequencies [28], [29]. That said, a recent effort employed natural 

surface textures, e.g., velvet, fleece, drapery tape, mounted to wheels rotated against the stationary 

fingers of primates [30]. These textures indeed attempt naturalistic interactions, yet not to the point of 

one person touching another. 

The response properties of tactile afferents may be further elucidated by considering naturalistic and 

human delivered inputs in other sensory systems. In human hearing, for example, the co-modulation 

property of auditory neurons was found to enhance their ability to pick out tones and vocalizations amidst 

background animal noises [31]. In the visual system, peripheral neurons perform specific decorrelations 

to reduce visual redundancy that is characteristic of natural scenes [32]. These sensory systems also 

contain human-specific components – distinct brain regions are dedicated to recognizing human faces 

[33] and human voices [34] as compared to other sights and sounds. For the tactile system as well, we 
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must consider that the response properties of peripheral nerves in the skin may be particularly tuned to 

the touch of another human. 

When trying to measure physical contact attributes underlying human touch, devices such as sensor mats, 

sleeves and pads have been used [11], [12], [15]. Although using such devices can allow for high-fidelity 

measurement of forces and contact areas, they inhibit direct human skin-to-human skin contact. This can 

change both how people deliver physical gestures and how neural afferents respond. For C-tactile fibers, 

which respond to light shearing of the skin as well as human body temperature, such a barrier may 

attenuate or confound their response. The extreme sensitivity of certain afferents, e.g., slowly adapting 

type I (SAI) afferents that fire at forces of less than 1 mN [22], may also preclude placing any external 

device on the skin. For this reason, measurement techniques which do not impede skin-to-skin contact 

are ideal. 

 In order to understand how distinct populations of neural afferents in the skin might encode the complex 

and interdependent physical quantities that underlie natural human touch, a first step is to conduct 

synchronous measurement of physical contact and neural firing outputs.  Towards this end, we developed 

a methodology to track and measure contact between a toucher’s hand and the receptive field of a single 

peripheral afferent via a motion tracking system, while simultaneously recording trains of action 

potentials via in vivo microneurography [4].  

Methods 

Human-to-human contact, between a toucher’s hand and the receiver’s arm or hand, was measured using 

a motion tracking system consisting of both a 2-D high definition video camera and a 3-D stereo infrared 

device (Figure 2.1). The latter device produces highly accurate measurements of the positions of the bones 

of each of the joints in the hand, when it is properly recognized and stable; however, it is prone to errors 

in mid-identifying the hand position, especially during dynamic motion or when fingers are occluded by 
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the hand [25]. To address these shortcomings, an additional 2-D video camera, positioned at a different 

viewing angle, was used along with algorithms to track the fingertips and determine proper orientations 

of the hand (Figure 2.1).  

 

 

 

 

 

 

 

 
 

Fig 2.1) Experimental setup. The two major components for tracking human touch attributes are a video camera 

and a Leap Motion controller, used in tandem to track contact between the toucher’s hand and the receiver’s 

receptive field. Neural responses are measured simultaneously via microneurography. 
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Simultaneous to the visual observations, action potentials from single, peripheral neural afferents were 

recorded using microneurography. In particular, in a study with touchers and receivers, recordings were 

done from one C-tactile fiber and one Pacinian corpuscle fiber, in separate participants. Temporal 

correlations were examined afterward between the contact characteristics (as determined via motion 

tracking) and the neural firing. 

Motion tracking components. The motion tracking consisted of two main components: a 2-D high 

definition video camera (HDR-CX625, 9.2 megapixel, Sony Corp., Tokyo, Japan) and a 3-D infrared stereo 

camera system (Leap Motion, San Francisco, CA). During experiments, while the “toucher” was contacting 

a participant, the positions of the bones in the toucher’s hand were measured in 3-D by the Leap Motion 

controller at approximately 40-60 Hz, as well as recorded in 2-D high definition video (1280 x 720 pixels) 

at 30 Hz. The use of both systems together afforded much better results than using either alone, as will 

be explained.  
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Fig 2.2) Combining 2-D video and 3-D stereo infrared data to improve overall accuracy. A series of 

three steps is shown beginning the 3-D stereo data which yield the positions of the bones in the hand, in this case 

misaligned relative to the video data.  Next, the fingertips are identified in the 2-D video data. Finally, the 3-D hand 

in the top frame is rotated given the fingertip positions. 

 

 

The first step of this process was to perform post-processing of the video data. The fingertips and palm 

were hand-identified in the 2-D video by a research assistant at one-second intervals. This process took 

approximately 5-10 minutes per minute of video. Between these hand-coded frames, a simple linear least-

squares correlation filter was used to track the position of the palm and fingertips from frame to frame. 

Afterwards, the tracked palm and fingertips were reviewed by the research assistant along with the video 

data, and any notable discrepancies were fixed manually. The result was a list of 2-D locations in the video 

coordinates for the fingertips and palm per each frame of video (6 locations by 30 frames per second = 

180 points per second of video). 
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The next step was to align 3-D measurements of the hand to fit the 2-D video data (Figure 2.2). Utilizing 

the palm locations, which were reliably measured in both the 2-D video coordinates and the 3-D Leap 

Motion coordinates, an affine camera matrix was fit to transform the Leap Motion coordinates to the 

video coordinates. In a processing program written in MATLAB, for each frame of video, fingertip locations 

were compared in the 2-D video coordinates (as identified in post-processing) versus the transformed 

Leap Motion measurements at that time. If the discrepancy between the transformed Leap Motion 

fingertips and video fingertips was above a certain threshold, the program would search for alternate 

hand configurations from prior measurements in the Leap Motion recording. For each alternate hand 

configuration, the program would place the alternate hand at the original palm position, and perform 

several 3-D rotations to it. The best hand configuration was chosen as the pair (hand configuration, 

rotation) that best fit the 2-D video fingertip data. The result of this process was a set of “toucher” hand 

measurements in 3-D space that matched the video much more closely than the original Leap Motion 

recording. 

Fitting the local region of the receptive field. After the 3-D finger and hand measurements had been 

properly matched to the 2-D video recordings, the location of the receptive field was identified in 3-D. 

Based on the hand marking on the receiver’s arm that corresponded to the receptive field center, frames 

of video in which the index finger crossed over the receptive field were selected. A plane was fit to the 3-

D positions of the index finger for these frames, with the center at the mean coordinates. A local region 

of skin surrounding the receptive field was modeled as a circular region of this plane with a radius of 3 

cm. In subsequent measurements, contact was only considered if it lied within this local region.  

Measuring contact with the receptive field. Hand position data from the Leap Motion resulted in 3-D 

poses, widths, and lengths for each bone in the hand (Figure 2.3). In custom software, written in Python 

2.7, these were translated into cylinders made up of 3-D line segments. Each intersection between these 

lines segments and the plane representing the receptive field was treated as a contact point. 
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Fig 2.3) Measuring contact near the afferent’s receptive field along with elicited neural spikes. A) 

Three physical quantities are shown as measured by the tracking system: mean indentation depth, contact area, and 

shear velocity.  Note that the fingers are represented as cylinders, formed by multiple line segments, as shown in 

the “depth” panel. Their intersection with the plane forms contact points which are connected to estimate contact 

area. B) Three distinct time points are shown for contact made by a stroking gesture, with relative levels of each 

physical quantities, associated by hue from panel A). C) Neural spike times as measured via microneurography for a 

multi-finger stroking gesture. 

 

We examined four quantified touch attributes, which had been considered in prior work [35], [36]. The 

attributes of 1) contact was determined as a binary value representing whether any bones from the 

toucher’s hand intersected with the receptive field plane. 2) Depth was measured as the mean of the 

normal distance from the plane to the end of each contacting line segment per bone of the hand. 3) 
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Contact area was measured as the area of the convex hull enveloping the contact points for each bone in 

the hands. 4) Shear velocity was measured as the mean velocity of each contacting fingertip (or palm) 

tangent to the local receptive field plane. 

Human-subjects experiments. Participants. Two participants took part in this study (ages 34 and 27, both 

female). Informed consent, in writing, was obtained before the start of the experiment. The study was 

approved by the ethics committee of Linköping University (Dnr 2017/485-31) and complied with the 

revised Declaration of Helsinki. 

Experimental design. In each experiment, a trial-set of four gestures were performed to the receptive field 

of a single-unit neural afferent. 1) Single-finger tapping: the toucher delivered three sets of 3-6 taps, 

directly on top of the receptive field. 2) Multi-finger tapping: the toucher tapped continuously with 3-4 

fingers, while moving the entire hand back and forth across the receptive field. 3) Multi-finger stroking: 

the toucher performed 3 broad strokes in succession across the receptive field of the afferent using 3-4 

fingers lying flat against the skin. 4) Whole-hand holding: the toucher laid the hand down flat onto the 

receptive field, mostly contacting with the fingers with slight contact of the palm, and a very light 

squeezing. These standardized gestures were applied by trained experimenters. The experimenter 

received spoken cues via headphones, first the cue-word, then a countdown (3, 2, 1, go). They were 

instructed to perform the touch starting from the “go” signal until they heard a stop signal (3, 2, 1, stop), 

creating a continuous time window of touch for 10 seconds. The toucher was familiarized with the 

neuron’s receptive field and required to touch an area of skin including but not limited to the receptive 

field. Gesture data for 2 trial-sets for the C-tactile fiber and 1 trial-set for the Pacinian corpuscle were 

obtained. Each gesture lasted a total of 10 seconds. The exact execution of each gesture was kept 

somewhat vague, in an attempt to deliver a more natural and volitional stimulus.  



44 
 

Microneurography. Microneurography is a long-standing, safe, and painless procedure for recording from 

single peripheral afferents in awake, unanesthetized participants [37]. The participants were seated in a 

comfortable chair and pillows were provided to ensure minimal discomfort. All recordings were made 

from the right radial nerve. As a first step, the radial neve was visualized using the ultrasound technique 

(LOGIQ e, GE Healthcare, Chicago, IL, USA). Then, a recording electrode (FHC, Inc. Bowdoin, ME, USA) was 

inserted percutaneously followed by localization of the nerve by electrical stimulation through the 

recording electrode. Minute movements were made to the recording electrode, manually or with a pair 

of forceps, until single-unit activity could be recorded. In addition to the recording electrode, an 

indifferent (uninsulated) electrode was inserted subdermally, approximately 5 cm away from the nerve.  

After the recording electrode reached a stable position for single-unit recording, each neuron was 

classified by its physiological characteristics, as per the criteria used in [38]. Neural recordings were 

performed with equipment purpose-built for human microneurography studies from AD Instruments 

(Oxford, UK) or the Department of Integrative Medical Biology, Umeå University (Sweden). 

All neural data were recorded and processed using LabChart Pro (v8.1.5 and PowerLab 16/35 hardware 

PL3516/P; AD Instruments, Oxford, UK) or SC/ZOOM (Department of Integrative Medical Biology, Umeå 

University). Action potentials were distinguished from background noise with a signal-to-noise ratio of at 

least 2:1, and were confirmed to have originated from the recorded afferent by a semi-automatic 

inspection of their morphology [22]. 

Results 

Example physical attributes identified from one set of each of the four gestures are shown in Figure 2.4. 

For one finger tapping, there were relatively small amounts of contact area and shear velocity, with 

changes in depth in concert with each tap. For multi-finger tapping, contact area was slightly greater with 

multiple fingers contacting at once, with a greater frequency of taps compared to the one-finger tapping. 
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In the multi-finger stroking gesture, depth remained consistent, as both shear velocity and area increased 

the fingers swept across the receptive field. Finally, in the whole-hand holding gesture, depth and area 

remained constant, with minimal shear velocity.  

 

 

 

 

Fig 2.4) Example physical contact data for each of the four gestures. Physical contact 

measurements are shown for each of the four gestures over 10-second time windows.  Short bursts of 

depth along with low contact area and shear velocities are characteristic of the one-finger tapping 

gesture. The multi-finger tapping gesture resembles the one-finger tapping except with greater contact 

and contact area and a small shear velocity component as the toucher moved across the arm. The multi-

finger stroking gesture generally contained three strokes of about 3 seconds each, with consistent depth 

as well as high amounts of contact area and shear velocity. The whole hand holding gesture consisted of 

long, continuous contact with large contact area and low shear velocity. 
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Fig 2.5) Responses of neural afferents to the physical quantities of human touch. A) Depicts the firing 

of the C-tactile afferent under a few example conditions during the experiments. During a stroking gesture, the 

afferent responded to the high shear velocity (left); when being tapped, the afferent fired infrequently (right). B) 

Depicts the firing of the PC fiber to similar example conditions during the gestures. During a stroking gesture, the PC 

afferent fired in short bursts as the receptive field was crossed (left); during tapping, the PC fired synchronously with 

each tap (right). For both afferents, the position of the receptive field on the touch receiver’s arm/hand is illustrated. 

 

Example neural responses for the C-tactile afferent are shown in Figure 2.5A. The C-tactile afferent fires 

mostly during the long stroking from the multi-finger stroke gesture, when both shear velocity and contact 

area are large. The ranges of velocities employed by the toucher matched the peak response range of C-

tactile afferents from brushing experiments, 1-10 cm/s [8]. During tapping, the C-tactile afferent fired 
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rarely if at all. Peak firing rates for the C-tactile afferent over all gestures were during the multi-finger 

stroking, at a maximum frequency of 44 Hz (Figure 2.6).  

Example neural responses for the PC afferent are shown in Figure 2.5B. For one-finger and multi-finger 

tapping, the PC afferent fires synchronously with each tap. For stroking, however, the PC afferent fires 

only as the stimulus crosses the center of its receptive field. Peak firing rates for the PC afferent over all 

gestures were during multi-finger tapping, at a maximum frequency of 362 Hz (Figure 2.6).  

 

 

 

 

 

 

 

Fig 2.6) Peak firing rates per gesture. The C-tactile afferent (Top) fired at the greatest frequency (43.8 Hz) 

during the multi-finger stroke, while the PC afferent (Bottom) fired at the greatest frequency (362.3 Hz) during the 

multi-finger tapping.  
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Discussion 

To our knowledge, this effort is the first to report methods that allow natural human-to-human gestures 

to be delivered and tracked as stimulus input simultaneous with single afferent microneurography. Nearly 

all prior microneurography studies have employed a classical stimulus-response paradigm [5], [6], [8], 

[28], [29], [38]. The use of non-contact stimulus tracking is a paradigm shift where we allow natural 

movements and contact interactions as desired by the human toucher, and seek only to track what occurs, 

for post experiment correlation with the neural response. Our preliminary examination of C-tactile and 

PC responses align well with prior literature and suggest that each afferent type may encode unique 

aspects of human touch. 

To quantify human touch during the neural recordings, we decided to use an optical, camera-based 

motion tracking system. Sensor mats, sleeves, and other physical components create barriers between 

skin-to-skin contact and thereby alter the delivery of gestures as well as the neural responses.  We found 

a combination of the Leap Motion IR camera system along with 2-D video recordings to offer the best 

accuracy given the constraints of other devices and those of the microneurography environment. In the 

future, using pressure-sensitive devices in separate experiments may allow us to better inform the 

“depth” metric in our contact modeling to represent real pressure distributions from human touch. 

In our preliminary neural recording data, we observe trends in the response properties for both the C-

tactile and PC afferents that align well with the literature. In terms of encoding human touch, we observe 

that the C-tactile afferent responds most to light stroking, while the PC afferent responds synchronously 

with tapping gestures, as well as the onset of contact with the receptive field during stroking. Of course, 

with a sample size of two, these findings are preliminary and require further studies with a greater number 

of afferents and subtypes. 
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Unlike traditional methods of controlling stimuli, in which a single factor is varied at a time, the naturalistic 

touch inputs simultaneously include several factors. Some of the covariance between these factors may 

be inherent to human touch and help elucidate neural encoding patterns—as neurons in the visual system 

decorrelate redundancy that is characteristic of natural scenes. Likewise, it is possible that tactile neurons 

are tuned to inherent dependencies in the physical primitives that underlie human touch. In particular, 

metrics such as contact area and indentation depth may be intimately related—a finger pressing more 

deeply into the arm will contact with a greater area. Multivariate statistical analyses or machine learning 

techniques may prove useful in examining these types of complicated, multi-factor relationships. 

Constructing such relationships is key to further understanding our innate ability to decipher the touches 

from another human. 
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Aim 3: Determine how systems of Aβ and C-tactile afferents 

encode touch expressions and their underlying component 

gestures. 

Abstract—Social and emotional sentiment is often conveyed through physical expressions of touch. 

Although we are now beginning to understand and quantify the physical contact underlying these 

expressions—e.g., force, velocity, contact duration—it is unclear how these touches are encoded by 

first-order neurons, or exactly how they might integrate to form an emotional percept. In a novel 

experimental paradigm, we applied naturalistic human touch stimuli, a set of 6 touch “expressions,” in 

combination microneurography and motion tracking experiments with 7 afferent subtypes (44 units in 

total). Simple features of the neural response to these expressions—such as peak firing rate, mean firing 

rate, and number of spikes— were found to be statistically differentiable within a single hair follicle 

afferent (HFA) or slowly-adapting type II afferent (SA-II). The high acuity these afferents afforded in 

discriminating human touch appears to stem from their unique and robust responses to the component 

gestures underlying each expression. In the C-tactile (CT) system, we found firing frequencies to well 

align with the perceived pleasantness of each touch expression, suggesting a complementary role in 

modulating the affect of each expression. The perceptual significance of these first-order responses 

requires further study, but the results raise the possibility that tactile social and emotional information 

may be encoded very distally in the periphery. 

Introduction 

Touch is an often-used medium for conveying social thought or communicating emotions. For example, 

one might lightly tap another to get their attention, or stroke their arm to calm them. Some of these 

expressions can be inherently understood [1], [2], [36], [40], suggesting that there may be neural circuitry 
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in place to decode emotional and social touches. As we seem to be particularly tuned in other sensory 

systems to human inputs, such as our ability to uniquely recognize human faces [33] and voices [34], there 

may be the possibility that certain neural responses are tuned towards recognizing human touches. 

However the role of each specific unit, or how they might integrate together to form an emotional 

percept, is yet unknown. 

Through qualitative, observational studies, it has been shown that touch is effective at communicating 

several emotions including anger, happiness, and sadness [1], [2], [41]. In recent studies, we have utilized 

motion tracking systems and basic contact models to more quantitatively assess how people naturally 

perform touch expressions at the level of skin contact. We have found some touch expressions to be 

understood more intuitively than others [36], including some like “attention” which are innately 

understood to a very high degree. Understanding how the physical contact underlying these expressions 

can elicit neural responses may further elucidate why they are immediately recognizable. 

The discriminative touch domain of the Aβ classes of afferents has been well characterized. Distinct 

afferent types encode perceptions of pressure, vibration/texture, stretch, and the displacement of hair 

follicles. Indeed, sensations of such elementary components of pressure and flutter/vibration can be 

caused via electrostimulation of a single nerve ending [42], [43]. However, it is unclear how more complex 

touch gestures, involving multiple elementary sensations, are signaled from the periphery. 

Another class, the C-tactile afferents, are thought to play a significant role in social touch perception [44]. 

These afferents respond to low mechanical forces of 0.3-2.5 mN, have slow conduction velocities of 0.6-

1.3 m/s [27] and project to insular cortex [6]. They appear to be tuned to specific velocities encountered 

in light, stroking touch [6], [45], and correlate with the perceived pleasantness of touch. They also fire 

preferentially for applied temperatures similar to those of human skin [7]. However, as of yet their 

responses have not been characterized to the application of real human touches. 
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In the current study, using in vivo electrophysiological technique of microneurography [4], we recorded 

the responses of single afferents, belonging to each of the somatosensory channels, to naturalistic, 

complex touch gestures that resemble those used in real inter-personal communication. During 

stimulation, the physical attributes of social-touch gestures were measured and characterized using video 

recordings and a real-time motion tracking system. Statistical and machine learning analyses were further 

used to characterize the capability of each afferent type to differentiate the set of touch expressions. 

Results 

In order to understand how emotional and social expressions of touch might be differentiated at the 

single-unit level, we performed microneurography experiments with naturalistic touch inputs, and further 

quantified touch contact with a motion tracking system [26]. Our results indicate that single Aβ fibers, 

namely hair-follicle afferents (HFA) and slowly-adapting type II afferents (SA-II) were able to well 

differentiate the gestures, via statistically significant differences in aggregate metrics of their firing rates. 

We also noted robust and unique responses of these types to component gestures underlying each 

expression. Finally, the C-tactile system was found to correlate positively with the perceived pleasantness 

of the touches. 
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Figure 3.1) The 6 touch expressions and their physical gestures classified into components of 
“tapping,” “patting,” “stroking,” or “holding.” More detailed temporal information can be seen in Figure 3.4. 

 

First, by both visual inspection and quantification with a custom motion tracking system (see Methods), 

we decomposed our standardized touch expressions into 4 physical gestures (Figure 3.1). “Attention” was 

comprised of tapping, in 4 short bursts of 4-5 taps. “Happiness” was also comprised of tapping, but was 

more continuous, using multiple fingers and moving up and down the arm. “Gratitude” consisted of 

alternating patting and slow holding on the arm. “Calming” and “love” were both stroking gestures, with 

calming consisting of 4 short strokes down the arm and love consisting of continuous back-and-forth 

stroking down the arm. “Sadness” was a sustained hold on the arm with some light squeezing. More 

detailed temporal information can be seen in Figure 3.5. 
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Figure 3.2) Differentiability of touch expressions via single-unit responses. A random forest classifier 

was fit to 5 features of neural firing for each afferent type. Next, a 5-fold cross validation procedure was used to 
determine the confusion matrices (values are a percentage of the true word classified into each column). The 5 
features of the neural signal used in the model were: 1) max firing rate, 2) mean firing rate (when a spike occurred), 
3) standard deviation of firing rate, 4) total number of spikes, and 5) number of bursts (number of inter-spike 
intervals > 1 second). Classifiers using the HFA and SA-II firing features exhibit notably strong accuracy as compared 
to the others. Chance accuracy was 16.7%. A: attention, H: happiness, C: calming, L: love, G: gratitude, S: sadness. 

 

Using a random forest classifier, we examined which afferents types were capable of differentiating the 

social touch expressions via 5 features of their firing rate (Figure 3.2). The hair-follicle afferents (HFA) and 

slowly-adapting type II afferents (SA-II) were the strongest differentiators, each with 72% overall 

classification accuracy. Of the other afferent types, most were able to classify some subset of the touch 

expressions well, such as “attention,” and “happiness” by the slowly-adapting type I (SA-I) afferents, and 

“love” by the fast-adapting type II (FA-II) afferents. The C-tactile (CT) afferents exhibited the lowest 

classification accuracy at the single-unit level, with an overall accuracy of 26%. Notably, all of the afferent 

types were reasonably accurate in classifying the “attention” expression. 
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Figure 3.3) Neural firing features which distinguish the expressions for each afferent type. The top 

three rows each examine a different metric related to the neural firing: peak firing rate, mean firing rate, and the 
number of spikes. Filled-in squares denote that a significant pairwise significant difference was determined, via 
ANOVA and Tukey’s HSD post-hoc (p < .05). If a significant difference was found across any of the metrics in the first 
3 rows, that pair is designated with a filled-in square in the final row “any.” A: attention, H: happiness, C: calming, L: 
love, G: gratitude, S: sadness. 

 

After the machine learning analysis, we performed a statistical analysis to examine which features of the 

firing rate were differentiable (Figure 3.3). Peak firing rate, mean firing rate, and the total number of spikes 

each afforded similar levels of differentiability, although mean firing rate had the most significant 

differences across all the afferents. The differences in these 3 features seem to account for much of the 

prior classifier’s accuracy. Again, the HFA and SA-II were able to distinguish the most gestures (all but 2 

pairs for the HFA, and all but 4 pairs for the SA-II). 
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Figure 3.4) Temporal encoding of the touch expressions by HFA and SA-II afferents. Each row 

compares two touch expressions with similar physical component gestures. Within each panel, contact is being made 
is designated at the top as either “still” or “moving,” as quantified by our custom tracking system. The contact is 
further binned into the 4 component gestures of tapping, patting, stroking, and holding. Instantaneous firing rates 
for exemplar HFA (top) and (SA-II) afferents are shown below the contact. The neural recordings and physical contact 
in this figure are asynchronous, but are aligned so as to be representative of the physical input to the neurons at any 
given time. 
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In Figure 3.4) we examined the neural firing rates of the HFA and SA-II responses along with exemplar 

contact data from a custom motion tracking system. For “attention,” both the HFA and SA-II afferents 

responded with short, high-frequency bursts of firing well matched to each tap. Similar responses were 

seen in the tapping during “happiness,” although the SA-II was not able to capture as many of the taps. 

For “calming” and “love,” both afferents responded with sustained, medium-rate firing during each 

stroke, but with a longer duration for “love.” The patting sections of “gratitude” caused responses in both 

afferents similar to tapping but with lower firing frequency. Holding was the only gesture encoded 

differently by each type—the HFA did not respond during the hold, only on the onset or offset (or when 

the hand was readjusted), while the SA-II responded with low-rate, sustained firing. The firing patterns 

during each of these 4 gestures (tapping, patting, stroking, and holding) appear to be robust to the large 

amount of variability of the component gestures (Figure 3.5), which was not the case for the other afferent 

types, which varied significantly between units. The response properties of the HFA and SA-II were also 

more consistently differentiable than those of the other afferent types (Figure 3.6). Using another random 

forest classifier, but for each gesture as opposed to each touch expression, we saw an overall classification 

accuracy of 64% for the HFA and 61% for the SA-II afferents (chance accuracy was 25%). 
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Figure 3.5) HFA and SA-II afferents have consistent firing patterns for the component gestures, 
amidst significant variability in the physical contact primitives.  A-D show distributions of 4 contact 

parameters for each of the component gestures, showing a large variability in how they were performed. E and F 
show several randomly-chosen firing patterns for each component gesture for the HFA and SA-II afferents, 
respectively. These firing patters were selected across all of the measured afferents and came from separate trials, 
and thus are representative of the responses of all the afferents of that type. Although some of the firing patterns 
were longer than 2 seconds (some as long as 10 seconds for a hold, for example) only 2 seconds are shown. 
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Figure 3.6) Firing patterns of the HFA and SA-II are able to differentiate each component gesture. 
In each panel, to the left is shown a typical IFF time course that encodes each of the gestures. To the right, a machine 
learning (random forest) classifier was trained on each of these physical gestures, based on the relative times of 
spikes in the recordings as compared to the exemplar gestures in Figure 3.4. Confusion matrices are determined via 
a 10-fold cross-validation procedure, and display the classification percentages per row. T: tapping, P: patting, S: 
stroking, H: holding. 
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Figure 3.7) Peak firing rate of C-tactile afferents relates to the perceived pleasantness of each 
touch expression. A) shows the pleasantness ratings from the second, psychophysical experiment. B) depicts the 

distribution of peak firing rates for each touch expression for recordings from the C-tactile afferent. C) Shows the 
correlation between the grand mean of peak firing vs. the mean of perceived pleasantness for each touch expression. 
D) shows this same relationship but for the other afferent types. Notably, none of the Pearson R correlations were 
found to be statistically significant (p < .05). A: attention, H: happiness, C: calming, L: love, G: gratitude, S: sadness. 

 

 

 

In a separate experiment, we recorded pleasantness ratings from each touch expression (Figure 3.7). All 

of the touches except for “attention” were rated at least mildly pleasant, with “love” rated as the most 

pleasant. We found a positive linear relationship between pleasantness and peak firing rate for the CT 

afferents (R = .42), but not for any of the other subtypes, which had negative correlations. 

Discussion 

This work is, in the authors’ knowledge, the first to examine human-to-human touch as a stimulus in 

microneurography experiments. We found strong evidence that social touch expressions can be 

differentiated by a single-unit Aβ afferent in the periphery, namely for hair follicle afferents (HFA) and 

slowly-adapting type II afferents (SA-II). Other Aβ afferents likely play a significant role at a population 

level, such as slowly-adapting type I afferents (SA-I) which provide much of our fine touch sensation [29], 
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[46]. Among other afferent classes, we found continued support for C-tactile mediated affect in touch [8], 

noting a positive correlation between the perceived pleasantness of each perceived gesture and the peak 

firing rate. The muscle spindle afferents also may play a role in perception: they fired at high rates for the 

tapping expressions of “attention” and “happiness” as compared to the other expressions. Overall, it 

seems that Aβ and C-tactile afferents have complementary roles in discriminating touch expressions and 

modulating their affect, respectively. These data further suggest the possibility that human affective and 

social touch may be encoded very distally in the periphery, as differentiation of touch gestures is 

theoretically possible from single first-order responses. 

Touch expressions can be differentiated by single units. Two afferent types stood out in their ability to 

differentiate our six touch expressions, the HFA and SA-II.  One probable feature is the receptive area: 

both afferents have large receptive fields as compared to some of the other Aβ afferents, such as the SA-

I and FA-II, which meant that they would more consistently respond to features of each touch gestures 

[29], [38], [47]. Furthermore, as these types respond to hair movement and skin stretch, respectively, the 

range at which they might respond is even greater. Another important factor is likely the force sensitivity 

functions of these subtypes. For example, the Field afferents, which had similar responses to the HFAs, 

were less effective differentiators as their firing frequencies were not modulated between the component 

gestures—the response was more “on” or “off.” The modulation of peak frequency of the HFA and SA-II 

also allowed them to differentiate between moving touch and still touch: the HFA responded only to 

moving touch and not to still touch, and the SA-II responded at significantly lower frequencies for still 

touch. Lastly, both the HFA and SA-II were able to follow high-frequency tapping at high rates, which was 

not characteristic of all of the afferent types. Although these two afferent types seemed particularly good 

at the single-unit level, further study is required to contextualize the other afferents at the population 

level. 
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One surprising finding was that the SA-I did not appear to be as good a differentiator as an SA-II, at the 

single unit level. One difference may be the skin stretch response of the SA-II giving it a large receptive 

range. As the SA-I only responded as the receptive field was crossed during a stroking gesture, this may 

have made it more difficult to distinguish from a tap of similar force. It is also possible that the SA-I is too 

sensitive to perform this task alone. Many of the gestures varied significantly in their force, distance to 

the receptive field, and velocity—although the SA-II and HFA had differentiable patterns across this 

variability, the SA-I seems to have responded matching this variability. We did note that, at the gesture 

level, the SA-I was a rather effective differentiator. Further study is required to analyze the role of the SA-

I at the population level. 

C-tactile afferents. We had initially expected the C-tactile afferent to be a strong differentiator of human 

social touches, given its specificity towards light stroking of a particular frequency [8]. However, we found 

the C-tactile afferent to respond to all of our touch expressions at relatively high frequencies. In a 

secondary experiment, we found that almost all of the gestures were rated as “pleasant” by human 

participants, which may be why the C-tactile response was not particularly discriminative. Our 

understanding of the C-tactile system may be lacking some subtleties of light touch interactions, such as 

responses to more punctate stimuli like tapping. 

Social and emotional touch encoding. It is not yet understood how emotional percepts might be formed 

from touch gestures, although we found evidence that this process may happen more distally than 

expected. When placing our emotional touches on axes of dominance, valence, and arousal [48], [49], we 

note that “happiness” and “attention” are particularly high arousal. Both were differentiable from the 

other expressions by almost every afferent type, which generally responded at high frequencies to the 

tapping gestures in these expressions. Therefore, we might assume that many of the afferents respond 

with high frequency in relation to “high arousal” gestures. The C-tactile afferents likely play a role in 

encoding the valence of each touch—however, it was found that low-valence expressions such as 
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“sadness” were still perceived as pleasant in the form of touch. Further exploration of the emotional 

context of touches needs to be pursued to fully capture the content of these expressions. 

Stimulus-response paradigm for microneurography. Unlike traditional methods of controlling 

mechanical stimuli, we employed naturalistic touches as our stimuli. We believe this methodology is 

critical in further exploring the response properties of afferents in a natural context. For instance, SA-II 

and CT have been thought to encode skin stretch and stroking, respectively, but we found them to 

respond quite well to tapping gestures. Without well-controlled stimuli, we resorted to motion tracking 

and modeling to quantify mechanical inputs for later analysis. We ended up using optical systems for this 

tracking, in order to both preserve direct skin-to-skin contact and minimally interfere with the 

microneurography recordings. However, as opposed to sensor pads or other sensors, these systems were 

not perfectly accurate, and could not measure direct quantities such as the forces of each gesture. We 

also had difficulties with data analysis—traditionally controlled stimuli typical vary a single factor at once, 

such as stroking velocity, temperature, or force; however, our naturalistic inputs co-varied many factors 

at a time. In addition, many of these co-dependencies, which might be perceptually relevant, were 

inherent to natural gestures—for instance, all of our “tapping” gestures had both high velocity and also 

small contact areas. We embraced these co-variances by instead looking at the component gestures as a 

whole, instead of reducing them to their physical primitives. Multivariate statistical analyses and machine 

learning techniques also proved useful in examining these types of complicated, multi-factor 

relationships, and suggest that there is future promise in characterizing neural responses to naturalistic 

stimuli. 
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Methods 

Participants—touch receivers. All participants were recruited through local advertisement and a mailing 

list. Using the microneurography technique for single-afferent axonal recordings (11), responses to social-

touch gestures were recorded from 44 low-threshold primary afferent fibres belonging to the right radial 

nerve in 12 healthy participants (23-35 years; 7 males, 5 females). In addition, psychophysical experiments 

for social-touch gestures were carried out in 16 healthy participants. All participants provided informed 

consent in writing before the start of the experiment. The study was approved by the ethics committees 

of Linköping University (Dnr 2017/485-31) and complied with the revised Declaration of Helsinki. The 

participants were seated in a comfortable chair and pillows were provided to ensure minimal discomfort. 

Experimenters—standardized touchers. Based on observations of the common physical features of touch 

communication behavior between people in a close relationship (McIntye et al. unpublished), we 

developed a set of ‘standardized’ touch gestures to communicate ‘attention’, ‘happiness’, ‘calming’, 

‘love’, ‘gratitude’ and ‘sadness’. These standardized gestures were applied by trained experimenters to 

the physiological receptive field of single neurons during microneurography recordings. The experimenter 

received spoken cues via headphones, first the cue-word, then a countdown (3, 2, 1, go). They were 

instructed to perform the touch starting from the “go”-signal until they heard a stop signal (3, 2, 1, stop), 

creating a continuous time window of touch for 10 s. The experimenter was first familiarized with the 

neuron’s receptive field, and was required to touch an area of skin including but not limited to the 

receptive field. They were also required not to perform any vigorous movements in order to avoid 

dislodging the recording electrode. Where a single-unit recording was stable enough, data for multiple 

trial-sets were obtained.  

Microneurography. Neural recordings were performed with equipment purpose-built for human 

microneurography studies from AD Instruments (Oxford, UK; Setup 1) or the Physiology Section, 
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Department of Integrative Medical Biology, Umeå University (Setup 2). The radial neve was visualized 

using the ultrasound technique (LOGIQ e, GE Healthcare). Then, a high-impedance tungsten recording 

electrode was inserted percutaneously followed by localization of the nerve by weak electrical stimulation 

through that electrode (0.02-1 mA, 0.2 ms, 1 Hz; FHC, Inc. Bowdoin, ME, USA). The electrode was 

insulated, except for the ~5 µm bare tip, with a typical length of 40 mm and shaft diameter of 0.2 mm. In 

addition to the recording electrode, an indifferent (uninsulated) electrode was inserted subcutaneously, 

approximately 5 cm away from the nerve. Once the electrode tip was intra-fascicular, minute movements 

were made to the recording electrode, manually or with a pair of forceps, while stroking the fascicular 

innervation zone until single-unit activity could be recorded. 

After the recording electrode reached a stable position for single-unit recording, each cutaneous afferent 

(all soft-brush sensitive) was classified by its physiological characteristics, as per the criteria used in Vallbo 

et al [4]. The mechanical threshold of each cutaneous afferent fibre was determined using Semmes-

Weinstein monofilaments (nylon fibre; Aesthesio, Bioseb, Pinellas Park, FL, USA). The monofilaments were 

applied manually with a rapid onset until the monofilament buckled: If a unit responded to the same 

(weakest) monofilament in at least 50% of trials, it was taken as the mechanical threshold.  

Data analysis for neural recordings: All neural data were recorded and processed using LabChart Pro for 

Setup 1 (v8.1.5 and PowerLab 16/35 hardware PL3516/P; ADInstruments, Oxford, UK) and SC/ZOOM for 

Setup 2 (Physiology Section, Department of Integrative Medical Biology, Umeå University). Action 

potentials were distinguished from background noise with a signal-to-noise ratio of at least 2:1, and were 

confirmed to have originated from the recorded afferent by a semi-automatic inspection of their 

morphology. 

5 neural parameters were calculated for each social-touch expression: 1) the number of spikes, 2) the 

peak frequency (inverse of the shortest inter-spike interval), 3) the mean frequency (inverse of the 
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average inter-spike interval), 4) standard deviation of spike frequency, and 5) the number of “bursts” of 

firing, defined as the number of inter-spike intervals greater than 1 second. 

Motion tracking. We used a custom motion tracking system to quantify the contact in each touch 

expression, as previously reported [26]. The motion tracking consisted of two main components: a 2-D 

high definition video camera (HDR-CX625, 9.2 megapixel, Sony Corp., Tokyo, Japan) and a 3-D infrared 

stereo camera system (Leap Motion, San Francisco, CA). During experiments, while the “toucher” was 

contacting a participant, the positions of the bones in the toucher’s hand were measured in 3-D by the 

Leap Motion controller at approximately 40-60 Hz, as well as recorded in 2-D high definition video (1280 

x 720 pixels) at 30 Hz. The use of both systems together afforded much better results than using either 

alone. 

First, several joints in the fingertip were identified in the video recording by a research assistant—each 

finger tip, each proximal interphalangeal joint, each metacarpophalangeal joint, and the palm. These 

joints were tracked in Python using OpenCV-2 CSRT tracking filters. The research assistant observed the 

accuracy of the tracking filters and reset them to the joint position if they did not align with the video. 

After this process, an affine camera matrix was fit to translate the 3-D Leap Motion coordinates into the 

2-D video coordinates. Several unique hand positions were identified in the Leap Motion recordings and 

selected for fitting. For each frame of the video, the best-fit unique hand position was translated to the 

palm coordinates as measured by the Leap Motion, and the optimal rotation was found using an 

optimization package in Python 2.7 (scipy.optimize). The result was a set of 3-D hand positions, for each 

frame of the video recording, which generally well-matched the video recording. 

After this process, a 30 mm -radius cylindrical plane was fit to the receptive field of the afferent, given 

time points at which the finger made contact. Contact with this plane was measured using a simple contact 

model between the Leap Motion hand and this plane. Hand position data from the Leap Motion resulted 
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in 3-D poses, widths, and lengths for each bone in the hand. In custom software, written in Python 2.7, 

these were translated into cylinders made up of 3-D line segments. Each intersection between these lines 

segments and the plane representing the receptive field was treated as a contact point. 

We examined four quantified touch attributes, which had been considered in prior work [20], [21]. The 

attributes of 1) contact was determined as a binary value representing whether any bones from the 

toucher’s hand intersected with the receptive field plane 3) Contact area was measured as the area of the 

convex hull enveloping the contact points for each bone in the hands. 4) Velocity was measured as the 

mean velocity of the index fingertip. 

Statistics. For pairwise comparisons between touch expressions for mean firing rate, ANOVA and post-

hoc Tukey’s HSD were used to determine significant differences for p < .05. Correlations were determined 

between pleasantness and peak firing rate using a Pearson’s R correlation coefficient. Statistics were 

performed in Python 2.7 using scipy.stats and statsmodels packages. 

Machine learning. The five features input to the model were the 5 neural parameters per touch 

expression (or component gesture): 1) the number of spikes, 2) the peak frequency, 3) the mean 

frequency, 4) the standard deviation of spike frequency, and 5) the number of “bursts” of spiking (inter-

spike intervals > 1 s). A random forest classifier (with default parameters) was used to compare both the 

touch expression data as well as the component gestures data. Naïve Bayes classifiers and K-NN classifiers 

were also used with very similar results, but the Random Forest is shown to give the highest classification 

accuracy. For the touch expression data, a 5-fold cross-valdiation procedure was performed. For the 

component gestures data, a 10-fold cross-validation procedure was done.  All machine learning analysis 

was performed in Python 2.7 using the scikit-learn packages. 

Psychophysics. Pleasantness of each gesture was assessed in a separate experiment with 10 participants. 

The gestures were presented for a 10-second duration from a trained toucher, delivering nearly identical 



68 
 

touches to those in the microneurography experiments. Participants were asked to rate each touch on a 

visual-analog (VAS) scale of -10 to 10, from “most unpleasant” touch to “most pleasant” touch. Among all 

participants, each cue was presented 16 or 17 times in total. 
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Overall conclusions and future work 

In this dissertation, we performed significant groundwork towards understanding human-to-human social 

and emotional touch. The overall goal was to move from a qualitative observation of social touch gestures 

to a quantified effort with measurements of physical parameters, along with proposed mechanisms of 

how touch expressions might be encoded in the periphery. First, we observed and quantified how six 

touch expressions were performed in close adult relationships, noting varying strategies with different 

recognition rates. Next, we worked towards developing tracking methods to measure contact during 

microneurography experiments, noting some immediate differences between responses of a C-tactile 

afferent and a Pacinian (FA-II) afferent. Finally, in a combination microneurography and tracking effort, 

we identified the roles of key afferents in encoding gestures at the single-unit level, finding some subsets 

of afferents to be particularly effective at recognizing different human touches, even to the level of 

differentiation within a single first-order unit. 

Our quantitative study of social touch resulted in the optical tracking system, which we found to be very 

useful given some other preliminary results. When Tegaderm (an extremely thin plastic bandage) was 

applied to the arm, we found in unpublished studies that firing rates of the C-tactile afferents and HFAs 

were severely attenuated. Thus, any barrier between direct skin-to-skin contact may have a very 

significant effect on the measured responses, as well as the emotional and social content. The system also 

gave us specifications for contact areas, velocities, and durations of naturalistic touches. This information 

might be very useful, for example, when designing devices to artificially render social touch expressions 

for communication. 

Our technique of simultaneous microneurography and motion tracking recordings was not used to its full 

extent in Aim 3, and we believe the technique has significant promise in upcoming studies. For instance, 

one initial reasoning for the simultaneous tracking was to develop more complex transduction functions 
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for each afferent type. Traditional characterization only varies one factor at a time, making a modeling 

effort for human touch, which co-varies many factors, very difficult. Instead, with early data we were able 

to fit probability functions to spiking rates when confronted with multivariate stimuli. The early data with 

some of these fits is shown in Figure 4.1. 

 

 

 

 

 

 

 

Figure 4.1) Probability coefficients for logistic regression on physical parameters to spiking 
probability in 10-millisecond bins. We found the C-tactile afferent (left) to have increased probability of 

response with high shear velocity, and stimulation closer to the receptive field center. We found the Pacinian (FA-

II) afferent to have increased response probability with changes in depth. 
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It was very surprising to find that a single unit first-order unit could be capable of differentiating the 

gesture. When we originally set out to investigate this question, we were not expecting to find any 

subtypes capable of this feat—for instance, many of the gestures were spread out across the arm 

significantly, meaning that only part of the gesture was directly on top of the afferent’s receptive field. 

We believe that the single-unit responses may be perceptually important due to some yet unpublished 

work conducted at Linköping University. They used anesthetic cream (lidocaine) to numb the arm and 

attenuate/prevent the responses of cutaneous nerves in the arm, and then attempted to see if the touch 

gestures could still be differentiated. Quite surprisingly, the touches were found to still be discriminable, 

even though the patient could not see the gestures, and presumably had greatly attenuated tactile 

sensation. However, considering now that even a single SA-II or HFA may be capable of differentiation, it 

may be possible that this attenuated response is still enough to identify the gestures. 

 

 

Figure 4.2) Large receptive area of HFA and SA-II, along with their sensitivity to shear, makes 
their responses differentiable. The SA-I, in contrast, responds just when the receptive field is crossed, and 

does not reliability respond for each tap, making its responses similar for stroking and tapping. 
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Future Directions. A proposed effort is to begin investigating the role of the tactile afferent subtypes at 

the population level. Although it is possible that social touch is differentiable by a single receptor at a 

time, it seems more likely that thousands of afferents in the forearm may respond at once. Various 

statistical and machine learning analyses may allow us to predict the output of many neurons, and 

determine which afferents might be most important at that level. 

 

 

 

 

 

Figure 4.3 A population model of SA-I, C-tactile, and muscle spindle afferents in the forearm for a 

“calming” stroke. The linear model consists of thousands of afferents, with only 1% shown in the 

diagram. 
 

 



73 
 

 

Figure 4.4 A population response to “calming”. With spatial event plots (middle) and temporal firing 

characteristics at the population level (right). Metrics include summed instantaneous firing frequency, the number 

of afferents recruited, and the peak firing frequency. 

 

Further exploration of the population-level encoding would likely require a modeling effort, which we 

have made some progress with. The proposed methodology is to use a computational neural model of 

the forearm as a test-bed for investigating encoding mechanisms (as in Figure 4.3 and 4.4), and then 

validate these mechanisms via psychophysical experiments using simple 3-D printed devices and “expert 

touchers” at Linköping University. First, to investigate perception-level encoding, we propose to build a 

population model of the sensory afferents in the forearm consisting of a few thousand afferents. The input 

to this model will be the measured contact primitives from human touch, as well as some mechanically 

measured quantities investigated in Aim 2 such as shear forces and vibration frequency. The output of the 

model will include spatial firing patterns such as gradient sum and receptor recruitment as well as 

temporal firing patterns such as peak and mean firing rates within each receptor subtype. We plan to use 

gestures measured from Aim 1 as inputs to the model, and perform both machine learning analysis such 

as logistic regression as well as traditional statistical and clustering analysis to determine codes in the 

neural output that best differentiate or represent each gesture. Once coming up with candidate encoding 
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mechanisms, we plan to again use our model to design physical contact inputs that efficiently evoke them. 

Finally, we validate the mechanisms by recreating the physical contact inputs from the modeling in 

human-subjects psychophysical experiments, by employing both 1) simple 3-D printed devices, which 

might limit the contact area or vibrate etc., and 2) “expert touchers” at Linköping University, who will 

perform gestures closely to our designated input (as verified by the motion tracking system). 
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Contributions 

 

C.1 Diagram of my niche in naturalistic/tracked experiments. 
 

Overall, I believe that the main contribution of this dissertation is in combining the quantitative 

measurements characteristic of traditional, controlled experiments with the study of naturalistic 

interactions. By utilizing many disciplines of engineering to rapidly develop highly specialized tools, we 

are able to use tracking to measure specific quantities of interest during naturalistic experiments. The 

tactile system in particular is well suited for this kind of study, as perceptual cues (contact area, force etc.) 

are as much a function of the stimulus as they are a function of how the stimulus is explored. This means 

that study in a natural context is vital towards expanding our understanding of touch perception. 

This approach has allowed us to measure skin-to-skin interactions between humans, and finger pad 

contact with natural materials such as fruit. We have seen that certain cues, when used in a natural 

setting, are more effective or efficient than others. We have also been able to examine peripheral nerve 

responses to their actual stimuli of interest, the touch of another human. In future work, we hope that 

this type of study will continue to get the “best of both worlds” of quantified, natural interaction. 



76 
 

Methodological Contributions 

 

 

C.2 Ink-based method to measure contact area [23], [24], [50]. 

 

With this methodology, the contact area between the finger pad an any type of object can be measured, 

at a peak displacement into the substrate. We initially used this method to simply measure the shape of 

the contact area during an indentation, as many haptic displays in the past had modeled the contact area 

as a simple circle, while the actual shape is more complicated and elliptical. Later, the technique proved 

useful for measuring contact area with curved silicone elastomers of differing radii of curvature, and even 

with soft fruits (plums). The method is very flexible and easy to analyze with simple images. 
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C.3 Force-control circuitry for nonlinear elastic interactions between finger pad and compliant 

stimulus [23], [50]. 

 

I designed a system to control force over time as an elastic stimulus is pressed into the finger pad at 

varying rates. It is effective for stimuli of moduli from 20 to 200 kPa, at rates of about 0.5 N/s to 3 N/s. 

Indenting into the finger pad is tricky because the finger itself is highly nonlinear in stiffness. That is, when 

pressing into the finger at low displacement, the stimulus needs to make large movements to increase 

force---when pressing deep into the finger, however, the stimulus needs to make only very small 

movements. The problem is complicated further in psychophysical experiments, where stimuli of varying 

elasticities need to be changed out quickly without changing the setup. The general principle of this 

circuitry was to measure the force rate (via differentiation of the load cell voltage) and the current velocity 

(from the motion controller). A division is performed by a microcontroller which scales the error signal by 

the instantaneous stiffness (df/dt divided by dx/dt). 
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C.4 Stereo imaging technique to measure 3-d deformation of the finger pad surface [51]. 

 

Although the prior methods to measure contact area were effective for a first look, and were very portable 

to many substrates, we lacked continuous measurement over time, or 3-D spatial detail about how the 

finger pad deforms. With a stereo imaging system, we were able to measure how the finger pad changes 

shape when pressed into transparent silicone elastomers. This process required marking of the finger pad 

with ink in a speckle pattern, and corrections to account for the refraction of light through the silicone. 

Further techniques with the system seek to simplify and smooth the contact region via elliptical fitting of 

the 3-D surface. 

 

cameras

stimulus

finger

indenter

load cell
cantilever
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C.5 Optical and electromagnetic measurement system to quantify skin-to-skin contact in human-

to-human touch [36]. 

 

  

C.6 Optical system for simultaneous measurement of neural responses and skin-to-skin contact 

[26]. 

 

These systems combined optical measurement with electromagnetic tracking. In software, a very simple 

contact model of intersecting 3-D rays was used to estimate hand-to-arm contact between two people. 

The system is novel in that no kind of sensor mat or pad separates the two people, allowing for naturalistic 

contact and touch communication. 
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Main Scientific Contributions 

• Force-area relationships between the index finger and soft, cylindrical stimuli are similar between 

people when the approach angle is consistent. [24] 

• In passive touch, force-rate cues are more effective than displacement-rate cues for 

differentiating stiff elastic stimuli, and can be utilized efficiently at lower displacement and force 

levels. [23] 

• By indenting less compliant material into the finger pad at a lower force-rate than a more 

compliant material, participants can be confused as to which object is softer. [23] 

• The finger pad changes shape (flattens) significantly more when pressing into hard objects as 

compared to soft objects. [51] 

• When pressing into objects harder than the finger pad, the finger first flattens out before 

eventually penetrating into the material. This does not occur for softer materials. [in progress] 

• Humans use 2-5 expression strategies to communicate a set of 6 emotive words, with varying 

velocities, touch durations, and contact areas. [36] 

• Some emotive words such as “attention” are immediately recognized through touch, even with 

significant variability in how the gesture was performed. [36] 

• C-tactile afferents respond well during human-to-human stroking, while Pacinian afferents 

respond in time with tapping gestures. [26] 

• A single afferent of two types (Hair follicle or SA-II afferent) may be capable of discerning a set of 

emotive touch gestures, suggesting the circuitry exists to discriminate social touches very distally 

in the periphery. [in progress] 
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