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Abstract—Our project revolves around the design and fab-
rication of a 16-bit CPU and supporting memory using Flash
memory, 74XX series logic chips, and passive components. Aimed
to be a educational device for students to learn computer
architecture, digital logic, machine code, and electronics, the
Romulus I is equipped with LEDs on the internal registers, 7-
segment displays, debugging tools, and multiple clock speeds.
The scope of this project also includes a compiled language and
an assembler providing increasing layers of abstraction, allowing
for either a top-down or bottom-up approach to teaching about
computing systems and organization.

III. BACKGROUND

We chose this project for a number of reasons. First, we
were inspired by our experiences in other classes like Com-
puter Systems and Organization and Digital Logic Design.
After using the Digital open-source logic simulator [1] and
the ToyISA simulator [2], both of which are virtual tools,
we felt that we could create a physical, hands-on teaching
tool that would help students understand computers in a new
way. Second, we wanted to see if we could use what we had
learned in those classes through lectures and homeworks to
make something new. Finally, we just thought it would be a
fun and interesting challenge.

Throughout this project, we used many techniques we
learned in our classes. The general structure of the computer,
having a control signals FSM, an ALU, a program counter,
and memory, was material from Digital Logic Design. In
that class, we created a programmable computer with those
blocks in Digital [1] (though most of the designs of the blocks
themselves were different from the approach we were taught
in that class). The design of the instruction set architecture and
assembly were from Computer Systems and Organization 1.
The knowledge on how to create an assembler and compiler
were from Computer Systems and Organization 2. Finally, the
knowledge on how to create a PCB layout, order parts, and
solder circuits were from the ECE Fundamentals series.

Though this project was based on and inspired by a number
of past works, it is a new and distinct product. As mentioned
above, we took inspiration from the virtual tools we used in
our classes, like Digital [1] and ToyISA [2]. While these are
fantastic tools for learning, they are only virtual programs,
and do not provide a physical, interactable model from which
to learn. Another similar past work is Ben Eater’s 8-bit
breadboard computer [3]. In his video series, Ben Eater creates
a full-functional, programmable 8-bit computer on a set of
breadboards using only simple logic gates. It has a clock,
registers, ALU, RAM, program counter, and control logic.
While this project is similar to our own, it is built on a set
of breadboards, meaning the circuits are not as permanent as
ours made from soldered PCBs, and it is much less versatile
than ours: it is only eight bits and there are only two general
purpose registers, compared to our 16 bits and 16 general
purpose registers. Our work is different from any projects
before it.

IV. PROJECT DESCRIPTION - SPECIFICATIONS

A. Instruction Set Architecture

1) Overview: The instruction set architecture (or ISA, for
short) acts as a specification that defines the operations the
CPU is capable of, as well as their binary representations.
By giving an operation a mapping, we are including it in
the capabilities of the CPU. Designing an ISA is a balancing
act: if an ISA is too simple, common operations may become
arduous (i.e., not including A & B requires the programmer to
do (A|B) any time a bitwise AND is needed), or in the worst
case, the CPU may not be Turing complete. On the converse,
if the ISA is overly complicated, it may require an overly
complicated hardware implementation. To avoid the negative
effects of these two poles, our ISA should be:

• Turing complete
What this means and why this is important will be elaborated
on further once our ISA is described, but in short, if our ISA is
not Turing-complete, there is a strict and provable upper bound
on the computational power of our hardware that means our
CPU will not be able to compute any given algorithm.

• Logically comprehensive
While the bare minimum number of operations needed to make
a Turing-complete ISA is remarkably small (by our count, it’s
roughly 5 or 6), it’s to include more instructions for ease of
use purposes, much like the bitwise AND example above, to
avoid frustration and code repetition on the programmer’s part.

• Easy to code / represent in hexadecimal
As one of the revisions to ToyISA that we aim to implement,
the bitcode should be intuitive and require minimal bit-fiddling
on the programmer’s part. ToyISA had 8-bit instructions, with
the most significant 4 bits representing opcode, the next 2
representing rA (parameter 1), and the least significant 2
representing rB (parameter 2) or an optional set of selector bits
for unary operations. When programming using the bitcode,
it is often a hassle having to compute the lower hexadecimal
digit when changing rA or rB, so our ISA should split each
16-bit value into groups of 4 or 8 wherever possible to avoid
this.

• Able to be utilized in higher level abstraction
The ISA should be fully functional when programming using
bitcode, but there should also be instructions geared towards
higher level concepts. For example, while a stack pointer and
instructions incrementing and decrementing the stack is not
strictly required, it gives way to creating a call stack and
allowing for the writing of functions, loops, and recursion:
features only truly available in romASM and / or Hawk.
The ISA we designed for Romulus I in order to solve these
problems to the best of our ability is given by Table I.

As referenced in the table, we settled on using 16 in-
structions, which allows our opcode to fit within the most-
significant 4 bits of the instruction. Bits 8-11 generally act
as placeholder for RA, the first parameter in many operations.
From there, bits 4-7 are reserved for RB , the second parameter
for many operations, and lastly, bits 0-3 are usually reserved



for RY , the register in which to store the result. Each group
of 4 instructions are similar to each other, and so the next
4 sections will discuss the ”Move”, ”Bitwise”, ”Arithmetic /
Logical”, and ”Control Flow” instruction groups.

2) Move instructions (Opcodes 0-3): The first 4 opcodes
deal with moving values into and between registers, as well
as interacting with memory.

B. Finite State Machine

Gus

V. PROJECT DESCRIPTION - SOFTWARE

A. Assembler (”romASM”)

Gus

B. Compiler (”Hawk”)

Gus

VI. PROJECT DESCRIPTION - HARDWARE

A. Board 1

1) Overview: Board 1 contains the register file and support-
ing circuitry The register file was chosen to have 16 registers
because in order to address 16 registers, four bits are needed.
Using 4 bits to select the register allows three registers to
be chosen and the four-bit opcode to be specified all in one
16-bit instruction. Each register stores 16 bits. Each bit of
each register was designed to be indicated with an LED. The
SN74HC573 8-bit register was chosen to store the contents
of each register. Because each are 16-bit, two 74HC573s are
needed per register. Unfortunately, the tri-state buffer built into
the 74HC573 was not able to be used as we needed access to
the data even when it is not active. The OE# of all the buffers
were grounded so the output always reflected the data. The
full Schematic of the register file board can be seen in Figure
1. It is referred to as board 1 in other sections.

2) LED Displays: The LEDs sourced were tested with
various resistor values. A pleasant brightness was found with
820 Ω resistors. One LED draws 4.2 mA in this arrangement.
This means the board could draw up to 1.075 amps from just
the LEDs if 0xFFFF is stored in all the registers. To save space
on the board, instead of using one discrete resistor for each
LED, 8-resistor resistor arrays were sourced. These are SIP-9
components that have 8 resistors with one common pin. The
anodes of each LED connect to the output of the register and
the cathodes are grouped into 8s and connected to the resistor
array, 2 resistor arrays per register. The common pin of each
resistor array is connected to ground through a 2N3904 with
a 1 KΩ resistor on the base. The other ends of the resistors
are all connected to a common point. The transistor allows all
the LEDs to be turned off with a single signal. This will be
useful when running the computer at the highest speed.

3) Register Design: The outputs of the registers are con-
nected to a SN74HC541 buffer IC. It is an 8-bit device so
two of them are needed per register. The OE# are controlled
by the decoder. All outputs of these buffers are connected by
bit and then feed into two more 74HC541 so act as the final
output enable. The schematic of a single register can be seen
below in Figure 2.

4) Addressing the Registers: Two 74LS154s were used to
make the decoder. One is connected to the 4-bit address and
its outputs connect directly to the OE# on the buffer pairs. The
outputs of the 74LS154 and OE# inputs on the 74HC541 are
both active low. The enable pins of the decoder are connected
to ground to constantly enable the decoder. This way, one
of the registers is constantly on the internal bus. The final
buffer mentioned above connects the selected one to the bus
using the OE# inputs on the board. The other decoder is used
to write to the registers. The two WE# s connect to its two
enable pins. Each output passes through a NAND gate whose
other input is wired to MWE# . Pulling MWE# low causes all
the registers to be written simultaneously. This is used during
an asynchronous reset. Its address pins are also connected to
the 4-bit address input. Each chip on the circuit has a 1 nF
capacitor across its power pins to decouple the IC. The boards
inputs are OE1# , OE2# , WE1# , WE2# , 4-bit address, LED
CTRL. It has a 16-bit IO connection for the data bus. A trace
width calculator was used to design the widths of the traces
on the PCB to ensure they could supply the proper power. A
simplified schematic of the control circuitry can be seen below
in Figure 3.

5) Modifications: The PCB needed two modifications to
work properly after its design and order. The first modification
was the addition of the second OE# input to the board. The
overall low-level architecture was not solidified before the
PCB was ordered and it was not yet known that a second OE#
would be needed. It was created by adding a daughter board
on the PCB with a single 74HC32. The second modification
was adding parallel RC networks on each of the four-bit
address inputs for addressing the register. Transient issues
were observed when multiple registers started to write at the
same time due to errant pulses on these lines. The Parallel
RC networks suppressed these and stopped the transient volt-
ages. The resistor and capacitor values are 1 MΩ and 1 nF
respectively. One of these networks can be seen in Figure 4.

B. Board 2

1) Overview: The purpose of the FSM Clock and Reset
Board (Board 2) is to generate the clock signals, the logic
to switch between them, the reset signal, the control signals
for the registers and other items on the other boards, and the
timing signals used by the RAM chips. The control signals
for the rest of the boards are generated using the outputs
of flash memory chips, the SST39SF010A to be exact. The
reason that this design approach was taken was to allow for the
finite state machine that runs the computer to be customizable.
This proved to be a smart choice, as the finite state machine
logic stored in these chips was rewritten multiple times to



TABLE I
INSTRUCTION SET ARCHITECTURE MAPPING

Opcode (Op) Instruction Registers Bits (MSB ... LSB)
0 (0000) Register to Register RA → RY Op (4) RA (4) X (4) RY (4)

1 (0001) Immediate to Register I → RY
Op (4) X (8) RY (4)

Immediate (16)
2 (0010) Register to Memory RA → MRB Op (4) RA (4) RB (4) X (4)
3 (0011) Memory to Register MRA → RY Op (4) RA (4) X (4) RY (4)
4 (0100) Bitwise OR RA —— RB → RY Op (4) RA (4) RB (4) RY (4)
5 (0101) Bitwise NOT ∼RA → RY Op (4) RA (4) X (4) RY (4)
6 (0110) Bitwise AND RA && RB → RY Op (4) RA (4) RB (4) RY (4)
7 (0111) Bitwise XOR RA ˆRB → RY Op (4) RA (4) RB (4) RY (4)
8 (1000) Add RA + RB → RY Op (4) RA (4) RB (4) RY (4)
9 (1001) Subtract RA - RB → RY Op (4) RA (4) RB (4) RY (4)
A (1010) Logical NOT !RA → RY Op (4) RA (4) X (4) RY (4)
B (1011) Logical Shift Right RA >>1 → RY Op (4) RA (4) X (4) RY (4)
C (1100) Push (RA or PC+2) → Top stack Op (4) RA (4) Op2 (1) X (7)
D (1101) Pop Top stack → (RY or PC) Op (4) X (4) Op2 (1) X (3) RY (4)
E (1110) Unconditional Jump RA → PC Op (4) RA (4) X (8)
F (1111) Conditional Jump If (RB ?? 0):RA → PC Op (4) RA (4) RB (4) Flags (4)

Fig. 1. Full Schematic of Register File Board

compensate for problems discovered during troubleshooting.
The full circuit can be seen below in Figure 5. It is important
to note that this circuit was made using discrete gates rather
than full chips. This was done to make the schematic more
intelligible. The schematic used to create the PCB looks dif-
ferent but represents the same circuit. 1 nF bypass capacitors
are placed on the power rails of every chip

2) Clock Signals: The board creates five different clock
signals that can be selected using the rotary switch mounted
on the control panel. The speed options are 4 MHz, 400 Hz,
8 Hz, manually increment one full instruction, and manually
increment one sub-instruction. The 4 MHz and 400 Hz clock
signals were generated using a single SN74S124 oscillator
chip. It contains 2 independent oscillators. The chip requires a
voltage present at the FC pin, a current through the RNG pin
and a capacitance across the two CX pins. Unfortunately, the

datasheet graphs for the voltage, current and capacitance val-
ues did not match up completely with the oscillation frequency.
Different values were used until the desired frequencies were
obtained. The oscillator circuit can be seen below in Figure 6.

The 8 Hz oscillator was created using an NE555 timer chip.
It was wired in a generic astable mode with the addition of a
1N4148 diode to bypass the second resistor. The purpose of
this diode is to make the capacitor charge through one of the
resistors and discard through the other. Setting the values of
both resistors to the same value creates an oscillator with a
perfect 50% duty cycle. This signal is more pleasing to the
eye of the user. With this modification, the equation for the
oscillating frequency becomes

fosc =
1

1.34RC
10 KΩ resistors a 10 uF capacitor were chosen which yield



Fig. 2. Simplified Schematic of a Single Register in the Register File

an oscillation frequency of 7.46 Hz. The schematic for this
oscillator can be seen below in Figure 7.

The oscillator sections for the two manually increment
models were a little more complicated to design as they
required their own finite state machine. The sub-FSM and sub-
sub-FSM counter needed to be used in this FSM. They will
be described in more detail later. The sub-sub-FSM counter is
a two-bit counter used to time the operations that happen in a
sub instruction. The sub-FSM counter is a four-bit counter that
is directly driven by the sub-sub-FSM counter. It is used to
keep track of the current sub instruction. In order to increment
through a sub-instruction, the FSM needs to start oscillating
when a button is pressed and stop oscillating when the sub-
sub-counter is 0b00. In order to increment though a full
instruction, the FSM needs to start oscillating when the button
is pressed and stop when both the sub-counter and sub-sub
counter are 0b0000 and 0b00 respectively. Instead of designing
two FSMs for each of these options, a single one was designed
with an input that is high when either the sub-sub counter
is 0b00 and increment one sub instruction is selected on the
rotary switch or both the sub-sub counter and the sub counter
are 0b00 and 0b0000 respectively. The logic for this part can
be seen below in Figure 8. “POS0” is the position on the
rotary encoder that corresponds to manually increment one

sub instruction, it is active low.

The finite state machine was then developed using the one
zero signal. The finite state machine is a mealy machine
because it uses both current and stored values to determine
the next output state. It has one output. The output stays low
if the button is not pressed. Once the button is pressed, the
output will toggle until the zero input is high, signaling that it
has either reached the end of the instruction or sub instruction.
An artifact of this FSM is that if the button is held down, the
computer will increase forever until the button is released, it
will then finish the instruction that it is on. The frequency that
this oscillation occurs at is 4 Hz. This was chosen so there is
enough to see everything that is happening as this is mostly a
feature for debugging. Another artifact is that the button needs
to be held down for at most a 4th of a second so the FSM
can see it and begin its cycle. The last artifact is that the finite
state machine will trigger if the sub counters are not zero even
if it is not on the manual setting. For instance, if the computer
is run at a different speed, paused, and switched to manual, it
will automatically start incrementing if the sub counter were
not at zero at the time the computer is paused.

To make the finite state machine, a 74HC74 Dual D-Latch
was used to store the state and logic was used to realize the
transfer table. A 4 Hz oscillator was designed using an NE555



Fig. 3. Simplified Register Control Circuitry Schematic

Fig. 4. RC Network Used to Filter Address Lines

and the same equation used to design the 8 Hz oscillator. This
circuit can be seen in Figure 9. “POS0” and “POS1” are the
two positions on the rotary encoder that correspond to the
two manual modes. The logic designed using them flashes the
LED indicator on the control panel when clocking through
manually.

To switch between all of the clock signals, a 5-position
rotary switch is used. The common pin is grounded which each



Fig. 5. Full Finite State Machine, Clock and Reset Board Schematic

Fig. 6. 4 MHz and 400 Hz Oscillators

of the position pins are pulled to 5 volts using a 1 kΩ resistor.
To generate the signals used to select the different clocks, a
sophisticated SR latch circuit was designed. Physical switches
often introduce “bouncing” in a circuit. The metal contact
vibrates at the instant it is closing causing an undesired, short
series of pulses upon a transition. To prevent this, the circuit

Fig. 7. 8 Hz Oscillator Schematic

was designed to latch the positions the instant that they are
reached. The basic principle is that the desired position on the
rotary switch sets its corresponding latch, this latch is then
reset by the positions on either side of it. For instance, the latch
for position 2 is set by position 2 and reset by either position



Fig. 8. Zero Determination Logic Schematic

1 or 3. Positions on the edges require one reset (When at
position 0, it can only possibly turn to position 1 from there).
The positions 0 and 1 both correspond to the manual increment
modes. Since both connect the same clock source to the clock
input, they are combined and treated as one position as far as
this debouncing circuit is concerned. The SR latches used in
this circuit and the rest of the board are made from 2 NAND
gates in an arrangement shown in Figure 10. The main output
(Q) is active high (Q# ) is active low and the reset and set
inputs are active low as well.

These were used to make the rotary switch selection circuit.
The outputs of the position latches than feed into AND gates.
The other input of the AND gates are connected to the
corresponding clock. These are all ORed together to create
a single clock output. This portion of the circuit can be seen
below in Figure 11.

3) Pause Handling: This “main clock” signal created in the
circuit above is connected to the input of a D latch. This D
latch is used to pause and un-pause the computer by latching
the clock when the pause button is pressed. The pause and
un-pause buttons are located on the control panel. There is
an indictor for pause on the control panel and the circuit
board. To make it easy to keep the computer in its reset
state upon startup, reset automatically pauses the computer.
Pressing pause sets the pause SR latch while pressing un-
pause, resets the latch. These SR latches are again designed
using the NAND gate SR latch in Figure 6. The Q of the Pause
SR latch is then connected to the LE input of the D latch. The
“Conditioned Clock” is the final clock signal that will be used
to drive the counter ICs. This portion of the circuit can be
seen below in Figure 12.

4) Reset Timing: The computer resets itself when it is
turned on and when the user presses the reset button on the
control panel. To create this reset signal when the computer
is powered on, an RC network is used to create an active
low signal. The capacitor voltage starts at 0 volts and charges
through the resistor until it reaches the high input level of the
logic gate. With a resistor value of 10 kΩ and 10 uF, this
reset signal takes 120 milliseconds to reach the high threshold
level of the logic gate family used. This pulse is then ANDed
with an active low button press to create a combined signal.
This active low reset signal “RESET# ” then connects to a few
latches on this board. It can be seen in Figures 5 and 8. This
“RESET# ” is used to trigger two NE555 timers in monostable
mode. The first one is the “WE DELAY” which creates a one
second pulse and the second is the “FSM DELAY” which
creates a two second pulse. The reason these two timing

signals are needed comes down to the latches used in all of the
registers. They level triggered, not edge triggered. This means
that the data that is latched into them needs to be held at the
inputs after the latch enable input is deactivated. The data bus
is pulled to ground using 4.7 kΩ resistors on board 4. The
FSM DELAY timer is an input to the FSM flashes. When this
input is high, the all of the output and write enables of all of
the registers are deactivated, meaning that nothing is on the
bus. The resistors pull the bus to ground. The output of WE
DELAY is inverted, then wired off the board to the master
writes on all registers in the computer. The delay for the FSM
is longer than the delay used to latch the registers to ensure
they all latch 0x0000 properly during a reset. The reset and
timing circuitry can be seen in Figure 13.

5) Timing Signals and Counters: The sub counter and the
sub-sub counter described in previous sections are generated
using two 4-bit binary counter ICs, the 74LS193. This IC
has a borrow and carry outputs that makes it easy to string
them together and create counters higher than 4 bits. The
carry output is connected to increment of the next chip and
the borrow output is connected to its decrement. This is how
the two 74LS193s were connected in the circuit. When the
increment or decrement inputs on the chip are being used, the
other one needs to be pulled to Vcc. Because this counter is
only incrementing, the decrement input is permanently tied
to 5 volts. The counter has an active high clear, both are
connected to the FSM DELAY. The counter IC also offers 4
inputs for each bit. There is an active low load input as well.
When this load input is pulled low, the data on these inputs
is latched to the outputs. All of the data inputs on both chips
are pulled high to 5 volts. The load input is connected to one
of the FSM outputs, called SETSUB. The lowest order 2 bits
of this 8 bit counter are the sub-sub counter, the next 4 bits
are the sub-counter. The highest order 2 bits are unused. Since
not all instructions use the same amount of sub instructions,
there is a sub instruction called SETSUB. As a side note,
this output is inverted and wired to an output on the board, an
active high version is needed by board 5 to deal with hardware
interrupts. When it is activated, it loads 0b111111 to the
combined counter. This jumps the counter to the end, causing
the next clock pulse to take it to 0b000000, and therefore, the
next instruction. This is a way of terminating the instruction
after all of the sub instructions are done instead of having to
wait for the counter to count past the unused sub-instruction
slots.

Each of the 6 bits are connected to LED indicators on the
board. These indicators (along with the main clock indicator)
have their cathodes tied to the collector of a 2N3904 transistor.
The base of this transistor is then controlled by the main LED
control switch on the control panel. This connects to all of the
other cathode transistors controlling all of the other LEDs on
the other boards.

Special timing routines need to be used when writing
and reading information to the selected SRAM chips, the
AS6C1008s. Their wiring is exploring in more detail when
discussing their circuits, but the timing will be described



Fig. 9. Manual Increment Finite State Machine Circuit

Fig. 10. SR Latch Circuit Using NAND Gates

here. The AS6C1008 does not have separate input and output
signals, instead, IO pins that switch. The chip requires the
WE# pin be pulled low and a period of time elapse before the
CE# input be pulled low and data be present at the pins. Since
the IO pins of the chip are connected directly to the data bus,
this means the data cannot be present on the bus until a time
after the WE# input is pulled low. The period of time is much
shorter than the maximum clock frequency of the computer,
but it still needs to be accounted for. This timing issue is
the reason behind the two-bit sub-sub clock. This creates four
different slots that be used to create this timing sequence. The
timing sequence can be seen below in Figure 14.

WE is write enable, OE is output enable, and CE is chip
enable. This timing sequence works for the write and output
enable inputs of the registers as well. The reason that they are
labeled with a 2 after the name is due to the way the FSM
selected the register of SRAM to use. Every device has two
WE# inputs and two OE# inputs. Both inputs must be low for
the desired operation to take place. The first ones (OE1# and
WE1# ) are connected to signals from the FSM flash chips.

This is way the FSM selects the devices needed for the sub-
instruction. The second set of inputs (OE2# and WE2# ) are
controlled by the timing sequence seen in Figure 10. This
allows the timing sequence to control the devices selected by
the FSM. Each of the SRAM chips has two extra inputs (CE1#
and CE2# ). CE1# is created on the board by ANDing its OE1#
and WE1# . This reduces the number of outputs needed from
the FSM flash chips. This allows the chip to be enabled if it
is being written to or read from. Logic was used to generate
these timing signals from the two bits of the sub-sub counter.
The counter circuit and timing signal generating circuit can be
seen below in Figure 15.

6) Interrupt Handling Correction: The interrupt signal
generated on board 5 was initially a direct input to one of
the addresses of the flash chips. This caused errors when an
interrupt was triggered half way through an instruction. The
solution was to latch the state of the interrupt input at the
beginning of an instruction and use a control signal from the
FSM to reset it at the end of the interrupt path. To accomplish
this, a 74HC74 D latch was used. Its data bit is connected to
the incoming interrupt signal, its Q pin is connected to the
address bit of the flash. The clock pin is connected to logic
that triggers it when the sub-counter is 0b0000. The reset pin
is connected to INTRES, an active low signal created during
the troubleshooting process that is used to control timing
associated with the interrupt handling. This circuit can be seen
below in Figure 16.

7) Finite State Machine Flash Chip Lookup Table: The
finite state machines outputs are data locations store across
three flash chips. These chips are the SST39SF010As. They
have 17 address inputs (A0-A16), and 8 outputs (DQ0-DQ7).



Fig. 11. Rotary Switch De-bounce and Clock Selection Circuitry

Fig. 12. Clock Pause Handling Circuit



Fig. 13. Reset Timing Circuitry

Fig. 14. Sub-Sub Counter Control Signals Timing Diagram

They are programmed externally using a microcontroller and
inserted into the circuit using 32 PDIP sockets. This way, their
WE, CE, OE can be wired to constant voltage sources to
make the chip always output data, making it act as simple
combinational logic. Only 12 address inputs are used, the
unused five (A12-A16) are wired to ground. The 12 used
addresses of the flash chips are all wired together so each
chip gets the same address. Each of the outputs of the three
chips (24 of them total) is assigned a specific control signal
that are sent to other parts of the computer. The programming
of the flash chips and the flow of the FSM is explored further
in its section. A summary of the inputs to the FSM flash chips
can be seen in Table II.

The four bits of the opcode come from the instruction
register on board 4. The signal “Op2.0” is described in more
detail in the section describing the instruction set architecture.
Jump comes from board 4 as well and is described in the

TABLE II
INPUTS TO THE FSM FLASH CHIPS

Signal Polarity Flash Chip Address
Sub Clock Bit 0 Active High A0
Sub Clock Bit 1 Active High A1
Sub Clock Bit 2 Active High A2
Sub Clock Bit 3 Active High A3

Opcode Bit 0 Active High A4
Opcode Bit 1 Active High A5
Opcode Bit 2 Active High A6
Opcode Bit 3 Active High A7

Interrupt Active High A8
Op2.0 Active High A9
Jump Active High A10
Reset Active High A11

section on board 4. These are the 12 signals that the FSM
needs in order to determine what its outputs should be. The
outputs of the FSM flash chips are summarized below in Table
III.

The signals outlined in Table III, not already mentioned in
this section are explored in the section corresponding to their
board. These outputs connect directly to header pins on the
edge of the board for ease of wiring to other boards.



Fig. 15. Sub Counter, Sub-Sub Counter, and Control Signal Timing Circuit

Fig. 16. Interrupt Latching Circuit

C. Board 3

1) Overview: The memory and mapped IO board contains
the memory SRAM, the mapped IO slots, and the memory
address register (MAR). It is referred to as board 3 in other

design sections. It uses the same SRAM chips as board 5
(the AS6C1008s). The IO ports have 16 inputs and 16 outputs
each. They are addressed as the last four memory addresses;
0xFFFC, 0xFFFD, 0xFFFE, and 0xFFFF. The full schematic
of this board can be seen in Figure 17.



TABLE III
FSM FLASH CHIP OUTPUTS

Signal Polarity Destination Board Flash IC Pin
PC OE1# Active Low 5 U2 DQ4
PC WE1# Active Low 5 U2 DQ2
DIP OE1# Active Low 5 U2 DQ3

CSP++ Active Low 5 U3 DQ7
CSP– Active Low 5 U3 DQ6
PC++ Active Low 5 U3 DQ0
PC– Active Low 5 U3 DQ5

INSTR OE1# Active Low 5 U3 DQ1
STACK OE1# Active Low 5 U3 DQ2
STACK WE1# Active Low 5 U3 DQ4
MAR WE1# Active Low 3 U2 DQ7

MEM RAM OE1# Active Low 3 U2 DQ0
MEM RAM WE1# Active Low 3 U2 DQ6
REG FILE OE1# Active Low 1 U2 DQ5

CCMP Active Low 4 U4 DQ3
INTRES Active Low 2,4 U3 DQ3

REG File WE1# Active Low 1 U2 DQ1
IR WE1# Active Low 4 U4 DQ7
P0 WE1# Active Low 4 U4 DQ0
P1 WE1# Active Low 4 U4 DQ6

IR MUX BIT 0 Active High 4 U4 DQ4
IR MUX BIT 1 Active High 4 U4 DQ1

ALU OE1# Active Low 4 U4 DQ5
SETSUB Active Low 2 U4 DQ2

2) Memory Address Register (MAR): The MAR stores the
memory address used by the RAM to find the correct value.
It is identical in operation to the registers on board 1. Its
inputs connect directly to the bus and its outputs connect
directly to the address inputs of the SRAM chips. Since it
is always outputting to the memory RAM, it does not have
OE1# and OE2# signals. It’s circuitry can be seen in Figure
18. In addition to what is seen in Figure 2, it has a MWE#
which writes the register regardless of WE1# or WE2# .

3) Address Decoding: The circuit needs to be able to be
able to detect if the addresses being written to or read from
are in the SRAM or in the memory mapped IO slots (last 4
addresses). This is accomplished using combinational logic.
Since the last 4 addresses correspond to the lowest order
14 addresses being 1, (0b11111111111111xx), if they are
all 1 then the address has to be in the memory mapped IO
section. Two signals are created, SELECT RAM and SELECT
MAPPED IO. These signals are both active low. The logic
used to create these signals can be seen below in Figure 19.

4) Mapped IO Port: The four mapped IO ports are iden-
tical. They resemble the other registers used in the computer,
the difference being they have an IO port instead of LEDs. The
output of the two 74HC573s connect directly to the IO port
and function as outputs. The inputs of the two 74HC541s are
pulled to ground through 4.7 kΩ resistor arrays. This ensures
that the pins do not float when a device is not plugged into
them, These function as the inputs to the computer. “Writing”
to this memory address causes the value to appear on the 16
output pins while “reading” from this address stores the value
of the 16 input pins. Because of this, information “stored”
in this address cannot be read from it. Each of the 2x20
pin connectors is wired to the input and output bits. Each

connector also has a power and ground pin as well as an
interrupt pin. This pin is pulled to ground through a 1 kΩ
resistor. The four interrupts from the four IO slots are ORed
together and this creates the INT IN signal used by board 5.
The schematic of the 0xFFFF IO slot can be seen below in
Figure 20, the other three are identical.

5) Mapped IO Port Control Signal Logic: Logic is required
to control the different write enables and read enables of the
different mapped IO slots. Coming into the board, there are
five signals which match the convent seen elsewhere in the
computer: MEM WE1# , MEM WE2# , MEM OE1# , MEM
OE2# , and FSM CE# . When the MAR holds an address value
that belongs to one of the IO slots, logic further decodes that
and the input signals to determine which mapped IO port is
being selected and whether to write to it or read from it. This
portion of the circuit can be seen in Figure 21. The MWE#
input is used to write all of the IO ports at once during a reset.

6) Memory SRAM and Supporting Circuitry: The SRAM
chips chosen are the AS6C1008s. They are 128k chips with
17 address pins. Two are used as each only stores one byte
(8 bits). Because the computer is only capable of addressing
16 bits, the highest order bit on each chip (A16) is grounded.
The IO pins of the chips are connected to the corresponding
bits on the data bus. The address bits of the two chips are
connected to each other (i.e. chip 1 A0 connected to chip 2
A0 etc.). These pairs are then attached directly to the MAR.
The same timing procedure with WE, OE, and CE described
in the description of board 2 is used here. On top of the regular
timing logic, some needed to be designed to block the signals
from the SRAM when the memory mapped IO ports are being
used. The SRAM chips and their supporting circuitry can be
seen in Figure 22.



Fig. 17. Full Schematic of the Memory and Mapped IO Board

D. Board 4

1) Arithmetic and Logic Unit (ALU): The ALU is the part
of the computer that does all of the arithmetic and logic
operations (hence the name “arithmetic and logic unit”). It
handles bitwise AND, NOT, OR, and XOR, as well as logical
NOT, logical shift right, addition, and subtraction. When one
or two parameters are loaded into the “Parameter 0” and
“Parameter 1” registers at the bottom of the board and the
opcode is sent to the ALU, it immediately calculates the
correct answer and, when its output is enabled, places it onto
the data bus. The schematic for the ALU in Figure 23.

We decided to make the ALU out of flash chips
(SST39SF010A) instead of with logic gates because it takes

up less physical space on the printed circuit board. It works
like a lookup table, with the address bits as the inputs and the
data bits as the outputs. We had to use three chips because we
needed enough address (input) bits for two 16-bit parameters
and a 4-bit opcode, and since each SST39SF010A chip only
has 17 address bits, we needed three chips to have enough.
Table IV shows which pins are used for what values on each
chip.

2) Instruction Register (IR): The instruction register stores,
in bitcode, the current instruction being executed by the
computer. Many things are taken from the instruction: the
four most significant bits of the instruction (bits 15-12) are
the opcode, bit 7 is the sub-opcode used for push and pop,



Fig. 18. Memory Address Register (MAR) Circuitry

Fig. 19. Logic Used to Create SELECT Outputs

and the four least significant bits (bits 3-0) are used as flags
to determine which comparison to make in the jump-compare
instruction. Additionally, bits 11-8, 7-4, and 3-0 are used as
addresses to the register file to determine which registers to
read and write from. Because these signals and values are so
important, the IR always outputs its stored value, that is, its
output enable is always active. The opcode, sub-opcode, and
flags go directly to the control signals board as inputs to the
finite state machine. The three groupings of four bits used for

register addressing go through a multiplexer to the register
file. The control signals outputs “sel1” and “sel0” are used
to determine which portion of the value stored in the IR is
used for the register file address: both low sends the first set
of four bits, 11-8 (labeled as “Ra” in the instruction set), sel0
high sends the second set, 7-4 (labeled as “Rb”), and sel1 high
sends the third set, 3-0 (labeled as “Ry”). Both sel0 and sel1
being high should never occur with our current control signals
design, but should this happen erroneously, or should the FSM



Fig. 20. Sample Memory Mapped IO Port

TABLE IV
PIN TO VALUE MAPPING FOR THE ALU. GND MEANS THE PIN IS CONNECTED TO GROUND, NC MEANS THE PIN IS NOT CONNECTED.

U1: Most significant U2: Middle U3: Least significant
Pins Value Pins Value Pins Value

A16-A13 Opcode A16-A13 Opcode A16-A13 Opcode
A12-A7 P0[15:10] A12-A9 P0[9:6] A12-A7 P0[5:0]
A6-A1 P1[15:10] A8-A5 P1[9:6] A6-A1 P1[5:0]

A0 Carry in A4-A2 N/A (GND) A0 Borrow in
A1 Borrow in
A0 Carry in

DQ7-DQ2 result[15:10] DQ7-DQ4 result[9:6] DQ7-DQ2 result[5:0]
DQ1 N/A (NC) DQ3-DQ2 N/A (NC) DQ1 N/A (NC)
DQ0 Borrow out DQ1 Borrow out DQ0 Carry out

DQ0 Carry out



Fig. 21. Mapped IO Port Control Signal Logic

be changed to allow this to occur, the value 0 will be sent as
the address. This multiplexer allows the correct register to be
read or written to at the proper time.

3) Compare Logic: The compare logic uses the value on
the bus as well as the flags from the IR to tell the control
signals FSM whether or not to jump from a jump-compare
instruction. It can do four different comparisons: bus == 0,
bus != 0, bus ¡ 0, and bus ¿ 0. It computes all four at once,
then selects which result (1 for true, 0 for false) to store in
the D-latch at the end using the flags. Then the signal from
the D-latch goes straight to the FSM. A simplified schematic
for the compare logic is in Figure 25.

4) 7-Segment Hex Displays: The two sets of 7-segment
displays on the board show what is in the instruction register
and on the data bus. In a similar way to the ALU, they use flash
chips (SST39SF020A) as lookup tables, this time to convert
the binary value on the data bus or in the IR to the signals
corresponding to the correct segments on each display. The
circuit also has a high-speed clock, a counter, and a decoder
to quickly cycle between the four digits. Only one digit is on
at a time, which lets us save on power and flash chips (since
we only have to send data to one digit at a time as well,
meaning we need fewer output pins), but because the clock
cycles between them so quickly, it is impossible for your eyes
to see the flickering, and it appears as though all four are on
at once. The schematic for the two displays is in figure ??.

E. Board 5
1) Overview: This board will be referred to as board 5. It

houses the stack and instruction RAM, the program counter
(PC), the stack pointer counter (CSP), the dip switches used
to set the interrupt handler location, the 40-pin programmer
interface, and interrupt handling logic. It receives it control
signals from board 2. The entire schematic can be seen in
Figure 26.

2) Program Counter: The PC is a 16-bit value that needs
to be able to be incremented, decremented, and loaded to. It
stores the current address of the instruction RAM. The ideal
chip to allow for this operation is the 74LS193 counter IC.
A more detailed description of its operation can be found in
the counter section of the description of board 2. Four of
them are connected using the borrow and carry outputs to
create a 16-bit counter that can be incremented, decremented
and loaded to. The four data inputs on each chip are wired
to their respective line on the data bus. The clear inputs of
all the 74LS193 are wired to an active high version of the
WE DELAY reset signal from board 2. The outputs of all the
counters are wired to the inputs of two 74HC541 8-bit buffers.
These serve to buffer the outputs of the counter chips so that
they do not need to drive the input addresses of the SRAM
chips and the LEDs directly. Because the SRAM chips used
to store the instructions need the value of PC constantly, these
two buffers are constantly enabled. In addition, there are two
more 74HC541s whose inputs connect to the buffered PC and



Fig. 22. Memory RAM and Supporting Circuitry

whose outputs connect directly to the data bus. This is to allow
the value of PC to be placed on the data bus. When pulling
increment low to increment the counter, the decrement input
needs to be held high and vice versa. Because of this, the
PC++ and PC—control signals are treated as active low WE
inputs. The control signals associated with the PC are PC++,
PC–, PC OE, and PC WE. These signals conform to the stand
outlined in the timing section of the board 2 description. Each
of these signals have to inputs (PC OE1# , PC OE2# , etc).
The only one that is slightly different is the PC WE2# , it is
different from all of the other WE2# as it is only high when the
sub-sub counter is 0b10, not 0b01 and 0b10. This is because

the 74LS193s had a weird output state when they were being
written to and nothing was on the bus. The PC and supporting
circuitry can be seen in Figure 27.

3) Stack Pointer Counter: The stack pointer counter is used
to store the current address of where the stack is pointing to.
Its output connects to the address of the stack SRAM chips and
nothing else. There is no need to jump to a specific location
inside the stack, so the CSP only needs to be able to decrement
and increment. Because of these requirements, it is exactly the
same as the PC except it does not have the second set of buffers
that connects it to the bus, and it does not have a WE input.
The CSP and associated circuitry can be seen in Figure 28.



Fig. 23. ALU schematic. A table of connections is provided below, as this schematic is difficult to read.

Fig. 24. A simplified schematic for the compare logic. The left side does the comparison, and the right side handles priority: flag3 has priority over flag2,
which has priority over 1, which has priority over 0. The D-latch is not pictured.



Fig. 25. The schematic for the hex displays. The circuitry at the bottom handles the digit cycling.

4) Program Counter and Stack Pointer Counter LED Dis-
plays: The 16 bits of the PC and 16 bits of the CSP are
displayed by LEDs on the PCB arranged in the same way as
the registers on board 1. The LEDs are grouped into 8s, each
group connecting to an 8-820 Ω resistor array. The common
pin of this array is connected to ground through a 2N3904
NPN transistor to turn on and off the LEDs. All of these are
linked to the main LED control switch on the control panel.
This portion of the circuit can be seen in Figure 29.

5) Dip-switches for Interrupt Jump Location: The com-
puter used the address stored in a set of dip-switches to
determine where to jump to when an interrupt occurs. This
is accomplished by connecting on side of the dip-switches to
5 volts and pulling the other side of each one down with a 4.7
kΩ (two 8-resistor arrays were used for 16 dip-switches). The
outputs of the switches are buffered by two 74HC541. Their

OE connect to DIP OE1# and DIP OE2# . The outputs of the
buffers connect to the bus. This circuit can be seen in Figure
30.

6) Instruction SRAM: The SRAM chips used for the in-
struction and stack RAM in the computer are the AS6C1008s.
The timing signals they require are discussed in the section
on board 2. The computer technically does not need to have
write access to the instruction RAM, the program is written
by an external programmer and the computer simply reads it
during operation. Write inputs to the instruction were added
and the mistake was not realized until the PCB was designed.
This was not a fatal error as these inputs were simply pulled
high and not used. They still appear in the schematic. Two
AS6C1008s had to be used as each only has 8 bits of storage
per location. The IO pins on both chips connect directly to
the data bus. 16 bits allows for the addressing of 64k memory.



Fig. 26. Full Schematic of the Stack and Instruction RAM Board (Board 5)

Only 32k and 128k versions of the chip were able to be found.
The 128k version was selected and MSB of the address for
both are connected to a switch on the control panel. This
allows the user to store two programs in the computer at once
and switch between them with the program switch. The PC
does not connect directly to the address pins of the SRAM.
It connects through a 1:2, 16-bit multiplexer that switches
between the PC and pins of the 2x20 female header on the
board. This multiplexer is made using four 74HC541 buffers
and some logic gates. There is a bit wired to the connector
that changes control of the address pins between the PC and
the programmer. The 2x20 female header also has 16 pins
connected to the data bus. When the programmer is plugged
in and it sets the WRITE PROGRAM bit high, it has control
of the address pins of the SRAM as well as its WE and
CE inputs. It then sequentially writes instructions by putting
the instructions on the bus and incrementing the address bits.
There are protections against conflicts where two devices are
fighting for control of the bus. The WRITE PROGRAM input
will only allow the programmer access if the PC is 0x0000
and the sub-sub-counter is 0b00. This ensures that there is
nothing on the bus. The circuitry behind of this can be seen
in Figure 31.

7) Stack SRAM: The stack SRAM uses two of the
AS6C1008 chips in the same arrangement as the instruction
SRAM. Its circuitry is less complicated due to the fact that
the CSP is the only thing connected to the address pins of the
SRAM. The only supporting circuitry the stack SRAM needs
are the logic gates to handle the multiple output and write
enables and the logic to generate the local chip enable signal.
The stack SRAM circuitry can be seen in Figure 32.

8) Interrupt Handling: The creation of the initial interrupt
signal occurs on board 3. The interrupt inputs from the four
IO slots are ORed together, this is the INT IN signal on
board 5. The interrupt switch on the control panel disrupts
this connection from board 3 to board 5 to enable or disable
interrupts. To handle the interrupt correctly, the circuit needs
to latch the incoming pulse long enough for board 2 to detect
it. It also has to save the current value of CSP and disable
any further interrupts until CSP returns to the value saved.
Basically, it needs to disable interrupts from occurring until
the current interrupt has been dealt with. The program will
exit the function is pushed into the stack and it will return to
its value before the interrupt was triggered. The SR latch that
holds the initial triggering of the interrupt is called the primary
interrupt latch. This primary latch will reset when the FSM
sees the interrupt. The primary latch triggers a secondary latch



Fig. 27. Program Counter and Associated Circuitry

that stays latched until the computer is done dealing with the
interrupt function. This second latch blocks the first latch from
triggering again. To determine when the CSP has returned to
the starting value, two 74HC573s are used. When there is not
interrupt, they pass the CSP from the inputs to the outputs.
The secondary latch latches the value of CSP on the inputs
when an interrupt is triggered. This stored value is compared
to the current value of CSP using logic and when there is
a match, this resets the secondary latch. There is a delay in
this comparison being able to reset the secondary latch as it
would constantly reset itself before the computer jumps to the
interrupt location. This is accomplished with logic before the
reset input of the SR latch. The primary and secondary SR
latches are also reset by the main computer reset signal. The
SR latches used in this circuit are composed of NAND gates.
The description of board 2 dives into these in more detail.
This portion of the circuit can be seen in Figure 33.

The comparison of the stack and the saved stack location
is done using XOR and OR gates. The SAME signal is
blocked from reseting the secondary latch until the primary
latch has been reset and the SETSUB signal is high. Once
the SETSUB signal is high and the primary latch has been
reset, the computer has already advanced PC to the interrupt
function and incremented CSP.

F. Board 6

1) Overview: The entire Romulus I computer is powered by
5 volts. The maximum current draw is around 4 amps. A large
linear power supply with protection was designed to power the
computer. The power supply PCB was designed to be able to
handle 8 amps as a precaution. The entire Schematic of the
Power Supply Board can be seen in Figure 34. This board will
be referred to as board 6 in other sections.

2) Power Regulation Design: A 24 VAC transformer with
a current capacity of 4 amps was sourced and selected to step
down the mains 120 VAC to a level that could be rectified.
This transformer is center tapped with two 24 VAC windings.
This means that two diodes can be used to rectify instead of
a full-bridge rectifier. The diode used were the 6A05 which
can handle a current flow of 6 amps. The rectified voltage is
then smoothed out with 10000 uF of capacitance. A small 4.7
kΩ bleeder resistor was added to dissipate the capacitors in an
absence of load. The rectified, unregulated voltage is referred
to as “VCC” in the schematic. A simplified schematic of this
section can be seen in Figure 35.

The rectified VCC is then used to create three different
supplies, a 5 volt rail used to power the SR latch (SUB 5V+), a
12 volt rail used to power the op amp and comparator (+12V)
and the main 5 volt rail used to power the computer (+5V).



Fig. 28. CSP and Associated Circuitry

To create SUB 5V+, a 7805 linear voltage regulator was used
to drop VCC down to 5 volts. This rail is not anticipated to
have a large current draw but a small heat sink is attached to
the regulator anyway for added protection. A 0.1 uF ceramic
capacitor and a 10 uF electrolytic capacitor were connected to
the input and output rails respectively. These protect against
AC voltage present on the lines. The +12V supply is identical
except for the replacement of the 7805 with a 7812. The main
+5V supply had to be designed slightly differently because the
7805 can only supply a maximum current of 1 amp. To solve
this problem, high-power 5 Ω resistor is placed between VCC
and the input pin of the register. A 2N5684 (50 Amp PNP
transistor) is then connected as follows: emitter to VCC, base
to junction of 5 Ω resistor and voltage regulator and collector
to output of voltage regulator. The circuit behaves like this,
under low current draw, there is a low voltage drop across the
resistor and the regulator provides most of the current. When a
large current is drawn, the voltage across the resistor increases,
pulling the base voltage of the 2N5684 lower causing it to
conduct and supply the needed current to the output. These
three supplies can be seen in Figure 36.

3) Over Current and Over Voltage Protection: Over voltage
and over current protection are implemented to protect the

computer. The over-voltage projection disconnections the +5V
rail from the output if the +5V rail exceeds 6.2 volts. To do
this, an LM339 compares the +5V rail to a 6.2 reference
voltage created with a 6.2 volt Zener diode and a 4.7 kΩ
resistor connection in series on the +12V rail. The comparator
pulls in the output low if the over-voltage condition is reached.
To detect an over-current condition, three 0.1 Ω resistors were
connected in parallel and then in series with the +5V rail and
the output to the computer. As current is draw from the supply,
a small voltage drop is created across these resistors. This drop
is then amplified with a differential amplifier with a gain of
6.8. This signal is then put through an RC low pass filter with
a cutoff frequency of 3.39 Hz to remove noise amplified from
the supply line. This signal is then compared to a reference
voltage set using a 10 kΩ potentiometer mounted to the board.
The output of the LM339 is pulled low if the over-current
condition is met. The outputs of the LM339 are open collector
meaning that they require a pull up resistor but also that they
can be connected together to create an active low OR. This
is done with the over-current and over-voltage to produce one
active low output that indicates a fault has been reached. This
combined output is pulled to +5V with a 4.7 kΩ resistor. This
sets an SR latch built using NAND gates. The latch is reset



Fig. 29. PC and CSP LED Display Circuitry

by an RC network when the power supply is turned on. An
LED turns on when a fault is detected and a relay is turned
on with a 2N3904 to connect +5V to the output when no fault
is detected. This way, if a fault is detected, the power supply
has to be turned off and back on again to reset itself. The
schematic of the protection circuitry described can be seen in
Figure 37.

VII. TEST PLAN

While our test plan was perhaps not as rigorous as it could
have (or should have) been, it worked for our purposes. First,
we tested the register file board (board 1) on its own. [[[Add
Big Man testing process here]]]

After this, we decided it would be easiest to just put the
computer together and troubleshoot each board as issues came
up. The primary reason for this decision was that, if we wanted
to test any other board individually, we would have to have
used the Arduino Mega to simulate a data bus, something that
we felt was unnecessary. We felt safe with this course of action
because we were very confident in our designs, as we had
checked them all several times between several people, and
because each board was fairly independent, so if something
went wrong on one, it would be easy to pinpoint where the
issue was. These assumptions turned out to be true.

Our overall approach was to write small test programs of
only a few instructions to test each opcode individually. We
first tested to make sure we could write programs successfully.

We ran into two issues here. The first was that this display
for the instruction register had been wired incorrectly, so it
was not displaying the value that had been stored. This we
fixed in software by changing the data on the flash chips for
the 7-segment displays. The second was that bits 4 and 5 of
the instruction were always being set to 1. After some more
testing, we found that this was an issue with the Arduino Mega
we were using to write to instruction memory. We turned off
serial communication to the laptop on the Mega (since that
uses pins 4 and 5), which fixed the issue.

After those tests were completed, we moved on to test-
ing individual instructions. We first tested register-to-register
movement and immediate-to-register movement. We had to
fix a small software issue where the PC was not incrementing
twice during the load immediate instruction, but it otherwise
went smoothly.

We then checked all of the ALU operations: bitwise AND,
NOT, OR, and XOR, logical shift right and logical not, add,
and subtract. The only issues with these were (1) a faulty latch
on one of the parameter registers, and (2) a software fault in
the ALU flash chip data, both of which were simple fixes: we
replaced the latch and spent some time debugging the incorrect
ALU.

At this point, we also tested register-to-memory movement,
and memory-to-register movement, both of which worked just
fine. During our testing, however, we uncovered a wiring issue
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with the program counter (since this was the first time we
wrote a program longer than 16 instructions, and the issue
was on bits 4-7) that we fixed with a few extra wires.

The last four operations we ha to test were push, pop,
unconditional jump, and conditional jump. There were once
again two issues here. The first problem was that we had
forgotten to put a latch on the output of the compare logic,
so we added a daughter board with a few chips to create a
latch matching the others on the board, with three write-enable
signals: one active-low master write NANDed with two ORed
active-low write signals, one from the control signals FSM
and one from the sub-sub-clock (used for timing signals to
prevent race conditions). The second problem was an FSM
design issue: on the ”push PC” instruction, we should ave
been pushing PC+2, not the PC+1 that we were pushing. This
was easily fixed in software by changing the data on the FSM
flash chip.

Finally, we tested the peripheral slots. We created a little
makeshift input/output peripheral to test each slot. These tests
revealed many small issues, most of which were not recorded
because we were iterating so fast. After several hours of
debugging, designing, testing, and iterating, we were able to
get the peripheral slots working.

Our very last step was to run a comprehensive test program.
It tested every instruction and stored a value in the last register

to indicate which instructions had worked and which hadn’t.
We had run the program throughout the testing process on
several occasions, but up until this point, it had not worked
properly. After fixing all of the bugs, however, the test program
worked perfectly on every clock speed setting.

VIII. PHYSICAL CONSTRAINTS

A. Design and Manufacturing Constraints

Because the project is intended for the educational market,
there were not many physical restraints placed on the project.
Size was not important as this is not meant to be a pocket
sized device. It just needs to be small enough for one person
to reasonably carry it which it is. There were also no restraints
on power consumption. This device did not need to be low
power as it is not portable and does not need a battery. There
were no CPU limitations as we designed the CPU ourselves so
we could do whatever we needed. For instance, we chose for
the stack RAM to be separate from the data RAM. This gives
the advantage of having 64k stack locations and the user not
being able over-right the stack by accident. This is usually
not a commercially available feature in CPUs but we could
implement it because we designed the CPU itself.

One limitation was PCB size. We ordered our PCBs from
JLCPCB and their maximum size they will manufacture is
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15x19 inches. Our 6 PCBs exceed that in total area, necessi-
tating the circuit to be split among multiple PCBs

Part availability did constrain the project slightly. There
are a lot of 74XX series chips that would have suited our
circuits well that have unfortunately been discontinued. These
parts are simply obsolete today. We were only able to use
the 74LS154 decoder because Wolfgang Ploch had some in
his possession, they have been discontinued on all major
electronic part websites. Another part that was hard to find
was 64k SRAM chips, only 32k and 128k chips could be
found. This was used as a positive with the instruction RAM.
The extra memory space was leveraged to allow the computer
to store two programs simultaneously.

The time frame also constrained the project. While the
computer itself functions perfectly as intended, we ran out
of time to explore the peripherals we wanted to. For instance,
there was no time to design a driver for the 64x64 RGB LED
matrix intended to be used. The computer can function well
with the Ploch Teletype peripheral, it acts as a terminal.

B. Tools Used in the Project

1) Visual Studio 2022: Visual studio 2022 was used to write
the C programs associated with the computer. The simulator,
assembler, and compiler were written in C using VS. Programs
to generate the hex files needed to program the flash chips for
the hexidecimal displays, finite state machine, and arithmetic
and logic unit were also written in C using VS.

2) Digital: This software allows uses to drag and drop logic
circuit components and create circuits. These circuits can then
be texted with specific test cases or in an interactive mode.
This software was used to validate parts of the circuits that
were complex and in need of verification before manufacture
(finite state machines, counter, etc.).

3) Multisim: Multisim was used briefly in the design of the
power supply to verify the function of the differential amplifier
and a filter used in the circuit.

4) Arduino IDE and Arduino Mega: The Arduino Mega
was used to program the flash chips that contain the encoding
for the hexidecimal displays, the ALU and the FSM. This
micro-controller was chosen as it had the required amount of
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digital pins to properly control the flash chips. It was also used
in addition to a custom made shield in order to program the
computer itself. Programs are uploaded to a micro-SD card
and then the serial monitor of the Arduino IDE is used to
transfer those programs to the computer via a 40-pin parallel
cable. The Arduino Mega controls the data bus and address
pins of the SRAM chip directly. This requires 35 digital pins
which is again why the Arduino Mega was chosen for this
task.

5) Notepad: The assembly or machine programs for the
computer are written in a text editor (Notepad in this case).
The machine code is directly uploaded to the computer while
the assembly files are compiled to the bit code using an
executable file and then uploaded to the computer.

6) Physical Tools: Tools used during the construction of
the device included, soldering iron, de-soldering iron, electric
drill, bandsaw, jigsaw, and a Dremel tool.

C. Cost Constraints

Extra funding from the ECE department was received early
in the design process prompting cost not to be an issue. There
was no opulent spending although money wasn’t paid much
attention to. Some factors in the price come from the scaling of
the device. Purchasing boards and components for the project
would be much cheaper as more units are produced in during
a run.
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D. Producing a Production Version

To produce a production version, a supplier for the trans-
former used in the power supply as well as the current meter
would need to be found. These parts were found for free to use
for the project. The power supply in general would probably
be changed to a commercial supply due to the cost of the
parts involved and the inefficiency of the current design. A
simpler method would need to be established for connecting
the boards together. the current method involves a lot of labor
and could not be streamlined. The size of the device would
also need to be reduced as it is pretty unwieldy in the current
state.

IX. SOCIETAL IMPACT

Our project could have impacts on a few different areas of
society. The first impact, and the one we mainly intend, is on
the academic field. Our hope is that this project will be used
to teach college students how computers work in an physical,
visual, easy-to-understand way. We hope that this, in turn, will
help create better electrical and computer engineers who make
more effective designs in their fields of work.

It is also possible that is has a small impact on the
environment– if it ever becomes a mass-produced product
(which we do not have plans for at the moment, but will not

rule out), the computer does draw a considerable amount of
current, which consumes more power and, if enough devices
were to be sold, could have an impact on the environment.
We find this outcome incredibly unlikely, however, and while
we have not done any rigorous calculation, we believe that
the environmental impact of a large collection of Romulus
Is would be negligible compared to most major sources of
pollution.

X. EXTERNAL STANDARDS

External Standards

XI. INTELLECTUAL PROPERTY ISSUES

We believe that Romulus I is patentable. We looked at a
few patents potentially similar to our project to get a sense of
what inventions were in the space already.

The first patent we looked at was the Kenbak-1 personal
computer. It was created as a teaching tool, designed to help
students learn how to write simple programs [4]. The patent
has only one independent claim describing the specifications
of the device, and no dependent claims [5].

While this sounds similar to our own product, ours is
significantly different in a number of ways. First, the Kenbak-
1 is not at all transparent– it’s just a box with some buttons
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Fig. 35. Transformer and Rectifier Portion of Power Supply Schematic

Fig. 36. Voltage Regulator Portion of the Power Supply Schematic

and a few lights. Romulus I has displays and lights for many
different parts, making it more transparent. Our device also
has multiple clock speeds and the manual step option, neither
of which were in the Kenbak-1. It is also generally more
powerful, with a higher maximum clock speed and instructions
per second, more registers, more storage space, and more

operations [4].
The second patent we looked at was the Apple I computer

by Steve Wozniak. This was another, slightly more recent
personal computer with support for a screen and keyboard
[6]. The patent has two independent claims, both of which
focus on the technology used to connect to a video display,
and six dependent claims, which discuss individual parts of
the independent claims [7].

Our product is once again different for many of the same
reasons. Although the Apple 1 is just a breadboard with chips
on it, so the user can see the entire circuit laid out, it is not
designed for readability and education, like ours is. It also
again lacks the adjustable clock speed and manual step option
[6].

The last patent we looked at was a digital logic simulator
by Yifatch Tzori. There are four independent claims: One that
discusses the overall system, one that focusses on the hardware
with the logic chips in it, one involving specific algorithm
the software uses, and one that describes another, faster-
performing system. The 36 dependent claims again discuss
smaller systems contained within the full product [8].

This product is also significantly different from ours. It
cannot run actual programs, as it is a logic simulator, and
it is not specifically designed for education, like ours is.

XII. TIMELINE

Timeline
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XIII. COSTS

This project required the use of many different components.
It also utilized parts that are not available anymore and parts
that were received from surplus locations for free. A detailed
spreadsheet of the part, source, quantity, cost per 1, 10, 25,
50, 100, 1000, 2500, 5000, 10000, and 25000 can be found in
the Appendix. Parts that have an asterisk (*) were received for
free and the costs are an estimate. Parts that are marked with
a double asterisk (**) are slightly different models compatible
models than the ones used in the project as some part were
obsolete or could not be located. The 6 boards are also
included in the spread sheet. The costs in the sheet neglect
the shipping costs of the items. The cost to manufacture one
device (Including shipping) was roughly $ 1000 excluding the
previously mentioned parts received for free. The estimated
costs for manufacturing 100 and 10000 units neglect the price
of shipping.

The manufacturing of the boards would not be able to be
streamlined using a pick and place machine and reflow oven as
all of the components on the boards are through hole devices
and those tools only work for SMD components.

XIV. FINAL RESULT

Final Result

XV. ENGINEERING INSIGHT

Engineering Insight

XVI. FUTURE WORK

Future work
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TABLE V
COMPONENT, SOURCE, COST PER 1, COST PER 100, COST PER 10000

Part Source Quantity Cost
per 1

(USD)

Cost
per 10
(USD)

Cost
per 25
(USD)

Cost
per 50
(USD)

Cost
per
100

(USD)

Cost
per
500

(USD)

Cost
per

1,000
(USD)

Cost
per

2,500
(USD)

Cost
per

5,000
(USD)

Cost
per

10,000
(USD)

Cost
per

25,000
(USD)

Board
1 PCB

JLCPCB 1 27.48 NA NA NA 12.55 NA NA NA NA 10.84 NA

Board
2 PCB

JLCPCB 1 8.04 NA NA NA 2.31 NA NA NA NA 1.80 NA

Board
3 PCB

JLCPCB 1 8.38 NA NA NA 2.38 NA NA NA NA 1.87 NA

Board
4 PCB

JLCPCB 1 11.60 NA NA NA 5.15 NA NA NA NA 4.29 NA

Board
5 PCB

JLCPCB 1 10.56 NA NA NA 4.13 NA NA NA NA 3.38 NA

Board
1 PCB

JLCPCB 1 2.10 NA NA NA 0.79 NA NA NA NA 0.55 NA


