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ABSTRACT

Mobile devices such as smartphones and smartwatches have fundamentally shifted

the healthcare landscape towards more individualized care. Advancements in pas-

sive sensing over the past decade have enabled consumer mobile devices to conduct

unobtrusive, in-the-moment monitoring of objective features of health and wellbe-

ing. Viewed together, these passively-sensed data comprise a system in which a

user’s context shapes their future health and behavior. In this dissertation, I take

a systems-level approach to understanding health in context. To this end, I present

our work on mobile sensing for symptom and medication adherence monitoring. I

then present COMP-SCT, a novel framework for deriving personal, behavioral, and

environmental features of user context at multiple time scales using Social Cognitive

Theory. I apply COMP-SCT to two case studies, demonstrating its utility in using

personal and behavioral factors such as mood, levels of engagement, and medication-

taking behavior to predict mood and medication adherence among breast cancer pa-

tients. This work advances the state-of-the-art in translating raw, passively-sensed

data into clinically-relevant insights for personal health monitoring in the wild.
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Chapter 1

Introduction and related work

1.1 Background and Motivation

Mobile devices are tightly integrated into the fabric of our fast-paced, on-the-go lives.

Over 85% of people worldwide own a smartphone as of 2021 [1], according to the

Pew Research Center. “Smart devices”, which are easily accessible and affordable

and which come with a plethora of native sensors, can act as digital mirrors into our

well-being by continuously and passively tracking physiological, social, and physical

indicators of our health.

Mobile health, or “mHealth”, is use of mobile technologies for health monitoring

in everyday life. This rapidly-growing field has revolutionized the healthcare land-

scape over the past few decades by delivering low-cost, personalized interventions

to individuals regardless of their location or ability to receive regular in-person care.

Methodological advancements in processing and analyzing mHealth datasets have led

to a deeper understanding of how symptoms of illness manifest in daily life [2, 3, 4, 5],

and have opened the door to personalized interventions delivered at the very mo-

ment they are most needed [6].Heart rate variability can be used to approximate an

1
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individual’s level of stress or physical exertion [4], and audio from voice recordings

can be used to detect positive or negative emotion [7]. Passively-sensed data have

also been used to track disease outcomes and progression by detecting subtle changes

in an individual’s behavior over time. Changes in movement patterns as detected by

GPS, for instance, have been linked to depression [8, 9] and social anxiety [10], and

language patterns in both private and public communications have been linked to

mental illnesses, broadly [2, 3, 11].

Despite these advancements, qualitative and quantitative approaches to mHealth

intervention development remain largely siloed, such that advances in the modeling

and prediction of clinically-relevant indicators of health remain divorced from the

design and deployment of mHealth tools for personal health management in daily

life. Moreover, many mHealth applications lack an explicit theoretical grounding

in behavioral theory [12, 13, 14, 15]. These limitations have led to staggering rates

of dropout [16] for mHealth interventions in the wild and major gaps in the field’s

understanding of the the relationship between user context and broader patterns of

behavior.

1.2 Dissertation Overview

In this dissertation, I present a systems-level approach to mHealth that focuses on

modeling user behavior in context. I ground my approach in Social Cognitive Theory

(SCT), which reasons that personal, behavioral, and environmental factors (i.e., con-

structs) all work together to form the context of an individual’s health and wellbeing.
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Through a series of studies, I demonstrate the utility of SCT construct monitoring

and prediction in oncology contexts.

In this chapter, I review the relevant literature on user context, including measure-

ments of context via digital phenotyping and the relationship between context and

engagement. I also present relevant related works in predicting medication adherence

from passively-sensed data using machine learning, which is the primary focus of my

thesis work.

In Chapter 2, I discuss our work on the Multiscale Monitoring and Intervention

(MMI) system for guiding the design and deployment of mHealth interventions for

medication adherence.

In Chapter 3, I present our qualitative study of lung cancer patients’ perceptions

of and needs for adherence monitoring interventions.

In Chapter 4, I present COMP-SCT, a computational framework for Social Cogni-

tive Theory. I then apply COMP-SCT to two case studies of breast cancer patients

and demonstrate its utility for predicting personal and behavioral SCT constructs.

Finally, in Chapter 5, I summarize my contributions and provide a path forward

for future works in mHealth for user context detection.
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1.3 Understanding User Context

1.3.1 Defining “Context”

Humans are complex beings. Our thoughts and feelings, immediate environment,

and skills and tendencies all collectively work together to influence our everyday

behaviors. In order to understand the behaviors a user exhibits during an mHealth

intervention (and, subsequently, the effectiveness of the intervention), researchers

must first have a firm understanding of the user’s context. Context is both multi-

faceted and complex, and researchers have historically taken differing views on what

exactly “context” comprises. In the thick of the Dot Com era, when computing

devices and personal sensors were rapidly gaining popularity, Salber et al. desribed

context as environmental factors that could be sensed: “location, identity, activity,

and state of people, groups, and objects”. This definition, though perhaps narrow

in scope, reflected a paradigm shift in the field of ubiquitous computing (a parent

field of mobile health) towards personalized sensing. Dourish later envisioned con-

text as a more abstract phenomenon, calling it “an emergent property of occasions

of interaction, rather than being a stable, objective set of features that externally

characterize activity” [17].

Theories of health behavior have also alluded to the meaning of context in differing

ways. The Health Belief Model [18] highlights how a person’s feelings and percep-

tions, as well as internal and external stimuli (e.g., symptoms, advice from trusted

friends or family), form the context that influences a person’s beliefs about their
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disease risk and recommended care. Similarly, the Theory of Planned Behavior po-

sitions context as the collection of an individual’s beliefs about factors such as their

own behavior and subjective norms, which work together to influence a person’s

perceived control and intention to engage in certain behaviors [19]. In this disser-

tation, I draw upon the Social Cognitive Theory (SCT) to define and describe user

context. SCT positions context a system of personal, behavioral, and environmental

influences that, together, shape a person’s health and wellbeing.

Importantly, context is both personal and temporal. It is personal because it is highly

dependent on the individual; no two people can have the same context. Moreover,

it is temporal because it changes over time; one’s context in the present cannot

be the same as it was before. Consider, for instance, a young woman who wears

a smartwatch as she meets a friend at a coffee shop to catch up. Context in this

scenario includes not only the table at which they sit or the kind of coffee they

order, but also the women’s prior experiences and internalized representations of the

world. The smell of a particular coffee blend may evoke pleasant memories, while

the clang of a tray crashing to the floor may evoke a fear response. In either of these

scenarios, the smartwatch might detect a change in heart rate based on the inner

and the outer facets of context at play. Moreover, the woman’s context will continue

to change throughout the course of the coffee chat. If she moves from her chair to a

different table, her location changes; if her friend brings up an unpleasant topic, her

skin may become flushed and hot. These are just a few examples of how context is

both personal and temporal.
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1.3.2 Digital Phenotyping for User Context Detection

Salber et al. described “context aware” applications as those which use context,

often an orchestration of multiple information sources, to modify the behavior of

the application [20]. In the case of modern mobile sensing, the multiple information

sources used to construct context include the native sensors found in any smart-

phone, including GPS, accelerometer, gyroscope, microphone, and the circuitry that

captures call and text logs. The growth of ubiquitous computing, coupled the rise

in popularity and affordability of personal sensing devices, have led to an important

subfield of mHealth focused entirely on harnessing user context: digital phenotyping.

Torous et al. define digital phenotyping as “the moment-by-moment quantification

of the individual-level human phenotype in-situ using data from personal digital de-

vices” [21]. Over the past decade, digital phenotyping has become the gold standard

for context detection and representation in mHealth interventions. A person’s digi-

tal phenotype is a depiction of their daily physiological functioning as inferred from

passive sensor data streams such as GPS, and accelerometer data, as well as from

user-supplied data streams such as ecological momentary assessment (EMA; [22]).

At its core, digital phenotyping aims to quantify what Nahum-Shani, Hekler, and

Spruijt-Metz identified as the static and dynamic (or time-varying) components of

an individual’s context. For instance, an person’s heart rate may rapidly rise as he

begins a brisk jog, then gradually slow again as he winds down from his workout.

This change in heart rate is part of the individual’s dynamic context. In contrast,

factors such as his sex (male) remain unchanged during physical activity; this is his

static context.
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Successful digital phenotyping begins with gathering clinically-relevant data, which

includes all data that can be used to understand more about a person’s physio-

logical, mental, emotional, and social wellbeing. Measures of physiology include

data gathered through low-level sensor streams via smartphones and smartwatches,

such as heart rate, skin temperature, and location and movement (as measured by

GPS, accelerometer, and gyroscope). Measures of mental and emotional wellbeing

typically include mood scores (e.g. anxiety or depression), personality traits (e.g.

neuroticism or openness), and even coping strategies (e.g. dealing with medication

side effects); these tend to be administered at baseline, post-study, and at regular

intervals throughout the course of a study. Finally, measures of socialization and so-

cial wellbeing include audio data captured by a microphone, location and movement

data, and call and text logs. Consider, for example, an individual exhibiting signs of

loneliness. The microphone on her phone can pick up the sound of her talking with

someone else, and call and text logs provide hints that she is communicating with

others at certain times [5].

1.3.3 A Systems-Level View of Context Detection

Early successes in capturing user context via digital phenotyping represented a col-

lective watershed moment for the relatively young field of mobile health. On the one

hand, the ease with which technology could be leveraged to produce a more granu-

lar representation of human behavior was a promising step toward behavior change

interventions. On the other hand, existing theories of behavior change could not ade-
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quately explain how humans might react to the immediate “nudges” or feedback that

mobile devices can provide [23]. This tug of war between older theories and newer

technologies has led to the development of various frameworks for user context de-

tection. mHealth frameworks are designed to guide the development of interventions

and vary in both scope and purpose. One of the early well-known frameworks for

user context representation is Salber et al.’s Context Toolkit, which introduced the

concept of ”context widgets” that abstract the low-level complexity of sensors in a

modular way [20]. Importantly, the Context Toolkit laid the foundation for modern

sensing protocols for activity, location, and identity sensing. Other frameworks soon

followed, with some such as Mohr et al.’s Behavioral Intervention Technology (BIT)

model [24] taking a more theoretical approach. The BIT ties theoretical aims and be-

havior change theories to practical implementations of behavior-change interventions.

The BIT model specifically laid the foundation for how behavior change interventions

that leverage digital phenotyping might collect and transfer data between data stor-

age containers (e.g., databases), intervention planners (e.g., algorithms for mapping

data to interventions), and the user interface (e.g., a mobile phone screen). Other

notable comprehensive frameworks include Cheng et al.’s OmniSense framework for

context detection using mobile phones [25], Chow et al.’s DEMONS framework for

physiology and self-reported affect [26], and Doryab et al.’s generalizable framework

for feature extraction from time series data [27]. Notable contributions have also

been made in area of systems development, which focuses on the mechanisms that

facilitate the capture and processing of raw sensor data. These include the Ohmage

participatory sensing system [28, 29], Ferreira et al.’s AWARE framework for mobile
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context instrumentation [30], Chow et al.’s opportunistic and participatory sensing

system for social anxiety [31], the Sensus mobile sensing system [32], and the mCere-

brum platform for digital phenotyping [33].

1.3.4 Open Challenges

Battery Life

One of the prominent challenges across studies of human behavior using digital mo-

bile devices is battery life. The relatively short battery life of many consumer-grade

wearables [30, 34] and the battery drain caused by mobile sensing platforms [35] can

cause frustration for the user, as they are required to recharge their device more

frequently which, in turn, disrupts their daily routine [36]. Moreover, these power

consumption issues can cause problems for researchers, leading to missing data when

a device suddenly shuts off for lack of battery power, or when the user has forgotten

to charge the device [6, 36]. Recent works have proposed solutions for smartwatch

battery drain, including changing the color of the display to be more energy efficient

and optimizing CPU usage based on workload [34]; such strategies could likely be ex-

tended to smartphones. Ideally, sensor collection platforms should be built from the

ground up with battery and performance considerations in mind, so that platforms

like Ferreira et al.’s AWARE framework [30] (which did not significantly increase

battery drain) can become the norm.
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User Burden

User-initiated content is a foundational building block for context representation

within mHealth systems [30]. Many context-detection studies rely on frequent user

input collected via ecological momentary assessment (EMA) [22], an approach to

capturing in-the-moment measures of user context and behavior [37]. EMA is gen-

erally preferred as a data-gathering strategy because it avoids the recall bias from

which more traditional retrospective analyses suffer and because it cultivates fea-

ture granularity. EMA questions are often delivered as surveys to a smartphone

or wearable device, either at fixed or random intervals throughout the day. Unlike

the native sensors in smartphones and smart watches, which passively capture data

without requiring user input, EMA requires user response to capture a meaningful

depiction of user context, and thus frequently interrupt the user’s daily routine. The

influx of notifications from EMAs renders mHealth devices vehicles a major source

of user fatigue [38] and may place an undue burden on the user over long periods

of time. This prolonged burden can lead to attrition [39, 40] and, consequentially,

less data from which to learn user behavioral patterns. Consider a machine learn-

ing classifier that trains only electronic health record (EHR) data. This classifier

might suffer low accuracy rates without information provided by the user, such as

family history of disease or date of diagnosis of depression, as these factors are of

critical import when searching for factors that influence both disease and treatment

outcomes. Similarly, mHealth applications will lack a fundamental understanding of

context without some form of user-inputted data, such as one’s baseline depression

score or “home” GPS location; the user must become a context sensor, in some sense,
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to generate meaningful data [30].

1.4 Understanding User Engagement with mHealth

interventions

This section is adapted from forthcoming work conducted with Dr. Sonia Baee and

colleagues on attrition prediction in electronic health (eHealth) studies.

1.4.1 Quantifying Engagement and Attrition

A key part of understanding an individual’s context is understanding their actions.

User engagement, in the mHealth literature, describes an individual’s interactions

with a given intervention and their level of motivation during these interactions [41].

Measures of engagement captured by passive sensing devices can reveal much about

a user’s context, such as the time of day at which a user is most receptive to changing

their behavior. Measures of engagement in mHealth interventions include, but are

not limited to, the number of questions completed, number of total clicks on the

intervention content, time spent on each page, and time at which the user completes

a questionnaire. Recent works have found success in extracting behavioral features

from log of usage data, including duration [42, 43, 44], number of actions [42, 44], du-

ration per session [44] and duration between sessions [45]. Sustained engagement with

mobile interventions over the course of treatment is a common and persistent prob-

lem [16, 46]. In his seminal 2005 paper, Eysenbach characterized the phenomenon of



12 CHAPTER 1. INTRODUCTION AND RELATED WORK

attrition, which occurs when participants either leave the study prematurely or are

lost to followup [16]. Attrition is inherently linked to engagement, such that inter-

ventions which fail to properly sustain the user’s interest and attention may lead to

the participant giving up on the intervention entirely. Attrition is a particular threat

to mHealth interventions in that it can bias the results and limit the generalizability

of intervention studies, given that only a small, potentially homogeneous participant

population remains. Researchers have therefore invested a great amount of time

into quantifying attrition, with the goal of preventing it be fore it happens. Ap-

proaches to attrition analysis remain divided between academic disciplines. Among

psychologists and psychiatrists, the early pioneers of eHealth interventions, attri-

tion analysis is primarily comprised of statistical modeling using techniques such as

ANOVA and regression [47, 48, 49]. Researchers within computer and data science

and outside academia, in the mobile gaming industry, have found recent success in

predicting attrition (“churn”) using more advanced techniques such as linear mixed

modeling [50], survival analysis [42], probabilistic latent variable modeling [51], and

neural networks [42, 43, 52, 53, 54].

1.4.2 Factors Which Influence Engagement and Attrition

Both demographic and behavioral factors have been shown to influence engagement

and attrition in mHealth interventions. In particular, age, gender, race, and edu-

cation have been shown to be predictive of attrition [49, 55, 56]. Ben-Zeev et al.’s

evaluation of the FOCUS program for schizophrenia found that younger, white, fe-
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male participants were the most engaged with the intervention [57]. Further, Blixen

et al.’s focus group study with individuals with comorbid bipolar disorder and hy-

pertension uncovered common issues associated with both medication nonadherence

and lack of engagement with the SMS-based intervention [58]. These factors in-

cluded forgetfulness (most common), being very busy, concerns about side effects,

impaired decision-making due to BD, and the feeling of having too many medications

to manage. Notably, these studies highlighted the potential for decreased engage-

ment among populations that have suffered systemic disadvantages, such as lack of

access to quality medical care and safe, affordable housing.

Intervention design also plays an important role in engagement and attrition. Design

choices such as the level of personalization in the intervention, the user’s perception

of the intervention’s effectiveness, and the availability of human support during the

intervention [59] all affect whether a user is likely to drop out. Studies aimed at

attrition reduction have also explored the effectiveness of rotation of intervention

components, in which different pieces of the intervention are cycled out to provide

variety to the user. In a 2018 study of a web browser designed to help users take better

control over the time they spent online, the authors found that rotation functioned

as a “double-edged sword”, increasing both engagement and attrition [50]. However,

including components such as a popup warning of the next rotation helped mitigate

the overall negative impact on attrition.

Patients have also identified several key factors that impact their engagement, the

first of which is patient-provider communication. Brath et al. examined the use

of the medication adherence measurement system (mAMS) and a telehealth system
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with short message service (SMS) reminders among 150 older adults with comorbid

cardiovascular risk [60]. Participants appreciated when their doctor was attuned

to their adherence or nonadherence, indicating that closer direct (or perceived) in-

volvement from doctors may help increase engagement. Similar calls for increased

provider involvement, such as via two-way patient-provider communication channels,

were raised by Chiang et al’s cohort of patients using the WelTel antiretroviral ther-

apy platform [61] and by Hilliard et. al.’s cohort of cystic fibrosis patients [62].

Another factor participants value is social support from family and friends, who help

remind patients to take their medication regularly and help them to stay on track

with their treatment [58]. Indeed, patients have requested that additional resources

for accessing social support be included in mHealth applications [38, 62]. Finally,

participants value control, such as the ability to customize and personalize content.

Blixen et al.’s cohort indicated that they would be more likely to engage with the

intervention (and thus adhere to their medications) if it allowed them to person-

alize the content sent to them via SMS [58]. Likewise, Guo et al.’s cohort desired

feedback personalized to individuals as well as to subgroups of persons living with

HIV [38]. These calls for personalization point to a need to explore the impact of

partial user control on adherence and engagement, as well as factors like self-efficacy.

Kannisto et al.’s work using Mobile.Net with individuals with serious mental health

issues is one of a few mHealth studies that allowed for partial user control over

the intervention [63]. Participants were allowed to help customize the timing and

number of message reminders sent to them, as well as the content of the messages

themselves. Interestingly, attrition was quite low for intervention (4.8%), though the
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authors note this may be to underreporting of dropout by participants. Regardless,

this study presents interesting implications for the interplay between personalization,

engagement, efficacy, and attrition.

1.5 Modeling User Behavior in Context: The Case

of Medication Adherence

1.5.1 Measuring and Monitoring Adherence

With the increasing threat of chronic diseases such as cancer to the global popula-

tion, increased attention has been dedicated to studying medication adherence and

its associated behavioral context in a variety of patient populations. Medication

adherence is “the extent to which a person’s behavior corresponds with agreed upon

recommendations from a health care provider” [64]. Adherence rates among cancer

patients tend to vary widely; among breast cancer patients, for instance, a systematic

review found adherence ranges from approximately 40% to 70% [65]. This variation

can be explained, in part, by the multitude of factors that impact adherence. These

include self-efficacy, socioeconomic status, depression or mood, cognitive or phys-

ical functioning, side effect severity, cost of care, beliefs in the importance of the

medication, communication with clinicians, and social support [66, 67, 68, 69]. The

definition of adherence varies from study to study [67] and is therefore difficult to

measure. Researchers and clinicians are increasingly seeking more accurate ways to
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measure adherence rates among patients taking oral anticancer medications at home,

as well as ways to monitor patients for possible side effects or adverse events.

Previous studies have primarily measured adherence via traditional methods such

as blood tests or self-reports [70]. More recent studies, however, have incorporated

the use of Medication Event Monitoring Systems (MEMS), which can detect when

the user has taken their medication [71, 72] MEMS offer several advantages over

traditional methods: they are non-invasive, do not encourage recall bias, and reduce

intervention fatigue by fitting into the person’s daily life, and are a valuable tool

for measuring adherence over time. While early MEMS devices tended to be simple

sensor-equipped pill caps, the definition of “MEMS” has broadened significantly to

include Bluetooth-connected pill bottles and boxes [73], wearable sensors [74], mo-

bile apps [75, 76, 77] ingestible sensors [78], and even entire systems of mHealth

devices. Modern MEMS technologies can be used to passively track not only pa-

tients’ adherence, but also related factors, such as symptoms and problems during

treatment [79]. These devices can easily capturepatient reported outcomes (PROs)

such as sleep quality, medication side effects, and mental wellbeing in real time and

may lead to better overall outcomes for patients whose physicians closely monitor

their reported progress [80]

1.5.2 Predicting Adherence

Machine learning (ML) has revolutionized the process of transforming passively

sensed data into actionable predictors of human health and behavior. ML models can
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process enormous amounts of complex, multimodal behavioral data in a relatively

short amount of time, learn important patterns from this data, and make predictions

about a patient’s future outcomes based on those patterns. Unsurprisingly, generat-

ing predictions using ML models comprises a major portion of digital phenotyping

research.

Recent advances in machine learning have enabled large-scale studies of adherence

over time with little burden on the patient. Adherence prediction studies commonly

use supervised learning, a form of machine learning which learns to predict outcomes

for labelled sample data based on the qualities (features) of the data. Supervised

learning models take, as their input, a dataset D containing labeled, i.i.d. vectors:

D = ((x1, y1), ...(xm, ym)); x ∈ X, y ∈ Y [81]

where X is the input space and Y is the output space. The model learns a mapping

f : X −→ Y from D. Supervised learning can be performed as a regression, in

which the model predicts a continuous outcome (a probability), or classification, in

which the model predicts a binary outcome. In the case of medication adherence,

a regression task might predict the probability that a patient will adhere to their

medication, while a classification might simply predict whether they will be adherent

or not.

A number of recent studies have leveraged mobile sensing and machine learning tech-

niques such as supervised learning to reveal important findings about the context(s)

of medication-taking and the nature of adherence prediction. Accelerometer data,
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for instance, has been shown to be predictive of adherence-related actions such as

removing a pill from a blister pack [82], placing the pill in one’s mouth [82], and

swallowing a pill [74].

Studies of human behavior such as medication adherence have shown the importance

of using features of prior behavior to predict future behaviors. Yet, time series data

are structured to contain one observation per unit of time. Incorporating prior

measures necessitates a change to the structure of time series data prior to feeding

this data into a supervised learning pipeline. One popular restructuring technique is

the sliding window method, which constructs one vector per unit of time (e.g., day,

week) for which we want to predict our outcome. Each vector contains the values

of the outcome we want to predict for the previous N units of time, where N is

selected apriori; these are called lagged features. Additional lagged features which

are not directly related to the output can also be included. In the case of predicting

future medication adherence, for example, we might be interested in prior values of

adherence as well as prior self-reported mood.

As a simplified example 1, let us formulate a univariate time series prediction task

with dataset D. Let us call our output space D′. For each vector vt = (xt, at+1) in D,

input xt contains exactly one variable: at, the patient’s adherence at time t. Thus we

want to predict output at+1, the patient’s adherence at the next time step. Further,

let us select a window w, and let us assume is optimal. For each vector vt, we will

generate a new “windowed” vector v′t by prepending prior adherence values from the

1Adapted from examples by Jason Brownlee: https://machinelearningmastery.com/time-series-
forecasting-supervised-learning/ and Pablo Ruiz: https://towardsdatascience.com/ml-approaches-
for-time-series-4d44722e48fe
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Figure 1.1: Sliding Window Algorithm Visualization

most recent w − 1 time steps to the original vector; vectors for which w − 1 prior

values of adherence are unavailable are dropped from D. This approach leads to a

“sliding window” effect because, for each new vector, we have effectively shifted our

view of the previous adherence data forward by one time step. Figure 1.1 provides

a visualization of a simplified example of the sliding window method for a window

of size w = 3 and six total days of adherence data. For further reading on similar

approaches, I refer the reader to [83].

Studies which have utilized lagged input features have been particularly successful in
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uncovering relationships between prior adherence and future adherence at different

timescales. Koesmahargyo et al., who sought to predict nonadherence from recorded

videos of patients taking their medication, showed that more recent data (e.g., data

from the prior day of the study) was more predictive of future adherence than less

recent data (e.g., data from the first 7 days of the study) [84]. Importantly, authors

also demonstrated an inverse relationship between the number of input features and

the false positive rate, and showed that predictive performance is improved with more

granular prediction horizons. In other words, leveraging more information about

previous adherence can lead to better predictive outcomes, and predicting adherence

in the near future (e.g., next day adherence or next week adherence) is more feasible

than predicting adherence for the entire remainder of the study. In a similar vein, Gu

et al. [85] and Gu et al. [86] conducted two related studies on predicting adherence

to injectable medications. The authors not only confirmed Koesmaharygo et al.’s

findings that prior adherence is highly important for predicting future adherence,

but also made several novel advances in the areas of feature selection and lagged

input selection. Namely, they showed that tree-based classifiers such as Random

Forest (RF) may be useful for finding the optimal number of lagged inputs and

most predictive features, and that combining input optimization, feature preselection,

undersampling, and gridsearch with cross-validation may lead to excellent predictive

performance (>0.8 AUC) provided that enough samples are used.

Importantly, more advanced models are not always required to achieve good predic-

tive performance in adherence prediction tasks. Tree-based models such as Random

Forest tend to perform quite well in practice [87], sometimes even outperforming
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more complex models such as neural networks [88, 89].



Chapter 2

Leveraging Mobile Sensing to

Improve Medication Adherence

2.1 Introduction

Medication adherence is defined by the World Health Organization (WHO) as ”the

extent to which a person’s behavior (taking a medicine), corresponds with agreed

upon recommendations from a health care provider” [64]. Adherence to long term

therapy for chronic illness in developed countries is about 50% [64]. Interventions

aimed at increasing medication adherence have the potential to provide a signifi-

cant benefit through both primary prevention of disease risk factors and secondary

prevention of adverse health outcomes. In fact, increasing the effectiveness of med-

ication adherence interventions may have a far greater impact on health outcomes

than any improvement in specific medical treatments [90]. The impact of poor ad-

herence to medications is expected to continue to increase as the burden of chronic

22
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disease increases globally. Endocrine therapy, including aromatase inhibitors and

Tamoxifen, is prescribed for at least 5 years after individuals have been treated for

hormone receptor-positive breast cancer to prevent recurrence of their cancer. Ad-

herence to these medications (defined as 80% or more doses taken as prescribed) is

associated with significant increases in recurrence-free survival [91]. Despite the life-

saving benefits of these medications, rates of persistence and adherence are low [91],

with post-treatment adherence ranging from 41% to 72% and discontinuation ranging

from 31% to 73% [65].

Increasing adoption of smartphones has led to an upsurge in applications targeted at

improving medication adherence. However, these technologies have focused mainly

on cognitive factors contributing to nonadherence, such as managing multiple medi-

cations [92]. Existing mobile applications fail to account for an individual’s specific

risks and fail to personalize the interventions delivered according to those risks.

Furthermore, very few interventions have been assessed for efficacy in supporting

adherence [93].

2.1.1 Contributions

In this chapter, we propose a new integrated system for long-term monitoring of med-

ication adherence consisting of sensor-rich smartphones, wireless medication event

monitoring systems (MEMS), wireless beacons, and wearable sensors that collect in

situ data on adherence. This data will be used to understand and model medication-

taking behaviors, develop context-sensitive models to predict nonadherence, and de-
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velop and deliver personalized interventions to improve medication adherence. The

novelty of this project lies in its capturing of the multidimensional complexities of

medication adherence using ubiquitous mobile sensing technologies and in using these

sensed data to understand medication-taking behaviors, predict individual risk fac-

tors, and design and deliver interventions to improve adherence at the optimal time

and in the optimal context.

This chapter is based on our work on modeling and intervention for medication

adherence in context [94].

2.2 Background and Motivation

2.2.1 Defining and Measuring Medication Adherence

Medication adherence is defined as whether patients take their medication as pre-

scribed [70] and is critically important for effective medical treatment. Methods for

assessing medication adherence are categorized as either direct (e.g. directly mea-

surement of medicine or biomarkers in blood) or indirect [95] (e.g. patient self-report,

pill counts, and pharmacy refills [70]). Indirect methods, in particular, have several

notable limitations. Self-reports are often biased by inaccurate patient recall or so-

cial desirability. Pill counts, meanwhile, do not accurately capture exact timing of

medication-taking and can be easily manipulated by patients (e.g., pill dumping).

When used alone, these methods fail to provide a deeper contextual understanding

of reasons for medication adherence or nonadherence.
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Interventions to Increase Medication Adherence

A 2014 systematic review identified 17 randomized controlled trials that evaluated

the efficacy of medication adherence interventions [90]. Only five of these studies

found medication adherence interventions were associated with both increased ad-

herence and better clinical outcomes, even though most interventions studied were

complex and required significant time of healthcare staff. This systematic review

concluded interventions may not have been effective because there is a lack of un-

derstanding of barriers to adherence and the context in which adherence and non-

adherence occurs. Another review of 229 smartphone reminder applications (apps)

determined that a “one size fits all” timer-based reminder was largely ineffective be-

cause it did not consider a user’s routine [75]. Taken together, these reviews indicate

that previous interventions to increase medication adherence have broadly targeted

factors associated with lack of adherence across groups of individuals. However, these

intervention approaches may not be relevant to a specific individual at the time and

in the context that it is delivered and are not sustainable because of the high burden

on health care providers and the healthcare system.

2.2.2 Factors Associated with Medication Adherence and Non-

adherence

Substantial research documents reasons why individuals do not adhere to prescribed

medications, including endocrine therapy, a life saving medication taken by some
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cancer survivors to slow or stop cancer growth. We examine factors associated with

medication adherence and nonadherence through the lens of Social Cognitive Theory

(SCT) [96], a commonly used health behavior theory which can facilitate better

understanding of the context of medication taking by evaluating how environmental

factors, personal factors, and a person’s behavior interact. The SCT guides the

selection of constructs in our new medication adherence framework and will also

guide intervention development.

Personal Factors: Physiological, cognitive, and affective states affect long-term ad-

herence to medications. Physiological factors significantly associated with endocrine

therapy nonadherence include side and adverse effects and functional impairment

[65, 91]. The two strongest cognitive predictors of adherence, generally, and en-

docrine therapy, specifically, are self-efficacy and positive beliefs regarding the im-

portance and necessity of medications [91]. In addition, individuals who are poorly

informed about side effects are less likely to adhere to any medication, including

endocrine therapy, and that updating patients’ knowledge regularly can improve ad-

herence. [97]. Affective states associated with lack of adherence to medications are

distress, depression, and fear of cancer recurrence [65, 91].

Environmental Factors: A person’s social environment, physical environment,

and the health system environment influence whether or not an individual takes

medication. Having less than desired social support for taking the medication is

linked to endocrine therapy nonadherence [65, 91]. Medication adherence is asso-

ciated with positive interactions with health care providers who provide medication

reminders [91]. Family members also facilitate medication adherence through re-
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minders [91]. Medication adherence can also be facilitated by aspects of the physical

environment; people frequently place medications in places where they frequently

go so that they remember to take them [91]. Health system environments can also

affect medication adherence, such as via costs of medication [65, 91].

Behavioral Factors: Medication-taking occurs in the context of other behaviors

which can serve as a cue to action to initiate the behavior of interest (e.g., brushing

teeth, eating breakfast) [98]. Having a routine or schedule for medication-taking may

facilitate adherence [91]. To date, the field has been limited in monitoring multiple

factors simultaneously due to limitations in technologies to collect the data and model

these factors dynamically. However, the emergence of mobile technologies enabling

remote health monitoring and studying human behavioral dynamics [32, 99]. An

understanding of the interaction of environmental, personal, and behavioral factors

associated with medication-taking in each individual will enable the development of

personalized approaches to prevent medication nonadherence [100].

Mobile Sensing and Modeling

Smartphones and wearable technologies have arrays of embedded sensors that mea-

sure mobility, location, acoustics, and ambient light. These sensors can be harnessed

to passively capture information related to users’ personal and environmental factors

and behaviors, so long as individuals carry or wear the devices. These technologies are

modernizing patient care with capabilities such as sending and receiving clinically-

relevant messages and supporting illness management and treatment applications.
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Most approaches require individuals to actively engage with the device by respond-

ing to prompts or launching an app. However, smart devices and remote sensing

technologies can also facilitate behavioral tracking techniques that require little to

no active response from the user, thus decreasing patient burden.

Mobile behavioral sensing has been used to draw inferences about how and where

individuals spend their day and to track behaviors associated with stress and changes

in mental health over time. Ben-Zeev et al. used a mobile sensing application to

gather GPS, activity, and sleep data in tandem with daily stress ratings gathered via

EMA. They identified relationships between sensed data such as sleep and activity

and changes in stress and mood [101]. Boukhechba et al. showed that sensed features

such as location entropy can be used in tandem with social anxiety baseline mea-

sures to predict symptom severity [102]. Further, Gong et al. found that increased

accelerometer movement is tied to social anxiety symptoms for activities in certain

contexts (e.g. when making a phone call) [99]. The methodologies and metrics from

such studies are promising, demonstrating that complex human behavior and psy-

chological states can be inferred from multimodal data. However, no current sensing

systems have been implemented to provide continuous monitoring within and outside

the home to monitor and support long-term medication adherence.
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Figure 2.1: MMI sensing framework and data flow overview

2.3 Proposed Framework: Multiscale Modeling and

Intervention System (MMI)

Social Cognitive Theory (SCT) [96] indicates medication-taking behaviors are per-

formed in the context of an individual’s environments (e.g., work, social) and other

behaviors (e.g., eating) and are influenced by personal factors (e.g., cognition, emo-
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Table 2.1: SCT Constructs, Measurement Methodology and Exemplar Features

SCT Construct Data Sensors Features

Personal

Hot flashes, rash,
pain, fatigue, stress,
cognition (e.g. brain
fog)

Galvanic skin
response (GSR),
electrocardiogram
(ECG), GPS,
accelerometer,
gyroscope

Heart rate variability,
body temperature,
breathing rate, range of
movement, times of day
for reduced movement

Behavioral

Sleeping, eating,
medication-taking,
exercising (e.g.
walking or running)

ECG, gyroscope,
accelerometer,
MEMS cap, GPS

Heart rate variability,
movement velocity,
movement variation,
location

Environmental

Social interactions
(type / quality /
with whom),
patient-provider
communication

Microphone, GSR,
ECG, accelerometer,
gyroscope, GPS,
app usage logs,
call/text logs

Audio signals, social
media activity,
semantic location
diversity, text and call
frequency, app use
frequency

tion, experiences of side effects). A deeper understanding of the context of medication-

taking will provide us with information about how, when, with whom, and where

medication is taken. Consequently, we propose a new sensing systems framework,

the Multiscale Modeling and Intervention (MMI) system, for modeling the

simultaneous interacting behavioral, environmental, and personal factors that in-

fluence medication adherence or nonadherence. We are applying this framework to

breast cancer survivors who have completed most treatment and are prescribed long

term endocrine therapy. This framework is grounded in SCT and accomplishes four

main goals: it 1) senses medication-taking behaviors in context (i.e. sense personal,

environmental, and behavioral parameters,) 2) models the complex constructs of

medication-taking behavior in context, 3) identifies person-specific constructs and

constraints, and 4) establishes a methodological foundation for creating personal-
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ized interventions to improve medication-taking behavior. Figure 2.1 provides an

overview of the MMI system, and Table 2.1 demonstrates how sensed data map to

the three key SCT constructs. We now highlight the MMI system components and

design considerations in light of the aforementioned goals.

2.4 System Components

The MMI sensing system unites multimodal sensor data from smartphones, wear-

able sensors, wireless beacons, and smartphones. In particular, the Sensus adaptable

sensing system [32] is central to the MMI system enabling the collection of behavioral

data via ecological momentary assessments (EMAs) and smartphone and wearable

sensor data. Medication-taking is measured using MEMS devices which do not pro-

vide users with feedback regarding previous opening of the bottle. Bluetooth beacons

are integrated into the system to transmit environment-specific contextual informa-

tion to the user’s smartphone. Specifically, these beacons are used to sense proximity,

temperature, and ambient lighting levels in a participant’s significant physical en-

vironment locations (e.g. home). These contextual data are then used to learn an

individual’s event patterns. For example, placing a beacon in an individual’s kitchen

(e.g., physical environment) will allow the system to learn when they are likely hav-

ing a meal (e.g. engaging in a common behavior). Passive sensor data from smart

devices are coupled with EMAs to collect self-reported ground truth for dynami-

cally changing measures of SCT constructs (e.g., side effects, behaviors related to

medication adherence). Participant burden in responding to EMAs is minimized by
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keeping assessments brief and leveraging smart-sensing plans to trigger prompts. For

example, environmental context (e.g., GPS, beacons) can be leveraged to infer that

a participant is eating and prompt the user to confirm.

Figure 2.2: A polar coordinates plot demonstrating patterns of medication-taking
behavior in breast cancer survivors leveraging MEMS over a eight-month period;
consistent evening pattern (patient ID: 72), changing patterns (patient ID: 45) and
random pattern (patient ID: 53). Blue dots are the MEMS data in the weekday and
red dots present the data in the weekend.

2.5 Design Considerations

2.5.1 User-centered Design

Including users throughout the process of the MMI system design, as well as keeping

users engaged with interventions that arise from the design process, is of critical

importance. We will conduct participatory design interviews with breast cancer sur-

vivors to assess both the usability and acceptability of MMI system components (e.g.

wearable sensors, MEMS caps, and EMAs). We will also examine critical markers
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of engagement captured by the system, such as dwell time on tasks (e.g removing

a MEMS cap or responding to a survey) and task sequences (e.g. responding to

a survey, then removing a MEMS cap). These markers are particularly useful for

inferring common behavioral constructs and for optimizing intervention timing to

maximize engagement. For example, consider a routine such as brushing one’s teeth

at night. Inferring the time at which this behavior typically occurs (e.g. 8pm) and

the behavioral context that is likely to follow (e.g. sleeping) could help the MMI

system know when to deliver a reminder to take a medication prescribed to be taken

at bedtime. Another example of an engagement strategy the MMI system could em-

ploy is a web-based dashboard which displays adherence rates for the past week as

well as motivational messages encouraging patients to stick to a medication routine.

2.5.2 Privacy and Security

The MMI system will collect personal and sensitive data, and thus, specific strategies

need to be taken to ensure the preservation of user privacy and data security. We

will leverage MEMS and wearable devices that offer a secure on-board storage infras-

tructure and transmission protocols. Participant data will be transferred via APIs

that adhere to industry standards (e.g. use TLS encryption and trusted tokens) and

will be stored in a HIPAA compliant cloud. We will leverage privacy-preserving data

processing methods for potentially identifiable data, such as GPS location, which

could be abstracted into clusters to avoid a situation where a user’s precise location

could be pinpointed.
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2.5.3 Energy-Efficient Sensing

One of the critical challenges of mobile sensing research is creating energy efficient

systems that minimize power consumption while capturing enough information to

measure / predict user context. Adaptive sensing methods can be used to control low-

level sensing cycles to collect data only when needed hence minimizing the a device’s

computational usage (e.g. collect motion data only when the device is moving).

Furthermore, machine learning methods can be leveraged to learn when to turn on

a specific sensor based on an individual’s patterns of daily living.

2.6 Social Cognitive Theory: A Strong Theoreti-

cal Foundation

SCT has been used extensively in understanding, predicting, and facilitating adher-

ence to a wide range of behaviors, including medication adherence. The benefit of

applying SCT to complex behaviors like medication adherence is that it includes

the concept of reciprocal determinism and thus considers interactions among envi-

ronmental, personal, and behavioral factors associated with the medication-taking

behavior. We hypothesize not only that the interaction between these factors con-

tributes to medication use, but that a change in one factor may affect other factors to

increase or decrease the likelihood of medication adherence. Other health behavior

theories, which are less complex, use similar constructs but do not include reciprocal

determinism.
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Payne et al.’s systematic review showed frequent adaptation of SCT constructs to

mHealth interventions, providing evidence of feasibility for our approach [103]. No-

tably, however, none of the previous works mentioned in this review present a frame-

work that has been developed and validated for the purpose of medication adherence.

The MMI system represents the first framework developed by a transdisciplinary

team of researchers oriented toward improving medication adherence in situ.

Preliminary work from our team has already yielded rich insights into medication-

taking behavior patterns and represents a key first step toward building the MMI

framework on SCT constructs. Boukhechba et al. analyzed data assessing medication

adherence of 33 breast cancer survivors taking endocrine therapy medication using

MEMS over an eight-month period [97]. These results indicate that breast cancer

survivors have diverse patterns of medication-taking behavior over the course of the

monitoring period.

Figure 2.2, provides a visualization of three of these breast cancer survivors’ patterns

of endocrine therapy medication taking over the study period according to the time

of day that each person took her medicine. Participant 72 nearly always took the

once daily pill in the evening, participant 45 took the pill in the morning initially

and then switched to the evening, and participant 53 took the daily medication at

various times of the day with no noticeable pattern. It is important to note that,

the MEMS devices used in this study provide no feedback to the user; however, we

saw numerous instances of medication non-adherence suggesting that there was not

a substantial Hawthorne effect.
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Figure 2.3: Mapping personalized intervention options to contextual factors

2.7 Sensing and Modeling Medication-Taking Be-

haviors in Context

Medication-taking behavior is part of a person-specific human behavior system and

is a system itself. Understanding the complex system of adherence-related context

requires comprehension of both stable and dynamic variables. Static variables refer

to characteristics of one’s life which infrequenly or never change, such as personality,

intelligence, and some demographics. Dynamic variables, on the other hand, refer to

frequently-changing characteristics such as medication side effects, disease symptoms,

health system interactions, social interactions, and behavioral contexts. In order

to capture both static and dynamic variables, the data collected from the MMI

system is translated into contextual features within the SCT framework (Figure
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Figure 2.4: Conceptual representation of SCT framework. Interventions will be
designed to influence the personal, behavioral, and environmental factors in order to
facilitate better medication adherence.

2.4). Machine learning methodologies (e.g., network analysis, hierarchical sampling

for active learning) can then be used to discover the complex structure of medication-

taking behavior.

2.8 Identifying Person-Specific Constructs and Con-

straints

Recent works in multiscale pattern recognition has demonstrated that information

fusion methods provide richer information than isolated data-driven models [99, 102].
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The MMI framework uses pairwise sensor fusion methods at several junctures. For

example, fusing information from communication events (identified from call and

text logs) and fine-grained motion sensor data yields a reliable behavioral marker of

social anxiety levels [99]. High-fidelity time-series data can generate features from

sliding windows or change-detected windows, and extracted features can be clus-

tered to identify the semantics of activities. For instance, the relationship between

accelerometer data and heart rate data can be examined to understand how stress

manifests in daily life. Although the information from an accelerometer sensor is not

accurate enough to identify the complex entities of the human activities in daily life

(e.g., sleeping, typing), additional integrative models which include heart rate, skin

temperature, skin conductance, and other information (e.g., GPS changes, call and

text, and EMAs) can be used in combination to more closely approximate activity.

2.9 Development of Personalized Interventions

Development of personalized interventions within the MMI system is achieved via

intervention modules, which address patient-specific needs or barriers to medication-

taking at time and place that is most convenient for the patient. Modules incorporate

constructs from SCT and include delivery of brief content (e.g., text, audio, video)

on the mobile phone via an app, or on the smartwatch, as well as phone calls and text

messages providing personalized content. Interventions are designed to only involve

the patient’s health care team in addressing barriers that require their assistance,

reducing the burden on both patients and health care providers. We note that
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frequent low-level interventions, such as reminders, may annoy the users or the users

may habituate to them and ignore them. Therefore, determining drawbacks and

constraints of contextual factors such as notification fatigue will be a critical step in

designing future intervention modules.

Intervention modules are guided by Intervention Mapping [104], an intervention

development model used in public health and behavioral sciences. Intervention Map-

ping includes six steps: logic model of the problem, a logic model of change, program

design, program production, program implementation plan, and evaluation. The

knowledge learned from the computational models employed in the MMI framework,

such as the contextual factors of medication-taking behavior and the constraints of

these factors, are uniquely tied to the intervention approaches in the following ways:

1) determining behavioral and environmental outcomes the intervention is targeting

(e.g., remembering to take the medication on weekends); 2) stating performance ob-

jectives for each outcome; (e.g., realizing that your routine is different on weekends,

linking medication to a behavior performed every weekend); and 3) determining es-

sential and changeable determinants using SCT (e.g., determining behaviors that are

performed every weekend, placing medication in a visible place after it is taken on

Friday) of behavioral and environmental outcomes as indicated in the data collected

from the MMI system.
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2.10 Deployment of the System with Integrated

Personalized Interventions

The natural progression of the development of the MMI system will be deployment

with real breast cancer survivors prescribed endocrine therapy. This deployment will

enable our team to refine the MMI system based on user feedback. Participants will

be instructed to use the MMI system for several months so that the MMI system

can learn about the participants’ natural medication taking behaviors. Based on

data collected during this period, our team will then develop and clinically validate

specific intervention approaches targeting reasons for non-adherence.

The MMI system offers both flexibility and personalization in delivery of interven-

tions. For example, modules may include delivery of brief content (e.g., text, audio,

video) through the mobile phone via an application or through the smartwatch, phone

calls, and text messages providing personalized content, or contact with healthcare

providers or other significant people in the patient’s life. Modules will be delivered

at the precise time that the intervention is needed. For example, patients who are at

risk for not taking their medication at the time of a side effect, such as severe joint

pain, will be provided with one or more intervention modules that addresses that

issue when the experience of pain is detected by the MMI system (e.g., educational

content for addressing joint pain).

We will examine the relationship between the intervention and the changing medication-

taking behaviors (as measured by MEMS devices) under different environmental,
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personal, and behavioral contexts. Once the MMI system is evaluated with respect

to feasibility, usability, and efficacy, it should be evaluated in a larger trial.



Chapter 3

Case Study: Understanding

Patient Attitudes Toward mHealth

Devices for Symptom and

Adherence Tracking

3.1 Introduction

In recent years, new treatments have become available which have improved survival

rates in lung cancer patients. One promising treatment option is the rapidly growing

field of oral targeted therapies, which employs drugs that interfere with specific

molecules involved in the growth, progression, and spread of cancer. However, these

therapies can cause a variety of symptoms and adverse events that can impair quality

of life. mHealth technologies may help individuals with lung cancer better track their

side effects and manage medications on a day-to-day basis. However, understanding

patients’ attitudes toward smart devices such as smartphones, smartwatches, and

42



3.2. BACKGROUND AND MOTIVATION 43

smart pill bottles, as well as their specific needs when using these devices, is critical

before design and deployment studies of medication adherence can be carried out.

Contributions

In this chapter, we present our interview study with 9 individuals with stage III-IV

lung cancer at an National Cancer Institute-designated comprehensive cancer cen-

ter in the Mid-Atlantic region of the United States to assess the feasibility of using

such devices for managing medication and medication related side-effects. We eval-

uated patients’ attitudes towards the design and function of smart devices and how

these devices fit into their daily life. Our results may help clinicians and researchers

to co-develop effective mHealth system deployments for side effect and medication

management in oncology populations.

This work is based on our study currently under review in Pervasive Health as of

September 13, 2022 [105].

3.2 Background and Motivation

Lung cancer is the second most common type of cancer and the leading cause of can-

cer death worldwide, with over 2 million cases newly diagnosed each year [106]. The

significant impact of lung cancer on the global population has led to the development

of new targeted oral anticancer medications, which patients tend to prefer for their

convenience over intravenous chemotherapy [107, 108]. While promising for survival
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outcomes, these new therapies are commonly associated with adverse events (AEs)

such as rashes or edema. AEs can lead to worsening symptoms, dose reductions, and

even medication discontinuation if left undetected or untreated [109]. Researchers

and clinicians are increasingly seeking more accurate ways to track medication-

taking, monitor side effects, and detect possible AEs among patients taking oral

anti-cancer medications at home, such as individuals with lung cancer.

Devices, such as smartphones, wearable sensors (e.g., smartwatches) and medication

event monitoring systems (MEMS), enable direct, unobtrusive collection of clinically

relevant behaviors in-situ. Mobile health (mHealth) and human-computer interac-

tion (HCI) studies have shown that these “smart” devices are less prone to errors

than traditional self-reports [109] and have established the usefulness of smart de-

vices for medication and symptom tracking in daily life [110, 111]. At the intersection

of HCI, mhealth, and oncology, smart devices have been shown to encourage medi-

cation adherence to oral chemotherapy [112], help patients feel more in control and

informed about their care [113, 114, 115], and help clinicians feel better able to mon-

itor patients’ symptoms and tailor treatment accordingly [115]. While the majority

of studies in mHealth and oncology have focused on physical activity tracking for

breast cancer patients [116, 117], several recent studies have focused exclusively on

medication and symptom tracking for lung cancer. LuCApp is a mobile application

for patients with lung cancer that sends automated reminders to complete symptom

logs as well as questionnaires related to quality of life and support needs [118]. A pro-

posed randomized controlled trial for the app will examine the impact of side-effect

tracking on quality of life. A randomized controlled trial has also been proposed for
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SYMPRO-Lung, a web application for lung cancer patients that leverages patient-

reported outcomes (PROs) for symptom monitoring [119].

Despite the promise of smart devices for symptom and medication management,

many challenges remain unaddressed. A 2017 study of medication adherence tech-

nologies such as smartphone apps among older adults showed that adherence was

impacted both by participants’ schedules and the symptoms they experienced [111].

Further, a study of medication tracking among patients with atrial fibrillation un-

covered issues such as the inability of smart pill bottles bottles to integrate into

patients’ existing routines [73]. These challenges highlight the importance of further

investigation into patients’ perceptions of smart device use during treatment, so that

future interventions designed to improve adherence can be customized to patients’

individual needs. Further, Social Cognitive Theory can help organize patients’ needs

into unique constructs - personal, environmental, and behavioral - so that inter-

ventions can be targeted for specific construct(s). For instance, an app might be

designed to provide additional social support, thus targeting environmental factors

within the context of cancer treatment.

In this work, we address the following research question (RQ): What attitudes

do patients with lung cancer have toward smart device use for managing

their medications and tracking their symptoms? We present the results of

a cross-sectional, qualitative study in which we conducted semi-structured usability

interviews with 9 individuals with stage III-IV lung cancer receiving treatment at a

large university cancer center in the Mid-Alantic region of the United States. Our

results give insight into patients’ preferences and priorities regarding the use of smart
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devices as part of their self-management routines during cancer treatment

3.3 Methods

This study was approved by the Institutional Review Board for Health Sciences

Research (IRB-HSR) at the University of Virginia, and the study was conducted in

accordance with the Declaration of Helsinki and Good Clinical Practice standards.

Patients provided written informed consent prior to enrollment and participation.

3.3.1 Recruitment

Using purposive sampling, we recruited patients at an National Cancer Institute

(NCI)-designated comprehensive cancer center in the Southeastern United States.

All patients were 18 years of age or older and were being treated for advanced stage

non-small cell lung cancer (NSCLC) with EGFR mutations or ALK gene rearrange-

ments and were receiving oral targeted therapies (tyrosine kinase inhibitors [TKIs])

as part of their treatment. Patients were first identified for inclusion by the sixth

and seventh authors, who are practicing oncologists. The first author attempted

to contact prospective participants both in clinic and via telephone calls, and pro-

vided interested individuals with a secure, electronic consent form to sign. We ap-

proached 40 patients in total, 23 of whom either explicitly declined prescreening or

were unreachable after one or more attempts to contact them. 17 patients agreed

to prescreening, and 11 ultimately consented to participate in the interview study.
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Two participants did not respond to study coordinators’ efforts to schedule the study

interviews after consenting, bringing the final number of participants to 9.

3.3.2 Data Collection

Using a standardized interview guide, we conducted semi-structured interviews with

9 participants between September 2020 and July 2021. Out of an abundance of cau-

tion during the COVID-19 pandemic, interviews were conducted by one interviewer

remotely via a HIPPA-compliant version of Webex 1. We administered a secure,

online demographics survey via Qualtrics 2 at the end of each interview. The first

interview (with P1) focused on smartphone use and an interactive demonstration

(demo) of a smartphone app emulator. P1’s interview informed the design of subse-

quent interviews, which included an interactive demo of a smartwatch app emulator

and a researcher-guided demo of a smart pill bottle cap in addition to the original

smartphone app demo. In this section, we describe our process for each device demo

in detail. The full list of interview questions is included in Appendix A

Smartphone

We created a high-fidelity prototype of Sensus [32], a smartphone application that

gathers passively sensed indicators of human health and behavior (e.g., location,

heart rate, and skin temperature). In deployment studies, Sensus can also be used to

1https://www.webex.com/
2https://www.qualtrics.com/
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(a) (b)

Figure 3.1: Sensus Prototype showing EMA survey about symptoms.

gather real-time participant feedback using ecological momentary assessment (EMA),

a method of gathering data in which participants are polled in real time in order to

avoid recall bias [22]. EMAs are commonly delivered via digital methods such as

text messages or push notifications from mobile apps. We created a Sensus study
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protype with EMA surveys about participants’ quality of life (e.g., sleep, symptoms,

and side effects) and day-to-day activities (e.g., location and socialization). We then

loaded the Sensus protocol via Appetize.io 3, an app demo platform for the web;

the prototype is shown in Figure 3.1. During the interview, we used screen sharing

to show participants how to scroll and select questions within the prototype; this

was necessary, as using a mouse for these tasks is very different from swiping and

tapping with one’s finger on a real smartphone. We then asked participants to use

the prototype via screen sharing to practice answering the survey questions. Finally,

we asked participants 15 follow-up questions that covered their perceptions about the

experience of filling out surveys on a smartphone, the relevance of the smartphone

to their current medication management routine, and their willingness to use Sensus

on a smartphone for a long period of time.

Smartwatch

We used a web-based prototype of a smartwatch application (shown in Figure 2)

that was preloaded with quality-of-life questions, as well as questions regarding ac-

tivities (e.g., “Are you exercising right now?”). We explained to participants how the

smartphone could be used to send EMAs and notifications to the smartwatch. We

then asked participants to use the smartwatch app prototype via screen sharing to

practice filling out EMAs. Finally, we asked participants 15 follow-up questions that

covered their perceptions about the experience of filling out EMAs on a smartwatch,

the relevance of the smartwatch to their current medication-taking routine, and their
3https://appetize.io/
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(a) (b)

Figure 3.2: Smartwatch app prototype showing EMA survey about symptoms.

willingness to use the app on a smartwatch for a long period of time.

Smart MEMS Cap

For the final segment of the interview, we used screen sharing to demonstrate the

use of the RxCap 4, a bluetooth-enabled MEMS cap that records each time the cap

is unscrewed as a medication-taking event. Since most participants had not seen or

used a smart pill bottle before, we first explained the purpose and function of the
4https://rxcap.com/
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cap. We then showed participants how one would remove the cap to take medication,

and how the cap would blink and beep upon removal. We also explained how the

cap could be connected to an application on the user’s smartphone to help keep

track of when they took their medication. In order to gain a better understanding

of participants’ medication-related needs, we asked questions about the types of

medications participants were currently taking, the frequency with which they took

them, their preferred storage method (e.g., pill box; original bottle) and location

(e.g., in the bathroom; on a nightstand), and what kinds of alerts or reminders they

used to help them remember to take their medications (e.g., app; phone alarm) We

then asked 15 follow-up questions about the relevance of the cap to their current

medication management routine and their willingness to use a smart pill bottle to

store their medications for a long period of time.

3.3.3 Data Analysis

Interviews lasted between 30 minutes and 1.5 hours and were audio recorded. The

first and second author transcribed the interviews verbatim. The first author then

applied initial codes from the interview transcripts to develop a preliminary code-

book. She then worked with the second, third, and fourth authors use an iterative,

inductive approach to refine the initial codes, develop new codes, and extract the

overall themes. Iterations continued until all coders reached consensus.

Demographic data were gathered and analyzed by the second author, who extracted

the data from the secure Qualtrics survey and aggregated it. Aggregation was done
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at the population level to protect participants’ privacy.

3.4 Results

3.4.1 Participant Demographics

Participants’ ages ranged from 33 to 86 years with a gender distribution of 6:3 (fe-

male: male). Most participants self-identified as White (8/9, 89%), followed by Asian

(1/9, 11%), and Hispanic (1/9, 11%). All participants had been diagnosed with lung

cancer at least 6 months prior to the study. Among those who reported their lung

cancer stage, the majority were diagnosed with stage IV (7/9, 78%), followed by

stage III (1/9, 11%). Less than half (3/9; 33%) were former smokers. Among the

former smokers, the average number of years of tobacco use was 22 years.

3.4.2 Interview Study Findings

Participants’ attitudes, concerns, and needs regarding smart device use spanned four

key thematic areas: device and application design, lifestyle, abilities, and obligations.

In this section, we delve into each of these themes in detail to answer our original

research question (RQ): What attitudes do patients with lung cancer have toward

smart device use for managing their medications and tracking their symptoms? In

this section, we present participants’ attitudes and concerns toward the individual

devices as well as their needs and preferences for notifications they might receive from
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any device. We also describe the how participants’ personal and social obligations

factor into their willingness to use smart devices. Finally, we highlight the roles of

self-efficacy and obligation to self and others in motivating smart device use.

Device and Application Design

Smartphone and Smartwatch. Participants appreciated the smartphone and

smartwatch for their compact size and ease of use. Both P1 and P11, for instance, ex-

pressed a preference for the smartphone over bulkier technologies. In P11’s words, “It

doesn’t force me to have to go to the computer.” While the smartphone was familiar

to most participants, the smartwatch was not, and participant opinions on the smart-

watch were divided. Some were drawn to the smartwatch because they could input

data directly on their wrist in a discreet way. P4, for instance, described how his

personal smartwatch was useful for discreetly checking messages while at work. P11,

however, worried that smartwatch notifications in particular were a privacy risk.

Given that the watch must be worn at all times rather than kept aside in a purse or

pocket, the watch has the potential to draw attention to private messages in social

settings:

“Notifications will bother me more on my watch than on my phone…I’m

not sure if I would like going out for dinner, and all of a sudden noticing

that my wrist is lighting up with a message and somebody across the table

says, oh, you have a message in your wrist… [Or] what if I’m having an

important meeting with somebody?”
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P4 also found the smartwatch somewhat intrusive (despite regularly using his own),

and preferred to keep the device in the background as much as possible: “It requires

an answer right then and there. Personally I don’t like inputting [data]. I see [the

watch] as more of a way to receive information.”

Participants also mentioned several design-related needs and concerns, with regard

to the smartwatch and smartphone. Some worried the surveys were too long and

would become cumbersome, or that the device’s battery might drain too quickly due

to running an app. Attitudes about device size were divided; one participant found

the smartwatch screen too small and hard to navigate, while another, P6, found the

watch to be too big for regular use: “I’m not a big fan of wearing much on my wrist..I

would be inclined to forget wearing it, I’m afraid, because it’s bulky… I do not like

intrusive technology.”

Several participants wanted changes to the surveys, including more aesthetically-

pleasing color schemes and the ability to comment on the frequency of their symp-

toms. Participants also wanted to complete surveys at their own time and pace, with

several wanting to set their own notification schedule.

Pill Bottle. Of the three smart devices we studied, the smart pill bottle received the

least support from participants. Most participants were taking multiple prescription

medications in addition to multiple vitamins and supplements, and disliked the smart

pill bottle because it could only hold one type of pill at a time. As P11 described,

they tended to prefer divided pill boxes for everyday use: “I think the box that has

the separated days would be more useful because it would be recording not only that
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you took it, but [when] you took it…So the data that you would record would be more

complete.”

Notifications. In general, participants valued their privacy and peace. They wanted

notifications to be unobtrusive and discreet, especially in public settings such as

the workplace. Participants’ preferences, in this regard, were very personal. Some

participants preferred to leave most notifications off and found them “annoying”.

P8 was willing to receive vibrations only, in keeping with his work obligations: “A

vibration is best, because a lot of times I’m in management meetings. Obviously,

we all have our phones turned down.” Others, such as P7, were willing to receive

audible “dings” on any device, provided they were not overly loud or repetitive:

“I would want it to be quieter and more subtle, …and also not persistent.

So one notification is fine, [but] five notifications would not be fine… I

would not want to have to keep seeing it. I’m [also] notorious for clearing

out my notifications, and in fact I turn off a lot of my notifications because

it’s a privacy issue to me.”

P6 expressed a similar preference: “I set my alarms for my meds so I would definitely

[want notifications]…I would probably have it be a single ding…I don’t want anything

irritating like ’DA, DA, DA, DA!’ Just like a single ding would work.”

Several participants also expressed a desire for survey notifications to be integrated

with their electronic health record apps, so that all their health-related notifications

showed up in one place. For example, P4 described how he would be more likely

to take surveys when checking for appointments in MyChart, a popular electronic
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medical record (EMR) application 5. Importantly, participants wanted to receive

notifications only when absolutely needed, given the burden of time their cancer

treatment already placed on them. For instance, P11 described how her view of

time had changed since her diagnosis and re-emphasized that notifications should be

minimally disruptive, especially during family and personal time:

“When you have cancer, too many things seem too trivial, and you want

to concentrate every day on using your time in the best possible manner.

So it’s funny, I’m now quite bothered by all these notifications that come

to me about celebrities…but I do want to get notifications if my sons do

something. So I think it depends. I would say not too many; enough no-

tifications that we can do this [study], but not unnecessary notifications.”

Lifestyle

Participants’ lifestyles heavily influenced their attitudes towards smart device use.

P6, echoing many other participants, cited her familiarity and current use of smart-

phones as a reason they would be willing to use the Sensus app as part of a future

study: “Like a lot of people, I use my phone more than any other device.” Partici-

pants were less familiar with the smartwatches. Even P4, who owned a smart-watch,

was concerned about learning to use a different type of smartwatch when he already

owned one that worked well for him:

5https://www.mychart.com/
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“I wouldn’t like it. I prefer my watch and the features my watch has, I’ve

already gotten used to it. I wouldn’t want to learn a whole new system,

and I’m assuming if it’s a research watch I wouldn’t be able to install any

of my own apps on the watch anyways.”

Participants’ schedules and levels of flexibility varied, though most concluded that

they were more available on weekdays than on weekends. Weekends were often

reserved for family time and other social activities (e.g., hosting friends or attending

church services). For instance, P1 described the importance of time with her husband:

“We’re out hiking or doing projects. I’m less likely to think about doing something

like a survey.” Similarly, P6 did not want to be interrupted during her valued social

time:

“Generally we are busier on the weekends with catching up with friends

and family…I set an alarm on my phone for taking my medication, and

then honestly if we’re out socializing, I end up snoozing the alarm and

snoozing the alarm… I take it within an hour or two. But… [at] nine

o’clock on Saturday night I don’t generally want to be interrupted with a

reminder about something, and I think I’ll feel the same way about the

surveys.”

Several participants also mentioned that their activities could put them out of range

for receiving push notifications from a study device (e.g., alarms or reminders to

take a medication dose). For instance, before the COVID-19 pandemic forced many

people to stay at home, P8 liked to go hiking on the week-ends in remote areas
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with little-to-no cellular service: “Right now we’re all hunkered down [during the

pandemic]. I used to be out of range of any technology if I was skiing or backpacking.

I could be gone for 13 days, out of range.”

Throughout the interviews, participants repeated their commitment to habits and

routines as a major influencing factor on their attitudes toward smart devices. Several

participants, such as P6, assured us that using the devices would “just become a part

of a daily routine”. P9 even likened smart device use to taking medicine regularly:

“What’s the difference of using the app every day and then using the medicine every

day? I don’t know if there would be a difference.” While participants felt the smart-

watch and smartphone could fit into their existing routines, they did not feel the same

way about the pill bottle. The reasons participants gave for not wanting to use the

pill bottle were as much of a lifestyle concern as a design concern. Namely, managing

multiple pills had driven participants to establish longstanding, personalized medica-

tion-management routines that already worked well for them. P2 put it simply: “I

don’t need [the smart pill bottle] – “I have no problem with what I’m doing now.”

Abilities

Participants exhibited varying degrees of self-efficacy with regard to using smart

devices as part of their medication management routine. P2 noted that, while she

was confident she could use the real, physical devices, the screen size and difficult

scrolling in the online prototype were challenging for her. Others such as P1 expressed

confidence in their own technical skills, but were doubtful that others, especially in
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older age groups, would be able to use the devices: “I don’t think I would have any

problem at all using it. I could see if it was my mother, I would have to train her how

to use it. But the way it’s set up, for anyone that uses apps, it’s pretty obvious what

to do.” Still others believed they would need significant support from the study team

or another support person. For instance, P7 asked, “Are you going to train me really

well in how to use that smartwatch?” P3 believed she could use the smartphone if

she received outside help from her grandchildren or a tutor: “I might even hire a

tutor to help me…I’m not that great on a smartphone for sure.”

Obligations

Besides force of habit, participants cited obligations to their doctors and to them-

selves as a factor influencing their willingness to use devices. Participants took great

pride and responsibility in managing their health as best they could during treat-

ment. They valued smart devices for their ability to track symptoms over time, and

wanted the ability to share this information with their providers. For instance, P1

described how an app could help her keep an accurate record of her symptoms to

present to her oncologist: “I’m not going to call my doctor and say, oh I had a mouth

sore today. But if I had an app, if I was supposed to use it every day, I would put

it into the app.” Likewise, P7 would be willing to fill out surveys more frequently if

it helped with symptom management: “If [there were] questions that I felt like were

important for me and my doctor to know, I would do it five times a day… I would do

it… if I thought it would help manage my symptoms.”
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3.5 Discussion

Our study highlights a number of considerations and challenges for designers at the

intersection of mHealth, medication adherence, and oncology. Participants’ open-

ness to using certain devices may be mitigated by personal factors such as their

familiarity with the device and even their fashion preferences, by behavioral factors

such as confidence in their technical abilities, and by environmental factors such as

work and social obligations and whether they will be available and within range for

receiving push notifications. Based on these findings, we present several practical

design considerations in the following sections.

3.5.1 Give participants agency over their notifications

Notifications and reminders to take one’s medication play an important role in inter-

ventions for individuals with cancer. Prior work has demonstrated the feasibility of

using information from smart devices to inform the delivery of missed dose messages

via EHRs such as MyChart [73]. This approach is a promising step towards more

personalized notifications and interventions. Prior research with cancer patients tak-

ing oral chemotherapy has emphasized the importance of taking the user’s schedule

into account when delivering reminders [120]. In a similar vein, participants in our

study overwhelmingly expressed a desire to control the timing and format of notifi-

cations as a condition of using the smart devices in their regular medication-taking

routine. We recommend that designers of smart device applications for medication

management give participants a range of options for customizing their notification
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frequency from within the app. Designers might consider setting a default schedule

based on times of day most commonly associated with medication taking and alert-

ness, then enabling participants to customize this schedule as needed. For instance,

8 AM and 8 PM often correspond with morning mealtimes and evening bedtime

routines, respectively. Ideally, users would be presented with a screen that allows

them to set the exact day(s) and time(s) they would like to receive notifications, as

well as the type of notification (e.g., vibration, beep, or banner) for each day and

time. Giving participants agency over their notifications in this manner is a small

cost for designers, but a major step toward protecting participant privacy and en-

suring notifications are well-integrated into participants’ daily routines (rather than

intruding on them).

3.5.2 Advocate for better avenues for secure sharing of patient-

entered data with clinical care providers

Prior works have established patients’ openness to sharing information such treat-

ment satisfaction and adverse effects with their clinicians via apps, provided that

the information can be used to complement their treatment [121]. Our participants

shared this attitude. Given the significant physical and emotional toll of their lung

cancer treatment, participants had a vested interest in being able to review and

share as much of their passively- and actively-sensed health data as possible with

their doc-tors. Researchers have called for better infrastructure for secure informa-

tion sharing between between patients and providers in the context of mHealth for
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cancer care, given the limitations of current modalities [122]. Yet, this remains an

open challenge. Electronic Health Records (EHRs) are the gold standard for health

information and records management in our digital world, yet they are primarily de-

signed for displaying information entered by clinical care providers (e.g., patient lab

values and test results) and for facilitating basic secure messaging between patients

and providers. EHRs in their current form are not equipped to receive and process

information from consumer devices such as smartwatches or from custom medica-

tion and symptom tracking apps, in part due to strict requirements imposed by laws

such as the Health Insurance Portability and Accountability Act (HIPAA; [123]) and

the Health Information Technology for Economic and Clinical Health Act (HITECH

Act; [124]). Moreover, building a standalone application that securely transmits

patient-entered data to the patient’s healthcare provider via an existing EHR plat-

form be an enormous challenge. Such an application would not only need to comply

with current market standards for secure health information sharing, such as Health

Level 7 (HL7) [125], but would require direct collaboration with leading EHR ven-

dors. Additionally, such an application would need to navigate the gaps left by

HIPAA with regard to digital healthcare tools [126].

Designers seeking a short-term solution for patients who wish to share informa-

tion with their doctors could provide in-app visualizations at different timescales,

such as daily charts of the times of day a patient took their medication, or weekly

and monthly graphs of adherence percentages over time. These should be easily-

exportable to images that participants could save to their smartphone and share

with their doctors manually in-clinic during routine appointments. Designers taking
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this approach should consult with both patients and clinicians when designing such

visualizations, to ensure they are clear and concise for both parties. As a long-term

solution, designers should consider advocating for improved guidance on patient-to-

clinician information sharing via digital technologies, at the national level, and should

seek out long-term collaborations with EHR vendors and smart device manufacturers

where possible.

3.5.3 Ensure participants have access to adequate support

resources during deployment studies

Prior work in mHealth has shown that patients with lung cancer may feel they are

lacking sufficient support and self management skills, in regards to their disease [127].

Several participants echoed these concerns specifically with regard to using smart

devices. Indeed, many expressed a hesitancy to use smart devices due to their per-

ceived lack of technical proficiency. Participants also expressed a need for extensive

support from the study team, should they choose to use the smart devices in a fu-

ture deployment study. To increase participants’ confidence, we suggest providing a

comprehensive technology use manual and other written educational materials that

describe how to use each study device. We also recommend that study team mem-

bers review these materials with participants, and provide in-depth demonstrations

of each each device. We note that technological concerns are likely to arise during

deployment. To adequately address these concerns, we also recommend providing

the participant with a specific study contact designated to addressing and supporting
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individual technology needs.

3.6 Limitations

This study is novel given its focus in evaluating perceptions of smart technology

among individuals living with advanced lung cancer. However, it does have limita-

tions, including the small sample size. We faced several recruitment challenges during

this study. Cold-calling potential participants was largely unsuccessful. Among those

who responded to cold calls or were willing to speak to us in-clinic, most declined.

Their reasons included disease burden (e.g., fatigue from treatment), busyness due

to participating in other research studies, and lacking a computer for the study in-

terview. Whether these challenges were unique to our study population is outside

the scope of this paper; however, we recommend that future studies cast a broad

recruitment net across multiple treatment facilities if possible.

Like most studies conducted during the COVID-19 pandemic, we also faced chal-

lenges in adapting our study activities to be fully remote. While we were able to

con-duct recruitment in-clinic by taking many precautions such as masking, we opted

to conduct the interviews remotely to reduce the risk of transmission to participants.

This decision fundamentally altered who we enroll in the study. Our remotely con-

ducted interviews required a personal computer (PC) with a mouse and microphone,

preventing those without a PC from participating. Moreover, those who did partic-

ipate did not get the in-person experience of physically interacting with the study

devices. Additionally, we struggled to recruit a racially diverse sample. We also urge
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researchers in the field to continue to increase efforts to recruit diverse participants.

Given the significant racial and social disparities present in the incidence of lung

cancer [128] and other diseases, diverse samples are necessary for designing mHealth

tools that serve as many patients as possible.



Chapter 4

COMP-SCT: A Computational

Framework for Social Cognitive

Theory

4.1 Introduction

The wealth of information contained in even modest amounts of passively-sensed

data makes it possible, now more than ever, to construct robust digital biomarkers

of the patient experience, and computational approaches such as machine learning

hold the key to unlocking the patterns within this data. The MMI system, presented

in Chapter 2, lays the groundwork for tying raw sensor data to patient experiences

via passive sensing, and for developing and deploying personalized mobile interven-

tions for medication and symptom tracking. Further, our interview study presented

in Chapter 3 helps hone in on the specific personal, behavioral, and environmental

factors that may impact adherence to mobile interventions, so that these interven-

tions can be customized for specific patient needs. Importantly, however, we still lack

66
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a comprehensive process for computing relevant features (with regard to medication

adherence) from raw sensor data.

While many generalizable computational frameworks for digital phenotyping exist,

few focus exclusively on SCT. Moreover, the few computational frameworks that do

focus on SCT are concentrated in dynamical systems and control systems theory

[129, 130] and tend to focus on the mathematical relationship between SCT con-

structs. There exists a major opportunity to develop a new framework that explic-

itly guides the translation of raw, passively-sensed data into features for predictive

analysis.

In this chapter, we present COMP-SCT, a framework for deriving personal, behav-

ioral, and environmental features of user context at multiple time scales using Social

Cognitive Theory. COMP-SCT draws inspiration from leading digital phenotyping

frameworks [5, 131, 132, 133] and the MMI system in order to map SCT constructs

to relevant temporal features for predictive analytics. Importantly, COMP-SCT’s

novelty lies in its explicit grounding in Social Cognitive Theory which, to date, has

been largely disregarded in the digital phenotyping literature.

In the following sections, we describe COMP-SCT in detail and apply it to two case

studies of breast cancer patient data. The first case study focuses on behavioral and

personal features (i.e., user engagement and mood, respectively), while the second

focuses solely on behavioral features (i.e., use of a smart pill bottle cap).

Content in Sections 4.2 and 4.3 has been adapted from our study of engagement

and mood among breast cancer patients [134]. Content in Section 4.4 is forthcoming
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work.

4.2 The COMP-SCT Framework

COMP-SCT’s steps are outlined in Figure 4.1. Our process is informed by best

practices in machine learning (and, more broadly, data science) for extracting and

analyzing features from raw, multimodal data.

4.2.1 Preprocessing

Invalid Data Removal

Preprocessing is critical for preparing the raw data for analysis and typically begins

with removing invalid data. Invalid and missing data are common to all mHealth

datasets and can occur due to user error, sensor malfunction, or lack of user action.

This may be particularly relevant in the context of breast cancer patients, given the

demands and cognitive effects of treatment (e.g., chemotherapy). For example, a

GPS sensor may provide an inaccurate reading, or a user may complete an ecological

momentary assessment on their phone but fail to click the “submit” button. Large

swaths of invalid or missing data can degrade the quality of the dataset and lead

to less accurate analysis, making it imperative that researchers handle both with

care. In mHealth studies, invalid data is best described as data that falls outside

the acceptable range for a given variable. One example is app launches that are too
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short (e.g., less than 5 seconds) or too long (e.g., greater than 5 hours) in duration.

In the former case, the user likely opened the application and immediately closed

it, and thus did not use the app; in the latter case, the low-level mobile operating

system code that monitors app usage may have failed to record the end of the user’s

usage activity period for the given app. Invalid data should be removed at the very

beginning of the preprocessing stage in order to reduce the complexity of the dataset

and the computing power needed to analyze it.

As preprocessing steps are certainly not unique to mHealth datasets, we refer the

reader to García et al. [135] and García et al. [136] for further reading.

Feature Vector Construction

mHealth studies often leverage data from multiple sources (e.g., GPS, Accelerometer,

EMA), all of which may have different sampling rates. In order to formulate a

meaningful prediction task, researchers must transform the raw, multimodal sensor

data into standardized vectors of data (features) for specific units of time (e.g., one

vector per week). The unit of time is dependent on two things: The target variable

(outcome) we want to predict, and the time scale(s) along which we expect this

outcome to change. Consider a study in which we want to predict whether an

individual with breast cancer is anxious at some future point in time, and we want

to do so using features of engagement from a mobile phone. We can reasonably expect

mood to fluctuate on a daily basis, based on prior literature in mood prediction [].

Moreover, we might also want to predict mood for less granular time periods (e.g.,

weeks) in order to uncover overarching patterns in the data. Thus, we may choose

to construct vectors at both the daily and weekly time scale.

Importantly, vectors should be aligned to a standardized timeline based on each

individual’s start date (i.e., the day on which they started using the intervention).
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Researchers often face challenges in recruiting cancer patients to enroll in trials of

digital interventions [137], and thus rely on a rolling enrollment period to increase

recruitment over time. As a result, mobile health datasets collected from cancer

patients often have different coverage periods for each patient. Start dates must

therefore be converted into relative timestamps, with respect to the study length, in

order to establish a standardized timeline for analysis. Consider two participants,

Participant A and Participant B. Participant A begins the study on 01/01/21 and

submits a self-report via a mobile application on 01/02/21; Participant B begins

the study later, on 01/15/21, and submits a self-report on 01/20/21. Despite their

different start and submission dates, both participants are said to have submitted

data during the first week of the study. This is just one example of how timestamps

may be aligned, as researchers may wish to use a different temporal granularity (e.g.,

day of study).

4.2.2 SCT Construct Grouping

Observational and intervention studies of user context may use an app or suite of apps

to gather user data, and each app may have several distinct modules. In this case, the

apps and individual modules are all components of the intervention. Researchers must

decide whether to analyze intervention components in aggregate, individually, or for

SCT construct groupings of apps or modules. Increasingly, researchers are developing

suites of related apps that all target a general domain of health, such as mental health,

but which have distinct target goals. In the IntelliCare suite [131], for instance,
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the Thought Challenger app helps users address negative thoughts, while the Daily

Feats app helps users track their accomplishments and stay motivated. Patients

with diseases such as breast cancer may benefit from multiple apps or a suite of apps

given their unique physical, emotional, and social needs tied to their disease. Multiple

apps (or modules within a single app) that serve these different needs independently

may be necessary for providing adequate support during treatment. Thus, it may

make sense to group components by their domain and map this domain to an SCT

construct. For instance, mental health components of an intervention would fall

under the personal factors construct. Custom groupings may also be beneficial. For

instance, components could be grouped according to a cutoff score for a metric such

as usage frequency (e.g., “highly-used apps” are a group containing all apps used 6

or more days per week).

4.2.3 Temporal Feature Engineering

Traditionally, researchers have measured SCT constructs such as engagement using

blunt usage metrics such as the total number of app sessions over the course of

an intervention, or the number of users that fail to complete an intervention [16].

However, with the increasing ubiquity of sensor-equipped smart devices, researchers

have been able to derive more temporally granular features of user context from

logs of phone or app usage [138]. Time segmentation of behavioral features has

been used to detect human activity and behavioral patterns broadly, breathing state

changes [139], social behavior [9, 140], loneliness [5] and sleep disruption events [141].
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Previous works within mHealth, specifically, have used theory-driven segmentation

to examine context at hourly intervals, across multi-hour spans (e.g., “morning,”

spanning 6 am to 11:59 am), and at weekly intervals [5, 9, 11, 44]. Several common

behavioral features have emerged from these and related studies, including frequency

of use of intervention components (e.g., how many times per week a user opens an

app), number of days of use, duration of use, whether any use occurred in a given

time period ( epoch; [27]), and number of self reports submitted [5, 44, 51, 142]. For a

summary of these and other “analytic indicators of engagement,” we refer the reader

to Pham et al. [133].

When constructing temporal features, researchers should weigh the nature of the

condition being studied and, in turn, the time scale(s) along which SCT constructs

are likely to vary. Women newly diagnosed with breast cancer may have only spo-

radic pockets of time throughout the day to engage with a mental health app due to

increased time spent attending doctor’s appointments and managing their illness and

sequelae of related factors. Additionally, due to the disruptive impact of anxiety,

depression, and cancer treatment on daily rhythms [143], breast cancer patients ex-

periencing mental health challenges may engage with mental health apps at irregular

times. Given the stressors that breast cancer patients face, constructing vectors for

short and frequent units of time (e.g., days, or times windows in a given day) may

be most appropriate in order to capture fluctuations in mood.

Below, we modify table 4.1 to map exemplar SCT-related features to suggested

minimum time scales for measuring these data, with a focus on features relevant to

breast cancer studies. We also include justifications for these suggested time scales
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SCT Construct Data Features Min. Time Scale(s) Literature

Personal
Hot flashes, stress HRV, body tempera-

ture, breathing rate,

EMA

Continuous [144, 145, 146, 147]

Mood, side effects (e.g.,

rash), fatigue, pain

EMA Days [148]

Behavioral Eating, medication-

taking, exercising (e.g.

walking or running),

sleeping

HRV, movement veloc-

ity, movement variation,

location

Continuous [82, 84, 87, 149]

Environmental

Engaging with a mobile

intervention (e.g., using

an app)

App use frequency and

duration

Multi-hour spans (e.g.,

“morning”)

[44]

Social interactions

- Non-medical (e.g.,

meeting friends)

Audio signals, social

media activity, semantic

location diversity, text

and call frequency, app

use frequency

Continuous [150]

Social interactions -

Medical (e.g., speaking

with doctor)

Days [73]
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from related studies from mHealth and oncology:

We urge researchers to balance the need for temporal granularity against their dataset

size. Larger datasets with more frequent measurements will naturally allow for more

time windows (e.g., hourly). Researchers should also take care to ensure epochs are

neither too broad nor too narrow. Epochs that are too broad will fail to capture

meaningful patterns, while epochs that are too narrow will introduce sparsity into

the dataset and decrease the effectiveness of the analysis.

4.3 Case Study: Predicting Mood from Passively-

Sensed Features of User Engagement

4.3.1 Background and Motivation

In the United States, 1 in 8 women will receive a breast cancer diagnosis at some

point in her lifetime [151]. Breast cancer is currently the leading cause of cancer

death in women [152]. Patients with breast cancer encounter a range of psychosocial

stressors that extend beyond the physical effects of anticancer treatment, including

emotional distress, diminished well-being, and increased symptoms of depression and

anxiety [153, 154]. Untreated symptoms of depression and anxiety in women with

breast cancer can lead to poor quality of life [155], increased mortality [156], and

high economic costs [157].

Interventions that emphasize skill acquisition, such as cognitive behavioral therapy,

have been shown to effectively reduce symptoms of depression and anxiety in patients

with breast cancer [158, 159]. However, numerous barriers prevent patients with can-
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cer from receiving adequate treatment, including high financial [160] and time [161]

costs, social stigma [162], and a severe shortage of trained psychotherapists, partic-

ularly in rural and underserved areas [163]. Combined, these barriers lead to almost

half of breast cancer survivors reporting unmet psychosocial needs [164].

Increasingly, researchers are leveraging mobile phone apps to address mental health

issues in patients with cancer. Apps are frequently cited as a way of extending cost-

effective care [165, 166]. In many cases, digital interventions (i.e., web-based and app-

delivered interventions) that mirror the content of in-person therapy perform just as

well in reducing mood symptoms [167, 168]. App-delivered interventions can decrease

barriers associated with traditional in-person interventions as treatment is affordable,

is readily available, offers efficient use of time (i.e., no delays to begin treatment

and self-pacing), and is no longer limited by factors such as geographic proximity

to available psychotherapists. This is particularly relevant for women undergoing

anticancer treatment regimens who may only have small pockets of unstructured

time in a day. Numerous studies have validated the use of apps to reduce depression

and anxiety symptoms [169, 170], including in patients with breast cancer.

Although access to high-quality treatment is a major issue that app-delivered inter-

ventions are well poised to address, sustained engagement is a common problem [16].

Engagement is critical as it is necessary for treatment success, as studies have doc-

umented a dose-response relationship in app interventions [171, 172]. A barrier to

advancing knowledge of engagement in digital interventions is data density. It is com-

mon for app-delivered interventions to be deployed by a user when and where they

are most convenient, potentially leading to a large data set. Fortunately, advances in
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machine learning have made it possible to analyze vast volumes of engagement data.

However, translating these raw engagement data into clinically meaningful observa-

tions is an ongoing challenge in oncology research using mobile health (mHealth)

tools [116]. Moreover, to date, no studies have presented a clear process for analyz-

ing the relationship between engagement with mental health apps and outcomes in

cancer populations using machine learning.

4.3.2 Methods

To illustrate the app engagement process, data were extracted from a 7-week trial [173]

of a mobile mental health app suite among women newly diagnosed with breast can-

cer (N=40 participants). IntelliCare [131] is a collection of apps that use an elemen-

tal, skills-based approach to improving mental health. In-app exercises are meant

to be intuitive, requiring few instructions to complete, and most of these exercises

can be found on the first screen presented by the app. Participants used their own

personal phones and were recruited from a breast care clinic at a US National Cancer

Institute–designated clinical cancer center. A detailed description of the recruitment

method, as well as the goals of the IntelliCare apps, can be found in a paper that

depicts the primary outcomes of the study[173]. Participants downloaded and tried

1 to 2 apps each week. All participants received light phone coaching that focused

on addressing usability issues with the apps, which included an initial 30-minute call

at the beginning of the trial, followed by a 10-minute call 3 weeks into the trial. Al-

though 58% (23/40) of participants completed the intervention in the original trial,
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because of technical issues exporting app use metrics from the system, detailed app

engagement data were only available for 35% (14/40) of participants.

4.3.3 Ethics Approval

This study was approved by the institutional review board at the University of

Virginia (UVA IRB-HSR#20403).

4.3.4 Participant Demographics

Participants had a mean age of 56.8 (SD 11.6) years; 82% (31/38) of participants who

indicated their race were White, 11% (4/38) were Black, 3% (1/38) were Hispanic,

3% (1/38) were American Indian or Alaska Native, and 3% (1/38) were multiracial.

Measures

The Patient Health Questionnaire-4 (PHQ-4) [174] and Patient-Reported Outcomes

Measurement Information System-29 (PROMIS-29) [175] were used to assess the

symptoms of depression and anxiety at baseline and after the intervention. To allow

for an examination of changes in mood symptoms over the course of the trial, a

2-item measure of symptoms of anxiety and depression was administered once daily

during week 1 and at the beginning of weeks 2 to 6 of the trial. The daily measures

from week 1 were averaged. This measure comprised questions from the PHQ-4

(“How much did you feel nervous, anxious, or on edge?” and “How much interest

or pleasure did you have in doing things?”). Both items were scored on a 5-item
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Likert scale (1=not at all, 2=a little, 3=somewhat, 4=quite a bit, and 5=a lot or

extremely).

Weekly self-reported measures of well-being were also collected. The questions cov-

ered topics such as substance use, physical pain, connectedness to others, reception

and giving of social support, general activity, and management of negative feelings.

Items were scored on a 5-item Likert scale that matched the scale for the PHQ-4 and

PROMIS-29 Anxiety (1=not at all, 2=a little, 3=somewhat, 4=quite a bit, and 5=a

lot or extremely).

App use data were collected using the IntelliCare platform. These data contained 1

time-stamped entry per participant per app launch. Each entry included information

such as the name of the app used and the launch duration in milliseconds.

4.3.5 Missingness

The rate of missing data was 39.6% among all participants (including those who

dropped out at any point during the study); this rate is consistent with the often-high

dropout rates in mHealth studies [16]. Among patients who completed the baseline

survey, the missingness rate was 10%. Only patients who completed the baseline

survey and used at least one mobile app in the IntelliCare suite were included in our

final analysis (14/40, 35%).
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4.3.6 Data Preprocessing, SCT Construct Grouping, and

Temporal Feature Engineering

Given our overarching goal of examining the interplay between mood and engage-

ment, we selected a theory-driven approach for grouping participants according to

the personal construct of mood, based on a wealth of literature showing that patients

with breast cancer vary with regard to their distress levels and trajectory over the

course of treatment. Specifically, we grouped participants according to their base-

line depression and anxiety symptoms and weekly mood [9, 11]. For symptoms of

anxiety and depression, we segmented users into high and low groups according to

their baseline scores. Cutoff values for determining group placement were identified

using the PHQ-4 and PROMIS-29 scoring guidelines. Users who scored �3 on the

PHQ-4 Anxiety subscale or who scored �60 on the PROMIS-29 Anxiety subscale

were placed in the anxious group, whereas the rest were placed in the group with low

anxiety. Similarly, users who scored �3 on the PHQ-4 Depression subscale or who

scored �60 on the PROMIS-29 Depression subscale were placed in the group with

high depression, whereas the rest were placed in the group with low depression.

We selected 2 time windows for our analysis: the entire 7-week study lifetime and

1-week intervals (e.g., week 1 and week 2). Labeling of weekly mood was conducted

in a manner similar to the labeling of depression and anxiety levels at baseline.

Participants with scores of �4 for weekly anxious mood were labeled anxious, and

participants with scores of �2 for weekly depressed mood were labeled depressed. We

note that the cutoff score for depression was applied in the inverse direction because
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of the nature of the question, “How much interest or pleasure did you have in doing

things?”; that is, replying 1=not at all or 2=a little indicates a depressed mood.

We conducted temporal feature engineering by hand using domain knowledge and

adapting approaches from related studies. Notably, we closely followed the approach

of Cheung et al. [44] to quantify the behavioral construct of user engagement from logs

of app use data. For instance, to calculate frequency, we grouped raw app use logs

by participant and period (e.g., week) and calculated the number of times the app

was used during that period. We extracted 3 main measures of engagement from the

raw app use data: frequency (number of launches), days of use, and duration of use.

Variants of these measures (e.g., mean frequency and duration between launches)

were also included in our analysis. Table 1 provides an overview of each of the 5 FSs

used in the analysis.

After splitting the data into the train and test sets, we conducted multiple imputation

using the MICE package [176] to handle missing values in self-reported measures.

Class imbalance in the classification tasks was handled using the Synthetic Minority

Oversampling Technique (SMOTE) [177], a technique that synthesizes new samples

from the minority class feature space.
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Table 4.2: Feature sets (FSs) used in the analysis.

FS Description Example features
FS1 Engagement features for all apps Frequency of use for all apps com-

bined, days of use, duration of use,
and mean duration of use

FS2 Engagement features for only the
most frequently used app or apps

Frequency of use for the app “Worry
Knot” and days of use for the app
“Thought Challenger”

FS3 Self-report features+engagement
features for all apps

PROMISa social support score, fre-
quency of use for all apps combined,
and days of use

FS4 Self-report features+engagement
features for only the most-used
app or apps

PROMIS social support score, dura-
tion of use for the apps “Thought
Challenger” and “Worry Knot”

FS5 Self-report features+engagement
features for each individual app

PROMIS physical pain score, fre-
quency of use for the app “Worry
Knot,” and days of use for the app
“Daily Feats”

aPROMIS: Patient-Reported Outcomes Measurement Information System.

4.3.7 Modeling and Prediction

Explanatory Analysis of Engagement Across Baseline Affect Groups

For each measure of depression and anxiety, we graphically analyzed the distribu-

tions of engagement measures at weekly intervals for both the low and high groups.

Given the size of our data set, we analyzed engagement across all apps rather than

by individual or groups of apps to avoid bias because of sparsity. Furthermore,

the IntelliCare apps are conceptualized as belonging to the same intervention, and

individual apps target related areas of mental health. Graphical analysis revealed

notable differences in engagement between the groups with low and high anxiety and
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between the groups with low and high depression.

Correlation Analysis of App Engagement and Weekly Mood

To study the correlations between app engagement metrics and weekly mood, we fit

linear mixed models to account for the repeated measures within each participant,

using the subject as a random effect (i.e., random intercepts) and different app

engagement FSs as fixed effects. Specifically, we fit linear mixed-effects models with

the least absolute shrinkage and selection operator with tuned penalty parameter

� and weekly anxious mood as the outcome variable on 4 FSs from Table 1 and

repeated this process using weekly depressed mood as the outcome variable. Self-

reported features were used as control variables.

Predictive Modeling of Weekly Mood

We wanted to investigate whether engagement with mobile apps can be used to pre-

dict weekly anxious and depressed moods, as specified in our process. We considered

the case of depressed mood and formulated a binary prediction problem as follows:

given a vector of a participant’s app use activity and survey scores for a given week,

we predicted whether the participant was depressed (1) or not depressed (0).

Binary prediction problems are well-handled by tree-based classifiers. These classi-

fiers make decisions by splitting into one of several paths at each decision point or

node. Thus, possible decision paths that can be taken to reach the final prediction

are akin to the branches in a tree, with possible final predictions akin to the leaves.
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Tree-based models are known for their inherent feature selection capabilities and ro-

bustness to small sample sizes, which makes them a good fit for our analysis. We

selected 2 popular tree-based classifiers, XGBoost (XGB; [178]) and Random Forest

(RF), and ran these with leave-one-subject-out cross-validation (LOSOCV) to pre-

dict weekly anxious mood and weekly depressed mood separately on FS3, FS5, and

FS4.

The model hyperparameters were tuned using gridsearch, which attempts many com-

binations of different hyperparameters to find the optimal combination (i.e., the

combination that produces a model with the best performance). In our case, we

paired gridsearch with a variant of k-fold cross-validation called stratified group k-

fold cross-validation. This technique is similar to LOSOCV in that it prevents data

leakage by ensuring that no subject from the training set also appears in the testing

set. It also has the additional benefit of creating stratified splits, such that the bal-

ance of positive and negative class labels (1 and 0 seconds) is roughly the same in

the training set as in the testing set. This approach, similar to the SMOTE, helps

mitigate the effects of class imbalance in smaller data sets.

4.3.8 Results

Explanatory Analysis of Engagement Across Baseline Affect Groups

Both the participant groups with high anxiety and high depression experienced de-

creases in all 3 engagement measures between week 1 and week 7, as shown in Figure
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2. Notably, the groups with high anxiety and high depression started at week 1

with higher group means than their respective low group counterpoints but slowly

declined across measures over time. In contrast, users with low anxiety and low

depression saw gradual rises across all measures, with a sharp peak around weeks 5

to 6, followed by a subsequent decrease. Interestingly, participants with low anxiety

and low depression ended the study at week 7 with approximately the same group

means as their respective high group peers.

Figure 4.2: Comparison of weekly engagement metric means (with 68% CI) between
8 participants with low anxiety and 6 participants with high anxiety (A-C) and
between 10 participants with low depression and 4 participants with high depression
(D-F).
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Correlation Analysis of App Engagement and Weekly Mood

The correlation analysis results are shown in Table 4.3. Several features of en-

gagement provided significant correlations with weekly mood at P<.05. When en-

gagement features for all apps were used (FS1), anxiety negatively correlated with

the minimum duration (−0.0459). When features of only the most-used apps were

used (FS2), depression negatively correlated with the week of study (−0.1826) and

frequency (−0.1304) and positively correlated with days of use (0.4565), minimum

duration (0.0414), and maximum duration (0.0248). The results for FSs FS3 and

FS4 show that the inclusion of self-reported features as control variables improves

model fit (indicated by root mean square error). When both self-report and engage-

ment features for all apps were used (FS3), depression negatively correlated with fre-

quency (−0.086), mean duration (−0.0637), and maximum duration (−0.0215) and

positively correlated with total duration (0.0024), duration SD (0.098), and mini-

mum duration (0.0978). Finally, when both self-report and engagement features for

only the most-used apps were used (FS4), depression positively correlated with the

minimum duration (0.0917) and maximum duration (0.0386). Interestingly, no sig-

nificant correlations were observed between the selected app use features on weekly

self-reported anxiety levels for FSs FS2, FS3, and FS4. We caution against overinter-

preting this finding, given the limited sample size; rather, these results demonstrate

the feasibility of identifying correlates with mood from heterogeneous data sets of

engagement.
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Table 4.3: Linear mixed model results stratified by feature set (FS) and outcome variable.
Outcome variable FS1,a coefficient (P value) FS2,b coefficient (P value) FS3,c coefficient (P value) FS4,d coefficient (P value)

Anxiety Depression Anxiety Depression Anxiety Depression Anxiety Depression

Week of study 0 (—e) −0.16 (.14) −0.0063 (.93) −0.1826 (<.001)f 0.1122 (.22) 0.0659 (.62) 0.0643 (.43) 0.1803 (—)

Frequency −0.0169 (.55) −0.0632 (.14) −0.0976 (.09) −0.1304 (.004)f −0.0438 (.12) −0.086 (.004)f −0.1747 (.001) −0.5962 (—)

Days of use 0.0761 (.53) −0.0737 (.74) 0.1757 (.08) 0.4565 (<.001)f 0.1047 (.38) 0.2374 (.25) 0.2909 (.02) 1.5607 (—)

Total duration 0.0003 (.67) 0.0021 (.12) 0.0011 (.63) −0.0017 (.17) 0.0009 (.24) 0.0024 (.01)f 0.0026 (.24) 0.0009 (.68)

Mean duration 0.0237 (.17) −0.027 (.24) 0.0071 (.78) −0.0336 (.12) 0.0007 (.97) −0.0637 (.03)f −0.0092 (.66) −0.1536 (—)

Duration SD −0.0172 (.36) 0.0354 (.45) 0.0055 (.83) −0.0093 (.66) −0.0002 (.99) 0.098 (.02)f 0.0026 (.91) 0.0901 (—)

Minimum duration −0.0459 (.02)f 0.032 (.37) −0.0171 (.52) 0.0414 (.03)f −0.0269 (.21) 0.0978 (.01)f −0.0083 (.75) 0.0917 (<.001)f

Maximum duration 0.0007 (.92) −0.0105 (.44) −0.0047 (.70) 0.0248 (<0.001)f 0.0004 (.95) −0.0215 (.05)f −0.0006 (.96) 0.0386 (<.001)f

aFS1: anxiety: α = 0.1, root mean square error 0.7396; depression: α = 0.1, root mean square error 0.7589.
bFS2: anxiety: α = 0.7, root mean square error 0.8095; depression: α = 0.1, root mean square error 1.3954.
cFS3: anxiety: α = 0.1, root mean square error 0.5128; depression: α = 0.1, root mean square error 0.4136.
dFS4: anxiety: α = 0.1, root mean square error 0.5348; depression: α = 0.1, root mean square error 0.4547..
eP value was not defined.
fEffects with a P of <.05.
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Predictive Modeling of Weekly Mood

The predictive modeling results are shown in Table 3 below. FS3, which contained

survey features and overall app engagement features, achieved the highest predic-

tive accuracy (84.6%) and yielded the best outcome measures when used with an

RF classifier to predict depressed mood. FS4, which contained survey features and

engagement features only from the most-used apps, achieved the second-best pre-

dictive accuracy (81.5%) when used with an XGB classifier. FS5 yielded the worst

results overall, likely because of a combination of overfitting and a lack of meaningful

information contained in engagement features for individual apps. Overfitting is a

common issue for tree-based models applied to small data sets and occurs when the

model learns the training set so well that it poorly generalizes when making predic-

tions on the test set. We note that despite using techniques such as the SMOTE and

LOSOCV, which are designed to reduce overfitting, we still struggled to mitigate this

issue in our predictive task. Further investigation is warranted to determine whether

a larger data set might yield better predictive results.

Table 4.4: Weekly depressed mood prediction task results.

Classifier FS Accuracy (%) Precision (%) Recall (%) F1 Score (%)

RF
FS3 84.61 82.50 64.42 67.75
FS4 83.07 73.50 72.11 72.76
FS5 66.15 50.00 50.00 49.93

XGB
FS3 78.46 67.33 69.23 68.13
FS4 81.53 70.81 62.50 64.54
FS5 67.69 47.95 48.07 48.00

A feature importance graph of Shapley Additive Explanations (SHAP) scores [179]
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for the top classifier and FS (i.e., RF/FS3) for depressed mood prediction is shown in

Figure 4.3. Self-report features such as connectedness to others (feature Connected-

ness) and receiving support from others (feature Receive support) were particularly

important. Engagement features such as frequency and the mean duration of use

were also important. As with the results of our correlation analysis, we caution

against overinterpretation of the importance of individual features, given the limited

sample size.

Figure 4.3: Feature importance for the prediction of depressed mood using a random
forest classifier on feature set 3. SHAP: SHapley Additive exPlanations.

The findings from these exploratory analyses indicate that it may be feasible to

identify the weekly moods of patients with breast cancer based on their app use
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metrics.

4.3.9 Discussion

Considering the increased sophistication of mobile devices and app-delivered inter-

ventions that can capture minute details of user engagement, there is a need to

develop increasingly sophisticated frameworks to make sense of user engagement

data. In this study, we proposed a process for understanding the dynamic associa-

tion between app engagement and mood using machine learning. Importantly, how

engagement data are processed differs from study to study. The studies by Cheung

et al. [44] and Pham et al. [133] drew attention to these diverse data-processing

approaches and the common features that characterize engagement. Our process

attempts to unify the key aspects of these approaches and refocus them on data

collected from patients with breast cancer. The application of the proposed process

and evaluation of statistical models support the feasibility of predicting mood status

based on app engagement. The analyses and results from the case study are meant

to demonstrate the potential of this approach; therefore, we caution readers not to

overstate the findings of our case study. Replication of the findings in a larger data

set is needed to draw more firm and generalizable conclusions.

With this caveat, the application of our process to the case study data yielded some

interesting preliminary findings that may be worth pursuing in future studies. The

most prominent models and theories of behavioral change highlight the importance

of motivational forces to sustain a behavior [61-63], such as engagement in a mental
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health app. Individuals with high levels of depression or anxiety symptoms are

likely to experience low self-efficacy or a low perceived ability to perform a behavior,

which is likely to result in poor engagement. Our results suggest that baseline levels

of anxiety and depression affect patterns of engagement among patients with breast

cancer, at least in the short term. The findings for the groups with high anxiety

and high depression suggest that strong initial engagement does not necessarily lead

to long-term engagement growth. In addition, the findings for the groups with low

anxiety and low depression suggest that engagement may be difficult to sustain in

the long term and may reach a point of diminishing returns.

The application of our process that led to the predictive results is promising in

that both the RF and XGB classifiers performed well (>60% for all metrics) even

with moderate amounts of data when the FS was well-curated (i.e., when FS4 and

FS3 were used). This suggests that heterogeneous FSs comprising both baseline

mental health measures and engagement data may be useful for predicting weekly

moods when analyzed with robust classifiers. Predictions of weekly mood can, in

theory, be used to personalize interventions. A dose-response relationship has been

observed in digital health interventions, making it especially important to target

patients when they are most open to receiving a dose of an app-delivered intervention.

Heterogeneous data sets, along with high-accuracy classifiers, could be used within

a just-in-time adaptive intervention (JITAI) [6] to predict the mood of patients with

breast cancer. This mood could then be cross-referenced with the patient’s schedule

to identify the optimal time window for intervention delivery. Studies have also

demonstrated that distress tends to spike in women around the time they receive an



4.3. CASE STUDY: PREDICTING MOOD FROM USER ENGAGEMENT 93

initial diagnosis [180, 181] but that a patient’s needs change throughout the course of

treatment [182, 183, 184]. Such a just-in-time adaptive intervention could be further

extended to learn the mood and engagement patterns of a patient with breast cancer

over time and adjust the timing of the intervention accordingly. Further research is

needed to determine the feasibility of implementing such interventions in vulnerable

populations.

Prior studies examining the link between engagement with mHealth tools and symp-

toms have historically yielded mixed results; some studies have identified a direct

relationship [9, 185], whereas others have identified an inverse relationship [18, 186].

Although we cannot definitively quantify this relationship in our study, both our

correlation and predictive analyses suggest that paring down the available features

to include only the most relevant engagement data for each individual (e.g., features

from only the most-used apps) and combining self-report data with passively moni-

tored engagement data may help researchers better identify significant predictors of

mood.

4.3.10 Limitations

There are several limitations to this study that should be considered in light of these

results. The results from the case study are limited in generalizability because of the

small sample size. Data sparsity was a particular challenge when we attempted to

break down our time windows of interest into smaller epochs, such as 4-hour windows

describing different periods of the day (e.g., morning and late night); therefore, we
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had to focus on daily and weekly time windows. Similar issues with sparsity occurred

when we attempted to analyze the data for each individual app in the IntelliCare

suite. Furthermore, our prediction task experienced overfitting. We recommend that

researchers focus particularly on recruitment and retention for similar future studies

to ensure that the resultant data set is sufficiently large for granular analyses.

Our study is also limited in scope as we did not account for demographic covari-

ates, such as age, race, or socioeconomic status, in our mixed-effects model. As

demographic factors are known to play an impactful role in health outcomes, we

encourage researchers to include these factors in future studies on engagement with

health apps. Finally, this study focused only on patients with breast cancer; there-

fore, our results may not be generalizable to other patient populations with cancer

or other diseases.
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4.4 Case Study: Predicting Medication Adherence

from Smart Pill Bottle Data

4.4.1 Background and Motivation

As highlighted in Chapters 2 and 3, medication adherence is a significant challenge

for many patients, especially those battling diseases such as breast or lung cancer.

The use of smart MEMS devices as a means of measuring adherence has grown

in popularity in recent years, with smart pill management devices (e.g., Bluetooth

connected pill caps) leading the charge. These devices can reliably gather the ground

truth for an individual patient’s medication-taking habits, and allow for monitoring

and analysis of these habits at multiple timescales.

Consider a fictitious patient named Mary. Mary uses a smart pill bottle that records

a timestamp whenever Mary opens the bottle; this timestamp indicates that Mary

has taken her medication. Over the course of a week, certain habits may be made

apparent based on Mary’s timestamped the pill bottle data. For instance, she may

take her pill around 8am and 5pm every day, which may correspond with her meal-

times. On a monthly or multi-month time scale, more habits may become apparent:

perhaps Mary’s consistency in taking her pill is disrupted on weekends, or during

certain seasons of the year. At a single time scale, Mary’s smart pill cap data may

not seem very useful. But for data gathered over many months and analyzed at
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multiple time scales, her data becomes a rich part of her digital phenotype. This

data might help Mary’s doctor monitor and make adjustments to Mary’s medication

routine if needed. Moreover, a well-trained algorithm may be able to learn important

patterns from Mary’s data and even predict whether she will adhere in the next day,

week, or month. This dynamic prediction of medication-taking behavior is the focus

of this chapter.

A great number of studies within the mHealth literature have utilized supervised

learning tasks for binary prediction of health-related outcomes. In supervised learn-

ing, data are labeled according to the true value of the outcome. Consider a scenario

in which we want to predict whether a patient will be admitted to the hospital in

the next 30 days from a given date. For each patient for whom we have data, we

create a vector of features for that patient: clinical measures which were gathered

during a previous time period (say, 15 months prior) and which were measured ex-

actly once. I then give that vector a label: “1” if the patient was actually admitted

to the hospital within 30 days of the date, or “0” if they were not admitted. The

input features are then fed into an algorithm which learns from the data and predicts

the label for each vector of features. This type of prediction task, in which there are

no explicit temporal relationships between the features, works well in cases where

features tend not to change much in value over time. But as we established in prior

chapters, the human digital phenotype is a dynamic system built upon temporal rela-

tionships. Thus, traditional supervised learning approaches are insufficient for tasks

such as predicting whether a person will adhere to her medication. Consequently,

new methods for analyzing passively-sensed data have emerged in recent years.
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Considerable attention and resources have been dedicated to measuring and predict-

ing adherence to medications for common chronic diseases, such as heart disease,

hypertension [187, 188], cardiovascular disease, and diabetes [189]. Yet, despite the

enormous impact of cancer on the global population, studies of medication adher-

ence prediction for individuals with cancer (specifically, breast cancer patients) is

more rare. Moreover, existing studies of adherence prediction tend to focus on a

single time scale for prediction (e.g., daily). While several works have examined pre-

dictions at multiple time scales, to my knowledge, none of these works have focused

exclusively on breast cancer patients. Given the strong ties between adherence to oral

chemotherapies and survival outcomes, a major opportunity exists for researchers to

identify high-performing methods for predicting adherence in this population.

In this chapter, I present a case study of medication adherence prediction among

breast cancer patients in the United States. This study investigates the feasibility of

predicting adherence at multiple time scales from features derived using COMP-SCT.

4.4.2 Methods

Data

Data were obtained from a National Cancer Institute sponsored study (R21CA161077)

of female survivors of stage 0-3 hormone-receptor-positive breast cancer (N=36).

This study was approved by the San Diego State University Institutional Review

Board; sharing of anonymized data with the author of this document was approved
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by the Principal Investigator of the original study. In the two-month period follow-

ing treatment completion, participants were asked to begin using a MEMS cap and

bottle system to track their adherence to once-daily prescribed endocrine therapy.

Data were collected over an 8-month period (210 weeks) and included up to three

timestamps per participant, per day from the MEMS device, indicating exactly when

the bottle was opened.

Problem Formulation

I formulated our problem as a supervised learning prediction task for multivariate

time series data. In this scenario, a “1” indicates the person was adherent, while a

“0” indicates they were not adherent.

Preprocessing

In this case study, I refer to each time the MEMS device was opened as an “event”.

The original dataset included approximately 8 months of daily MEMS cap readings

for each participant. I first converted the data from wide-format to long format; that

is, the original dataset contained one row per participant and contained all events

(e.g., pill bottle opens) for that participant for the whole study period as columns. I

then aligned the timestamps to their respective days within the study period. Then,

I generated featuresets at two time scales: daily (featureset study_day) and weekly

(featureset study_week). Finally, I used a “washout period” to exclude all data

from the first month of the study. “Lead in” or “washout” periods are commonly
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employed in machine-learning based prediction studies of adherence. In such an

approach, all observations from a given time period (eg., the first few weeks of a

study) or all observations from certain participants may be excluded from the final

analysis. A lead in period guards against algorithms learning spurious patterns from

early, volatile data [84]. In this scenario, the washout period accounts for the learning

curve participants faced when learning to use the MEMS device, during which time

they may have exhibited unstable usage patterns.

SCT Construct Grouping

Construct grouping was not applicable to this study, as the primary component of

the intervention was the smart pill bottle, which had exactly one function: recording

the time at which a pill was taken. Thus, all data used in this study pertains to the

behavioral construct.

Temporal Feature Extraction

Existing data were on a daily time scale and included the exact timestamp of each

event, the number of events per day, and whether a participant was adherent each

day. Following Doryab et al. [5], I added several new temporal features. For the

study_day featureset, new features included indicators of whether a given day was

a weekday or weekend day and whether the MEMS device was used during a given

time period on a given day (i.e., morning, afternoon, evening, or late night). For

the study_week featureset, new features included the most common time period
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during which an event occurred and the average number of events per day. For

both featuresets, I also calculated commonly-used temporal metrics such as mean

and standard deviation of the time of each event, as well as the mean and standard

deviation of time between events.

Previous works have shown that historical adherence data is an important (if not

the most important) predictor of future adherence [85, 86]. I therefore extracted

lagged features of adherence and related features using a sliding window approach

as in related works [85, 86, 87, 149]. Determining the optimal number of lagged

features in the sliding window was important; too many lags can create a sparse

dataset with low predictive power, while too few lags can obscure important temporal

relationships between features. Following Gu et al.’s approach [86], I used an out-of-

the-box Random Forest classifier to determine an appropriate number of lags. For

each feature set, I varied the number of lags (range [1, 7]) as well as the max_depth

parameter (range [0, 5]) as inputs into the classifier, then selected the optimal number

of lags by visual inspection of classifier performance. I examined both lags and

max_depth in tandem in order to to determine an appropriate upper bound on the

max_depth parameter during tuning. Graphical results for max_depth values of 1

and 2 are shown as examples in Figure 4.4.

As Gu et al. [85] and Gu et al. [86] note, adherence prediction researchers are most

interested in participants who do not adhere, as these are the patients most in need

of clinical intervention. Therefore, specificity is of greater interest in adherence

prediction studies than more commonly-used metrics such as accuracy or sensitivity.

I based my final decision for the optimal number of lags on the balance between
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Figure 4.4: Specificity loss for lag tuning exercise, with max_depth of 1 (left) and 2 (right).
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overfitting and specificity loss. This exercise led me to select n = 4 lags for both

next day and next week prediction 1. Given that performance was best using very

shallow trees, I also set an upper bound of 3 for the max_depth parameter in the

search grid prior to beginning the prediction task.

Prediction tasks

I formulated two unique prediction tasks: one for next day adherence prediction

(Task 1, using featureset study_day) and one for next week adherence prediction

(Task 2, using featureset study_week), respectively. Daily adherence was defined as

taking the medication (i.e., opening the MEMS device) within 24±6 hours of taking

the last dose Weekly adherence was defined as being adherent for at least 80% of the

time. 2

I conducted 5-repeated, nested 5-fold cross validation with hyperparameter tuning.

I split data at the subject level, which guards against data leakage by ensuring that

subjects who appear in the training set do not appear in the test set. After split-

ting the data, I imputed missing numeric features using sklearn’s IterativeImputer

for multiple imputation and imputed nominal features using mode imputation. I

also one-hot-encoded nominal features. For classifiers which are sensitive to scal-

ing (e.g., SVM and Logistic Regression), I scaled features to be in the range [0, 1]

using sklearn’s MinMaxScaler. Following Gu et al. [85] and Gu et al. [86], I used

a Random Forest classifier for feature selection. I tuned hyperparameters using the

ray-tune python package’s implementation of gridsearch []. Importantly, I used sensi-

1It should be noted that selecting the optimal number of lags based on visual inspection is
naturally subjective. For instance, n=2 lags might have been a more optimal choice for next-day
prediction (Task 1). However, this choice would have made it difficult to perform a fair comparison
between Task 1 and Task 2. I selected 4 lags for both tasks to ensure a fair comparison between
the tasks for each classifier, and to ensure that the data had a large enough lookback window for
each observation to generate meaningful predictive insights.

2An adherence threshold of 80% is standard within the medication adherence literature, though
whether it should remain the standard is up for debate [190].



4.4. CASE STUDY: PREDICTING MEDICATION ADHERENCE FROM SMART PILL BOTTLE DATA 103

tivity as the gridsearch scoring metric so as to select the best classifier for identifying

patients who would not adhere.

I compared the performance of fmywell-known machine learning classifiers on each

feature set: Logistic Regression (LR), Support Vector Machine (SVM), Random For-

est (RF), and XGBoost (XGB; [178]). I calculated the mean and standard deviation

across all runs and folds for each evaluation metric. Results for Task 1 (next day

prediction) and Task 2 (next week prediction) are shown in Table 4.5.

4.4.3 Results

Task 1 was associated with better model performance and stability across all models,

highlighting the importance of capturing frequent, granular measures of adherence

during deployment studies. XGBoost (XGB) achieved the highest mean accuracy

(87.26%) and sensitivity (93.97%), while the Random Forest (RF) classifier achieved

the highest specificity (74.03%) and mean AUC (0.86). For Task 2, the Random For-

est classifier achieved the highest mean accuracy (75.13%), sensitivity (81.01%) and

AUC (0.81) Interestingly, the Logistic Regression (LR) model achieved the highest

specificity in Task 2 (71.18%) and achieved relatively high specificity in both tasks in

comparison to the other models. This finding warrants further investigation, given

that tree-based models tend to perform best with tabular data especially in medical

contexts. However, such an investigation is outside the scope of this current study.

It is worth noting that, like Gu et al [85], I observed the unusual occurrence of higher

performance on the test set than on the train set for select models and metrics,
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Table 4.5: Results for adherence prediction for Task 1 and Task 2

Task 1: Next day Adherence Prediction

Method Accuracy (%) Precision (%) Sensitivity

(%)

Specificity

(%)

F1 Score AUC

LR 83.98 ± 0.40 90.51 ± 0.13 87.61 ± 0.66 73.49 ± 0.54 0.89 ± 0.00 0.85 ± 0.05

RF 84.38 ± 0.46 90.72 ± 0.11 87.97 ± 0.79 74.03 ± 0.55 0.89 ± 0.00 0.86 ± 0.04

SVM 86.38 ± 0.76 88.97 ± 0.19 93.21 ± 0.93 66.65 ± 0.35 0.91 ± 0.01 0.80 ± 0.06

XGB 87.26 ± 0.09 89.42 ± 0.14 93.97 ± 0.30 67.90 ± 0.56 0.92 ± 0.00 0.85 ± 0.05

Task 2: Next week Adherence Prediction

Method Accuracy (%) Precision (%) Sensitivity

(%)

Specificity

(%)

F1 Score AUC

LR 74.36 ± 0.47 77.13 ± 0.71 76.88 ± 0.87 71.18 ± 1.36 0.77 ± 0.00 0.80 ± 0.05

RF 75.13 ± 0.84 76.02 ± 0.65 81.01 ± 1.23 67.69 ± 1.03 0.78 ± 0.01 0.81 ± 0.05

SVM 75.06 ± 0.85 76.47 ± 1.47 80.00 ± 0.88 68.82 ± 2.86 0.78 ± 0.00 0.79 ± 0.06

XGB 74.59 ± 1.30 75.83 ± 1.02 79.96 ± 1.39 67.79 ± 1.29 0.78 ± 0.01 0.80 ± 0.05
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indicating that the model behavior is not fully explainable. This situation points

to a need for better tools for explainable AI, an important topic that is beyond the

scope of this paper.

As in Case Study 1 (Section 4.3), I calculated the feature importance using Shapley

Additive Explanations (SHAP) [179]. Figure 4.5 shows the magnitude of the impact

of the most important features on the model performance, for the top model for each

task. I calculated the importance of each feature as the mean SHAP value across

all runs and folds. Consistent with prior literature on adherence prediction, recent

prior adherence played an important role in predicting future adherence. For Task

1 (next day prediction; Figure 4.5a), adherence for the previous day was the most

important feature. The time of day during which the patient took their medication

the previous day was also important. Interestingly, the distinction between weekday

days and weekend days was important as well, but only for the day three days prior.

This finding raises the possibility that participants were more likely to be adherent

on a Monday, the first day of the week.

Features for Task 2 (next week prediction; Figure 4.5a) had a much lesser impact on

Task 2 model performance than did the features for Task 1 on Task 1 model perfor-

mance. For Task 2, adherence in the second most recent week was most important.

Features such as the average time at which the patient took their medication each

day as well as the standard deviation for that time were also slightly important,

though their impact was small in comparison to that of other features.

4.4.4 Discussion

The current study investigates the feasibility of predicting future medication ad-

herence from passively-sensed data from smart MEMS devices. The best model’s

performance is comparable to the performance of leading adherence prediction mod-
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(a)

(b)

Figure 4.5: Feature importance for the top classifier for each prediction task. Fig-
ure 4.5a shows the feature importance for XGBoost, the top-performing classifier for
Task 1 (next day prediction). Figure 4.5b shows the feature importance for Random
Forest, the top-performing classifier for Task 2 (next week prediction).
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els [84, 85, 86], and the model even outperforms similar models for multiple evaluation

metrics (e.g., accuracy, sensitivity, and AUC) despite the smaller sample size. Model

performance is dependent on a number of factors including the nature of the problem

domain, the prevalence of the outcome variable, and the population sample size [191],

therefore, I cannot claim that this study’s best model is inherently “better” than ex-

isting models. Rather, our results demonstrate that predicting adherence at multiple

timescales is feasible, and shows the usefulness of COMP-SCT in guiding the feature

engineering and model optimization processes in supervised learning tasks for clinical

outcomes prediction. Specifically, my addition of features related to the time of day

in Task 1 and the time of the week (i.e., whether a day was a weekday) for Task 2

played an important role in the model’s performance, as shown in Figure 4.5.

Prior works have shown that the relationship between features of human behavior

and clinically-relevant outcomes such as mood can vary by the granularity of the

time scale on which the input features were measured (e.g., time of day, time of

year, etc.) [5]. This phenomenon complicates the nature of adherence prediction

in real-life settings. Clinicians, who are already very busy, are highly unlikely to be

able to respond to daily updates about their patients’ adherence patterns. Moreover,

as illustrated by the example of the fictitious patient Mary at the beginning of this

chapter, limiting adherence prediction to a single time scale risks missing patterns

inherent at smaller time scales. In practice, multi-timescale approaches to adher-

ence prediction will need to adapt to existing clinical practice, including triage. In

the context of medication adherence monitoring, “triage” in this case entails using

automated messages to provide support to the patient when they are at low risk,
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and informing nurses on duty or the patient’s doctor if they are at higher risk. For

instance, a patient might be considered at low risk if they have not yet missed a dose

of a certain medication, but they are predicted to be at risk of missing a dose the

following day. In this case, Toscos et al.’s approach [73] could be adapted to securely

deliver a support message to the patient via a mobile app or EHR portal, but before

the missed dose occurs.

Importantly, this study’s most accurate model has a high sensitivity and thus can

properly capture most cases of nonadherence on a daily time scale. This particular

result is promising, given the challenging nature of risk detection and adverse out-

come prevention in clinical settings. If I constructed a final XGBoost model based

on my approach in this study and deployed it in a clinical environment, it could be

reliably be used to detect nonadherence among breast cancer patients and help guide

decisions about when and how frequently to reach out to breast cancer patients at

risk of not adhering. The results from this study thus help lay a foundation for adher-

ence monitoring and prediction in certain oncology contexts. Further, these results

contribute to domain knowledge of key behavioral factors that influence medication

adherence among breast cancer patients, a population whose adherence patterns are

not yet fully understood.

4.4.5 Limitations

Several limitations exist in this study. Unlike other studies on medication adherence,

this study does not examine factors such as the total quantity or days supply for each
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dispensed medication, which may be important factors [190]. This study also does

not leverage additional data sources such as EHR or medical claims data, which have

been shown to achieve fair predictive performance for adherence patterns [192].

I impose a strict 80% threshold for adherence; however, related work by Lo-Ciganic

et al. has shown that an 80% threshold is not always predictive of adherence and that

this threshold may vary by disease and medication [190]. Additionally, classifier per-

formance is often dataset-specific [191]; therefore, this study’s classification approach

might not yield equally-good results if applied to another dataset of medication ad-

herence. Further research is needed to determine whether a different threshold for

adherence should be used, and whether this study’s approach can be generalized to

achieve good predictive results on similar datasets.



Chapter 5

Conclusions and Future Work

5.1 Summary of Contributions

In Chapter 1, I presented a review of the relevant literature on user context, which

included an examination of leading scholars’ definitions of “context”, the role con-

text plays in characterizing an individual’s health status via digital phenotyping, and

the open challenges to user context detection in situ. I also reviewed the prominent

frameworks that laid the foundation for modern digital phenotyping studies, exam-

ined the complex relationship between engagement with digital phenotyping inter-

ventions and subsequent attrition, and discussed current state-of-the-art approaches

to predicting medication adherence from passively-sensed data using machine learn-

ing.

In Chapter 2, I discussed our work on the Multiscale Monitoring and Intervention

(MMI) system, which is designed to guide the design, deployment, and improvement

of mHealth interventions for medication adherence by utilizing passively-sensed in-

dicators of user context. This chapter argued that adherence is a challenge best

characterized by constructs from Social Cognitive Theory (SCT), and provided an

110
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explicit mapping from SCT constructs to sensors and contextual features of adher-

ence. Our presentation of the MMI system represents a twofold contribution: We

laid the foundation for grounding future interventions for medication adherence in

SCT, and we set the stage for developing and deploying such interventions in the

wild.

In Chapter 3, I presented our next major step in making the MMI system a reality:

A qualitative study of lung cancer patients’ perceptions of and needs for symptom and

adherence monitoring interventions. This study revealed key insights about patients’

preferences, needs, and priorities, such as the need to receive unobtrusive notifications

on one’s own schedule and the desire for adequate support resources from the study

team during the intervention period. Importantly, this study also presented several

actionable implications for design, such as increasing patients’ agency over their data

and notifications.

In Chapter 4, I presented COMP-SCT, a framework for deriving personal, behav-

ioral, and environmental features of user context at multiple time scales. COMP-SCT

make several novel contributions to the field of mHealth. It maps SCT constructs

to low-level physiological data and higher level features of medication adherence and

facilitates the analysis of SCT constructs at multiple time scales. Further, it helps

recontextualize medication adherence as a system, which takes into account not only

the user (the patient), but also the environmental factors that impact the user (e.g.,

how much interaction the user has with friends and clinicians). This approach is

novel considering that similar frameworks tend to take a more user-centric view of

challenges such as adherence, thus missing a critical piece of the user’s context: their
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environment. I also described our application of COMP-SCT to two case studies of

breast cancer patients, demonstrating its utility for deriving personal and behavioral

features of user context and for driving actionable clinical predictions at the level of

the current state-of-the-art.

5.2 Future Work

The work presented in this dissertation lays the groundwork for future studies of

medication adherence and the factors that contribute to adherence among oncology

populations. Several viable directions for future work exist, which I discuss briefly

in the following sections.

5.2.1 Mobile Health (mHealth) Devices and Remote Moni-

toring: Ongoing Work with Lung Cancer Patients

In Chapter 3, we presented our early work in understanding patients’ attitudes to-

ward smart devices for managing oral chemotherapy during lung cancer treatment.

The natural extension of this work is to pilot mHealth technologies with real patients.

Importantly, mHealth devices may serve as a complement to traditional clinical tri-

als for oncology, given that devices can easily capture patient reported outcomes

(PROs) such as sleep quality, medication side effects, and mental wellbeing in real

time and may lead to better overall outcomes for patients whose physicians closely

monitor their reported progress [80]. The advantages of mHealth devices in oncology
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care have led to a number of clinical trials on the use of such tools for medication

and side effect management. Mauro et al conducted a randomized controlled trial to

evaluate the effect of a smart pill bottle among patients with multiple myeloma who

were taking oral chemotherapy [112]. The study followed 40 patients for 6 months,

with 32 in total completing the study. The intervention group received smart bottles

with visual and audio reminders activated (e.g., blinking lights, audible “chimes”)

as well as support and monitoring from a pharmacist. The control group received

the same smart bottles as the intervention group, but these bottles did not have

reminders turned on. Results showed that adherence was significantly higher in the

intervention group, suggesting that smart technologies such as pill bottles may help

improve adherence when reminders are turned on and clinicians are able to follow up

with patients if needed. Further, Greer et al. conducted an 18-month randomized

controlled trial of a mobile app with 181 cancer patients prescribed oral anticancer

medications [142]. The app prompted participants to take medications and track

symptom severity and included Fitbit integration. They found that participants in

the intervention group who struggled with anxiety and adherence at baseline showed

higher MEMS-measured adherence rates over the study duration.

As discussed in Chapter 1, several preliminary studies on remote monitoring for lung

cancer care using smart devices have emerged in recent years. However, compara-

tively few clinical trials focused exclusively on symptom and adherence monitoring

for lung cancer have taken place. Moreover, few trials have focused exclusively on oral

tyrosine kinase inhibitors (TKI), a type of chemotherapy commonly used in patients

with non-small cell lung cancer (NSCLC) with EGFR mutations or ALK gene rear-
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rangements. Perhaps the most relevant non-clinical study in the area of mHealth for

lung cancer and TKIs is that of Pereira-Salgado et al. [114]. The authors conducted a

10-week pilot test of an mHealth system for medication- and symptom-management

with 9 patients with chronic myeloid leukemia (CML). The system was designed to

help patients better adhere to their oral tyrosine kinase inhibitor (TKI) medications

by sending medication reminders via text, asking patients to record their side effects

via an online web portal, and providing self-care tips. Patients reported feeling more

informed about their care (including care of side effects), and both patients and

clinicians and found the system helpful for establishing healthy medication-taking

routine. These results are a promising step toward mHealth interventions for lung

cancer, but more work must be done to fully understand the role of mHealth devices

in symptom and adherence monitoring.

Tie in the contextual (mobile) data more clearly. What do we expect to learn

from usage patterns (e.g., time of day)? From self-reported symptoms?

We have begun the next phase of our project on symptom and adherence monitoring

among lung cancer patients, in collaboration with oncologists at the NCI-designated

Emily Couric Cancer Center at the University of Virginia. In this phase we leverage

Sensus, a novel mobile sensing system for Android and iOS capable of collecting data

from smartphone and Bluetooth-enabled sensors and EMAs on a schedule, randomly,

or using sensor-triggers [32]. We also leverage Swear, a mobile app for smartwatches

developed by the project team to collect multimodal signals related to health [193].

Using the Sensus and Swear apps on smartphones and smartwatches, respectively,

we capture a rich dataset containing key elements of user context for each of the
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Social Cognitive Theory constructs. We ask patients to self-report personal factors

such as the frequency and intensity of their symptoms and the quality of their sleep,

behavioral factors such as whether they took their medication, and environmental

factors such as whether they are with another person. We also passively capture

objective measures of user behavior in relation to their environment. For instance,

we capture movement patterns via accelerometer and gyroscope, which can indicate

activities like exercise. After the study’s completion, we will extract relevant features

using COMP-SCT and will leverage deep learning models to model side effect and

adherence patterns.

The results of our study will help determine the feasibility of conducting a larger-

scale, randomized-control trial. This trial would evaluate whether the MMI system

can lead to meaningful changes in patient outcomes, including more timely AE de-

tection, reduced AE symptom burden, and reduced treatment interruption and/or

discontinuation. The results of this study will also be used to develop a clinical

dashboard for remote, real time symptom monitoring. This dashboard will enable

clinicians to intervene earlier when a patient is experiencing side effects, thus reducing

severity of symptoms, improving quality of life, and avoiding drug discontinuations

and dose reductions.
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5.2.2 Predicting User Behavior Using Both Static and Tem-

poral Data

The case studies I presented in Chapter 4 demonstrate the feasibility of predicting

personal and behavioral outcomes from dynamic (temporal) data. However, the

nature of mHealth studies is such that dynamic data rarely exists in isolation. Often,

researchers will administer baseline assessments prior to the start of an intervention in

order to gather demographic information and information about an individual’s level

of health at a single point in time (e.g., at the start of a study). Similarly, electronic

health records will contain a single date per diagnosis, given that it makes no sense to

be diagnosed with the same disease more than once. Baseline assessments and select

portions of EHR data collectively represent the rich static data that occurs alongside

dynamic, passively-sensed data in real world contexts. Recent work has shown that

complex models such as neural networks can model and predict static health data

with very high predictive accuracy [194]. Moreover, multiple studies have shown that

these complex models can be used to model static and dynamic data together, also

with high predictive accuracy [195, 196, 197]. For instance, Esteban et al. developed

a novel modeling approach in which static data is processed with a feedforward neural

network and dynamic data is processed with an recurrent neural network (RNN). The

authors applied their approach to a dataset of 2061 patients with kidney failure, using

several variants of RNNs (such as Long Short-Term Memory models, or LSTMs, and

gated recurrent units, or GRUs). The authors compared these variances to Random

Forest and Logistic Regression, and ultimately showed that the GRU yielded the
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best AUC (0.833 ± 0.006) when predicting all endpoints (i.e., transplant rejection,

transplant loss, and death) across all time horizons (6 months and 12 months).

As Leontjeva and Kuzovkin point out, static and dynamic data are rarely used to-

gether because traditional (i.e., supervised learning) classifiers are not able to handle

such combinations of data [196]. Moreover, as evidenced by the literature, few studies

have combined static and dynamic data in health-related contexts. A novel exten-

sion of the work we presented in Chapter 4 would be to utilize baseline demographic

data and measures of health (e.g., scores from assessments of depression such as the

PHQ-9) alongside the passively sensed sensor data, either through the combination

of a feedforward neural network and RNN as in [195], or through the use of a hybrid

model as in [196]. Such an approach would yield deeper insights into how multiple

SCT constructs influence patients’ adherence decisions. Consequently, researchers

and clinicians would be able to more efficiently determine how to personalize adher-

ence interventions based on an individual’s background or comorbid conditions.

5.2.3 Design of Just-In-Time Adaptive Interventions for Ad-

herence and Symptom Monitoring

The interview study presented in Chapter 3 as well as the case studies presented

in Chapter 4 have advanced our knowledge of factors that contribute to human be-

havior in oncology populations. But these studies are only the first step toward the

end goal of mHealth research: improving patient health outcomes. The findings in

this dissertation could be used under the guidance of the MMI and COMP-SCT
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frameworks to inform the design of multi-scale Just-in-Time Adaptive Interventions

(JITAIs) for medication adherence. JITAIs were first formally proposed by Spruijt-

Metz and Nilsen in 2014 as a mechanism for leveraging health behavior theory and

context representation to deliver personalized interventions at the moment they are

needed (Spruijt-Metz and Nilsen 2014). JITAIs are designed to both sample user con-

text in the moment and deliver an appropriate intervention based on that context.

They are valued for their ability to “capitalize on periods of heightened suscepti-

bility to positive health behavior changes”. JITAIs are predicated on several core

principles: namely, that a rich representation of user behavior and the context of

that behavior via mobile devices is feasible; and, that representation of context,

both past and present, is “dynamic knowledge” that can be used to inform real-time

behavior change interventions. While JITAIs do not solve all the problems associ-

ated with capturing of user context, they help to break down both context and user

goals into smaller pieces. Spruijt-Metz and Nilsen provide several examples of how

a this might work in practice; for instance, GPS data could be used to nudge an

individual towards a healthy eatery as they walk to get lunch, helping to encourage

long term behavior change toward healthy eating. As with all interventions that

target behavior change, JITAIs can only be successful if the user is both open and

receptive to receiving in-the-moment support. Recontextualized in another way, JI-

TAIs initially target the “Contemplation” and “Determination” phases described in

the well-known Transtheoretical (stages of change) Model [198]. A successful JITAI

will then gradually adapt to support the action and maintenance phases as the user

develops healthier habits over time.
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JITAIs have been proposed and applied to a variety of health challenges, including

addiction [199], smoking cessation [200], stress [147, 201, 202], and physical activ-

ity [203]. Few JITAIs exist, however, for the promotion of medication adherence

(with a study of WisePill as a notable exception [204]). The work I have presented

in Chapter 4 (Case Study 2) could readily be used to implement the behind-the-

scenes predictions that would drive a medication adherence-focused JITAIs forward.

As an example, let us consider the case of a simple JITAI for adherence prediction

in breast cancer patients. When designing a JITAI, one must consider both prox-

imal (short-term) and distal (long-term) outcomes [6]. Therefore, let us define an

example distal outcome Od as 80% adherence 3 months into the intervention period.

Now, let us define an appropriate related proximal outcome Op: as minimizing in-

tervention fatigue; note that this proximal outcome, which has been adapted from

Nahum-Shani et al.’s example for a JITAI for weight loss [6], prioritizes engagement

by reducing user burden. Having defined our proximal and distal outcomes, we must

now consider the four key components of a JITAI: decision points, tailoring variables,

intervention options, and decision rules. We might also choose to incorporate ele-

ments of gamification which the literature has identified as helpful, such as avatars

and point-based incentives; let us include these as part of our decision rules. Ta-

ble 5.1 below shows three example decision rule workflows for our proposed JITAI

(similar to Table 2 of [6]). These include elements of gamification, in which compo-

nents such as avatars, points, and small monetary incentives are used to encourage

sustained participation.

The first and second rules makes use of an avatar which delivers an encouraging
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(a) Example of avatar-delivered EMA
prompt

(b) Example of points-based incentive
system

Figure 5.1: Example of user interface for a JITAI to improve medication adherence.
Images courtesy of Material Design Kit and Icons8.
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Table 5.1: Example of a decision rule workflow set for a gamified JITAI for medication
adherence

Decision Rule Decision Point Tailoring Vars Intervention(s)

At 12pm
If number of medication-taking events == 0:
IO = [EMA prompt from clinical care team
avatar to encourage recording of medication-
taking event]
Else
IO = [provide nothing]

Specific Time of
Day

Number of
medication-
taking events
(measured by
EMA
accelerometer /
MEMS cap)

Ask about
medication-
taking event
OR do nothing

Let Tw be the user’s average wake up time
and Ts be the user’s average bedtime, on a 24
hour time scale

Every 6 hours
If time > Tw and time < Ts

IO = [EMA prompt from clinical care team
avatar to encourage recording of medication-
taking event]
Else
IO = [provide nothing]

Pre-specified
time interval

Wake time and
sleep time

Ask about
medication-
taking event
OR do nothing

When user records medication-taking via
EMA IO = [Award 1 point and show progress
toward badge]
Else
IO = [provide nothing]

Time of EMA
completion

Most recently-
completed EMA

Award points
OR do nothing

message to record one’s medication. This approach could also be extended to use

conversational agents, as Schroeder et al. did with the Pocket Skills app for Dialectic

Behavioral Therapy [205]. Finally, the third rule allows for the accumulation of

points for completing EMA questions. Points could then be put towards a monetary

incentive such as a gift card. Figure 5.1 shows an example of a user interface that

could accompany these decision rules, with Figure 5.1a corresponding to the first

two rules and Figure 5.1b corresponding to the third.
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5.3 Concluding Remarks

In this dissertation, I have presented a systems-level approach to mobile health fo-

cused on modeling user behavior in context. This work draws upon health behavior

theory and the ever-growing body of literature on user context detection to demon-

strate how personal, behavioral, and environmental factors shape our health and

wellbeing. The results of our mixed-methods work with lung cancer patients and

our case studies that utilize the COMP-SCT framework have exciting implications

for the future of symptom and adherence monitoring in daily life, and advance the

state-of-the-art for translating raw physiological data into actionable clinical insights.

Though the work contained in this document is a relatively small contribution in

the field of mHealth, it is nevertheless a meaningful contribution toward building

user-informed, theory-grounded interventions for medication adherence and related

challenges in personal health management.
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Appendix A

User Interview Questions

A.1 Smartphone App

1. In general, how did you feel about the experience of filling out the surveys on

the smartphone?

2. What did you like most/least about using this smartphone app?

3. How easy or difficult was it to answer the questions in the app? (PROBE:

What made it easy? What made it difficult?)

4. How would you feel if we were to ask you to use this smartphone app for a long

period of time, like 6 months? (PROBE: Why would you feel like that?)

5. Would you find it easy or difficult to use the smartphone app on your own

phone? (PROBE: Why would you find it easy/hard?)

6. How often would you be able to fill out surveys like this on your smartphone?

(PROBE: How many days (i.e., every day, every couple of days; PROBE: How

many times per day (i.e., 1 time each day, 3 times each day)?)
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7. About how many questions like this would you be able to fill out at a time?

8. Are there times of the day / days of the week where it would be easier / harder

/ impossible for you to answer survey questions like these? (PROBE: Why

would it be easier / harder / impossible?)

9. How do you feel about the notifications from the app? (PROBE: What kind of

notifications you prefer: beep, buzz, or another sound or vibration?; PROBE:

Would you feel comfortable having the notifications show up on your phone,

in public? Why/why not?)

10. Do you have other thoughts that you would like to share about the smartphone

app?

11. Do you have any other thoughts that you would like to share about filling out

surveys like this on your smartphone?

A.2 Smartwatch App

A.2.1 For Participants Who Own a Smartwatch

1. How would you feel if we were to ask you to wear a smartwatch for our project

every day for a long period of time, like 6 months? This would be a different

smartwatch from the one that you already have. (PROBE: Why would you

feel like that?)
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2. Would you find it easy or difficult to remember to wear the project smartwatch

every day? (PROBE: Why would you find it easy / difficult?)

3. Would you find it easy or difficult to remember to charge the project smart-

watch at night? (PROBE: Why would you find it easy / difficult?)

4. Tell me about any times when you would not want to wear the project smart-

watch? (PROBE: Why wouldn’t you want to wear it then?)

A.2.2 For All Participants

1. In general, how did you feel about the experience of filling out the surveys on

the smartwatch?

2. What did you like most/least about using this smartwatch app?

3. How easy or difficult was it to answer the questions in the app? (PROBE:

What made it easy? What made it difficult?)

4. How would you feel if we were to ask you to use this smartwatch app for a long

period of time, like 6 months? (PROBE: Why would you feel like that?)

5. Would you find it easy or difficult to use the smartwatch app on your own

phone? (PROBE: Why would you find it easy/hard?)

6. How often would you be able to fill out surveys like this on your smartwatch?

(PROBE: How many days (i.e., every day, every couple of days; PROBE: How

many times per day (i.e., 1 time each day, 3 times each day)?)
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7. About how many questions like this would you be able to fill out at a time?

8. Are there times of the day / days of the week where it would be easier / harder

/ impossible for you to answer survey questions like these? (PROBE: Why

would it be easier / harder / impossible?)

9. How do you feel about the notifications from the app? (PROBE: What kind of

notifications you prefer: beep, buzz, or another sound or vibration?; PROBE:

Would you feel comfortable having the notifications show up on your smart-

watch, in public? Why/why not?)

10. Do you have other thoughts that you would like to share about the smartwatch

app?

11. Do you have any other thoughts that you would like to share about filling out

surveys like this on your smartwatch?

A.3 Smart Pill Bottle / Box

A.3.1 Medication-Related Questions

1. How many prescription medicines do you currently take each day?

2. How many vitamins or supplements do you currently take each day?

3. What times of the day do you take your medicines and supplements?
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4. Where do you keep your medicines and supplements (e.g., purse, night stand,

medicine cabinet)?

5. In what type of container do you keep your medicines and supplements? (e.g.,

in a pill keeper, in the original bottle)?

6. Do you have any medicines that come in a blister pack or some other type of

dispenser?

7. Do you have any medicines that are liquid?

8. Do you have any medicines that need to be refrigerated? (If yes: Are those

pills or liquid?)

9. Do you sometimes have a different container for your medicines and supple-

ments, like a smaller container that you take on a trip or an outing?

10. Does anyone help you with managing or taking your medicines? (PROBE:

Who helps you?; PROBE: How do they help you?)

A.3.2 Questions About Prior Technology Use

1. Have you ever seen a smart pill bottle / box like this? (PROBE: If so, was it

a box or bottle?)

2. Have you ever used a smart pill bottle / box like this? (PROBE: If so, do you

still use it now? PROBE: If so, was it a box or bottle? PROBE: Do you know

what brand it was/is? )
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3. What did/do you think about the smart pill bottle / box that you used?

(PROBE: Did you like or dislike it? Why?)

4. Do you have a smartphone? (PROBE: What type?)

5. Have you ever used an app on your phone to manage your medicines? (PROBE:

If so, which app(s)?; PROBE: Do you still use it?; PROBE: How often do you

use it?)

6. What do you/did you think about the app that you use to track your medicines?

(PROBE: What features of the app are/were helpful?; What features of the

app are/were not helpful?

7. Why did you stop using it?

A.3.3 Questions about the Pill Bottle / Box

1. How would you feel if we were to ask you to use this smart pill bottle / box

for a long period of time, like 6 months? (PROBE: Why would you feel like

that?)

2. Would it be easy or difficult to fit using this smart pill bottle / box into your

everyday life? Why?

3. Would you be able to still use this pill bottle / box if you take multiple

medicines each day?
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4. How would you handle using this smart pill bottle / box if you had to be away

from the place where you usually take your medicines, like if you had to take

a trip away from home?

5. How do you think using this smart pill bottle / box would affect the routine

that you have for taking your medicines?

6. Do you think that using this smart pill bottle / box for a long time would make

it more or less likely that you would forget your medicines?

7. Do you think that it would be easy or difficult to keep track of this smart pill

bottle / box? (PROBE: What would make it easy? PROBE: What would

make it difficult?)

8. Do you have other thoughts that you would like to share about the smart pill

bottle / box?
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