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Abstract` 

In our study, we aimed to develop a novel method for continuous and non-invasive monitoring of blood coagulation during open 
heart surgeries. The goal was to reduce the reliance on bolus heparin injections by providing real-time feedback on clotting 
status. Leveraging Doppler velocimetry, we created a mathematical model to visualize velocity profiles of blood flow through a 
model heart-lung machine—an essential component in cardiac surgery that redirects blood flow while allowing surgeons 
unobstructed access to the heart. Our proof-of-concept testing focused on demonstrating how velocity profiles become blunter as 
blood clots. We analyzed frequency shifts and phase shifts. The frequency shift—from 4.09 ± 0.62 MHz to 3.21 ± 0.11 MHz —
supported Doppler principles, decreasing as blood moved away from the transducer. However, due to the wide bandwidth, the 
wall echo frequency was different from the expected 5 MHz of the transducer, and the shift was much larger than expected. It is 
believed that this issue stems from the large bandwidth of the pulser. Regarding phase shift, initial observations showed none. 
Yet, further investigation revealed that the discrepancy resulted from a low sampling rate. By comparing velocity profiles with 
simulated data at 40 times the sampling rate used in the experiment, we confirmed the presence of phase shifts.  Our findings 
pave the way for integrating this innovative approach into routine cardiac surgery practice, enhancing patient safety and surgical 
outcomes.

Introduction 

In the mid-20th century, cardiac surgery faced significant challenges due 
to the inability to temporarily bypass the heart and lungs during complex 
procedures. Enter the heart-lung machine (HLM)—a remarkable 
invention that transformed open-heart surgery. In the 1920s, Soviet 
scientist Sergei Brukhonenko conducted experiments using canines and 
developed the first working HLM. However, it was not until later that 
this technology would be applied to humans1. Dr. John Heysham Gibbon, 
an American physician, built an experimental HLM in 1937. His machine 
used two roller pumps and could replace the heart and lung function of a 
cat2. On May 6, 1953, John Gibbon achieved a historic milestone by 
performing the first successful open-heart procedure on a human using 
an HLM1. Now, each year, approximately 1 million surgeries worldwide 
utilize HLMs to support patients during open-heart procedures. These 
machines take over the critical functions of oxygenating and circulating 
blood outside the body. However, a significant challenge arises when 
blood is removed from the patient: it tends to clot. This clotting risk 
extends to the interior of the HLM itself. To mitigate this, anticoagulant 
medications like heparin are administered to prevent perioperative 
clotting complications.  
 
Heparin was discovered in the early 20th century by a Canadian 
biochemist named Jay McLean and his collaborator, William Henry 
Howell. They isolated it from liver cells and found that it had potent 
anticoagulant properties. The name “heparin” is derived from the Greek 
word “hepar,” which means liver, reflecting its initial source3.  Heparin 
is a complex molecule composed of repeating disaccharide units with 
uronic acid and glucosamine components. The sulfation of these 
components is crucial to heparin’s anticoagulant activity4. Heparin works 
by enhancing the activity of antithrombin III (ATIII), a natural 
anticoagulant protein in the blood. When heparin binds to ATIII, it 
undergoes a conformational change, which significantly accelerates the 
inhibition of clotting factors such as thrombin (factor IIa) and factor Xa. 

By inhibiting these factors, heparin prevents the formation of fibrin clots, 
which are essential for wound healing but can be problematic during 
surgery. There are many different clinical applications of heparin 
including cardiac surgery, deep vein thrombosis (DVT), pulmonary 
embolism (PE), acute coronary syndromes (ACS), and hemodialysis.  
During cardiac surgery, unfractionated heparin (UFH) is commonly 
administered with a cardiopulmonary bypass to prevent blood clotting. 
UFH exerts its anticoagulant effects primarily by antithrombin-mediated 
inactivation of factors IIa and Xa. UFH has a rapid onset of action, 
making it suitable for immediate use during surgery. It can also be 
reversed quicky if needed by administering protamine sulfate, which 
binds to UFH and neutralizes its effects. The dosing of UFH is adjusted 
based on the patient’s weight, target activated clotting time (ACT) – the 
time it takes blood to clot upon the addition of some clotting agent – and  
the specific procedure. 
 
To measure the clotting activity in the HLM during surgeries, 
traditionally, devices such as the Hemochron that rely on activated 
clotting time (ACT+ and ACT-LR), prothrombin time (PT), and activated 
partial thromboplastin (APTT) are used to guide heparin dosing. The 
Hemochron system utilizes single-use disposable test cartridges that 
contain all the necessary reagents for one of the coagulation tests 
mentioned above. One of the main operations performed by the 
Hemochron is the electrical impedance measurement, which refers to the 
opposition that an electrical circuit offers to the flow of alternating 
current (AC). When the blood clots, the electrical properties of the sample 
change due to the formation of fibrin networks. Specifically, the clot acts 
as an insulator, increasing impedance compared to the fluid state of 
blood5. Inside the disposable test cartridge, there are sensor electrodes in 
contact with the blood sample. As the clot forms, it affects the 
conductivity between the electrodes. When the blood is in its fluid state 
before clotting, it conducts electricity better than when it clots.  
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However, this approach has limitations: it consumes a portion of the 
patient’s blood sample, does not provide real-time information on clot 
progression during surgery, and relies on bolus administration of heparin. 
The purpose of bolus injection is to rapidly achieve therapeutic 
anticoagulant levels. This also aids in preventing existing clots from 
growing larger and new clots from forming. An advantage of bolus 
injections is the healthcare providers’ ability to calculate the exact dose 
based on the patient’s weight and desired anticoagulation level. However, 
heparin’s effects wear off relatively quickly after a bolus injection. If not 
carefully monitored, bolus doses can also lead to excessive 
anticoagulation, increasing the risk of bleeding. There is also the danger 
of rebound clotting, where the abrupt cessation of bolus heparin may lead 
to rebound clotting, especially if the underlying condition persists.  
 
In contrast, we propose a novel device capable of real-time monitoring of 
blood clotting progression. By continuously assessing clot formation, we 
can tailor heparin infusion more precisely. Unlike bolus administration, 
which carries the risk of exceeding the minimum heparin dose required 
to inhibit clotting, our approach ensures optimal anticoagulation. We 
leverage Doppler velocimetry to gather real-time data without 
compromising the primary function of the heart-lung machine. To 
simulate the HLM environment, we construct a circuit comprising a 
blood reservoir, tubing, a peristaltic pump, the transducer, and a water 
reservoir.  
 
A transducer is a device that converts one form of energy to another. 
Here, it converts pressure into an electrical signal6. The transducer is a 
critical component that emits and receives ultrasound waves from the 
blood flow. When these pulses encounter moving blood cells, they reflect 
back to the transducer. The pulser generates the electrical pulses that 
drive the transducer. The pulser determines the frequency of ultrasound 
waves emitted, usually in the megahertz range. Pulse duration and duty 
cycle, the ratio of pulse duration to the total cycle time, are also controlled 
by the pulser. The intensity of ultrasound exposure is modified by the 
duty cycle. The pulse also ensures precise timing between emitted pulses 
and data acquisition. When the reflected waves return to the transducer, 
they generate electrical signals. These varying voltage signals are then 
plotted in real-time to show their amplitude against time using the 
oscilloscope.  
 
There are two main methods of extracting velocity information from 
ultrasound data: frequency shift analysis and phase shift analysis. The 
Doppler shift caused by relative motion between transducer and blood 
cells appears as a frequency shift on the oscilloscope display and is 
mathematically described in Equation 1:  

where fd represents the Doppler shift frequency; f0 is the transmitted 
transducer frequency; v is the blood velocity along the transducer beam; 
c is the speed of sound in the blood; and θ is the angle between the 
transducer and the blood flow direction. Positive Doppler shifts occur 
when blood cells move toward the transducer, while negative shifts 
indicate movement away. 
 
In phase shift velocimetry, the movement of the scatterers, blood cells, 
through the ultrasound beam results in a phase shift in the echo waveform 

of subsequent pulses. By measuring these phase shifts (with multiple 
pulses very close together), distance can be calculated via Equation 2: 

where t is the time shift represented by the peak to peak phase shift.  
Then by knowing the period between pulses, the inverse of the pulse 
repetition frequency (fprf), velocity can be calculated.  
 
The velocity of blood flow is not uniform access the cross-section of a 
vessel. It is typically highest in the center and decreases towards the 
vessel walls, forming a parabolic profile. This is due to the viscous effects 
of the fluid and the no-slip condition at the vessel wall7. As clotting 
progresses, blood becomes more viscous, which in turn ‘blunts’ the 
velocity profile8. This bluntness serves as the metric for clot progression, 
thus necessitating a quantitative metric. So, once the velocity 
measurements are collected, a parabolic curve is fit to the data according 
to Equation 3: 

where β is a metric for profile bluntness, x is position in the tube, Vmax is 
the max velocity, α represents velocity at the wall, and r is the radius of 
the tube. This metric allows for correlation between clot progression, 
represented by a time since clot initiation, and the measurable velocity 
profile.  
 
The objectives of this study encompassed the construction of a miniature 
model of a HLM and the application of ultrasound Doppler velocimetry 
to assess the alterations in the cross-sectional velocity profile during 
blood coagulation within the tubing. Specifically, two distinct 
methodologies, namely frequency shift and phase shift analysis, were 
employed for this purpose. Positioned as a proof-of-concept 
investigation, the study aims to furnish foundational insights crucial for 
subsequent investigations aimed at the development of non-invasive, 
continuous blood coagulation monitoring device, leveraging ultrasound 
Doppler velocimetry.  
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Materials and Methods 

Development of Model HLM Flow Circuit 
Flow Parameters 

The flow circuit model was developed according to the design criteria of 
dimensional and dynamic similarity. Dimensional similarity demands all 
dimensions be scaled by the same factor, however as width of the tubing 
was the only dimension that affects flow parameters, this criterion was 
inherently satisfied. Dynamic similarity demands the value of 
dimensionless numbers to be equal, which in this case is the Reynolds 
number, given by Equation 4. 

The Reynolds number was calculated from the flow parameters of a HLM 
model developed by Tu et. al9, who used 0.8 mm diameter tubing and a 
10 mL/min flow rate, yielding a Reynolds number of 62.5. Maintaining 
the Reynolds number, but scaling up the tubing diameter to provide a 
larger signal acquisition window, results in a tubing diameter of 1.6 mm 
and a flow rate of 20 mL/min. 
 
Transducer Bracket 

To ensure replicable trials, a bracket was designed in Fusion 360 to hold 
the transducer in a fixed position above the tubing (Figure 1). The bracket 
affixes the transducer at a 45-degree angle to the tubing, chosen to 
balance tubing wall penetration with signal acquisition. Given this angle, 
the hole which the tubing passes through is positioned 13.47 mm below 
the transducer cradle, such that the transducer’s focal depth of 19.05 mm 
(0.75 in) coincides with the center of the tubing. The bracket was 3D 
printed in polylactic acid (PLA) plastic. 

 
Assembled Circuit 

The assembled circuit was composed of a peristaltic pump, a 15 mL 
conical centrifuge tube blood reservoir, 1.6 mm Masterflex L/S 14 
tubing, and the transducer bracket affixed to a water reservoir, as the 
transducer needed to be immersed in water to function. The completed 
circuit is pictured in Figure 2.  
 

 
Blood and Reagent Preparation 
Bovine blood was purchased from Innovative Research, anticoagulated 
for shipping and storage by sodium citrate mediated calcium chelation. 
A calcium chloride solution was prepared to recalcify the blood and 
permit clotting for testing. Given the blood was 0.4% citrated, a 20x 
concentrated solution was prepared at 400 mM in DI water. For 
anticoagulant testing, a 20x heparin solution was prepared at 110 IU/mL 
in DI water, yielding a final concentration of 5.5 IU/mL. This target 
concentration was calculated from the standard 300-400 IU/kg body 
weight heparin dosage10 and estimating 70 mL blood/kg body weight. 
The relatively high solution concentrations ensured minimal dilution of 
the blood, to minimize factors that could influence flow dynamics.  
 
Ultrasound Setup 
Ultrasound Parameters 
Parameters were chosen to satisfy Equation 511, derived from the Nyquist 
sampling theorem.  

 
Given an expected maximum velocity (Vmax) of ~33 cm/s, and the speed 
of sound in blood (c) of ~1580 m/s, a pulse repetition frequency (fprf) of 
5 kHz and a transducer frequency (f0) of 5 MHz were chosen. The 
sampling rate was determined by the oscilloscope. For trials examining 
the frequency shift, a 1 GHz sampling rate was used. For trials examining 
the phase shift, a 0.025 GHz sampling rate had to be used to capture two 
subsequent pulses.  
 
Ultrasound equipment 
The ultrasound setup was composed of a Panametrics Olympus 5077PR 
pulser/receiver, Panametrics Olympus V309-SU immersion transducer, 
and Tektronix TDS 3012C oscilloscope.  
 
Proof of Concept Testing 
There were three sets of conditions for proof of concept testing: 
decalcified blood (stock), recalcified blood, and recalcified and 
anticoagulated. 7 mLs of blood was used for all trials, with 370 uL of 
calcium chloride solution used to recalcify the blood, and 370 uL of 
heparin solution used for anticoagulation. Solutions were mixed into the 
blood by inverting the blood reservoir 5 times, representing time 0 of the 
trial. The peristaltic pump was then switched on and data recording 
started. Data digitization was accomplished via Matlab code which stores 
the voltage data of each collection instance, retrieving data from the 
oscilloscope via GPIB connection. 

𝑅𝑒 =
𝜌𝑉௔௩௚𝐿

𝜇
 [4] 

𝑉௠௔௫ <
𝑐𝑓௣௥௙

4𝑓଴

 [5] 

Fig. 1. Transducer Bracket. 3D model in Fusion 360 for a bracket 
designed to support an ultrasound transducer in the angled trough. The
hole is for the tubing to go through, ensuring the tubing is at the optimal 
focal depth.  

Fig. 2. Schematic Diagram of Heart Lung Machine Model Circuit.
Pictographic depiction of flow circuit utilized in experimentation. 
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Results 

Frequency Shift Analysis 

Preliminary Analysis  

To perform frequency analysis, the time domain voltage data was 
converted to the frequency domain using Matlab’s Fast Fourier 
Transform (fft) function. Frequency of the echoes reflecting off both 
nonmoving targets (the tubing walls) and moving targets (flowing blood 
cells) were analyzed in this manner (Figure 3). However, contrary to 
expectations, the reflection off the nonmoving wall was 3.6 MHz instead 
of 5 MHz. Additionally, while the flow region frequency was 
downshifted, the shift was much larger than expected. Given the average 
velocity of our flow circuit of ~16 cm/s, Equation 1 yields a frequency 
shift ~1 kHz. Across all trials of all conditions, as at time 0 the flow 
conditions are the same, the frequency echo off the wall was 4.09 ± 0.62 
MHz, and the frequency of the flow region echoes was 3.21 ± 0.11 MHz. 
This resulted in a frequency shift of 0.89 ± 0.51 MHz, 890 times higher 
than expected. As a result, this frequency shift data could not accurately 
be equated into velocity data.  

 

Demonstration of Analysis Pipeline 

Despite the frequency shift data not equating to real world velocity 
values, this section serves to demonstrate how the conversion to a 
velocity profile and subsequent analysis would be done. Results obtained 
in this section are largely for demonstrative purposes as they analyze data 
which did not represent realistic velocities. For demonstrative purposes, 
values were left as raw frequency shifts. Given the 45-degree angle of the 
transducer and the 1.6 mm diameter of the tubing, the angled flow depth 
was 2.26 mm. At a sampling rate of 1 GHz and the speed of sound in 
blood of 1580 m/s, this results in ~2700 samples in the flow region. The 
region was divided into 9 bins of 300 samples, each representing 0.168 
mm of the tubes diameter when adjusting for the angle of the transducer. 
The peak frequency value from each bin was subtracted from the peak 
frequency of the wall echo to find the frequency shift. 15 seconds worth 
of frequency shift values at each bin depth were averaged to attenuate the 
effect of outliers and bins which had no detectable peak frequency. Shifts 
were then plotted, normalized to the max frequency shift, and fit with 
Equation 3 (Figure 4). Crucially, values of b, the bluntness metric, were 
stored for each fit.  
 
Fits were graphed at ascending time points and their bluntness metrics 
were graphed against time to assess clot progression (Figure 5). For 
clotting induced trials, it was expected that bluntness would increase with 
time as the blood became more viscous as a result of clotting. However, 

when linear regressions were performed, no positive slope was observed. 
For the anticoagulated blood it would be expected that over a short time 
frame, such as 5 minutes, that bluntness wouldn’t increase significantly. 
As evidenced by r2 values ranging from 0.01 to 0.59 for the displayed 
fits, bluntness metric values fit to the data were of low quality. However, 
despite the low quality data, this method demonstrates the ability to 
determine a velocity profile with a radial spatial resolution of 0.168 mm 
every 15 seconds, and quantitively assess the bluntness of the profile.  

Phase Shift Analysis  

Preliminary Analysis 

To perform phase shift analysis, data had to be acquired from two 
subsequent pulses. Given a pulse repetition frequency of 5 kHz, pulses 
were spaced 0.2 millisecond apart. The code used to digitalize the data 
only captured 1 instance of the oscilloscope readout every 0.5 seconds. 
Thus, it was necessary to adjust the window of the oscilloscope to capture 
greater than 0.2 millisecond, which in the case of the settings of this 
oscilloscope was 0.4 millisecond. This adjustment decreased the 
sampling rate from the 1 GHz used in the frequency shift analysis to 
0.025 GHz, a 40 fold decrease. This decrease in sampling rate led to poor 
reconstruction of the waveforms, despite still exceeding the Nyquist 
frequency (Figure 6). Some slight phase shifts are visible within the two 
subsequent pulses; however, the jagged nature of the waveforms 
obfuscated apparent shifts.  
 
Demonstration of Analysis Pipeline 

Despite the poor waveform reconstruction, analysis was still performed 
to demonstrate the conversion of the data into a velocity profile. Peaks 
within the waveform were found using Matlab’s findpeaks function. The 
indices of these peaks were compared to pair the peaks between the 2 
waveforms. Indices of paired peaks were subtracted to determine the 
index distance between them, representative of the phase shift. These 
index differences were converted to time shifts by dividing by the 
sampling rate of 0.025 GHz. The time shifts were converted to position 
shifts by Equation 2, before dividing by the time between pulses, 0.2 
milliseconds, to determine velocity. Radial position information was 
encoded in the positions of the peaks. Position vs velocity was graphed 

Fig. 3. Representative Frequency Magnitude Spectra. Frequency 
spectra for echoes received from nonmoving and moving targets. Peaks 
at 3.6 MHz and 3.1 MHz represent lower echo frequencies than expected.

Fig. 4. Example Velocity Profile Fit. Frequency shift values normalized 
to the max shift, for clotting induced trial at time point 2 minutes. Fit to 
equation X2 with parameters Vmax = 0.965, a = 0.533, b = 1.90, and an 
r2 = 0.78.  
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and a fit attempted using the same method as described in the frequency 
shift analysis (Figure 7).  However, the raw data, while vaguely parabolic, 
was distorted by several points where no phase shift was detected, 
resulting in a calculated velocity of 0. This resulted in an r2 value of 
0.167, indicative of a poor fit.  
 
Low Sampling Rate as a Cause of Poor Quality Data 

To validate the hypothesis that the poor sampling rate and resultant poor 
waveform reconstruction contributed to the resultant poor velocity data 
and profile fit, simulated data was analyzed. Idealized simulated data was 
designed by assuming a maximum shift at the center of the flow region 
and no shift at the walls. Equation 6 was used to generate sinusoidal data 
with these parameters over the approximately 3 microseconds span of the 

ultrasound echo travel time in the flow domain. Simulated data was 

generated at sampling rates of 0.025 GHz, the rate used in the above 
phase shift analysis, and 1 GHz, the rate used in the frequency shift 
analysis (Figure 8a). The data generated with the low sampling rate was 
similarly jagged as expected which resulted in a similarly vaguely 
parabolic velocity data. Poor velocity resolution was seen in both the 
simulated and real data as only 3 velocity values were present. This 
stemmed from the low sampling rate, as the differences between paired 
peak indices were either 0, 1, or 2. In contrast, the higher sampling rate 
simulated data had more samples which provided a more granular 
difference in indices, which was reflected in the numerous velocity 
values interspersed between the 3 values present in the low sampling rate 
data. The resultant velocity profile fits (Figure 8b) and their r2 values of 
0.679 and 0.983 for the 0.025 GHz and 1 GHz sampling rate data 
respectively reflected the importance of greater velocity resolution.  
 

sin (2𝜋𝑓𝑡 + 2.2𝑡𝐸6) [6] 

Fig. 5. Comparison of Profile Fits and 
Bluntness Metrics for Clotting 
Induced and Anticoagulated Trials.  
Fits for normalized frequency shift 
(shift/max shift) vs radial position 
(0.01<r2<0.59) and linear regressions 
for bluntness metric vs time point for clot 
induced and anticoagulated blood over 
a 5 minute span (slopes = -0.38, -0.27 
respectively). Non positive slopes 
indicate no increase in bluntness over 
time for either anticoagulated blood, 
which is as expected, nor clotting 
induced blood, a deviation from 
expectations. 

Fig. 6. Phase Shift in 2 Subsequent Pulses. Overlay of 2 subsequent 
pulses, 0.2 milliseconds apart, to demonstrate phase shift. Phase shifts 
were inconsistent. Sampling rate of 0.025 GHz led to poor waveform 
reconstruction. 

Fig. 7. Velocity Profile Fit to Phase Shift Derived Velocities. Overlay 
of 2 subsequent pulses, 0.2 milliseconds apart, to demonstrate phase
shift. Phase shifts were inconsistent. Sampling rate of 0.025 GHz led to 
poor waveform reconstruction. 
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Fig. 8 Effects of Sampling Rate on 
Waveform Reconstruction and 
Velocity Profile Fitting. (A) Simulated 
wave forms of idealized sinusoid data at 
experimental sampling rate (0.025 GHz)
and ideal sampling rate (1 GHz). Poor 
reconstruction at the lower sampling 
rate led to a jagged waveform. (B) 
Velocity profile fits to velocity data 
extracted from the peak to peak phase 
shift from subsequent pulses. Poor 
velocity resolution because of low 
sampling rate resulted in poorer fit, with 
r2 = 0.679 and 0.983 in the 0.025 GHz 
and 1 GHz sampling rate data 
respectively.  
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Discussion 

The frequency analysis conducted in this study aimed to characterize the 
reflection of ultrasound echoes from both nonmoving targets, such as 
tubing walls, and moving targets, like flowing blood cells. Surprisingly, 
the frequency of the echoes off the nonmoving wall differed significantly 
from expectations, registering at 4.09 ± 0.62 MHz, instead of the 
anticipated 5 MHz. Moreover, the frequency shift observed in the flow 
region was substantially larger than predicted, with an average shift of 
0.89 ± 0.51 MHz, significantly higher than the expected shift of 
approximately 1 kHz based on the average flow velocity. This 
discrepancy rendered the frequency shift data unreliable for translating 
into velocity data, highlighting a potential limitation in the accuracy of 
the method in the need for a extremely narrow banded pulser in order to 
extract minute frequency shifts.  
 
Despite the inability to accurately convert frequency shift data into 
velocity values, the analysis pipeline demonstrated in this study provides 
valuable insights into the methodology for future studies. By presenting 
a step-by-step demonstration of the conversion process to derive a 
velocity profile, the study underscores the potential of the approach, 
albeit with limitations. Notably, the spatial resolution achieved, with 
measurements taken at intervals of 0.168 mm, offers a detailed view of 
the flow dynamics within the tubing. However, the effectiveness of this 
method was hampered by the low quality of data, particularly evident in 
the poor fitting of bluntness metrics to clot progression data, indicating 
room for improvement in future experimental setups and data processing 
techniques.  
 
The phase shift analysis, although hindered by the low sampling rate, 
provided additional insights into the velocity profile determination 
process. Despite challenges in waveform reconstruction and subsequent 
data analysis, the method demonstrated the feasibility of deriving 
velocity information from phase shifts between ultrasound pulses. 
However, the poor quality of the data, characterized by low r2 values and 
distorted velocity profiles, underscores the critical role of sampling rate 
in obtaining accurate velocity data. Overall, the study highlights the 
importance of considering sampling rate and waveform reconstruction in  
ultrasound-based velocity analysis, emphasizing the need for further 
refinement of experimental techniques to enhance the accuracy and 
reliability of results in future studies. One such way to do this is the 
implementation of a sampling board in place of data digitalization from 
an oscilloscope., ideally with a sampling rate around 1 GHz.  

Future Work  

There is still much to be done to demonstrate the accuracy and viability 
of the described methods. Primarily, data must be collected via these 
methods which show the literature described phenomenon of clot 
progression correlating with profile bluntness. Additionally, correlation 
between the bluntness metric for clot progression and an established 
metric, such as ACT, would demonstrate the validity of the method. 
Finally, development of a model which determines dosage adjustments 
to a continuous heparin infusion in response to changes in profile 
bluntness is necessary for the final development of a potential device. 
This model would work with the same principle as an insulin pump, 
leveraging a negative feedback control system to maintain profile 

bluntness, and thus clot progression, at a level safe for the patient 
throughout the surgery.  

End Matter 
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 Introduction 

 Cardiovascular diseases (CVDs) were the top global cause of death in 2019, responsible 

 for 32% of all fatalities  (WHO, 2021)  . A 2019 report  by the American Heart Association 

 revealed that nearly half of adult Americans had CVD  (AHA, 2019)  . These statistics make it 

 abundantly clear that everyone of us likely has, will have, or knows someone who has some form 

 of CVD. These numbers have been rising recently, partly due to changes in CVD diagnosis and 

 unhealthy modern lifestyles: poor diets, physical inactivity, tobacco/alcohol abuse, stress, and 

 subpar environmental conditions  (AHA, 2019; WHO, 2021)  . 

 In addition, the brunt of these diseases are often borne by minority groups. For example, 

 studies have shown that black Americans are more than twice as likely to die of a CVD 

 compared to their white counterparts. These staggering statistics have been linked to structural 

 racism, widespread practices and institutions within a society which favor certain racial groups, 

 resulting in minorities having higher exposure to various CVD risk factors  (Javed et al., 2022, p. 

 76)  . 

 Lower average socioeconomic status is the main driver of this inequality as it leads to 

 minorities living in lower income neighborhoods. This in turn makes it more difficult to obtain 

 healthy foods and maintain an active lifestyle due to food deserts, areas where healthy food 

 options are unaffordable or absent, and lack of outdoor recreational spaces respectively  (Kelli et 

 al., 2019, p. 10)  . Additionally, lower income areas  often are exposed to higher levels of 

 pollutants, another driver of CVD  (Javed et al., 2022,  p. 76)  . Furthermore, overt discrimination, 

 or even just the perception of it increases the risk of CVD development as a result of the 

 increased stress  (Banerjee et al., 2021, p. 166; Javed  et al., 2022, p. 76)  . 
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 Critically, even when minorities are able to gain access to healthcare, biases in how care 

 is distributed and administered often limit their access to the treatments they need. The 

 consequences of this are existential, as an already incredibly destructive class of diseases is 

 affecting and killing minorities at disproportionate rates. 

 Even those fortunate enough to not experience this inequity are nevertheless indirectly 

 affected. CVDs place a large resource/financial burden on the healthcare industry and the 

 economy as a whole through lost productivity  (Benjamin  et al., 2018, p. 102)  . This is a systemic 

 and difficult to solve issue, especially within American society. However, understanding the 

 extent of racial biases, both human and machine, and mitigating their effects through education 

 and ethical design is one step we can take to make healthcare more equitable. 

 There are two main ethical frameworks to be considered in clinical decision making, 

 deontological and utilitarian. The deontological framework serves as the basis for ideals such as 

 the Hippocratic Oath  (Kapocsi & Jenei, 2003)  . It is  the idea that regardless of the outcome, doing 

 harm to or neglecting the patient is never justified  (Mandal et al., 2016, p. 6)  . Ideally, this would 

 be the only framework needed in medicine, however we live in a world of finite resources. As a 

 result, the utilitarian framework is of great importance, especially in resource scarce hospital 

 settings. Utilitarianism is the idea that resources should be distributed to maximize the good done 

 (Mandal et al., 2016, p. 6)  . In clinical settings  this can present as a patient with a higher post 

 operational life expectancy receiving an organ transplant over another older or sicker patient. 

 Balancing these frameworks is critical for hospital functionality, however racial biases can result 

 in behavior that violates these ethics. 
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 Bias in Healthcare 

 Implicit racial bias is prevalent within healthcare professionals, at rates similar to the 

 wider population  (FitzGerald & Hurst, 2017, p. 13)  ,  with several studies finding anti-black bias 

 in roughly 40 percent of clinicians  (Hall et al.,  2015, p. 65)  . When this bias influences decisions 

 regarding distribution and quality of care ethical breaches and loss of healthcare equity occur. 

 One common area that biased decisions manifest is in high stress situations, such as 

 emergency medicine  (Johnson et al., 2016, p. 6)  . The  need to make quick and complex decisions 

 can lead to a reliance on heuristics, such as implicit biases. For example, in the cardiac field, 

 minorities often experience longer wait times for time sensitive diagnoses, such as via 

 angiogram, and treatments, such as life saving thrombolytics (clot dissolvers)  (Banerjee et al., 

 2021, p .167)  . While it is difficult to directly attribute  this to implicit bias, as the practitioners 

 from this study did not take an implicit bias test, it is clear there is a significant driving force 

 affecting distribution of care despite controlling for economic and other outside factors. 

 Situations such as these represent failings of both utilitarian and deontological ethics. By 

 favoring the timely treatment of white patients over that of minorities, resources are not being 

 utilized in the way to do the most overall good. Additionally, by making patients wait longer 

 based on their race, clinicians are breaching the deontological principle by neglecting the 

 patient’s care. 

 However, even in less stressful situations, allowing practitioners more time for careful 

 judgment, there is still significant bias. For example, AICDs are implantable defibrillators which 

 greatly prolong life in cardiac arrest survivors, however eligible black men are only 74 percent as 

 likely to receive one compared to an eligible white man, after adjusting for all outside factors 

 (Capers & Sharalaya, 2014, p .172)  . Eligibility is  typically determined by the risk for sudden 
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 cardiac death (SCD), which black people have the highest lifetime risk for  (Kiernan et al., 2022, 

 p. 808)  . This can partially be attributed to the fact  that majority black hospitals tend to have less 

 access to cardiac specialists, however even when black patients have access, they are still less 

 likely to undergo AICD implantation  (Kiernan et al.,  2022, p. 813)  . Providers, physicians and 

 specialists recommending AICD implantation, rarely exhibited explicit bias, however implicit 

 biases were measured  (Kiernan et al., 2022, p. 813)  .  Additionally, black patients rated implicitly 

 biased physicians lower in terms of patient-physician interaction, which can have a negative 

 impact on trust, potentially leading to the patient rejecting a treatment recommendation. 

 Furthermore, preimplantation counseling results in the majority of patients accepting AICD 

 implantation, regardless of race. However, minority patients are less likely to receive this 

 counseling compared to white patients  (Kiernan et  al., 2022, p. 813)  . Once again we see a 

 deontological failing as racial biases influence the practitioner's behavior, resulting in suboptimal 

 care. 

 Bias Exacerbation in Medical Education 

 With racial bias being this prevalent and impactful in health, it is critical to manage its 

 effects wherever possible. Implicit biases are known to emerge early in childhood development, 

 appearing strongly and consistently in children as young as 10 years old  (Dore et al., 2014, p. 

 223)  . However, while the foundation for bias forms  early in life, steps can still be taken to limit 

 its further development. One critical area to target, specifically for the healthcare sector, is the 

 curriculum in medical schools. The current mainstream curriculum reinforces the concept of 

 racial biological differences, building upon previously formed biases and potentially forming 

 new ones  (Tsai et al., 2016, p. 918)  . 
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 One way by which this association occurs is through generalizing many genetically 

 distinct groups under one race. For example, “black” is the common term used to refer to people 

 of African descent, however within this grouping there are vast genetic differences. In fact, with 

 the current groupings commonly used, there are more genetic differences within groups than 

 between them  (Agyemang et al., 2005, p. 1014)  . So,  when these broad categories are used 

 instead of the precise genetic distinctions that can actually predispose groups to various diseases, 

 students can form false associations between race and disease. 

 Furthemore, these associations can also form when educators indicate race derived 

 differences in disease prevalence without explaining the structural racism that leads to it. For 

 example, as previously discussed, African Americans are at a higher risk for CVDs, but this is 

 not the result of biological differences, rather the societal structures which perpetuate poor health 

 and living conditions. However, this critical context is rarely emphasized in medical schooling 

 (Amutah et al., 2021, p. 873)  . 

 This can have the effect of associating certain races with certain diseases, which can lead 

 to diagnostic bias  (Amutah et al., 2021, p. 875)  .  This bias can present, for example, as a 

 reluctance to diagnose a black patient with a so-called ‘white disease’, or a compulsion to 

 diagnose them with a ‘black disease’. This constitutes a breach of the aforementioned 

 deontological ethical framework. By putting the patient into this category, the practitioner is not 

 doing their due diligence to correctly diagnose their patient, ensuring they get the proper 

 treatment. Instead they are taking a cognitive shortcut, potentially putting the patient’s health at 

 risk via a non or incorrect diagnosis. 

 Additionally, the associations formed in medical school can make it easier to accept the 

 race based resource distribution algorithms that are taught to students and used in the industry 
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 (Amutah et al., 2021, p. 875)  . These algorithms are primarily designed to assist clinicians in 

 resource allocation and decision making, however race based adjustments skew their accuracy. 

 For example, the AHA’s heart failure risk calculator takes applicable information, such as age, 

 blood pressure, cholesterol level, and relevant medical history to determine a risk score used to 

 help determine how urgently care is needed. However, it also has a ‘black’ option which 

 decreases the overall risk score  (Vyas et al., 2020,  p. 874)  . This largely unjustified addition can 

 direct care away from black patients as they will be perceived as lower risk than white 

 counterparts presenting the same symptoms. By misappropriating resources away from those at 

 equal or greater risk, these guidelines represent a utilitarian ethical failure. 

 Approaches to Mitigate Bias 

 In order to limit the formation of race based associations during this critical time of 

 learning, the curriculum must be altered. Firstly, the National Academy of Medicine (NAM) 

 recommends using more precise language and categorization pertaining to ancestry rather than 

 race  (Medicine et al., 2009)  . Using more specific  categories, such as country of origin, highlights 

 the genetic differences that actually drive biological variation. Additionally, if discussing race 

 based prevalence statistics, the curriculum should stress the driving factors behind these 

 differences. Namely the socioeconomic factors that often predispose minority individuals to 

 various diseases. Finally, removing race adjusted algorithmic guidelines from the curriculum. 

 These algorithms often either feature no explanation for their adjustments, or they are based 

 solely on empirical correlations  (Vyas et al., 2020,  p. 874)  . Even this second category is 

 problematic as the adjustments are made on the assumption that race correlates with genetic 

 differences  (Vyas et al., 2020, p. 874)  , however there  is wide genetic variation within racial 
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 groupings as previously discussed. Adjustments should be based on known biological factors, 

 not social constructs, and thus removing these baseless adjustments within the curriculum should 

 help alleviate bias formation. 

 Implicit biases are within all of us to some extent, and they are very difficult to alter. In 

 fact, interventions simply targeted at helping subjects identify their bias and attempting to reduce 

 it have largely failed. While interventions such as counter-stereotype imaging (imagining people 

 in roles not conducive to stereotypes) and taking the perspective of minorities present have 

 managed to immediately reduce implicit bias, they fail to achieve long term change  (Vela et al., 

 2022, p. 6)  . Thus, it is the goal of recent interventions  not only to reduce implicit biases, but to 

 give practitioners the tools and skills to manage their bias. 

 These recent approaches are built upon the concept of transformative learning theory 

 (TLT). TLT is all about altering a subject’s existing frame of reference by disrupting their 

 assumptions, prompting critical self reflection, and engaging in guided dialogue  (Mezirow, 1997, 

 p. 6)  . First, educators must provide subjects with  information or an experience that challenges 

 their implicit biases. For example, demonstrating a disease is not ‘black’, but that socioeconomic 

 factors predispose black people to develop the disease at higher rates. Next, helping subjects 

 identify implicit bias within themselves, such as through the racial implicit association test, and 

 prompting them to reflect on how this bias has shaped their past actions. Finally, engaging in 

 group dialogue to discuss ways to manage bias in practice. TLT stresses the importance of letting 

 the subjects draw these conclusions, with the educators merely acting as mediators of discussion, 

 not driving it  (Gonzalez et al., 2020, p. 8)  . The  final step that goes beyond just education and 

 theory is to actually put this into practice. Several recent studies have accomplished this through 

 play acting scenarios, resulting in significantly higher rates of self reported confidence in dealing 
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 with bias scenarios  (Gonzalez et al., 2020, p. 8; Wu et al., 2019, p. 22)  . TLT in combination with 

 practical skills based learning has shown early promise, but there is still much to be studied 

 regarding the approach. 

 Bias in Artificial Intelligence 

 While striving to reduce bias in healthcare practitioners is of high importance, it should 

 be noted the difficulty in altering human psychology. One potential workaround is the use of 

 artificial intelligence (AI) to assist in clinical decision making. This would essentially reduce the 

 human impact, thereby reducing the ability for bias to influence decision making. There are a 

 number of algorithms already in use in cardiac healthcare. They can provide fast and accurate 

 analysis of the many diagnostic tests used in the field from ECG data points to MRI images  (Sun 

 et al., 2023, p. 2)  . However, these proposed AI programs  can harbor biases themselves, so-called 

 machine bias. This bias can arise at multiple different stages of AI model development, 

 potentially even cascading through and intensifying the biased response. 

 At the most basic level, bias can be introduced by model developers who fail to consider 

 the aforementioned systemic biases that lead to such disparities in healthcare. Large scale 

 resource management algorithmic models are especially vulnerable to this pitfall. Their inherent 

 general use for resource allocation across a range of ailments almost necessitates a proxy by 

 which to measure a patient’s health. In many cases, this proxy is future healthcare costs, as not 

 only does cost strongly correlate with need, but the goal of these algorithms is to reduce future 

 cost  (Obermeyer et al., 2019, p. 449)  . Thus, in a  vacuum, it makes sense to provide the most aid 

 to patients with the highest predicted future healthcare costs. However, as a result of systemic 

 barriers to healthcare, minority groups spend less on healthcare than their white counterparts 
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 (Obermeyer et al., 2019, p. 449)  . So, when one widely used algorithm, which was trained on 

 race-blind data, was built with cost as its health proxy, it was found to severely underallocate 

 increased aid to black patients  (Obermeyer et al.,  2019, p. 449)  . So much so that when the 

 algorithm was fed a dataset adjusted to have no race based predictive cost gap, the percent of 

 black patient’s automatically recommended for increased care rose from 18% to 47% 

 (Obermeyer et al., 2019, p. 449)  . By overlooking the  systemic issues which have led to a 

 socioeconomic racial divide, the designers introduced bias into an otherwise race blind 

 algorithm. As a result, this algorithm breaches the utilitarian ethics it was designed to promote. 

 Instead of distributing resources to those with the greatest health needs, it instead directed aid in 

 a manner to equalize predicted future healthcare expenditures. However, this only serves to 

 exacerbate the health disparity already present. Instead, algorithmic design must be socially 

 informed. If the very basis of the design is already prone to bias as a result of real world factors, 

 this will propagate through the rest model, skewing the results. AI developers have to be socially 

 conscious, which can be enabled through diversifying development teams. Racial diversity can 

 offer new perspectives, potentially catching these baked in bias problems before they can be 

 incorporated into the model. Additionally, diverse professional perspectives, such as that from 

 sociologists or specific experts in the study of systemic bias, should be incorporated into the 

 design process. 

 Bias in Training Data 

 Some of the most prevalent and often discussed sources of bias come from the data 

 collection and processing performed to build the large datasets required to train these models 

 (Nazer et al., 2023, p. 2)  . In order to build a machine  learning model, large datasets must be used 
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 to ‘train’ the model. Simply, the model uses this data to identify patterns between variables in 

 order to make outcome predictions when later supplied with similar data  (  Machine Learning, 

 Explained | MIT Sloan  , 2024)  . Selection of this training  data is crucial for model development, 

 with biases in the training data propagating into a biased prediction model. 

 Sampling bias occurs when the dataset is not representative of the population. This is a 

 very common problem as datasets often over represent white populations while 

 underrepresenting minorities. Once again, this often arises from aforementioned systemic 

 barriers to equitable healthcare access. As this data is often sourced from hospital settings, when 

 minorities are disproportionately receiving less care, they correspondingly appear 

 disproportionately less in collected data. For example, in out of hospital cardiac arrest cases, one 

 of the primary determinants of if the patient is able to survive long enough to reach a hospital, is 

 administration of CPR. Patients who unfortunately die before entering the healthcare system will 

 not be entered into datasets that may later be used to train models related to predicting heart 

 attacks. So, the results of one study that found black and hispanic patients received CPR at lower 

 rates than white counterparts, propagates into less data available for these demographic groups 

 (Garcia R. Angel et al., 2022, p. 1569)  . This is just  one example of the countless barriers that 

 minorities face which limit their representation in datasets. This ties into a phenomenon called 

 overtraining, in which the algorithm is only able to accurately assess data similar to the training 

 data. Thus, if the training data does not contain data representative of minority groups, the 

 algorithm’s accuracy will suffer when presented with such data. 

 Another similar source of bias is known as labeling bias, which occurs when the outcome 

 variable is determined differently between different, in this case racial, groups  (Paulus & Kent, 

 2020, p. 1)  . For example, one study found that the  rates of echocardiogram use, an ultrasound 
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 based technique used to diagnose various cardiovascular diseases, were lower for black patients 

 compared to white patients (Hyland et al., 2022, p. 956). As has been discussed this is a common 

 trend across a variety of diagnostic measures. This most likely stems from a variety of the 

 previously discussed systemic factors. For example, the AHA’s risk score calculator returning 

 lower risk values for black patient’s would limit the amount of further screening they undergo. 

 Additionally, lower trust in doctors, hospital overcrowding and under resourcing in 

 predominantly black areas, and lower socioeconomic class are all barriers to these more 

 specialized screening methods that are so often used to train algorithms. Similarly to sampling 

 bias, labeling bias can result in a model falsely correlating minority populations with lower rates 

 of occurrence of CVDs as there is disproportionately less data, despite higher rates of CVDs in 

 actuality. This in turn can bias the algorithm to recommend higher rates of screening for white 

 patients as they are perceived to be at a higher risk. 

 These are just two examples of potential sources of bias in data collection, but one thing 

 is common across these biases: they are derived from the already existing systemic bias within 

 the healthcare system. This is not a fault of coding or model development, but rather of the 

 system. As a result, the most effective way to mitigate this source of bias would be to address the 

 root cause, however due to the difficulty of this, this paper will focus on the more practical 

 approach of treating the ‘symptoms’. 

 One simple method is to simply acknowledge the limitations of a model. Not every 

 model must be largely generalizable to every population. In fact it would be unethical to claim 

 generalizability for a model trained on a biased data set. Inaccuracy for minority populations 

 would violate deontological ethics at the patient level, when models are utilized to provide 

 individual diagnoses, as this inaccuracy would lead to a suboptimal level of care. And on a 
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 logistical level, inaccuracies would lead to inefficient allocation of resources, away from the 

 minority populations, regardless of their level of need. Thus, setting guidelines to only allow for 

 use on populations that the algorithm can accurately predict is crucial. However, this strategy 

 must be paired with a focus on developing such specific models not only for white populations, 

 but also for minority populations, in order to ensure equitable access to these algorithms. In a 

 world with limited access to minority health databases, one way this could be accomplished is 

 through open source coding  (Norori et al., 2021, p.  1)  . By allowing predominantly minority 

 hospitals access to the code by which these algorithms are trained, they could train their own 

 local AI with their own data. This AI would not be a generalizable tool, but rather tailored to the 

 demographics of the specific institution. 

 Bias in Model Development 

 One intriguing but potentially problematic aspect of machine learning is the so-called 

 ‘black box’ that the algorithm learns in. This means that it can be hard to tell exactly how the 

 algorithm actually finds patterns and correlations used to make its predictions. As a result, if 

 precautions are not taken to prevent unintended parameters from impacting the outcome, the 

 algorithm can fall victim to ‘shortcut learning’. For example, in algorithms trained to examine 

 medical images, parameters such as image size, orientation, and the instrument used to capture 

 the image can be misidentified by the model as relevant information  (Trivedi et al., 2022, p. 2)  . 

 If, for example, data sourced from a predominantly black hospital which used a certain type of 

 imaging device is combined with data from a white hospital which uses a different imaging 

 device, the algorithm can derive this racial signal. Then, if the data is skewed such that images 

 captured from one device are more likely to be disease positive, the algorithm can take the 
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 shortcut to associate images from said device to be disease positive, and thus the race that is 

 associated with that device in the dataset  (Zou et  al., 2023)  . Shortcut learning is difficult to detect 

 and mitigate, however feature disentanglement: a process to punish the algorithm for identifying 

 these uninformative patterns has shown some initial success  (Trivedi et al., 2022, p. 3)  . 

 Conclusion 

 Implicit and systemic racial biases are the unfortunate reality of our healthcare system. In 

 the cardiovascular field especially, where many minority groups have higher risk of incidence 

 and death, these biases have a large negative impact on the equitability of care. Implicit biases 

 are present on some level in every individual, however problematic practices in the medical 

 education field exacerbate biases. Using more granular ethnic categorizations that more 

 accurately reflect genetic differences, teaching students about the systemic factors that drive 

 differential rates of disease incidence, and removal of erroneously race adjusted guidelines from 

 medical education is critical to mitigating the further development of bias. Additionally, recent 

 studies in Transformative Learning Theory have shown progress in the long term mitigation of 

 bias in adults. Utilization of algorithms is not the panacea to bias in healthcare that it may first 

 appear to be. Uniformed design of inputs, biases in how the datasets used to train these 

 algorithms are collected, and unforeseen off target shortcut learning can propagate real world 

 biases into these algorithms, skewing their accuracy. 

 These biases, both human and machine, have grave ethical implications. On the 

 individual level, deontological ethics demands healthcare practitioners perform to the best of 

 their ability for all patients. When practitioners allow biases to skew their decision making, be it 

 in diagnosis or treatment plan, they no longer follow the ethical framework that serves as the 
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 basis for modern healthcare. Practitioners must provide equitable and, to the best of their ability, 

 accurate and effective care. Algorithms made to assist practitioners in diagnosis and treatment 

 must also perform accurately for all racial demographics. On a logistical level, another important 

 consideration for the modern hospital, utilitarian ethics requires distribution of care and 

 resources in a way that performs the most overall good. This requires the accurate assessment of 

 risk and healthcare needs, which is increasingly being made by algorithms. Designers of these 

 algorithms must ensure accuracy to avoid perpetuating the inequitable distribution of care that 

 has led to dataset biasing in the first place. Major steps must be taken, but mitigation of human 

 bias, and ethical development of algorithms offer a promising path forward for ensuring a more 

 equitable and ethical healthcare industry. 
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 Introduction:  Cardiovascular diseases (CVDs) were the top global cause of death in 2019, 

 responsible for 32% of all fatalities  (WHO, 2021)  .  A 2019 report by the American Heart 

 Association revealed that nearly half of adult Americans had CVD  (AHA, 2019)  . These statistics 

 make it abundantly clear that everyone of us likely has, will have, or knows someone who has 

 some form of CVD. These numbers have been rising recently, partly due to changes in CVD 

 diagnosis and unhealthy modern lifestyles: poor diets, physical inactivity, tobacco/alcohol abuse, 

 stress, and subpar environmental conditions  (AHA,  2019; WHO, 2021)  . 

 In addition, the brunt of these diseases are often borne by minority groups. For example, 

 studies have shown that black Americans are more than twice as likely to die of a CVD 

 compared to whites. These staggering statistics have been linked to structural racism, widespread 

 practices and institutions within a society which favor certain racial groups, resulting in 

 minorities having higher exposure to various CVD risk factors, like those mentioned above 

 (  Javed et al., 2022)  . Critically, even when minorities  are able to gain access to healthcare, biases 

 in how care is distributed and administered often limit their access to the treatments they need. 

 This can especially be seen when resources are scarce, as, for example, black people are seen as 

 lower risk by AHA’s heart failure risk calculator  (Vyas et al., 2020, p. 874)  . The consequences of 

 this are existential, as an already incredibly destructive class of diseases is affecting and killing 

 minorities at disproportionate rates. 

 Even those fortunate enough to not experience this inequity are nevertheless indirectly 

 affected. CVDs place a large resource/financial burden on the healthcare industry and the 

 economy as a whole through lost productivity  (Benjamin  et al., 2018)  . This is a systemic and 

 difficult to solve issue, especially within American society. However, a combination of proper 
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 trained healthcare algorithmic automation and worker education has the potential to at least 

 reduce inequities within healthcare. 

 Moreover, even accessible treatments can be costly and perilous. Procedures like 

 open-heart surgery, employing cardiopulmonary bypass machines, often result in postoperative 

 bleeding due to necessary anticoagulants  (Shuhaibar  et al., 2004, p. 947)  . Severe, life threatening 

 bleeding can occur, but even controllable bleeding puts a large strain on hospitals and patients, 

 with transfusions consuming as much as 25 percent of blood products  (Woodman & Harker, 

 1990, p. 1680)  . To mitigate bleeding, we propose continuous  heparin infusion, ensuring precise 

 dosing compared to the current bolus technique. This approach is facilitated by a device 

 continuously monitoring clot progression, allowing for adjustments to the infusion dosage. Such 

 innovations promise to enhance patient outcomes and alleviate the burden on healthcare 

 resources associated with CVD treatments using cardiopulmonary bypass machines. In turn, by 

 alleviating the strain on resources, this device can help to lessen at least one factor, resource 

 scarcity, which often leads to inequitable treatment. Albeit this is merely treating an upstream 

 problem, whereas true change must come from addressing the root causes of bias. 

 STS Topic:  A variety of factors derived from structural  racism predispose minority groups to 

 CVDs. Lower average socioeconomic status is the main driver of this inequality. It leads to 

 minorities living in lower income neighborhoods, which in turn makes it more difficult to obtain 

 healthy foods and maintain an active lifestyle due to food deserts and lack of outdoor 

 recreational spaces respectively  (Kelli et al., 2019)  .  Additionally, lower income areas often are 

 exposed to higher levels of pollutants, another driver of CVD  (Javed et al., 2022)  . Furthermore, 
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 overt discrimination, or even just the perception of it increases the risk of CVD development as a 

 result of the increased stress  (Banerjee et al., 2021,  p. 166; Javed et al., 2022)  . 

 With the deck already stacked against minority groups, it’s critical that they are at least 

 able to access the care they need. However, even if healthcare is financially accessible, implicit 

 biases within the industry often result in worse/less treatment for minorities compared to white 

 people. For example, minorities often experience longer wait times for time sensitive diagnoses, 

 such as via angiogram, and treatments, such as life saving thrombolytics (clot dissolvers) 

 (Banerjee et al., 2021, 167)  . While it is difficult  to directly attribute this to implicit bias, as the 

 practitioners from this study did not take an implicit bias test, it is clear there is a significant 

 driving force affecting distribution of care despite controlling for economic and other outside 

 factors. 

 Even in seemingly clear cut situations where there’s less time pressure, giving 

 practitioners time to make more careful decisions there’s still significant bias. For example, 

 AICDs are implantable defibrillators which greatly prolong life in cardiac arrest survivors, 

 however eligible black men are only 74 percent as likely to receive one compared to an eligible 

 white man, after adjusting for all outside factors  (Capers & Sharalaya, 2014, p. 172)  . Eligibility 

 is typically determined by the risk for sudden cardiac death (SCD), which black people have the 

 highest lifetime risk for  (Kiernan et al., 2022, p.  808)  . Specifically for AICD implantation, this is 

 often determined by the ejection fraction, the percentage of blood pumped out of your heart with 

 each beat, where less than 30 percent is the common threshold  (Capers & Sharalaya, 2014, p. 

 172)  . 

 There are three major barriers to equitable AICD uptake, the patient, the provider, and the 

 system. The patient has a right to refuse a recommended treatment, and in one study 20 percent 
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 of black people refused an AICD compared to only 7 percent of white people  (Kiernan et al., 

 2022, p. 813)  . This can result from many factors such  as historical medical mistreatment of 

 minorities leading to low trust, and lack of knowledge of the procedure. The effect of procedural 

 knowledge was tested in one study which found that an educational video shown to patients 

 increased the rate at which black people will approve of an AICD implant, however this was not 

 enough to fully close the gap in implantation rates among whites and blacks  (Thomas et al., 

 2013, p. 157)  . Providers, physicians and specialists  recommending AICD implantation, rarely 

 exhibited explicit bias, however implicit biases were measured  (Kiernan et al., 2022, p. 813)  . 

 Additionally, black patients rated implicitly biased physicians lower in terms of patient-physician 

 interaction, which can have a negative impact on trust, potentially leading to the patient rejecting 

 a treatment recommendation. Furthermore, preimplantation counseling results in the majority of 

 patients accepting AICD implantation, regardless of race. However, minority patients are less 

 likely to receive this counseling compared to white patients  (Kiernan et al., 2022, p. 813)  . At a 

 systems level, black patients are more likely to receive care at majority black patient hospitals, 

 which typically have lower access to cardiovascular specialists. However, even at these majority 

 black hospitals, white patients are more likely to undergo specialized cardiac procedures 

 (Kiernan et al., 2022, p. 812)  . 

 On top of all this, many practitioners are either unaware of or deny care disparity at their 

 clinical location  (Sotto-Santiago et al., 2021, p.  697)  . This all results in a situation where 

 minorities are more likely to develop a cardiovascular disease and not receive sufficient 

 treatment, resulting in higher death rates. 

 It is clear there is a human failing at play here, prompting one to ask, what if we simply 

 delegated this task to machines? There are a number of algorithms already in use in cardiac 
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 healthcare. They can provide fast and accurate analysis of the many diagnostic tests used in the 

 field from ECG data points to MRI images  (Sun et al.,  2023, p. 242)  . However, there are a few 

 factors which make these algorithms prone to bias themselves. The first, and most 

 incomprehensible, is racial based scoring adjustments, such as the one present in the AHA’s heart 

 failure risk score calculator. This calculator takes applicable information, such as age, blood 

 pressure, cholesterol level, and relevant medical history to determine a risk score used to help 

 determine how urgently care is needed. However, it also has a ‘black’ option which decreases the 

 overall risk score  (Vyas et al., 2020, p. 874)  . This  largely unjustified addition can direct care 

 away from black patients as they will be perceived as lower risk than white counterparts 

 presenting the same symptoms. This algorithm tries to distribute limited hospital resources in 

 order to do the most good, a utilitarianism framework. This is a crucial decision that must be 

 made at the macro level, potentially in conflict with the typical deontological – the idea that 

 causing harm/neglect is never justified – framework common in doctor-patient interactions 

 (Mandal et al., 2016, p. 6)  . This is an important  and unavoidable problem in a world with limited 

 resources, especially at majority black hospitals which historically are under-resourced and 

 understaffed  (Himmelstein et al., 2023, p. 586)  . The  problem in these algorithms arise with the 

 biased race adjustment factor, which is merely an extension of human bias drawn from the 

 algorithm’s creators. This can result in misappropriation of resources, away from those at equal 

 or greater risk, as a result of the patient’s race. When these algorithms are biased against specific 

 racial groups, they no longer serve the utilitarian ethics they were designed to by redirecting 

 resources away from where they could do the most good. 

 Another major factor is unique to the powerful deep learning neural networks that have 

 become synonymous with AI. These algorithms are trained off of large datasets in the hopes they 
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 will be able to generalize to new data. However, what can often happen is the algorithm can 

 become overtrained to the training set. This becomes especially problematic when the training 

 set does not reflect the diversity that would come through a hospital's cardiac wing. This can 

 result in algorithms biasing towards their training set, which is all too commonly derived mostly 

 from white medical data  (Panch et al., 2019)  . 

 These deep learning neural networks algorithms are often used as diagnostic assists. 

 These algorithms reflect the deontological framework, trying to assist doctors in identifying a 

 problem in a specific patient so they can render the care they need. They don’t factor in urgency 

 or risk factor for comparison to other patients, instead they are designed to identify a problem 

 and, in some cases, recommend the treatment best suited for a particular patient. However, when 

 these algorithms fail as a result of bias, leading to a misdiagnosis disproportionately for 

 minorities, this prevents them from getting the care they need, thus running counter to the very 

 deontological framework they were designed to assist. Proper healthcare is a balance between 

 utilitarian resource distribution, and deontological patient care, and AI tools can, in theory, 

 improve decision making and eliminate human bias in both categories, but they must be 

 intentionally designed to avoid machine bias. 

 The main question here is: what steps must be taken to mitigate the effects of racial bias 

 in the cardiovascular health field? The intention is to build upon a plethora of past works on this 

 subject as it is fairly well studied. Several of these papers have been cited in this prospectus. The 

 final goal of this paper is to explore the current landscape of human and algorithmic biases, and 

 propose potential solutions, compiled across multiple sources, in order to improve minority 

 patient outcomes. 
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 Technical Topic:  During surgeries such as an open heart surgery, the heart must be stopped in 

 order to allow for operation. Thus, the job of the heart, and the lungs, is taken over by a 

 cardiopulmonary bypass machine. This machine oxygenates and circulates the blood via an 

 external circuit. However, when blood is removed from the body it begins to clot. This is due in 

 large part to factors released during tissue injury, and contact with an artificial surface in the tube 

 walls  (Levy, 2013, p. 589)  . If left unchecked, clots  would form during the surgery, either killing 

 the patient outright if the clotting is extensive enough, or causing postoperative complications 

 such as a stroke if the clots travel to the brain. 

 Thus, it is essential that an anticoagulant is used to prevent clotting. Heparin is the 

 standard due to its fast acting effect. Heparin binds to a protein called antithrombin-III (AT3), 

 increasing its activity 1000 times. AT3 binds to thrombin, the key component of the clotting 

 cascade, and prevents its activity  (Hirsh et al.,  2001, p. 1094)  . Typically, a bolus (large injection 

 all at once) of heparin is administered prior to surgery in a dose calculated based on body weight. 

 The effect is monitored by a device such as the Hemochron, which measures activated clotting 

 time (ACT). This is a measure of the time it takes for a small sample of blood to clot after the 

 introduction of a clotting catalyst, and it’s usually kept above 480 seconds during surgery 

 (Hoffmann et al., 2023, p. 286)  . 

 The combination of a roughly six minute testing time, and the manual operation of the 

 device by the anaesthesiologist, means measurements are taken around every 30 minutes. This 

 means any further heparin administration is also given in bolus. As a result of this dosing 

 strategy heparin concentration peaks and then decreases until the next bolus, meaning it is 

 possible to exceed the minimum heparin dose required for anticoagulant effectiveness. 

 Furthermore, some studies have shown a correlation between the total heparin dosage and 
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 severity of postoperative bleeding, despite heparin neutralization post surgery  (Shuhaibar et al., 

 2004, p. 947)  . Postoperative bleeding is a frequent  problem with this procedure, consuming up to 

 25 percent of blood products used by hospitals  (Woodman  & Harker, 1990, p. 1680)  . Reducing 

 the occurrence or severity will greatly benefit not only hospitals, but also patient recovery and 

 the cost burden. 

 We propose that continuous heparin infusion would allow for greater control of heparin 

 levels, allowing for minimal dosing. However, with the current monitoring devices this would be 

 largely impossible to implement, as they are only able to take a measurement at a maximum 

 sampling rate of every six minutes. This would also require frequent and tedious work by the 

 anaesthesiologist, potentially distracting them from other workflows. Thus we propose a novel 

 device which is able to continuously monitor clot progression in a nonintrusive and non sample 

 consumptive way. 

 While the method is yet to be finalized, one promising method we are considering is 

 particle image velocimetry. This technique uses a strobe laser and a digital camera to track the 

 movement of particles in fluid in order to determine the velocity and flow profiles. In our case, 

 this could be accomplished by tracking red blood cells themselves  (Pitts & Fenech, 2013)  . We 

 could then relate the velocity or the flow profile of the fluid to clot progression based on 

 experimentation. 

 The end goal is to make a prototype for a device which is able to output heparin dosing 

 adjustments based on its measurements completely autonomously. This would open the door for 

 a future goal where this device is then combined with a heparin pump system to control dosing, 

 similar to an insulin pump, but that is likely out of the scope of this project. 
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 Conclusion:  In summary, the goal of this project is both material and immaterial improvements 

 in the cardiac healthcare field. For the STS portion, the intent is to propose a myriad of solutions, 

 based on research, to reduce the effect of bias in cardiac health, through both human and 

 algorithmic interventions. The hope is that some of these solutions will be able to enact equitable 

 treatment opportunities, thereby improving cardiac outcomes for minorities. On the technical 

 side, the intent is to develop a novel device which is capable of continuously monitoring clot 

 progression during cardiopulmonary bypass. This device will allow for minimal heparin dosing, 

 which in turn should decrease rate and severity of postoperative bleeding, thus improving patient 

 outcome. All in all, the hope is to make a meaningful contribution to the cardiac field and 

 improve outcomes for all patients. 
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