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Abstract

Binding interactions to proteins are important to consider in design of small

molecules as putative drugs. We present a method for computationally gener-

ating and grouping sets of representative bounds structures of ligands and apply

it to a model protein, T4-lysozyme L99A. Expanded ensemble simulations using

explicitly solvated structures provides increased accuracy relative to continuum

solvent representation while taking advantage of the enhanced sampling due to

alchemical modification of the ligand. Enhanced sampling reduces the time needed

for the ligand to experience many transition events and therefore sample most

physically accessible locations around the protein. Alchemical modification fur-

ther allows us to estimate binding free energies without significantly increasing

simulation run times. We study four ligands with a range of known experimental

binding affinities to identify alternative binding locations, even those of low ligand

affinity. We present binding free energies to each location and to the protein overall

using the multistate Bennett acceptance ratio method to estimate free energy dif-

ferences between alchemical states. We find that contrary to expectations implicit

solvent results were better able to estimate binding free energies for benzene both

to the protein overall and to the experimental binding location. Explicit solvent

simulations predict free energies that are not within error of the experimental mea-

surements for benzene and phenol. Identified binding locations do not consistently
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match between implicit and explicit methods. Several issues identified during the

simulations likely contributed to the disagreement, and we explain some ways that

these issues can be addressed.
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Introduction and Background

This study combines multiple computational methods to explore alternative binding

locations of ligands to proteins. We start by explaining the concept of alternative

binding locations, and how they can be helpful to modern drug development. We

then review some of the key concepts that make the study practical, such as how

alchemical modification 1) allows simulation to generate useful samples faster, and

2) provides a thermodynamic path by which we estimate binding free energies. The

Methods portion (see Chapter 3) then explains some of the modifications we have

made to collect meaningful results, as well as the complications we have identified.

The Results portion (Chapter 4) then presents the data we collect for the test system

T4-lysozyme with four model ligands.

1.1 Binding Locations

A binding location includes more than just one configuration of a ligand bound

to a receptor molecule. Binding locations are regions of space within or next to a

receptor to which the ligand binds. The overall free energy of the ligand-protein

system is decreased when the ligand moves into these locations. Binding locations

are often shown in literature with just a static image of a receptor and a molecule

within the location. However, binding locations are more accurately represented by



an ensemble of possible configurations that fully describe a molecule’s ability to

move around its mean position and reconfigure intramolecular degrees of freedom.

Specific and non-specific binding both affect the efficacy of a drug. Efficacy is

the ability of a drug to perform its designed function. Specific binding is the series

of interactions between a drug and its intended biological target, for example a site

on a ion-channel membrane controlling the release of calcium. In this example, the

drug may bind to an active site to release calcium, or it may bind to an allosteric site

which then allows another molecule to bind and cause the release. The drug may

also be an antagonist, where it binds to the receptor which prevents the binding

of another molecule which would cause calcium to release. Non-specific binding

is any association of the ligand to anything other than the specific binding site(s)

[1]. This includes other areas of the same receptor molecule and locations on other

molecules in the body.

Human serum albumin (HSA) is one example of a protein to which non-specific

binding has a significant role in efficacy for several drugs, including warfarin [2] and

diazepam [3]. Warfarin has a specific role as a vitamin-K antagonist anticoagulant,

disrupting the natural cascade of protein formation that leads to blood coagulation

[4]. Diazepam is a benzodiazapine, which is a class of drugs that are allosteric

binders of GABAA receptors [5]. HSA typically binds fatty acids to deliver them

throughout the body despite the aqueous environment [6]. HSA has multiple

binding locations; Fasano et al. [7] show the seven different fatty acid binding

locations within the protein, three of which are known to bind drug molecules. HSA

acts as a non-specific target that helps transport these drugs through the body, but

also keeps the drugs occupied limiting how much drug is available to bind. Drug

design is most efficient when both binding to the specific target and to important

non-specific proteins such as HSA is considered. Binding to non-specific transport
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proteins must be tight enough to provide the benefits of transport, but not too tight

to prevent the drug reaching its specific target.

1.2 Alternative Binding Locations

Alternative binding locations are “alternative” to main binding locations and may

have any binding affinity, though typically small. Main binding locations are the

several locations that have the highest probability of being occupied by the ligand

and therefore identified by experiment. While more sensitive experiments can

identify more binding locations, we are interested in addressing all possible binding

locations. The ligand may specifically bind to a region due to the ligand structure

and how well that fits into the shape of the residues of the protein. It may also

associate with the protein for a number of reasons, including favorable charged

interactions and the hydrophobic effect. In either case, the arrangement of residues

creates the environment in which the ligand and solvent interact. As long as there

is a larger total increase in entropy and/or favorable enthalpic interactions for the

ligand interacting with protein rather than with the solvent, binding will occur.

The larger a protein, the higher the potential to have multiple binding locations.

The collection of all possible configurations from all binding locations is the ligand

binding ensemble.

Experimental methods are not always able to capture details of alternative

binding locations. Palmer and Niwa [8] discuss several methods for determining

ligand interactions with protein by x-ray crystallography. Crystallography requires

growing a crystal of protein which is either already bound to ligand or is subse-

quently soaked in a ligand solution. The crystal is bombarded by x-rays, which

scatter off of the electrons of the atoms in the crystal to create a two-dimensional
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diffraction pattern that provides high-resolution, though not complete, structural

information about the arrangement of atoms in the protein-ligand complex. Subse-

quent refinement of the diffraction pattern using a model leads to assignment of

structural attributes such as where the ligand molecules are located within the pro-

tein crystal lattice. Wielens et al. [9] explain some of the difficulties in performing

crystallography, including inability to form a crystal under biological conditions.

Further, we note that refinement typically assumes residues and the ligand molecule

have only one or two locations in the structure. It is generally accepted that there

is a threshold occupancy for ligands bound to the crystal, at approximately 20%

occupancy. Above this threshold, the ligand crystal density is often possible to

distinguish from the noise of the experiment, which is a consequence of the ligand

having the same location within many of the proteins in the crystal. Below this

threshold, however, the ligand is effectively invisible, and is a consequence of the

ligand only binding to a certain fraction of proteins in the crystal. Additionally,

there may be binding locations in solution that are not accessible in crystals because

of the packing of proteins in the crystals. This implies that alternative binding

locations may not be observed under a range of experimental conditions, especially

for binding locations to which the ligand has low affinity. We refer to any location

that can be well identified by crystallography as an experimental binding location.

Measurement of the free energy captures the effect of alternative binding loca-

tions, but can give misleading information if the energy is attributed to only a few

locations. Isothermal titration calorimetry (ITC) is one method commonly used to

determine the free energy of binding to a protein. Binding free energies express the

affinity of a ligand to a receptor; more negative free energies indicate a more tightly

bound ligand. Freire et al. [10] explain the fundamentals of isothermal titration

calorimetry (ITC). Careful measurement of the heat released when either a solution
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of receptor or ligand is titrated by the other can provide both the enthalpic and en-

tropic contributions to free energy. Mobley et al. [11] used both crystallography and

ITC together to identify a binding location and its free energy. However, Freire et al.

[10] note that the number of binding sites should be known when analyzing ITC

data, because interpreting a signal that comes from multiple binding sites as from a

single binding site will give incorrect results. Each site on the protein contributes

to the free energy. The concept of alternative binding locations complicates the

calculation as these sites are not necessarily independent: when a ligand is bound,

this may prevent another ligand from binding to the same protein. ITC therefore

provides an overall binding free energy, the free energy of binding to the protein

over all sites together.

1.3 Virtual Drug Design

Detailed structural data extracted from orientations of a ligand in alternative

binding locations enables better drug design. Anderson [12] outlines the general

process of structure-based drug design (SBDD). SBDD is the process of building a

drug that has a structure similar to molecules that bind the target receptor. A key

step in this process is modifying a lead molecule to produce a binder with better

properties. A similar approach is that of fragment-based lead discovery (FBLD),

which is a motivating technique behind the experiments performed by Wielens et al.

[9]. FBLD is the study of fragment molecules to identify which chemical moieties

have affinity to which portions of a receptor molecule. These fragments are just

small molecules, usually less than < 300 Da [13], and are typically portions of larger

molecules known to bind to the receptor. The fragments can be combined to build

drug lead molecules. Blundell et al. [14] discuss a crystallographic approach to
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high-throughput screening, and they mention that there is interest in studying

low-affinity compounds as they may lead to the discovery of new binding modes.

High-throughput screening (HTS) is the process of identifying the most viable

candidates within a library of compounds. Both SBDD and FBLD build upon

the idea of structure-activity relationships, that common structures will interact

similarly with a receptor, and that the interaction is usually a direct result of the

structural features such as functional groups. Bohacek and McMartin [15] discuss

a framework for identification and display of important binding contacts once

binding orientations are generated.

Experiment can only study drugs that have been created and are available

in sufficient quantity. Researchers can instead study ligands that have yet to be

synthesized using computational study. Ligands/fragments are typically based

on existing drugs or binders which have been studied by experiment and for

which the structures are well known. A computational study can explore the

novel combinations of fragments to evaluate if each combination yields the desired

binding activity. This means that synthetic methods only need to be developed for

the most promising novel ligands, which saves time and material expense. Wang

et al. [16] conclude that computation holds a key role within the experimental

process, noting that virtual methods cannot replace scientific intuition, but also

explaining how computation can reduce the risk associated with the creation of a

new molecule.

This thesis develops and tests a computational approach that provides structural

information of a ligand and receptor. Knowing which interactions are present and

how strong are those interactions is useful to a variety of methods for drug design,

from evaluating existing molecules to building new leads. We retain atom-level

detail of the binding systems so that functional groups on the ligand could be
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associated with residues of the protein. Our method allows the ligand to explore the

entire protein, in an attempt to find each alternative binding location, even those

with low affinity for the ligand. We estimate the binding free energy to each of the

binding locations as well as to the protein overall.

Two types of binding free energies of interest here are the absolute and relative

free energies. An absolute binding free energy connects two physical ligand phases.

It is the free energy difference of moving a ligand from the solvated (aqueous)

phase to the bound (complexed) phase. Other reference phases could be used since

free energy is a state function, notably the vacuum (low-density vapor) phase, but

solvent is used as it is the most physically relevant reference. A relative binding

free energy uses the absolute binding free energy of another ligand as a reference.

Mathematically, a relative binding energy is equal to the difference in absolute

binding free energies of two ligands, or

∆∆Gtarget = ∆Gtarget −∆Gref (1.1)

where ∆Gtarget and ∆Gref are the absolute binding free energies of the target and

the reference ligand, respectively. Unless otherwise noted, all free energies reported

in this study are absolute binding free energies.

Docking is a computational approach which matches the geometry and electro-

statics of the ligand to the receptor, and is commonly used to quickly approximate

which ligands in a set will bind to a receptor most tightly. Meng et al. [17] review

the different methods currently in use to place the ligand within the protein, in-

cluding fragment growth and Monte Carlo moves. The method will generate a set

of ligand orientations relative to the receptor. These orientations are then ranked by

a scoring function that estimates which structures have the most favorable binding
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interactions. Warren et al. [18] have noted that docking can identify orientations

similar to crystallographic results.

Docking is not the best choice for the study of thermodynamically consistent

ligand ensembles. Warren et al. [18] conclude that binding affinity predictions made

by docking are not reliable in lead optimization. Lead optimization is the process of

reducing a large set of interesting molecules down to a list of those most likely to

have the desired binding affinity for the intended application. Totrov and Abagyan

[19] explain how flexibility of the ligand and partial flexibility of the protein have

been added to docking to improve performance, however, Blundell et al. [14] note

that increased flexibility in docking can lead to worse predictions. Some scoring

functions can consider entropy [17], but it is difficult without Monte Carlo (MC) or

Molecular Dynamics (MD) methods to evaluate if orientations belong to a physical

ensemble of bound structures. Generally, docking works best when binding activity

is known a priori, and this information is incorporated into the docking algorithm

[14, 18]. Docking still has a large speed advantage, able to analyze ligand sets in a

matter of minutes [14], but its niche appears to be in generating initial structures

for further study, as Mobley et al. [11] have done.

1.4 Molecular Dynamics and Binding Ensembles

Molecular dynamics captures the essential ligand motions to sample the correct

ensemble of binding structures. MD simulates the physics of atomic motion by

imposing a series of bonded and non-bonded interactions, the force-field, on each

atom and moving them by integrating the equations of motion. The force-field

parameters are chosen to so that the movement of atoms approximates the results

of quantum mechanics. These simulations produce a series of configurations of the
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system, collectively called the trajectory. Each recorded configuration is a frame of

the trajectory. During the molecular dynamics process, the ligand moves around

the protein as it would in experimental solution, up to the accuracy of the force-

field applied to the system. Frames from the trajectory are samples of the ligand’s

ensemble of configurations. Sampling, then, is the extent to which the samples of

the trajectory represent the true ensemble. As long as the system is maintained

at equilibrium, statistical mechanics can be used to describe the properties of the

system.

Enhancements in computational speed, both by algorithm and by processing

power, are welcome advancements towards virtual drug design. Ligand on- and off-

rates for binding to a protein may be on time scales that require prohibitively long

simulations to observe. Binding can occur on the order of milliseconds, while most

simulations, even those performed on supercomputers, last less than a microsecond.

We want to observe more on- and off-events during simulations. Each on-event is

like a statistical sample of where the ligand will spend its time around the protein;

many on-events must be observed to have confidence in how often each location is

visited relative to the others. The next section explains how molecular dynamics can

be used to gather more configurationally diverse members of a binding ensemble

without increasing simulation run time.

1.5 Reducing Computational Effort with “Alchemistry”

Simulations that can change thermodynamic state as well as configuration can

reduce the characteristic time scale for binding on- and off-events. These simulations

periodically change state as a Monte Carlo move. Tempering is the process of

moving between thermal equilibrium ensembles during a single simulation by
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changing the parameters under which the atoms interact. Lyubartsev et al. [20]

present the equations for tempering, which ensure that the correct Boltzmann

distribution is observed in each state. An increase in the temperature of the system

encourages greater mean molecular speeds, which allows the simulation to capture

rearrangement that would normally take far longer at the original temperature.

The system can then cool down to sample at the desired temperature in this new

arrangement. A change of state can also involve a non-thermal change in the

Hamiltonian description of the system. Wang et al. [16] changed the Hamiltonian

for a subset of the atoms in the system to increase the rates of ligand binding and

unbinding in a study that was largely successful at predicting relative binding free

energies. There are many modifications that can be made to a Hamiltonian. In this

paper, we modify the non-bonded terms of the ligand molecule for the process of

ligand binding.

Decreased interactions between the ligand and the environment increase how

quickly the ligand can move during simulation. The protein residues and backbone

present barriers to ligand movement, due to collision between molecules. Additional

attraction due to favorable binding interactions also act to slow ligand diffusion by

definition; the binding location is a site to which the ligand adsorbs. The binding

locations are regions in which the ligand will have lower mean displacement due

to the energetic barriers presented by the protein. The ligand can even become

kinetically trapped, unable to leave during the span of a simulation. We observed

1-methylpyrrole oscillating for five nanoseconds within the buried binding location

of lysozyme in our own preliminary simulation. We lower these energetic barriers

directly by artificially scaling interaction terms within the force-field, specifically

the Coulombic and Lennard-Jones terms. The ligand will fly without collision

through the simulation space when these terms are scaled to zero.
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Each set of interaction parameters defines a unique Hamiltonian. Interaction

parameters, typically denoted as λ, control the level of interaction within simu-

lation. We use interaction parameters to scale the Coulombic and Lennard-Jones

terms, such that λ = 0 removes the interaction entirely. This modifies the ligand-

environment interaction potential Uinter part of the Hamiltonian to be

Uinter =Uc(r,λc) +ULJ (r,λv)

= λc
q1q2

4πε0εrr
+ 4ελv

((1−λv)2

2
+
( r
σ

)6
)−2

−
(

(1−λv)2

2
+
( r
σ

)6
)−1 (1.2)

where λc and λv are Coulombic and van der Waals parameters respectively. Vari-

ables q1 and q2 are atom charges, r is the distance between the two atoms, and ε0εr is

the dielectric constant. The variables ε and σ are Lennard-Jones parameters, and the

form of the Lennard-Jones equation is the soft-core potential presented by Beutler

et al. [21] to avoid singularity at r = 0. A soft core model for Coulombic interaction

does exist, but we avoid the need for it by decreasing the Coulombic parameter

entirely before decreasing the van der Waals. Additionally, Naden and Shirts [22]

show that choosing parameters in this order is statistically more efficient, providing

lower free energy uncertainties; we explain the connection between interaction

parameters and free energy estimates in Chapter 2. We therefore set λc = 0 for all

λv , 1 for this study.

We define each unique nonphysical Hamiltonian as an “alchemical” state. Com-

putational “alchemy” is a coined term that refers to changing the identity of atoms.

An alchemical state then is any intermediate step in the transformation of one set of

atoms into another. Atoms that feel lower interaction with their environment are

alchemical; the atoms technically have a different identity even though they still

have the same mass. Each level of interaction has its own ensemble of configura-
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tions available. The protein occupies a volume that is excluded from the ligand’s

ensemble when the interactions are left intact. The ligand can sample the entire

simulation space with out any restrictions with interactions turned completely off.

Each ensemble has a corresponding partition function, and by extension each level

of interaction is a unique thermodynamic state. We specify an alchemical state by

its interaction parameters.

Alchemical modification presents an additional variable with multiple degrees

of freedom that can be used to increase the rate of sampling. The alchemical variable

refers to the collection of states that are possible due to alchemical modification.

The degrees of freedom related to this variable include the number of states and

what parameters are assigned to each state. A simulation with five states that have

evenly spaced interaction parameters may sample better than a simulation with ten

states, eight of which have parameters close to 0. We can in principle optimize the

number of states to tune simulation performance. In this study, we find that an

increase in the number of states placed between existing states led to an increased

number of binding events. It is not practical to optimize the choice of states for

every ligand, but it is worth considering when sampling appears to be poor.

1.6 Select Simulation Methods for Enhanced Sampling

Two enhanced sampling methods are of interest to this study. An enhanced sampling

method is any procedure that allows simulation to gather useful samples faster. A

non-interacting ligand with atoms that have the same position as protein atoms is

equally valid as any other configuration in the non-interacting state. That same

configuration is very unlikely in the fully interacting state. These methods only

change between states when the configuration is likely to belong to both ensembles.
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Both methods take the same approach, but make changes in state by either a serial

or parallel implementation. We use the name “expanded ensemble” for the serial

implementation and Hamiltonian Replica Exchange Molecular Dynamics (HREMD)

for the parallel.

We choose to use expanded ensemble as it has been shown to be more efficient

than HREMD. Expanded ensemble simulation switches between states based only

on the current energy of the simulation. Replica exchange refers to switching states

between simulations, based on the energy difference between the two. Park [23]

show that thermal tempering is more efficient when run as expanded ensemble

rather than replica exchange. This is due to increased acceptance ratios in expanded

ensemble. An acceptance ratio is the number of times a switch from one state to

another was accepted over how many times it was rejected. Higher acceptance

ratios generally indicate faster mixing in state space, that is, the temperature or

Hamiltonian changes more rapidly. This carries over to mixing in configurational

space. Quickly moving between states allows the ligand to become bound to the

protein and subsequently leave on shorter time scales, since each state has its own

off-rate. We refer to the ligand moving from the bound back to the mostly solvent

areas of simulation space as a transition. This is much like a phase transition, where

the phases are the bound and unbound configurational ensembles. Transitions are

indirectly controlled by the rate of switching between states.

Hamiltonian Replica Exchange Molecular Dynamics uses a series of simulations

that at any time are each in one of the predefined states. Wang et al. [24] used

HREMD to perform their study of binding activity. The simulations are called

replicas, as they each simulate a copy of the same system. Replicas run in parallel but

have different interactions and positions at every step. The energies are compared

between replicas on regular time intervals and the configurations are swapped

13



between states so that each trajectory continues under a different level of interaction.

These swaps are made with probability pij given by

p(i↔ j) = pij = min

1, exp


(
Um(~xj)−Um(~xi)

)
−
(
Un(~xj)−Un(~xi)

)
kBT


 (1.3)

between replicas i and j in statesm and n respectively. The equations for HREMD are

reviewed by Okamoto [25] under the category multidimensional replica-exchange

method. These swaps can be attempted multiple times before resuming simulation

in order to promote better mixing of trajectories in state space.

Individual simulations in the expanded ensemble method do not depend on

the energies of other simulations. We run multiple simulations at the same time

to increase how quickly we generate samples, but in principle the same number

of samples could be gathered from one very long expanded ensemble simulation.

The concept of an expanded ensemble begins with the idea of a statistical ensemble.

The canonical ensemble has the configuration integral Zm,

Zm =
1
N !

∫
exp

(
−Um(~x)
kBT

)
d~x (1.4)

for state m with N number of particles. An expanded ensemble in alchemical

simulation is the combination of each alchemical state’s ensemble. The resulting

expanded configuration integral Z is simply

Z =
k∑

m=1

Zm exp(Wm), (1.5)

where Wm is a weighting factor. Lyubartsev et al. [20] give these formula for the

case of temperature expanded ensemble. The decision to change state is a Monte
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Carlo move, and at its simplest is evaluated as a jump to a neighboring state with

probability given by the Metropolis condition such that

p(m→ n) = min

1, exp


(
Um(~xj)−Un(~xj)

)
kBT


. (1.6)

The factor exp(Wm) is chosen for each state to promote sampling in that state, since

most systems will sample the states with the most favorable free energy according

to the Boltzmann distribution and Metropolis condition. Metropolized-Gibbs is the

algorithm used to perform the Monte Carlo moves in this study, and is explained in

a later section (Sec. 3.1).

1.7 Solvent Representation

We explicitly include solvent molecules in our simulations as hydrophobic/hy-

drophilic effects require atom-level detail to fully capture binding interaction.

Generalized Born (GB) is a model that represents the effect of solvent molecules as

a spatially-dependent dielectric constant. GB and its application to calculating free

energies within simulation by accessible surface area has been described by Still et al.

[26], and later expanded to free energies using a volume integral by Labute [27]. The

solvent is said to be implicit as the actual solvent molecules are not present during

simulation. The implicit solvent models built using the GB equation are “statistical

continuums” [26], such that the effect of solvent orientations are averaged. However,

specific solvent orientation is speculated to be key in ligand-protein interaction.

Bohacek and McMartin [15] suggests that non-covalent binding interactions can be

described by hydrogen donor/acceptor ability for 90% of binding atoms. Zhang

et al. [28] show an in-depth comparison of several implicit models with explicit
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solvation, including different solvent dielectrics. They specifically note that implicit

solvent does not work well for certain types of protein regions, such as low-dielectric

buried pockets. They attribute this inaccuracy in part to water-mediated hydrogen

bonding. Anderson [12] gives a few ways in which solvent is an important part

of ligand binding, including how displacement of a bound water molecule can

increase the entropy of the system.

Treatment of solvent as individual molecules increases the computational de-

mand of simulation. The program must loop over every atom to calculate interac-

tions with the rest of the system. This expense is avoided when using continuum

model for solvent, due to the fewer number of atoms. We hypothesize, however, that

the increase in speed does not justify the reduced accuracy. We therefore evaluate

the difference between binding results for previous implicit solvent simulation and

a study of explicitly solvated systems.

We test the same system as Wang et al. [24] in order to understand how binding

in implicit solvent is less accurate than explicit due to ignoring the ligand-solvent

and protein-solvent interactions. The engineered protein T4-lysozyme mutant L99A

has a large, buried, hydrophobic binding pocket, which is generally inaccessible

by the solvent. The binding of several ligands to T4-lysozyme has been studied

both experimentally and computationally [11], such that the binding free energies

of the engineered pocket are well known. Wang et al. [24] were further able to

identify multiple alternative binding locations and estimated the binding energy

to each. Most of these alternative locations are on the surface of the protein, and

likely interact with the solvent. Study of lysozyme interacting with each of the four

ligands offers a unique test; the buried binding pocket represents a large kinetic

barrier both to entrance and exit of the ligand. The ligands represent a range of

binding affinities, from moderate to non-binding, and one ligand that requires
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flexibility of an internal residue in order to bind as observed in crystallographic

experiment.
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Theory

We quantify our results using the equations developed by statistical mechanics. We

treat binding locations as volumes into which the ligand will partition according to

the canonical ensemble. This allows us to estimate free energy differences based on

the potential energies of samples gathered by simulation.

2.1 Ligand Binding Free Energies

Free energy is kBT times the logarithm of the number of microstates available to a

system restricted by its environment. The canonical partition function includes both

a configuration and a momenta integral. The configuration integral Z counts how

many configurations are available, weighted by the energy of each configuration,

ZV =
∫
V

exp
(
−U (~x)
kBT

)
d~x (2.1)

where kB is the Boltzmann constant, T is the temperature, and U (~x) is the potential

energy of a configuration within the phase space volume that is restricted by the

physical volume V . Even though momentum is part of the phase space of the

canonical ensemble, as long as atom masses do not change, we can assume that

the contribution to the partition function is the same as in an ideal gas. It will

therefore cancel out whenever we calculate differences in free energy where the



number and identity of particles is conserved. Free energy GV is directly related to

the configuration integral,

GV = −kBT lnZV , (2.2)

where the ligand is restricted to volume V . If instead we define two volumes V1 and

V2, we can explicitly define the free energy difference between the ligand occupying

one volume relative to the other as the ratio of partition functions. The expression

for the free energies and their difference are

GV1
= −kBT ln

(
ZV1

)
GV2

= −kBT ln
(
ZV2

)
∆G1−2 = GV2

−GV1

= −kBT ln
(
ZV2

ZV1

)
;

(2.3)

this ratio is where the momentum contribution cancels. We also note that free

energy differences can be defined not just between volumes but in general for any

two states.

The alchemical states form a thermodynamic cycle. The (absolute) binding free

energy is defined for the specific phase transition of a ligand from the solvated

phase to the bound phase, where the ligand interacts predominantly with solvent

and with protein respectively. We define a third, reference phase as a common

point between two different systems. The solvent system consists of just ligand

in solvent, while the protein system includes ligand, protein, and solvent. The

ligand can be moved into the vacuum phase by removing all interactions with its

environment in either system. Because the free energy is a state function, we can

calculate the binding free energy indirectly by calculating the free energy of moving

to the vacuum phase in one system and back from the vacuum phase in another.
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The estimate for the binding free energy can be expressed simply,

∆Gbinding = ∆Gcoupling +∆Gvolume +∆Gdesolvation, (2.4)

where ∆Gdesolvation is the free energy of removing the interactions of the ligand in

the solvent system, ∆Gcoupling is the free energy of introducing the interactions into

the protein system, and ∆Gvolume is the free energy of moving a vapor phase ligand

from the solvent system volume to the protein system volume. This estimate of

the binding free energy is defined in terms of the Gibbs free energy, at constant

temperature and pressure.

The multistate Bennett acceptance ratio (MBAR) method produces free energy

estimates of minimal uncertainty. Shirts and Chodera [29] derive MBAR using

extended bridge sampling with an optimal estimator. For the case of uncorrelated

samples taken from an ensemble obeying the Boltzmann distribution, the free

energies can be written as an implicit function of themselves,

fm = − ln


K∑
k=1

Nk∑
n=1

exp(−um(~xkn))
K∑
j=1

[
Nj exp

(
fj −uj(~xkn

)]
. (2.5)

Here, ~xkn is the n-th configuration from state k and Nk is the total number of

configurations collected in state k. K is the total number of states, and fm is the

reduced free energy in state m,

fm(~x) = Fm/kBTm, (2.6)

with Fm being the appropriate free energy for the ensemble that is sampled. The
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Thermodynamic Binding Pathway

Figure 2.1: Alchemical modification provides a pathway through which we
estimate binding free energies. Three phases are represented in the figure,
with bound and solvated phases at left and the vacuum (or vapor) phase at
the right; the binding free energy is the difference between the solvated and
bound phases. The top and bottom halves of the cycle correspond to two
different types of simulation; the simulations gather samples with the ligand
in the protein system and the ligand in solvent respectively. Boxes represent
alchemical states, and are labeled according to their level of interaction
between the ligand and environment. The box colors fading to gray represent
diminishing interaction of ligand with environment from left to right. The
two inserts at top left and top right depict a ligand (in blue) interacting with
the system and with no other molecules, respectively. The inserts at bottom
depict only the ligand in solvent, with water represented by small red lines.
The sum of the three terms ∆Gdesolvation, ∆Gvolume, and ∆Gcoupling is equal to
the overall binding free energy, ∆Gbind .

reduced potential um is defined as

um(~x) = (Um(~x) + PmV (~x)) /kBTm (2.7)

for configurations in the canonical (NVT) and isobaric (NPT) ensembles which can

be expanded by temperature (Tm), pressure (Pm), or Hamiltonian effecting just the

potential energies (Um(~x)). V (~x) is the volume of configuration ~x. The reduced

potential can also be defined for grand-canonical ensembles (constant chemical
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potential µ). Solving Eqn. 2.5 by any method for systems of non-linear equations

produces a set of free energy estimates. Further, MBAR can compare energies

in states for which no configurations were generated, as long as the potential

energy in that state was computed for all samples collected. We use the pymbar

implementation of MBAR [30] to estimate the free energy differences between states

of a simulation.

Simulation at constant volume is used to estimate free energies of constant

pressure phase transitions. Due to numerical stability issues when sampling from

multiple states, the protein-ligand simulations were carried out at constant vol-

ume (the NVT ensemble), instead of constant pressure (NPT). The solvent-ligand

simulations are kept at a constant pressure, such that the box volume contracts

when moving towards the vacuum phase; no correction is needed for ∆Gsolvation.

This means that the free energies estimated for the NVT simulations are Helmholtz

free energies. A correction from the Helmholtz (∆A) to Gibbs (∆G) free energies is

needed, as well as defining the volume correction to standard state. These energies

are related by ∆G = ∆A+∆(P V ). The difference is defined between the end states,

that is, the fully coupled and the fully uncoupled lambda states. Each state will have

a different pressure within the same volume, as the system loses a small amount

of pressure due to the ligand becoming non-interacting. ∆Gcoupling is technically

defined between the end states at the same pressure, the pressure of the fully inter-

acting system. We therefore estimate the Gibbs free energy of moving the ligand in

the vacuum phase at the uncoupled pressure back to the pressure of the coupled

state. The equation for the binding free energy including corrections is

∆Gbinding =

∆Acoupling + (P2Vb − P1Vb) +

P1∫
P2

(
dG
dP

)
T

dP

+ kBT ln
(
V ◦

Vb

)
+∆Gdesolvation,

(2.8)
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where P1 and P2 are the coupled and uncoupled state pressures respectively, V ◦ =

N−1
A L is the standard volume, Vb = 212 nm3 is the simulation volume, NA is

Avagadro’s number, and (dG/dP )|T = V is applied assuming the system is a fluid

with the properties of water. Gilson et al. [31] give a rigorous explanation of

reference states and standard concentration, which leads to the form of the volume

correction used here. We include Eqn. 2.8 as it represents the rigorous definition of

the free energy difference. These simulations occur in water, which is effectively

an incompressible fluid. This implies that large changes in pressure result in only

minute changes in volume of the fluid. If we assume that the volume remains

constant, the d(P V ) and
∫
V d(P ) terms cancel. These terms would be significant for

a compressible fluid, but as the system is mostly water we will neglect the pressure

corrections. The simplified version of the expression for the Gibbs free energy

difference is

∆Gbinding = ∆Acoupling + kBT ln
(
V ◦

Vb

)
+∆Gdesolvation, (2.9)

which is rigorous for a truly incompressible system.

We can define a binding free energy for each individual location. This is implied

by the concept of non-specific binding, the idea that a ligand will have different

affinity to different locations on the same receptor. We quantify the difference in

affinity. Each location will have unique interactions with the ligand due to the

residues and solvent molecules that define the boundaries of that location. The

binding ensemble is formally the collection of all ligand configurations interacting

with the protein, but we consider each location to have its own subensemble

of configurations as part of the larger binding ensemble. These subensembles
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correspond to binding location configuration integrals,

Zi =
∫
Vi

exp
(
−Uc(~x)
kBT

)
d~x , (2.10)

where Vi is the volume of the i-th binding location, and ~x was generated while in

the fully-interacting state m = c.

We can identify binding locations by areas of high local density of coupled

samples. This is an assumption based on the nature of the definition of free

energy. As an example, take a free energy difference of -1.00 kcal/mol between two

locations of the same volume. At 300 K, the ratio of partition functions is equal

to 5.35, indicating a five times higher density of configurations in the lower free

energy location. An increase in this probability density to 50, 100 and 1000 times

more configurations at the same temperature corresponds to free energy differences

of -2.33, -2.75, and -4.12 kcal/mol respectively.

We use spatial clustering to identify which samples from simulation belong to

individual binding locations (specific details of clustering described in Sec. A.4).

A three-dimensional grid is artificially imposed over these samples, so that each

sample is located within one voxel of the grid. The volume of the binding location

is the total volume of all voxels that have at least one sample from the cluster.

Much of the interpretation of ensembles is originally presented by Wang et al.

[24] and is expanded here for clarity. Free energies to each binding location are

estimated to allow detailed comparison with implicit solvent results. We use MBAR

to estimate these single location free energies, in addition to overall free energies.

We combine all clustered samples from the fully interacting state with all samples

from other states that fall into the cluster’s voxels. The collection of samples are

then subsampled by state and evaluated by MBAR to estimate the ∆Gcoupling for
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that location. The single location binding free energies ∆Gi are then estimated by

equation 2.9.

One measure of convergence of the simulations is to compare empirical binding

location occupancies with the free energy estimates for those same locations. We

define convergence of the simulations as the theoretical number of samples collected

past which any additional samples will not change how many binding locations are

identified or change the free energies by more than the estimated error of those

energies. We define the occupancy as the ratio of the number of samples within a

binding location to the total number in all binding locations. The occupancy Oi is

given as

Oi =
zi
N∑
n=1

zn

, (2.11)

where zi is the number of samples within Vi , and there are N identified binding

locations. The occupancy should be consistent with the ratio of partition functions

determined from free energy estimates. An estimate of the occupancy O′i can also

be calculated from the free energy,

O′i =
Zi
N∑
n=1

Zn

=
exp(−∆Gi/kBT )
N∑
n=1

exp(−∆Gn/kBT )
. (2.12)

In the limit of infinite sampling, Oi should be equivalent to O′i . A similar but

alternative calculation is to estimate the free energy difference using the empirical

occupancies. We choose the volume outside of the protein radius as a reference to

define the free energy difference,

Vs =
4
3
π
(
(rp + 5Å)3 − r3

p

)
, (2.13)
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where rp is the radius of the protein measured to the atom farthest from geometric

center. Samples within this volume are predominantly interacting with solvent, and

are a decent representation of the solvent phase. We use the number of samples

zi as an approximation to the partition function to estimate a free energy G′i with

arbitrary reference,

G′i = −kBT ln(zi). (2.14)

The free energy difference between the solvent volume and the binding location

volume is then

∆G′i = G′i −G
′
s − kBT ln

Vs
V ◦

= −kBT lnzi + kBT lnzs − kBT ln
Vs
V ◦

= −kBT ln
(
zi
zs

Vs
V ◦

)
,

(2.15)

adding in the free energy correction from the solvent volume to the standard

reference volume. Similar to the occupancies, any difference between ∆Gi and ∆G′i

can indicate that sufficient sampling was not achieved.

Comparing free energies to already measured experimental values gives an

indication of how well simulation is able to represent ligand binding. A simulation

of any system with converged sampling, appropriate system variables (pressure,

temperature, etc.), and accurate force-field should produce overall free energies

that are within error of the experimental values. In both isothermal titration

calorimetry and a converged simulation, the entire binding ensemble is sampled.

We can also compare free energies for individual locations. Binding free energies

of the experimentally observed binding location should agree with the free energy

estimates determined by Mobley et al. [11]. In their experiment, the ligand was

restrained to only sample the buried pocket, regardless of the alchemical state of
26



the ligand. We expect these single location binding free energies to match for each

ligand if we are able to identify the experimental location for that ligand.
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Computational Methods

We have conducted simulations to study protein-ligand binding ensembles. This

study uses explicit solvent expanded ensemble simulations to estimate binding

activity, both binding locations and free energies. We compare results for previously

studied systems of T4-lysozyme L99A, which have been treated experimentally and

in both implicit and explicit solvent simulation. Minor optimization of parameters

allowed us to collect data to present in the Results portion (see Chapter 4), but

several unforeseen complications have led us to impose approximations in how

the data is interpreted. Appendix A lists further details of how we perform these

simulations.

3.1 System and Simulation Procedures

We simulate four ligands addressed by previous computational studies. Mobley

et al. [11] show that the Val111 residue rotates only upon binding with para-xylene.

Wang et al. [24] model this ligand to show how well flexibility is captured during

simulation. They also model benzene, 1-methylpyrrole, and phenol as examples of

a relatively strong binding ligand, a moderate ligand, and a non-binder. We mirror

the analysis that Wang et al. [24] perform, in order to directly compare the results

of implicit solvent to explicit solvent. Figure 3.1 shows these molecules along with



Ligand Structures and Binding Affinities

T4-lysozyme L99A benzene 1-methylpyrrole para-xylene phenol

∆G
exp
binding (kcalmol ) -5.19 -4.44 -4.67 > -2.47

Figure 3.1: We test the accuracy of expanded ensemble at identifying which
ligands in a small set bind and to what extent. The Leu99Ala mutation in
T4-lysozyme allows enough free volume for benzene-like molecules to bind
[32]. The four ligands in the test set are shown with the atom calculated as
closest to the center of geometry circled; this atom is used to track the ligand’s
trajectory. Note that for benzene and para-xylene, the choice of center atom is
somewhat ambiguous due to their planes of symmetry. Experimental binding
free energies are reported by Mobley et al. [11]. Rendered images in all figures
are generated by VMD [33].

a cartoon representation of lysozyme.

Randomized initial configurations remove bias towards any particular location

on the protein. We run preliminary simulations to generate initial configurations

for each production simulation. These simulations run with the ligand always in

the fully uncoupled state, so that the ligand can move to any location. We pull

frames from these simulations to use as initial configurations. Starting from these

random locations gives the set of simulations a better opportunity to find different

binding locations with short run times. At long run times nearing and beyond

convergence, the number of binding locations will remain the same, as they all will

have been sampled by each simulation. Simulations that use these configurations

start in the uncoupled state, so that the ligand does not immediately entangle other

molecules and is able to travel for a stochastic amount of time before gathering

physical samples.
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Metropolized-Gibbs (MG) sampling in state space increases movement in config-

uration space. The protein-ligand simulations switch states by the MG algorithm.

Chodera and Shirts [34] rigorously define the equations for MG as an example of

independence sampling with rejection. The algorithm considers changing the state

on regular intervals, typically shorter than the interval between collecting samples.

We allow the state to change ten times between samples. Each state is assigned a

probability by the equations

−un(~xm) +wn =
−Un(~xm) +Wn

kBT
, (3.1)

pn =
exp(−un +wn)∑

k,m
[exp(−uk +wk)]

, (3.2)

where n is any state other than m, un is the reduced potential energy evaluated in

state n of the current configuration from state m, and wn is the reduced weight for

state n. With these definitions
∑
n,m

[pn] = 1, where n ,m implies summation over all

K states in the range [0, K − 1] except state m. A new state is randomly suggested

according to these probabilities, and then accepted with probability pa in order to

preserve detailed balance,

pa = min

1,
∑
k,m

exp(−uk +wk)∑
k,n

exp(−uk +wk)

 (3.3)

where min[1, y] is the Metropolis function. Chodera and Shirts [34] explain how

this algorithm encourages the state to change more frequently than independence

sampling alone. Frequent changes in the state value allow the simulation to fre-

quently sample in a more decoupled state between sampling in coupled states.

This encourages movement of the ligand around the simulation between coupled
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samples.

The probabilities are weighted in order to increase frequency of sampling in

each state. Lyubartsev et al. [20] suggests including these weights when describing

the algorithm for temperature expanded ensemble. Without these weights, the

simulations would quickly move to the most favorable state and remain there due

to the exponential nature of the partition functions. With weights {W0,W1, ...,WK−1}

equal to the free energy differences between states, the frequency of sampling in the

limit of infinite sampling would be even across all states [34]. Equation 2.3 becomes

wn = (Gn −G0)/kBT = ln(Z0/Zn), (3.4)

for the free energy of state n relative to state 0. The state selection probability in the

MG algorithm (Eqn. 3.2) becomes

pn =
Z0/Zn exp(−un)∑

k,m
[Z0/Zk exp(−uk)]

=
exp(−un)∑

k,m
[exp(−uk) Zn/Zk]

. (3.5)

The denominator is shifted by the ratio of partition functions so that states with

smaller Zn have a larger probability of being chosen even when exp(−uk) would be

relatively large.

We employ the Wang-Landau algorithm [35] followed by iterative evaluation by

MBAR to determine weights for the protein-ligand simulations. The Wang-Landau

algorithm develops an estimate of the free energies by interactively updating the

weights during a simulation (see Sec. A.3). We improve upon these weights by

passing the energies for the latter half of a Wang-Landau simulation to MBAR.

The algorithm works to obtain an even number of samples in each state, which in

general decreases the uncertainty in MBAR evaluation relative to many samples
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from a single state with few in another. This follows from the similarity between

MBAR and BAR [29] and the argument Bennett [36] presents related to spending

equal time sampling each state, where samples are expected to take roughly the

same amount of time independent of state. We use the first MBAR estimates to run

a new simulation, which can then be evaluated by MBAR itself. This process should

be repeated until the number of samples generated by a simulation is roughly

equivalent. We perform the process for three evaluations of MBAR for benzene,

para-xylene, and phenol, with 1-methylpyrrole having several more evaluations

from preliminary simulation.

3.2 Alchemical Schedule and Weights

We want to analyze samples from the fully coupled state to determine binding

locations, as the other states are increasingly non-physical. The ligand rapidly loses

charge as the state index increases, having no charge by state 3. We were unable

to collect samples in the most coupled state, state 0, due to a programming error

in switching between states. Whenever the algorithm would suggest a switch into

state 0, the value of the state was not properly updated, leaving the simulation

in whichever state was previously visited. Instead of the physically relevant fully

coupled samples, we collect state 1 samples from each of the twenty simulations and

use these to identify the binding locations. This is an approximation, and creates

a slightly undercharged molecule. This is expected to impact the most polar of

the four ligands, phenol, to the greatest extent. We expect the occupancies to be

effected the most by this change, as they will match the ensembles for state 1, where

the overall and single location free energies are estimated to state 0. We examine

the extent of the effects of this approximation in the results section.
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Increasing the probability of sampling in the fully coupled state increases the

number of physical samples. The weights Wm equal to free energy differences

encourage even sampling as discussed in Sec. 3.1. The weights can be modified to

increase the frequency of visiting a state relative to the others. We can increase the

probability of sampling in a state by approximately a factor fn. Adding kBT ln(fn)

to Wn changes the selection probability as follows,

pn =
exp((−un +wn + ln(fn))∑

k,m
[exp(−uk +wk + ln(fk))]

= fn
exp((−un +wn)∑

k,m
[fk exp(−uk +wk)]

. (3.6)

Wang et al. [24] found for HREMD that multiple replicas in the coupled and

uncoupled states are better for ligand sampling, since an increase in both states

gathers more physical samples and presents more chances to move freely within a

set amount of simulation time. This necessarily decreases the number of samples in

all the states between the fully coupled and uncoupled states. The factors fn allow

expanded ensemble to sample in the same way without increase the number of

coupled and uncoupled states. Wang et al. [24] included 6 coupled and 3 uncoupled

replicas; factors of f0 = 6 and fK−1 = 3 should achieve the same effect with state 0

being fully coupled and K − 1 being uncoupled. We added factors f1 = fK−1 = 3 to

the simulation for 1-methylpyrrole. We intended to add these values for all ligands,

but a setup script omitted them from the input files. This does not negatively

affect the validity of samples in any state; it simply changes how many samples are

gathered. We discuss a possible effect of this change in Sec. 4.1. We were unable to

collect samples in state 0, as mentioned in the previous paragraph. Switching states

more frequently can increase the rate of transition into and out of binding locations.

The movement of the ligand into a binding location or back out of that location

into the solvent are termed transition events, or just transitions, since the ligand
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transitions from bound phase to solvated phase behavior. During simulation, the

ligand explores its environment with kinetics that depend on the current state. In

the states closest to being fully coupled, the ligand can become kinetically trapped

in the bound phase. We introduce the series of alchemical states to escape these

traps by allowing the ligand to decouple from its environment. Moving to the

decoupled state can take several steps, since state changes are controlled by the MG

algorithm. The weights can in principle be chosen to give an equal probability of

switching to any state from the fully coupled state. Choosing these weights is not a

straightforward process, however, and is not something we were able to explore in

detail. We noticed that many of our simulations have spans of several nanoseconds

in which the states closest to fully decoupled are not visited. These nearly always

correlate with the ligand visiting a binding location, particularly the experimental

binding location. We hypothesize that an optimal set of weights exist that would

shorten these spans and increase the number of transitions observed in a simulation.

The time needed for simulations to reach convergence can in principle be de-

creased by optimizing simulation parameters. Initial simulations of 1-methylpyrrole

had 14 states, but poor kinetics were observed as discussed in the previous para-

graph. We tested an increase in the number of states before trying to adjust the

weights. We ran simulations with 18 and 24 states, where the additional states

were added between existing states. Interaction parameters for the 14 and 24 states

are given in Tables A.1 and A.2 respectively. These new states were placed where

uncertainty in the free energy was large, and from which the state rarely switched

to a more uncoupled state. These states are close to λv = 0.25, which Naden et al.

[37] have reported as a region of increased uncertainty for soft core interaction.

Both 18 and 24 states captured more transitions than simulations of 14 states. We

were unable to conclude that 24 states captured more transitions than 18 states.
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We tried to further increase transition by modifying the weights Wm to increase

sampling in these the additional states. We did not notice an increase in the rate of

transition for factors of f = 5 and f = 10 added to states 7 through 21. We removed

these increased factors and used 24 states for the final simulations. Simulations

with more states appear to increase the number of transitions, but they also gather

physical samples at a slower rate, due to sharing more time in states other than the

fully coupled state.
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Results and Discussion

We present our results for the study of ligand binding to T4-lysozyme by four model

ligands. Section 4.1 addresses three types of simulation to compare how efficient

is each type at finding binding locations. Performance seemed to decrease in the

move to expanded ensemble explicit solvent, and we determine whether the change

in solvent model or in simulation method made the most impact. We then present

across the remaining sections the results of the explicit solvent expanded ensemble

study, and compare these results to the implicit solvent HREMD data. Binding

location positions, occupancies, and free energies are the focus of these results.

We calculate the implicit solvent HREMD data presented here using simulation

trajectories provided by Wang et al. [24]. They created these trajectories in the same

way as the simulations used for their publication.

4.1 Sampling Performance in Binding Ensemble Sim-

ulations

Convergence time is increased due to explicit water, and not by the change to

expanded ensemble. We quantify the effect of switching from implicit to explicit

solvent representation on the rate of transitions from bound to solvent phases using

an HREMD simulation in explicit solvent for 1-methylpyrrole. This simulation uses



Rates of Transition for Different Simulation Methods
Method HREMD HREMD Expanded ensemble

implicit explicit explicit
benzene 10.91 ns−1 - 3.73 ns−1

1-methylpyrrole 10.11 ns−1 0.20 ns−1 0.85 ns−1

para-xylene 2.71 ns−1 - 1.56 ns−1

phenol 4.00 ns−1 - 1.72 ns−1

Table 4.1: Explicit solvent representation has a greater impact on the rate of
sampling than switching from HREMD to expanded ensemble. These values
are calculated as an average over 360 total ns of simulation for HREMD, and
800 ns for expanded ensemble. A transition is counted whenever the simula-
tion or replica moves to one of the fully uncoupled states after sampling in
one of the fully coupled states. Values are listed as number of transitions per
nanosecond, ns−1. Explicit solvent HREMD was not conducted for benzene,
para-xylene, or phenol. Higher values indicate a greater number of oppor-
tunities for the ligand to explore alternative binding locations within one
nanosecond of simulation.

the same parameters as reported in the study by Wang et al. [24], but with a periodic

box of solvent instead of harmonic restraints to keep the ligand near the protein.

It is worth noting that Wang et al. [24] also made Monte Carlo moves to displace

the ligand, which is not performed here, as it is not as useful. Proposed Monte

Carlo moves would often overlap the ligand and solvent, and would almost always

be rejected unless in the fully uncoupled state. Twenty-four replicas simulate 17

unique states, with 6 fully coupled and 3 fully uncoupled replicas, like the HREMD

simulations of Wang et al. [24]. We measure transitions as the time it takes for a

single replica, after visiting one of the fully coupled states, to sample in one of the

fully uncoupled states. A total of 360 nanoseconds of simulation are collected in

each of the implicit and explicit solvent HREMD simulations. This is compared to

expanded ensemble explicit solvent simulations at 800 total nanoseconds, where

we treat each simulation like a replica in measuring the number of transitions.

As shown in Table 4.1, explicit solvent causes an order of magnitude decrease in

the number of transitions per nanosecond. Expanded ensemble itself improves
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significantly over HREMD, sampling on average four times as many transitions. Park

[23] previously offered arguments for why expanded ensemble should have higher

acceptance ratios than HREMD for state switches performed between adjacent

states. Our observation is consistent with their statement for “all-to-all” sampling

under the metropolized-Gibbs algorithm (see Sec. 3.1). Higher acceptance ratios

imply better mixing in state space, which leads to better mixing in configurational

space.

We correlate the number of transitions with the ability of the simulation to find

binding locations. Each time the ligand unbinds from the protein, the ligand has a

chance to bind again but at a different location. We have plotted the series of state

indexes versus time to compare to visual observation of the ligand trajectories for

expanded ensemble explicit solvent simulation. We see a correlation between the

state indexes plotted in Fig. 4.1 and the ligand leaving the protein to sample solvent.

Regions where the state index remain low, where the interactions are more coupled

than uncoupled, typically indicate that the ligand is sampling a binding location.

We would like to see a trace closer to that of implicit solvent HREMD, where the

series of state index values seem to indicate rapid binding and unbinding of the

ligand. Each binding event, whether rapid or not, is still a useful sample of where

the ligand spends its time.

We can theoretically predict how long a simulation will need to run to observe

the same number of binding events as the implicit solvent HREMD studies. HREMD

implicit solvent captures more than 10 transistions per nanosecond for two ligands,

1-methylpyrrole and benzene. Expanded ensemble explicit solvent sees less than

1 ns−1 for 1-methylpyrrole. This indicates that expanded ensemble simulations

for 1-methylpyrrole should run for a total of ten times as many nanoseconds as

the HREMD simulations to observe the same amount of transitions. The HREMD
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Timeseries of State Indices for Different Simulation Methods

(a) HREMD, implicit solvent

(b) HREMD, explicit solvent

(c) Expanded ensemble, explicit solvent

Figure 4.1: Explicit solvent simulations are slow to sample transitions. These
simulations spend long amounts of time sampling in a narrow range of states.
Plots (4.1a), (4.1b), and (4.1c) show the state index as a function of simulation
time in picoseconds. Transitions can be observed visually as the span of time
between the state index moving to or below the lower blue line and when
it moves to or above the upper line, where the lines are drawn to show the
difference between fully coupled states, intermediate states, and uncoupled
states at the top. One example of a transition is the time leading up to 3.6
nanoseconds in plot (4.1b), which has been highlighted by a gray box.
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implicit solvent study simulated a total of 360 ns, meaning that 3.6 µs are needed

to achieve the same level of sampling different binding locations. This is just

an approximation, but this quantity can be important in the design of future

simulations to gauge how long a simulation should be.

Increasing the weights in the fully coupled and uncoupled states may lead

to slower ligand dynamics. A sample size of three out of four ligands is small,

and further study would be needed to provide convincing evidence. The trend

for benzene, para-xylene, and phenol in Table 4.1 is that explicit solvent may be

only a third or half the speed of implicit solvent, compared to a factor of 10 for

1-methylpyrrole. The only procedural differences between the three ligands and

1-methylpyrrole is that the weights for 1-methylpyrrole had been estimated from

from preliminary simulations five times instead of three and that a factor of 3

was added to promote sampling in the coupled and uncoupled states. We don’t

attribute the slower dynamics to how many times the weights were estimated;

each evaluation should give a more accurate estimate of free energies to use as

weights. These improved weights lead to ligand dynamics on shorter time scales in

preliminary simulations for 1-methylpyrrole. In one preliminary case, the ligand

sampled the experimental site for longer than 15 ns of simulation; the adjusted

weights increased the number of transitions. We instead believe that the factor

of 3 caused the lower number of transitions for 1-methylpyrrole. We are unsure

as to why. As a guess, the increased factor discouraged sampling in higher states

in preference for the energetically favorable coupled state, and the free energy

difference from coupled to uncoupled is too high to switch directly between the

two. Explicit solvent HREMD for the three ligands may be able to provide more

data, but we have not performed these simulations.
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4.2 Binding Locations are Identified Using 20 Trials

We perform twenty independent simulations of T4 lysozyme L99A with each ligand.

The clusters are volumes of high density of samples from alchemical state 1 which

is 30% less charged than a full interacting ligand molecule. Figure 4.2 shows the

number of samples for each simulation in each cluster. Samples that are outside of

the protein radius but within the cutoff radius are treated as solvent samples. The

protein radius is measured as the distance to the protein atom farthest from the

protein center, and the cutoff radius is 5 Å past the protein radius. The density of

solvent samples is used in estimating the free energy of the clusters by occupancy.

Figure 4.2 presents information that we use to judge the convergence of the

binding study. Most binding locations are sampled independently by separate

simulations. Sampling is still not ideal, as we would like to see each simulation

visit each location for a proportionate amount of samples. However, sampling is

very encouraging as each of the top 4 clusters for every ligand are visited by at least

4 simulations, with the top location visited in every simulation. The stacked bar

charts show how many samples of each simulation were assigned to the clusters

that are identified for each ligand. Ideal sampling would have bars in each column

of approximately equal height for each cluster. Clusters are numbered by the most

populous to the least. Only the four most populous clusters are shown, with any

other clusters grouped together. Benzene has 4 distinct clusters, 1-methylpyrrole

has 1, para-xylene has 5, and phenol has 7. The single cluster for 1-methylpyrrole is

located in the experimental binding location. The top clusters for the other three

ligands are also located in the experimental binding location.

Individual binding location free energies share better agreement with empirical

occupancies for non-polar ligands. Table 4.2 show the observed values for occupancy
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Number of Samples Contributed by Each Simulation to Clustering

(a) benzene samples (b) benzene clusters

(c) 1-methylpyrrole samples (d) 1-methylpyrrole clus-
ters

(e) para-xylene samples (f) para-xylene clusters

(g) phenol samples (h) phenol clusters

Figure 4.2: We have strong confidence that binding locations which are visited
in several simulations are real. Most of the identified clusters are sampled in
at least 4 simulations. Details of this plot given near the beginning of Sec. 4.2
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Occupancies and Free Energies by Binding Location
Location Occupancy, Oi Occupancy, O′i Free Energy, ∆Gi Free Energy, ∆G′i

(from ∆Gi) (from Oi)
% % kcal/mol kcal/mol

benzene
1 93.8 [90.5, 96.5] 91.2 [76.0, 97.1] -3.43 ± 0.34 -3.97 [-4.20, -3.78]
2 2.7 [ 0.7, 5.8] 5.6 [ 1.7, 16.3] -1.77 ± 0.18 -1.86 [-2.35, -1.07]
3 1.9 [ 0.5, 3.4] 1.5 [ 0.4, 5.2] -1.00 ± 0.24 -1.64 [-2.07, -0.83]
4 1.5 [ 0.7, 2.6] 1.6 [ 0.5, 4.5] -1.01 ± 0.15 -1.52 [-1.90, -1.03]

1-methylpyrrole
1 100. [100., 100.] 100. [100., 100.] -3.84 ± 0.05 - 5.40 [-5.54, -5.25]

para-xylene
1 90.7 [84.3, 95.7] 86.0 [71.9, 92.7] -4.03 ± 0.15 -4.29 [-4.58, -4.06]
2 3.4 [ 0.2, 9.4] 9.4 [ 3.4, 22.7] -2.71 ± 0.29 -2.34 [-3.02, -0.29]
3 2.2 [ 0.4, 4.7] 1.5 [ 0.7, 3.1] -1.61 ± 0.19 -2.08 [-2.61, -0.96]
4 1.9 [ 0.3, 5.0] 1.8 [ 0.7, 3.9] -1.71 ± 0.22 -2.00 [-2.60, -0.85]
5 1.7 [ 0.7, 2.8] 1.3 [ 0.7, 2.6] -1.55 ± 0.17 -1.91 [-2.34, -1.35]

phenol
1 79.1 [71.8, 86.9] 7.0 [ 3.8, 10.7] -1.29 ± 0.12 -3.73 [-3.94, -3.58]
2 7.4 [ 2.0, 13.3] 17.1 [ 7.4, 30.9] -1.82 ± 0.23 -2.32 [-2.76, -1.49]
3 4.8 [ 0.7, 9.5] 31.2 [15.5, 48.4] -2.18 ± 0.21 -2.06 [-2.54, -0.87]
4 2.8 [ 0.3, 5.8] 3.5 [ 0.9, 10.8] -0.88 ± 0.37 -1.75 [-2.24, -0.40]
5 2.6 [ 1.0, 4.5] 28.2 [13.5, 44.7] -2.12 ± 0.21 -1.70 [-2.07, -1.12]
6 1.7 [ 0.2, 3.6] 5.8 [ 2.3, 12.3] -1.18 ± 0.25 -1.44 [-1.93, -0.08]
7 1.6 [ 0.0, 4.4] 7.1 [ 1.2, 31.8] -1.30 ± 0.54 -1.41 [-2.04, 2.33]

Table 4.2: Free energy estimates agree with the number of samples in each
binding location for some ligands. The binding experimental location has
the highest occupancy of all identified locations, listed as location 1 for each
ligand. The occupancies are calculated using the ratio of samples to the
total number of clustered samples. These occupancies are used to calculate
an estimate of the free energy difference ∆G′i using Eqn. 2.15. The 95%
confidence intervals for both Oi and ∆G′i are calculated by the bootstrap
method [38]. The free energy difference and uncertainty is estimated using
MBAR. These free energies are used to estimate the occupancies O′i using Eqn.
2.12. The 95% confidence intervals for O′i are calculated assuming that MBAR
estimates are normally distributed, which is deemed reasonable given the
results of the study by Paliwal and Shirts [39]. The free energies ∆G′i are within
two uncertainties of ∆Gi for benzene and para-xylene, but larger differences
are observed for 1-methylpyrrole and phenol locations. The 100% occupancy
for 1-methylpyrrole is due to only one location being identified. There are
other samples around the protein showing that the ligand did explore other
areas, but the local density of these samples are too low to constitute a binding
location.
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of and the estimated binding free energies for binding locations identified by

clustering. The free energies are used to estimate occupancy values, and the

occupancies are compared to the number of samples in the surrounding solvent

to estimate free energies. Benzene and para-xylene have binding free energies that

are within the confidence intervals of the free energies estimated from occupancy

values, showing relative agreement between free energy and occupancy. The values

for 1-methylpyrrole and phenol, however, do not agree for several binding locations.

The free energies estimated by occupancy are too negative for the most populated.

This implies that the solvent region was not sampled often enough; a larger number

of solvent samples leads to more positive free energies estimated from occupancy

values. Longer simulations may lead to gathering more samples in solvent so that

the ratio between the number of bound and solvent samples would agree with the

binding free energy estimate. The number of samples in the experimental binding

location is the highest for each ligand compared to other locations. The binding

free energies do not agree with this observation for phenol, with locations 3 and 5

having the lowest free energy.

Occupancies and free energies likely do not agree because clusters were de-

termined using undercharged samples. We were unable to collect fully coupled

samples for any of the ligands. We instead used the samples in state 1 as an ap-

proximation of the binding locations. The free energies to state 1 are listed in Table

4.3. These free energies produce estimates of the occupancies that are closer to the

observed occupancies for the 1-methylpyrrole and phenol. These molecules are

both polar, and we expected the largest amount of error for these two, particularly

for phenol. The free energy difference between states 0 and 1 for phenol is con-

siderably larger than the other molecules, and seems to be highly dependent on

the local environment. For example, location 1 has a difference in free energies of
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Occupancies Based on Free Energy to Clustering State
Location Occupancy, Oi Occupancy, O′i Free Energy, ∆Gi

(from ∆Gi to state 1) (to state 1)
% % kcal/mol

benzene
1 93.8 [90.3, 96.5] 97.8 [93.1, 99.3] -3.05 ± 0.34
2 2.7 [ 0.7, 5.9] 1.1 [ 0.3, 3.8] -0.40 ± 0.18
3 1.9 [ 0.6, 3.7] 0.6 [ 0.1, 2.1] 0.02 ± 0.24
4 1.5 [ 0.7, 2.6] 0.5 [ 0.1, 1.5] 0.13 ± 0.14

1-methylpyrrole
1 100. [100., 100.] 100. [100., 100.] -3.29 ± 0.05

para-xylene
1 90.7 [84.0, 95.8] 95.9 [91.1, 97.9] -3.74 ± 0.15
2 3.4 [ 0.2, 9.1] 2.3 [ 0.8, 6.4] -1.52 ± 0.29
3 2.2 [ 0.4, 4.7] 1.0 [ 0.4, 2.1] -0.99 ± 0.19
4 1.9 [ 0.3, 4.5] 0.6 [ 0.2, 1.3] -0.69 ± 0.21
5 1.7 [ 0.7, 2.9] 0.3 [ 0.1, 0.5] -0.25 ± 0.16

phenol
1 79.1 [72.1, 86.6] 78.4 [66.8, 85.2] -0.01 ± 0.12
2 7.4 [ 2.1, 13.4] 6.0 [ 2.7, 12.1] 1.52 ± 0.22
3 4.8 [ 1.1, 9.6] 8.3 [ 4.1, 15.3] 1.33 ± 0.19
4 2.8 [ 0.2, 6.3] 0.9 [ 0.3, 2.9] 2.66 ± 0.35
5 2.6 [ 1.1, 4.5] 3.3 [ 1.7, 6.0] 1.88 ± 0.17
6 1.7 [ 0.2, 3.7] 2.0 [ 0.9, 4.3] 2.17 ± 0.23
7 1.6 [ 0.0, 4.4] 1.1 [ 0.2, 5.9] 2.51 ± 0.51

Table 4.3: Undercharged molecules lead to disagreement between free energy
and occupancy estimates. The free energies listed above connect the first
alchemical state, state 1, to the ligands fully interacting with only solvent.
The occupancies O′i estimated from these free energies share better agreement
with the observed occupancies Oi . We interpret the disagreement between
the full binding free energies and the observed occupancies to be the result of
our approximation that samples in state 1 can be used to determine binding
locations.

(−1.29)− (−0.01) = −1.28 to state 0 from state 1. Location 3 however has a difference

of −3.51. This would indicate that the 30% charge difference between states 0 and 1

has the most impact in location 3, and leads to a more favorable free energy when

the higher charge is present. Our approximation had a significant impact on the

results, and we expect better agreement between occupancies and free energies for

simulations that sample the fully coupled state.
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4.3 Explicit Solvent Identifies Locations Different from

Implicit Solvent Results

Simulation correctly identifies the experimental binding location as the principal

binding location for three ligands. The position of samples clustered into identified

locations are plotted for both implicit solvent HREMD and explicit solvent expanded

ensemble results in Fig. 4.3. Most locations are not shared between the two solvation

models, with phenol sharing no locations, though the experimental binding location

is identified by both models for benzene, 1-methylpyrrole and para-xylene. Implicit

solvent seems to indicate that the space between the “left” and “right” portions

of the protein (as drawn) acts as a binding location for all of the ligands. Explicit

shows no regions of increased sample density in that space. Explicit solvent has all

four ligands visit the binding location with the highest number of samples collected

there. This may be a consequence of undercharged ligand molecules, as both the

experimental and computational free energies indicate that phenol does not bind

with considerable affinity for the location, as determined by free energies greater

than −2.47 kcal/mol [11].

We sort explicit solvent clusters into combined locations around the protein.

Occupancies for each location are also sorted and shown graphically in Fig. 4.4.

These combined are relabeled from (A) to (H) in decreasing total occupancy. Total

occupancy is the sum of all four ligand occupancies, where zero is used for ligands

that don’t have a cluster at that location. The experimental binding location is

location (A). Each ligand has roughly the same shape, and three have the benzene

aromatic ring in common. These combined locations can reveal additional infor-

mation about which functional groups are important in binding to the protein. In
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Ligand Binding Locations Determined by Spatial Clustering

(a) benzene (b) 1-methylpyrrole

(c) para-xylene (d) phenol

implicit data explicit data

Figure 4.3: There are many differences between clusters determined under the
two solvation models. Each point represents one ligand configuration found in
areas calculated as a binding location using DBSCAN clustering. The protein
is rendered in grey, with the experimental binding location in the center-left
portion of each frame. Results obtained by Wang et al. [24] using HREMD in
implicit solvent are plotted in a transparent red. Expanded ensemble explicit
solvent results are superimposed and plotted in blue. The clusters are shown
from an angle that avoids most visual overlap of clusters that are not in the
same position. Locations where blue samples are overlapping red samples are
locations that the implicit and explicit models share. It is difficult to know
whether better agreement would be observed if fully coupled samples were
collected for explicit solvent.

the case of lysozyme, all three benzene-based compounds bind to the same shared

locations, (A)-(D). We do not make an attempt here to compare which interactions

with protein residues are dominant for any of the ligands.

The specific orientations of the ligand can be plotted and potentially analyzed

for important contacts with protein residues. Simulation generates orientations
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Occupancies for Ligand Binding Locations in Explicit Solvent

Locations A B C D E F G H
benzene 1 3 2 4 - - - -
1-methylpyrrole 1 - - - - - - -
para-xylene 1 2 4 5 - 3 - -
phenol 1 2 3 5 4 - 6 7

(a) Index of clusters that belong to combined-cluster locations

(b) Occupancies for ligand locations with insert showing position of clusters

Figure 4.4: The occupancies are calculated as ratios of samples in the location
relative to all the other clustered samples for all identified locations. The
locations here, labeled (A) through (H), have high density of samples within
the same volume relative to the protein across the four ligands. Location (A)
is the experimental binding location. The table above shows which individual
binding locations share the same position as other clusters for the other
ligands, and gives their combined location index letter.

of the ligand within a binding location. We identify which orientations belong to

each location by taking a frame from the trajectory for every point in the binding

cluster. The relative position of functional groups withing the location indicates

which residues are most attracted to those groups overall. Binding orientations for

para-xylene in the experimental and one surface binding location are plotted in two

figures listed in Appendix B as an example.
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Free Energy Estimates for Binding to T4-lysozyme L99A
Overall Binding Free Energy Major Binding Location

Ligand ∆Gexp ∆Gimplicit ∆Gexplicit ∆GMobley ∆Gimplicit ∆Gexplicit
benzene -5.19 -5.00 ±0.01 -3.69 ±0.03 -4.56 ±0.20 -3.78 ±0.33 -3.43 ±0.34
1-meth. -4.44 -4.96 ±0.15 -4.29 ±0.03 -4.32 ±0.08 -3.67 ±0.44 -3.84 ±0.05
p-xylene -4.67 -6.77 ±0.02 -4.05 ±0.04 -3.54 ±0.17 -5.84 ±0.42 -4.03 ±0.15
phenol > -2.74 -5.81 ±0.03 -3.67 ±0.05 -1.26 ±0.09 -5.73 ±0.12* -1.29 ±0.12

Table 4.4: Explicit solvent binding free energies appear to share better agree-
ment with experiment than implicit solvent. Free energies are in kcal/mol.
∆Gexp is the experimentally measured value for free energy, and ∆GMobley is
the estimated value for a ligand restrained to the binding location; both sets
of values are reported by Mobley et al. [11]. ∆Gimplicit are the free energies
reported for each of the ligands for simulation in implicit solvent HREMD.
∆Gexplicit are the free energies estimated here using explicit solvent expanded
ensemble. Free energies to the major binding location are energies of the
most populated cluster. *All major location binding free energies are for the
experimental binding location, except for phenol in implicit solvent which
does not have a cluster in that location.

4.4 Binding Free Energies for Both Models

Free energies agree with experiment more closely for explicit solvent than for the

implicit solvent data. We estimate the binding free energy for each ligand using

data from the entire simulation. The “major” binding location is the location that

had the largest number of samples collected for that location. Binding free energies

to the protein overall and for the major binding locations are reported in Table

4.4. The free energies to the protein overall corresponds with the experimental

isothermal titration calorimetry results, as the ligands in the experiment evolve heat

based on interactions to the protein as a whole. The major binding free energies

correspond to the simulations that Mobley et al. [11] perform. We say that their

data are for single-site simulations, as their technique samples a single localized

volume within the protein. They set up a series of simulations, one in each state,

but with the ligand restrained in most states so that it doesn’t leave the volume of
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Free Energy Estimates from Published Results
Overall Binding Free Energy Major Binding Location

Ligand ∆Gexp ∆Gimplicit ∆Gexplicit ∆GMobley ∆Gimplicit ∆Gexplicit
benzene -5.19 -6.01 ±0.81 -3.69 ±0.03 -4.56 ±0.20 -4.26 ±0.71 -3.43 ±0.34
1-meth. -4.44 -5.05 ±0.21 -4.29 ±0.03 -4.32 ±0.08 -3.48 ±0.26 -3.84 ±0.05
p-xylene -4.67 -5.72 ±0.95 -4.05 ±0.04 -3.54 ±0.17 -4.01 ±0.89 -4.03 ±0.15
phenol > -2.74 -2.32 ±0.58 -3.67 ±0.05 -1.26 ±0.09 -1.03 ±0.32* -1.29 ±0.12

Table 4.5: The published results for implicit solvent free energies share more
agreement with experimental results than does explicit solvent. Free energies
are in kcal/mol. Free energies listed here are in the same format as in Table
4.4, but the implicit results are from the published work of Wang et al. [24].
*All major location binding free energies are for the experimental binding
location, except for phenol in implicit solvent which does not have a cluster in
that location.

the experimental binding location. We use samples from our simulations that are

each located within a binding location, which provides a similar dataset as what

was generated for their results, but without having to know of any binding locations

beforehand. All of the major binding free energies in the table are relative to the

experimental binding location, except for phenol in implicit solvent.

Wang’s published data [24] for implicit solvent HREMD simulation are some-

times closer to experimental and single-site binding free energies than are the

explicit solvent results. These data are shown in Table 4.5. In both the published

data and the trajectories analyzed here, the free energies for benzene are closer

to experiment for implicit solvent. Most other explicit solvent overall and major

location free energies are closer to experiment and Mobley’s results respectively

than implicit solvent. The accuracy of the implicit solvent estimates may be due

to cancellation of error, where the assumptions involved with implicit solvent add

free energy due to omitting the complex interactions with solvent, but also subtract

due to ignoring the disruption of the solvent lattice that surrounds the protein.

However, there is insufficient evidence here to state that explicit solvent does not
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also suffer from cancellation of error. Explicit solvent free energies deviate from

experimental by more than 1 kcal/mol for both benzene and phenol. This may be

due to the choice of force-field/assumptions in the TIP3P model for water, the lack

of fully coupled samples, or assumptions in molecular dynamics itself.

Alternate binding sites contribute to the overall binding energy. We combine

the free energy for all locations with the formula

∆Gall = −kBT ln

∑
i

exp
(
−∆Gi
kBT

), (4.1)

so that ∆Gall is an estimate of binding to just the identified binding locations. The

values of ∆Gall are -3.48 (±0.31), -3.84 (±0.05), -4.12 (±0.13), and -2.87 (±0.11)

kcal/mol for benzene, 1-methylpyrrole, para-xylene and phenol respectively. The

experimental binding location for benzene and para-xylene accounts for most of

the free energy to the protein relative to overall binding free energy estimates for

explicit solvent. There are not alternative sites for 1-methylpyrrole, but the overall

free energy indicates that there is affinity to other locations around the protein,

since the free energy of the major location is 0.5 kcal/mol different. Phenol has

the highest contribution to free energy from alternate sites, with a difference of

1.6 kcal/mol between the all-location and major location free energies. However,

the all-location energy is also 0.8 kcal/mol off of the overall free energy, indicating

some favorable interaction to other areas outside the alternate binding locations.

Several issues could be addressed if the simulations are repeated. Samples

should be collected in the fully coupled state, to increase confidence in the clustering

results and how well the occupancies represent the free energy differences. Constant

volume simulations are not a significant source of error, though the system was

observed to have slightly negative pressure. The system volume can be lowered to
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observe if there is any effect on the predicted free energies. It is unclear if the ln(3)

increase to the weights for the coupled and uncoupled states for 1-methylpyrrole

was a source of error. The weights used in the Metropolized-Gibbs algorithm should

be just the estimated free energies between states. The production simulations

for each ligand should run without artificially increasing the weights to attempt

increased sampling in the end states.
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Conclusions and Future Work

We have presented a method to use computer simulation to find and evaluate

binding locations of ligands to proteins. Alchemical methods allow the ligand

molecule to explore more of the protein in a shorter amount of simulation time

than the physical binding process would require. Additionally, alchemical states lay

along a thermodynamic cycle that allows an indirect calculation of the free energy

of binding to protein. Clusters of high density of samples in the fully physical state

indicate where the ligand binds to the protein. We performed this study using the

expanded ensemble procedure on systems of lysozyme that are explicitly solvated.

Implicit solvent studies of the same systems provided different answers to

the questions of where and how much does a ligand bind. It is unclear if this

difference between implicit and explicit solvation is due to the assumptions made

in the implicit solvent model, or in the shortcomings of the study we perform. We

demonstrated ways to evaluate how well these simulations represent the physics of

the binding process, from comparing occupancies with free energies to observing

the number of samples per simulation in each binding cluster. We were unable to

observe free energies predicted by simulation that contain the experimental free

energies within error.

It would be informative to develop ways to plot the water molecules in proxim-

ity to the protein and evaluate what interactions they have with surface binding



locations. The binding location, defined as a static volume adjacent to the pro-

tein residues, should have two characteristic water densities for ligand bound and

without ligand. If the density does not significantly change upon ligand binding,

this suggests that the ligand is filling a hydrophobic pocket. Moderate changes

in solvent density may suggest that the ligand has higher affinity for the surface

residues than the water molecules, indicating that electrostatic or shape-specific

interactions between ligand functional groups and the residues may be important.

It would also be informative to monitor solvent molecules that appear to leave the

bulk solvent, to watch them and see if they potentially have a role in mediating

ligand binding to locations that otherwise would have a lower binding affinity.

This method, once validated, should be applied to other ligands and proteins. In

particular, human serum albumin (HSA) plays an important role for many drugs.

Establishing this method for use on HSA would provide a computational evaluation

of non-specific binding, which can indicate before synthesis if a drug may have

issues with pharmacokinetics. The method would also work well for study of

fragment libraries, by allowing the small molecules to find as many locations as

possible, potentially revealing novel target sites for specific binding. The result of

the combined fragments could then be simulated as well, to confirm the predicted

effect on binding.
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Simulation Details

We conduct simulations using the molecular dynamics package GROMACS, version

4.6.7 [40–43]. Simulation coordinates and parameters were converted directly from

those used for implicit solvent to have as direct a comparison to explicit solvent

as possible. The bound configuration of 1-methylpyrrole with T4-lysozyme was

converted from the files used by Mobley et al. [11] into GROMACS structure and

topology files. Bound configuration or structure implies that the ligand is within

the experimentally observed binding site. The parameters used for benzene, para-

xylene, and phenol by Wang et al. [24] were converted into GROMACS topologies

and use the same force-field. The structure of lysozyme/1-methylpyrrole complex

was solvated, and TIP3P chosen as the water model. The bound structures of the

other ligands were then created by replacing 1-methylpyrrole with the crystal-

structure benzene, para-xylene, and phenol molecules individually, as used by

Wang et al. [24]. Mobley et al. [11] confirmed the experimental binding location for

1-methylpyrrole and submitted the x-ray structure as PDB accession code 2OU0 to

the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank.

Morton and Matthews [44] confirmed benzene (PDB: 181L) as a binder of lysozyme,

while Liu et al. [45] confirmed para-xylene (PDB: 3GUM).

Periodic boundary conditions applied to an explicit solvent system reduces

simulation time while still providing a continuous, aqueous environment. In the



periodic box, the ligand is always less than half the minimum-image distance

away from the protein, in a virtual sea of water molecules. This is in contrast to

implicit-solvent simulation, where a harmonic restraint was used to keep the ligand

in proximity to the protein [24].

We run four different types of simulations, all with similar conditions. Solvation

simulations include just the ligand in solvent; these simulations gather the samples

we use to estimate solvation free energies. Randomization simulations produce

unique initial configurations. Weight equilibration simulations are a series of

simulations that iteratively improve the free energy estimates used as weights in the

state-change algorithm. Production simulations are the sets of expanded ensemble

simulations that generate orientations of the ligands which we analyze to estimate

binding locations and free energies.

A.1 Solvation Simulations

Simulations of ligand in solvent do not need to use expanded ensemble since

alchemical sampling is straightforward. We use 14 alchemical states for these

solvation runs, Table A.1 lists the interaction parameters. The first four states

discharge the ligand, while the last ten linearly decouple the Lennard-Jones term.

A small periodic box of solvent surrounds the ligand in each initial configuration.

These 14 configurations equilibrate at 1 atm and 300 K. Each simulation then runs

for 5 nanoseconds.

A.2 Randomization Simulations

We generate structures with random ligand location to remove as much bias as

possible towards the bound configuration. We start with the bound structure for
60



Solvation Simulations Alchemical Schedule
Index λc λv Index λc λv Index λc λv Index λc λv

0 1.00 1.00 4 0.00 0.90 8 0.00 0.50 12 0.00 0.10
1 0.70 1.00 5 0.00 0.80 9 0.00 0.40 13 0.00 0.00
2 0.50 1.00 6 0.00 0.70 10 0.00 0.30
3 0.00 1.00 7 0.00 0.60 11 0.00 0.20

Table A.1: Since solvent is a simple environment, enhanced sampling is
not necessary. Values of λv scale linearly from 1 to 0 with a change of 0.1
between each. State 0, with λc = λv = 1, is fully interacting. All charges are
turned off by state 3. The Lennard-Jones term is removed entirely by state 13,
representing the non-interacting state. A different set of parameters are used
for randomization, weight equilibration, and production simulations, and are
listed in Table A.2.

1-methylpyrrole from crystallography results, and replace this ligand with each of

the other three. We use these structures as initial configurations for randomization

simulations as well as for the explicit solvent HREMD study. The four simulations,

one for each ligand, spend 10 nanoseconds in the non-interacting state. Each ligand

then moves about the system freely, without collision with any other molecules.

The protein is free to interact with the solvent and rearrange its residues according

to its equilibrium ensemble. After the simulation completes, we pull frames from

the trajectory at even intervals to convert into initial configuration files. The ligand

may be anywhere in the simulation volume in these frames, including overlapping

with solvent or protein atoms. The configurations generated for benzene are shown

in Fig. A.1b.

A.3 Weight Equilibration Simulations

Weights are used in the state change algorithm to affect more even movement in

state space. We use the Wang-Landau algorithm [35] as included with GROMACS

in 10 nanosecond simulations to determine a first guess for the weights. We
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Plots of Initial Configurations of Both Bound and Randomized Ligand
Orientations

(a) (b)

Figure A.1: Random starting locations for the ligand allows it to avoid the
kinetically trapped condition of sampling the experimental binding location.
This location is buried within the protein, and provides a high energetic
barrier to escape. Plotted at left in (A.1a) are the ligands in the experimentally
observed binding location. The protein is shown in grey, with all four ligands
super-imposed. Carbon atoms are drawn in cyan, nitrogen in blue, oxygen in
red, and hydrogen in white. Water molecules are not shown in these plots, but
are present in the structure files. These four bound structures were used to
generate randomized configurations by running decoupled simulations, with
the ligand free to move throughout simulation space. Twenty initial structures
are chosen from each of the four simulations to use as initial configurations
in expanded ensemble production runs. The twenty initial positions for
benzene are shown in (A.1b). The other ligands have similar random positions.
These random initial configurations give each expanded ensemble simulation
an opportunity to begin by sampling a different location than its sibling
simulations. We can estimate convergence of the individual simulations by
comparing the sampling in each simulation to the others. It is likely that all
twenty simulations have provided sufficient sampling when each has sampled
the same locations with the same frequencies.

improve upon these estimates by using MBAR on the latter 5 nanoseconds of the

simulation. Another 10 nanoseconds of samples are generated without using the

Wang-Landau algorithm, but instead using just the first round of MBAR free energy

estimates. MBAR is applied again, this time to all 10 nanoseconds, to determine

better estimates. This process could be applied iteratively until sampling is relatively

even. Sampling is typically even enough when the ratio of samples in the most

sampled state to the least sampled state is less than five. We only performed one
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more 10 nanosecond simulation, for a total of 30 nanoseconds. The production

weights are determined by the estimates from MBAR for this last 10 nanoseconds.

During the Wang-Landau algorithm, a simulation starts with weights equal

to zero. Every time the state might change during simulation, the Wang-Landau

algorithm increases the weight of the current state by dW . This will in turn

discourage further sampling in that state so that other states will be visited. The

value Nratio is defined to help determine when the dW should change. Nratio is a

vector calculated as

Nratio =
Nsamples
k−1∑
l=0

[Nl]/k

(A.1)

where Nsamples is the vector that counts each time a state is visited, and Nl are the

values in that vector. When all values in Nratio and in 1/Nratio are greater than

Wratio, the number of samples are reset, and dW is decreased by a factor of Wscale.

For example, assume there are three states, k = 3. Sampling begins in state 0, and

the value dW = 1 is added to the vector of weights.

{W0,W1,W2}t = {1,0,0}1 (A.2)

Suppose that simulation continues such that 20, 30, and 25 samples are collected in

each state.

{W0,W1,W2}t = {20,30,25}75

Nratio = {0.80,1.25,1.00}

1/Nratio = {1.25,0.80,1.00}

(A.3)

With Wratio = 0.8, the number of samples are reset to {0,0,0} and dW = 1 ∗Wscale =
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Production Run Alchemical Schedule
Index λc λv Index λc λv Index λc λv Index λc λv

0 1.00 1.00 6 0.00 0.70 12 0.00 0.43 18 0.00 0.23
1 0.70 1.00 7 0.00 0.65 13 0.00 0.40 19 0.00 0.20
2 0.50 1.00 8 0.00 0.60 14 0.00 0.37 20 0.00 0.17
3 0.00 1.00 9 0.00 0.55 15 0.00 0.33 21 0.00 0.13
4 0.00 0.90 10 0.00 0.50 16 0.00 0.30 22 0.00 0.10
5 0.00 0.80 11 0.00 0.47 17 0.00 0.27 23 0.00 0.00

Table A.2: Extra states are added in regions of high uncertainty in the free
energy estimates. Naden and Shirts [22] graphically show this region of
higher uncertainty near λv = 0.25. We observe few occurrences of simulations
moving past this region to sample states with higher or lower λv, causing
these simulations to spend 10 nanoseconds or more in just the coupled or
uncoupled states. We added ten extra states at intermediate values to increase
the number of transitions from smaller to higher index states. Ten was chosen
to be conservative; we found that as few as four extra states may be sufficient.

0.5. Another 30, 40, 50 samples are collected, giving the following values

{W0,W1,W2}t = {35,50,50}195

Nratio = {0.75,1.00,1.25}

1/Nratio = {1.33,1.00,0.80}.

(A.4)

Sampling would continue until the values of Nratio satisfy the criteria for a reset.

Ideally, this process continues iteratively until dW falls below a preset tolerance,

and the difference in the weights are close to the free energy differences between

each state.

A.4 Production Runs

Simulations with different starting configurations should sample the same locations

with sufficient run time. Twenty independent expanded ensemble simulations were

performed for each ligand. Each of these simulations would be able to visit each
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potential binding location in the limit of infinite sampling. By starting from different

initial configurations, we have more opportunities to start sampling in different

binding locations. We check for consistency by noting how many simulations

sampled each location.

Alignment and clustering of samples are computed by the same methods used by

Wang et al. [24]. This provides a more direct comparison of the two methods. These

methods assume that the density of samples are localized for a binding location.

We expect the same assumption to apply in explicit solvent. Both alignment and

clustering are calculated without regard for the solvent molecules; they are removed

from the set of coordinates prior to analysis.

Alignment of the carbon backbone to a reference configuration is necessary to

determine consistent binding locations in a flexible protein environment. During

simulation, the protein is flexible, and may move, rotate and reconfigure itself

according to thermal motion and interactions with itself, the ligand, and the solvent.

Each frame of simulation, the protein is in a slightly different arrangement from

the last frame. In order to account for this flexibility and designate a constant

basis of comparison, the carbon backbone of the protein is aligned to a single

configuration before clustering. A rotation-translation matrix is applied to the

entire system to minimize the RMSD of the alpha-carbons between the frame

and the reference configuration. This minimization is computed and applied by

the Kabsch algorithm [46, 47] implemented by Ho [48]. This moves the ligand

with respect to the protein, so that ligand position across multiple frames can be

compared. The initial configuration of the first simulation in the set of twenty is

used as the reference structure. After analysis, the clusters are aligned to the bound

configuration (Fig. A.1a) in order to compare these clusters to the implicit solvent

results visually.
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We define a ligand binding location as a volume with increased density of

samples relative to the overall sample density. Localized areas of lower free energy

will be visited more often by definition of the partition function. We use the

Density Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm

[49], ported into Python by Clowers [50], to automatically determine how many

clusters are present, and which samples belong to those clusters. Not needing an

estimate of the number of clusters reduces the information needed a priori about

binding. Instead, the algorithm is able to isolate regions of space where the density

of samples is visibly higher, using no other information than the positions of the

samples themselves.

Wang et al. [24] determined that prescreening to remove low density samples

improves the resolution of clusters identified by DBSCAN. We construct a grid of

cubic voxels that are each 8 Å3 and superimpose this grid over the simulation space.

Voxels with a density of samples less than 2 times the average density of all voxels

with at least one sample are removed. For example, there are 46,656 voxels for

lysozyme which span 36 Å in every direction from the center of the protein. Assume

there is at least one sample in 20,000 voxels, and there are 50,000 total samples.

The “background” density would be 5/2 or 2.5 samples per voxel. All samples

in voxels with 2.5 ∗ 2 = 5 or less samples would be discarded before clustering.

This helps reduce the initial level of noise and removes most samples that are

visibly located within the solvent, and therefore are not useful in determining

binding locations. Wang et al. [24] reported issues with rejection less than 8 times

the background density, due to the close visual proximity of clusters within the

experimental binding location. No issues are observed for explicit solvent using a

factor of 2, as only one cluster is visually distinct in each location. In our analysis

of implicit files, a factor of 8 is used for all ligands except 1-methylpyrrole, which
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instead used 10 to separate visibly distinct clusters.
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Binding Orientations for para-xylene

Binding Orientations in the Experimental Binding Location

(a) para-xylene, implicit (b) para-xylene, explicit

Figure B.1: Binding orientations of para-xylene are shown for both implicit
and explicit solvent. The explicit solvent orientations are more compact, tak-
ing up less total volume than the collection of orientations in implicit solvent.
Clusters are identified by the location of just the center-atom, highlighted
in Fig. 3.1. These structures belong to the group of clustered samples, but
instead of just the center atom plotted, the entire ligand is shown in stick
representation.



Binding Orientations in a Surface Binding Location

(a) para-xylene, implicit (b) para-xylene, explicit

Figure B.2: Compared with Fig. B.1, orientations in explicit solvent are spread
out in a surface location as much as or more than the implicit solvent cluster.
The orientation for para-xylene in surface location (B) are shown.
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Follow-up Investigation

We performed a second set of simulations in an attempt to obtain results that should

more accurately represent the binding ensemble. We addressed the issue in the code

that prevented samples in the most coupled state. These repeat simulations are

therefore able to sample the full range of states. We also did not increase the weights

for the fully coupled and uncoupled states for 1-methylpyrrole. We were unable to

redetermine the weights for each state, so that sampling is not as even across the

states as it should be. These simulations also did not run as long as the original

simulations, collecting roughly a third of the length for benzene, 1-methylpyrrole

and para-xylene. A little over half the length was collected for phenol, with each of

20 simulations running for 40 ns. Overall, we expected the simulations to lack the

same level of convergence as the longer, original simulations, but we do expect the

identified clusters to have more physical significance as the samples are collected in

the physical state.

The sections that follow present the data from the repeat simulations. These

sections are analogous to the results section (Chapter 4) such that what follows could

replace the original results section. However, it is an important part of this research

to find that the results even without physical samples are self-consistent. We include

this appendix as an addendum to the original report, so that both narratives are be

recorded for use in future investigations. The data above in Chapter 4 detail the



Rates of Transition for Different Simulation Methods
Method HREMD HREMD Expanded ensemble

implicit explicit explicit
benzene 10.91 ns−1 - 4.17 ns−1

1-methylpyrrole 10.11 ns−1 0.20 ns−1 1.94 ns−1

para-xylene 2.71 ns−1 - 2.01 ns−1

phenol 4.00 ns−1 - 1.81 ns−1

Table C.1: Explicit solvent representation has a greater impact on the rate of
sampling than switching from HREMD to expanded ensemble. These values
are calculated as an average over 360 total ns of simulation for HREMD, and
500 ns for expanded ensemble, 800 ns for phenol. A transition is counted
whenever the simulation or replica moves to one of the fully uncoupled states
after sampling in one of the fully coupled states. Values are listed as number of
transitions per nanosecond, ns−1. Explicit solvent HREMD was not conducted
for benzene, para-xylene, or phenol. Higher values indicate a greater number
of opportunities for the ligand to explore alternative binding locations within
one nanosecond of simulation.

effects of longer, better converged simulations, while the results that follow show

what is possible with physical sampling.

C.1 Sampling Performance in Binding Ensemble Sim-

ulations

Convergence time is increased due to explicit water, and not by the change to

expanded ensemble. We quantify the effect of switching from implicit to explicit

solvent representation on the rate of transitions from bound to solvent phases

using a HREMD simulation in explicit solvent for 1-methylpyrrole. This simulation

uses the same parameters as reported in the study by Wang et al. [24], but with a

periodic box of solvent instead of harmonic restraints to keep the ligand near the

protein. It is worth noting that Wang et al. [24] also made Monte Carlo moves to

displace the ligand, which is not performed here, as it is not as useful. Proposed
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Monte Carlo moves would often cause the ligand to overlap solvent molecules, and

would almost always be rejected unless in the fully uncoupled state. Twenty-four

replicas simulate 17 unique states, with 6 fully coupled and 3 fully uncoupled

replicas, like the HREMD simulations of Wang et al. [24]. We measure transitions

as the time it takes for a single replica, after visiting one of the fully coupled

states, to sample in one of the fully uncoupled states. A total of 360 nanoseconds

of simulation are collected in each of the implicit and explicit solvent HREMD

simulations. This is compared to expanded ensemble explicit solvent simulations

at 500 or more total nanoseconds, where we treat each simulation like a replica in

measuring the number of transitions. As shown in Table C.1, explicit solvent causes

two orders of magnitude decrease in the number of transitions per nanosecond.

Expanded ensemble itself improves significantly over HREMD, sampling on average

ten times as many transitions. Park [23] previously offered arguments for why

expanded ensemble should have higher acceptance ratios than HREMD for state

switches performed between adjacent states. Our observation is consistent with

their statement for “all-to-all” sampling under the metropolized-Gibbs algorithm

(see Sec. 3.1). Higher acceptance ratios imply better mixing in state space, which

leads to better mixing in configurational space.

We correlate the number of transitions with the ability of the simulation to find

binding locations. Each time the ligand unbinds from the protein, the ligand has a

chance to bind again but at a different location. We have plotted the series of state

indexes versus time to compare with our visual observation of the ligand trajectories

for expanded ensemble explicit solvent simulation. We see a correlation between

the transitions in state indexes plotted in Fig. C.1 and the ligand leaving the protein

to sample solvent. Regions where the state index remain low, where the interactions

are more coupled than uncoupled, typically indicate that the ligand is sampling
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Timeseries of State Indices for Different Simulation Methods

(a) HREMD, implicit solvent

(b) HREMD, explicit solvent

(c) Expanded ensemble, explicit solvent

Figure C.1: Explicit solvent simulations are slow to sample transitions. These
simulations spend long amounts of time sampling in a narrow range of states.
Plots (C.1a), (C.1b), and (C.1c) show the state index as a function of simulation
time in picoseconds. Transitions can be observed visually as the span of time
between the state index moving to or below the lower blue line and when
it moves to or above the upper line, where the lines are drawn to show the
difference between fully coupled states, intermediate states, and uncoupled
states at the top. One example of a transition is the time leading up to 3.6
nanoseconds in plot (C.1b), where the switch from coupled to uncoupled has
been highlighted by a gray box.
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a binding location. We would like to see a trace closer to that of implicit solvent

HREMD, where the series of state index values seem to indicate rapid binding and

unbinding of the ligand. Each binding event, whether rapid or not, is still a useful

sample of where the ligand spends its time.

We can theoretically predict how long a simulation will need to run to observe

the same number of binding events as the implicit solvent HREMD studies. HREMD

implicit solvent captures more than 10 transitions per nanosecond for two ligands,

1-methylpyrrole and benzene. Expanded ensemble explicit solvent sees nearly

2 ns−1 for 1-methylpyrrole. This indicates that expanded ensemble simulations

for 1-methylpyrrole should run for a total of five times as many nanoseconds as

the HREMD simulations to observe the same amount of transitions. The HREMD

implicit solvent study simulated a total of 360 ns, meaning that 1.8 µs are needed

to achieve the same level of sampling different binding locations. This is just

an approximation, but this quantity can be important in the design of future

simulations to gauge how long a simulation should be.

Increasing the weights in the fully coupled and uncoupled states may lead

to slower ligand dynamics. Earlier simulations show that the transition rate for

1-methylpyrrole is more than twice as slow, at 0.85 ns−1 compared with the value

observed here of 1.94 ns−1. These earlier simulations added an additional factor of 3

to the weights controlling changes in state for the fully coupled and fully uncoupled

states for 1-methylpyrrole. The most recent simulations reported here did not use

this factor. We infer that the increased factor discouraged sampling in higher states

in preference for the energetically favorable coupled state, and the free energy

difference from coupled to uncoupled is too high to switch directly between the two.

One out of four ligands is a small sample size, so further investigation is needed to

determine how concrete is this relationship between additional factors and reduced
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number of transitions. Explicit solvent HREMD simulations for benzene, para-

xylene, and phenol may also be able to provide more insight, but we have not

performed these simulations.

C.2 Binding Locations are Identified Using 20 Trials

We perform twenty independent simulations of T4 lysozyme L99A with each ligand.

The clusters are volumes of high density of samples from the fully interacting state

0. Figure C.2 shows the number of samples for each simulation in each cluster.

Samples that are outside of the protein radius but within the cutoff radius are

treated as solvent samples. The protein radius is measured as the distance to the

protein atom farthest from the protein center, and the cutoff radius is 5 Å past the

protein radius. The number density of solvent samples is used as a reference in

estimating the free energy of the clusters by occupancy.

Figure C.2 presents information that we use to judge the convergence of the

binding study. Most binding locations are sampled independently by separate

simulations. Sampling is still not ideal, as we would like to see each simulation

visit each location for a proportionate amount of samples. However, sampling is

encouraging as each of the top 4 clusters for every ligand are visited by at least 4

simulations. For all but phenol, the most sampled location is visited by most every

simulation. The stacked bar charts show how many samples of each simulation were

assigned to the clusters that are identified for each ligand. Ideal sampling would

have bars in each column of approximately equal height for each cluster. Clusters are

numbered by the most sampled to the least. Only the four most sampled clusters are

shown individually in the chart, with any other clusters grouped together. Benzene

has 7 distinct clusters, 1-methylpyrrole has 4, para-xylene has 6, and phenol has 11.
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Number of Samples Contributed by Each Simulation to Clustering

(a) benzene samples (b) benzene clusters*

(c) 1-methylpyrrole samples (d) 1-methylpyrrole clusters

(e) para-xylene samples (f) para-xylene clusters

(g) phenol samples (h) phenol clusters

Figure C.2: We have strong confidence that binding locations which are visited
in several simulations are real. Most of the identified clusters are sampled in
at least 4 simulations. Details of this plot given near the beginning of Sec. C.2
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*Benzene’s cluster 1 is located in the experimental binding location between five

protein helices at the left in the images.

Individual binding location free energies do not well agree with empirical

occupancies which is not unexpected for shorter simulations. Table C.2 shows

the observed values for occupancy of and the estimated binding free energies for

binding locations identified by clustering. The free energies are used to estimate

occupancy values, and the occupancies are compared to the number of samples

in the surrounding solvent to estimate free energies. All ligands have individual

site binding free energies that are not within the confidence intervals of the free

energies estimated from occupancy values, showing relative disagreement between

free energy and occupancy. The free energies estimated by occupancy are not

negative enough for nearly every location. This implies that the solvent region

was sampled more often than expected given the MBAR estimates of free energy;

a larger number of solvent samples leads to more positive free energies estimated

from occupancy values. The occupancies do correctly predict the most sampled

binding locations, as each of these has the lowest, most favorable free energy for

each ligand. Longer simulations may lead to a balance between samples in solvent

and samples in binding locations so that the ratio between the number of bound

and solvent samples would agree with the binding free energy estimate.

Table C.2 presents several quantities to gauge the extent of sampling by the

extent of agreement between free energy estimates and observed occupancies. The

occupancies are used to calculate an estimate of the free energy difference ∆G′i using

Eqn. 2.15. The 95% confidence intervals for both Oi and ∆G′i are calculated by the

bootstrap method [38]. The free energy difference and uncertainty is estimated

using MBAR. These free energies are used to estimate the occupancies O′i using

Eqn. 2.12. The 95% confidence intervals for O′i are calculated assuming that MBAR
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Occupancies and Free Energies by Binding Location
Location Occupancy, Oi Occupancy, O′i Free Energy, ∆Gi Free Energy, ∆G′i

(from ∆Gi) (from Oi)
% % kcal/mol kcal/mol

benzene
1 43.1 [29.4, 57.7] 83.2 [50.7, 95.5] -3.77 ±0.44 -2.11 [-2.41, -1.80]
2 30.1 [14.6, 45.8] 8.5 [ 2.1, 25.5] -2.41 ±0.17 -1.90 [-2.31, -1.32]
3 7.6 [ 1.8, 15.4] 1.8 [ 0.4, 6.7] -1.50 ±0.25 -1.07 [-1.56, -0.06]
4 7.0 [ 0.5, 18.4] 1.1 [ 0.2, 4.2] -1.18 ±0.30 -1.02 [-1.71, 0.56]
5 4.7 [ 1.0, 9.7] 1.8 [ 0.4, 7.2] -1.47 ±0.30 -0.78 [-1.27, 0.22]
6 3.8 [ 1.3, 7.5] 2.3 [ 0.5, 8.2] -1.63 ±0.25 -0.67 [-1.10, -0.00]
7 3.7 [ 1.3, 7.1] 1.4 [ 0.3, 4.7] -1.32 ±0.23 -0.64 [-1.04, -0.05]

1-methylpyrrole
1 87.3 [81.1, 92.7] 94.0 [83.6, 96.9] -3.87 ±0.09 -3.11 [-3.31, -2.91]
2 7.4 [ 3.6, 11.7] 3.1 [ 1.4, 6.2] -1.83 ±0.21 -1.64 [-1.96, -1.20]
3 3.2 [ 0.1, 7.5] 2.6 [ 0.5, 12.2] -1.72 ±0.50 -1.14 [-1.67, 1.33]
4 2.2 [ 0.1, 5.7] 0.3 [ 0.0, 2.6] -0.50 ±0.64 -0.91 [-1.51, 1.09]

para-xylene
1 45.8 [32.1, 64.4] 65.2 [38.5, 83.0] -3.32 ±0.28 -2.32 [-2.71, -1.96]
2 14.3 [ 4.9, 26.1] 10.5 [ 4.2, 20.2] -2.23 ±0.17 -1.63 [-2.15, -0.88]
3 13.6 [ 0.4, 32.4] 4.8 [ 1.3, 14.8] -1.77 ±0.35 -1.59 [-2.35, 0.66]
4 12.0 [ 3.7, 23.2] 12.8 [ 4.5, 28.9] -2.35 ±0.25 -1.52 [-2.06, -0.68]
5 8.0 [ 0.2, 19.9] 2.6 [ 0.7, 8.5] -1.40 ±0.35 -1.27 [-1.92, 1.09]
6 6.4 [ 0.1, 16.7] 4.0 [ 1.1, 12.7] -1.66 ±0.35 -1.14 [-1.81, 1.22]

phenol
1 20.6 [ 1.4, 41.4] 27.4 [ 2.0, 45.3] -2.37 ±0.27 -1.74 [-2.33, -0.04]
2 15.9 [ 0.0, 40.7] 0.5 [ 0.0, 76.7] -0.01 ±2.03 -1.59 [-2.34, inf]
3 11.3 [ 5.3, 22.4] 22.4 [ 1.6, 48.5] -2.25 ±0.41 -1.38 [-1.77, -0.86]
4 10.8 [ 4.8, 20.2] 11.3 [ 0.9, 17.9] -1.84 ±0.17 -1.35 [-1.73, -0.84]
5 9.7 [ 0.5, 21.0] 9.2 [ 0.7, 18.4] -1.72 ±0.27 -1.29 [-1.84, 0.44]
6 9.5 [ 2.0, 24.5] 10.4 [ 0.8, 20.8] -1.79 ±0.27 -1.28 [-1.86, -0.24]
7 6.9 [ 0.8, 16.7] 6.0 [ 0.5, 13.6] -1.46 ±0.31 -1.09 [-1.62, 0.15]
8 4.1 [ 0.0, 13.8] 2.9 [ 0.1, 20.8] -1.04 ±0.73 -0.78 [-1.53, 3.52]
9 3.9 [ 0.1, 9.1] 7.3 [ 0.1, 83.5] -1.58 ±1.31 -0.75 [-1.27, 1.36]

10 3.9 [ 0.4, 8.9] 1.4 [ 0.1, 4.0] -0.58 ±0.39 -0.74 [-1.24, 0.74]
11 3.4 [ 0.0, 11.7] 1.3 [ 0.1, 5.6] -0.53 ±0.53 -0.66 [-1.40, inf]

Table C.2: Free energy estimates agree with the number of samples in each
binding location for some ligands. The binding experimental location has
the highest occupancy of all identified locations, listed as location 1 for each
ligand. The occupancies are calculated using the ratio of samples to the total
number of clustered samples. Explanation of these values is given at the end
of Section C.2.
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estimates are normally distributed, which is deemed reasonable given the results of

the study by Paliwal and Shirts [39]. We note that these short simulations were only

able to produce qualitative agreement between occupancies and free energies, with

the most-favorable free energies found for the most-sampled locations.

C.3 Explicit Solvent Identifies Locations Different from

Implicit Solvent Results

Simulation correctly identifies the experimental binding location as the principal

binding location for three ligands. The position of samples clustered into identified

locations are plotted for both implicit solvent HREMD and explicit solvent expanded

ensemble results in Fig. C.3. Most locations are not shared between the two solvation

models, though the experimental binding location is identified by both models for

benzene, 1-methylpyrrole and para-xylene. Implicit solvent seems to indicate that

the space between the “left” and “right” portions of the protein (as drawn) acts as a

binding location for all of the ligands. Explicit shows no regions of increased sample

density in that space. Both implicit and explicit do not find a binding cluster in the

experimental binding location for phenol, which is expected for this non-binder.

We sort explicit solvent clusters into combined locations around the protein.

Occupancies for each location are also sorted and shown graphically in Fig. C.4.

These combined locations are relabeled from (A) to (F) in decreasing total occupancy.

Total occupancy is the sum of all four ligand occupancies, where zero is used

for ligands that don’t have a cluster at that location. The experimental binding

location is location (A). Each ligand has roughly the same shape, and three have the

benzene aromatic ring in common. These combined locations can reveal additional

information about which functional groups are important in binding to the protein.
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Ligand Binding Locations Determined by Spatial Clustering

(a) benzene (b) 1-methylpyrrole

(c) para-xylene (d) phenol

implicit data explicit data

Figure C.3: There are many differences between clusters determined under the
two solvation models. Each point represents one ligand configuration found in
areas calculated as a binding location using DBSCAN clustering. The protein
is rendered in grey, with the experimental binding location in the center-left
portion of each frame. Results obtained by Wang et al. [24] using HREMD in
implicit solvent are plotted in a transparent red. Expanded ensemble explicit
solvent results are superimposed and plotted in blue. The clusters are shown
from an angle that avoids most visual overlap of clusters that are not in the
same position. Locations where blue samples are overlapping red samples are
typically locations that the implicit and explicit models share.

We do not make an attempt here to compare which interactions with protein residues

are dominant for any of the ligands.

The specific orientations of the ligand can be plotted and potentially analyzed

for important contacts with protein residues. Simulation generates orientations

of the ligand within a binding location. We identify which orientations belong

to each location by taking a frame from the trajectory that corresponds to each
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Occupancies for Ligand Binding Locations in Explicit Solvent

Figure C.4: The occupancies are calculated as ratios of samples in the location
relative to all the other clustered samples for all identified locations. The
locations here, labeled (A) through (F), have high density of samples within
the same volume relative to the protein across the four ligands. Location
(A) is the experimental binding location. The individual binding location
numbers are given in maroon just above the combined location index letter
in the chart. The combined locations are sorted by total occupancy across all
four ligands. Error bars represent 95% confidence intervals in the individual
binding location occupancies.

point in the binding cluster. The relative position of functional groups within the

location indicates which residues are most attracted to those groups overall. Binding

orientations for para-xylene in the experimental and one surface binding location as

determined by earlier simulations that did not sample the fully coupled state are

plotted in two figures listed in Appendix B as an example.

C.4 Binding Free Energies for Both Models

Free energies agree with experiment somewhat more closely for explicit solvent

than for the implicit solvent data. We estimate the binding free energy for each
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Free Energy Estimates for Binding to T4-lysozyme L99A
Overall Binding Free Energy Major Binding Location

Ligand ∆Gexp ∆Gimplicit ∆Gexplicit ∆GMobley ∆Gimplicit ∆Gexplicit
benzene -5.19 -5.00 ±0.01 -3.56 ±0.03 -4.56 ±0.20 -3.78 ±0.33 -3.77 ±0.44
1-meth. -4.44 -4.96 ±0.15 -3.94 ±0.03 -4.32 ±0.08 -3.67 ±0.44 -3.87 ±0.09
p-xylene -4.67 -6.77 ±0.02 -3.86 ±0.04 -3.54 ±0.17 -5.84 ±0.42 -3.32 ±0.28
phenol > -2.74 -5.81 ±0.03 -3.61 ±0.03 -1.26 ±0.09 -5.73 ±0.12* -2.37 ±0.27*

Close Binding Free Energy All Location Free Energy
Ligand ∆Gimplicit ∆Gexplicit ∆Gimplicit ∆Gexplicit
benzene -4.72 ±0.01 -3.44 ±0.05 -4.58 ±0.11 -3.89 ±0.36
1-meth. -4.96 ±0.15 -3.88 ±0.12 -4.54 ±0.14 -3.92 ±0.09
p-xylene -6.77 ±0.03 -3.75 ±0.08 -6.19 ±0.25 -3.57 ±0.19
phenol -5.81 ±0.03 -3.50 ±0.07 -5.73 ±0.12 -3.14 ±0.16

Table C.3: Explicit solvent binding free energies appear to share better agree-
ment with experiment than implicit solvent, though not by much. Free
energies are in kcal/mol. ∆Gexp is the experimentally measured value for free
energy, and ∆GMobley is the estimated value for a ligand restrained to the bind-
ing location; both sets of values are reported by Mobley et al. [11]. ∆Gimplicit
are the free energies estimated here for each of the ligands for simulation
in implicit solvent HREMD. ∆Gexplicit are the free energies estimated here
using explicit solvent expanded ensemble. Free energies to the major bind-
ing location are energies of the most populated cluster. *All major location
binding free energies are for the experimental binding location, except for
phenol in both implicit and explicit solvent which do not have a cluster in
that location. “Close binding” free energies include a solvent and volume
correction to reduce any over-estimation of the free energy by including fa-
vorable interactions to the “solvent volume” portion of the simulation space.
“All location” free energies are explained at the end of Section C.4, and in
general show how much free energy would be ignored if only binding to a
single location is considered.

ligand using data from the entire simulation. The “major” binding location is the

location that had the largest number of samples collected for that location. A close

binding free energy adds a small correction to account for possible overestimation

due to the size of the simulation box, and an all location free energy includes

contributions from all identified binding locations. All four of these definitions of

binding free energies are reported in Table C.3. The free energies to the protein

overall correspond with the experimental isothermal titration calorimetry results,
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Free Energy Estimates from Published Results
Overall Binding Free Energy Major Binding Location

Ligand ∆Gexp ∆Gimplicit ∆Gexplicit ∆GMobley ∆Gimplicit ∆Gexplicit
benzene -5.19 -6.01 ±0.81 -3.56 ±0.03 -4.56 ±0.20 -4.26 ±0.71 -3.77 ±0.44
1-meth. -4.44 -5.05 ±0.21 -3.94 ±0.03 -4.32 ±0.08 -3.48 ±0.26 -3.87 ±0.09
p-xylene -4.67 -5.72 ±0.95 -3.86 ±0.04 -3.54 ±0.17 -4.01 ±0.89 -3.32 ±0.28
phenol > -2.74 -2.32 ±0.58 -3.61 ±0.03 -1.26 ±0.09 -1.03 ±0.32* -2.37 ±0.27*

Table C.4: The published results for implicit solvent free energies share more
agreement with experimental results than does explicit solvent. Free energies
are in kcal/mol. Free energies listed here are in the same format as in Table
C.3, but the implicit results are from the published work of Wang et al. [24].
*All major location binding free energies are for the experimental binding
location, except for phenol in implicit and explicit solvent which do not have
a cluster in that location.

as the ligands in the experiment evolve heat based on interactions to the protein

as a whole. The major binding free energies correspond to the simulations that

Mobley et al. [11] perform. We say that their data are from single-site simulations,

as their technique samples a single localized volume within the protein. They set

up a series of simulations, one in each state, but with the ligand restrained in most

states so that it doesn’t leave the volume of the experimental binding location. We

use samples from our simulations that are each located within a binding location,

which provides a similar dataset as what was generated for their results, but without

having to know of any binding locations beforehand. All of the major binding free

energies in the table are relative to the experimental binding location, except for

phenol in implicit and explicit solvent.

Wang’s published data [24] for implicit solvent HREMD simulation are some-

times closer to experimental and single-site binding free energies than are the

explicit solvent results. These data are shown in Table C.4. In both the pub-

lished data and the trajectories analyzed here, the free energies for benzene and

1-methylpyrrole are closer to experiment for implicit solvent. Some other explicit
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solvent overall and major location free energies are closer to experiment and Mob-

ley’s results respectively than implicit solvent. The accuracy of the implicit solvent

estimates may be due to cancellation of error, where the assumptions involved with

implicit solvent add free energy due to omitting the complex interactions with

solvent, but also subtract due to ignoring the disruption of the solvent lattice that

surrounds the protein. However, there is insufficient evidence here to state that

explicit solvent does not also suffer from cancellation of error. Explicit solvent free

energies deviate from experimental by more than 1 kcal/mol for both benzene and

phenol. This may be due to the choice of force-field/assumptions in the TIP3P

model for water, or assumptions in molecular dynamics itself.

Alternate binding sites contribute to the overall binding energy. We combine

the free energy for all locations with the formula

∆Gall = −kBT ln

∑
i

exp
(
−∆Gi
kBT

), (C.1)

so that ∆Gall is an estimate of binding to just the identified binding locations. The

values of ∆Gall are -3.89 (±0.36), -3.92 (±0.09), -3.57 (±0.19), and -3.14 (±0.16)

kcal/mol for benzene, 1-methylpyrrole, para-xylene and phenol respectively. These

values are listed in Table C.3.
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