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Introduction 

Motivation 

 Surgical robots are complex Cyber-Physical Systems (CPS) that enhance the hand 

movement of surgeons and have been increasingly used to address a wide range of surgical 

operations (Cleveland Clinic, n.d.; Sheetz et al., 2020). As with any technology, robotic surgery 

comes with its benefits and drawbacks. Some major advantages include greater precision, better 

visualization with 3D capabilities, and small instruments that allow surgeons to perform surgery 

inside the body rather than outside. Additionally, robotic surgery leaves patients with less pain 

during recovery, smaller risk of infection, reduced blood loss, less time spent in the hospital, and 

smaller scars (Cleveland Clinic, n.d.). However, robotic surgery requires specially trained 

surgeons due to its unique functionality. It can also cause nerve damage and compression and 

can potentially malfunction during an operation. Additionally, if there are complications, the 

surgeon may need to change to an open procedure with larger incisions (Cleveland Clinic, n.d.). 

Thus, it is critical for safety and efficiency to be top priorities in the field of robotic surgery.  

State of the Art 

 Surgical robots can provide both digital video and quantitative motion trajectories of 

instruments during surgical operations, allowing surgical actions to be analyzed in a way that is 

not possible with traditional methods of non-robotic surgery. Researchers can use this data to 

train computational models that give insights into the accuracy, quality, correctness, and 

efficiency of hand movements, advancing understanding and enabling the improvement of robot-

assisted procedures (van Amsterdam et al., 2021). For example, researchers have analyzed 

kinematic data and segmented surgical operations at various levels to test models. Two of these 

levels are tasks and gestures. Tasks are defined as short engagements such as suturing, needle 
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passing, and knot tying. Tasks can be divided into gestures, which are surgical movements made 

with a specific purpose, such as reaching for a needle with the right hand or pulling a suture with 

the left hand (Ahmidi et al., 2017).  

 Hutchinson, Li, et al. (2021) developed a rubric for identifying executional and 

procedural errors in tasks and gestures by analyzing public kinematic and video data. This data 

was collected by the da Vinci Surgical System (dVSS) and is part of the JHU-ISI Gesture and 

Skill Assessment Working Set (JIGSAWS) dataset (Hutchinson, Li, et al., 2021). Van 

Amsterdam et al. (2021) and Goldbraikh et al. (2022) also studied gesture recognition in 

different types of surgery; van Amsterdam et al. (2021) analyzed several models of automatic 

gesture recognition, and Goldbraikh et al. (2022) used a sensor system similar to the one I used 

to detect surgical gestures and tools employed during open surgery simulations.  

 Gestures can be further decomposed into motion primitives (MPs), which describe basic 

surgical actions restricted to a smaller set of modular gesture types that are applied to a tool and 

object (Ahmidi et al., 2017). MPs are defined to cause changes in the surgical context, which 

describe contact and hold relations for the left and right graspers well as the object states 

(Hutchinson, Reyes, et al., 2022). Hutchinson, Reyes, et al. (2022) developed an app to help 

label surgical context in trials from a surgical set called COMPASS, which includes tasks from 

three publicly available datasets – JIGSAWS, DESK, and ROSMA. They automatically 

translated the context data into MPs, supporting the training of action recognition models based 

on MP workflows instead of gestures (Hutchinson, Reyes, et al., 2022).  

Problem Statement 

 While the current designs described above show significant progress into improving the 

safety of robotic surgery, they lack the data needed for research using accessible surgical 
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systems. The studies that Hutchinson, Li, et al. (2021) and van Amsterdam et al. (2021) 

performed depended on the JIGSAWS dataset captured from the dVSS. However, the dVSS is 

proprietary to hospitals and requires additional proposals and external approval to directly gather 

kinematic data, so it is not easily available to researchers. Additionally, even though the 

JIGSAWS dataset addresses the issue of having inconsistent evaluation metrics across different 

studies by providing a standardized, public dataset, its small size does not work well with the 

training of large neural network architectures (van Amsterdam et al., 2021). While Hutchinson, 

Reyes, et al. (2022)  aggregate data from more than just the JIGSAWS dataset, they do not 

explore the usage of alternative robotic surgical systems to collect data as the study relies on 

previously available public datasets. Goldbraikh et al. (2022) investigates the use of a newly 

emerging method of attaching motion sensors to the users’ hands to collect data, but the study 

focuses on open surgery and not robotic surgery. Thus, there is an inadequate amount of 

exploration into the use of accessible robotic surgical systems to gather data in the current body 

of research. 

 To address the aforementioned shortcomings, I compare the accuracy of surgical activity 

segmentation models in identifying gestures using data collected from two different methods. I 

use this information to assess the feasibility of using an independent system to collect data from 

surgical robots and the applicability of using that system as part of future research to analyze 

safety incidents and provide simulation-based training and automated assessments (van 

Amsterdam et al., 2021). 

 One robotic platform that I use is the Raven, an open-architecture surgical robot which 

mimics the dVSS and can collect kinematic, video, and system log files (Li et al., 2019). The 

kinematic data from the Raven is based on motor encoder values and forward kinematic 
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equations. The robotic surgery research community has been using the Raven since 2009, and 

medical students also resort to systems like the Raven to achieve adequate training due to access 

limitations with the dVSS (Glassman et al., 2014; Li et al., 2019). Thus, it is important to 

evaluate action prediction models based on the Raven due to its heavy use in the research and 

medical training communities. 

 The other apparatus I use is the Data Collection System (DCS), which is an independent 

system developed by UVA researchers and comprised of a trakSTAR tracking device, four 

sensors, and a ZED Explorer. The trakSTAR is an electromagnetic tracker which can trace the 

position and orientation of several sensors within a short range of motion (Ascension 

Technology Company, 2017). The ZED Explorer is an application that allows for live 

previewing and recording using a camera (Stereolabs, 2023). The DCS can also collect kinematic 

and video data like the Raven, but the kinematic data is collected from the set of sensors attached 

to the graspers of a surgical robot such as the Raven or dVSS. In this technical project, the 

sensors were attached to graspers controlling the Raven due to the difficulty of receiving 

permission to use the dVSS in the University Hospital.  

 The primary task of this technical project is to compare how well machine learning 

models perform for data collected simultaneously from the Raven and the DCS attached to the 

Raven to see if data from a platform-independent collection method can be used to train models 

with comparable performance. In order to label the video data objectively, I used a tool similar to 

the one that Hutchinson, Reyes, et al. (2022) developed to perform context labeling, but modified 

to perform gesture labeling. Afterwards, I calibrated and performed calculations on the kinematic 

data, trained the models using this data from the two systems, and evaluated the performance 

based on the gesture labels I manually generated using the gesture labeling app. Finally, I 
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compared the outcomes between the Raven and DCS by analyzing the accuracy and edit score 

for each model. The results from this project can provide insight into alternative methods of data 

collection and aid in the improvement of safety monitoring for robotic surgery.  

Methods 

 This section presents my methods for the collection, labeling, and calibration of data 

from two robotic surgical systems, the Raven and the DCS. It describes the construction and 

evaluation of gesture recognition models using the calibrated data.   

Data Collection 

 This study focuses on the task of peg transferring, which is a manual skills component 

that is part of the Fundamentals of Laparoscopic Surgery (FLS) exam (FLS Program, 2014). A 

single user performed the peg transfer task, and her dominant hand is her left hand. We placed a 

peg board beneath the arms of the Raven, with six pegs on each of the left and right sides. At the 

start of each trial, we placed six triangular objects on the pegs on the right side of the pegboard. 

The two pegs furthest from the camera were red, the two pegs in the middle were green, and the 

two pegs closest to the camera were blue.  

 In the first half of each trial, the user grasped each object with her non-dominant right 

hand and transferred the object mid-air to her dominant left hand. She then had to place the 

object on a peg on the left side of the pegboard. While the FLS manual states that the color and 

transfer order of the six objects does not matter, the user consistently picked up the objects from 

right to left on the right side of the pegboard, in the order of red to green to blue in each trial 

(FLS Program, 2014). Once the user transferred all six objects to the left side of the board, she 

then reversed the procedure, grasping each object with her dominant left hand, transferring the 

object mid-air to her non-dominant right hand, and placing the object on the right side of the 
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pegboard. When transferring the objects back to the original side, the user did not maintain a 

particular order across trials, but she did still continue to pick up the objects in the order of red to 

green to blue. One trial consisted of transferring all six pegs from the right side to the left side of 

the pegboard and then transferring all of them back to the right side.  

 According to the FLS manual, if the user drops the object within reach, she should pick it 

up with the hand that dropped the object (FLS Program, 2014). However, it was often the case 

that the user would pick up the object with whichever grasper was closer to the object. 

Additionally, while the FLS manual implies that the user should not retrieve the object if it falls 

out of reach, we would use a human hand to place the object within reach (FLS Program, 2014). 

Figure 1 depicts the mid-air transfer of a blue object from the right side to the left side of the 

pegboard as shown on the ZED Explorer.  

Figure 1 

Transfer of Object During a Trial  
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 The data collection setup included the preparation of the Raven, DCS, and smartwatch 

systems. The front view of the Raven is shown in Figure 2, and the side view is shown in Figure 

3. Figure 4 shows the DCS and teleoperation console setup. First, we turned on the Raven, the 

server receiving data from the Raven, the ZED Explorer, the trakSTAR, and the Alienware 

laptop that would store the video and data from the DCS. Then, we moved the Raven arms into 

place, using cables to adjust the angles, but refraining from stretching them extensively as that 

would impact the kinematic data. To set up the DCS, we connected the trakSTAR device to the 

Alienware laptop and the ZED Explorer. We oriented the camera to face the front of the Raven 

and ensured that the view of the pegs fit into the ZED Explorer. The user wore a smartwatch on 

each wrist, as this data would be used in a separate study.  

 The user sat in front of a teleoperation console, a user interface consisting of an image 

viewer showing the camera’s vision of the Raven, graspers that control the Raven arms, and a 

foot pedal unit. To prepare the console for use, the user zeroed the left and right graspers. Before 

starting a trial, we honed the Raven and started a Python script on the Alienware laptop that 

prompted for the subject name, task, trial, and attending physician. We set the scaling factor to 

0.4 in the Surgeon’s GUI, which is an application located on the same computer as the ZED 

Explorer. This low scaling factor reduces the risk involved with the operation because the robot 

moves less quickly.    

 To start a trial, the Raven, DCS, and smartwatch systems needed to begin collecting data 

at approximately the same time. On the server, we ran a Python script that would collect the 

kinematic data from the Raven. On the Alienware, we started the video recording and kinematic 

data collection from the DCS. The user would start the robot by stepping on the middle pedal. 

During the trial, the user could reposition her hands in the teleoperation console area without 
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moving the graspers of the Raven by stepping on the clutch pedal. After completing the peg 

transfer task, we stopped both scripts collecting data on the server and Alienware, and the user 

would stop the robot by stepping on the left pedal. We aimed to minimize the time between 

starting and ending the scripts, as the Raven kinematic data files were especially large.  

 Overall, we collected data for 10 trials of peg transferring. However, the Raven kinematic 

data file for trial 1 was exceptionally large (4.1 GB), compared to other trials that had a size of 

around 1.5 GB, as this first trial took longer due to the learning curve associated with a first 

attempt. Additionally, the DCS did not properly record all the necessary kinematic data for trial 8 

for unknown reasons. Thus, we discarded trials 1 and 8 and had eight trials remaining for 

analysis. Figure 5 shows a snapshot of the raw kinematic data that the Raven collected, which 

includes the timestamp, XYZ positions, orientation, and gripper angle values. Figure 6 shows 

some of the raw kinematic data from the DCS, which also notably includes the XYZ positions 

and timestamp for each of the four sensors. The DCS also collected the timestamp associated 

with each frame number, as shown in Figure 7. 

Figure 2 

Front View of the Raven 
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Figure 3 

Side View of the Raven 

 

Figure 4 

DCS and Teleoperation Console 
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Figure 5 

Snapshot of CSV File Containing Raven Kinematic Data 

 

Figure 6 

Snapshot of CSV File Containing DCS Kinematic Data 

 

Figure 7 

Snapshot of CSV File Containing Frame Information 
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Data Labeling 

 Using the gesture labeling app pictured in Figure 8, I stepped through each frame to 

identify which of four gesture labels was displayed: 

 1: Collecting block 

 2: Passing block R to L 

 3: Passing block L to R 

 4: Placing block on pole 

These gestures come from the Virtual Robotic Assisted Surgery Training Evaluation Dataset (V-

RASTED) (Menegozzo et al., 2019). For each frame, if one of the four gestures completed, I 

would select that gesture and click “Save gesture and continue.” Otherwise, I would go to the 

next frame without clicking that button. Figure 9 depicts the gesture labels resulting from 

labeling trial 2. The first column is the starting frame for a gesture, the second column is the 

ending frame for a gesture, and the third column describes the gesture. In order to make the data 

match with the preprocessing script, I changed each of the third column values to a value of S1, 

S2, S3, or S4, with the number next to the “S” matching the number next to the verbal 

description. 

Figure 8 

Gesture Labeling App 
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Figure 9 

Gesture Labels from Trial 2 
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Data Calibration 

 The raw kinematic data from the Raven and DCS were not synchronized with each other, 

because the moment at which each script started to collect data differed by up to a few seconds. 

Additionally, the rate in terms of frames/second at which each system collected data varied. The 

video component collects data at 30 Hz, and the trakStar collects data at 90 Hz. Thus, I 

downsampled the trakStar data to one-third of the original size by extracting the rows from the 

raw DCS kinematic data that had timestamps closest to each of the timestamps corresponding to 

a frame number from the video. Another researcher provided me with the downsampled Raven 

kinematic data which were obtained through a similar method. At this point, the Raven and DCS 

data were synchronized with each other, which could be verified due to the data having the same 

timestamps for each frame. The video data had more frames following the last frame in the 

synchronized Raven data, but the preprocessing step would ignore those additional frames.  

 I then calculated the position and velocity for the left and right arms in the x-, y-, and z-

directions as well as the left and right gripper angles for both the synchronized Raven and DCS 

data. I obtained the left and right positions for the DCS data by taking the average of the position 

data from the two sensors on each side. To calculate the DCS gripper angle for each side, I ran a 

script that used the Pythagorean Theorem to find the distance between the left and right graspers 

and incorporated that distance into trigonometry calculations to find the angles. For the Raven, 

the columns field.pos0 through field.pos5 in the kinematic data correspond to the XYZ 

coordinates of the arms, and the columns field.grasp_d0 and field.grasp_d1 correspond to the left 

and right gripper angles. I extracted those columns and then performed further adjustments by 

taking the negative values of four columns in order to match the direction of the Raven position 
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data to the DCS position data. The correlation of the Raven position data to the DCS position 

data is shown in Table 1. 

Table 1  

Correlation of Raven Position Data to DCS Position Data 

Operation on Raven Position Data Corresponding DCS Position Data 

field.pos1 Left x-position 

(Negative) field.pos2 Left y-position 

(Negative) field.pos0 Left z-position 

(Negative) field.pos3 Right x-position 

field.pos5 Right y-position 

(Negative) field.pos4 Right z-position 

To derive the velocities for each frame for the Raven and DCS data, I took the mean of the 

position divided by time over a window of 3 frames ending on the current frame for which I was 

calculating the velocities. I dropped the frames that resulted in having Not a Number (NaN) 

values due to undefined calculations.  

 After the aforementioned calibration processes, I discovered that the motion occurring at 

a certain frame in the Raven data did not match the motion occurring at that same frame in the 

DCS data. I made this realization by graphing the x-position of the left grasper versus frame 

number for the Raven and DCS in trial 2, as shown in Figure 10. The Raven x-position curve has 

the same shape as that for the DCS, but it is situated to the left of the DCS x-position curve. In 

order to correct this, I calculated the difference in frames between the DCS and Raven data, and 

added that difference to each frame number in the Raven data. After regraphing the Raven x-

position data shifted to the right for trial 2 as shown in Figure 11, I found that the x-position data 
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between the two systems matched up well. I added a column in the CSV file containing the 

Raven kinematic data that had these shifted frame numbers. I repeated this process for all the 

trials. Increasing the frame numbers for the Raven data through this method led to a rough match 

with the DCS data for all trials except for trial 6. The x-position curve already matched for the 

Raven and DCS data starting from the first frame number for trial 6, so I did not make any 

adjustments to the data for this trial. I addressed this new correction when preprocessing the data 

by taking into account the “Frame” column and inserting arrays of gesture labels into the data 

that started and ended in the locations corresponding to the correct frames. The CSV files with 

the calibrated kinematic data for trial 2 that I collected from the Raven and DCS are shown in 

Figures 12 and 13, respectively. The magnitude of the data differs between the two files because 

the systems collected data in different units. 

Figure 10 

Pre-Shift Graph of x-Position over Frame Number 

 

Figure 11 

Post-Shift Graph of x-Position over Frame Number 
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Figure 12 

Snapshot of CSV File Containing Calibrated Raven Kinematic Data 

 

Figure 13 

Snapshot of CSV File Containing Calibrated DCS Kinematic Data 

 

Gesture Recognition Model 

 To capture the relationship between the kinematic data and gestures, I used a Temporal 

Convolutional Network (TCN). A TCN is a deep convolutional model that employs multiple 

levels of temporal convolutions and pooling layers in an encode-decoder structure to express 

long-range spatiotemporal relationships at various time scales in the input data. This type of 

model has achieved better performance than competing models in using video or sensor data to 
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predict surgical actions. They can also compute predictions at the same time for each timestamp 

and thus complete training much faster than other popular methods such as Recurrent Neural 

Networks (RNN) (Lea et al., 2016; van Amsterdam et al., 2021). 

 The goal of the TCN model in this study is to predict a surgical gesture for each 

kinematic data segment in the test set. I used a similar TCN model as the one that Hutchinson, 

Reyes, et al. (2022) adopted, but with minor modifications to ensure that the model was 

compatible with the number of trials and the cross validation setup I used. Each of the encoder 

and decoder steps in the model has three convolutional layers with pooling, channel 

normalization, and upsampling (Hutchinson, Reyes, et al., 2022). The three layers in the encoder 

step have filter sizes of 64, 96, and 128, while the three layers in the decoder step have 96, 64, 

and 64 filters respectively. The model uses a cross-entropy loss function and was trained using 

the Adam optimizer. The input to the TCN model is the kinematic data over time from each 

robotic surgical system, xt, and the output is a gesture label, yt, for each time-series sample. 

Previous studies have found that using a combination of position, gripper angle, and linear 

velocity as the kinematic input to gesture recognition models generated the best results, so I also 

used only these kinematic variables as input to my TCN model (Hutchinson, Reyes, et al., 2022). 

Thus, the input size was 14, as the variables I used consisted of the position and velocity in the x-

, y-, and z-directions for both the left and right graspers (2 variables x 3 directions x 2 sides = 12 

inputs), as well as the left and right gripper angles (2 inputs). I created and trained the TCN 

model in a virtual environment on a computer with an Intel Core i7-8700K CPU @ 3.70GHz 

running Ubuntu 22.04.1 LTS, an NVIDIA GeForce GTX 1080 Ti GPU, and a Torch version of 

1.10.2. 
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 I evaluated the generalizability of the model using a cross validation setup of Leave-One-

Supertrial-Out (LOSO). In this scheme, I created eight validation folds where each fold consisted 

of data from one of the eight trials. By using a different trial as the test set and the remaining 

trials to train the model each time, I can evaluate the generalization of the TCN models to new 

trials that known surgeons carry out (Hutchinson, Reyes, et al., 2022).   

The learning rate and weight decay hyperparameters were chosen using a grid search of 

values to determine the hyperparameter numbers that would produce the best results when 

training on the JIGSAWS dataset with gesture labels for the LOSO cross validation setup. I kept 

these hyperparameter values constant across all models so that I could analyze how the type of 

robotic surgical system affected the performance of the same model (Hutchinson, Reyes, et al., 

2022). Specifically, the learning rate was 0.00005 and the weight decay was 0.01. The model ran 

for 60 epochs, where each epoch had a batch size of 1. 

Overall, the construction and evaluation process was comprised of four main steps: 

preprocessing, tuning, training, and calculation of evaluation metrics. In preprocessing, I 

extracted the appropriate columns, loaded applicable model parameters from a configuration file, 

and updated certain parameters such as input size in that configuration file. I also preprocessed 

the kinematic and gesture label transcript files by matching the correct label to sections of the 

kinematic data and saving the concatenated information into a preprocessed folder. In this 

preprocessing stage, I also encoded labels from the preprocessed data files and saved them to a 

pickle file. These steps set up many of the parameters and data needed for the model to run. After 

preprocessing, I tuned the batch size, number of epochs, learning rate, and weight decay through 

hardcoded values that have been shown to work well through previous experimentation 

(Hutchinson, Reyes, et al., 2022). I then trained, tested, and cross validated the TCN model with 
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the established hyperparameters. Finally, I outputted the average metrics from the folds in the 

model. To run the model at each of these stages, I specified the task (peg transfer), a specific 

input variable (velocity) that indicated hyperparameter values, the label type (gesture), and the 

cross validation setup (LOSO) in the command line parameters. The complete code for my 

capstone can be found in the branch “sara” of the public COMPASS repository at 

https://github.com/UVA-DSA/COMPASS that is part of the UVA Dependable Systems and 

Analytics (DSA) Research Group.  

Evaluation Metrics 

 I evaluated and compared the TCN models using two metrics, accuracy and edit score, 

averaged across all the folds. Accuracy is a frame-wise metric that divides the number of correct 

predictions by the number of total predictions (Goldbraikh et al., 2022). The formula for 

accuracy is Acc = 
𝑁𝐶

𝑁
∗ 100, 0 < Acc < 100, where NC is the number of correctly labeled 

predictions and N is the number of total predictions. However, accuracy alone does not provide 

sufficient analysis of temporal predictions and robust model comparison because this metric is 

designed for data where the sequence does not matter. Prediction sequences with similar 

accuracy could have significant differences in gesture ordering and over-segmentation, which is 

the prediction of an excessive amount of negligible action boundaries. Thus, I also chose to 

evaluate the TCN model using a segmental metric, which is a value that measures the temporal 

sequence of action predictions (van Amsterdam et al., 2021). 

 The segmental metric I calculated was the edit score, which assesses the order of gestures 

but not the time at which they occur. Edit scores are lower when the predictions are out of order 

or have over-segmentation (van Amsterdam et al., 2021). The edit score makes use of the 

Levenshtein edit distance, edit(G, P), which counts the number of insertions, deletions, and 

https://github.com/UVA-DSA/COMPASS
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substitutions needed to convert the predicted label sequence P to the ground truth label sequence 

G (Hutchinson, Reyes, et al., 2022). This distance is then normalized by the maximum between 

the number of segments in either the predicted or ground truth label sequences. The equation for 

calculating the edit score is Edit Score = (1 −
𝑒𝑑𝑖𝑡(𝐺,𝑃)

max(𝑙𝑒𝑛(𝐺),𝑙𝑒𝑛(𝑃))
) ∗ 100, 0 < Edit Score < 100 

(Hutchinson, Reyes, et al., 2022; van Amsterdam et al., 2021). For both accuracy and edit score, 

a higher value indicates better performance of the model.  

Results 

 In this section, I present the performance of the TCN models in recognizing gestures 

using kinematic data from two robotic surgical systems, the Raven and the DCS. I trained the 

TCN model 10 times for each of the two systems. Table 2 compares the accuracy and edit score 

of each run for each system, as well as the mean and sample standard deviation of these 

evaluation metrics across all runs for each system.  

Table 2 

TCN Model Results in Identifying Gestures Using Data Collected from the Raven and DCS 

Run Raven DCS 

Accuracy (%) Edit Score (%) Accuracy (%) Edit Score (%) 

1 68.397 91.015 88.574 84.068 

2 65.778 88.257 87.947 88.022 

3 67.032 87.550 87.249 80.083 

4 68.900 89.734 86.729 82.347 

5 67.386 89.638 89.497 87.185 

6 67.299 88.406 88.447 85.180 

7 67.644 89.694 87.238 84.661 
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8 68.396 88.059 88.513 85.133 

9 65.949 88.448 90.407 86.709 

10 66.171 90.115 88.540 84.249 

Average 67.295 89.091 88.314 84.764 

Std Dev 1.084 1.098 1.100 2.335 

 As shown in Table 2, for the Raven kinematic input data, the model predicts gestures 

with an average accuracy of 67.295% with standard deviation 1.084% and an average edit score 

of 89.091% with standard deviation 1.098%. For the DCS kinematic input data, the model 

predicts gestures with an average accuracy of 88.314% with standard deviation 1.100% and an 

average edit score of 84.764% with standard deviation 2.335%. The standard deviations for 

average accuracies and edit scores across both systems is less than 3%, indicating that there is 

low variance across runs of the TCN model for the two systems. 

 The average edit scores for the systems are also similar, with only a 4.328% difference 

between the value of 89.091% for the Raven and 84.764% for the DCS. However, the average 

accuracies differ significantly by 21.019%, with a much higher value for the DCS (88.314%) 

than the Raven (67.295%). It is interesting that the average edit scores are almost the same, but 

the average accuracy for the model trained with Raven data is much lower than that trained with 

DCS data. One potential reason for this could be additional underlying issues with the 

synchronization between the Raven and video data. The trakSTAR and video data were both 

collected as part of the DCS, so the synchronization between those values was more 

straightforward than that between the Raven and video data. I manually adjusted the frames of 

the Raven data so that the x-position curve would match that of the trakSTAR data. By the 

transitive property, the Raven data should have then theoretically also synced well with the video 
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data, which included the ground truth gesture labels. However, because I verified the curve 

alignment visually, this method involved only an approximate frame shift. It is likely that there 

still could have existed some misalignment that would cause the predicted gestures from the 

Raven data to not equal the ground truth gestures at the right times, leading to the low average 

accuracy. However, the overall sequence of predicted gestures from the Raven data most likely 

matched that of the ground truth gestures, resulting in the high average edit score. 

Discussion 

 In this section, I discuss the applicability of the model results to evaluating whether the 

Raven and DCS would be robust, accessible alternatives to collecting surgical data. Hutchinson, 

Reyes, et al. (2022) used a TCN model similar to the one I used but trained on the COMPASS 

dataset under the Leave-One-User-Out (LOUO) cross validation setup. For the peg transfer task, 

they observed that the model identified gestures with a 55.0% accuracy and 69.7% edit score 

(Hutchinson, Reyes, et al., 2022). All of the accuracies and edit scores of the models I trained on 

the Raven and DCS data are higher than the accuracy and edit score from the model trained on 

the COMPASS dataset. This indicates that the Raven and DCS are viable robotic surgical 

systems that can collect data for research. The DCS has particularly strong metrics to support its 

use in the field, providing data that can produce a TCN model with an average accuracy of 

88.314% and average edit score of 84.764%. These statistics demonstrate that the DCS is a 

remarkably powerful, independent system that can be used to collect video and kinematic data on 

robotic surgery. 

 However, it is also important to consider flaws with the method described in this paper. 

We were only able to collect eight trials to use for analysis, so the model is overfitted to the 

training set, and the results are likely higher than they would be with a greater number of trials. 
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The overfit model could generate inaccurate gesture predictions when new data is inputted. 

Additionally, when we were collecting data for the peg transfer task, if the user dropped the 

object mid-air, the drop was often used as a transfer point. The user would frequently pick up the 

object with the hand that did not drop it, completing a transfer, even though the FLS manual 

states that the same hand that dropped the object should pick it up (FLS Program, 2014). This 

discrepancy could have interfered with the results, as there would be incorrect motions 

associated with passing a block from one hand to the other. Finally, it was necessary to perform 

manual frame shifts for the Raven kinematic data, which is a considerable drawback to this 

method if there are a large number of trials. If the root of the synchronization issue can be 

addressed, that would eliminate the need to manually correct the frame numbers.  

Technical Challenges 

 There were a number of challenges that I overcame throughout the course of this research 

project. To set up a virtual environment where I could run my TCN model, I had to ensure that 

all of the packages required were compatible with each other. This involved several rounds of 

trial and error and adding the packages into the environment one at a time to satisfy compatibility 

requirements. I repeated this process for two servers due to resource limitations in the research 

lab, as the frozen package requirements from the first server were not compatible on the second 

server.  

 When we were collecting data, the initial trials took around 30 minutes to complete as we 

did not have much practice yet with operating the robotic surgical systems. However, with 

repeated execution, we were able to finish each trial in about 10 minutes towards the end of the 

data collection process. This was due to a combination of the user becoming more adept at 

performing the peg transfer task, and the rest of us handling the data collection steps faster as 
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well. Reducing the time per trial also decreased the size of the video and kinematic data we 

collected. 

 In the fall semester, we collected 10 trials of data for the peg transfer task. However, we 

decided in the spring semester to adopt a new standard for this task that followed the FLS 

manual (FLS Program, 2014). Thus, we did not use the data from the previous semester and 

started from trial 1 in the spring semester. Although the time spent on collecting data in the fall 

did not result in data that would eventually be used in the final analysis, those trials still served 

as practice in becoming more familiar with using the robotic surgical systems. 

 Data synchronization and downsampling was a major challenge. The video, trakSTAR, 

and Raven components all started and stopped collecting data at different times. They also 

collected data at different rates. This led to discussion regarding the best approach to 

synchronization so that the data began at the same time and downsampling so that the data had 

an equal number of frames across systems. After synchronizing and downsampling the raw 

Raven kinematic data, we found there to be fewer frames in the Raven data than the video data. 

This may have been due to the fact that the video started recording data for a longer time than the 

Raven. We handled this issue when preprocessing the data for the model by ignoring frames that 

occurred outside of the frame range of other systems.  

 In my first attempt at training the model on the Raven kinematic data, the accuracy was 

only around 37%, but the accuracy of the same model trained on the DCS kinematic data was 

above 80%. I plotted the x-position over frame number for the two systems against each other, 

and after giving each system its own scale for the x-position, I found that they had a similar 

shape but were shifted horizontally from each other. To solve this issue, I determined a method 

that would shift the Raven kinematic data by enough frames so that the x-position curves 
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approximately matched up. Another challenge was realizing that the preprocessing script 

assumed that the kinematic data started at frame 0, so I modified the script to take into account 

the shift in frames. I also altered the script to ignore any frames in the ground truth gesture label 

data that had been phased out in the kinematic data. 

Conclusion 

 In this paper, I presented methods to collect, label, and calibrate data from two accessible 

robotic surgical systems, the Raven and DCS. I trained a TCN model with LOSO cross 

validation to identify surgical gestures using position, gripper angle, and velocity input data from 

each of these systems to determine whether they would be suitable apparatuses for data 

collection. The resulting accuracies and edit scores of the models in identifying gestures were 

significantly higher than state-of-the-art statistics. The model trained on DCS data had an 

especially high average accuracy and edit score. These outcomes reveal that the Raven and DCS 

are feasible alternatives to collect data compared to almost inaccessible systems like the dVSS. 

This data can be applied to safety measures by tracing  

 There are a number of paths that can be taken for future work. Repeating this study with a 

greater number of trials would strengthen the validity of this conclusion. Researchers could also 

use other cross validation setups such as LOUO, which requires a variety of users to generalize 

the model to different surgeons performing the tasks (van Amsterdam et al., 2021). The model 

could also be trained to identify MPs, which are more objective than gestures (Hutchinson, 

Reyes, et al., 2022). Future work could also tune the hyperparameters with a grid search more 

customized to the input data, as the hyperparameters in this study were based off the JIGSAWS 

dataset which does not include the peg transfer task (Gao et al., 2014). Researchers can also 

explore the potential of transfer learning using other datasets to improve upon the TCN model. 
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