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Abstract

Mobile phones have become an intrinsic part of our daily lives. Any data collected

from them is especially reflective of our day-to-day reality. By using smartphone apps,

researchers can now observe behavioral patterns in mobile data, all without soliciting any

responses or relying on self-reports. Such behavioral data includes the frequency and length

of phone calls, the contents of text messages, and users’ physical locations. However, this

immediately brings up privacy issues. Many people do not want others to harvest their

mobile phone’s private data. To utilize mobile data without invading privacy, I propose a

localized analysis framework using smartphones. In this approach, researchers do not di-

rectly collect raw data. Instead, software on each individual’s smartphone accesses the raw

data locally stored in the device, and only the processed results are sent to the researchers.

Researchers then analyze the aggregated individual results and find meanings at the whole

sample level.

The current study aims to demonstrate utilities of the proposed localized analysis

framework using smartphones with an emphasis on exploratory analysis using machine

learning. While there are many possible methods to employ within this framework, in

this study I adopt support vector machines (SVMs) for localized analysis at an individual

level and visually inspect the aggregated patterns at the whole whole sample level. The

simulation study results suggest that the proposed framework can perform as well as a con-

ventional data collection and analysis paradigm. In this study, the aggregation of multiple

individual models recovered the underlying true patterns as well as the single model built



iii

with the whole data. The localized analysis framework opens a new way of treating data to

protect user privacy.



iv

Table of Contents

Abstract ii

1 Background 1

2 Localized Data Collection and Analysis 9

2.1 Assumptions and limitations . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Significance of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Literature Review of SVMs 12

3.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Multiple classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Novelty detection (one-class classification) . . . . . . . . . . . . . . . . . . 20

4 Methodology 22

4.1 Goal of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Study 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Results 34

5.1 Study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



v

5.1.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.2 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Study 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.2 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 General Discussion 55

6.0.1 Limitations of the study . . . . . . . . . . . . . . . . . . . . . . . . 55

6.0.2 Implications of the study . . . . . . . . . . . . . . . . . . . . . . . 57

6.0.3 Future consideration . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.0.4 Significance of the localized analysis framework . . . . . . . . . . 60

6.0.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



1

1. Background
Smartphones as data collection tools

The number of smartphone users is estimated to grow to 6.1 billion–70% of the

global population–by 2020, which will outnumber fixed phone subscriptions (Erricson,

2015). Given that wide usage, smartphones are useful tools to collect data for social and

behavioral science research: They offer great convenience to both researchers and study

participants (Miller, 2012; Shah, Cappella, & Neuman, 2015).

Smartphone users can participate in studies using their own mobile phone whenever

and wherever they want to. They don’t have to commit a big chunk of time to participate

in studies; rather, they can utilize their spare time. Researchers have already been adopting

smartphones to replace traditional data collection methods, such as a phone interview or a

paper-and-pencil (e.g., Killingsworth & Gilbert, 2010; Könen, Dirk, & Schmiedek, 2015).

It is especially useful for longitudinal data collection, where participants provide data mul-

tiple times over the period of a study. Researchers no longer need to call their participants

to fill out study materials every evening; smartphones prompt participants to do so at the

preset time by researchers (e.g., Killingsworth & Gilbert, 2010).

Mobile data collection can go beyond traditional methods and provide unique in-

formation compared to traditional methods (Miller, 2012; Shah et al., 2015). In addition to

numerical values and texts typically collected in traditional surveys or tests, a smartphone

can easily include different forms of data such as images, audios, or videos (Lu, Pan, Lane,

Choudhury, & Campbell, 2009). A mobile phone, by its nature, contains interpersonal data,

including phone call logs, text messages, and contacts. This is valuable information for un-

derstanding interpersonal behavior (Calabrese et al., 2011). Even more, a smartphone can

provide surrounding information collected by mobile sensors; mobile sensing data include
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location or speed (Gonzalez, Hidalgo, & Barabasi, 2008; Song, Qu, Blumm, & Barabási,

2010). In fact, after consent, smartphone users can passively participate in studies, as their

smartphones are constantly collecting surrounding data.

Moreover, using customized apps, a smartphone can prompt study materials based

on contexts (Froehlich, Chen, Consolvo, Harrison, & Landay, 2007; Gerber, 2015; Raento,

Oulasvirta, Petit, & Toivonen, 2005). It can ask different questions based on a user’s be-

havior. A question could pop up on the screen when the user enters their home or office. It

could ask a series of questions at any point after the user takes photos or videos. It could

prompt different questions when the user makes phone calls with family or with unsaved

numbers.

For instance, if one would like to study how interpersonal contacts and social con-

text influence a person’s happiness, one could measure interpersonal contacts by frequency

of phone calls and text messages, or length of phone calls in minutes and size of text mes-

sages in bytes, or by the number of bluetooth signals detected as a proxy of nearby people.

One could also estimate social context (e.g., home or work) based on GPS location. One

could measure happiness by self-report, by analyzing emotional words in text messages, or

by analyzing smiles in photos.

New framework for data collection and analysis

A smartphone is a convenient and effective tool to gather a wide spectrum of data

about an individual. It is even cost effective, as researchers do not need to purchase them

for participants. It seems like researchers’ dreams are coming true. However, this rich data

immediately brings up serious concerns about privacy. Although aforementioned informa-

tion is already being used for business purposes by commercial smartphone apps, research

ethics inhibit researchers from obtaining extensive information from people’s phone. To

take advantage of such information, researchers should acquire participants’ informed con-

sent. But, even for research purposes, who wants someone else poking around their phones
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and pulling out personal text messages and photos?

In fact, researchers often are not interested in each individual data value. Rather,

they are interested in aggregated data and emerging patterns across many individuals. If

we can achieve information about the whole sample without looking at original responses

of individuals, then we do not need to obtain individual raw data. If we can assure that

researchers cannot access raw data in their phones, smartphone users are more likely to

readily agree to participate in studies and provide truthful answers.

I propose a new mobile data collection and analysis framework. A smartphone is

computationally powerful enough to analyze locally stored data using its processors and

memory. We can utilize its computing power for data analysis at an individual level. Then,

each mobile phone sends the locally analyzed individual results to a study host server by a

researcher. Researchers analyze the collected individual results at an aggregated level and

find patterns and meanings. A comparison between the conventional framework and the

proposed new framework is illustrated in Figure 1.1.

Consider a hypothetical study process using this framework. A researcher wants

to study how interpersonal contacts influence happiness depending on social context in

college students. Interpersonal contacts are measured by frequency of phone calls and

text messages. Happiness is evaluated by emotional words in text messages. Social context

(e.g., home or school) is recorded based on GPS location. The researcher defines features to

include in analysis and customizes the research app for data collection and analyses. Then

the researcher uploads the customized research app at a research hub website operated by

a non-profit research organization.

Jamie is a community college student, who is always willing to contribute to science

as a citizen-scientist. She is a member at the research hub website and occasionally receives

study participation invitations. Jamie downloads the research app and installs it on her

smartphone. The app shows a consent form that explains potential risks and benefits of

study participation and then asks for her agreement. The app clearly explains which data
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Figure 1.1: Data collection and analysis process in the conventional framework and in the
proposed localized analysis framework. Note that original raw data never leave the user’s
device. Researchers recieve only processed results.

will be utilized for the study, although no raw data will be collected without consent. The

research app allows her to opt in and out from the study whenever she wants to, just like

conventional studies.

While Jamie uses her own smartphone as usual, the app accesses and stores mobile

data needed for the study (i.e., frequency of phone calls and text messages, location, and

emotion ratings in text messages). Once the data reaches the predefined period (e.g., four

weeks) or the amount of data needed (e.g., 100 text messages), data analysis runs on her

smartphone when the phone is not in use (e.g., when the phone is recharging at night).

The research app sends the analysis results to the cloud, hosted by the research hub, which

collects multiple analysis results from the whole participants. In addition to the individual

results, Jamie agrees to send additional demographic information (e.g., gender, age, and

occupation). The researcher downloads all of the participants’ results from the research

hub website and analyzes the aggregated results.
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Benefits of the new framework

This framework has many benefits for both participants and researchers. First of all,

it better protects participant’s privacy while utilizing their private information. Researchers

do not need to see individual raw data such as survey responses, text messages, or photos.

Second, it provides better security. Because data are distributed in each mobile device and

not centralized at a location (e.g., a researcher’s computer), it has a lower risk from a data

breach. Third, it saves computational resources. It is surprisingly easy to recruit study

participants via online sources. Even without compensation, many people have voluntarily

participated in studies at internet websites; many sites draw thousands of participants, and

some draw millions (e.g., projectimplicit.com, yourmorals.org). However, if a researcher

would like to design a highly powered study with a large number of paticipants, it could

require significant centralized computational resources. These computational resources

can be crucial if a researcher would like to take advantage of various forms of data–texts,

images, and videos.

Finally, the framework helps to achieve higher response rates to sensitive research

topics. Study participants are likely to feel more comfortable and less offended when an-

swering sensitive questions in this framework. Sexual behavior and drug use are known

sensitive topics that have very low response rates (Tourangeau & Yan, 2007). Participants

are more likely to respond to sensitive questions in a more candid way if they are assured

that no one will see their original response.

Using smartphone features beyond the traditional questionnaire maximizes the ben-

efits of the proposed localized analysis framework. Phone call logs and location informa-

tion generated by a mobile phone are considered very private and people are reluctant to

share these data with someone else. Or, even if study participants allow researchers to

access personal data, such as photos and videos, it can be computationally expensive to

collect multimedia data at the central storage and analyze them all together. The proposed

framework provides means to maximize the benefits of the unique types of data generated
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by smartphones.

Previous research

A few methods have been developed and used to protect participant privacy in

survey research in the social and behavioral sciences. Unmatched count (Raghavarao &

Federer, 1979) is a technique to preserve privacy by counting positive responses in multi-

ple items (e.g., Ahart & Sackett, 2004; Coutts & Jann, 2011; Dalton, Wimbush, & Daily,

1994). Participants are randomly split into control and target groups, answer a series of

binary questions, and report only the total number of positive responses to researchers. In

this process, the target group answers one additional question, which is highly sensitive and

the real interest of the research. Using the control groups result as a baseline, researchers

can deduce the number of positive responses to the question of interest. Because partici-

pants report only the total number of positive response to all questions, their answer to the

sensitive question remains unknown to researchers.

Instead of randomly assigning participants into two groups, as in unmatched count,

randomized response (Greenberg, Abul-Ela, Simmons, & Horvitz, 1969; Warner, 1965)

uses known probabilities as a baseline rate (e.g., Aoki & Sezaki, 2014; Lee, Sedory, &

Singh, 2013; Ostapczuk, Moshagen, Zhao, & Musch, 2009). For example, researchers

would ask participants to flip a coin and to give a positive response if the coin comes up

heads (regardless of the truth) and a true answer if the coin comes up tails. Because the

baseline probability of coin flipping is known, researchers can deduce the probability of

positive responses to the question.

While these methods were developed to protect participants privacy during the data

collection process, more recent advancement was initiated in order to conceal individual

privacy during the data retrieval process after data are collected completely. In a database

management context, a differential privacy framework was proposed by Dwork and her col-

leagues (Dwork & Roth, 2014; Dwork, McSherry, Nissim, & Smith, 2006). In the differen-
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tial privacy framework, privacy is preserved by introducing randomness in query outputs.

They suggested mechanisms that can be used for differential privacy, such as the Laplace

mechanism for real values and the exponential mechanism for discrete values. Differen-

tial privacy aims to obtain statistical information about the population without revealing

anything about individuals.

Although differential privacy inspired further methodological advancement (e.g.,

Chaudhuri & Monteleoni, 2009; Lei, 2011), the framework was introduced as a database

query context and little work was done in a distributed multi-agent context. Recently, Boker

et al. (2015) have suggested a framework to promote participants’ privacy using mobile de-

vices. In their suggestion, a pre-specified model is sent to a participant’s device where data

are stored and only model fit information is returned to a researcher’s host computer. Then

a model fit for the whole sample is calculated via the optimization process. The suggested

method can effectively replace centralized data collection in traditional theory-driven data

collection and analysis, where researchers have a strong belief in their hypotheses and fit a

precisely specified model to data as confirmatory analysis.

However, the advantages of mobile data cannot be fully achieved by using only this

confirmatory approach. Mobile data may not be easily modeled in advance (e.g., movement

measured by accelerometer and gyroscope), and in fact they may not even be in a quantified

format to be analyzed (e.g., texts and images). To take full advantage of mobile data, it is

necessary to employ a flexible approach for data analysis.

Paradigm shift in data collection

Data acquisition in the social science tends to involve human administration. Tradi-

tionally, researchers initiate data generation by taking measures or asking questions. Social

and behavioral scientists have used archival data (e.g., books and pictures that were al-

ready produced by people), but they are labor intensive–expensive to work with. To utilize

texts and images, an army of research assistants is hired to rate and quantify them so that
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researchers can use quantified summary data for analysis.

Nowadays, data are being created all the time. Some are actively produced by users

with intentions. Some are generated by machines without users being aware. In either way,

data already exist. We no longer must constrain ourselves to the traditional sense of data

collection.

This shift in data collection paradigm brings up new research opportunities for the

social and behavioral science. For decades, there was no other way to find what people

think or how they behave other than asking directly (or measuring by indirect proxy). In

recent years, a part of our lives has become constantly recorded and stored as digitized

data. Using such data, we can observe how people naturally behave without intrusive

questioning. For example, we could analyze emotions in text messages using text mining

methods. Furthermore, since data are being generated all the time, we can study human

behavior retrospectively. For example, we could have studied how people reacted when the

9/11 attack happened using their phone call logs, text messages, and internet search logs.

This is a completely new type of study.

However, the challenge is that it is not easy to deal with this type of machine gener-

ated data only by traditional analysis methods. The data are not quantified, the formats are

heterogeneous, and the model specification is not known. To utilize such data, a first step

could be exploratory analysis, using machine learning and data mining.

The proposed framework can provide flexible applications using various analysis

methods, both at an individual level and at an aggregated level. For example, one could

analyze text messages using text mining methods at an individual mobile phone and visu-

ally explore the collected results at an aggregated level. Machine learning and data mining

methods will play an important role in utilizing non-traditional data such as text messages,

photos, and videos.
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2. Localized Data Collection and Analysis
In localized data collection and analysis framework, a smartphone analyzes stored

data about the user of the device and sends the analysis results to researchers. Researchers

aggregate multiple individual results and interpret meanings of emerging patterns at the

whole sample level. The framework is readily feasible to implement. Mobile phone apps

for data collection are already developed and being used by researchers (e.g., Dufau et

al., 2011; Froehlich et al., 2007; Killingsworth & Gilbert, 2010; MacKerron & Mourato,

2013). In terms of mobile computing technology, running data analysis on a smartphone is

feasible. However, because this is a new framework, little is known about which analysis

methods to use.

This dissertation investigates analysis methods for the localized analysis frame-

work. I investigate potentially useful analysis methods at an individual level and at an

aggregated level. The study focuses on exploratory analysis using machine learning in or-

der to utilize various forms of mobile data, although the framework itself is not limited to

these methods. The purpose of the study is to demonstrate the utilities of the framework.

I employ support vector machines (SVMs; Cortes & Vapnik, 1995; Vapnik, 1998)

for a localized analysis on a mobile device and I examine aggregated results to find mean-

ings at the whole sample level. Because of its simplicity to use and flexibility to different

tasks (Bennett & Campbell, 2000), SVMs are one of the most widely used machine learn-

ing methods and have shown excellent performance in applications (Wang & Pardalos,

2015). Besides, SVMs can be easily understood by researchers in social science, where

the framework will be used. In social and behavioral sciences, logistic regression and lin-

ear regression analysis are most widely used; an analogue can be made between logistic

regression and linear regression and SVMs (for classification and for regression), with a
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distinction in estimation mechanism. More details about SVMs will be presented later.

Although SVMs were selected for this study, many other methods can be applicable in the

proposed framework.

2.1 Assumptions and limitations

First, as a consideration for implementation, the characteristics of the processed

results on individual devices play a crucial role in privacy protection. In the localized anal-

ysis framework, a smartphone analyzes locally stored data and sends the analysis results to

researchers. The researchers receive only the processed results and never the original raw

data. The nature of the processed results is the key to protecting user privacy.

Any analysis method creates multiple products (e.g., coefficients, standard errors,

test statistics, or residuals, for linear regression); it is important to take into account that

some of the products are more or less suitable to conceal private information than the others.

The choice of processed results to be sent is an integral consideration in this framework.

More details will be discussed with a specific case of this study in the Methodology section.

Second, a localized analysis at an individual device requires multiple observations

per variable. Time-invariant variables such as demographic information (e.g., gender and

age) cannot be incorporated at the localized analysis for an individual. Such variables need

to be collected as traditional data collection process in order to be incorporated in analysis

at an aggregated analysis for the whole sample.

Third, this study focuses on a data-driven approach (i.e., exploratory analysis) with

the consideration of, and intention towards, an extension to heterogeneous mobile data.

A hypothesis-driven approach based on model specification (i.e., confirmatory analysis) is

not considered in this study. For confirmatory analysis that preserves privacy, consider the

framework suggested by Boker et al. (2015).

Lastly, the analysis methods employed here are only a small set of candidate meth-
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ods. The current study does not intend to provide an extensive range of analysis; the pur-

pose of the study is to demonstrate the utilities of the localized data collection and analysis

framework.

2.2 Significance of the study

Traditional data analysis assumes that analysts can use the data that are collected

from the sample at any time for data analysis with no limitation. If access to the original

data is limited, we need new analysis methods to find patterns and meanings without the

full original data. This is the first attempt to analyze each individual’s data locally, and

examine the aggregated results to find patterns at the whole sample level.

Although the localized analysis framework has many benefits and can be readily

implemented, there will be no practical use if we do not know what analysis methods to use

and how to interpret the results. Investigating analysis methods to employ in the proposed

framework is the foremost task in order to adopt the new framework to take advantage of

mobile data.

It is especially beneficial to adopt machine learning and data mining methods to

analyze mobile data because mobile data are different from traditionally well-defined mea-

sures. The traditional analysis methods widely used in social sciences are not suitable for

non-quantified data (e.g., text messages, photos, and videos). Additionally, even when the

data consist of numerical values, model specification will be challenging for non-traditional

data such as accelerometer measurements.

The current study employs SVMs among many other machine learning methods

because of their simplicity to use and flexibility to different tasks. Although this study uses

quantified data for analysis, the SVM method can be applied to non-quantified data.
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3. Literature Review of SVMs
SVMs comprise one category of machine learning algorithms for classification. In

machine learning, a typical classification task is to predict class labels of new instances

based on known instances. The basic idea of SVM is to construct a separating hyperplane

with the maximum margin between two classes. SVMs apply a linear method to data in a

high-dimensional feature space that is potentially non-linearly related to the input space.

SVMs have been successfully applied to a number of domains, such as computer

vision (Han & Davis, 2012; Mohammed, Minhas, Jonathan Wu, & Sid-Ahmed, 2011; Ros-

ten, Porter, & Drummond, 2010), bioinformatics (Che, Liu, Rasheed, & Tao, 2011; Inza et

al., 2010; Saeys, Wehenkel, Geurts, et al., 2012; Upstill-Goddard, Eccles, Fliege, & Collins,

2013), geosceinces (Li, Kuo, Lin, & Huang, 2012; Mountrakis, Im, & Ogole, 2011; Prad-

han, 2013), and finance and business (Huang, 2012; Yang, Deb, & Fong, 2011). Because

of the strong performance and flexibility of the method, the SVM has been extended to

tasks beyond classification, such as regression (Vapnik, 1998) and one-class classification

for novelty detection (Schölkopf, Platt, Shawe-Taylor, Smola, & Williamson, 2001; Tax &

Duin, 1999).

In this chapter, I will explain the basic mechanism of SVMs for classification, re-

gression, and novelty detection (one-class classification). Further extensive explanation

about SVMs can be found in Vapnik’s books (Vapnik, 1998, 1999).
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3.1 Classification

Linear separation

In classification, an SVM separates different classes of data by a hyperplane. In

Figure 3.1, we want to find a hyperplane to separate negative instances from the positives.

There are infinitely many hyperplanes to separate the two classes. The SVM finds the

hyperplane that maximizes the gap between data points on the boundaries, that is, the

distance of the two dashed lines as shown in Figure 3.2. There are always some points on

the dashed line (because otherwise they could be pushed apart further); these points are

called support vectors (marked in bold in Figure 3.2). Support vectors carry all information

about the solution.

Figure 3.1: Classification task.

Figure 3.2: Illustration of basic idea of SVMs.

The gap between these supporting planes is 2
||w|| . Maximizing the margin is equiv-
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alent to minimizing 1
2
||w||2 in the following quadratic programming problem:

min
w,b

1

2
||w||2

s.t yi(w · xi − b) ≥ 1

(3.1)

The primal form of linear SVM shown above can be formulated as the dual problem

by the Lagrange duality (Vapnik, 1998) as below:

min
α

1

2

m∑
i=1

m∑
j=1

yiyjαiαjxi · xj −
m∑
i=1

αi

s.t
m∑
i=1

yiαi = 0

αi ≥ 0 i = 1, ...,m

(3.2)

Although the primal optimization problem and the dual optimization problem yield

the same solution (w =
∑m

i=1 αiyixi), the dual problem is preferred due to its computa-

tional convenience using kernel methods, which will be illustrated later.

Finally, given a new instance, the class is decided by the sign of a decision value,

f(x) = sign(w · x − b). The magnitude of the decision value indicates certainty of pre-

diction. The decision values are close to 0 where the model is less certain about the class

decision.

No perfect separation: soft-margin

Figure 3.3: Illustration of soft-margin in SVMs.

Ideally, we want no points to be misclassified and no points to fall in the margin
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between the two classes. Due to noise, data would not be perfectly separable in reality, as

shown in Figure 3.3. Data points on the wrong side of its supporting plane are considered

errors. In soft-margin’ SVMs, a slack (or error) variable z weighted by C is added as a

penalty. We want to maximize the margin as before while minimizing the error. Note that

maximizing the margin regulates overfitting.

min
w,b,z

1

2
||w||2 + C

m∑
i=1

zi

s.t yi(w · xi − b) + zi ≥ 1

zi ≥ 0 i = 1, ...,m

(3.3)

The error z is weighted by C. When C is very large, the soft-margin SVM is

equivalent to the hard-margin SVM. When C is smaller, we allow misclassifications in

order for the margin to be larger. The cost parameter C must be chosen. The dual form of

soft-margin SVM is (Cortes & Vapnik, 1995; Vapnik, 1998):

min
α

1

2

m∑
i=1

m∑
j=1

yiyjαiαjxi · xj −
m∑
i=1

αi

s.t
m∑
i=1

yiαi = 0

C ≥ αi ≥ 0 i = 1, ...,m

(3.4)

Non-linear separation: kernels

In Figure 3.4, the two classes are not linearly separable; we need a quadratic func-

tion, such as a circle, to separate them. A classic solution to convert a linear function into

a nonlinear function is to simply add new features to the original data which are computed

from the original features in a non-linear way. For example, the function of a circle needs

x2, y2, and xy, in addition to the original data x and y. By applying the nonlinear function

in the original input space, the linear function is applied in the feature space of expanded

data.



16

Figure 3.4: Illustration of the kernel trick (adopted from Statnikov et al., 2015). In the left,
data are not linearly separable in the input space. In the right, data are linearly seperable in
the feature space obtained by a kernel.

However, the dimensionality of the feature space may explode exponentially when

adding all non-linear combinations of a certain degree. A way to get around this issue

is using a special property of the evaluation function θ(x). Let us define θ(x) : Rn →

Rn′ n� n′ and introduce this nonlinear mapping in the optimization problem:

min
α

1

2

m∑
i=1

m∑
j=1

yiyjαiαjθ(xi) · θ(xj)−
m∑
i=1

αi

s.t
m∑
i=1

yiαi = 0

C ≥ αi ≥ 0 i = 1, ...,m

(3.5)

The mapping occurs only at the inner product. The inner product of the mapped

points can be evaluated using the kernel function without explicitly defining the mapping

(Cortes & Vapnik, 1995); this is often referred as the kernel trick. SVMs use an implicit

mapping between the original input space and a high-dimensional feature space. Substitut-
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ing the kernel into the dual form yields:

min
α

1

2

m∑
i=1

m∑
j=1

yiyjαiαjK(xi, xj)−
m∑
i=1

αi

s.t
m∑
i=1

yiαi = 0

C ≥ αi ≥ 0 i = 1, ...,m

(3.6)

Using the kernel trick, we can apply the linear method to nonlinear problems. Data

are linearly separable in the feature space that is implicitly mapped by a kernel. The per-

formance of the kernel type depends on the type of application at hand. Some kernels

frequently implemented in SVM softwares are given below. Parameters (γ, d, and c) must

be chosen beforehand.

• Linear : K(xi, xj) = xTi xj

• Polynomial: K(xi, xj) = (γxTi xj + c)d

• Radial Basis Function (RBF): K(xi, xj) = exp(−γ|xi − xj|2)

• Sigmoid: K(xi, xj) = tanh(γxTi xj + c)

Parameter tuning and scaling

The performance of SVMs depends on the parameters. It is necessary to find the

optimal parameters to obtain the best results. In practice, it is widely suggested to do a

grid search of a combination of a range of parameters (Chang & Lin, 2011; Karatzoglou,

Meyer, & Hornik, 2005).

Another consideration for applying SVMs is that data should be scaled. Given that

data are heterogeneous in domains where machine learning applies, the range of values

of raw data can vary extremely across features. To prevent a feature with a wider range

dominating variability in data, it is important to scale them into same ranges beforehand.

A common practice is to standardize data with mean 0 and variance 1 for SVMs.
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Summary of SVM classification

Figure 3.5 depicts data with three variables: social context (work or home), fre-

quency of interpersonal contacts, and emotion ratings. Each observation (vector) is repre-

sented in the two dimensions of interpersonal contacts and emotion, while the social context

is coded as circles and triangles. An SVM finds a linear decision surface (hyperplane) that

can separate the two classes with the largest distance (margin) between borderline obser-

vation (support vectors). If such linear decision surface is not found in the original space

(input space), the data is mapped into a higher dimensional space (feature space) where

the separating decision surface exists. The feature space is constructed by mathematical

projection (kernel trick).

Figure 3.5: Illustration of SVMs.

3.2 Multiple classes

An SVM is a binary classifier that assigns either a positive label or negative one,

which is decided by the sign of decision value of an instance. Many real-world problems,

however, have more than two classes. When data has multiple classes, the class is decided

by voting, using voting schemes such as one-against-one or one-against-all. In the one-

against-all method, k binary classifiers are built to separate one class from the rest, where k

is the number of classes. The class of an instance is decided by the classifier that produces

the highest decision value for the instance. In the one-against-one classification method,
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(
k
2

)
classifiers are built in

(
k
2

)
subsets that contain only two classes of the data. The class of

an instance is decided by the most frequently assigned class by the all pairwise classifiers.

3.3 Regression

The SVM approach can be applied to real values instead of just binary classes (Vap-

nik, 1998). The main idea of this so-called SV regression is to build a model to predict the

outcome that allows a certain range (ε) of deviation. If the deviation between the actual

value and the predicted value is less than ε, the deviation is not considered an error. As

shown in Figure 3.6, it allows deviations in a band of size 2ε around the linear prediction;

any points outside this band are considered errors.

Figure 3.6: Illustration of ε-SV regression. Points outside the dashed band (±ε) are errors.

As before, we want to maximize the band width in order to avoid overfitting. To

account for errors outside of the band, we introduce slack variables z and z∗, which com-

pute errors of overestimation and underestimation. Non-linear prediction can be made by

the kernel trick as before. The primal form and the dual form of ε-SV regression are:

min
w,b,z,z∗i

1

2
||w||2 + C

m∑
i=1

(zi + z∗i )

s.t (w · xi − b)− yi ≥ ε− zi

(w · xi − b)− yi ≤ −(ε− z∗i )

zi, z
∗
i ≥ 0 i = 1, ...,m

(3.7)
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min
α,α∗,b,z,z∗

m∑
i=1

αi +
m∑
i=1

α∗i + C
m∑
i=1

zi + C

m∑
i=1

z∗i

s.t yi − (ε− z∗i ) ≤
m∑
j=1

(α∗i − αj)K(xi, xj)− b ≤ yi + (ε− zi)

α, α∗, z, z∗ ≥ 0 i = 1, ...,m

(3.8)

3.4 Novelty detection (one-class classification)

The SVM approach has been extended to detect novelty or outliers that are distinc-

tively different from the majority. The main idea is to find a hyperplane, where data lie

predominantly on one side, and none or a few lie on the other side (see Figure 3.7).

Figure 3.7: Illustration of novelty detection (one-class classification). The origin is the only
member of the other class.

Again, we want to maximize the distance between two classes. We use a slack

variable z just as we do in binary classification, but the decision function is constrained

only to be positive except for small errors (z). We introduce ν (0 ≤ ν ≤ 1), which controls

the number of outliers. If the ν is smaller, the decision function allows less outlier and

consequently finds a larger predominant class. The primal form and the dual form of one-
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class classification are:

min
w,z,b

1

2
||w||2 + 1

mν

m∑
i=1

zi − b

s.t w · xi − b ≥ −zi

zi ≥ 0

i = 1, ...,m

(3.9)

min
α

m∑
i,j=1

αiαjK(xi, xj)

s.t
m∑
i=1

αi = 1

0 ≤ αi ≤
1

mν
i = 1, ...,m

(3.10)
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4. Methodology

4.1 Goal of the study

The purpose of this study is to demonstrate utilities of the proposed localized data

collection and analysis framework. In this framework, a smartphone analyzes locally stored

data about the user of the device and sends the analysis results to researchers. Researchers

never collect the raw data; they only have access to the processed individual results. Re-

searchers aggregate locally analyzed individual results and interpret meanings of emerging

patterns at the whole sample level. The goal is to investigate exploratory analysis using

machine learning and data mining in the proposed framework.

Exploratory analysis takes place when researchers have no preconceived behavioral

patterns to look for. To look for patterns that may or may not exist, visualization is a useful

approach to exploring data. The methods to locally analyze data at an individual level

should be able to transfer data patterns to researchers without actual data so that researchers

can visually inspect emergent patterns at the whole sample level.

Therefore it is crucial to employ an analysis method at the individual level that can

transfer data patterns as accurately as possible to the whole sample level. I plan to employ

SVMs for the localized individual analysis in order to capture individual data patterns.

SVMs have shown high prediction accuracy across many application domains, for example,

87% in text categorization (Joachims, 2002), 91.4% in protein positions (Hua & Sun, 2001),

96.8% in face recognition (Moghaddam & Yang, 2002), and 96.8% in handwritten digit

recognition (Decoste & Schölkopf, 2002). Although an SVM learns existing patterns and

predicts unknown data successfully, it is not known whether multiple SVM models can

reconstruct underlying patterns when aggregated.
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The proposed method is multi-layered: localized analysis at an individual level and

aggregated analysis at the whole sample level. Will the proposed analysis method show

underlying patterns in the population? How accurately does aggregated individual analyses

perform, in comparison to a single analysis using the whole data? Ultimately, can the

localized analysis framework work as well as the conventional data collection and analysis

paradigm? I will outline how to answer these research questions in the next section.

4.2 Methods

In the proposed framework, a smartphone analyzes locally stored data about the

user of the device and sends the analysis results to researchers. The researchers receive

only the processed results and never the original raw data. Therefore, the characteristics of

the processed results play a crucial role in protecting user privacy. It is important to take

into account that any analysis method creates multiple products and some of the products

are more or less suitable to conceal private information than the others. The choice of

processed results to be sent is an integral consideration in this framework.

In this study I suggest fitting an SVM and reconstructing individual patterns by the

SV model on a smartphone, and sending reconstructed individual patterns to the research

host and recovering the underlying overall patterns (see Figure 4.1). In this process, one

might think that we could have the smartphone send an SV model instead of reconstructed

individual patterns; it would be more efficient if smartphones send models and pattern

reconstruction occurs at the research host. Indeed, that was the first inclination when de-

signing this study.

Upon further thought, it became apparent that a model embeds raw information in

itself in SVMs. As described in the Literature Review, SV models contain support vectors

that are a part of raw data. Although support vectors exposed to researchers would be

a relatively small portion given that mobile data may contain a myriad number of data
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Figure 4.1: Flowchart of the data collection and analysis using SVMs. The Process shows
steps of analysis with individual smartphones, as well as afterwards on the researcher’s
computer where it is aggregated. The Tasks shows related issues at each analysis step. Note
that the server receives individual patterns from many participants and that the received
multiple results will be aggregated into a single overall pattern. Also note that at no time
the researcher has access to the original raw data of the participants, which allows the
researcher to use even fairly private information.

points, this is not ideal for privacy protection. The choice of the processed results to be

sent is crucial, as discussed earlier in the Proposal.

The proposed framework provides a simple solution: processing the analysis re-

sults even further on participants’ devices. We can have participants’ devices reconstruct

individual patterns using SV models and send the reconstructed individual patterns to the

research host, not the SV models that contain partial raw data. This alternative provides

complete protection for privacy at the small expense of computational and network cost on

smartphones.

This specific process using SVMs is designed to provide complete privacy protec-

tion. Of course, one can alter the process depending on analysis methods. In most analysis

methods, user privacy will be preserved by only collecting models. The general process in

the proposed framework is to: (1) fit an individual participant model on a smartphone (2)

send individual models to the research host, and (3) recover the underlying patterns for the
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whole sample. In the case that a model itself contains raw data like SVMs, at step (2) we

could reconstruct individual patterns on a smartphone and send individually reconstructed

data instead. The flexibility of the framework allows various approaches.

Overview of the study

The analysis process using SVMs in this study is that: (1) an SVM learns individual

patterns at each user’s smartphone, (2) the SV model reconstructs individual patterns at

each user’s smartphone, (3) researchers receive the reconstructed individual patterns from

multiple participants, (4) the reconstructed individual patterns are combined into overall

patterns at the whole sample level, and (5) researchers visually or analytically inspect and

interpret the overall patterns (see Figure 4.1). Consequently, the effectiveness of visual

inspection depends on the accuracy of reconstructed patterns.

There are several decision-making points that we should consider regarding pat-

tern reconstruction and accuracy evaluation. Considerations should be given for parameter

tuning, input data to reconstruct patterns, and accuracy evaluation, which I will discuss in

detail in the following sections. Because this is a novel approach, there is no established

convention to follow; we must investigate how different specifications could result differ-

ently in order to understand the results of pattern recovery, which is our main interest.

In Study 1, I will first investigate how analysis specifications influence pattern re-

covery. In Study 2, based on the results of Study 1, I will run simulation studies to inves-

tigate how well SVMs perform to reconstruct patterns at the whole sample level. I will

evaluate the accuracy of the reconstructed patterns and show samples of visualization in

Study 2.

4.2.1 Study 1

In Study 1, I will show how different analysis specifications could influence pattern

reconstruction. In the following, I will first discuss considerations in analysis process and
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evaluation of the method in detail. Second, I will describe study conditions to investigate

the effects of analysis specifications.

Parameter tuning

To achieve best performance, SVM parameters must be tuned when an SVM runs on

a participant’s device. Idealy, it is best to tune parameters as precisely as possible to obtain

better results, and it would take several minutes or longer on each device. In practice,

this wouldn’t cause problems for users, because we can opt it to run analysis when the

smartphone is not in use (e.g., when being recharged). For this simulation study, however,

it will cost time if we try to tune parameters very precisely, because a simulation consists

of multiple SV models, which will be distributed across multiple smartphones in practice.

As parameter tuning costs significant computational time, I will initially show how

parameter tuning can influence pattern recovery by comparing rough tuning results and fine

tuning results. In rough tuning, each parameter will be tuned among two or three candidate

values (e.g., 0.01, 0.1, or 1 for γ); in fine tuning, each parameter will be tuned by finer in-

crements until no substantial improvement occurs in the results. This will let us understand

how parameter tuning could influence pattern recovery. After that, the parameters will be

only roughly tuned for each individual data in the rest of the study.

Input data

One of the challenges of this analysis method is that we do not have information

about the original inputs. To reconstruct patterns on the researcher’s side, not the smart-

phones, we need data to feed the SV models. The input data will be created as a grid space

of the input features. The created input data may or may not exist in the input space of the

original raw data and one should define a reasonable range of input. In this study, the range

of [−2, 2] in a standardized scale for each dimension will be used (approximately 95% of

data falls in the defined range in the case of normal distribution).
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Another consideration is that pattern recovery depends on the resolution of the grid

that SVMs take as input. If the grid has fine resolution, SVMs show a precise picture of

the pattern; if the grid has crude resolution, SVMs show a rough picture of the pattern (see

Figure 4.2). However, a perfect recovery of original raw data does not mean successful

recovery of behavioral patterns in social sciences because the original data contain noise in

the first place. The goal is not a perfect recovery of original individual raw data, but rather

a recovery of overall patterns at the whole sample level. The choice of resolution is up to

the researcher. In this study, I will show a range of resolution and corresponding results so

that one can make an informed decisions.

Figure 4.2: Illustration of grid size and resolution (Wikipedia, 2015). Pattern recovery
depends on the resolution of the grid that SVMs take as input.

Classification results

On the researcher’s side, we need to create an overall impression of all the classifiers

received from the smartphones. One way is to create one overarching classification scheme

that uses all classifiers. There are two different ways to decide the class of the interest with

using multiple SVM models from individuals: voting or averaging decision values. Using

the voting system, the class of an instance can be decided by the more frequently assigned

class by the all classifiers. On the other hand, using decision values, of which sign decides

the class, the class of an instance can be decided by the sign of average decision values

across the all classifiers.

The results from the two mechanisms diverge if decision values are close to zero,

that is, an SVM predicts classes with less certainty. For example, the two results wouldn’t



28

agree if there are more positive classes with very small decision values and less negative

classes with very large absolute decision values.

Once the patterns are reconstructed, I will evaluate the accuracy of the reconstructed

patterns compared to the aggregated patterns of the original data. The original individual

data exist separately and I need to combine them into one, in a comparable format to the

reconstructed data, where the input space is a researcher-created grid. I will convert the

input space of the original individual data into bins defined as the input space of the pattern

reconstruction. This will result in multiple corresponding output values in the same bin.

The final class of each cell is decided by the more frequent class across all outputs. Now

the aggregated patterns are comparable to the reconstructed patterns and we can compute

overall matching accuracy between the aggregated patterns and the reconstructed patterns.

Regression results

For SV regression, the predicted outcome by multiple SV models is averaged to re-

construct patterns. The original individual data is averaged for each bin as well, to construct

the aggregated overall patterns at the whole sample level. However, unlike classification,

the accuracy evaluation is more challenging in regression because the outcomes are real

values (not classes as classification) and it is unlikely to find them exactly matching each

other.

I suggest evaluating accuracy of regression results by permitting errors. I will first

measure the difference between each pair of the reconstructed values and the original val-

ues. The values will be defined as matching if the difference falls in a certain range. The

accuracy is the rate of the matching outcomes between the data. Note that the precision of

accuracy depends on the size of error permitted.

In addition to the suggested approach, I will also report R2 as an indicator of the

portion of errors. Note that R2 more severely penalizes for larger deviation whereas the

suggested new approach does not reflect the magnitude of deviation. The two could yield
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different results if original data include outlying values that are hardly captured in models.

The best judgement to compare patterns is human discretion, however. In this study,

accuracy will be computed with an intention to provide a summary of massive simulation

results. I will present sample visualized results at certain accuracies in order to help under-

stand how numerical accuracy reflects actual similarity judged by human cognition.

Simulation conditions

The data will contain three variables (two predictors and one outcome) with arbi-

trary effects, 100 observations per person, and 100 individuals (which yield 100 SV mod-

els). There will be 200 replications per condition. For classification tasks, the following

will generate data:

z = −1 if x < y

z = 1 if x > y

where x ∼ N(0, 1), y ∼ N(0, 1), e ∼ N(0, σ2)

For regression tasks:

y = x+ z + e

where x ∼ N(0, 1), z ∈ {−1, 1}, e ∼ N(0, σ2)

The specific questions for classification are that: (a) How does parameter tuning

influence pattern recovery? (b) How does bin size of input grid influence pattern recov-

ery? (c) How does class decision method influence pattern recovery? The results will be

presented in accuracy rates (Table 4.1).

In addition to (a) and (b) as in classification, the specific question for regression is

that (c) how does accuracy evaluation reflect pattern recovery? The results will be presented

both in accuracy rates (Table 4.2) and in sample visualized patterns in correspondence with

the resulted accuracy. Additionally, R2 will be reported.
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Table 4.1: Study conditions for classification. The resulted accuracy rate of pattern recov-
ery will replace dashes in the cells.

Rough tuning
Class decision

Majority vote Average value

Input bin

0.05 - -
0.10 - -
0.15 - -
0.20 - -
0.25 - -

Fine tuning
Class decision

Majority vote Average value

Input bin

0.05 - -
0.10 - -
0.15 - -
0.20 - -
0.25 - -

Table 4.2: Study conditions for regression. The resulted accuracy rate of pattern recovery
will replace dashes in the cells.

Rough tuning
Permitted error size

0.05 0.10 0.15 0.20 0.25

Input bin

0.05 - - - - -
0.10 - - - - -
0.15 - - - - -
0.20 - - - - -
0.25 - - - - -

Fine tuning
Permitted error size

0.05 0.10 0.15 0.20 0.25

Input bin

0.05 -
0.10 -
0.15 -
0.20 -
0.25 -

4.2.2 Study 2

In Study 2, I will examine how accurately the proposed method reconstructs differ-

ent patterns and how visualization can capture such patterns. Based on the results of Study

1, I will decide the bin size of input, the class decision method, and the accuracy measure to

use in Study 2. Parameters will be roughly tuned as discussed. I will introduce non-linear

patterns and different effect sizes in Study 2. The output of Study 2 is accuracy of pattern

recovery across different data patterns and visualization of the reconstructed patterns.

Effects of features

In simulation studies in social and behavioral science, an effect of a variable is

typically made in a shape of data patterns. For example, one could define an effect as a

distance between two group means (i.e., Cohen’s d). However, I would like to approach

from another aspect in this study. This study aims to reconstruct underlying patterns as

accurately as possible; an effect can be defined as distinctiveness of emerging patterns.

Data patterns are less distinctive and less likely to be recognized if random errors (noise)

dominate data. Figure 4.3 shows that the underlying patterns are less distinctive with a
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larger variance in random errors added to a model that generates data.

For features at an individual level, I will define an effect as distinctiveness of emerg-

ing patterns in this study. I will manipulate variance (σ2) in random errors, e ∼ N(0, σ2),

to control the effect sizes. With a larger effect size (i.e., a smaller error variance), it is easier

for an SVM to learn data patterns and make a better prediction.

Figure 4.3: Illustration of data generation for classification. The distinctiveness of patterns
depends on the random errors added to the model. Error ∼ N(0, σ2).

Data patterns for classification

For classification tasks, the following will generate data.

z = −1 if x2 + y2 < 1 + e

z = 1 if x2 + y2 > 1 + e

where x ∼ N(0, 1), y ∼ N(0, 1), e ∼ N(0, σ2)

This generates a circle inside another circle as shown in Figure 4.3. For example,

a student’s mood and frequency of text messages are moderate at home while they are

extreme at school, as shown in Figure 4.3 (D). Error variance will manipulate effect sizes.

With smaller random errors, the classes are more clearly separated (Figure 4.3).

Data patterns for regression

For regression, two non-linear patterns will be examined. For Pattern 1 (mean shift),

the following will generate data:
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y =
1

2
bz + bx2 + e

where b = 0.3, x ∼ N(0, 1), z ∈ {−1, 1}, e ∼ N(0, σ2)

For Pattern 2 (opposite openings):

y = bx2z + e

where b = 0.3, x ∼ N(0, 1), z ∈ {−1, 1}, e ∼ N(0, σ2)

These generate parabolas as shown in Figure 4.4. For example, as for opposite

openings, at home, positive emotion reflected in text messages increases along the fre-

quency of text messages up to a certain point and decreases if one uses text messages ex-

cessively. On the contrary, at school, the patterns are in the opposite direction and positive

emotion decreases up to a certain point and increases along the frequency of text messages.

Error variance will manipulate effect sizes. With a larger effect size (i.e., a smaller error

variance), the patterns emerge more clearly.

Figure 4.4: Illustration of data generation for regression. (a)-(d) Two U-shape parabolas
with different mean levels (Pattern 1). (e)-(h) Two parabolas with opposite openings (Pat-
tern 2). The distinctiveness of patterns depends on the random errors added to the model.
Error ∼ N(0, σ2).
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Simulation conditions

The data will contain three variables (two predictors and one outcome), 100 obser-

vations per person, and 100 individuals (which yield 100 SV models). There will be 200

replications per condition. As described earlier, non-linear models will generate data. The

effects will be made in terms of distinctiveness of patterns and it will be manipulated by

random errors (noise). The results will be presented both in accuracy rates (Table 4.3) and

in visualization of the simulation conditions. For regression, R2 will be reported too.

Table 4.3: Study conditions for classification (left) and regression (right). The results of
pattern recovery will replace dashes in the cells. Sample patterns will be plotted.

Effects σ2 Accuracy

Minimal 4.5 -
3.5 -
2.5 -
1.5 -

Large 0.5 -

Effects σ2 Accuracy R2

Minimal 1.0 - -
0.8 - -
0.6 - -
0.4 - -

Large 0.2 - -
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5. Results

5.1 Study 1

5.1.1 Classification

Parameter tuning: rough tuning vs. fine tuning

As shown in Table 5.1, parameter tuning did not show differences in pattern recov-

ery accuracy in this study. The fine tuning condition did not show higher accuracy than the

rough tuning condition. Therefore, in the rest of the Classification Results section, I will

show only the rough tuning results. Future consideration and implication will be discussed

later.

Class decision method: majority voting vs. averaging decision values

As shown in Table 5.1, the accuracy of averaging decision values was greatly lower

than the accuracy of majority voting. SVM models did not reconstruct patterns accurately

when the class was decided by averaging method. Therefore, in the rest of the Results, I

will show only the majority voting results.

Bin size

As the bin size increased, the resulted accuracy increased. Note that the SVM

models are identical across bin sizes; the accuracies vary because of the different input

data (defined by bin sizes), not due to the model’s prediction performance.
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Table 5.1: Pattern recovery accuracy by class decision methods and by tuning methods.

Input bin size
Voting Averaging

Rough tuning Fine tuning Rough tuning Fine tuning

0.01 79.13% 79.12% 53.07% 52.89%
0.05 84.12% 84.12% 53.53% 53.39%
0.10 90.29% 90.28% 54.11% 53.99%
0.15 92.78% 92.83% 54.29% 54.13%
0.20 94.17% 94.18% 54.37% 54.22%
0.25 95.01% 95.01% 54.51% 54.44%

Accuracy of aggregated results from multiple SVMs

The current study suggests locally analyzing individual data and combining the

multiple results from the individually trained models. To evaluate the effectiveness of the

proposed method, I need to compare this approach to the conventional approach, that is,

collecting and analyzing the whole raw data. However, direct comparison between the two

approaches are not suitable: the input data are different (binned data and raw data) and

therefore the predicted outcomes (reconstructed patterns) are not comparable. In addition,

the accuracy of proposed method varies based on bin sizes and there is no standard for

which bin size is comparable to raw data. Instead, I compare the two approaches using the

same binned input data. This comparison shows, under the same condition (by using binned

data), what can be achieved if the whole data were collected. The Table 5.2 shows the

aggregated results from the individually-trained multiple SVM models (as in the proposed

framework) and the accuracy results from an SVM model built on the whole raw data (as

in the conventional paradigm). Note that the models in the two approaches are built on

different data, but that they produced outcomes (accuracy of the reconstructed data) using

the same binned data. As shown in Table 5.2, although an SVM model based on the whole

data shows slightly higher accuracy than multiple individual SVMs, the differences are

very small (less than 1% across different bin sizes). For comparison, I present results of

using raw data (not binned data). When using raw data, the aggregated results of multiple

individual SVM models showed 82.82% accuracy, whereas an SVM model trained on the
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whole raw data showed 80.48% accuracy.

Table 5.2: Accuracy comparison of the aggregated results from multiple individual models
and the single result from a model built with the whole data.

Data type
Model

Aggregated SVMs Single SVM

0.01 79.13% 79.19%
0.05 84.12% 84.19%

Binned data 0.10 90.29% 90.38%
(bin size) 0.15 92.78% 92.95%

0.20 94.17% 94.35%
0.25 95.01% 95.25%

Raw data 82.82% 80.48%

Figure 5.1: Pattern recovery accuracy by bin sizes.

Visualization

The outcomes of this study are visualized data patterns to enable exploratory anal-

ysis using this framework. Figure 5.1-(d), (e), and (f) show sample visualizations of the

results of three bin sizes. Although, in all bin sizes, the decision boundaries were depicted

correctly as in the visualized true model shown in Figure 5.2-(b) and (c), bin sizes larger

than 0.10 showed crudeness in resolution. Note that the original raw data and the recon-

structed data do not necessarily look similar due to the noise in the raw data. A good method
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will allow investigation of underlying mechanisms of phenomena, thus resemblance of pat-

terns between the reconstructed data and the true model are desired, not a representation

of the original raw data. The original raw data shown in Figure 5.2-(a) looked more dense

in the middle and less so in the outlying area because the raw data was simulated based on

a normal distribution, which may or may not be the case in real mobile data. The recon-

structed patterns by SVMs are based on binned input data, which are distributed uniformly

between -2 to 2 with an interval of a certain bin size. The recovered patterns by SVMs can

be cosmetically more similar to the input data if different input data (based on a normal

distribution) were used, or if the original raw data were generated differently (based on a

uniform distribution). For comparison, the true model based on a uniform distribution is

presented as an example in Figure 5.2-(c).

5.1.2 Regression

Parameter tuning: rough tuning vs. fine tuning

As in the classification results, parameter tuning did not show differences in pattern

recovery accuracy and R2 in this study (Table 5.3). The fine tuning condition did not

show higher performance over the rough tuning condition. Therefore, in the rest of the

Regression Results section, I will show only the rough tuning results. Future consideration

and implication will be discussed later.

Table 5.3: Accuracy and R2 by tuning methods. The accuracy is averaged across a range
of permitted errors from 0.1 to 1.0 in this result.

Input bin size
Accuracy R2

Fine tuning Rough tuning Fine tuning Rough tuning

0.01 77.68% 77.66% 94.21% 94.20%
0.05 92.36% 92.34% 98.91% 98.90%
0.10 95.48% 95.40% 99.43% 99.41%
0.15 97.00% 96.92% 99.62% 99.60%
0.20 97.38% 97.28% 99.68% 99.67%
0.25 97.90% 97.82% 99.74% 99.72%
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Figure 5.2: Sample visualization of the original raw data, the true model, and the recon-
structed data by SVMs within the localized analysis framework (55th simulation in the
study). Note that the original raw data and the reconstructed data do not necessarily look
similar due to the noise in the raw data. We seek resemblance of patterns between the true
model and the reconstructed data to evaluate the framework. (a) The original raw data.
All individual data are combined. Each individual data was simulated based on a normal
distribution. (b) Visualized patterns of the true model that generated the raw data based
on a normal distribution. (c) Visualized patterns of the true model based on a uniform
distribution. (d) Visualized patterns of the reconstructed data with bin size = 0.05. (e)
Reconstructed data with bin size = 0.10. (f) Reconstructed data with bin size = 0.15.

Bin size

As in the classification results, when the bin size increased, the resulting accuracy

increased (Table 5.4). Note that the SVM models are identical across bin sizes; the accura-

cies vary because of the different input data (defined by bin sizes), not due to the model’s

prediction performance. Implications will be discussed later.

Performance measure: regression accuracy using permitted errors

Along with R2, the regression prediction accuracy was measured using a range of

permitted errors (Figure 5.3). Prediction accuracy varies more widely than R2. Note that



39

Table 5.4: Pattern recovery accuracy and R2 by bin sizes and by permitted error sizes.

Input bin size
Error size for regression accuracy

R2

0.01 0.05 0.10 0.20 0.30 0.40 0.50

0.01 2.62% 12.89% 25.57% 47.88% 65.38% 77.47% 85.51% 94.20%
0.05 5.71% 28.03% 52.40% 81.92% 93.42% 97.34% 98.92% 98.90%
0.10 7.91% 37.87% 66.20% 91.12% 97.50% 99.35% 99.86% 99.41%
0.15 9.97% 45.59% 75.12% 95.31% 99.02% 99.81% 99.95% 99.60%
0.20 11.01% 50.08% 78.04% 95.90% 99.05% 99.86% 100.00% 99.67%
0.25 11.75% 53.12% 82.04% 96.78% 99.47% 99.94% 100.00% 99.72%

the SVM models are identical across different error sizes; the different numerical results

do not indicate different performance across error sizes in each bin size. The differences

come from how to measure the prediction accuracy. In this study, error size 0.1 and 0.2

correspond respectively to 2.5% and 5% of the data range (−2 to 2). In the rest of the

results section, I will only report the results of permitted error size 0.1 along with R2.

Implications will be discussed later.

Figure 5.3: Pattern recovery accuracy by sizes of permitted error and bin.
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Accuracy of aggregated results from multiple SVMs

The performance of the proposed framework and the conventional paradigm is next

compared using the same binned input data. The pattern recovery accuracy of the localized

analysis framework is evaluated based on the aggregated results from multiple SVM mod-

els individually built on each individual’s data; the accuracy of the conventional paradigm

is evaluated based on one SVM model built on the whole data. In addition to using binned

input data, I compared multiple individual models with one model using raw input data

too. This comparison shows that how locally analyzing small chunks of data behaves com-

pared to analyzing the whole data. The Table 5.5 shows the aggregated results from the

individually-trained multiple SVM models (as in the proposed framework) and the accuracy

results from an SVM model built on the whole raw data (as in the conventional paradigm).

Note that the models in the two approaches are built on different data (one is a subset of

the other), but that they produced outcomes (accuracy of the reconstructed data) using the

same binned data. The resulting comparisons between the aggregated results from multiple

models and the single result from one model are very similar to the classification results

(Figure 5.4 and 5.5). Although an SVM model based on the whole data shows slightly

higher accuracy and R2 than multiple individual SVMs, the differences are small. When

using raw data, the aggregated results of multiple individual SVM models showed slightly

better performance than an SVM model trained on the whole raw data. However, unlike

the classification results as shown earlier, the differences in performance (either accuracy

or R2) were large between binned data and raw data. Implications will be discussed later.

Visualization

Figure 5.6-(c), (d), and (e) show sample visualizations of the results for three bin

sizes. The regression predictions were depicted correctly as in the visualized model shown

in Figure 5.6-(b). Unlike classification, data generation process (which probability distribu-

tion used) did not affect visualization results of regression, because the visualized patterns
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Table 5.5: Comparison of the aggregated results from multiple individual models and the
single result from a model built with the whole data. Accuracy error size = 0.10.

Input data type
Accuracy R2

Aggregated SVMs Single SVM Aggregated SVMs Single SVM

0.01 25.57% 25.58% 94.20% 94.27%
0.05 52.40% 53.52% 98.90% 98.97%

Binned data 0.10 66.20% 68.30% 99.41% 99.49%
(bin size) 0.15 75.12% 78.22% 99.60% 99.67%

0.20 78.04% 82.19% 99.67% 99.74%
0.25 82.04% 86.21% 99.72% 99.80%

Raw data 9.79% 7.93% 67.23% 66.65%

Figure 5.4: Pattern recovery accuracy by bin sizes. Error size = 0.10.

of outcomes (predicted values) are sparser in regression than in classification.

5.1.3 Discussion

Parameter tuning

In both classification and regression, contrary to the typical expectation, more pre-

cise parameter tuning did not improve the results. However, this may be the case due to

the simplicity of the models in this study, where only three variables are included and the

true models are simple. It is possible that more precisely tuned parameters could improve

the accuracy of SVMs depending on data features, which researchers are interested in. In



42

Figure 5.5: Pattern recovery accuracy by error sizes. Bin size = 0.05.

practice, before running studies at scale, I suggest running a pilot study to examine the

costs and effects of parameter tuning using data features of interest.

Accuracy measure for regression

In this study, I introduced a new measure of regression prediction performance. By

accepting a certain range of errors, we can evaluate the accuracy of real value predictions.

Unlike R2, this accuracy measure allows us to control precision of the accuracy measure.

For example, in this study, the R2s were already close to 1 (ranged .942 to .997) and they

couldn’t precisely differentiate performances across conditions and models. By choosing

error size 0.1, the study was able to evaluate the results in a more interpretable way. Al-

though the proposed regression accuracy measure and the conventionally used R2 show

different results, the actual performance of model predictions are identical. Note that the

differences come from the metric of performance measure, not the actual performance.

Also note that choice of error size can be post-hoc and has no significant computational

cost for computation.
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Figure 5.6: Sample visualization of the original raw data, the true model, and the recon-
structed data by SVMs within the localized analysis framework (166th simulation in the
study). (a) The original raw data. All individual data are combined. (b) Visualized patterns
of the true model. (c) Visualized patterns of the reconstructed data with bin size = 0.05. (d)
Reconstructed data with bin size = 0.10. (e) Reconstructed data with bin size = 0.15.

Effects of binning

The measured performance increased as bin size increased. However, this does not

mean the SVM models performed differently: the models are identical across bin sizes.

The differences come from how to create binned original data and reconstructed data using

the models. The bin size defines the resolution of binned original data and reconstructed

data while the accuracy of pattern recovery depends on the resolution of data defined by bin

sizes. I reason that the accuracy of pattern recovery depends on the binned raw data, which

the reconstructed data are compared with in order to evaluate the performance of SVM

models. Binning reduces noise in data. As shown in Figure 5.7, the binned raw data has

less noise than the original raw data and resembles the true model. This results in the high

accuracy of the reconstructed data, which resembles the true model as shown in Figure 5.7.

One might wonder if we could simply bin data as a means of processing original
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raw data. Although it could work to a certain degree, it can reveal raw data if we choose

a very small bin size so that only a datum fits in a cell. As suggested in the proposed

framework, when we use a predictive model to reconstruct data patterns, it is not possible

to triangulate original raw data by binning. The original raw data are protected because

we do not use the original raw data as input data and thus the reconstructed patterns are

generated by models using researcher-defined input data. The original raw data does not

take part in this framework after individual models are trained with the raw data.

Figure 5.7: Comparison of the true patterns, raw data, binned data, and reconstructed data
by SVMs. The data patterns of binned data (d, e, and f) resemble the true patterns (shown
in a) by simply binning. With a larger bin size (shown in f), the binned data look more like
the true underlying patterns. The reconstructed data (shown in c) results in high accuracy
because the binned data it is to be compared with looks more similar than the raw data
does. (a) The true underlying patterns (a uniform distribution). (b) The raw data simulated
based on the true model (a normal distribution). (c) The reconstructed data by SVMs (bin
size = 0.25). (d) Binned data (bin size = 0.05). (e) Binned data (bin size = 0.15). (f) Binned
data (bin size = 0.25).
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Classification and regression

The binning effects can explain the differences in the classification results and the

regression results. Whereas the aggregated individual results and single model results in

classification were seemingly comparable between binned data and raw data, there was a

huge gap in the results between the two data types in regression. As I explained earlier,

however, raw data results and binned data results are not comparable since the input data

that was used to generate patterns were different. Even so, the regression results showed

unexpected differences between the aggregated individual results and the single model re-

sults, compared to the classification results. In classification, because an outcome is binary

(two bins), I suspect that the classification task (assigning into one of the two bins) itself

functions as a noise filter. In regression, because an outcome is a real value, nothing filters

the noise.

Aggregated individual models vs. single model with the whole data

The most important point is that there was no practical difference between the re-

sults of aggregated individual models (as in the proposed framework) and the results of

a single model using the whole data (as in the conventional paradigm). This is the case

both using binned data and using raw data. These results suggest that the localized anal-

ysis framework has similar analytical power compared to the conventional paradigm. In

fact, when raw data is used, aggregated individual models show higher performance than

a single model. This was unexpected. I expected that a model with the whole data would

perform better than multiple models with subsets of the data. This opens new possibili-

ties in research methodology especially with big data, which is computationally difficult to

process with a single machine. For future research, it is worth investigating whether this

result holds with smaller data (fewer participants or fewer observations per participant).
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Input data type

Although binned input data were used in this study, any data can be used in appli-

cation. Binning was employed for raw comparison data, and input data to reconstruct data

from given models. By exactly matching features after binning, it was possible to compare

the raw data and the model generated data, and to compute the pattern matching accuracy.

In practice, however, we no longer need binning and researchers are free to choose any

type of data as input in order to recover underlying patterns. Consider that, as shown in

the results, the aggregated individual results show higher accuracy than the single model

results when using real values as input. Input data to feed locally trained models can be

binned just as in this study, or randomly generated based on a normal or other distributions.

The choice of data distribution will depend on data of interest from the mobile device. One

possibility is to estimate underlying distributions of data on smartphones. The effective

choice of input data type requires further research.

Performance compared to the true model

Although this study measured the pattern recovery accuracy in comparison to raw

data (generated based on a true model), we could measure the accuracy compared to the

true model to evaluate local analysis methods. The analysis goal is ultimately to find an

underlying true model that generates raw data, rather than raw data itself. Even if recon-

structed data patterns do not resemble raw data, the methods are good solutions if they

effectively represent the true models. In future research, it is worth examining the accuracy

compared to true models. We can measure the accuracy compared to true models without

binning and we can easily compare different types of input data.
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5.2 Study 2

5.2.1 Classification

As shown in Table 5.6 and Figure 5.8, the classification accuracy increased as the

distinctiveness of patterns increased (less noise in data). The aggregated individual SVMs

and the single SVM built with the whole data showed very minimal difference in the per-

formance. With raw data, the aggregated SVMs showed higher accuracy when the patterns

are less distinctive than the single SVM. The difference between the aggregated SVMs and

the single SVM decreased as the variance decreased (more distinctive patterns). Sample

patterns are visualized in Figure 5.9.

Table 5.6: Pattern recovery accuracy comparison of the aggregated results from multiple
individual models and the single result from a model built with the whole data. Bin size =
0.05.

Data type
Condition Model

Effects (patterns) σ2 Aggregated SVMs Single SVM

Binned data

Minimal (less distinctive) 4.5 61.56% 61.75%
3.5 64.53% 64.71%
2.5 69.13% 69.38%
1.5 77.07% 77.26%

Large (more distinctive) 0.5 91.14% 91.22%

Raw data

Minimal (less distinctive) 4.5 69.80% 61.29%
3.5 70.83% 63.84%
2.5 73.16% 67.88%
1.5 78.48% 74.86%

Large (more distinctive) 0.5 92.34% 90.22%

5.2.2 Regression

Pattern 1: Mean shift

As shown in Table 5.7, Figure 5.10, and Figure 5.11, the accuracy and R2 increased

as the distinctiveness of patterns increased (less noise in data). Remember that the accuracy
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Figure 5.8: Pattern recovery accuracy by conditions. Bin size = 0.05.

orR2 of two methods should be compared with the same type of data. The results of binned

data and raw data are not comparable. Either by accuracy or R2, the performance of the

aggregated individual SVMs was on par with a match with the single SVM built with the

whole data. Sample patterns are visualized in Figure 5.12. Regardless of the fuzziness of

the raw data, the recovered patterns represent the true model very well.

Table 5.7: Pattern recovery accuracy and R2 for the pattern of mean shift. The aggregated
results from multiple individual models and the single result from a model built with the
whole data are compared. Bin size = 0.05 and error size = 0.10.

Data type
Condition Accuracy R2

Effects σ2 SVMs Single SVM SVMs Single SVM

Binned data

Minimal 1.0 52.57% 53.28% 85.71% 86.64%
0.8 62.69% 62.97% 90.20% 90.69%
0.6 74.95% 75.91% 94.36% 94.67%
0.4 89.42% 89.81% 97.43% 97.54%

Large 0.2 99.09% 99.11% 99.35% 99.37%

Raw data

Minimal 1.0 9.93% 7.97% 19.66% 16.92%
0.8 13.22% 9.98% 26.32% 24.07%
0.6 16.97% 13.28% 37.30% 36.05%
0.4 23.92% 19.84% 55.67% 55.81%

Large 0.2 42.70% 38.36% 82.90% 83.48%
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Figure 5.9: Sample visualization of the original raw data, the reconstructed data by SVMs
within the localized analysis framework, and the true underlying patterns. Note that the
original raw data and the reconstructed data do not necessarily look similar due to the
noise in the raw data. We seek resemblance of patterns between the true model and the
reconstructed data to evaluate the framework. (a) The original raw data of Condition 1
(least distinctive patterns, σ2 = 4.5). All individual data are combined. Each individual
data was simulated based on a normal distribution. (b) The original raw data of Condition
5 (most distinctive patterns, σ2 = 0.5). (c) Visualized patterns of the reconstructed data of
Condition 1 (least distinctive patterns, σ2 = 4.5). Bin size = 0.05. (d) Visualized patterns of
the reconstructed data of Condition 5 (most distinctive patterns, σ2 = 0.5). (e) Visualized
patterns of the true model based on a uniform distribution.

Pattern 2: Opposite opening

The overall results showed similar trends for both patterns of mean shift and op-

posite openings. As shown in Table 5.8, Figure 5.13 and Figure 5.14, the accuracy and

R2 increased as the distinctiveness of patterns increased (less noise in data). Remember

that the accuracy or R2 of two methods should be compared with the same type of data.

The results of binned data and raw data are not comparable. Either by accuracy or R2, the

performance of the aggregated individual SVMs was on par with the single SVM built with

the whole data. Sample patterns are visualized in Figure 5.15. Regardless of fuzziness of
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Figure 5.10: Pattern recovery accuracy by conditions for the patterns of mean shift. Bin
size = 0.05, error size = 0.10.

Figure 5.11: R2 by conditions for the patterns of mean shift. Bin size = 0.05.

the raw data, the patterns represent the true model very well.

5.2.3 Discussion

First of all and most importantly, across all tasks, patterns, conditions, and data

types, the aggregated individual models show practically equal performance as the single



51

Figure 5.12: Sample visualization of the original raw data, the reconstructed data by SVMs
within the localized analysis framework, and the true underlying patterns. Note that the
original raw data and the reconstructed data do not necessarily look similar due to the
noise in the raw data. We seek resemblance of patterns between the true model and the
reconstructed data to evaluate the framework. (a) The original raw data of Condition 1
(least distinctive patterns, σ2 = 1.0). All individual data are combined. Each individual
data was simulated based on a normal distribution. (b) The original raw data of Condition
5 (most distinctive patterns, σ2 = 0.2). (c) Visualized patterns of the reconstructed data of
Condition 1 (least distinctive patterns, σ2 = 1.0). Bin size = 0.05. (d) Visualized patterns of
the reconstructed data of Condition 5 (most distinctive patterns, σ2 = 0.2). (e) Visualized
patterns of the true model.

model built with the whole data. With more distinctive patterns (less noise in data), as ex-

pected, models recovered patterns in data more accurately. Although R2 results for binned

data show ceiling effects, the proposed accuracy measure is able to show a better picture of

the results.

Note that the better results with binned data than with raw data does not indicate

the models perform better. The models are identical across binned data and raw data. The

valid comparison is between the aggregated individual models and the single model within

the same type of data. The higher accuracy when binned data are used is likely due to the
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Table 5.8: Pattern recovery accuracy and R2 for the pattern of opposite openings. The
aggregated results from multiple individual models and the single result from a model built
with the whole data are compared. Bin size = 0.05 and error size = 0.10.

Data type
Condition Accuracy R2

Effects σ2 SVMs Single SVM SVMs Single SVM

Binned data

Minimal 1.0 49.80% 53.89% 88.94% 92.32%
0.8 60.34% 63.10% 93.29% 95.00%
0.6 73.27% 75.65% 96.24% 97.11%
0.4 87.21% 90.06% 98.33% 98.72%

Large 0.2 98.06% 99.13% 99.58% 99.67%

Raw data

Minimal 1.0 10.24% 7.98% 23.52% 21.20%
0.8 14.07% 10.02% 31.62% 29.67%
0.6 18.68% 13.31% 43.85% 42.82%
0.4 26.15% 19.83% 62.63% 62.85%

Large 0.2 45.17% 38.33% 86.78% 87.13%

Figure 5.13: Pattern recovery accuracy by conditions for the patterns of opposite openings.
Bin size = 0.05, error size = 0.10.

fact that the data compared with has less noise and is more close to the true underlying

patterns, which the model-generated patterns resemble.

In fact, the underlying patterns in raw data may not be detectable by human eye

(Figure 5.9-a, 5.12-a, and 5.15-a). SVMs successfully detect the true patterns and recon-

struct them (Figure 5.9-c, 5.12-c, and 5.15-c). The study results suggest that we could use
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Figure 5.14: R2 by conditions for the patterns of opposite openings. Bin size = 0.05.

predictive models to visualize seemingly invisible underlying patterns in data.
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Figure 5.15: Sample visualization of the original raw data, the reconstructed data by SVMs
within the localized analysis framework, and the true underlying patterns. (a) The original
raw data of Condition 1 (least distinctive patterns, σ2 = 1.0). All individual data are com-
bined. Each individual data was simulated based on a normal distribution. (b) The original
raw data of Condition 5 (most distinctive patterns, σ2 = 0.2). (c) Visualized patterns of the
reconstructed data of Condition 1 (least distinctive patterns, σ2 = 1.0). Bin size = 0.05. (d)
Visualized patterns of the reconstructed data of Condition 5 (most distinctive patterns, σ2

= 0.2). (e) Visualized patterns of the true model.
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6. General Discussion
In the localized analysis framework using smartphones, researchers do not directly

collect raw data. Instead, software on each individual’s smartphone collects the raw data,

and only the processed results are sent to the researchers. Researchers then analyze the

aggregated individual results and interpret them. The simulation study results suggest that

the proposed localized analysis framework can perform as well as the conventional data

collection and analysis paradigm. The pattern recovery results show that the aggregation of

multiple individual models recover the underlying true patterns as well as the single model

built with the whole data. In addition, this study found that binning can filter noise out in

original data. As a result, the binned data resemble the underlying true model more, simply

by binning. The noise filtering effects of binning is greater with a larger bin size.

6.0.1 Limitations of the study

Most importantly, the degree of privacy preservation was not measured in this study.

To serve the purpose of privacy protection, it is beneficial to quantify how well the proposed

method protects raw data and how much information the method can transfer. Differential

privacy, for example, suggest adjusting the degree of privacy by using ε (ε-differentially

private; Dwork et al., 2006). Although the current study showed how accurately the under-

lying data patterns can be transferred in comparison with the conventional data collection

and analysis, how well privacy can be preserved is still in question. Because privacy and

utility in data are likely to be a trade-off, it is especially important to provide measures

for privacy preservation and information transfer. It will also allow us to evaluate different

privacy protection approaches. The degree of privacy preservation and information loss

should be considered in the future research.
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The study was limited to visually recovering underlying data patterns using SVMs.

The employed method using SVMs is only one of many methods possible in the proposed

localized analysis framework. SVMs might not be the best method to recover patterns.

Or, data visualization might not be the best way to use the proposed framework. As an

extension of this study, for example, we could cluster reconstructed individual patterns and

look for distinctive demographic characteristics between the clusters. Or we could use

completely different analysis algorithms at an individual level. Further studies exploring

different methods and approaches are needed to find effective ways to employ the localized

analysis framework.

In this study, the study conditions had 100 observations per person, 100 participants,

and only three features. This would not be typical when we use mobile devices for research.

With mobile devices, it is much easier to collect thousands of participants. Mobile sensing

data could add up to thousands or more per day because they can log activities every second

or less. Although the main idea and principle will hold at a larger scale, the small scale of

this study is one of the limitations.

In the proposed data collection and analysis framework, time-invariant data such as

demographic information (e.g., gender and age) cannot be analyzed at an individual level

as it has no variability over time. The host server should collect time-invariant data along

with individual models if one wishes to include them in analysis at the aggregated level.

In this study I did not examine time-invariant variables, which can be called higher-level

variables because they are included at aggregated analysis after individual analysis. Higher-

level variables, such as demographic information, are important factors in the social and

behavioral sciences and in the future research we should investigate how to incorporate

them in this framework.

Temporal and spatial aspects of mobile data were not taken into account in this

study. The study data were generated based on an assumption that each observation is

independent of each other. In many cases, however, mobile data are likely to be time-
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dependent as well as space-dependent. Although studies have shown that SVM performs

consistently with non-i.i.d. data (Steinwart, Hush, & Scovel, 2009), further investigation

will be beneficial.

6.0.2 Implications of the study

The significance of this study is twofold. Although the main purpose of this study

is to demonstrate the proposed framework, the study methods and results contribute other

aspects too. The method developed in this study and the results can be applied to analytical

methods other than SVMs. I suggested a new method in which predictive models recon-

struct data patterns and studied analysis specification systematically for this approach. The

study results show how the analysis results can be influenced (or not) by analysis specifi-

cation, that is, bin size and class decision from multiple classifiers. The majority voting

method outperformed the average decision values in class decision for classification tasks.

Binning functioned as a noise filter and the binned data itself resembled the true patterns

more than the raw data did. Furthermore, I suggested a new approach for accuracy mea-

surement for regression that permits a certain range of errors. By controlling the precision

of accuracy, the results could avoid ceiling effects shown in R2. These are all applicable

to different analysis methods and contexts other than SVMs, regardless of the proposed

framework.

In this study, I demonstrated how to find underlying patterns of the whole sam-

ple from individual results. This is a form of meta-analysis. We could try applying the

approach in this study to another context such as meta-analysis of multiple results. For ex-

ample, in biomedical research, it is common to have a very small sample size per specific

condition (e.g., Zou et al., 2005). Instead, the results have hundreds of results (models) in

total. We could apply this approach to such cases in order to look for an overall pattern

from multiple sub-results.

Finally, I suggested a unique approach to use machine learning in social science
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contexts. A black-box approach of machine learning could assist theory building in the

social sciences. Despite the high performance in prediction, the social sciences, where

the theory-driven approach is highly endorsed, show very slow movement toward adopt-

ing machine learning, whose approach is highly data-driven. In other domains such as

biomedicine, where traditional statistical analyses have also been widely used, machine

learning has been adopted and gained popularity in recent years. In this study, I attempted

to show a unique approach to using machine learning to build hypotheses by visualizing

data patterns.

Data-driven approaches can assist theory-building in many ways. In the humanities,

it is a new trend for researchers to use text mining to support their claims (Sculley &

Pasanek, 2008). The same can be done in the social and behavioral sciences. The evidence

in existing massive data, such as online blogs, can be utilized by machine learning methods

(e.g., Pang & Lee, 2008). Machine learning can be very useful to utilize pre-existing data

in natural settings without soliciting people’s response.

6.0.3 Future consideration

Temporal and spatial correlations in mobile data are not considered in this study.

For example, emotions reflected in text messages would not be independent from the pre-

viously sent messages. Someone who is upset might send multiple messages and express

such emotion to someone else. During texting, the emotion could evolve based on the

interaction with the other person. As another example, places where a person visits are

not independent either. A person visits places from one to another because geographically

they’re connected. Furthermore, temporal characteristics and spatial characteristics can be

intertwined. These characteristics require additional attention in the future.

Missingness by non-activity is an interesting topic to consider. Data from different

mobile features do not align well with each other because different activities do not nec-

essarily occur together. For example, moving between location and texting behavior may
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or may not occur at the same time. Also, some mobile sensors create data every moment

while some record only when an activity occurs. If we try to analyze such data altogether

by aligning them by timestamps, the data will have a large portion of missingness. How-

ever, they are not missing data in the conventional sense (Little & Rubin, 2002; Rubin,

1976). In the conventional way of data collection, missingness matters because respon-

dents may intentionally choose not to answer certain questions. In mobile data, the nature

of missingness is completely different; it rather indicates non-activity. How to analyze or

collapse such misaligned multiple data would be an important consideration when using

mobile data.

Future research is needed into how to incorporate higher-level variables (such as

demographic information) in the localized analysis framework. For example, I could have

plotted recovered patterns by demographic categories in this study. Or, I could have clus-

tered individual patterns and investigated demographic characteristics of each clusters. The

method for using higher level variables will be something to consider when planning stud-

ies using the localized analysis framework.

Although this is not limited to the proposed framework, we need to investigate how

to adjust the representativeness of mobile data. Even though smartphones have proliferated

widely throughout our daily lives, their usage varies across demographics, such as age,

gender, race, and socioeconomic status (Askitas, Zimmermann, Zagheni, & Weber, 2015).

We need to be cautious about drawing conclusions based on what we observe using mobile

devices. By accounting for usage patterns across demographics, we will be able to better

understand the results from advanced technologies.

Finally, as mentioned in the study limitations, a measure of privacy preservation and

information transfer should be considered in the future. To what degree is the information

altered (lost) by introducing privacy protection mechanisms in data collection and analy-

sis process? To what degree can it preserve privacy by altering (losing) the information?

Such metric will allow us to develop and evaluate methodologies in privacy preserving
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data collection and analysis. A promising approach could be integrating differential pri-

vacy (Dwork et al., 2006) in the localized analysis framework. For example, we could

introduce randomness (defined by ε) in a localized analysis on each device. This remains

an important topic to investigate in further research.

6.0.4 Significance of the localized analysis framework

Traditional data analysis assumes that analysts can use data that are collected from

the sample at anytime for data analysis with no limitation. If the access to the original

data is limited, we need new analysis methods to find patterns and meanings without the

full original data. This is the first attempt to analyze each individual’s data by itself, and

examine the aggregated results to find patterns at the whole sample level.

The proposed research has significant benefits in research methodology. First of all,

the localized analysis framework allows researchers access to sensitive information while

protecting participants’ privacy. Because app users are ensured that no original data will be

transferred to someone else, we will be able to recruit wider participation from the general

public.

This is especially beneficial in health-related research because health information

is highly sensitive and personal. For example, drug use or sexual behavior are sensitive

topics that have shown low response rates and high attrition. Participants will be more

likely to respond to sensitive questions in a candid way if they are assured that no one will

see their original responses, and that any data collected from those responses will remain

anonymous.

Secondly, the localized analysis framework opens a new way of treating data and

conducting research. Although data collection is much easier than before, public concerns

about data privacy and security have been greatly heightened through major data breaches

in recent years. Conventionally, researchers have to collect data and place it at a central

place in order to extract information from the data using computing resources. We no
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longer need to confine ourselves to the traditional paradigm. Data can be collected and

analyzed using distributed computing resources: mobile phones.

Researchers are often not interested in each individual’s data, ultimately. Rather,

we are interested in aggregated data and emerging patterns across many individuals. If we

can use information about the whole sample level without looking at the original responses

of individuals, then we do not need to obtain individual raw data. In that way, not only do

we protect people’s privacy, but we have better security from data breaches.

Finally, the localized analysis framework can be applied to a broad range of practi-

cal applications for broader populations. For example, researchers (and users) can monitor

physical activity levels using mobile sensors for general health monitoring purposes. Or we

could reach a more specific population, such as those with depression, and use both their

interpersonal data and physical activities for intervention. People are more likely to readily

agree to participate in studies or to adopt healthcare apps for their daily lives if we assure

that no one accesses personal raw data on their phones.

The proposed framework provides practical benefits. It can utilize private informa-

tion while protecting people’s privacy. Does it mean it completely protects user privacy

from any researchers? Of course not. A researcher with a malicious intention could use

a pencil and paper and ask for social security numbers from participants. Likewise, one

may try to obtain highly private data from a personal device (which is possible with any

currently available smartphone app). It is not possible to perfectly prevent it. Absolute

security does not exist. However, this proposed framework will help researchers with good

intentions avoid accidental invasion of participants’ privacy, if the method is employed

properly.

As discussed earlier, the choice of the processed results to send to the research host

is important. Some results are more or less revealing of raw data. One should decide

how much to process and what results to obtain when studies are designed. For example,

running text analysis and obtaining the frequency of each word used would not suffice as
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privacy protection. However, if one intends to evaluate suicide tendency, we could analyze

text messages and evaluate the frequency of warning words defined by the researcher. Then

the researcher could obtain suicide tendency scores based on text messages without looking

at participants’ actual text messages.

6.0.5 Conclusion

Mobile phones have become an intrinsic part of our daily lives. Any data collected

from them is especially reflective of our day-to-day reality. By using smartphone apps,

researchers can now observe behavioral patterns in mobile data, all without soliciting any

responses or relying on self-reports. Such behavioral data includes the frequency and length

of phone calls, the contents of text messages, and users’ physical locations. However, this

immediately brings up privacy issues. No one wants other people to harvest their mobile

phone’s private data. To utilize mobile data without invading privacy, I have proposed a

localized analysis framework using smartphones. In this approach, researchers do not di-

rectly collect raw data. Instead, software on each individual’s smartphone accesses the raw

data locally stored in the device, and only the processed results are sent to the researchers.

Researchers then analyze the aggregated individual results and find meanings at the whole

sample level.

The current study aimed to demonstrate utilities of the proposed localized analy-

sis framework using smartphones with an emphasis on exploratory analysis using machine

learning. While there are many possible methods to employ within this framework, in this

study I adopted support vector machines (SVMs) for localized analysis at an individual

level and visually inspected the aggregated patterns at the whole sample level. The local-

ized analysis framework opens a new way of treating data to protect user privacy.
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