
The Utilization of Sandboxing to Prevent SQL Injection Cyber-Attacks

A Technical Report Submitted to the Department of Engineering and Society

Presented to

The Faculty of the

School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, Computer Science

Gabriel Edwards

Spring 2022

On my honor as a University Student, I have neither given nor received unauthorized aid

on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Advisors

Rosanne Vrugtman, Department of Computer Science

Daniel G. Graham, Department of Computer Science

The Utilization of Sandboxing to Prevent SQL Injection Cyber-Attacks

CS4991 Capstone Report, 2022

Gabriel Edwards

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

gse3ez@virginia.edu

Abstract

SQL injection attacks are one of the most

common forms of cyber-attack, with millions

of them threatening major databases across

the internet each day. To combat this problem

and isolate potential threats, I propose

applying the concept of sandboxing to

database queries. The general method of

sandboxing a database is to clone (copy) the

database before applying an SQL query to it,

apply the query to the separate cloned

database, and then compare the two databases

to determine if any changes were made. The

goal of the proposed research would be to

determine both the effectiveness of

sandboxing in detecting and preventing an

array of SQL injection queries, and the

impact sandboxing would have on the

average load and response times of a website.

The effectiveness of sandboxing in detecting

injections would vary depending on its

intended application. SQL injections are very

easy to detect in search-based queries, but the

process would be less reliable for table

update queries. In terms of the effect on a

website’s usability, sandboxing is likely to

cause a notable delay in response time.

Further research comparing this solution to

others that are already in use would provide

important insight into whether the

effectiveness of sandboxing is worth the

increased response time it causes.

1. Introduction

In 2012, the hacking group Team GhostShell

stole records from over 100 universities

worldwide [7]. The names, addresses, emails,

usernames, passwords, and even more

sensitive info were stolen from over 36,000

unsuspecting, helpless university students,

like those at the University of Virginia. The

vulnerability that allowed this access, which

security personnel across the world were

unprepared for, was simple yet devastating:

SQL injection. SQL injection attacks are one

of the most common forms of cyber-attacks

today, having comprised approximately two

thirds of all cyber-attacks worldwide between

2017 and 2019 [6]. These attacks target SQL

databases, where information is stored in

tables and can be added, updated, retrieved

from, deleted from, etc. using queries

statements [2].

Typically, websites will ask for information

from the user (like a username or password),

which is then used within a query to access

some information in a given table. Injection

attacks work by “injecting” statements into

these queries instead, which trick the website

into accessing information that it was not

given the proper credentials for.

There already exist several methods of

countering SQL injections, which employ a

range of techniques and often attempt to

handle the issue at various stages of querying.

Examples of these include: using prepared

statements, which bind query parameters to

specific data types (so that commands are

treated as plaintext); validating input, such as

ensuring an email address given to complete

a query is in valid form; and requiring login

credentials to update a table [3].

2. Related Works

Research in this area has primarily focused

on methods of attack prevention that address

the queries themselves, rather than their

effects. One of the oldest and more widely

used of these methods is to use prepared

statements, as discussed by Tankic (2018).

Prepared statements are simply prewritten

statements executed by code, where variables

given by the user are bound to pre-

determined data types. This differs from the

focus of this paper in that potentially

malicious commands are converted to

plaintext (and neutered) before the query is

executed, as opposed to examining the result

of the query.

A more recently proposed version of query

sanitation comes from research by Abikoye

et al. (2020), which involves using the Knuth-

Morris-Pratt string matching algorithm to

simply compare a given query to known SQL

injection commands, and reject matching

queries. This differs from this research in the

same way as prepared statements; however, it

involves a similar requirement of comparing

strings, and suggests the potentially effective

KMP algorithm.

In addition to query sanitization methods, the

strategy of Object-Relation Mapping, which

is very similar to this research, involves

copying a given table to another structure,

where queries are then safely performed on

that structure. It differs, however, in that

tables are copied into an entirely separate

data structure, as opposed to simply a second

table. Creating a mapping from a relational

database to a data structure is said by Lorenz

et al. (2017) to be very difficult, and this

research hopes to negate this issue.

3. Proposed Design

The research in this paper is focused on

applying a new method of preventing SQL

injection attacks, and determining its

viability against multiple forms of injection.

3.1 Types of SQL Injection Attacks

SQL injection attacks can take several

different forms, meant to produce different

results. The first type is those that directly

manipulate the data in a given table, for

instance removing an entry or deleting the

entire table. The second type is those which

cause a query to return different results than

expected. One example of this is that of

forcing a table of products on an online

retailer’s website to display a table of user’s

login information instead. The final type

addressed by this proposal is those which

cause error messages to be displayed on the

webpage, which could potentially give an

attacker valuable information about database

structure.

3.2 Proposal Overview

The crux of the proposed solution is the idea

of sandboxing. Sandboxing is the practice of

running a particular software along with all

dependent software in a separate

environment. The purpose is to limit the

impact of an exploited vulnerability in that

software; the attacker cannot reach any

important data or computer systems, since

there is no path from the vulnerable software.

This proposal suggests that to prevent SQL

injections, a given table that is meant to be

accessed could be copied into a separate

database, where it would then be queried. In

this way, any alterations made to the table by

an injected query would not affect the

original data. Following this, the two tables

would be compared entry by entry to

determine if the query was malicious.

To address the second two types of SQLi

attacks, the query results would also be

sandboxed and examined. This is much more

implementation-based, and would require

building a sample of expected results with the

widest coverage possible for the given task.

The result of the query would then be

compared to each expected result, using

regular expression to determine if it contains

the correct type of data. Also, a simple error

handler would be written to catch unexpected

errors and prevent them from being displayed

directly on the given website.

3.3 Experimental Design

There are two questions about the proposed

design that must be answered: what amount

of SQL injection attacks are caught using this

method; and how much time does it add to a

given website operation? To test, a sample

website would be written in the HTML

language, connected to two SQL databases:

one containing populated tables of user login

information and fake product information,

and the other containing two empty tables.

The website would contain a field for the user

to input a given product item name to display

on the website, which would be meant to

query the product table for an entry matching

that name. Before querying, a timer would

start, and both tables would be copied in the

manner described. The query would then be

executed on the copied product table. To

determine if the table was manipulated, each

entry of both tables would be compared with

the original versions, where any deviations

would be logged. To determine if login

information (which would be targeted) is

returned, the result would be converted to a

string and compared to a list of unique

identifier strings given to all product entries;

any misses would be logged. Following these

operations, the recorded time would also be

logged. A sample of typical SQLi attack

queries would then be executed on the

database, for various table sizes ranging from

100 entries to 10 million entries.

4. Expected Results

The time addition of the proposed process is

very straightforward to calculate. First, each

entry in both tables would need to be copied

between databases adding N operations

(where N is the number of entries). Then,

each table entry would need to be compared,

adding N more operations. Finally, the result

would need to be compared to the list of

product names, adding M operations (where

M is the number of products). Therefore, 3N

+ M operations are added, upper bounded by

4N. Both comparing and copying happen in

constant (negligible) time, so this process

would add a linear amount of time. This

means that at small table sizes, the extra time

would likely not be noticeable; at sizes

approaching 10 million, they could

potentially be.

It is likely that determining the effectiveness

of the experiment would be less

straightforward. It is expected that it would

catch all of the potential data leak attacks

possible. Regex comparison is a process that

is known to be effective, and any login info

returned by a query would certainly be

flagged as not containing a unique product

identifier. The issue is that this experiment

cannot guarantee the effectiveness of the

process for all use cases. This lies in the fact

that there is an unknowable amount of

possible query types and data that could be

returned, all of which requiring unique

testing.

5. Conclusion

The results expected from this proposal point

to a promising proof of concept, with a

reasonable level of effectiveness with small,

simple cases. That said, real-world databases

and injection attacks are wildly complex and

diverse, much more so than those discussed

here. Any application of sandboxing would

likely be implementation-based, and need to

cover an extremely wide range of attack

forms. These qualities would be very difficult

to design and test fully, and would likely

cause a considerable time addition. Though

this solution may not be particularly practical

or groundbreaking, this proposal

demonstrates that there are always other

solutions somewhere to a given problem.

6. Future Work

The most immediate work still to be done is

implementing the proposal; the expectations

seem sound, but they must be tested.

Following, testing must be expanded to more

realistically sized and complex databases, as

well as to a much wider variety (and

intricacy) of SQL injection examples. As it’s

likely for this testing to uncover undesirable

time additions at real world use cases, work

into a cleverer and more efficient sandboxing

algorithm will also be necessary.

References:

[1] Oluwakemi Abikoye, Abdullahi

Abubakar, Ahmed Dokoro, Oluwatobi

Akande, and Aderonke Kayode. 2020. A

novel technique to prevent SQL injection and

cross-site scripting attacks using Knuth-

Morris-Pratt string match algorithm.

EURASIP Journal on Information Security.

14. (Aug. 2020). DOI:

https://doi.org/10.1186/s13635-020-

00113-y

[2] Daniel Calbimonte. 2021. SQL

Definition. (April 2021). Retrieved February

23, 2022 from

https://www.sqlshack.com/sql-

definition/#:~:text=Basically%2C%20SQL

%20stands%20for%20Structured,%2C%20p

rocedures%2C%20etc.).

[3] Evan Klein. 2019. How to Defend Your

Business Against SQL Injections. (June

2019). Retrieved February 23, 2022 from

https://logz.io/blog/defend-against-sql-

injections/

[4] M. Lorenz, J. Rudolph, Guenter Hesse,

M. Uflacker, and H. Plattner. 2017. Object-

Relational Mapping Revisited - A

Quantitative Study on the Impact of Database

Technology on O/R Mapping Strategies. In

Proceedings of the Hawaii International

Conference on System Sciences, January 4,

2017, Manoa, Hawaii.

DOI:10.24251/HICSS.2017.592

[5] Jasmine Tankic. 2018. SQL Database

Performance using Prepared Statements and

Stored Procedures.

https://www.researchgate.net/publication/32

6786523_SQL_Database_Performance_usin

g_Prepared_Statements_and_Stored_Proced

ures

[6] Jai Vijayan. 2019. SQL Injection Attacks

Represent Two-Third of All Web App

Attacks. (June 2019). Retrieved February 23,

2022 from

https://www.darkreading.com/attacks-

breaches/sql-injection-attacks-represent-

two-third-of-all-web-app-attacks

[7] Jaikumar Vijayan. 2012. Group says it

hacked systems at 100 major universities

Harvard, Stanford, Penn among those hit;

breached data mostly innocuous, analyst

says. (October 2012). Retrieved February 23,

2022 from

https://www.computerworld.com/article/249

1950/group-says-it-hacked-systems-at-100-

major-universities.html

